$+$

$$
\Leftrightarrow
$$

Encyclopedia Britannica

LATEST EDITION

A DICTIONARY OF ARTS，SCIENCES，AND general literature

NEIV NAPS AND MANY ORIGINAL A．VERICAV ARTICLES EY゙ EMFKVEVT ALTHORS FLLLJ ILLCSTRATED，UTTH OIVER TEN THOLSAND PORTRAITS，PLATES，AN゙D ENGRATVA゙GS

ORIGINAL NINTH EDITION IN TWENTY－FIVE VOLUMES EDITED BY
Profs．SPENCER BAYNES，LL．D．，and W．ROBERTSON SMITH，LL．D．
ASSISTED BY OVER ONE THOUSAND CONTRIBUTORS

IN THIRTY VOLUMES WITH

New American Supplement

EDITED UNDER THE PERSONAL SUPERVISION OF
DAY OTIS KELLOGG，D．D．
Formerly Professor of English Literatu，f and Ifistory，F＂ansas State［＇niversity，etc．，etc． ASSISTED BY A CORPS OF EXPERIENCED WRITERS

TWENTIETH CENTURY EDITION REVISED，WITH LARGE ADDITIONS，TO JANUARY I，190I

vOLUME XXIII

THE WERNER COMPANY

Encyclopædia Britannica.

VOL. XXIII.-(T-UPS).
Total number of Articles, 625.
PRINCIPAL CONTENTS.

TABARI. M. J. de Goeje, Professor of Arabic, University of Leyden.
TABLES, MATHEMATICAL. J. W.L.Glaisher, F.R.S., President, Royal Astronomical Society.
TAHiti. Baron Axatole von Hügel.
TALES. Andrew Lang, M.A.
TALMUD. S. M. Scimler-Szinessy, M.A., Ph.D. TAMILS. Reinhold Ross, Ph.D., LL.D., C.I.E. tape-Worms. W. E. Hoyle, M.A.
TASSO. J. A. SYmonds, M.A.
TASTE. Prof. M'Kendrick, M.D., LL.D., F.R.S.
TAXATION. J. Shield Nicholson, M.A., D.Sc., Professor of Political Economy, University of Edinburgh.
TAXIDERMY. Montague Browne, Author of "Practical Taxidermy."
TEA. James Paton. [F.R.S. TEAK. Sir Dietrich Brandis, K.C.I.E., Ph.D., technical education. Sir Philip Magies.
TELEGRAPH. Thomas crar, B.Sc., F.R.S.E.
TELEMETER. Major Artitur W. White, R.A. TELEPHONE. Thomas GRay.
TELESCOPE. DAvid Gili, LL.D., Astronomer Royal, Cape of Good Hope.
TELL. Rev. IW. A. B. Coulidge, M.A.
TEMPLARS. T. A. Archer.
TEMPLE. W. Rohertson Smitif, LL.D.
TENIERS. Henri Hyanss, Conservateur, Biblinthèque Royale, Brussels.
TEVNIS. Julian Marshall, Author of "Annals of Tennis."
TENTILES. J. H. Midnleton, M.A., Slade Professor of Fine Art, University of Cambridge.
THACKERAY. Walter H. Pollock.
THALES. Prof. G.J. Aliman, LL.D., F.R.S., and Henry Jackson, Litt. D.
THEatre. Prof. J. H. Midnletor and James Williams, B.C.L.
THEBES. A. W. Verrall, M.A., Lecturer in Classics, Trinity College, Cambridge.
theisil. Rev. Rubert Flint, I.D., LL.D., Professar of Divinity, University of Edinburgh.
THEODORA. James Bryce, D.C.L., IJ.P.
THEODORIC. THomas Hodgetr, D.C.L., LL.D. THEOLOGY. Prof. R. Flint.
Theosophy. Animet Setil, M.A., Professor of Logic, University of St. Andrews.
THERMODYNAMIUS, P. G. Tait, M.A., Professor of Natural Philosophy, University of Edinburgh.
THERMOMETER. H. R. Mill, D.se.
THESSALONIANS, EPISTLES TO THE. E. Schürfre, Professor of New Testament Theology, Giessen.
THibaUt. Jonn Machonell, M.A., Author of "The Land Question."
THIERS. George saintsbery, M.A.
THOREATT. Whliam Sharp, Author of "Life of Shelles."
THiOAT DISEASES. J. O. Affleck, M.D.
THUCYDIDES. Prof. R. C. Jebrs, LLID.
THUGS. Reinhord Rost, LL.D., C.I.E.
THULE. Sir Enwarn H. Bunbury, Bart.
TIBET. General J.T. Whaker, R.E., C.B., F.R.S., and Prof. A. Terrien de Lacouperie.
tides. G. H. Darwin, M.A., F.R.S., Plumian Professor of Astronomy and Experimental Philosophy, University of Cambridge.
TIME. J. L. E. Dreyer, Ph.D., Astronomer, Armagh Observatory.

TIMUR. Major-Gen. Sir Frederick J. GoldSmid, K.C.S.I., C.B.
TIN. Prof. W. Ditmiar.
TITHES. W. Robertson Smith, LL.D., and James Williams, B.C.L.
TITIAN. W. M. Rossetti.
TITLES OF HONOR. Frederick Drummond. tobacco. James Paton and Prof. W. Dittmar. TONNAGE. W. Moore, Principal Surveyor of Tonage, Board of Trade, London.
TORPEDO. Commander Edinin J. P. Gallwey, H.M.S. "PoIyphemus."

TORT. Frederick Pollock, LLL.D., Corpus Professor of Jurisprudence, University of Oxford.
Tortoise. Albert Günther, M.D., Ph.D., F.R.S.

TORTURE. James Williams.
TOTEMism. J. G. Frazer.
TOUCH. Piof. J. G. M'Kendrice.
ToURNEUR. A. C. Swinberne.
TRACTION. J.A. Ewing, B.Sc., F.R.S., Professor of Engineering, University College, Dundee.
TRADE UNIONS. Fred. Drummond.
TRAMWAY. Tromas Codrington, C.E.
TRANSIT CIRCLE. J. L. E. Dreyer, Ph.D.
TREASON. James Williams.
TREATIES. Thomas E. Hollana, D.C.L., Chichele Professor of International Law and Diplomacy, University of Oxford.
TREMATODA. W. E. Hoyle.
TRENT, COUNCil OF. Rev: Dr. Littledale. TRICYCLE. C. V. Boys.
TRIGONOMETRY. E. W. Hobson, M.A., Lecturer in Mathematics, Christ's College, Cambridge.
TRIPOLI. A. M. Broadley, Author of "Tunis, Past and Present."
TROAD. Prof. R. C. Jebb.
TRUMPET. Victor Mahillon, Conservatoire Royal de Musique, Brussels.
TRUST. James Willifams.
TUNiCATA. II. A. Herdman, D.Sc., Professor of Natural History, University College, Liverpool.
'TUNNELLING. Benjamin Baker, C.E.
TURKEY-
History and Literature. E. J. W. Gibb, Author of "Ottoman Poems," and C. A. Fyffe, M.A., Author of "History of Modern Europe." [Keane.
Geography and Statistics. Prof. A. H.
TURKS. Prof. M. Th. Houtsma, University of Leyden.
TURNER. George Reid, R.S.A.
TYPIIUS, TYIFIOID, AND RELAPSING FEVERS. J. O. Affleck, M.D.
TYPOGRAPHY-History. J. H. Hessele, M.A. -Practical. John Socthward.
tyrol. A. J. Butler, M.A.
ULFILAS. Rev. C. Anderson Scott, B.A.
UMBria. William Ridgeway, M.A., Professor of Greek, Queen's College, Cork.
UNITARIANISMI. Rev. J. F. Smiti.
UNITED STATES-

> I. History and Colonization.
II. Phyrical Gengrapily and Statistics. III. Political, Geograpmy and Statistics. Rt. Rev. Sameel Fallows, D.D., late Professor of Physics, Lawrence Universits.
UNJVERSITIES. J. Bass Mulilinger, M.A., Librarian, St. John's College, Cambridge.

ENCYCLOP 灰DIA BRITANNICA.

Ti.the twentieth symbol in our alphabet. It has varied out little in form since the earliest days when it appearc in Greece and Italy, though some of the Italic alphoets exhibit variants: e.g., in Umbrian and Etruscan inserytions we find the horizontal stroke sometimes on one side nly, and slanting; sometimes the form is nearly that of or ordinary small t without the ornamental turn at the bttom. In value it has been in all languages a surd or viceless dental, corresponding to d, which is voiced. But.he term "dental" includes some varieties of position, of wich the most definite are-(1) where the point of the tonge touches the teeth (true "dental"), as in French ; (2) whee the tongue touches the gum behind the teeth, and nothe teeth at all, as in English; (3) where the point of the:ongus is slightly bent back against the palate, producingthe sound much heard in south India (often called "ceebral"). T when followed by i or y is liable to pass in the s-sound ; this happened in the local dialects of Itys before the Christian era; at Rome the transition was lar. This changed sound passed on into the Romance languges, e.g., in French "nation," pronounced "nasion," wence in England it was sounded first as "nasiun" and nci as "nashun." Similarly in English t followed by u udergocs a change of sound ; this is due, however, to the wil sound of $u \bar{u}$, viz., long French u, or Old English y. This $\log y y$ developed into the iu sound beard in "use," "ure," \&c.; then the new i affected the preceding t, and th result is tsh, as in "nature" (natshure); similarly d in "ferdure" is sounded as dzh (verdzhure).
English employs the digraph $t h$ to denote two sounds, $d f i$ ring as voiceless and voiced sounds-the initial sounds c "thin" and "then" respectively. It would be a great onvenience if $d h$ could be used for the voiced sound, so bat "then" should be written "dhen." But it would be wen better if the single symbols could be employed to tenote these single sounds, as was to soine extent the case I the earlier days of our language : in Anglo-Saxon we have the two symbols δ and p. The first is only a d crossed ; the econd was a rune and wascalled "thorn." These, however, were not consistently employed one for the voiceless and no for the voiced sound; also the is actually found in the oldest texts and later on it occurs together with 8 and p. it is prebable that the voiceless sound was originally the
only one in Teutonic. It was eventually differentiated into two sounds; but, as is usually the case, writing remained more archaic than speech. In modern English and Icelandic, and probably in the parent Teutonic also, initiad th is voiceless, except in English in a small number of pronouns and particles in common use, as "thou," "this," "that," "then," "than," "though," "thus"; and it is regularly voiceless when final. The nature of the two sounds is this: the tongue is pressed against the back of the teeth (sometimes, especially when used by foreigners, against the bottom of the upper teeth) and either the breath for th or the voice for $d h$ is forced through the interstices of the teeth. This pair of sounds is found in modern Greek, where thappears as θ and $d h$ as δ. In Spanish and in Danish under certain circumstances the sound denoted by d is $d h$.
tabarí and Early Arab Historians. Arahian historians differ from all others in the unique form of their compositions. Each event is related in the words of eje-witnesses or contemporaries transinitted to the final narrator through a chain of intermediate reporters (rawis), each of whom passed on the original report to his successor. Often the same account is given in two or more slightly divergent forms, which have come down through different chains of reporters. Often, too, one event or one important detail is told in several ways on the basis of several contemporary statements transmitted to the final narrator through distinct lines of tradition. The writer therefore exercises no independent criticism except as regards the choice of authorities; for he rejects accounts of which the first author or one of the intermediate links seems to him unworthy of credit,' and sonetines lie states which of several accounts seems to him the best. Modern jndgment does not always confirm this choice; some authorities much esteemed by Moslems are by Luropean scholars deemed untrustworthy, and vice versa. Fortunately the various historians did not always give preference to the same account of a transaction, and so one supplies what another omits.

A second type of Arabian historiography is that in which an author combines the different traditions about one occurrence into one continuous narrative, but prefixes a statement as to the lines of authoritios used and states which of theh he mainly follows. In this case the writer
recurs to the first method, already described, only when the different traditions are greatly at variance with one another. In yet a third type of history the old method is entirely forsaken and we have a continuous narrative only occasionally interrupted by citation of the authority for some particular point. But the principle still is that what has been well said once need not be told again in other words. The writer therefore keeps as close as lie can to the letter of his sources, so that quite a late writer often reproduces the very words of the first narrator.
From very early times the Arabs had great delight in verses and tales, and the development of their language was certainly much influenced by this fact. In ancient times story-tellers and singers found their subjects in the doughty deeds of the tribe on its forays, in the merits of horse or camel, in hinting adventures and love complaints, and sometimes in contests with foreign powers and in the impression produced by the wealth and might of the sovereigns of Persia and Constantinople. The appearance of the Prophet with the great changes that ensued, the conquests that made the Arabs-till then a despised race-lords of half the civilized world, supplied a vast store of new matter for relations which men were never weary of hearing and recounting. They wished to know everything about the apostle of God, whose influence on his own time was so enormous, who had accomplished all that seemed impossible and lad inspired the Arabs with a courage and confidence that made them stronger than the legions of Byzantium and Ctesiphon. Every one who had known or seen him was questioned and was eager to answer. Moreover, the word of God in the Koran left many practical points undecided, and therefore it was of the highest importance to know exactly how the Prophet had spoken and acted in various circumstances. Where could this be better learned than at Medina, where he had lived so long and where the majority of his companions continued to live? So at Medina a school was gradually formed, where the chief part of the traditions about Mohammed and his first successors took a form more or less fixed. Soon divers fathers of Islam began to assist memory by making notes, and their disciples sought to take written jottings of what they had heard from them, which they could carry with them when they returned to their homes. Thus by the close of the 1st century many dictata were already in circulation. For example, Ḥasan of Baṣra (d. 110 A.f.; 728 A.d.) had a great mass of such notes, and he was accused of sometimes passing off as oral tradition things he had really drawn from books; for oral tradition was still the one recognized authority, and it is related of more than one old scholar, and even of Hasan of Basra limself, that he directed his books to be burned at his death. The books were mere helps, and what they knew these scholars had handed on by word of month. Long after this date, when all scholars drew mainly from books, the old forms were still kept up. Tabari, for example, when he cites a book expresses himself as if he had heard what he quotes from the master with whom he read the passage or from whose copy he transcribed it. He eren expresses himself in this wise ; "Omar b. Shabba has related to me in his book on the history of Basra."

Historians before Tabarí.

Naturally, then, no independent book of the 1st century from the Flight. has come down to us. But in the 2d century real books began to be composed. The materials were supplied in the first place by oral tradition, in the second by the dictata of older scholars, and finally by various kinds of documents, such as treaties, letters, collections of poetry, and genealogical hists. Genealogical studies had become necessary through 'Omar's system of assiguing state pensions to certain classes of persons according to
their kinship with the Prophet, or their deserts dering his lifetime. This subject received much attention evel in the Ist century, but books about it were first writte in the 2d, the most famous being those of Ibn al-Kalid (d . 146 A.f.), of his son Hisham² (d. 20t), and of Al-Sharki ibn al-Kotéami. Genealogy, which often called for eluciduions, led on to listory. Beladhori's excellent Ausáb al-Ah hrá́ (Genealogies of the Nobles) is a history of the Arabson a genealogical plan.
The oldest extant history is the liography of the Ppyhet by Ibn Ishak (d. 150). This work is generally trustwrthy. Mohammed's life before he appearel as a prophet and the story of his ancestors are indecd mixed with manyfables illustrated by spurious verses. But in Ibn Ishakk's daf these fables were generally accepted as history-for many dithem had been first related by contemporaries of Mohanmedand no one certainly thought it blameworthy to put pious yerses in the mouth of the Prophet's forefathers, tough, according to the Filurist (p. 92), Ibn Ishak was dwoed by others with regard to the poems he quotes.

The Life of the Prophet by Ibn 'Okba (d. 111, based on the statements of two very trustworthy men, 'Orva ibn az-Zobair (d. 94) and Az-Zohri (d.124), seems to bi c, rite lost, Sprenger having vainly made every effort to find a copy. It was still much read in Syria in the 14 th century. But we fortunately possess the Book of the Campaiyns of the Prophet by AI-Wakidi (d. 207) and the important Book of Classes of his disciple Ibn Sa'd. ${ }^{\text {. }}$ Wákill hadmuch more copious materials than Ibn Isḥak, but gives way much more to a popular and sometimes romancing style of treatment. Nevertheless he sometimes helps us to recognize in Ibn Ishakk's narrative modifications of the genuine tradition made for a purpose, and the additional details he supplies set various events before us in a clearer light. Apart from this his chief merits lie in his studies on the subject of the traditional authorities, the results of thich are given by Ibn Sadd, and in his chronology, which is often excellent. A special study of the traditions about the conquest of Syria made by De Gocje in 1864 led to the conclusion that Wakidi's chronology is sound as regards the main events, and that later historians have gone astray by forsaking his guidance. This result has been confirmed by certain contemporary notices found by Nöldeke in 1874 in a Syriac MS. of the British Museum. And that Ibn Ishak agrees with Wakidi in certain main dates is important evidence for the trustworthiness of the former also. For the chronology before the year 10 of the Flight Wakidi did his best, buth here, the material being defective, many of his conclusions are precarious. Yet, though we have good ground for doubts, we are seldom able to construct a better chronology. Wákidi had already a great library at his disposal. He is said to have had 600 chests of books, cliefly dictata written by or for himself, but in part real books by Abú Nikhnaf (d. 130), Ibn Ishâk (whom he uses but does not name), 'Awina (d. 147), and other authors. Abú Nikhnaf left a great number of monographs on the chief events from the death of the Prophet to the caliphate of Walid II. These were much used by later writers, and We have many extracts from them, but none of the works themselves, except a sort of romance based on his account of the death of Hosain, of which Wüstenfeld has given a
${ }^{1}$ Of Hisbím b. al-Kalbi's boot there are copies in the British Museum and in the Escorial.
${ }^{2}$ Ibn Ishák's original work seems to be still extant in the Këprilii library at Constantinople; the edition of it by Ibn Hishám bas been edited by Wustenfeld (Göttingen, 1858-60) and transláted into German by Weil (Stuttgart, 1864).
3 Wákidí bas been edited from an imperfect MS. by Kremer (Calcutta, 1856). A condensed translation by Wellhausen appeared in 1882. The great book of Ibn Sa'd is unpublished, but there are some useful papers on it by Loth.
translation. With regard to the history of 'Irák in particular he was deemed to have the best lights, and for this subject he is TTabarl's chief source, just as Madáini, a yonnger contemporary of Wakidi, is followed by preference in all that relates to Khorásán. Madáini's History of the G'aliphs is the best if not the oldest published before TTabari; but this book has quite disappeared and is known only by the excerpts given by later writers, particularly Beladhor1 and Tabari.' From these we judge that ho had great narrative power with much clear and exact learning, and must be plaçed high as a critical historian. His plan was to record the various traditions about an event, choosing them with critical skill; sometimes, however, he fused the several traditions into a continuous narrative. A just estimate of the relative ralue of the historians can only be reached by careful comparison in detail. This has been essayed by Brünnow in his study on the Khárijites (Leyden, 1884), in which the narrative of Mobarrad in the Kámil is compared with the excerpts of Madaini given by Beládhori and those of Abú Mikhnaf given by Tabarí The conclusion reached is that Abú Mikhnaf and Madaini are both well informed and impartial.

Among the contemporaries of Wakidf and Madáinf were non Khidash (d. 223), the historian of the family Mohallab, whose work was one of Mobarrad's sources for the History of the K'harijuiles ; Haitbam ibn 'Adr (d. 207), whose works, though now lost, are often cited; and Saif ibn "Omar atTamimí, whose book on the revolt of the tribes under Abubekr and on the Mohammedan conquests was much used by Tabarf." Saif, however, seems to have been little esteemed ; Beládhorí very seldom cites hin, and nothing can be found in Arabic literature about his life and those of his authorities. He is barely mentioned in the Fihrist, the writer plainly ${ }^{\text {'having nothing to tell of him, and }}$ blundering in the one thing he does say by representing his disciple Sho aib as his master. Hájji Khalifa knows nothing bat his name. His narratives are detailed and of ten tinged with romance, and he is certainly much inferior to Wakid in accuracy. Besides these are to be mentioned Abú 'Obaida (d. 209), who was celebrated as a philologist and wrote several historical monographs that are often cited, and Azraki, whose excellent History of Mecea was published after his death by his grandson (d_244). With these writers we pass into the 3 d century of Islam. . But we have still an imporiant point to notice in: the 2 d century; for in it learned Persians began to take part in the creation of Arabic historical literature. Ily Molaffa translated the great Book of Persian Kings, and others followed his example. TTabarf and his contempuraries, senior and junior, such as Ibn Kotaiba, Yałkubib, Dinawari, preserve to us a good part of the information aliout Persian bistory made known through such translations. ${ }^{1}$. But even more important than the knowledge conveyed by these works was their influence on literary strple and composition. Half a century later began versions from the Greek either direct or through the Syriac. The pisces translated were mostly philosophical; but the Arabs diln learned something, however superficially, of ancient histöry. ${ }^{1}$
The 3d century was far more productive than the 2 d . A.bu' 'Obaida was presently succeeded by Ibn al-A'rábi (d. 231), who in like manner was clietly famous as a plilologist, and who wrote about ancient poems and battles. Muck that he wrote is quoted in Tabrizi's commentary on the H!amása, which is still richer in extracts from the historical elucidations of early poems given by Ar-Riyáshi (d. 257). Of special fame as a genealogist was Ibn Ḥabib

[^0](d. 245), of whom we have a booklet on Arabian tribal names published by Wüstenfeld (1850). Azralí again was followed by Fakihi, who wrote a History of Mecca in 272, ${ }^{2}$ and 'Omar b. Shabba (d. 262), who composed an excellent history of Baṣa, known to ns only by excerpts. Of the works of Zobair b. Bakkár (d. 256), one cf TTabari's teachers, a learned historian and genealogist much consulted by later writers, there is a fragment in the Köprïlii library at Constantinople, and another in Göttingen, part of which has been made known by Wüstenfeld (Die Familie 1l-Zobair, Göttingen, 1878). Yalkủbi or Ibn Wadih wrote a short general history of much ralue, published by Houtsma (Leyden, 1883). About India he knows more than his predecessors and more than bis successors down to Bèrúní. Ibn KZordádbeh's historical works are lost. Ibn 'Abdalhakan (d. 257) wrote of the conquest of Egypt and the West. Extracts from this book are given by De Slane in his Histoire des.Berbères, and others by Karle and Jones, from which we gather that it was a medley of true tradition and romance, and must be reckoned, with the book of his slightly senior contemporary, the Spaniard Ibn Habib, to the class of historical romances (see below, p. 5). A high place must be assigned to the historian Ibn Kolaiba (d. 276), who, as Rosen has well shown, wrote a series of books with a view to raising the scholarship of the large class of kátibs or official scribes. To this serics belong his veryuseful Handbook of Hislory (cd. Wuistenfeld, Göttingen, 1850) and his 'Oyún al-Akihtar, though the latter book according to the arrangement falls rather under the class of littera humaniores. Much more eminent is Beladhori (d. 279), whose book on the Arab conquest (ed. De Goeje, Leyden, 1865-66) merits the special praise given to it by Mas údŕ. Of his great Anscib al-Ashraf a large part exists at l'aris in the valuable collection of M. Schefer and another part was published by Ahlwardt in 1884. A contemporary, Ibn abi Ṭáhir Taifúr (d. 280), 'wrote on the 'Abbásid caliphs and was drawn on by Trabari. The sixth part of his work is in the British Museum. Of the universal history of Dinawarl (d. 2S2), entitled The Long Narratives, an edition by Girgas is now (1887) in the press.

TTabarí.

All these histories are more or less thrown into the shade by the great work of TTabari, whose fame has never faded from his own day to curs, and who well deserves to have this article on early Arabic histories placed under his name. Abú Ja'far Mohammed b. Jarir at-Tabari (so his full name runs) is described as a tall lean figure, with large eyes, brown complexion, and hair which remained black till his death. His learning was astounding and few could speak so well. Born 224 A.H. (838-9 A.d.) at Amol in Trabaristán, he came to Baghdad as a young man and heard there the nost famous teachers of the age. He travelled through Syria and Egypt (where he was in 263), and finally settlcd down in Baghdad, where he remained till his death iu 310 (922 A.D.), always active and surrounded by pupils. He is said to have written forty pages daily for forty years. This no doubt is an exaggeration, but certainly he must bave been a man of most persistent industry. His two chief works are a great Commentary on the Koran and his Annals. There is an aneciote to the effect that each originally filled 30,000 leares, but that his pupils found them too extensive to be written to his dictation, and that be then resolved to condense them to a tenth of their original size, exclaiming, "God help us! Ambition is extinct." One cannot say how far this story is true, bat it is probable enough that his materials, at least for the Annals, were many times greater than the book itself.

[^1]Whêre tne same topic comes' up in the Annats and in the Commentary we often find different traditions quoted, or the same tradition derived through different channels, and this shows the copious variety of his sources. Various parts of the 4 nnals give the impression of being condensed. The Commentary was published before the Annals, and is better ${ }^{-}$composed It is the head corner-stone of Koran exēgésis, as the Annals are of historiography. It came into general uso mainly through the abridgnent of Baghawi in the beginning of the 6th century of the Flight, being itself too large to be nuch read. The great book exists complete in the viceregal library at Cairo, and ought to be published at once. ${ }^{1}$
The Annals are a general history from the creation to 302 A.H.; and are in the course of publication at Leyden. They will fill some 7000 to 7500 pages, one and a half printed pages corresponding roughly to one leai of TTabarl's original MS. Tabari added a supplement about his authorities, an abridgment of which is to follow the Leyden edition. It contains biographical notices of traditionalists, contemporaries of Mohammed, and their successors to the second half of tho 2 d century. ${ }^{2}$ Other works by Tabari will be spoken of in detail in the preface to the Leyden edition.
The success of the Annals and Commentary was due above all to the author's personality. The respect paid to him by his contemporaries appears in various anecdotes preserved in his biograply. His pupils had an unbounded admiration for his extraordinary knowledge, and what he said seemed to them the best that could be said. In truth, both his great works were the best of their kind, especially the Commentary, which, in the judgment of all impartial critics, has not been equalled, before or since, in completeness, learning, and independent judgment. A contemporary says that "it would be worth a journey to China to procure the book." So general was this view that the opinion of TTabarf was quoted as a legal authority.

The inferiority of the Annals as a literary composition may be due partly to the author's years, partly to the inequality of his sources, sometimes superabundant, sometimes defective, partly perhaps to the somewhat hasty condensation of his original draft. Nevertheless the value of the book is very great: the author's selection of traditions is usually happy, and the episodes of most importance are treated with most fulness of detail, so that it deserves the high reputation it has enjoyed from the first. This reputation rose steadily; there were twenty copies (one of them written by Tabarl's own hand) in the library of the Fátimite caliph 'Aziz (latter half of the 4th century), whereas, when Saladin became lord of Egypt, the princely library contained 1200 copies (Makrizir i. 408 sq.). Only princes and rich men could own a book which in the time of 'Aziz cost one lundred dinars. We know that it bad a place in most great libraries in other countries, for we find that it was used in all lands. Thus the fact that no complete copy can now bo found anywhere, and that the Leyden edition rests on odd volumes lying in various places, gives a striking image of what the East has suffered from barbarism.

The Annals soon came to be dealt with in rarious ways. They were pablished in shorter form with the omission of the names of authorities and of most of the poems cited; some passages quoted by later writers are not found even in the Leyden edition. On the other hand, some interpolations took place, one in the author's lifetime and perhaps by his own hand. Then many supplements were written, e.g., by Ferghání (not extant) and by Hamadhání (partly preserved in Paris). 'Arib of Cordova made an abridg-
${ }_{2}^{1}$ See the excellent article by Loth in Z.D.M.Q., xxxv. 588 sq.
${ }^{2}$ The MS. contaning this abridguent is described by Loth in $\%$ D.M.G.. इxxil. 581 sq. It is uow iu the British Museum.
ment, adding the history of the West and continuing the story to about $365 .{ }^{3}$ Ibn Jashkawaih wrote a history from the creation to 369 A.H., with the purpose of drawing the lessons of the story, following Tabari closely, as far as his book is known, and seldom recurring to other sources before the reign of Moktadir; what follows is his own composition, and shows him to be a writer of talent. ${ }^{4}$ In 352 an abridgment of the Annals was translated into Persian by Bal'amí, who, however, interwove many fables. ${ }^{5}$ Ibn al-Athr (d. 630) abridged the whole work, usually with judgment, but sometimes too hastily. Though he sometimes glided lightly over difficultics, his work is of service in fixing the text of Tabari. He also furnished a continuation to the year 620. Later writers took Tabari as their main authority, but fortunately sometimes consulted other sources, and so add to our knowledge,especially Ibn al-Jauzf (d. 597), who adds many important details. These Jater historians had valuable help from the biographies of famous men and special histories of countries and cities, dynastics and princes, on which much labour was spent from the 4th century onwards.

Historians after ȚTabart.

Tho chief historians after Tabari may bo briefly mentioned in chronological order. Rázi (d. 325) wrote a History of Spain; Eutychins (d. 328) wroto Annals (published by Pocock, Oxford, 1656), which are very important because he gives tho Christian tradition; Ibn 'Abd Rabbihi (d. 328) has very valuable historical passages in his famons miscellany called Al.'Tl:d al-F'artd (3 vols, Cairo, 1293 A.H.) ; Șili (d. 335) wrote on the 'Abbásid caliphs, their viziers and conrt poets; Mas'údí (see Mas'ÚDY) composed various historical and geographical works (d. 345). Of Tabari's contemporary Hamza Ispahàni we have the Annals (published by Gottwaldt, St. Petersburg, 1844); Abu 'l-Faraj al-Ispaliání (d. 356) in his Book of Songs (Kilidib al-Aghdni, 20 vols., Cairo, 1285) gave tbe lives of fioets vhose songs were sung; Ibn al-1 Kitíya (d. 367) wrote a History of Spain; lbu Ziták (d. 387) a History of Egypt; "Otbi wrote tho Hzstory of Mahmuid of Ghazna (1. 421), at whose court ho lived (printed on the margin of the Egyritian cdition of Ibn al-Athír); Tha'labi (d. 427) wrote a well-known History of the Old Prophets; Abui No'aim al. 1spaháni (d. 430) wrote a History of Ispahan, chiefly of tho scholars of that city; Tha'alibi (d. 429 or 430) wrote, inter alia, a wellknova History of the Poets of his Time, now (1887) in course of pablication at Damascris. Berini (d. 440) takes a high placo ameng historians by his Chronolugy of Ancient Nations (ed. Sachau. Leipsic, 1878 ; Eng. trans., Londou, 1879) and his contributions to the history of India and Khwárizm; Koda'l (d. 454) mroto a Dcscription of Egypt and also various historical pieces, of which somo are extant; Ibn Sadid of Cordova (d. 462) wroto a View of the History of the T'arious Nations. Baghdad and its learned men found an cxcellent historian in Al-Khatib al-Baghdádi (d. 463), and Spain in Ibn Hayán (d. 469), and half a century later in Ibn Khakán (d. 529) and lhu Bassám (d. 542). Snm'áni (d. 562) wroto an cxcellent book on gencalogies; lbn "Asákir (d. 571) a History of Damascus and her Scholars, which is of great value, and cxists in whole or in part in several libraries. The Biographical Dictionary of tho Splaniard Ilin Pascual (d.578) and that of Dabbi, a somewhat junior contemporary, aro edited in Colcra's Bibliotheca Arab. IIisp. (1883-1885); Saladin found his historiau in tho famous 'Imad addin (d. 597). Ibn al-Jauzi, who dicd in the same ycar, lias been already mentioned. Abdalwahid's History of the Alnzohadcs, written in 621, was published by Dozy (2d ed., 1881). The geographer Yákit (d. 626) wrote also some historical vorks, now lost. Abdallatif (d .629) is known by his writings about Egypt (trans. De Sacy, 1810); 1bn al-Athír (d. 630) wrote, in addition to the Chronicle already mentioned, a Biographical Dictionary of Contemporaries of the Prophet. Kifti (d. 646) is especially known by his History of Arabic Philologists. Sibt ibu al-Jauzi (d. 654), grandson of the Ibn al-Janzi already meationed, wrote a great Chronicle, of wbich much the larger part still exists. Codera has odited (Madrid, 1886) Ibn al-'Abbár's (d. 658) Biographical Lexicon, al. ready known by Dozy's excerpts from it. Ibn al-'Adiun (d. 660) is
${ }^{3}$ Of this work the Gotha library has a portion contsining 290-320 A.H., of which the part about the West has been printed bv Dozy in the Layan, and the rest is to be published at Leyden.

4 A fragment.(198-251 A.E.) is printed in Do Goeje, Fragn. Hist. Ar., vol. ii., Leyden, 1871. Schefer possesses an excellent MS. of the years 249-315; Oxford bas another fragment, $345 \cdot 360$ A. H. ; the second part is in the Escorial.

- The first part was rendered into French by Dubeux in 1836. We. have now an excellent French translation by Zotenberg, 1874.
famed for his History of Aleppe, and Abú Sháma (d. 665) wrote a well-knewn History of Saladin and Nurcddin, tsking a great deal from 'Imád addia. A. Miller has recently published (1885) Iba abl Ossihia'a (d. 688) History of Physicians. The History of 1bn
 Erpenius in 1625 . Ibu Sa'id al-Mlaghribi (d. 673 or 685) is fameus for his histories, but still more for lis geograpbicsl writings. The noted theologian NAWAwt ($q . v$; d. 676) wrete a Biographical Dictionary of the Worthics of the Fivst Ages of Islam. Pre-emluent zs a biographer is 1bn Klhsllikía (d. 681), whose much-used work was partly edited by De Slane and completely by Wuistenfeld (1S3540), and translated inte English by the former eckiolar (4 vols., 1843.71).

Abu '1-Faraj, better knowu as Bar-Hebreus (d. 685), wrote besides his Syriac Chronicle an Arabic History of Dynastics (ed. Pocock, Oxferd, 1663). Ibn'Adhári's History of Africa and Spain has been published liy Dozy (2 vols., Leyden, 1848-51), and the Ķartds of Ibn sbi Zar' by Toruberg (1843). Orre of the hest known of Arab writers is Abulfeda (d. 732), whoso Annales Nruslenicxa were publishled with a Latiu versien by Reiska (Copenhagen, 5 vols, 4to, 1780.94). Tho Histor'y of the Time before Mohanuncd bas been published by Fleischer (1831). Not less famous is the groat Eheyclopartic of his contemporary Nowairi (d. 732), but only aome extracts are as yet la print. Ibn Sayyid an-Nís (1, "34) Yrote a full biography of the Prophet ; Mizzi (d. 742) an extensive work on the men firem whom traditions have been derived. We still possess, nearly conullete, the great Chronicle of Dhahabl (d. 748), a very learucd biograuher and listerian. A complete edition of the geographicel and historical Masilitic al-Absar of 1bn Fadlallia ($L .749$) is much to be desired. It is known at 1 tesent ly citracts given by Quatremère and Amari Ibn al-Wardí (d. 749 or 750), best known by his Cosmography, wrote a Chronicle which has been printed it Egypt. Safadí (d. 764) got a great name as a biographer. Yaini' (d. 768) mrote a Chronicle of Islam and Lives of Saints. Sobki (d. TT1) published Lites of the Theologians of the Shafitite School. Of lba IKathir's Ifistory the greatest part is extant. For the history of Spsin and the Maghrib the writings of Ibn al-Khatib (d. 776) are of acknowledgcd value. Another history, of vhich we possess tho greater part, is the large work of Ibn alFerit (d. 807). Far superior to all these, however, is the famous Ibn Khaldin (d. 80S), who proves himself a great thinker in the Prelcgonena to lis Universal History. Of the Prolcgomena there are an edition ly Quatremere (1858) and a French version by Do Slana (1863). The latter scholar also published text and version of the History of the Berbers, and there is a poor Egyptian edition of the whole work. Of the historical works of the famous lexicographer Firizazaill (d. 817) only a Lifc of the Prophet romains. MarrızI (d. 845) is apoken of in a separate articla; Ibn Hajar (d. 852) is best known ly his Biographical Dictionary of Contcmporaries of the Prophet, now in courso of publication in the Biblio. threcu Indica. Ibn 'Arabshál (d. 854) is koown by bis. History of Timuir (Lícuward3n, 1767). 'Aini (d. 855) wrote a Gencral History, still extant. Abu'1-Ma hásin (d. 874) wrote at length on tho histery of Egypt ; the first twe parts have been publishcd by Juynboll. Fligel has publishal Ibn Kotlubogla's Biographice of the بḷtanafte Jurists. Ibn Shibna (d. 890) wrota a History of Alcppo. Of Sakhámi we posiess a bibliographical work on the historians. Tho polymath Soyuti (d. 911) contributed a History of the Caliphis and many biegraphical pieces. Samhídi's History of Mcd ina is known through the excerpts of Wustenfeld (1861). Tbu Iyás (d. 930) wrote a Ilistory of Egyph, and Díyirbekri (d. 966) a Lifc of Mo. hammed. To these names must be added Markaril (q.ev.) and IIajji Khalifa, the famons Turkish bibliographer (d. 1068), who, besides his Bibliographical Lexicon and bis well-known grography, the Jihuin-numa, wrote bistories, mostly in Turkish. He made use of Europeaa sources, and with him Aralic historiography may be said to cease, tbought ha had aome unimportant successors.
A word must beasaid of the bistorical romances, the beginnings of which go back to the first centuries of 1slam. The interest in all that concerned Mohammed and in the allusions of the Koran to old prephets and races led many professional narraters to cheoso inese subjects in place of tho doughty deeds of the Belouins. The incressing veneration poid to the Prephct and lowes for the marvelleus soon gave risa to fables about lis chrildheod, bis visit to heaven, \&ce, which havo found their' way oven into soler hisforics, just as many Jewish legends told by the converted Jew Kab al-Al:oár and by Wahb ibn Monabbih, and many fables ai.wut the old princes of Yemen told by'Abid, are taken as genuine bistory (see, hewever, Mas údi, iv. 88 sq.). A fresh. field for ronantic legead mas found in the history of the victeries of Islam, the exploits of the first heroes of the faith, the fortuacs of 'Ali and his houso. Even under the first Omsyyads there were in the mosques of most great cities prezchers wlio edified the people by atories about Islam and its victories, and there is ample ovidence that these men did not stick to actual fact. Sbo'bs said of them "they get from us a handbreadth of tradition and mako it an ell." Thore too, linitory was often expressly forged for party ends.

The poople swallewed all this, and so a romantic tradition sprang up side by side with the historical, and had a literature of its own, the begianings of which must be placed as early as the secoud ceutury of the Flight. The oldest amples still extant are tho fables about the conquest of Spain ascribed to lbn 1Iabib (d. 238), and those about the conquest of Egypt aod tha West by Ibn 'Abdalhakam (d. 257). Iu these truth and falsehood are mingled, as Dozy has shown in his Recherches. But most of the extant literature of this kind is, in its present form, much more recent; c.g., the Story of the Dcath of Hosain by the Pseude Abu MFikhnaf (translated by Wiustenfeld); tho Conquest of Syria by Abú Ismáil al-Baçri (edited by Nassau Lees, Calcutta, 1854, and cliscussed by De Goeje, 1864) ; the Psende-Wákidi (see Mamaker, De Expugnatione Memphidis et Alcxandris, Leyden, 1835) ; the Pseudo-1bo Kotaiba (өee Dozy, Recherches) ; the book ascribed to A'sam Kuffi, \&e. Further inquiry into the origin of these works is called for, but some of them were plainly directed to stir up fresh zeal against the Christians. In the 6th century some of these books had gained so mneh authority that they were used as sources, and thus mauy untruths crept into accepted history.
(M.J. DE G.)

TABERNACLE, the portable sanctuary of Israel in the wilderness wanderings. Critical analysis of the Pensatevcir ($q . v$.) teaches us to draw a sharp line between the sld aotices of the tabernacle contained in the pre-Denteronomic history sowik (JE) and the account given by the post-exilic priestly narrator. The latter throws back inte the time of Moses the whole schene of worship and ritual of which the second temple was the centre, and, as this scheme necessarily implies the existence of an elaborate sanctuary on the pattern of the temple, he describes a tabernacle of extraordinary splendour pitched in the middle of the camp, with an outer aud inncr chamber and a courtyard, and all the apparatus of sacrificial and atoning ritual, just as in the temple, only constructed of boards, posts, and curtains so that it could be taken down and moved from place to place. The whole description is ideal, as appears not only from the details but from the fact that the old history knows nothing of such a structure. The Chronicler indeed, who had before him the Pentateuch in its present shape, assumes that.after the Israelites entered Canaan the tabernacle continucd to be the one legitimate place of sacrifice until it was superseded by Solomon's temple, and represents it as standing at Gibeon in the days of David and his son (1 Chron. xxi. 29 sq.; 2 Chron. i. 3). But the book of Kings knows Gibeon only as "the greatest high place" (1 Kings iii. 4). ${ }^{1}$

Again, the tabernacle of the Priestly Code is pre-eminently the sanctuary of the ark, bearing the name mishkan ha educh." "the tabernacle of the testimony," i.e., the habitation in which lay "tho ark of the testimony" or chest containing the stones on which the decalogue was inscribed. But between Joshua's days and the building of the temple the ark migrated from one tent or habitation to another (2 Sam. vii. 6 ; I Chron. xvii. 5), and at Shiloh it was housed not in a tent but in a temple ($1 \mathrm{Sam} . \mathrm{iii} .3,15$). And, while in the Priestly Code the tabernacle is the only legitimate sanctuary and its priests are tho ouly legitimate priests, the whole history shows that no such restriction was even thought of till after the time of the prophet Isaiah.

With all this it agrees that the oldest parts of the Pentateuch speak indeed of a tabernacle, but one of a quite different kind. The tabernacle of the Elohist (for of the two narratives-Elohistic and Jahvistic-which are combined in the so-called Jehovistic history only the former seems to mention it) is a tent which Moses pitched outside the camp (Exod. xxxiii. $7,8 q$.), and where Jehovah was wont to reveal Himself to him in the pillar of cloud, which descended for the purpose and stood at the door (Num. xi. 25 ; xii. 5 ; xiv. 10); it is therefore called ohel möed, " the

[^2]tent of tryst." No description of it is given, nor is its origin spoken of but something of the old narrative has obviously been lost before Fixod. xxxiii. 7, and here what is lacking was probably explained. It appears, however, that it was very different fsom the tabernacle described by the priestly narrator. Tt was not in the centre of the camp but stood some distence outside it, ${ }^{1}$ and it was not the seat of an elaborate organization of priests and guarded by a host of Levites, bat had a single minister and custodian, viz. Joshua, who was not a Levite at all but Moses' attendant (Exod. Exxiii. 11).

The existence of such a simple tent sanctuary presents none of the difficulties that beset the priestly narrative. Portable shrines we:e familiar to Semitic antiquity, and tents as sanctuaries were known to the Israelites in much later times at the high places and in connexion with irregular worships (Fzek. xvi. 16, "thou didst take of thy garments and madest for thyself sewn high places," i.e., shrines of curtains sewn together; 2 Kings exiii. 7, where for "bangings for the grove" read "tents for the Ashera": comp. Hos. ix. 6 and Syriac prakk, Assyrian parakku, a small chapel or shrine, from the same root as Hebrew pārōketh, the vail of the Holy of Holies). Such idolatrous tabernacles were probably relics of the usages of the nomadic Semites, and it is only natural that Israel in its wanderings should have had the like. And it is noteworthy that the portable chapels of the heathen Semites were mainly used for divination (comp. Journ. of Philol., xiii. 283 sq .), just as the Mosaic tabernacle is described by the Elohist not as a place of sacrifice (such as the tabernacle of the Priestly Code is) but as a place of oracle.

The heathen shrines of this sort contained portable idols or baetylia (see Selden, De Diis Syriis, i. 6); but what the Mosaic tabernacle contained is not expressly told. The ordinary and seemingly the easiest assumption is that the ark stood in it, and Dent. x. 1.sq., which must be drawn from the lost part of the older narrative already alluded to, certainly places the construction of the ark, to contain the tables of stone, just before the time when the tabernacle is first mentioned by the Elohist. But neither in Deuteronomy nor before it are the ark and the tabernacle ever mentioned together, and of the two old. narrators it is not clear that the Jahvist ever mentions the tabernaclo or the Elohist the ark. The relation between the two calls for further investigation, especially as the ark retains its importance after the occupation of Canaan, while the "tent of tryst" is not mentioned after the time of Moses, who, according to the Elohist (Exod. xii.), enjoyed at it a privilege of direct access to the Deity not accorded to later prophets.

TABERNACLES, Feast of. The original character of this Hebrew feast, celebrated at the close of the agricultural year as a thanksgiving for the produce of the seasons, but especially for the vintage and olive harvest, has been explained in Pentateveh, vol. sviii. p. 511. As such it is described in the old law of Exod. xxiii. 16, under the name of "the feast of ingathering, at the end of the year" (which, in the old Hebrew calendar, ran from nutamn to autumn), "wheu thou hast gathered in thy labours out of the field " (comp. Exod. xxxiv. 22). The same feast is spoken of in Deut. xvi. 13 as "the feast of booths" (E.V. "taidernacles," whence the current name of the feast), when "thou hast gathered in thy corn and wine" fror the corn-floor and the wine-press. No explanation is here giveu of the name "feast of booths"; but after the exile it was understood that during this feast the people assembled at Jerusalem were to live in

[^3]booths constructed of branches of trees (Lev. xxiii. 39 sq .; Neh. viii. $14 s q$.). The passage in Nehemiah, describing the celebration of the feast in 444 b.c., serves as a commentary on the post-exilic law in Leviticus, and from it we learn that the use of booths on that occasion had ne foundation in traditional usage, but was based directly on the law, which then for the first timo became generally known. ${ }^{2}$ According to the law in question, the booths were to be a memorial of the wilderness wandering (Lev. xxiii. 43), but of this there is no hint in Denteronomy; and, while it is quite in the style of the later lass to attach a new historical reference to an old name liks "feast of booths," it is certain from Exodus that the feast had originally agricultural and not historical significance. As such it is exactly parallel to the vintage feasts of other ancient nations, e.g., to the Athenian Oschophorian And, in particular, it is noteworthy that in Jndges ix. 27 we find a vintare feast at Shechem among the Canaanites, from whom the Israelites first learned the ways of agricultural life, and from whom so much of the popular religion was copied. To acts of worship nominally addressed to Jehovah, but really to the Canaanite Barlim, Hosea expressly reckons rites celebrated "on all cornfloors" (ix. 1), expressing thanks for divine gifts of corn, wine, and oil (ii. 8 sq .), and in their context these allusions leave no doubt that the prophet refers, in part at least, to autumn feasts, in which Jehovah worship was mingled with Canaanito clements (comp. Wellhausen, Prol. zuer Gesch. Isr., cap. 3, ii.; Eng. trans., p. 92 sq.). These feasts were local in character, but in northern Iscael there was a great autumn feast at the royal sanctuary at Bethel (1 Kings xii. 33), as even in the days of Solomon there was such a feast at Jerusalem (1 Kings viii. 2). In the nature of things the local feasts were the older, and it was the fame of great shrincs that gradually tended to draw worshippers from a distance to temples like those of Jerusalem and Bethel. Finally, the Deuteronomic law of the one sanctuary and the course of events which made that law the practical rule of the remnant of Israel put an end to all local religious feasts, but at the same time obscured the old significance of the festal cycle, and made room for the bistorical interpretation of the celebrations, now concentrated at the temple, which prevailed among the later . Fews (comp. Passover and Pentecost). In their later form all the jearly feasts have exact times and rules. In Deutcronomy the autnmn feast is not yet tied to a day-it could hardly ba so wiile it was still essentially a harvest thanksgiving-but in the priestly legislation it is fixed to commence on the fifteenth day of the seventh month (Lev. zxiii. 34) In Deuteronomy the feast lasts seven days; Lev. zxiii. 36 adds an eighth, and this day nltimately became the most important (John vii. 37).
FIf we accept the conclusion that the autumn festival was originally a vintage fast celebrated in local sanctuaries, the narce "feast of booths" admite of a natural explanation. The Canaanite feast at Shechem and the Helrew feast at Shiloh (Judges xxi. 21) were partly celebrated abroad in the vineyards, and Ilosea also knows such feasts on the open corn-floors. That it was asual to Go forth and live ia booths during the vintage may be concluded from Isa. i. 8; the same practice still prevails at Hebrod (Robinson, Bibl. IRes, ii 81). If it was these booths ereeted among the vineyards that originally gave their name to the feast, we can understand how the book of Nehemiah recognizes the erection of booths within the city of Jerusalem as an inaovation. No doubt at all feasts where there was a great concourse of visitors many would he compelled to live in tents; this seems to have been the case even in old Israel (Hos. xii. 9). But that is quite a different thing from the later observance, in which bnoths or bowers had to bo made and used even by those who lad huases of their awn.

[^4]tables, Mathematical. In any table the results tabulated are termed the "tabular resalts" or "respond. ents," and the corresponding numbers by which the table is entered are termed the "arguments." A table is said to be of single or donble entry according as there are one or two arguments. For example, a table of logarithms is a table of single entry, the numbers being the arguments and the logarithms the tabular results; an ordinary multiplication table is a table of double entry, giving $x y$ as tabular result for x and y as arguments. The intrinsic value of a table may be estimated by the actual amount of time saved by consulting it ; for example, a table of square roots to teu decimals is more valuable than a table of squares, as the extraction of the root would occupy more time than the raultiplication of the number by itself. The value of a 'able does not depend upon the dificulty of calculating it; for, once made, it is made for ever, and as far as the user is concerned the amount of labour devoted to its original construction is immaterial. In some tables the labour required in the construction is the same as if all the tabular results had been calculated separately; but in the majority of instances a table can be formed by expeditions methods which are inapplicable to the calculation of an individual result. This is the case with tables of a continuous quantity, which may frequently be constructed by differences. The most striking instance perhaps is afforded by a factor table or a table of primes; for, if it is required to determine whether a given number is prime or not, the only available method (in the absence of tables) is to divide it by every prime less than its square root or until one is found that divides it without remainder. But to form a table of prime numbers the process is theoretically simple and rapid, for we have only to range all the numbers in a line and strike out every second beginning from two, every third beginning from three, and so on, those that remain being primes. Even when the tabular results are constructed separately, the method of differences or other methods connecting together different tabular results may afford valuable verifications. By having recourse to tables not only does the computer save time and labour but he also obtains the cerfainty of accuracy; in fact, even when the tabular results are so easy to calculate that no time or mental effort would be saved by the use of a table, the certainty of accuracy might make it advantageous to employ it.

The invention of logarithms in 1614, followed immediately by the calculation of logarithmic tables, revolutionized all the methods of calculation; and the original work performed by Briggs and Vlacq in calculating logarithms 260 years ago bas in effect formed a portion of every arithmetical operation that has since been carried out by means of logarithms. And not only has an incredible amount of labour been saved ${ }^{1}$ but a vast namber of calculations and researcbes have been rendered practicable which otherwise would have been quite beyond human rcach. The mathematical process that underlies the tabular method of obtaining a result may be indirect and complicated; for example, the logarithmic method would be quite unsuitable for the multiplication of two numbers if the logarithms had to be calculated specially for the purpose and were not already tabulated for use. The arrangement of a table on the page and all typographical details-such as the shape of the figures, their spacing, the thickness and placing of the rules, the colour and quality of the paper, dec.-are of the highest importance, as the computer has

[^5]to spend hours with his eyes fixed upon the book; and the efforts of eye and brain required in finding the right numbers amidst a mass of figures on a page and in taking them out accurately, when the computer is tired as well as when he is fresh, are far more trying than the mechanical action of simple reading. Moreover, the trouble required by the computer to learn the use of a table need scarcely be considered; the important matter is the time and labour saved by it after he has learned its use. Tables are, as a rule, intended for professional and not amateur nse ; and it is of little moment whether the user who is unfamiliar with a table has to spend ten seconds or a minute in obtaining an isolated result, provided it can be used rapidly and without risk of error by a skilled compater.

In the following descriptions of tables an attempt is made to give an account of all those that a computer of the present day is likely to use in carrying out arithnetical calculations. Tables of merely bibliographical or historical interest are not regarded as coming within the scope of this article, although for special reasons such tables are briefly noticed in some cases. Tables relating to ordinary arithnetical operations are first described, and afterwards an account is given of the most useful and least technical of the more strictly mathematical tables, such as factorials, gamma functions, integrals, Bessel's functions, \&c. It is dificult to clessify the tables described in a perfectly satisfactory manner without prolizity, as many collections contain valuakle sets belongirg to a variety of classes. Nearly all modern $\mathrm{ta}_{\mathrm{a}} \mathrm{h}_{\mathrm{l}}$ les aro stereotyped, and in giving their titles the accorapanyizg date is either that of the original stereotyping or of the tirage in question. In tables that have passed tarough many editions the date given is thzt of the edition described. A much fuller account of general tables pubiished previously to 1872 , by the present writer, is contained in the British Association Report for 1873, Fp. 1-175; and to this the reader is referred.
Tables of Divisors (Factor Tebles) and Tables of Primes.-The Divioow existing factor tables extend to $9,000,000$. In 1811 Chernac pnb-and lisbed at Deventer his Cribrum Arillmeticum, which gives alf the prime prime divisors of every number not divisible by 2,3 , or 5 up to 1,020,000. In 1814-17 Burckhardt published at Paris his Tables des Diviseurs, giving the least divisor of every number not divisible by 2,3 , or 5 up to $3,036,000$. The second million was issued in 1814, the third in 1816, and the first in 1817. The corresyonding tables for the seventh (in 1862), eighth (1863), and ninth (1865) millions were calculated by Dase and issued at Hamburg. Dase died suddenly during the progress of the work, and it was completed by Rosenberg. Dase's calculation was performed at the instigation of Gauss, and be began at $6,000,000$ because the Berlin Acadenn was in possession of a manuscript presented by Crelle extending Burckhardt's tables from $3,000,000$ to $6,000,000$. This manuscript not having been published by 1877, was found on examination to be so inaccurate that the publication was not desirable, and accordingly the three intervening millions were calcolated and published by Jemes Glaisher, the Factor Table for the Fourth Million appearing at Loodon in 1879, and those for the fifth and sixtb millions in 1880 and 1883 respectively (all three millions stereotyped). The tenth million, though calculated by Dase and Rosenberg, has not been published. It is io the possession of the Berlin Academy, baving been presented in 1878. The nine qnarto volumes (Tables des Diviseurs, Paris, 1814-17; Factor Tables, London, 1879-83; Factoren-Tufch2, Hamburg, 1862-65) thus form one uniform table, giving the least divisor of every number not divisible by 2,3 , or 5 , from unity to nioe millions. The arrangement of the restlts on the page, which is due to Burckhardt, is admirable for its clearness and condensation, the least factors for 9000 numbers being given on each page. The tabular portion of each million occupies 112 pages. The first three millions were 1ssued separately, aod also bound in onc volume, but the other six millions are all separate. Burckbardt began with the second million iostead of the first, as Cbernac's factor table for the first million was already in existence. Burckhardt's first million does not supersede Chernac's, as the latter gives all the prime divisors of numbers not divisible by 2,3 , or 5 up to $1,020,000$. It occupies 1020 pages, and Burckhardt found it very accurate ; be detected only thirty-eight errors, of which nioe were due to the author, the remaining twenty-vine having been caused by the slipping of type

In the printing. Tho errata thus discovered are given in the first million. Burckharilt giver but a very brief account of the metbod by whih he constructed his table; and the introduction to Dase's millions merely coosists of Gauss'a letter suggesting their conatruction. The Introduction to the Fourth Blillion (pp. 52) con. ains a full accourt of the metbod of construction and a history of factor tables, with a bibliography of writings on the subject. The Introdnction (py. 103) to the Sixth Afillion tontains an enumeration of primes and a great number of tabies relating to the distribution of primes in the whole nine-millions, portions of which had been published in the Cambridge Philosophical Proceedings and elsewhere. The factor tables which have been deacribed greatly exceed in both extent and accuracy any ethers of the same kind, the argest of which only reaches 403,000 . This is the limit of Felkel'\& Tafel aller einfachen Factoren (Vienna, 1776), a remarkable and extrenely rare book, ${ }^{2}$ nearly all the copies having been destroyed. Vega (Tabule, 1797) gave table showing all the divisors of numbers not divisible by 2,3 , or 5 up to 102,000 , followed by a list of primes from 102,000 to 400,313 . In the earlier editions of this work there are several errors in the list, but these are no doubt corrected in Hulsse's edition (1840). These are the largest and most convenieot tahles after those of Chernac. Salomon (1827) gives a factor table to 102,011, Kibler (Handbuch, 1848) all divisors up to 21,524, and Houël (Tables de Loga ithmcs, 1871) least divisors up to 10,841. Berlow (Tables, 1814) gives the complete resolution of every number up to 10,000 into its factors; for example, correspondung to 4932 re have given $2^{3} \cdot 3^{2} \cdot 197$. Thie table is unique so far as we know. The work also contains a list of primes up to 100,103 . Both these tables are onitted in the stereotyped reprint of 1840. In Rces's Cyclopsdia (1819), article "Prime Numbers," there is a list of primes to 217,219 arranged in decades. The Fourth Sfillion (1879) contains a list of primes up to 30,341 . On the first page of the Second Milllion Burckhardt gives the first nine multiples of the primes to 1423 ; and a smaller table of the same kind, exteudiag only to 313, occurs in Lambert's Supplementa.
Multiplication Tables.-A multiplication table is usually of double entry, the two arguments being the two factors; when so arranged it is frequently called a Pythagorean table. The largest snd most usefut work is Crelle's Rechentafeln (stereotyped, Bremiker's edition, 1864), which gives in one volume all the producta up to 1000×1000, so arranged that all the multiples of any ono nember appear on the same page. The original cdition was published in 1820 and consisted of two thick octavo volumes. The eecond (stereotyped) edition is a convenient folio volume of 450 pages. Only one other multiplication table of the same extent has appeared, viz., Herwart von Hohenburg's Tabuls Arithmetics Mporөaфaı. ptéews Universales ${ }^{2}$ (Munich, 1610), on which see Napier, vol. xvii. p. 183. The invention of logarithms four years later afforited another means of performing multiplications, and Von Hohenburg's work never becane generally known. The three following tables are for the multiplication of a number by a single digit. (1) Crelle, Erleicherungs. Tafcl fïr jeden, dow zu rechnex hat (Borlia, 1836), a work extendit $⺊$ to 1000 pages, gives the proluct of a number of seven figures by a single digit, by means of a double operation of entry. Each page is divided into two tables: for example, to multiply 9382477 by 7 we tnrn to page S25, and enter the righthand table at line 77, columu 7, where we find 77339; we then enter the left-hend table on the same page at line 93, column 7 , and find 656, so that the product required is 65677339. (2) Bretscbneider, Produktentafcl (Mamburg and Goths, 1841), is somewhat similar to Crelle's table, but sunaller, the nnmber of figures in the multiplicand being five instead of seven. (3) In Landy, A Table of Products (London, 1865), tho product of any five-figure number by a single digit is given by a double arrangement. The extent of the table is the same as that of Bretachncider's, as also is the principle, but the arrangement is diferent, Laundy'a table occupying only 10 pages and Protschneider's 99 pages. Among earlier works may he noticed Gruson, Crosses Einmalcins ron Eins bis Hundertinuscid (Berlin, 1799), -s table of products up to $9 \times 10,000$. Tho author's intention was to extend it to 100,000 , but we believe only the first part was publisbed. In this book there is no condensation or double arrangement; the pages are very large, each containing 125 lincs.
Quarter-Squares.-Nultiplication may be performed by means of a table of single entry in the manner indicated by the formula -

$$
a b=\frac{1}{4}(a+b)^{3}-\frac{1}{4}(a-b)^{2} .
$$

Thus with a table of quarter-squares we can multiply together any two r"smbers by subtracting the quarter-squary of their difference from ihe quarter-square of their sum. The largest table of quartersquares is Leundy, Table of Quarter-Squares of all Numbers up to 100,000 (Londod, 1856). Smaller works are Centnersch wer, Newerfundene Multiplications-und Quadrat-Tafeln (Ber!in, 1825), which extends to 20,000 , and Merpant, Tables Arithmonomiques 1 For information sbout it, sea a paper on "Factor Tables," in Cumb. Phil. froc. vol. 1il. (18is) pp. $99-188$, or tha Introdnction to the Fourth Million. 2 See a payer "On Multiplication is mase of Sibgla Entry," In Phil. Mag.,
(Yannes, 1832), which extends to 40,000. In Morpaut's work the quarter-square is termed the "arithmone." Ludolf, who published in 1690 a table of squaros to 100,000 (see next paragraph), explains in his introduction how his tahle may be used to effect multiplications by means of the above formula ; but the earliest book on quartoraquares is Voisin, Tables des Multiplications, ou logarithmes des nombres entics depuis 1 jusqu'd 20,000 (Paris, 1817). By a logarithm Voison means a quarter-squara, i.e., he calls a a root and ${ }_{4} a^{3}$ its logarithm. On the subject of quarter-squares, \&c., see the paper (already referred to) in Phil. Mag., November 1878.

Squares, Cubcs, de. -The most convenient table for general nse, as well as the most extensive, is Barlow's Tables (Useful Knowledge Society, London, from the stereotyped plates of $18+1$), which gives squares, cubes, sqnare roots, cube roots, and reciprocais to $10,000$. The largest table of squares and cubes is Kulik, Tafeln der Quadrat-und Ǩubik-Zahlen (Leipsic, 1848), which gives hoth as far as 100,000 . Two early tables also give squares as far as 100,000 , viz., Maginns, Tabula Tetragonica (Venice, 1592), and Ludolf, Tetragonometria Tabularia (Amsterdam, 1690). Hutton, Tables of Products and Powers of Numbers (London, 1781), gives souares up to 25,400 , cnbes to 10,000 , and the first ten povers of the first hundred numbers. Barlow, Mathomatical Tables (original edition, Loudon, 1814), gives the first ten powers of the first handred numbers. The first nine or ten powers are giveu in Vega, Tabules (1797), and in Hülsse's edition of the same (1840), in Kohler, Handbuck (1848), and in other collections. Fà̀ do Brino, Calcul des Erreurs (Paris, 1869), and Miuller. Vicrstelliae Logarithmen (1844), give sqnares for use in connexion with the mernod of lunt wars res. Small tables occur frequeutly in books intended for engineers and practical men. Drech (Ifessenger of Math., vol. rii., 1878, p. 87) has given to 33 places the cube roots (and the cube roots of the squares) of primes up to 127. Small tables of powers of $2,3,5,7$ occur in various collections. In Vega's Tabulee (1797, sud the subsequent editions, including Hüisse's) the porers of 2, 3, 5 as far as the 45 th, 36 th, and 27 th respectively are given ; they also occur in Köhler's Hard. buch (1848). The first 25 powers of 2, 3, 5, 7 are givon in Salomon, Logurithmische Tafeln (1827). Shanks, Rectification of the Circls (1853), gives powers of 2 np to $2^{\text {r2 }}$.

Triangular Numbers.-E. de Joucourt, De Natura et Preclara Usic Simplicissime Spccici Numeromum Triganalium (Tlie Hague, 1762), contains a table of trianguler nambers ap to 20,000: viz, $\frac{1}{2} n(n+1)$ is given for all nambers from $n=1$ to 20,000 . The table occupies 224 pages.
Reciprocals.-Barlow's Talles give reciprocals up to 10,000 to 9 or 10 places; and they have been carried to ten times this extent by Oakes, Table of the Reciprocals of Numbers from 1 to 100,000 (London, 1865). This gives seven figures of the reciprocal, and is arranged like a table of seven-figure logarithms, differences being added at the side of the page. The reciprocal of a number of five figures is taerefore taken out at ance, and two more figures may be interpolated for as in logarithms. Picarte, La Division reduite d une Addition (Paris, 1861), gives to ten significant figures the reciprocals of the nnmbers from 10,000 to 100,000 , and also the first nine multiples of these reciprocals, Small tables of reciprocals are not common.
Tablesfor the Expression of Vulgar Fractonsus Decinals.-Tables of this kind have been given by Wacherer, Goodwyn, and Gauss. Wucherer, Beyiridge zum allgemeinern Cebrauch der Decimalbrache (Carlsruhe, 1796), gives the decimsl fractions (to 5 places) for all vulgar fractions whose numerator and denominator are each less than 50 ond prime to one another, srranged according to denominairrs. The most extensive sor elaborate tables that have been publ wed are contained in Henry Goodwyn's First Centenary of Tables of all Dccimal Quotients (London, 1816), A Tabular Series of Decimat Quotients (1820), and A Table of the Cirelca arising from the Division of a Unit or any othes Whole Number by all the Integers from 1 to 1024 (1823). The Tabular Serics (1823', running to 153 pages, gives to 3 places the decimal corresponding to every rulgar fraction less than for whose numerator and aerominator do not surpass 1000. The arguments are not arranged according to their numerators or denominstors, bat according to their magnitude, so that the tabular results exhibit a steady increase from 001 ($=$ roro) to 09989909 ($=8 \circ \circ \circ^{\circ} \mathrm{F}$). The anthor inteuded the table to include alf fractions whose numerator and denominator were each less than 1000, but no more m ever publighed. The Table of Circks (1823) gives all the periods of the circulating decimals that can srise from the division of any integer by another integer less than 1024. Thas for 13 we find 0076923 and $\cdot 153846$, which are the only periods in which the fraction $\frac{x}{13}$ can circulate The table occupies 107 pages, some of the periods being of course very long (e.g., for 1021 ths period contains 1020 figures). Thie First Centena:y (1816) gives the complete periods of the reciprocals of the numbers from 1 to 100. Good Wyn'a tables sre very scarce, bnt as they are cearly unique of their kind they deserve special notice. A second adition of the First Certenary was issued in 1818 with the addition of some of the Tabular Scries, the nnmerator not exceeding 50 and the donomin
nator not excceding 100. A posthumous tablo of Ganas'e, entitled "Tafel zur Vermandlung gemeiner Brúcho mit Neanern nus dom eraten Tausand in Decimalbruche," occure in vol. ii. pp. 419.434 of his Gesammello JVerkc (Gottingen, 1863), and resenblea Goodrryn's Table of Circles. . On this subject seo a paper "On Circulating Decimals, with special referenco to Honry Goodryn's Tuble of Circles and Tabular Scrics of Decimal Quolicnts," in Camb. Phil. Proc, col. jii. (1878), pp. 185-20C, whero is also given a table of tho periods of fractions corresponding to denominators primo to 10 from 1 to 1024 obtamed by counting from Goodwyn'a table. See also tho section on "Circulating Decimals," p. 13 below.

Sexagcsinial und Scxcentcnary Tables. - Originally all calculations wero acxagosimal; and tho relies of the aystem still exist in the divisiou of the demres into 60 minutes and tho minuto into 60 asconos. To facililato interyolation, therefore, in trigonometrical and other tables the following largo sexagusimal tablos were conatructed. John Bernoulli, A Scxceuenary Table (London, 1779), gives st once the forrth torm of eny proportion of which the first term is $600^{\prime \prime}$ and each of the other two is less than $600^{\prime \prime}$; the tabie is of double entry, and may be moro fully described os giving the valne of $\frac{2 y}{600}$ correct to tenths of a second, z and y cach containing a numher of seconds less than 600. Nichacl Taylor, A Scxa. gesimul Table (London, 1780), exhibits at sight the fourth term of sny proportion whero tho first torm is 60 minutes, tho secoud any unmber of minutes less than 60 , and the third any number of minutes and aeconds noder 6$)$ minutes; there is also another tablo in whed tho third term is any absuluto number noder 1000 . Not macb nso zeems to havo been made of these tables, both of which Were pablished by the Commissioners of Longitude. Small tables for the conversion of acxagesimals iuto centesimals and vice versa aro given in a few collections, such as Hulsse's cdition of Vega.

Trignomeirncul Talles (Natural)- Peter Apian published in 1533 a table of sines with tho radius divided decinally. The first complete canon giving all tho six ra*ios of the si les of a right-angled triangle 19 due to Rheticus (1551), who also introduced the semiquadrantal arrangement. Elicticns's canon was calculated for cvery ten minutes to 7 places, and Viets estendad it to evory minute (1579). In 1654 Reinhold published a table of targents to every minutc. The first complete canon publishod in Englanel was by Blunedvilc (1594), although a table of biDes bad appeared four jears earlier. Regiomontanus called his tablo of tangenis (or rather cotangents) tabula focunda on account of its great use; and till the introduction of the word? "tangant" by Finck (acomelriss Robundi Libri XTV., Basel, 1583) a table of tangents was called 2 labula fucunda or canon focundus. Besides "tangent," Finck also introduced the word "secant," the table of secants having previonsly heen called tabula benefica by Manrolycus (1568) and tabula fxenndissima by Vieta

By far the greatest cowputer of pure trigonometrical tables is Georgo Joac̣im Rheticus, whose worl las nover been superseded. तis celebrated ten-decimal canon, tho Opus Paiatinum, was published $\mathrm{b} v$ Valentine Otho at Neustadt in 1596 , and in 1613° his fifteen-decimal fable of sides by Pitiscus at Frankfort under tho title Thesaurus Mathematicus. The Opus Pajalinum contains a completo ten-decimal trigonometrical canon for every ten acconds of the quadrant, semiquadrantally arranged, with differences for rll the tabular resulte throughout. Sines, cosines, and secants aro given on the left-hand pages in columns beaded, respectively "Perpendiculum," "Basis," "Hypotenusa," and on thio right-hand appear tangents, cosecants, and cotangents in columns headed respactively "Perpendiculum," "Hypotenusa," "Basis." At his death Rheticus left the canon nearly complete, and the trigonomotry was finished and the whole edited by Valentino Oiho; it was named in honour of the elector palatino Frederick JV., Who boro the ex. pense of publication. The Thesaumes of 1613 gives nctural sincs for every ten aeconds throughout the quadrant, to 15 places semi. qnadrentally arranged, with first, aecond, and third differences Natural aines are also given for every sacond from 0° to $:^{3}$ and from 89° to 90°, to 15 places, with first and eacond differences. The rescne of the manuscript of this work by Pitiseus forms a striking apisode in the bistory of mathernatical tables. Tho slterations end emandations in the carlier part of the corrected edition of the Opus Palatinum were made by Pitiscus, who bad his snspiciona that Rheticus had himself calculated a ten-sacond tablo of sines to 15 decimal placea; but it could not bo found. Eventually the lost civon was discovered emonmst the papors of Rheticus, Fhich hed passod from Otho to Jamos Christmann on tho death of the former. Amonget these Pitiscus found (1) the ton-eecond table of cines to 15 places, with first, scoond, and third differances iprintod in tho Thesaurus) ; (2) aines for every second of the first and last degrecs of the quadrant, also to 15 places, with first and sccond differences; (3) the commencement of 8 canon of tangonts and sccants, 4 i 4 came numbar of decimal places, for every ton acconds, with first oad socond differonces; (4) a complete minute canon of sines, tariguots, and seconts, alao to 15 decimal places. Theso tables takeu in sonnexian with tio Opus Palatinum give ar idea of the enormous
labours undertaken by Rheticus: lila tahlea not only remnen to this day tho ultimate anthoritios bit formed tho slata when by. Viand calculatod his logarithmic canon. Гitiscus onye tlat lut thilvo Jeara Rbeticus coustantly lial computers at work.
Δ history of trigowometricai tables by Huttou nis prefixed to all tho carly editious of his Tables of Logarithme, adil forms Trart xix. of lis Mathematical Tracts, rol. i. Il. 2is-306, 1812. A good deal of bibliographical information aliout tho Opuq Palatinum and carlier thigonometrical tablea is given fa Do Slorgan's article "Tables" in the English C'yclopsedia. The irvention of logarithons the year after tho publicatiou of Rheticus'a volumo by Pitiscus changod all tho mothods of calculation ; and it is worthy of note that Napior's original table of 1614 ves a logarithonio canon of aine and not a table of the logarithns of numbers. The logarithmio canon at ouce superseded tho datural canon; and since Pitiscus's time no really extensive tablo of pure trigonometrical functiona has sppeared. In recent jears tho cmploymeut of the arithmometer of Thomas do Colmar has revived the uso of tables of natural trigonometrical functions, it being fould convcuicut for some purpases to cmploy an arithmometer and a natural canon instead of a logarithmic cauon. Junge's Tafel der wi-klichen Lange der Sinus und. Cosinus (Leipsic, 1864) was pnblished with this object. 1. gives natural sines and cosines for every ten seconds of tho quadrant to 6 places. F. M. Clouth, Tables pour lc Calcul des Coordounés Goniometriques (Mainz, n.d.), gives natural sinea and cosines (to 6 places) and their first mine mnltiples (to 4 places) for erery centesimal minute of tho quadrant. Tables of natural functions oecur in many collections, the natural and logarithmic valnes being sometimes given on opposite pagos, suinctimes side by side on the samo pago.

The following works contain tables of trigonometrical functions other than sines, cosines, and tangents, Pasquich, Tabule Loga arilhmico-Trigonomatrice (Leipsic, 1817), contains a table of $\sin ^{3} x$, $\cos ^{2} x, \tan ^{2} x, \cot ^{2} x$ from $x=1^{8}$ to 45° at intervals of 1^{\prime} to 5 places Andrew, Astronomical and Nautical Tablcs (London, 1805), contains a tabla of "squares of natural semichords," \&e., of sid ${ }^{2} \frac{1}{2} x$ from $x=0^{\circ}$ to 120° at intervals of $10^{\prime \prime}$ to 7 places. This table bas recently been great!y extended by Major-Gederal Hanoyngton in his Havcrsincs, Natural and Logarithmic, uscd in computing Lunar Drstanccs for the Nautical Almanac (London, 1876). Cho namo "laversine," now frequently uscd in works npon navigation, is an abbreviation of "half versed sina"; viz., the haversine of x is equal to $\frac{1}{2}(1-\cos x)$, that is, to $\sin ^{2} \frac{1}{2} x$. The tablo gives logarithmio haversines for every $15^{\prime \prime}$ from 0° to 180°, and natural haversines for every 10° from 0° to 183°, to 7 places, except near the beginning, where tho logarithms aro given to only 5 or 6 laces. The work itself occupies 327 folio pages, and was suggested by Andrew's, a copy of which by chance fell into Hannyngton's hands. Hannyagton recomputed the whole of it by a partly mechanical method, a combination of tro arithmometers being employed. A table of haversinee is nseful for the solution of apherical triangles When two aides and the included angle are given, and in many other problems in spherical trigonometry. Andraw's origind table seems to haro attracted very littlo notice. Hannyngton's Was printed, on tho recommendation of the auperintoudent of the Nautica? Almanac office, at the public cost. Bafore the cal culation of Hannyngton's table Farley'a Natural Versed Sines (London, 1806) Was used in the Nautical Almanac office is com. putime lnoar distances This fine table contains natural veraed sines from 0° to 125° at intervals of $10^{\prime \prime}$ to 7 places, with proportional parts, and \log versed sines from 0° to 135° at intarvala of $16^{\prime \prime}$ to 7 places. The arguments are elso given in time. The manuscript Was ased in the office for twenty-five years bofore it was printed. Traverse tables, which occur in most colloctions of navigation talles, contam multiples of sines and cosines.

Common or Briggian Logarithms of Niumbers and Trigono metrical Ratios. - For an account of the invention and history of logarithme, see Logarithms (rol. xiv. p. 773) and Napier. The folloming are the fundamental works which contain the reaults of the original caiculations of logarithms of numbers and trigonometrical ratios:-Briggs, Arithmetica Logarithmica (London, 1624), logarithms of pambers from I to 20,000 and from 00,1000 to 100,000 to 14 places, with interscript differances; Vacq, A rithmetica Log. arithmica (Gouds, 1628, also an English edition, London, 1631, the tables being the same), ten-figure logarithms of numbers from 1 to 100,000 , with differencec. also log sines, tangents, and socants for evcry minnte of the quadrant to 10 placea, with interseript difforences: Vlacq, Trigonometria Artificialis (Gonda, 1633), log sines and tangents to every ten reconds of the quadrant to 10 places, with differences, end ten-fgure logarithms of nambers ip to 20,000, with difforonces; Briggs, Trigonomelria Britunnica London, 1633), natural sines to 15 places, tangants and aucants to 10 places, log aines to 14 places, and tangenta to 10 placos, nt intervals of 8 hundredth of a degree from 0° to ${ }^{\circ} 45^{\circ}$ aith interecript differences for all the functions. In 1799 Vera ruprinted at Leipsic Vlacq's two worke in a aingle folio volume, Thesauru Logaritimorum Completus. The arrangoment of the
$\mathbf{X} \boldsymbol{1} 11$.
table of logrithas of unrabery is more compeadions than in Tlaç, being similar to that of au ordinary seven-figure table, but it is not so ronvenirnt, as mistakes in taking out the differences are more liable to occur: The trigonomatrical canou gives log sines, cosines, tangents, anil cotangents, from 0° to 2° at iutervals of one second, to 10 places, withort iliferemes, and for the rest ofthe yuadrant at intervals of ten seconds. The trigonometrical canou is not wholly reprinterl from the Trigonometria Artificialis, as the log-adithus-for every secoud of the first two degrees, which do not oceur in Tacq, wero calculated for the work by Licutenant Dorfmumd. Fera dirated great attention to the detection of errors in Vlacq's logarithons of numbers, and has given several important errata lists. MI. Lelnrt (Annules de CObservaloive de Paris, vol. iv.) has given a full crratal list in Ylacq's and Vega's logarithms of numbers, obtained by comprison with the grest French manuscript Tables du Cadustic (sue Lonalimins, p. 776 ; comp. also Monthin Notises of Roy. Asi. Soc. for May 1872, Jume 1872, March 1873, and 1874, suppl. number). Vega seems not to lave bestowed on the trigonometrical canon anything like the care that lee devoted to the logarithms of numbers, as Gauss ${ }^{1}$ estimates the total of last-figu"e evrors at from 31,983 to 47,746 , most of them only amounting to a mit, but some to os much as 3 or 4. As these errors in the Trigonometria Artificinlis still remain ancorrected, it camot be said that a reliable ten-place logaritlunic trigonometrical canon cxists. The ealculator who has occasion to perform work requiring ten-figure lomarithens of numbers shonhl use Vlaeq's Arithmclica Lognrithmica o[1628 , after carefully correcting the errors pointel ont by Vega and Lefort. After Vlaeq, Vena's Theseurns is the next Lest table; and Pineto's Tcbles de Logarithmes Vulfuires ri Dix Décimales, construites d'epre's an nouscau mode (St Petprbburg, 1871), though a tract of ouly 80 pares, may be uscfully employed when Vlaeq and Yegin are unprocurable. l'iueto's werk consists of thrẹe tahles: the first, or ansiliary table, contains a serics of factors by which the numbers whose lomathoms are reguired are to bo multiplied to bring them within the range of table 2 ; it also gives the lorrarithms of the reciprocals of these factors to 12 places. Trable 1 merely gives logarithums to 1000 to 10 places. Tablo 2 rives logarithus from $1,000,000$ to $1,011,000$, with poportional parts to humdredths. The mode of using these tables is as [ollows. If the logarithm cannot le taken ont directly from table 2, a factor $\lambda[$ is 「ound from the anxiliary table by which tha mumer most be maltiplied to briner it within the range of table ε. Then the lomarithm can be taken ont, aud, to neutralize the effect of the multiplication, so far as tho result is concerned, $\log _{0}\left(\frac{1}{d Y}\right)$ must be adjed ; this quantity is therefore given in an adjoining colmm to $X I$ in the auxiliary talele. A similar proredure gives the number answering to any logarithm, another factor (aprosimately the reciprocal of 11) being given, so that in hoth cascs multiplication is uscd. The laborious part of the nork is the multipliention by $M I$; but this is somewhat com. pensated for lyy the ease with which, by means of the proportional parts, the logatithon is taken ont. The factors are 300 in number, ame are chosen so as to minimize the labour, only 25 of the 300 consistug of thre figures all different and not involving 0 or 1. The principle of multiplyurg lig a factor which is subsequently cancelled ly sulbtracting its logaritlom is used also in a tract, containiner only ten pages, published by MM. Namur and Mansion at brussels in 1577 under tlic title Tables de Logaritiomes is 10 décimales jusqu't 434 milliards. IIere a table is given of logarithms of numbers near to $43 f, 294$, and other numbers are bronght within the mange of the table by unltiplication by one or two factors. Tho logarithms of the mmbers near to 434.294 are selected for tabulation beanse their differences commence with the figures 100
.and the prescnce of the zeros in the difference reuders the inter[olation ensy.

If seveu-figure lorgarithms do not give sufficiontly acrurate resnlts, it is uaal to have recourse to ten-figure tables: with one exception, there exist no tables giving 8 or 3 figures. The exception is John Nerrton's Trigonomelria Britannier (London, 1658), which gires logarithms of numbers to 100,000 to 8 plares, and also logr sines $_{0}$ and taugents for every centesimal minute (i.c., the nine-thousandth part of a right angle), aut also \log sines and tangents for the first three derrees of the quadrant to 5 places, the interval being the oue-thonsandth part of a degrec. This table is also unique in that it giv 3 the logarithens of the differences instead of the actnal diferences. The arangement of the parge now miversal in sevenfigure tables-with the tiftli figures running lorizontally aloug the top line of tho jage - is due to Johu Nexton.

As a rule seven-figure lowarithms of numbers are not published scparatuly, us ast tables of lograrithins coutaining both the logarithms of wumbers rud a tricromometrical canon. Babbage's and Saug's lugarithms are exceptional and give logaithns of mmbers only. Bablarge, Table of the Lagarithms of the Satural Numbers firm 1 to $103^{\circ}, n 00$ (London, sterentyped in 1827 ; there are several timges
${ }^{1}$ Sed his "Elnice Bomerkangen 211 V"ean's Thescumis fognrifhmommm." in

of later (lates), is tho bedt for orlinary use. Great pains were aken, to get the maximmm of clearness. The clange of fgure in the niildle of the llock of numbers is marked by a change of type iss the fourth figure, which (with the sole excelitiou of the asterisk) is the best method that lias been used. Copies of the book were printed on paper of different colours-yellow, brown, green, \&c.- as it was considered that black on a white gronnd was a fatiguing combination for the eyc. The tables were also issued with title-pares aud introluctions in otler languages. The book is not very easy to procure now. In 1871 Mr Sang published A Ncw Table of Scven-place Logarillms of all Numbers from 20000 to 200000 (London). In an ordinary table extending from 10,000 to 100,000 the differences near the beginning are so numerous that the proportional parts are either very crowded or some of then omitted; by making the table extend from 20,000 to 200,000 instead of froul 10,000 to 100,000 the elifferences are halved in magnitude, while there are only one-Courth as many in a page. 'rluere is also greater acenracy. A further peculiarity of this tablo is that multiples of the differences, instead of proportional prits, are given at tho side of the page. 'Pypographically the tahle is exceptional, as there are no rules, the nombers being, selarated from the logarithams by reversed commas. This work was to a great cxtent the result of an original calculation; see Edinlurgh Transactions, vol. xxvi. (1871). Mr Sang proposed to pmblish a nine-figuro table from 1 to $1,000,000$, but the reupisite support was not oltainct. Various prapers of Mr Sang's relating to lis logarithmic calculations will be foumd in the Erlinlurgh l'rocrchings subsequent to 1872 . In this connexion refercuce shonld he mate to Abialiam Sharpis table of lowathms of mubers from 1 to 100 and of primes from 100 to 1100 to 61 places, also of mumbers from 999,990 to $1,000,010$ to 63 places. Tlucse first appariel in Grouretry Improvid ... Ly -1. S. Muilumath (London, 1717). They have bsen republished in Slerwin's, Callet's, and the earlier editions of 1lutton's tables. Parlihurst, Astronomical Tablis (New York, 1871), gives logaritlms of mumbers from I to 109 to 102 places. ${ }^{2}$

In many seren-ligure tables of logatithms of numbers the values of S and T are given at the top of the pare, with V, the variation of each, for the purpose of deluemg log sines and tangents. S anel T deuoto $\log \frac{\sin x}{2}$ and $\log \frac{\tan x}{x}$ respectively, the arguments leing tho number of seconds denoted by certain numbers (sometimes only the first, sometimes every tonth) in the numher colmm on cach prage. Thus, in Callet's tallics, on the page oul which the first number is $67200, S=\log \frac{\sin 67: 0^{\prime \prime}}{67 \cdot 2}$ and $T=\log \frac{\tan 6720^{\circ}}{6720}$, while the V s are tho variatlons of each for $10^{\prime \prime}$. To find, for example, log $1^{\circ} 52^{\prime} 12^{\prime \prime} \cdot 7$, or lor slu $6732^{\prime \prime} \cdot 7$, we have $S=4.6854980$ and \log $67327=3.8281893$, whence, by adulition, we obtain 8.5136873°; lut V for $10^{\prime \prime}$ is $-2 \cdot 29$, waence the variation for $12^{\prime \prime} \cdot 7$ is -3 , and the log sinc required is 8.5136870 . Taliles of S and T are frequently callet, after thelr luventor, "Delambre's tables." Some sereu-figure tables extend to 100,000 , aud others to 108,000 , the last 8000 logarithms, to 8 places, being given to ensure greater accuracy, as near the beginning of the hombers the diferences are large and the internolations more lahorious and less exact than in the rest of the table. The cight-figure logarithms, however, at the end of a seven-figure talule are liable to orcasion curor; for the computer who is accustomed to three lealing figures, conmore to the block of figures, may fail to notice that in this junt of the table thero are four, and so a fimure (the fourth) is sometines omitted in taking sut th:: Joraritlim. In the ordinary method of arranging a seven-figure table the rlange in the fourth figure, When it occurs in the course of the line, is a somee of frequent error moss it is very clearly indicated. In the earliur tables the change was not marled at all, and the computer had to thecide for himsclf, each time he took ont a logarithm, whether the thind figuse had to loe inereased. In some tables the line is broken where tho change oceurs; but the dislocation of the figures and the corresponding irregularity in the lines are rery awkward. Babbage printe? the fourth figure in small type after a clange. The best method seems to be that of prefixing an asterisk to the fourth fimure of each logarithm after the change, as is rlone in Schrön's and many other modern tables. This is beautifully clicar and the asterisk at onco catches the eje. Shortrede and Sang replace 0 after a change by a molita (resembling a dianond iu a paek of cards). This is very clear in the case of the 0 's, but leaves mumarked the cases in which the fourth figuro is 1 or 2. Bablago printed a subscript point under the last figure of each logarithun that lad been increascd. Schrön used a bar subscript, which,

2 Irgendre (Traits des Fonctions Elliptigues, vol. it., 1226) gives a table $\boldsymbol{\alpha}$ nal nral sies to 15 plares, and of log sines to 14 placea, for every 15° of the qualirant, and also a table of ingarithms of uneven nimplars from 1163 to 1501 , alnh of primes from 1501 to 10.000 to 19 Maces. The latter, which was extracted Trion the Talles du Condasire, is a continnatinn of a talle in Gardiner's Tanfes of Lonnirithms (London, $17+2$; riprinted at Avigunn, 1Fio), which gives

Leing moro obtrusive, is not so satisfactory. In some tables tho increase of the last figure is ouly marked when the figure is increased to a 5 , and then a Roman fivo (v) is used in place of the Arabic figure Hereditary errors in logarithmic tables are considered in two pajers "On the Progress to Accuracy of Logarithmic Tables" aut "On Logaritlmic Ta lles" in Monthly Ninlices of Roy. Ast. Soc. for 1873. Sce also the Monlhly Notices for 1874, p. 248 ; and a praper by Gernerth, Ztsch. f. d. bsterr. Gymn., Heft vi. p. 407.

Passing now to the logarithmic trigonometrical canon, the first great advance after the pulblication of the Trigonometric Arlificialis in 1633 wes made ly Michse] Taylor, Tables of Logarithms (London, 1792), which gives log sinca und tar.gents to every sccond of the quadrant to 7 places. This table contains abont 450 pares with an average musuler of 7750 figures to the nage, so that there are altagether ncarly three millio is and a half of figures. The change in the leadiug figures, when it occurs in a celumn, is not marked at all ; and the table must be used with very great caution. In fart it is advisable to go through the whelo of it, and fill in witl ink tho first 0 after the chancre, as well as make some mark that will cateh the eye at the head of every column containing a clange. The table was calculated by interpolation from tho Trigonomelria Arlificialis to 10 places and then reduced to 7, eo that the last figure should always be correct, Partly oa account of the absence of a mark to denote the clange of figure in the column and nartly on account of the size of the table and a somew hat inconvenicnt arrangeracnt, tho work seems never to liave como into very geueral use. Computers have always preferred Bagay's Noucrelles Tables Astronomiques et Hydrographiques (Paris, 1820), which also contains a complete lorarithanic canen to every second. The clange in tho colamn is very clearly marked by a largo black nuelens, surroundel by a circle, puinted instead of zero. Bagny's work has now beromo very rare. The only other canon to every second that has been published is contained in Shortrele's Logarithmic Tablcs (Edinburgh). This work was oriminally issued io 1844 in ono voluroe, but being dissatisfiod with it Shortrede issued a new eclition in 1848 in two volumes. The first volume contains logarithms of ambers, antilogarithms, \&c., and tho second the trigonometrical canon to cvery second. The volumes are sold separately, and may bo regarded as indcucudent works; they are not cven described on their title-pages as vol. i. and vol. ii. The trironometrical canon is very complete in every respect, tho arguments being given in time as well as in nrc, full proportioual parts being aclderl, \&c. The change of figure in the columo is denoted by a nokta, priuted insteal of 0 where the change occurs.

Of talles in which tho quadront is divided centesimally, the principal are Hobert and Ideler, Nouvclles Tables Trigonométripucs (Berlin, 1799), and Borda and Dclambre, Tables Trigonométrigics Decimales (Paris, 1801). The former give, among other tables, natural and log sines, cosines, tangents, and cotangents, to 7 places, the arguments procecling to 3° at intervals of $10^{\prime \prime}$ and thence to 50° at intervals of 1^{\prime} (centesimal), and also natural sines and tangents for the first hundied ten-thousandths of a right angle to 10 places. Tha latter gives log sines, cosines, tangents, cotangents, sccants, and cosccauts from 0° to 3° at inter vals of $10^{\prime \prime}$ (with full pronortional parts for every second), and thence to 50° at intervals of 1^{\prime} (centesimal) to 7 places. There is also a tahle of \log sines, cosines, tangents, and cotangents from 0^{\prime} to 10^{\prime} at intervals of $10^{\prime \prime}$ and from 0° to 50° at intervals of 10^{\prime} (centesimal) to 11 nlaces. Ilobert and ldeler ซiva a natural as well as a lorarithnic canon; but Borda and Delamure give only the latter. Borila and Delambre give sevenfigure logaritlims of nambers to 10,000 , the line being broken when a change of figure talics place in it.

In Brigos's' Trigonometria Britannica of 1633 the degres is livider centesimally, and but for tho appearance in the same yean of Vlaç's Trigonometria Arlificialis, in which the decree is divided sexagesimally, this reform night lave been effected. It is clear that the nost suitable time for effecting such a change was when the natural canon was replaced by the logarithmic canon, and Brims took advantage of this opportunity. He left the degree waaltered, but diviled it centesimally instead of sexagesimally, thus ensuring the advantages of decimal division (a saving of Fork in interpolations, multiplications, \&\&.) with the minimum of change. The French mathematicians at the ent of the 18 th centnry divided the right angle cericesimslly, completely changing the whola aystem, with no apprcciablo advantages over Briggs ${ }^{\text {}}$ s system. In fact the centesimal degree is as arbitrary a unit as the nonagesimal, and it is only the non-centesimal sublivision of the degreo that gives rise to inconvenience. Briges's example was followed by Foe, Oughtred, and other 17 th-century writers; but the centesimal division of the degree seems to have entirely, passed out of nse, till it Ths reantly rovived by Bremiker in his Logarithmischetrigonomelrische Tafeln mit funf Decimalstellen (Berlin, 1872). This little book of 158 pages gives a five-figure canon to every huadredth of a degree with proportional parts, besides logarithms of numbers, addition end sabtraction logarithms, \&c.

Collections of Tables. - For a computer. who requires in ono volume logarithms of numbers and a ton-second logarithmic canon,
perlisps the two bast hooks are Sclirün, Seren-Figure Lonarithms (London, 1865, stereotypert, an English edition of the Genuan wrork pmblished at Bruaswick), and Brulins, A Aew Afanual of Logarithma to Secen Places of Decimals (Lejusic, 1870). Both give logarithms of numbera and a complete ten-second canon to 7 llaces; Brahns also gives lory sincs, cosines, tangents, and cotangents to overy second up to 6° with moportional parts Scluon contains an inter* polation table, of 75 pages, giving the first 100 multijles of oll numbers from 40 to 420 . The logaritlims of uombers exteud to 108,000 in Schron end to 100.000 in Bruhns Almost equally convenicnt is Bremiker's cdition of Tega's Logarithmic Salles (Berlin, stereotyled ; the English edition Was translated from the fortictl edition of Dr Bremiker's by W. L. F. Fiscber). This book gives a canon to every ten seconds, and for the first five degrees to every second, with logarithms of numbers to 100,000 . All these works give the proportional parts for all tbe diflerences in the lafaritlims of numbers. In Babbage's, Callet's, and many other talues only erery other table of proportional parts is given apar the beginning for rant of space. Schrön, Bruhns, and most modern tables published in Germany have title-pages and introductions in different languages Dupuis, Tables de Logarillimes a sequ Decimales (stereotyped, third tirace, 1868, Paris), is also very convenient, containing a ten-sccoud canon, besides logarithms oi nambers to 100,000 , hyperbolic logarithms of numbers to 100 N , to 7 places, \&c. In this work negative characteristics are juinted throughout in the tables of circular functions, the minus sign being placed ahove the figure; theso are preferahle to the ordinary characteristics that are inercased by 10. This is the only work we know in which negative characteristics ero used. The edges of the parges containing the circular functione are rcd, the rest beine grcy. Dupuis also edited Callet's logarithms in 1862, with which this work must not be confounded. Salomon, Logarithmische Tafeln (Vienna, 1827), contsins a ten-second canon (the intervals being one second for tho fist two degrees), logarithms of nimbers to 108,000 , squares, cubes, square roots, and culve roots to 1000 , a factor table to 102,011 , ten-place Briggian and hyperbolic logarithms of nuubers to 1000 and of primes to 10,333 , and many other useful talles. The work, which is scarce, is a well-printed small quarto volume.

Of collections of gencral tables the most useful and accessible are Hutton, Callet, Verga, and Köhler. Hutton's well-known Mathematical Tables (London) was first issued in 1785, but considerabla additions were nucie in the fifth edition (1811). The tables contain seven-fignre logarithms to 108,000 , and to 1200 to 20 places, soma antilogarithnis to 20 places, hyperbolic logarithms from 1 to 10 at intervals of 01 and to 1200 at intervals of unity to 7 places, logistic logarithms, log sincs and tangents to every second of the first two degrees, and natural and log sines, tangents, secants, and versed sincs for every minute of the quadrant to 7 places. The natural functions orcupy tbe left-hand pages and the logarithmic the right. hand. The first six editions, published in Hutton's lifetime (d. 1823), contain Abraham Sharp'a 61-figt ye logarithma of numbers. Olinthus Gregory, who brought out the 1830 and succceding editions, omitted these tables and Hutton's introdnction, which contains a history of logarithms, the methods of constrncting them, \&e. Callet's Tables Portatives de Logarithmes (stereotyped, Paris) ecems to have been first issucd in 1783, and has sinco passed through a great many editions. In that of 1853 tho contents are seven-figure logarithms to 108,000 , Briggian and hyperbolic logarithma to 48 places of numbers to 100 and of primes to 1027 , log sines and tangents for minutes (centesimal) throughont the quadrant to 7 places, natural and \log sines to 15 places for every ton minutes (centesimal) of the quadrant, log sines and tangents for everv scrond of the tirst fire degrees (sexagesimal) and for every ten seconds of the quadrant (sexagesimal) to 7 places, besidea logistic logarithms, tho first hundred multiples of the modulus to 24 places and the Gist ten to 70 places, and other tables. This is one of the most complete and practically nseful collections of logarithms that. lave been published, and it is peculiar in giving a centesimally divided canon. The size of the page in the editions published in the 19th century is larger than that of tho earlier editions, the type having been reset. Vcan's Tabulæ Logarilhmo-trigonometrice waa first publisled in 1797 in two volumes. The first contains sevenfigure logarithms to $101,000, \log$ sines, \&c., for cvery tenth of a second to 1^{\prime}, for every second to $1^{\circ} 30^{\prime}$ for every 10° to $6^{\circ} 3^{\prime}$, and thence at intervals of a minute, aiso natural sines and tangents to every minute, all to 7 places. The second volume gives simpla divisors of all numbers $u p$ to 102,000 , a list of jrimes from 102,000 to 400,313 , hyperbolic logarithms of numbers to 1000 and of primea to 10,000 , to 8 places, e^{x} and $\log _{1} \delta^{x}$ to $x=10 \mathrm{at}$ intervals of 01 to 7 ficrures and 7 places respectively, the first nine powers of the numbers from 1 to 100 , squares and culses to 1000 , legistic lagirithms, binomial theorem coefficients, \&c. Vega also nublished Manuclo Logarithntico-trigonontetricum (Leipsic, 1800), the tables in which are identical with a protion of thoso contained in the first. volura of tha Tabuls. The Tabula went through many cditions, a stercotrped issue being brought out by J. A. Htilsse (Samminng mathematischer Tafeln, Leipsic) in ono volume in 1840. Tho
contents are nearly the same as thosc of the original work, the chicf difference being that a large table of Gaussian logarithms is added. Vega differs from Ilutton and Callet in giving so many useful nonlogarithmic tables, and his collcetion is in many respects comple. mentary to theirs Schulze, Neue und erweitcrte Sammlung logarithmischer, irigonomelrischer, und andercr Tafcln (Berlin, 1778, 2 vols.) is a valuable collection, and contains seven-figure loga. rithm's to $101,000, \log$ sines and tangents to 2° at intervals of a second, and natural sines, tangeats, and secauts to 7 placea, \log sines and tangents and Napierian \log sines and tangents to 8 places, all for every ten seconds to 4° and thence for every minute to 45°, besides squares, cubes, square roots, and cube roota to 1000 , binomial theorem coefficients, powers of e, and other small tables. Wolfram's Lyperbolic logarithms of numbers below 10,000 to 48 plaees first appeared in this work. Lambert, Supplomenta TabuFarum Logarithmicarum et Trigonometricarum (Lisbon, 1798), coutains a number of usefnl and curious non-logarithmic tables; it bears a general resemblance to the sccond volume of Vega, but eontains numerous other small tables of a more strictly mathematical character. A very usefnl collection of non-logarithmic tables is printed in Barlow's New Mrethematical Tables (London, 1814). It gives squares, cnles, square roots, and cube roots (to 7 places), reciprocals to 9 or 10 places, and resolutions into their prime factors of all aumbers from 1 to 10,000 , the first ten powers of numbers to 100 , foarth and fifth powers of numbers from 100 to 1000 , prime numbers from 1 to 100,103 , cight-place hyperbolit logarithma to 10,000 , tables for the solution of the irreducible caso in cubic equations, \&c. Iu the stereotyped roprint of 1840 only the equares, cubes, square roots, cube roots, and reciprocals aro retained. The first volumo of Shortrede's tablea, in addition to the trigonometrical canon to every second, contaias antilogarithms and Gaussian logarithms. Hassler, Tabula Logarithmica el Trigonometrice (Now York, 1830, stercotyped), gives seven-figure logarithuns to $100,000, \log$ sines and tangents for every second to 1°, and log sines, cosines, tangents, and cotangents from 1° to 3° at intervals of $10^{\prime \prime}$ and theace to 45° at intervals of $30^{\prime \prime}$. Every effort has been made to reduco the size of the tables without loss of distiuctaess, the page being only about $3 \mathrm{~b}_{3}^{-5} 5$ inches. Copies of the work were pablished with the introduction and title-page in different lan. guages. Stanley, Tables of Logarithms (New IIaven, U.S., 1860), gives seven-figure logarithms to 100,000 , and \log siaes, cosines, tangents, cotangents, secants, and cosecauts at intervals of ten seconds to 15° and thence at intervals of a minute to 45° to 7 places, besides natural sines and cosines, antilogarithms, and other tables. This colleetion owed its origin to the fact that Hassler's tables were found to be inconveaient owing to the small ness of the type. Luvini, Tables of Logarithms (London, 1866, stereotyped, printed at Turin), gives seven-figure logarithms to 20,040, Briggian and hyperbolic logarithms of primes to 1200 to 20 places, \log siaes and tangents for eaeh sccoad to 9^{\prime}, at intervals of $10^{\prime \prime}$ to 2°, of $30^{\prime \prime}$ to 9°, of 1^{\prime} to 45° to 7 places, besides squaro and cube roots up to 625 . The book, which is intended for schools, engineers, \&ic., has a peculiar arrangement of the logarithms and proportional parts on the pages. Chambers'a Mathematical Tables (Edinburgh), containing logarithms of numbers to 100,000 , and a canon to every ninute of \log sinea, tansents, and secants and of natural sines to 7 places, besides proportional logarithms and other small tables, is cheap and auitable for seliools, thongh not to be compared as recards matter or typography to the best tables desoribed above. Of six-figure tables Bremiker's Logarithmomem ITT. Decimaliun Nova Tabula Berolinensis (Berlin, 1852) is probably one of the best. It gives logarithms of numbers to 100,000 , with proportional parts, and log sines and tagegets for cvery second to 5°, and beyond this point for every ten seconds, with proportional parts. Hentsch, Lograithmisch-trigonomclrisches Handbuch (Vienna, 1827), gives five-figure logarithms to 10,000, log sines and tangents for every ten seconds to 6 places, natural sines, tangents, secants, and versed sincs for every minute to 7 places, lomarithms of primes to 15,391 , hyperbolic logarithms of numbers to 11,273 to 8 places, least divisors of numbers to 18,277, binomia? theorem coefficients, \&c. Farley's Six-Figure Logeritims (London, stercotyped, 1840) gives six-figure logarithms to 10,000 and \log sines and tangenta for every minnte to 6 places. Of live-figure tables the most convenient is Tables of Logarithms (Usefnl Knowledge Society, London, from tho stercotyped plates of 1839), which were prepared by De Morgan, though they have no name on the title-page. They contain fiveligure logarithims to 10,000 , log sines and tangents to every minute to 5 places, bositers a few smaller tablers Lalante's Tubles do Lognithmes is it five-figure tahle witll nearly the same rontents as De Morran's, first published in 1805. It lias since passerl through many editions, and, ofter being extended from 5 to 7 places, passed throngh several more. Galbraith and llaughton, Manual of Mathemotieal Tables (Londou, 1860), give five-figure logarithas to 10,000 and \log sincs and tancerits for cvery minute, also a small tablo of fraussian logarinhmso Houèl, Tubles de Loycrithmes à Cinq Décimules (Γ aris, 187I), is a very convenient collection of five-figure tibles : besides logarithms of numbers and circular functions, there
are Gaussian logarithms, least divisors of numbers to 10,841, antilogarithms, \&c. The work contains 118 pares of tablcs. The same anthor's Recucil de Formules et de Tables Numérriques (Paris, 1868) contains 19 tables, occupying 62 pages, most of them giving results to 4 places; they relate to very varied subjects, -antilogarithus, Gaussian logarithms, logarithms of $\frac{1+x}{1-x}$, elliptic iutegrals, squares for use in the method of least squares, \& C . Bremiker, Tafel vier. stelliger Logarithmon (Berlia, 1874), gives four-figure logarithms of numbors to 2009, loç sincs, cosines, tangents, and cotangents to S° for every hondredth of a degree, and thence to 15° for evcry tenth of a degree, to 4 places. There aro also Gaussian logainthms, squares from 0.000 to 13,500, antilogarithins, $\& \cdot$. The book coutains 60 pages. Willich, Popular Tables (London, 1853), is a uscful book for an amateur ; it gives Brigmian and hyperbolic logarithms to 1200 to \widehat{h} places, squares, $\& c$. , to 343 , \&c
Hyperbolie of Napicrian Logarithms. -The logarithms invented by Napier and explained by hime in the Dcscriptio (1614) were uot the same as those now called natural or hyperbolic (viz., to base c), and very frequently also Napierian, logarithas. Napicrian logarithms, strictly so called, have eatirely passed out of use and are of purcly historic intercst ; it is therefore sufficient to refer to Logarithms and Napieh, where a full acconnt is given. Apart from the inventor's own publications, the only Napierian tables of importance are coutaincd in Ursinus's Trigonometria (Colognc, 1624-25) and Sclulze's Sammlung (Ecrlin, 1778), tho former being the largest that has been constructel. Logarithas to the base o, where e denotes 2.71828 , were first published by Speidell, New Logarithmes (1619).

The most copious table of hyperbolic logarithms is Dase, Tafol Hyper der naturlichen Logarithmen (Vienna, 1850), which cxtends from 1 bolic to 1000 at intervals of mity and from 1000 to 10,500 at intervals logaof $\cdot 1$ to 7 places, with diffcreaces and proportional parts, arranged rithny as in an ordinary seven-figure table. By adding $\log 10$ to the results the range is from 10,000 to 105,000 at intervals of uuity. The table formed part of the Annals of the I'ienna Observatory for 1851, but scparato copies were printed. The most elaborate table of hyperbolic logarithms is due to Wolfram, who calculated to 48 places the logarithms of all numbers 11p to 2200 , anl-of all primes (also of a great many conposite numbers) between this limit and 10,009 Wolfram's results first appeared in Schulzo's Sammlung (1778). Six logarithms which Wolfram had been prevented from computing by a serious illaess were supplied in tho Berliner Jahrbuch, 1783, 1. 191. The completo table was reproduced in Vega's Thesaurks (1791), when several errors were corrected. Tables of hyperbolio logarithms are contained in the following collcetions:-Callet, all numbers to 100 and primes to 1097 to 48 places; Borda and Delambro (1801), all numbers up to 1200 to 11 places; Salomon (1827), all numbers to 1000 and primes to 10,333 to 10 places; Vega, Tabula (inclutling Hïlsse's edition, 1810), and Köhler (1848), all buabers to 1000 and primes to 10,000 to 8 places; Barlow (1814), all numbers to 10,000 ; Hutton and Willich (1853), all numbers to 1200 to 7 places; Dupuis (1868), all numbers to 1000 to 7 places. Hlutton also gives hyperbolic logarithms from 1 to 10 at intervals of 01 to 7 places. Rees's Cyclopadia (1819), art. "Hyperbolic Logarithms," contains a tahlo of byperbolic logarithms of all numbers up to 10,000 to 8 places.

Tables to convert Eriggian into Ifypertolic Logavithms, and vice Conver versa. -Such tables merely consist of the first hundred (sometimes sion of only the first tan) multiples of the modulus * $4342944819 \ldots$ and Briggig its reciprocal $23025850929 \ldots$ to $5,6,8,10$, or more places. They and are generally to be found in collections of logarithmic talles, but hyperrarely exceed a pago in extent, and are very easy to construct. bolic Schron and Brulns both give the first hundred multiples of the logamodulus and its reciprocal to 10 places, and Bremiker (in his edition rithms of Vega and in his six-figuro tables) aad Dupuis to 7 places. Degen, Tabularum Enncas (Copenlagen, 1821), gives the first hundred multiples of the modulits to 30 places.

Antilogarithins. - In tho ordinary tables of logarithms the natural numbers arc integers, whilo the logarithms are incommensurable. In an antilogarithmio canon the logarithms aro exact quantitics, such as $00001, \cdot 00002, \& c$, and tho corresponding numbers aro incommensurable. The largest and carliest work of this kind is Dodson's Antilogarithmic Canon (London, 1712), which gives numbers to 11 places corresponding to logarithms from 0 to 1 at intervals of $0000 \hat{1}$, arranged like a seven-figuro logarithmic table, with intelseript differmeos and proportional parts at the bottom of the pare. This wolk was the only antilogarithmic canon for more than a century, till in 1844 Shortiede published the first cdition of his tables; in 1819 ho publishel the second edition, and in tho same year Filipowski's tables appeared. Both these works contain seven-figure antilogarithms: Shortredo gives numbers to logarithms from 0 to 1 at intervals of 00001 , with differences and multiples at the top of tho page, ant Filipowski, A Table of Antilogarithms (London, 1849), contains a table of the same exteut, the proportional parts being given to liundiodths.

Adelition and Subtraction, or Gaussian, Logarithms. -The object
of such tables is to give $\log (a \pm b)$ by only one entry when $\log a$ and $\log _{g} l$ are given (see Logarithms, vol. xiv. p. 777). Let

$$
A=\log x, \quad B=\log \left(1+\frac{1}{x}\right), \quad C=\log (1+x)
$$

Leaving out the specimen table in Ieonelli's Theoric des Logarithmes Addilionnels el Deduetifs (Bordenux, 1803), the principal tables are the following. Gauss, in Zach's Monatliche Corrcspondenz (1812), giving B and C for argunent A from 0 to 2 at intervals of 001 , thence to $3 \cdot 10$ at intervals of 01 , and to 5 at intervals of $\cdot 1$, all to 5 places. This table is reprinted in Ganss's IFcrke, vol. iii. p. 244. Matthicssen, Tafcl zur bequesnčn Bcrechnung (Altona, 1818), giving B and C to 7 places for argument A from 0 to 2 at intcrvals of 0001 , thence to 3 at intervals of $\cdot 001$, to 4 at intervals of $\cdot 01$, and to 5 at intervals of $\cdot 1$; tho table is not convenicutly arranged. Petur Gray, Tables and Formnlex (London, 1849, and " Addendum," 1870), giving C for argmment A from 0 to 2 at intervals of 0001 to 6 places, with proportioual parts to lundredths, aud $\log (1-x)$ for argument A from $\overline{3}$ to $\overline{1}$ at intervals of ool nad from $\overline{1}$ to $\overline{1} \cdot 9$ at intervals of 0001 , to 6 places, with juoportional parts. Zceh, Tafein der Additions- und Subtractions.Logarilhonen (I,cipsic, 1849), giving B for argument A from 0 to 2 at intervals of 0001 , thence to 4 at intervals of 001 and to 6 at intervals of 01 ; also C for argument A from 0 to 0003 at intervals of 0000001 , thence to 05 at intervals of 000001 and to "303 at intervals of 00001 , all to 7 places, with proportional parts. These tables are reprinted from Iltilsse's edition of Vega (1849) ; the 1840 edition of Hiilsse's Tega contained a reprint of Gauss's original table. IVittstein, Lugarithmes de Gauss \& Scpt Décimales (Ilanover, 1866), giving B for argument A from 3 to 4 st intervals of $\cdot 1$, from 4 to 6 at iutervals of 01 , from 6 to 8 at intervals of 001 , from 8 to 10 at intervals of 0001 , also from 0 to 4 at the same intervals. In thin landsome work the arrangenent is similar to that in a scren-figuro logarithmic table. Gauss's original five-place table was reprinted in Pasquich, Tabule (Lcjpsic, 1817); Kiohler, Jcrome de le Lande's Tafcln (Leipsic, 1832), and Mandbuch (Leipsic, 1848); nud Galbrath and Hsughton, Manmal (London, 1860). Hovel, Tables de Logarithmes (1871), also gives a small five-place table of Gaussian logarithms, the addition and subtraction logarithms being scparated as in Zech. Modified Gaussian logarithms are given by J. H. T. Müller, Fierstellige Logarithmen (Gotha, 1844), 'viz, a four-placo table of B and $-\log \left(1-\frac{1}{x}\right)$ from $A=0$ to .03 at intervals of 0001 , thenco to 23 at intervals of 001 , to 2 at intervals of 001 , and to 4 at intervals of 1 ; and by Shortrede, Logarithmic Tables (rol. i., 1849), viz., a five-placo table of B and $\log (1+x)$ from $A=5$ to 3 at intervals of $\cdot 1$, from $A=\overline{3}$ to $\overline{2} \cdot 7$ at intervals of 01 , to $1 \cdot 3$ at intervals of 001 , to 3 at intervals of ${ }^{\circ} 01$, and to 5 at intervals of $\cdot 1$. Filipowski's Antilagarithms (1849) contains Ganssian logaritlums arranged in a new way. The principal tablo gives $\log (x+1)$ as tabular rosult for $\log x$ as argunent from 8 to 14 at intervals of 001 to 5 places. Weidenbacb, Tajel um den Logarithmen (Copenhagen, 1829), gives $\log \frac{x+1}{x-1}$ for argunent A from 352 to 2.002 at intervals of 001 , to $3 \cdot 6$ at intervals of $\cdot 01$, and to $5 \cdot 5$ at intervals of $\cdot 1$, to 5 places.

Logistic and Proportional Logarithons. - In mast collections of tables of logarithms a five-place table of loristic logarithms for every second to 1° is given. Logistic tables give $\log 3600-\log x$ at intervals of a second, x being cxpressed in degrees, minutes, qud scconds; Schulze (1778) and Verma (1797) have them to $x=3600^{\prime \prime}$ and Callet and Ilutton to $x=5280^{\prime \prime}$. Proportional logarithms for every second to 3° (i.e., $\log 10,800-\log x$) form part of acarly all collections of tables relating to navigation, generally. to 4 places, sometimes to 5. Bagay, Tables (1829), gives a five place table, but such are not often to be found in collections of mathematical tables. The same remark applies to tables of proportional loga. rithms for every minute to 24 f , which give to 4 or 5 places the ralucs of $\log 1440-\log x$. The object of a proportional or lomistic table, or a tablo of $\log a-\log x$, is to facilitato tho calculation of proportions in which the third term is a.

Intorpolation Tables. - All tables of proportional parts may bo regarded as interpolation tables. Bremiker, Tafcl der Proportionaltheile (Berlin, 1843), gives proportional parts to lundredtlis of all numbers from 70 to 699. Scliröa, Logarithms, contains an interpolation table giving the first bundred multiples of all numbers from 40 to 410 . Tables of the valnes of binomial theorem coeffiecients, which are required when second and higher orders of differances aro used, aro descrilial belum. Woollıonse, On Infermation, Summation, and the Adjustment of Numerical Tables (London, 1865), contains nine pages of iuterpolation tables. The book congists of papers extracted from vols. xi. aud xii. of the Assurance Magazine.
Dual Logarithms.-This term is used by Mr Oliver. Byrue in his Dual Arithmctic, Young Dinl Arithmetician, Tables of Dusal Logarithms, \&c. (London, 1863.67). A dual number of tho ascend14 g branch is a contiuned product of powers of $1 \cdot 1,1 \cdot 01,1 \cdot 001$. \& c .
takon in order, tho potrers only being expressed ; thus $\downarrow 6,9.7,8$ denotes $(1 \cdot 1)^{6}(1 \cdot 01)^{2}(1 \cdot 001)^{7}(1 \cdot 0001)^{8}$, the mumbers following tho \downarrow being called dual digits. Δ dual number which lias all lat the last digit zeros is called a dual logatithm; the autliol uses dual logeritlms in which there are seven ciplucrs between the \downarrow and tho logarithms. A dual number of the descending lumely is a courtinued product of powers of $9, \cdot 99$, $\left\{\begin{array}{c}\text { c.: : for instance, }(9)^{3}(\cdot 99)^{2} \text { is }\end{array}\right.$ denoted hy ' 3 ' $2 \uparrow$. Tho Talies, which occupy 112 pages, give dual numbers and logarithms, both of the ascending oud descending branches, and the corresponding natural numbers. Tho author claimed that his tables were superior to thoso of common logarithms.

Constants. -In ncarly all tables of logarithms there is a loge deroted to certain frequently used constants and their logarathmes, such as $\pi, \frac{1}{\pi}, \pi^{2}, \sqrt{2}$. Λ specially good collection is printed in Templeton's Nillurright's and Engincer's Peckel Companion (corrected hy S. Mayuard, London, 1871), which gires 58 constants involving π aud their logarithins, gencrally to 30 places, and 13 others that may be properly called mathematical. © A good list of constants involving π is given in Salomon (I827). A paper by Paucker in Gruncrt's Archiv (vol. i. p. 9) has a number of constants involviag π given to a great many places, and Gauss's memoir on the lemniscato function (Werke, vol. iii.) has $c^{-\pi}, e^{-\frac{1}{2} \pi}, e^{-ई \pi}$, \&c., calculated to about 50 places. The quantity π bas becn worked out to 707 places (Slaanks, Proc. Roy. Soc., Vol. xxi. p. 319) and Euler's constent to 263 places (Adams, Proc. Roy. Soe., vol. xxvii. p. 88). The velue of the inotulus M, calculated by Prof. Adans, is given in Logarithms, vol. xiv. p. 759 . This value is correct to 263 places; but the calculation has since been carricd to 272 1laces (see Adams, Proc. Roy. Soc., vol. xlii. p. 22, 1887).

Tables for the Solution of the Ircducible Case in Culic Equations.- IrrednciLambert, Supplcincuta (1 \% 98), rives $\pm\left(x-2^{3}\right)$ from $x=001$ to $1 \cdot 155$ bie enbic at intervals of 001 to 7 places, and Barlow (1814) gives $x^{3}=x$ from equations $x=1$ to 1.1549 at intervals of 0001 to 8 places.

Binomial Theorem Coefficients. -The values of

$$
\frac{x(x-1)}{1.2}, \frac{x(x-1)(x-2)}{1.2 .3}, \ldots \frac{x(x-1) \ldots(x-5)}{1.2 \ldots 6}
$$

from $x=\cdot 01$ to $x=1$ at intervals of $\cdot 01$ to 7 places, are scrviceable for cieuts. use in interpolation by secend and bigher orders of differences. The table queted above occurs in Schalze (1778), Barlow (1814), Yega (1797 and succeeding editions), Hantschl (1827), aud Köhler (1848). Rouse, Dectrinc of Chances (London, io date), gives on a folding sheut $(a+b)^{n}$ for $n=1,2, \ldots 20$. Lambert, Supplomente (1798), has the coefficients of the first 16 terms in $(1+x)^{\frac{1}{2}}$ and $(1-x)^{\frac{1}{2}}$, their accurate values benfor given as decimals. Vega (1597) las a page of tables giving $\frac{1}{2.4}, \frac{1.3}{2.4 .6}, \ldots \frac{1}{2.3}, \ldots$ and similar quantities to 10 places, with their logarithms to 7 places, and a page of this kind occurs in other collcctions. Koluker (1848) gives the valucs of 40 such quantitios.

Figuiale Nambers.-Lambert, Supplomenta. gives $x \frac{x(x+1)}{1}$
Figurato $\frac{x(x+1) \ldots(x+11)}{1,12}$ from $x=1$ to 30 .
Binomial
theorem
coeff.

Trigonenctrical Quadratic Surds.-The surd values of the sines Trigenoof every third degree of the quadrant are given in some tables of metrieal logarithms; c.g., in ITutton's (p. xxxix., ed. 1855), we find quadrati $\sin 3^{\circ}=\frac{1}{8}\left\{\sqrt{ }\left(5+\sqrt{ }(5)+\sqrt{\frac{1}{2}}+\sqrt{\frac{5}{2}}-\sqrt{ }(15+3 \sqrt{ } 5)-\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right\} ;\right.$ and surds the dumerical walues of tbe surds $\sqrt{ }(5+\sqrt{ } 5), \sqrt{ }\left(\frac{15}{2}\right)$, \&c., are given to 10 places. These ralucs were cxtcuded to 20 places by Peter Gray, Mcsscirgcr of Math, vol. vi (18i7), p. 105.

Circulating Decimals.-Goodwyu's tables have been described Circulat. above, p. 8. Several others ha:c been published giving the num- iug decibers of digits in the periods of the reciprocals of primes: Burck-mals. lintdt, Tables des Diviscurs du Premier Mlillion (1'ar's, 1814-17), gare one for all primes up to 2,543 and for 22 primes excceding that limit. Desmarcst, Theoric des Nombores (Paris, 1852), included all primes up to 10,000. Reusclilc, Mathomatische Abhandlung, cuthaltend neute zalulontheoretisctue Tabellen (1856), coutains a sinilar table to 15,000 . This Sliauks extended to 60,000 ; the portion from 1 to 30,000 is printed in the Proc. Foy. Soc., vol. xxii. p. 200, and the remainder is preserved in tho archives of the society (Id., xxiii. p. 260 aud xxiv. p. 392). The number of digits in the decimal period of $\frac{1}{p}$ is the same as tho exponcat to which 10 belongs for modulus p, so that, whencver the period has $p-1$ digits, 10 is a puimitive root of p. Tables of primes liaving a given mumber, n, of digits in their periods, i.e., tables of the resolutions of 10^{n-1} into factors and, as far as known, into primo factors, havo been given by Loof (in Gruncrt's Archiv, vol. xvi. p. 54 ; reprinted in Nowv. Annalcs, vol. xiv. p. 115) and by Slianks (Proc. Roy. Soc., vol. xxii. p. 381). The former exteuds to $u=60$ and tho latter to $n=100$, but there are gaps in both. Reuschlo's tract also containg, resolutions of $10^{n}-1.2$ For further referencee on circulating decis mals, sве Proc. Camb.'Phil. Soc,, vol. iii. p. 185 (1878).
Pythagorean Triangles.-Right-angled triangles in whish tho
sides and hypothenuso are all rational integers are frenuently termed Pytbagorean triangles, as, for examplo, the trisaglcs 3, 4, 5 and $5,12,13$. Schulze, Sammlung (1778), contains a table of such triangles subject to the condition $\tan \frac{1}{2} \omega>\frac{1}{5}$ (ω being one of the acnte angles). About 100 triangles are given, but sonie occur twice. Large tables of right-angled rational triangles wers given by Bretschneider, in Gruncrt's Archiv, vol. i. p. 96 (1841), sad by Sang, Edinburgh Transadions, vol. xxiii. p. 727 (1864). In these the triangles are arranged according to hypothenuses and extend to $1201,1200,49$, and $1105,1073,264$ respectively. Whitworth, in a paper read beforo the Lit. and Phil. Society of Liverpool in 1875, carried his list as far as $2465,2337,784$. See nlso Ratl, "Die retionalen Dreicke," in Gruncri's Archiv, vol. 1vi. p. 188 (1874). Sang's paper also contains a table of triangles having an angle equal to 120° and their sides integers.

Powers of π.-Pauckcr, in Grunert's Archiv, vol. i. p. 10, gives π^{-1} and $\pi^{\frac{1}{2}}$ to 140 places, and $\pi^{-2}, \pi^{-\frac{1}{2}}, \pi^{\frac{1}{2}}$, $\pi^{\frac{1}{3}}$ to a bout 50 places ; and in Maynard'e list of constauts (sce "Constants," a bove) π^{3} is given to 31 places. The first twelve powers of π and π^{-1} to 22 or more places were printed by Glaisher, Proc. Lond. Mrath. Soc., vol. viii. p. 140 , and the first bundred maltiples of π and π^{-1} to 12 places by Kulik, Tafel der Quadrat-und Kubile-Zahlen (Leipsic, 1848).

The Series $1^{-n}+2^{-n}+3^{-n}+$ \&c. - Let $S_{n}, 8_{n}, \sigma_{n}$ denote respectively the sums of the series $1^{-n}+2^{-n}+3^{-n}+\& c, 1^{-n}-2^{-n}+3^{-n}-\& c$. , $1^{-n}+3^{-n}+5^{-n}+\& c . \quad L e g e n d r e(T r a i t e ~ d e s ~ F r o u c t i o n s ~ E l l i p t i q u e s, ~$ vol. ii. p. 432) has computed S_{n} to 16 places from $n=1$ to 35 , snd Glaisher (Proc. Lond. Math. Soc., vol. iv. p. 48) has deduced 8_{n} and σ_{n} for the same arguments and to the samo number of places. Tho latter has also given $S_{n,} S_{n,} \sigma_{n}$ for $n=2,4,6, \ldots 12$ to 22 or mora places (Proc. Lond. Math. Soe., vol. viii. p 140), and the values of Σ_{n}, where $\Sigma_{n}=2^{-n}+3^{-n}+5^{-n}+\& c$. (prime uumbers only inpolved), for $n=2,4,6, \ldots 36$ to 15 places (Comple Rendu de l'Assoc. Franpaise for 1878, p. 172).

Tables of e^{x} and e^{-x}, or Eyperbolic Antilogarithms. -The largest tables are the following. Gudermann, Theoric der potenzial-oder cyklisch-hyperbalischen Functionen (Berlin, 1833), which consists of papars reprinted from vols. viii. and ix. of Crclle's Journal, and gives $\log _{10}$ siob $x, \log _{10} \cosh x$, and $\log _{10} \tanh z$ from $x=2$ to 5 st intervals of "001 to 9 places and from $x=5$ to 12 at intervals of 01 to 10 places. Since siab $x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ and $\cosh x=\frac{1}{3}\left(e^{x}+e^{-x}\right)$, the values of e^{x} and e^{-x} are deducible at oace by addition and subtraction. Newman, in Canb. Phil. Trans., vol. xiii pp. 145-241, gives values of e^{-x} from $x=0$ to $15 \cdot 349$ at intervals of 001 to 12 places, from $x=15 \cdot 350$ to $17 \cdot 298$ st intervals of 002 , snd from $x=17 \cdot 300$ to 27.635 at intervale of 005 , to 14 places. Glaisher, in Camb. Phil. Trans., vol. xiii. pp. 243-272, gives four tables of $\epsilon^{z^{3}}$, $e^{-x}, \log _{10} e^{x}, \log _{10} e^{-x}$, their ranges heing from $x=001$ to $\cdot 1$ at intervals of 001 , from 01 to 2 at intervals of 01 , from $\cdot 1$ to 10 at intervals of $\cdot 1$, from 1 to 500 at intervals of unity. Vega, Tabula (1797 and later edd.), has $\log _{50} e^{8}$ to 7 places and e^{x} to 7 figures from $x=01$ to 10 at intervals of '01. Kohler's Handbuch contains a amall table of e^{x}. In Schulze's Sanmanang (1778) e^{x} is givea for $x=1,2,3, \ldots 24$ to 28 or 29 figures and for $x=25,30$, and 60 to 32 or 38 figures; this table is printed in Glaisher's paper (loc. cit.). In Salomon's Tafeln (1827) the values of $e^{n}, e^{\cdot n}, e^{.0 n}, e^{.00 n}, \ldots e^{.000650 n}$, where n has the values $1,2, \ldots 9$, are given to 12 places. Bretschneider, in Grunert's Archiv, iii. p. 33, worked out e^{x} and e^{-x} and also $\sin x$ and $\cos x$ for $x=1,2, \ldots 10$ to 20 places.

Factorials.-The Falues of $\log _{10}(n!)$, where n I denotes 1 . 2.3... n, from $n=1$ to 1200 to 18 places, are given by Degen, Tabularum Enneas (Copenhagea, 1824), sud reprinted, to 6 places, at the end of De Morgaz'a article "Probabilities" in tho Encyclopsedia Mictropolitana. Shortrede, Tables (1849, vol. i.), gives $\log (n!)$ to $n=1000$ to 5 places, and for the srguments ending in 0 to 8 places, Degeu also gives the complements of the logarithims. The first 20 figures of the valnes of $n \times n 1$ and the values of $\log _{10} \frac{1}{n \times n!}$ are computed by Glaisher es far as $n=71$ in the Phil. Trans. for 1870 (p. 370), and the valnes of $\frac{1}{n!}$ to 28 significant figures as $f a r$ as $n=50$ in Camb. Phil. Trans., vol. xiii. p. 246.

Bernoullian Numbers. - The first fifteen Bernoullisn numbers were given by Euler, Inst. Calc. Diff., part ii. ch. $\begin{gathered}\text {. Sixteen more }\end{gathered}$ were calculated hy Rothe, snd the first thirty-one were published by Ohm in Crelle's Journal, vol. xx. p. 11. Prol. J. C. Adsms has calculated the next thirty-one, and a table of the first sixtytwo was published by him ia the Brit. Assoc. Report for 1877 and in Crelle's Journal, vol. 1xxxy. p. 209. The first nine figures of the values of the first 250 Bernoullian unmbers, and their Brjggian logarithms to 10 places, have been printed by Glaisber, Camb. Thil. Trans., vol. xii. p. 884.

Tables of log $\tan \left(\frac{1}{1} n^{\prime}+\frac{1}{1} \phi\right)$. -Gndermenn, Theorio der polenzialoder cyklisch-kyperbolischen Functionen (Berlin, 1833), gives (in 100 pages) $\log \tan \left(\frac{1}{4} \pi+\frac{3}{2} \phi\right)$ for every centesimal minute of the quadrant to 7 places. Another table contains the values of this function, also at intervals of a miaute, from 88° to 100° (centesimal) to 11
places. "Legendre, Traill Ire Frmations Elligniques (vol. 11. p. 256). gives the same function for evely half degree (seargesimal) of tha quadraut to 12 places.

Ths Gamma Function. - Legrondre's great table appeared in vol. ii. of his Exscrcicas de Crlcul Intégral (1816), p. 85, sud in vol. ii. of his Traité des Fonctions Ellipliques (1826), T. 489. Log $_{70} \Gamma(x)$ is given from $x=1$ to 2 at iotervala of 001 to 12 places, with differences to the third order. This table io roprinted in full in Sclule. milch, Analytisehe Sizdicn (1848), 1. 183; an obridgment in which tho arguments differ by 01 occurs iu De Morgan, Diff. and Int. Cale., p. 587. The last figures of the valiea onittel are slso supplied, so that tho full table cant bo reprorlued. Avseren-place abridgment (withont differoucea) is published in Pertrand, Calcul Intigral (1870), p. 285, and a six-figure abridgment in Williamson, Iulcgral. C'alculus (1884), p. 169. Ia vol i. of his Ercreices (1811), Legeudre had proviourly puhlished a scven-place table of $\log _{10} \Gamma(x)$, without differences.

Tables conncetch with Ellintic Functions. -Tegendre calculated claborate tables of tha clliptic integrals in vol. ii. of Traits des Fonctions Elliptiques (1826). Denoting tho moulular angle by θ, the amplitude by ϕ, and the incomplete integral of the sccond kind by $E_{1}^{\prime}(\phi)$ tho tibles are-(1) $\log _{n} E$ a ad $\operatorname{lor}_{r} K$ from $\theta=0^{\circ}$ to 90° at intervals of $0^{\circ} 1$ to 12 or 14 places, witl dilferences to the thind order; (2) $E_{1}(\phi)$ and $F(\phi)$, the molular angle heing 45° from $\phi=0^{\circ}$ to 90° at intervals of $0^{\circ} .5$ to 12 places, with differcuces to the fifth order ; (3) $E_{1}^{\prime}\left(45^{\circ}\right)$ and $F\left(45^{\circ}\right)$ from $\theta=0^{\circ}$ to 90° at intervals of 1°, with diffcrences to the sixth order, also E nud K for the same arguments, all to 12 ploces; (4) $E_{1}(\phi)$ and $H(\phi)$ for every degree of both the amplitude aud the arguinent to 9 or 10 places. The first three tables had been phblishell previously in vol. iii of the Eecercices de C'ulcol Intégral (1816).

Tables involoing q. - Verhulst, Traite des Fonctions Elliptiqucs Tables (Brussels, 1841), contains a tablo of $\log _{1 v} \log _{10}\left(\frac{1}{q}\right)$ for argunnent θ iag iag. at intervals of $0^{\circ} \cdot 1$ to 12 or 14 places. Jacubi, ia Crclle's Journal, vol xxvi. p. 93 , gives $\log _{10} q$ from $\theta=0^{\circ}$ to 90° at intervals of $0^{\circ} \cdot 1$ to 5 places. Moissel, Sammlung mathenatischer Tafcln, i (Iserlohn, 1860), consists of a table of $\log _{30} q$ at intervels of 1^{\prime} from $\theta=0^{\circ}$ to 90° to 8 places. Glaisher, in Month. Nol. Roy. Ast. Sot., vol. xxxvii. p. $372(1877)$, gives $\log _{10} q$ to 10 places and q to 9 places for every degree. In Bertrand, Calcul Infégral (1870), a table of logno from $\theta=0^{\circ}$ to 90° at intervals of 5^{\prime} to 5 places is accompanied by tables of $\log _{10} \sqrt{\frac{2 K}{\pi}}$ and $\log _{10} \log _{10} \frac{1}{7}$ and by abridgments of Legendre's tables of the elliptic integrals. Schlömilch, Vorlesungen der hoheren Analysis (Brunswick, 1879), p. 448, gives a small table of $\log _{10} q$ for every degree to 5 plares.

Legeudrian Cocfficients.-The values of $P^{n}(x)$ for $n=1,2,3, \ldots 7$ Legenfrom $z=0$ to 1 at interrals of 01 are given by Glaisher, in Erit. drian ca Assoc. Rep. for $1879, p p .54-57$. The functions tabulated are $P^{\prime}(r)=x$, efficienta $P^{3}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P^{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P^{4}(x)=\frac{1}{4}\left(35 x^{4}-30 x^{2}+3\right)$, $P^{6}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right), \quad P^{6}(x)=1^{2}\left(231 x^{6}-315 x^{4}+105 x^{3}-5\right)$, $P^{7}(x)=\frac{1}{1}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)$. The functions orenr in coonexion with the theory of interpolation, the attraction of spheroids, and other physical theories.

Besscl's Functions. - Pessel's originsl tablo appeared at the end Bessel's of his memoir "Untersuchung des planetarischen Theils der func: Stiorungen, welcho ans der Bewegung der Sonne entstehen" (in. Abh. d. Derl. Alad., 1824; reprinted ia vol i. of his Abhandlunger, $\mathrm{\Gamma} .84$). It gives $J_{0}(x)$ and $J_{1}(x)$ from $x=0$ to 32 at iatervals of 01. More extensive tables were calculated by Hansen in "Ermittelung der absoluten Storungen in Ellipsea von beliebiger Excentricitat und Neigung" (in Sehriften der Sicrnwarte Secberg, part i, Gotha, 1843). They include sn extension of Bessel's originai tablo to $x=20$, hesides smaller tables of $J_{n}(x)$ for certain values of n as far as $n=28$, all to 7 places. Hansen's table was reproduced by Schlomilch, in Zeilschr. far Math., vol. ii. p. 158, and by Lommel, Studien uber die Bessel'schen Functionen (Lejpsic, 1868), p. 127. Hansen's notation is slightly different from Bessel's; the change amounts to halving each argument. Schlomilch gives tho table in Haasen's form ; Lommel expresses it in Bessel's.

Sine, Cosine, Exponential, and Logarilhm Integrals. -The functions so nsmed are the integrals $\int_{0}^{x} \frac{\sin x}{x} d x, \int_{\infty}^{x} \frac{\cos x}{x} d x, \int_{-\infty}^{x} \frac{e^{x}}{x} d x$ $\int_{0}^{x} \frac{d x}{\log x}$, which are denoted by the fnactional sirns Si x, Cix, Ei x_{1}^{∞} li x respectively. Soldner, Théorie cl Tables d'une Nowvelle Fonctiors Transcendante (Mnnicb, 1809), gave the velues of li x from $x=0$ to 1 at iatervals of 1 to 7 places, and thence at various intervals to 1220 to 5 or more places. This table is reprinted in De Morgan's Diff. and Int. Calc., p. 662. Bretschueider, in Gruneri's, Archic, vol. iii. P. 33, calculated $\mathrm{Ei}(\pm x), \mathrm{Si} x, \mathrm{Ci} x$ for $x=1,2, \ldots 10$ to 20 places, and subsequently (in Schlomilch's Zcitsehrift, vol. vi.) workel out the values of the same functions from $x=0$ to 1 at intervals of -01 and from 1 to 7.5 st intervals of 1 to 10 places. Two tracts by L. Stenberc. Tabula Logrtilhmi Interralis (Malnö. part j. 186 i
and part ii. 1867), give the ralues of li 10^{2} from $z=-15$ to 3.5 at intervals of 01 to 18 places. Glaisher, in Phil. Trens., 1870, p. 367, gives $\mathrm{Ei}(\pm x)$, Si x, $\mathrm{Ci} x$ from $x=0$ to 1 at intervals of 01 to 18 places, from $x=1$ to 5 at intervals of 1 and tlfence to 15 at intervals of unity, and for $x=20$ to 11 places, besides seven-place tables of Si x and $\mathrm{Ci} x$ and tables of their maximam and miuimum values. See also Bellavitis, "Tavole Numeriche Logaritmo-Integrale" (a paper in Memoirs of the Venetian Institute, 1874). Bessel calculated the ralues of li 1000 , li 10,000 , li 100,000 , li $200,000, \ldots$. $1 \mathrm{i} 600,000$, and li $1,000,000$ (see Abhandlungen, vol. ii. P. 339). In Glaisher, Factor Table for the Sixth 1fillion (1883), § iii, the values of li x are given from $x=0$ to $9,000,000$ at intervals of 50,000 to the ncarest integer.
Values of $\int_{0}^{x_{e}}-x^{3} d x$ and $e^{x^{2}} \int_{0}^{x} e^{-z^{2}} d x$. These functions are employed in researches connected with refractions, theory of errors, conduction of beat, \&c. Let $\int_{0}^{z^{2}} e^{-x^{2}} d x$ and $\int_{z}^{\infty} e^{-x^{2}} d x$ be denoted by Erf x and Eric x respectirely, standing for "error fnaction" and "error function complement," so that Erf $x+$ Erfc $x=\frac{3}{2} \sqrt{ } \pi$ (Phil. Maj., Dec. ISil; it has since been found convenient to transpose ss above the dcfinitions of Erf and Erfc). The tables of the fuactions, and of the functions multiplied by $\varepsilon^{z^{2}}$, are as follows. Kranp, Aualyse des Refractions (Strasburg, 1799), has Erfe x from
 and $\log _{10}\left(2^{2} \operatorname{Erfc} x\right)$ for the same values to 7 places. Bessel, Fundamenta Astrozomix (Königsberg, 1818), has $\log _{10}\left(e^{x^{2}} \operatorname{Erfc} x\right)$ from $x=0$ to 1 at intervals of 01 to 7 places, likewise for argument $\log _{10} x$, the arguments increasiog from 0 to 1 at intcrvals of 01 . Legendre, Trauté des Fonctions Elliptiques (1826), vol ii. p. 520, contains $\Gamma\left(\frac{1}{3}, e^{-x^{2}}\right)$, that is, $2 \operatorname{Erfc} x$ from $x=0$ to $\cdot 5$ at intervals of $\cdot 01$ to 10 places. Encke, Berliner Ast. Jahrbuch for 1834, prints $\frac{2}{\sqrt{ } \pi}$ Erf x from $x=0$ to 2 at intervals of 01 to 7 places and $\frac{2}{\sqrt{\pi}} \operatorname{Erf}(\rho x)$ from$y=0$ to 3.4 at intervals of 01 and thence to 5 at intervals of $\cdot 1$ to 5 places, ρ being 4769360 . Glaisher, in Phil. Mag., December 1871, has calculated Erfe x from $x=3$ to 4.5 at intervals of 01 to 11, 13, or 14 places. Encke's tables and tro of Kramp's were reprinted in tbe Encyclopesdia Metropolitana, art. "Probabilities."
Tables of integrals, not Numerical. - Meyer Hirsch, Integral-
Kln (1810; Eng. trars., 1823), and Minding, Integraltafeln (Berlin, 1849), give values of indefinte integrals and formulx of reduction; both are useful and raluable works. De Haan, Nouvelles Tables d'Integrales Definies (Leyden, 1867), is a quarto volume of 727 pagcs contrining evaluations of definite integrals, arranged in 485 tables. The first edition appeared in vol. iv. of the Transactions of the Amsterlam Academy of Sciences. This, thongh not so full and accurate as the second edition, gives references to the original memoirs in which the different integrals are considered.

Tables relating to the Theory of Numbers. - These are of so technical a character and so nnmerous that a full account cannot be attempted here. The reader is referred to Cayley's paper in the Bril. Assoc. Rhcp. for 1875, where a full description with references is given. Threo tabies mayे, however, be briefly noticed on eccount of their importance and because they form 6eparate volumes: (1) Degen, Canon Pellianus (Copenhagen, 1817), relates to the indeterminate equation $y^{3}-a x^{2}=1$ for values of a from 1 to 1000 . It in fact gives the expression for $\sqrt{ } a$ as a continued fraction; (2) Jacobi, Canon Arithmeticus (Berlin, 1839), is a quarto work containing 240 pages of tables, where we find for escll prime ap to 1000 the numbers corresponding to given indices and the indices corresponding to given numbers, a certain primitive root (10 is taken whenever it is a primitive root) of the prime being selected as base; (3) Reuschle, Tafeln complexer Primzahlen, veclche aus Wu raeln der Einheit gebildet sind (Berlin, 1875), includes an enormous mass of results relating to the higher complex theories. A table of $\chi(n)$, where $\chi(n)$ denotes the sum of the complex numbers which have n for the:r norm for primes up to $n=13,000$ (ef. Quatt. Journ., vol. xx. p. 152), has been published since the date of Cayley's report. Some tables that belong to the theory of numbers have been described abore under "Factor Tables" (p. 7).

* BRlliography,-Full bibliographical end historical information relating to tables is collected io Brit. Assoc. Rcp. for 1873, p. 6. The principal works ase: -Heilbronner, ITistoria Natheseos (Leipsic, 1742), the aritbmetical portica being at the end; Scheibel, Einleitung sur mathematischen Bücherlienntnios (Bresiau, 1771-84) : Kastner, Geschichle der Nathematic (Gottiageo, 1706.1600), vol. fiii.; Mrrhard, Bibliotheca Mathematiou (Leipsic, 1797-1801), Yoi. Hi.; Pogb, Bibbiotheca Mathematica (Tubingea, 1830), and continustion frold 1830 to 155$\}^{\prime}$ by Solinke (Leipsic and London, 1854); Lalande, Bibliographie Astronomipuc (Paris, 1803), a separato index ou p. 300 . A great deal of accurate information vpon early tablee is given by Delsmbre, Histoire de t. Astronomaie Moderne (Paris, 1827), vol. 1.; ; and Nos. ziz. snd IX. of Hutton's Afathematical Tracts (1812). For 3 coinplete list of logaritbmic tables of all kinds fron 1614 to 1862 , see De Fana "Fets over Lngarithnentafels," in Verslapen en Ncdedeclingen der Koning. Aliad, orn IFeteneehampen (Amsterdant, 1562), pt. siv. De Morgan's article "Tables," which aureared Arst in the Penny Cudopzdia, and afterwards with additiona tuthe tip Enplish Cydopedia, gives not ouly a good deal of bibliographical informa. un unt also an account of tables relating to life asouraice and smnuities, natronulical tablea, contwê sial tables, $\Delta \mathrm{C}$.

TABOO (also written Tabu and Talro) is the name given to a sjstem of religious prohibitions which attained its fullest development in Polynesia (from Hawaii to New Zealand ; see rol. xix. p. 426), but of which under different names traces may be discopered in most prarts of the world.

The word "taboo" is common to the different dialects of Polynesia, and is perhaps derived from $t a$, "to mark," and $p u$, an adverb of intensity. The compound wort "taboo" (tapu) would thus originally mean "marked thoroughly." Its ordinary sense is "sacred," It does not, however, imply any moral quality, but only "a connexion with the gods or a separation from ordinary purpeses and exclusivo appropriatiou to persons or things considered sacred; sometimes it means devoted as ky a row." Chiefs who trace their lineage to tho gods are called arii lalns, "chiefs sacred," and a temple is called a vochi laIru, "place sacred." The converse of taboo is woa (in Tonga gnofóa), which means "general" or "common." Thus the rule which forbade women to eat with men, as well as, except on special occasions, to eat any fruits or animals offered in sacrifice to the gods, was called ai tabu, "eating saered"; while the present relaxation of the rule is called ai noa, eating generally, or haviug food in common. Although it was employed for civil as well as religious purposes, the taboo was essentially a religious observance. In Hawaii it could be imposed only by priests; but elsewhere in Polynesia kings and cliefs, and even to a certain extent ordinary individuals, exercised the same power. The strictness with which the taboo was obscrred depended largely on the influence of the perron who inposed it: if he was a great chief it mould not be broken; but a powerful man often set at nouglit the taboo of an inferior.

A taboo might bo general or particular, permanent or Genera temporary. A general taboo applied, e.g., to a whole class and par of animals; a paiticular taboo was confined to one or more ticular ind:viduals of the class. Idols, temples, the persons and names of kings and of members of the royal family, the persons of chiefs and priests, and the property (canoes, houses, clothes, \&c.) of all these classes of persons were always taboo or sacred. By a somewhat arkitrary extension of this principle a chief could render taboo to (i.e., in favour of) himself anything which took his fancy by merely calling it by the name of a part of his person.. Thus, if he said "That axe is my backbone," or "is my head," the axe was his; if heroared out "That canoe! my skull shall be the baler to bale it out," the canoe was lis likewise. The names of chiefs and still more of kings were taboo, and could not be uttered. If the name of a king of Tahiti was a commion word or even resenibled a common word, that word dropped out of use and a new name was substituted for it. Thus in course of time most of the common words in the language underwent considerable modifications or were entirely changed.

Certain foods were permanently taboo to (i.e., in favour of or for the use of) gods and men, bnt were forbididen to women. Thus in Hawaii the flesh of hogs, fowls, turtle, and several hinds of fish, cocoa-nuts, and nearly everything offered in sacrifice were reserved for gods and mon, and could not, except in special cases, be consumed by women. In the Marquesas Islands human flesh was tabooed from women. Sometimes certain fruits, aninuals, and fish were taboo for months together from both men and women. In the Marquesas houses were tabooed against water: nothing was washed in them; no drop of water might be spilled in them. If an island or a district was tabooed, no canou or person might approach it wbile the taboo lasted; if a path was tabooed, no one might walk on it. Seasons generally kept taboo were the approach of a great religious ceremony, the time of preparation for war, and the sickness of chiefs. The time during which they lasted varied from
rears to months or days. "In Hawail there was a tradition of one that lasted thirty years, during which men might not trin their beards, de. A common period was forty days. A taboo was either common or strict. During a common taboo the men were only required to abstain from their orlinary occnpations and to attend morning aud evening praycr. But during a strict tabco every fire and light on the island or in the district was extinguished; no canoe was lannched; no person bathed; no one, except those who had to attend at the temple, was allowed to be seen out of doors; no dog might bark, no pig grunt, no cock crow. Hence at these seasons they tied up the mouths of logs and pigs, and put fowls under a calabash or bandaged their eyes. The taboo was imposed either by proclamation or by fixing certain marks (a pole with a bunch of bamboo leares, a white cloth, \&c.) on the places or things tabooed.
The peualty for the violation of a taboo was either religions or civil. The religious penalty inflicted by the offended atuas or opirits generally took the form of a disease : the offender swelled up aud died, the uotion being that the atua or his emissary (often an infant epirit) had entered into him and devoured bis vitala. Cases are on record in which persons who had unwittingly broken a taboo actually died of terror on discovering their fatal error. Chiefs and priests, however, could in the case of involuntary transgressions perform certain mysticsl ceremoniee which prevented this penalty from taking effect. The ciril penalty for breaking a taboo paried in severity. In Hawaii there were police officers appointed by the king to see that the taboo was observed, and every breach of it wras punished with death, unless the offender had powerful friends iu the persons of priests or chiefs. Elserwhero the punishment was milder; in Fiji (whicl, hovever, is Melanesian) death was rarely inflicted, but the delinquent was robbed and lis gardens despoiled. In New Zealand this judieial robbery wes reduced to a system. No gooner was it known that a man had brokeu a taboo than all his friends and acquaiutances stwarmed down on him and carried off whetever they could lay hands on. Under this system (known as murv) property circulated with great rapidity. If, e.g., a child foll into the fire, the father was robbed of nearly all he possessed. ${ }^{1}$

Things

 raturallyBesidee the permanent and the artificially created taboos there taboo. This all persons dangerously ill were taboo and were removed from their houses to eheds in the bush; if they remsined in the house and died there the house was tabooed and descrted. Mothers after childhirth were taboo, and so were their new-born children. Women before marriage were noa, and could have as many lovers as they chose; but after marriage they were strictly tabooed to their husbands and from evory one else. One of the strictest taboos was incurred hy all persons who handled the body or bones of a dead person or assisted at his funeral. In Tonga a comnon person who touched a dead chief was tabooed for ten lunar months; a chief who touched a dead chief was tabooed for from three to five nonthe accorliug to the rank of the deceased. Burial grounds were taboo; aud in New Zealand a canoe which had carried a corpse was nover afterwards med, but was drawn on eloore and painted red. Red was the taboo colour in Nerr Zealand; in Hawaii, Tahiti, Tonga, and Samon it was white. In the Marquesas a man tho had elain au enemy was taboo for ten days: be might have no intercourse with his wife and might not meddle with fire; he lad to get eome one else to cook for him. A woman engaged in the prepara. tion of cocoa-nut oil was taboo for five days or nore, during which she might have no intercourse with men. A tabooed person might not eat his food with his hends, but was fed by another person ; if he could get no one to feed him, he had to go down on his knees and pick np his food with his mouth, holding his hands behind him. A chief who was permanently taboo never ate in his own house but always iu the open air, being fed by one of his wives, or taking his food with the help of a fern etalk so as not to touch his head with his hands; food left by him was kept for him in a sacred place; any other person eating of it was supposed to die immediately. A man of any standing could not carry provisions on his back; if he did so they became taboo and were useless to any one but himself. For the taboo was communicated as it were by infection to whatever a tabooed persor or thing touched. This rule applied in its fullest force to the king and queen of Tahiti. Tbe ground they trod on became sacred ; if they entered a house, it became taboo to them and had to be abandoned to them.hy its owner. Hence epecial houses were
${ }^{3}$ The origin of this custom may perhspe be discerned in a castom of the Dieri tribe, Sonth Australia. Among them, if a child meets with an aecident, all its relstions immedistely get thoir heads broken with sticks or boomeranga till the blood flows down their faces, thie surgical operation being supposed to ease the child'e pain (Native Tribes of S. Australia, p. 280).
sot apart for them on their travels, and, except in their bereditary districts, they were alwaye carried on mea's shoulders to provent them tonching the ground. Elsowhere, ss in New Zealand, this rule was not carried out oo etrictly. But even In New Zeslaud the spots on which great chiefs rested during a jolpney becsme tabou und were surrounded with a fence of basket-work. The head and lhair, especially of a chief, were particularly taboo or saered; to touch a man's head was a gross insult. If a chief touched his own head with his fingers he had inumediately to apply them to his nose and enuff up the sanctity which they had abstracted froul his head. The cutting of a chief's hair was a solemu cerconony; the severed locks were collected and buried in a sacred plaio or hung up on a tree. If a drop of a chief's blood fell upou snything, that thing hecame taboo to him, i.e., was his property. If he hreathed on a fire, it became sacred and could nut be used for cooking. In his house no fire could under any circumstances be usel for cookiug: no woman could enter his house before a cortain servich had beou gone through. Whatever a new-born child touched became ts boo to (i.e., in favour of) the child. The law which sejmrated tabooed persons and things from contact with food was esperially strict. Hence a tabooed or sacred person ought not to leave his comb or blanket or anything which had touched his head or back (for the back was also particularly taboo) in a place where food had been cooked; aud in drinking he was eareful not to touch the vessel with hie lands or lips (otherwise the vessel became taboo and could not be ueed by any one else), but to have the liquid shot down his throat form a distance by a second person.

There we:- various ceremonies by which a taboo could le removed. Remove? In Tonga a person who had become taboo by touchinef a chiof or of taboe anything belonging to him could not feed hiuself till he had got rid of the taboo by touching the solee of a euperior chicfs feet with his hands and then rinsing his hands in water, or (if water was ecarce) rubbing them with the juice of the plantain or banana. But, if a man found that he had alrcady (unkuowingly) eaten with tabooed hands, he sat down before a chief, took up the foot of the latter, and pressed it egainst his stomach to counteract the effect of the food inside. In New Zealand a taboo could be taken off by a child or grandchild. The tabooed person touched the child and took driuk or food from ite bands ; the man was theu free, but the caild was tabooed for the rest of the day. A Maori chief who became taboo by touching the sacred head of his child was disinfected, so to apreak, as follows. On the following day (the ceremony could not he performed sooner) he rubbed his hands over with potato or fern root which had been cooked over a sacred fire; this food was then carried to the head of the family in the fonate line, who ato it, whereupon the hands beeame noa. The taboo was removed from a new-born child in a eonewhat similar mauner. The father took the child in his arms and tonched its head, back, \&e., with some fern root which had been roasted over a sacred fire; next morning a similar ceremony was performed on the child by its cldest relstive in the female line; the child was then nor, i.c., freo from taboo. Another mode of removing the taboo was to pass a consecrated piece of wood uver the right shoulder, round the loias, and back agrain over the left shoulder, after which the stick was broken in two and either buried, or burned, or cast into the sea.

Besides the taboos already described there were others which Privat any ono could impose. In New Zcaland, if a man wislied to pre-tabore ecrve his house, crop, garden, or aaything else. he made it taloo; eimilarly he could appropriate a forcst irce or a picce of drift timber, \&c., by tying a mark to it or giving it a chop with his axe. In Samoa for a similar purpose a man would set up a representation of, e.g., a sea pike or a blatk, believing that any one who meddled with property thus protected would he killed by a sea jike or sharls the noxt time he bathed. Somewhat similar to this was what mey be called the village ts boo. In the autumn the kumerc (sweet potato) Sclds belonging to the village were taboo till the crop was gathered, so that no stranger could approach them: and all persons engaged in getting in the crop were taboo, and could therefore for the time engage in no other occupation. Similar taboos were laid on woods during the hunting season and on rivers during the fohiug season.

On looking over the various taboos mentioned above we are tempted to divide them into two general classes.taboos of privilege and taboos of disability. Thus the taboo of chiefs, priests, and temples might be described as a privilege, while the taboo imposed on the sick and on persons who had come in contact with the dead might bo regarded as a disability; and we might say acccordingly that the former rendered persons and things sacred or holy, while the latter rendered them unclean or accursed. But that no such distinction ought to be drawn is clear from the fact that the rules to be observed in the one case and in the other were identical. On the other hand, it is true that the opposition of sacred and accursed, clean and
anclean, which plays so important a part in the later history of religion, did in fact arise by differentiation from the single ront idea of taboo, which includes and reconciles them both and by reference to which alone their history and mutual relation are intelligible.
The ortginal character of the taboo must be looked for not in its civil but in its religious element. It was not the creation of a legislator but the gradual outgrowth of animistic beliefs, to which the ambition and avarice of chiefs and priests afterwards gave an artificial extension. But in serving the cause of avarice and ambition it subserved the progress of civilization, by fostering conceptions of the rights of property and the sanctity of the marriage tie. conceptions which in time grew strong enough to stand by themselves and to fling away the crutch of superstition which in earlier days had been their sole support. For we shall scarcely err in believing that even in advanced societies the moral sentiments, in so far as they are inerely sentiments and are not based on an induction from experience, derive much of their force from an original system of taboo. Thus on the taboo were grafter the golden fruits of law and morality, while the parent stem dwindled slowly into the sour crabs and empty husks of popular superstition on which the swine of moderu society are still content to feed.
It remains to indicate briefly some facts which point to a wide diffusion under various names of customs similar to the taboo. As might have been expected, the taboo is found, though in a less marked form, among the Micronesians, Malays, and Dyaks, all of whom are ethnologically connected with the Polynesians. In Micronesia both the name and the institution occur : the inhabitants of certain islands are forbidden to eat certain animals-and the fruits of certain trees; temples and great chiefs are tabooed from the people; any one who fishes must previously for t wenty-four hours abstain from women; ${ }^{1}$ in conversing with women men are not allowed to use certain words, \&c. Again, the Malays have the custom, though apparently not the name. In Timor and the neighbouring islands the word for taboo is panali (or ponali); and during the long festival which celebrates a successful head-hunt the man who has secured the most heads is pamali; he must not sleep with his wife nor eat from his own hand, but is fed by women. Pamali is a Javanese word, and had originally in Java and Sumatra the sane meaning that it now bears in Timor. In Celebes a mother after childbirth was pamali. Amongst the Dyaks of Borneo the pamali (called by the Land Dyaks porikh) is regularly practised at the planting of rice, harvest home, when the cry of the gazelle is heard behind, in times of sickness, after a death, \&cc. At the harvest home it is observed by the whole tribe, no one being allowed to enter or leave the village. The house where a death has taken place is pamali for twelve days, during which no one may enter it and nothing may be taken out of it. A tabooed Dyak may not bathe, meddle with fire, follow his ordinary occupation, or leave his house. Certain familiesare forbidden to eat the flesh of particular animals, as cattle, goats, and snakes. The taboo is often indicated by a bundle of spears or a rattan. The Motu of New Guinea also have the taboo: a man is tabuoed after handling a corpse. He then keeps apart from his wife; his food is cooked for him by his sister; and he may not touch it with his hands. After three days he bathes and is free. ${ }^{2}$ But the Motu appear to be Malayo-Polynesians, not Melanesians proper.
Howerer, in Melanesia also we find the Howerer, in Melanesia also we find the taboo. It flour-

[^6]ished in Fiji. It is observed in New Caledonia in cases of death, to preserve a crop, \&c. According to the liev. R. H. Codrington, there is this distinction between the Melanesin: and the Polynesian taboo, that for the former there is no supernatural sanction: the man who ireaks a taboo simply pays compensatiou to the person on whose tabooed property he has transgressed. But Mr R. Parki:ison states that in New Britain (now New Pomerania) a person who violates a taboo-mark set on a plantation, tree, \&c., is supposed to be "attacked by sickness and misfortune." To go through the similar customs ohserved by savages all over the world would be endless; we may, however, note that a regular system of taboo is said to exist among some of the wild tribes of the Naga Hills in India, ${ }^{3}$ and that the rules not to touch food with the bands or the head with the hands are observed by tabooed women among one of the Fraser Lake tribes in North America. ${ }^{4}$ In fact some of the most characteristic features of taboo-the prohibition to eat certain foods aud the disabilities entailed by childbirth and by contact with the dcad, together with a variety of reremonies for removing these disabilitieshave been found more or less amongst all primitive races. It is more interesting to mark the traces of such customs among civilized peoples, e.g., Jews, Grecks, and Romans.

Amongst the Jews-(1) the vow of the Nazarite (Num. vi. 1-21) presents the closest resemblance to the Polynesian taboo. The meaning of the word Nazarite is "one separated or consecrated," and this, as vo saw (p. I5), is precisely the meaning of taboo. It is the head of the Nazarite that is especially consecrated (v. 7, "his separation unto God is upon his head "; v. 9, "defile the head of his separation"; v. 11, "shall hallow his head"), and so it was in the taboo. The Nazarite might not partake of certain meats and drinks, nor shave his head, nor touch a dead body,-all rules of taboo. If a person died suddenly beside him, this was said to "defile the head of his separation," and the same effect, expressed in the same language, would apply to a taboocd Polynesian in similar circumstances. Again, the mode of terminating the row of the Nazarite corresponds with the mode of breaking a taboo. He shaved his head at the door of the sanctuary and the priest placed food in his hands, either of which acts would have been a flagrant violation of a Polynesian taboo. (2) Some of the rules for the observance of the Sablath are identical with rules of strict taboo; such are the prohibitions to do any work, to kindle a fire in the house, to cook food, and to go out of doors (Exod. xxxv. 2, 3 ; xvi. 23, 29). The Essenes strictly observed the rules to cook no food and light no fire on the Sabbath (Josephus, Bell. Jud., ii. 8, 9). (3) Any one who touched a dead body was "unclean" for seven days; What he touched became unclean, and could communicate its uncleanness to any other person who touched it. At the end of seven days the unclean person washed his clothes, bathed himself, and was clean (Num. xix. II, I4, 19, 22). In Polynesia, as we have seen, any one who touched a Nead body was taboo; what he touched became taboo, and oould communicate the infection to any one who touched it; and one of the ceremonies for getting rid of the taboo was washing. (4) A Jewish mother after childbirth was unclean (Lev. xii.); a Polynesian mother was taboo. (5) A great many animals were unclean, and could infect with their uncleanness whatever they touched; earthen ressels touched by certain of them were broken. Certain animals were taboo in Polynesia, and utensils which had contracted a taint of taboo were in some cases broken.

Amongst the Greeks a survival, or at least a reminiscence, of a system of taboo is perhaps to wo found in certain applications of the epithets "sacred" and "di-ine" in

[^7]Homer. Thus a king or a chief is sacred (iєp η is TY λ_{ϵ}
 Oll., vii. 167, viii. 2, むc.) or divine (©ios 'Osvaбcús, dec.;
 691); ris chariot is sacred (Il., rvii, 464), and his house is divine (Od., iv. 43). An army is sacred (Od., xxiv. 81), and so are sentinels on duty (Il., x. 56 ; xxiv. 681). This resembles the war-taboo of the Polynesians; on a warlike expedition all Maori warriors are taboo, and the permanent personal taboo of tho chiefs is increased twofold: they are "tabooed an inch thici." The Jews also seem to have had a war-taboo, for when out on the war-path they abstained from women (l Sam. xxi. 4, 5), -a rule strictly observed by Maori warriors on a dangerous expedition. The Dards, who with the kindred Siah Posh Kâfirs on the sonthern slopes of the Hindu Kush-tribes which probably of all Aryan peoples retain a social state most nearly approximating to that of the promitive Aryans-abstain from sexual intcrcourse during the whole of the fighting season, from May to September; and "victory to the clastest" is said to be a maxim of all the fighting tribes from the Hindu Kush to Albania. ${ }^{1}$ The same rule of continence in war is obscrved by some 1ndian tribes of North America. ${ }^{2}$ In Homer a fish is sacred (Il., xvi. 407), and Plato points out that during a campaign the Homeric warriors never ate fish (Rep., $40 \pm$ B). Even in time of peace the men of Homer's day only ate fish when reduced to the verge of starvation (Ocl., iv. 363 sq. ; xii. 3 ? ? sq.). The Siah Posh Kâfirs refuse to eat fish, although their rivers abound in it. ${ }^{3}$ The Hindus of Yedic times appear not to have eaten fish. ${ }^{4}$ It is probable, therefore, that among the early Aryans, as anong primitive peoples in various parts of the world, the eating of fish was tabooed. Again, the threshing-floor, the winnowing-fan, and meal are all sacred (Il., ₹. 499 ; H. Merc., 21, 63 ; Il., xi. 631). Similarly in New Zealand a taboo was cominonly laid on places where farming operations were going on; and among the Basutos, before the corn on the threshing-floor can be touched, a religious ceremony has to be performed, and all "defiled" persons are carefully kept from seeing it. ${ }^{5}$ Although the Homeric folk ate swine, the epithet "divine" commonly applied to a swineleerd in Homer may point to a time when pigs were sacred or tabooed. In Crete pigs were certainly sacred and not eaten (Athenæus, $376 a$), and apparently at Pessinus also (Pansanias, vii. 17, 10). Amongst the Jews and Syrians, of course, pigs were tabooed; and it was a moot question with the Greeks whether the Jews abhorred or worshipped pigs (Plut., Qucest. Conv., iv. 5). The pigs kept in the great temple at Hierapolis were neither sacrificed nor eaten; some people thought that they were sacred, others that they were unclean, évay'as (Lucian, De Dca Syria, 54). Here we lave an exact taboo, the ideas of sacreduess and uncleanness being indistinguishable. Similarly by the Ojibways the dog is regarded as "unclean and yet as in some respects holy." ${ }^{0}$ The divergence of the two conceptions is illustrated by the history of the cow among different branches of the Aryan race: the Hindus regard this animal as sacred; the Shin caste among the Dards hold it in abhorrence. ${ }^{7}$ The general word for taboo in Greek is äyos, which occurs in the sense both of "sacredness" and of "pollution"; and the same is true of the adjective $\ddot{a}^{\circ} \gamma \cos$ and of the rare adjective

[^8]ảvayท́s, "tabooed" (Bekker's Ancedota Graca, 212, 32 ; Harpocration, s.v. ávayeis). Usually, however, the Greeks discriminated the two senses, a ayoós being devoted to the sense of "sacred" and $\begin{gathered}\text { evarts } \\ \text { to that of "uncleau" or }\end{gathered}$ "accursed." "To taboo" is $\dot{\alpha} \gamma i\} \epsilon \iota v$; "to observe a taboo",
 or ajıбтcia. The rules of the Greek ajvcía correspond closely to those of the Polynesian taboo, consisting in "purifications, washings, and sprinklings, and in abstaining from mourning for the dead, child-bed, and all pollutions, and in refraining from certain foods," \&c. ${ }^{8}$

Amongst the Romans, who preserved mare traces of primitive barbarism than the Greeks, the flamen dialis was hedged in by a perfect network of taboos. Ho was not sllowed to ride or even touch a horse, nor to look at an army under arms, nor to wear a ring which was not brolien, nor to Lave a knot on any part of his garnients ; no fire, except a sacred fire, could be taken out of his louse; he might not touch or evelu name a goat, a dog, raw meat, beans, and ivy ; he might not walk under a vine; the fect of his bed had to be daubed with mud; his lair could be cut only by a freeman, and his hair and nails when cut had to be buried under a lucky tree; he might not touch a corpse, \&c. His wife, the flaminica, was also subject to taboos :" at certain festivals she might not coinb her hair; if she heard thunder, she was taboo (feriuta) till she had offered an expiatory sacrifice. The similarity of some of these rules to the Polynesian taboo is obvious. The Roman ferie were periods of taboo; no work might be done during them except works of necessity: e.g., an ox might be pulled out of a pit or a tottering roof supported. Any person who mentioned Salus, Scmonia, Seia, Segetia, or Tutilina was tabooed (ferias observabat). ${ }^{9}$ The Latin sacer is exactly "taboo"; for it means either "sacred" or "accursed."
Literaturc.-On the Polynesian taboo, see Cook, Voyages, vol. v. p. 427 sq., vol. vii. p. 146 sq. (ed. 1809); G. F. Angas, Savage Scenes in Australia and New Zealand, passim; 1V. Yate, Acw Zealaud, p . 84 sq . Ellis, Polynesian Rasearches, 2d ed., vol. iv. p. 385 sq .; Langsdorff, Reise mm die Welt, i. p. 114 sq.; Mariner, Tongre Islands, i. p. 141 note, ii. pp. 82, 220 sq.; Turncr, Ninctecn Years in Polynesia, p. 294 sq. ; Id., Samoa, p. 185 sq.; Klemm, Culturgeschichte, iv. 1. 372 sq. ; Waitz-Gerland, Authropologie der NaturFolker, พi. pp. 343.363 ; Shortland, Trallitions and Superstitions of the New Zcalanders, p. 101 sq.; Id., Maori Religion and MIythology, p. 25 sq.; Old New Zealand, by a Pakeha Maori, cbapters vii. -xii.; Polack, Mrenners and Customs of the New Zenlanders, i. p. 275 sq.; Dieffenbach, Travels in Nero Zealand, ii. p. 100 sq.; R. Taylor, Nero Zealand, p. 163 sq. On the taboo in Micronesia, see Waitz-Gerland, op. cit., ₹. pt. ii. p. 147 sq. ; among the Dy*ks and Malays, see Id., vi. p. 354 sq.; Low, Saravak;, pl. 260-262; Bock, Head-Hunters of Bornco, pp. 214-230; Spencer St John, Life in the Forests of ths Far East, i. p. 184 sq.; A. R. Wallace, The Malay Archipelago, p. 196; in Melanesia, Williams, Fiji and the Fijians, i. p. 234 sq. (ed. 1860); J. E. Erskine, The Western Pacific, p. 254; VinceudonDunoulin and Desgraz, Ales Marquises, p. 259 sq. ; Journ. Anthrop. Insl., x. pp. 279,290 ; Ch. Lemire, Nouvclle Calédonic, Paris, 1894, p. 117 : R. Parkinson, Im Bismarck-Archipel, Leipsic, 1887, p. 144.
(J. G. FR.)

TABRIZ, Tatris, or TAvriz, a town of Persia, capital of the province of Adarbaijin (Azerbijan, ancient Atropatene), is situated in $38^{\circ} 4^{\prime} \mathrm{N}$. lat. and $46^{\circ} 18^{\prime}$ E. long., more than 4000 feet above the sea, at the eastern end of a wide valley, through which runs a river whose waters irrigate the gardens that encircle the town. In 1812 the walls had a circumference of $3 \frac{1}{4}$ miles. Overlooking the valley on the northeast and east ar bold bare rocks, while to the south rises the more regular peak of Sahand. The town possesses fow buildings of note, and of the extensive ruins but few merit attention. Mounsey in 1866 mentioned the blue mosque; the ark or citadel, containing the palace of the heir-apparent,-a large frowning building near the centre of the town; the Great Maidan, an open square;

[^9]and the bazaars. The mosque, which he ascribes to Stan Abbas, is that of the Turcoman Jahan Shah (1410-1468). Abbas Mirza conserted the citadel into an arsenal. Among the ruins of old Tauris the sepulchre of the Mogul sultan, Ghazan Khán, is no longer to be distinguished, except as part of a huge tumulus. It is situated about 2 miles south-west from the modern town, bat far within the original boundaries. The "spacious arches of stone and other vestiges of departed majesty" with which Porter found it surrounded in 1818 were possibly remains of the college (madrasa) and monastery (zaviya) where Ibn Betuta found shelter during his visit to the locality. In spite of the cholera visitation of 1822 and other occasional ravages of sickness, and the severe cold of winter, the climate of Tabríz is proverbially healthy. Its orchards and fruit gardens have a high repptation, and its running streams make amends for ill-paved and narrovs streets and sorely defective municipal arrangements. General Schindler estimated the population in 1886 at about $170,000,-2$ number agreeing with the latest local census. The same authority states that the city contains 8 tombs of imánizádehs, 318 mosques, 100 public baths, 166 caravanserais, 3922 shops, 28 guard-honses, and 5 Christian (Armenian) churches; but this account must comprise in some of its items more buildings than are actually in use. There are said to be nearly 3000 Armenians in the place.
Tabriz is a city of estensive commorce, a great enporium for tho trade of Persia on the west, and the special mart between Turkey, Russia, and Persia. It possosses an international telegraph station, and the line passes hence to Tiffis and Europe on one side and to Teheran on the other. Subsidiary linos have been constructed to near Astara on tho Caspian (136 miles long) and to Saujbulak en the Kurdish frontier (125 miles long). Eastrwick in 1860 estimatéd the value of the cxports to Turkey at aboat $£ 600,000$ and to Russia at abont $£ 400,000$, exclusive of smuggling. The chief imports were British, and some Smiss-colonred cotton goods, grey calicoes, and broadcloth, -with miscellaneons हoods from Cermany. In 1881 there mas a marked improvement iu the trade of Tabriz, nainly in increased imports from Constantinople. In 1885 the imports amounted to $£ 721,730$ and the exports to $£ 306,687$. The principal items of the former were cottons from England), woollen cloth (from Austria and Germany), sugar (from France), and tea (from Holland) ; of the later dried fivits (to Russia) snd silk (to France, Anstria, and Switzerland). Thero are lead mines near Tabriz, and cobalt and copper are obtainable from the Sahand.
There is perlaps no city in Persia on which so much bas been recorded by native and foreign writers as Tabriz. Among the former Ibn Batuta, the Arab, and Hamd Ullah, the Persian, are notable. Of the latter may be mentloned Chardin, Porter, Ouseley, Tancoirne, Moricr, Du Pré, Malcolm, Lady Sheil, Eastwick, Mounsey, Schindler, and Madame Dieulafoy (in Tour du Monde, 1833). The name Tabria has been a subject of muck comment and conjecture, hat there is no doubt that it is taken from the ancient name of Tauris. The history of Tabriz is a long and painful record of sieges and conficts, of earthquakes and destruction by natural causes. Of late years it has recovered to some extent its former high position, and is in many respects a worthy rival to the capital.

TACITUS. The famous Roman historian Tacitus, who ranks beyond dispute in the highest place among men of letters of all ages, lived in the latter balf of the first and in the early part of the 2d century of our era, through the reigns of the emperors Nero, Galba, Otho, Vitellius, Vespasian, Titus, Donitian, Nerva, Trajan. All we know of his personal history is from allusions to himself in his own works, and from eleven letters addressed to him by lis rery intimate frieud the younger Pliny. The exact year of his birth is a matter of inference, but it may be approximately fixed near the close of the reign of Claudius, from 52 to 54 A.D. Pliny indeed speaks of Tacitus and himself as being "much of an age" ${ }^{1}$ (propemodum aquales), though himseif born in 61 or 62 , but lic must have been some years junior to his frie ad, who hegan, he tells us, ${ }^{2}$ his official life with a ques torship under Vespasian in i8 or 79 , at which tine he must have
been twenty-five jears of age at least. Of his family and birthplace we know nothing certain; we can infer nothing from his name Cornelius, which was then very widely extended; but the fact of his early promotion seens to point to respectable antecedents, and it may be that his father was one Cornelius Tacitus, who had been a procurator in one of the divisions of Gaul, to whom allusion is made by the elder Pliny in his Natural Itistory (vii. 76). But it is all matter of pure conjecture, as it also is whether his "prenomen" was Publius or Cains. He has come down to us simply as Cornelius Tacitus. The most interesting facts about him to us are that he was an eminent pleader at the Roman bar, that he was an eye: witness of the "reign of terror" during the last three years of Domitian, and that he was the son-in-law of the great and good Julius Agricola, the humane and enlightened governor of Britain. This honourable connexion, which testifies to his high moral character, may very possibly hare accelerated his promotion, which he says ${ }^{3}$ was begun by Vespasian, augmented by Titus, and still further advanced by Domitian, under whom we find him presiding as prextor at the ceieoration of the secular games in 88 , and a member of one of the old priestly colleges, to which good family was an almost indispensable passport. Next year, it seems, he left Rome, and was absent till 93 on some provincial business, and it is possible that in these four years he may have mado the acquaintance of German'y and its peoples. His father-in-law died the year of his rcturn to Fome. In the concluding passage of his Life of Agricola he tells us plainly that he witnessed the judicial murders of many of Rome's best citizens from 93 to 96 , and that being himself a senator he felt almost a guilty complicity in them. "Our hands," he says," dragged Helvidius to prison; we were steeped in Senecio's innocent blood." ${ }^{4}$ With the emperor Nerva's accession his life became bright and prosperous, and so it continued through the reign of Nerva's successor, Trajan, he himself, in the opening passage of his Agricola, describirg this as a "singularly blessed time" (bratissimum seculum); but the bideous reign of terror had stamped itself ineffaceably on his soul, and when he sat down to write his History he could see little but the darkest side of imperialism. To his friend the younger Pliny we are indebted for all we know (and this is but trifing) about his later life. He was adranced to the consulship in 97 , in succession to a highly distinguished man, Virginius Rufus, on whom he delivered in the senate a funeral eulogy. "The good fortune of Virginius," says Pliny, " "was crowned by having the most eloquent of panegyrists." In 99 he was associated with Pliny in the prosecution of a great political offender, Marius Priscus, under whon the provincials of Africa had suffered grievous wrongs. The prosecntion was successful, and we have Pliny's testimony ${ }^{6}$ that Tacitus spoke with his characteristic dignity. Both received a special vote of thanks from the senate for their conduct of the case. Of his remaining years we know nothing, and we may presume that lie devoted them exclusively to literary work. It would seem that ho lived to the close of Trajan's reign, as he seems ${ }^{7}$ to hint at that emperor's extensiou of the empire by his successful Eastern campaigns from 115 to 117. Whether he outlived Trajan is matter of conjecture. It is worth noticing that the emperor Tacitus in the 3 d century claimed descent from him, and directed that ten copies of his works should be made every year and deposited in the public libraries. He also had a tomb built to his memory, which was destroyed by order of Pope Pius V. in the latter part of the 16th century. Tacitus, as we gather from one of Pliny's letters, ${ }^{8}$

had a great reputation during his lifetime. On one occasion a Roman knight, who sat by his side in the circus at the celebration of some games, asked him, "Are you from Italy or from the provinces?" His answer was, "Yon know me from your reading." To which the knight replied, "Are you then Tacitus or Pliny?"

Pliny, as we see clearly from several passages in his letters, had the highost opinion of his friend's ability and worth. He consults him about a schonl which he thinks of cstablishing at Comum (Como), his birthplace, and asks him to look out for suitable teachers and professors. And he pays ${ }^{1}$ him the ligh compliment, "I know that your IFistories will be immortal, and this makes me the more anxious that my name should appear in them."
The following is a list of Tacitus's remaining works, arranged in their probable chronological order, which may be approximately inferred from internal evidence:-(1) tho Diclogue on Orutors, about 76 or 77 ; (2) the Life of Agricolu, 97 or 98 ; (3) the Germany, 98, published probably in 99 ; (4) the Mistories (IIistorix), completed probally by 115 or 116 , the last years of Trajan's reign (be must have been at work on them for many years) ; (5) the Annals, his latest work probably, written in part perhaps along with the Histories, and completed subsequently to Trajan's reign, which he may very well have outlived.

The Dialogie on Orators cliscusses, su the form of a conversation which Tacitus professes to have hard (as a young man) between some eminent men at the Roman har, the canses of the decay of eloquonce under the empice. There aro some interesting remarks in it on the clange for that worso that had taken place in the education of Roman lails.
Tho Life of Agricola, short as it is, has always been considered an almirahle specimen of Liography. The grent man with all his grace and ilignity is hronght vivilly before us, and the sketch we have of the history of our island nuter the Ronans gives a special interest to this little work.
The Gernan", the full title of which is "Coucerning the geograply, the hanners and customs, and the tribes of Germany," deserihes with many suggestive hints tho general character of tho German proples, ami dwells partieularly on their fierco and indepeudent spinit, which the author evidently felt to bo a stapting menace to the cmpire. The geography is its weak poiut; this was no iloubt gathered from vacuo licarsay.
The IIistorics, as originally composal in twelve books, brouglit the history of the cmpire from Gablua in 69 down to the close of Domitian's rien in 97. The first four books, and a suall frayment of the fifth, giving us a very minute accomet of the cyentful year of revolution, 69, aud the brief reigns of Galba, Otho, and Vitellius, are all that remain to us. ln the fragment of the fifth book we have a, curious and interesting account of the Jewish uation, of their character, ellstoms, aud religion, from a cultivatel Roman's point of vicw, which we seo at once was a strongly prejudiced one.
Tho Annals-a title for which there is no ancient authority, nnd which there is no reason for supposing Tacitus gave distinctively to the work-record the history of the cimperors of the Julian liue from Tiberius to Nero, comprising thus a period from 14 A.D. to 68. Of these, nine books hare come down to us eutire ; of book จ., xi., and svi. we have but fragments, aud the whole of the seign of Cains (Caligula), the first sir years of Clandins, and the last three years of Nero are wanting. Out of a periol of fifty-four ycars we thus have the history of forty years.
An attempt has becn mado recently to prove that the Annels are a forgery ly Poggio Braeciolini, an linalian scholar of the 15 th century, but their genuiueness is confirmed by their agreement ? in various minute details with coins and inscriptions discorered since that period. Another important fact has heen brought to light. Ruodolphas, a monk of a monastery at Fulda iu HesseCassel, writing in the 9th century, says that Cornelius Tacitus speaks of the river known to moderns as the Weser as the Visurgis. In the Annals as they have come down to us we find the Visurgis mentioned five times in the first two books, whence we may canclude that a manuscript of theur was in existence in the 9th centrry. Add to this the testimony of Jerome that Tacitus wrote in thirty books the lives of the Cæsars, and the evideare of style, and there cannot be nuch doubt that in the Annals wo have a geuvine work of Tacitus.

${ }^{1}$ Epp., vii. 33.

${ }^{2}$ Sco Introduction to vul. i. of Furneaux's elition of the Amanls of Tucitus, Clarendon Presa Series, 1884

Much of the history of the periol described by him, cspecially of the carlier Cresary, must havo becu obscure and locked up with the cmperor's privite papers and memoranda. As we should expect, thero was a vast amonut of floating gossip, which an historian woukd have to sift and utilizo as best he might. Tacitus, as a man of good sucial losition, no doubt had access to tho beet information, aud must have talked matters over with the most elaiucut men of the day. There wore several witers and chrouiclers, whom he occasionally cites but not very often; thero were memoirs of distinguishod lutsous,-thase, for example of the younger Acrippina, of Thbasea, and ITelvidins. There were several collectious of letters, like those of the younger Pliny; a number, too, of funeral oratious; nud tho "acta senatus" and the "acta populi " or "acta cliurna," the lirst a record of procecdings in the scmate, the latter a kind of gazette or journal. Thus there were the materials for history in considerable abundance, and Tacitus Was certainly a man who knew how to turn then to good account. He las given us a striking, and ou the wholo doubtless a true, picture of the cmpire in the 1st contury. Ilo wrote, it may be admitted, with a political bias and a decided turn for satire, but he assurclly wrote with a high aim, and we may nccept his own account of it: "I regarul ${ }^{3}$ it as history's highest function to rescme merit from oblivion, and to hold up as a terror to lase words and actions the rejrobation of posterity." Amid great cvils he recognized the existenco of truly uoble virtues cven in his own derenerate age. Still for tho most part he writes as a mau who felt deeply that the world was altogether "out of joint"; the empiro was iu itself in his viow a huge hunder, aud answerable mote or less directly for all the discases of society, for all the demoralization und corruption of the great word of lome, thongh as to the provinces lie adnits that they wero better off in many ways under the curperors than they hal been in the last days of the repuhlic. lut his political sympathics wero certainly with the old aristocratic and scmatorinu rérime, with the Rome of the Scipics and the Fabii ; for hin the gregtness of his comntry lay in the past, and, thongll he felt hur to be still great, her glory was, ho thonght, decidedly on the wane. Ho was, in fact, a political ideatist, ont conld hardly help spuaking disparagingly of his own day. In his Germeney he dwells ou the contrast betwecu barbarian freedom aud sinnlicity ou the one hand and tho servility and degeneracy of liman life on the other. Yet he hat a strong oud sincero patriotism, which invarially made him minimizo a Roman defent and the umber of lioman slain. There scous to have been a strange tingc, too, of superstitiou abont him, and he could unt divest limself of some belief ${ }^{4}$ in astrology and revelations of the future through oucns and portents, though he held theso wero often misumderstood and misinterpreted by charlatans and innpostors. On the wholo ho appears to have inclined to the philosophical theory of "nccessitarianism," that every man's future is fixel from his birth; but we must not fasten ou him any farticular theory of the would or of the miverse. Sometimes he speaks as a believer in a clivine overuling I'rovidence, and we may say coufidently that with the Epicurean doctrine ho hat no sort of sympathy.
llis style, whatever julgment may be passel on it, is certainly that of a man of genius, and cannot fail to make a deep impression on the studions reader: Tacitean brevity has become proverbial, and with this aro closely allicd an occasional obscurity aud a rhetorical affectation which lis warmest almirers must almit. He has been compared to Calyle, and there are certainly resenublances between the two both in style and tone of thonght. Both affect singularity of expression; both incline to an unhopeful and cynical viev of the worll. Tacitus was probably never a popular anthor; to be understool and appreciated he must be read agaiu and again, or the poiut of some of his acntest remarks will be quite missal. He has been several times translated, but it has always beeu felt that he preseuts rery great, if not insuperable, difficulties to the translator.
Murphy's franslation (a paraphrase we ahouil cell It) is perhaps one of the best known; jt was publishicd early in the present century. On this was based the so-called Oaford translation, published by Bohn in a revised edilion. Tha latest translation is that by Messrs Church and Brodribb. There is on the whole a good French translation by Lollandre. The edllions of Tacitus are very nums. crous. Among more recent editions, the best and mat usefal are Orellits (1859); R1ter's (1864); Nipperdey's (1979); Furneaux's (Annals, 1.-vl.), vol. I., Clarendon Press, 1584.
(W. J. E.)

TACITUS, M. Claudius, Roman emperor from September 25, 275, to April 276, was a native of Interamna (Terni) in Umbria, and was born about the year 200. In the course of his long life he discharged the duties of various civil offices, including that of consul in 273 , with universal respect. Six months after the assassination of Aurelian he was chosen by the senate to succeed him, and the choice was cordially ratified by the army. During his brief reign he set on foot some domestic reforms, and
sought to revive the authority of the senate, but, after a victory over the Alani near the Palus Mrotis, he succumbed to the hardships and fatigues of his new duties at Tyana In Cappadocia. Tacitus, besides being a man of immense wealth (which he bequeathed to the state), had considerable literary culture, and was proud to claim descent from the bistorian, whose works he caused to be transcribed at the public expense and placed in the public libraries.

TACtICS. See War.

tadmor. See Palmyra.
TAFILELT, a large oasis in Morocco (see vol. xvi. p. 832). The principal place is Abuam.

TAGANROG, a seaport of southern Russia, on the northern shore of the Sea of Azoff, in the government of Ekaterinoslaff, and nearly 200 miles south-east of its chief town. It is built, principally of wood, on a low cape, and, with its extensive store-houses, exchange, and wholesalo shops, has the aspect of an important commercial city. It is well provided with educational institutions for children, and has a library and a theatre. The imperial palace, where Alexander I. died in 1825, and the Greek monastery (under the patriarch of Jerusalem) are worthy of notice. The advantageous situation of Taganrog was well known as early as the 13th century, when Pisan merchants founded there a colony, Portus Pisanus, which, however, was destined soon to disappear during the great migrations of the Mongols and Turks. An attempt to obtain possessiou of the promontory was made by Peter I., but it was not definitely annexed by the Russians until seventy years aftervards (IT69). Its commercial importance dates from the second half of the present century; in 1870 its population had riscn to 38,000 , and after it had been brought into railway connexion with Kharkoff and Voronezh, and thus with the fertile provinces of south and south-east Russia, the increase was still more rapid, the number reaching 63,025 in 1882;-Greeks, Jews, Armenians, and West-Europeans being important elements. Notwithstanding the disadvantages of its open roadstead, the foreign trade of Taganrog rapidly expanded, the annual value of the exports having recently reached $£ 2,500,000$. The chief article of export being corn, the trade of the city, depending on the crops in south Russia, is subject to great fuctuations. Linseed and other oil-bearing grains are also important articles of commerce, as well as tallow and butter. The imports, which consist chiefly of fruits (dried and fresh), wine, oil, and coffee, are much smaller than the exports; and of the 989 ships (499,500 tons) that entered the port in 1885 no fewer than 775 (446,500 tons) were in ballast. The coasting trade, chiefly with Rostoff, was represented in the same year by 1321 vessels (224,000 tons) entering and 1343 vessels clearing.
Tha roadstead of Taganrog is very shallow, and exposed to winds which cause great variations in the height of the water; it is, more. over, rapidly ailting up. At the quay the depth of water is only 8 So 9 fect, and large ships have to lie 5 to 13 miles from the town.
Taganrog, with the surrounding territory of 137,000 acres, having a population of nearly 30 , 000, living in a dozen villages, constitutes a a eparate township, and, though reckoned to the Rostoff district of Ekaterinoslaff, has a separate governor and administration.

TAGLIACOZZI, Gasparo (1546-1599), a surgeon of wide repute, was born at Bologna in 1546, and studied at that university under Cardan, taking his degree in philosophy and medicine at the age of twenty-four. He was appointed professor of surgery and afterwards of anatomy, and achieved notoriety at least, and the fame of 3 wonderworker - Ye died at Bologna on November 7, 1599.
His principal work is entitled De Curturum Chirurgia per Insitionem Libri Duo (Venice, 1597, fol.); it was reprinted in the following year under the title of Chirurgia Noua de Narium, Aurium, Labiorumque Defectu per Insitionem Cutis ex Humero, arte hactenus omnibus ignsta, sarciendo (F-arkfort, 1598, 8vo).

The latter title sufficiently indicates the art which he professed of repairing nosa, ears, and lips by a apeciea of ingrafting of akin from the arm, that member being kept in apposition with the part to be repaired until auch time as the semi-detached graft had formed ita new vascular connexions. His Latinized name of Taliacotius is well known to the readers of Butler (Hudibras, i. 1), whose ham. orous representation of the nature of the Taliacotian art is, however, in some important particulars inaccurate.

TAGLIONI, Marie (1809-1884), a ballet dancer, was the daughter of Filippo Taglioni, an Italian master of the ballet, and was born at Stockholm 23d April 1809. She was trained by her father, who in his discipline is said to have been pitilessly severe. It was to his care and her own special talent for dancing that she owed her success, for she possessed no remarkable personal attractions. Her first appearance was at Vienna, loth June 1822, in a ballet of which her father was the author, La Récuption d'une jeune nymphe à la cour de Terpsichore. Her success was immediate, and was repeated in the chief towns of Germany. On 23d July 1827 she made her debut at the Opera House, Paris in the Ballet de Sicilien, and aroused a furore of enthusiaem. Her style was entirely new, and may be termed ideal as opposed to the realistic and voluptuous ballet previously in vogue. Among her more remarkable performances were the dancing of the Tyrolienne in Guillaume Tell and of the pas de fascination in Meyerbeer's Robert le Diable. At this period the ballet was a much more important feature in opera than it is now, and in fact with her retirement in 1845 the era of grand ballets may be said to have closed. In 1832 she married Comte Gilbert de Voisins, by whom she had two children. Losing her savings in speculation, she afterwards supported herself in London as a beacher of deportment, especially in connexion with the ceremony of presentation at court. During the last two years of her lifo she stayed with her son at Marseilles, where she died in April 1884. Taglioni is frequently mentioned in the novels of Balzac; and Thackeray, in The Newcomes, says that the young men of that epoch "will never see anvthing so gracefulas Taglioni in La Sylphide."

TAGUS (Span. Tajo, Portug. Tejo), the longest riser of the Iberian Peninsula. Its length is 566 miles, of which 192 are on or within the frontier of Portugal, and the area of its basin, according to Strelbitsky, is 31,864 square miles. The basin is comparatively narrow, and the Tagus, like the other rivers of the Iberian tableland, generally flows in a rather confined valley, often at the bottom of a rocky g.rge at a considerable depth below the general level of the adjacent country. The source of the river is at the beight of 5225 feet above sea-level, on the western slope of the Muela de San Juan, in the south-west of the province of Teruel. Thence it flows at first northwestwards, but, after receiving the Rio Gallo on the right, it flows west, and then south-west or west-south-west, which is its general direction for the rest of its course. The rocky gorges which occur in its course (the principal being where the river is overhung on the right bank by the ancient city of Toledo, and again at the Puente del Arzobispo, near the frontier of Estremadura) all belong to the Spanish section of the river, and in this section the stream is frequently encumbered by sandy shallows or broken by rocky rapids, and is not navigable except for short distances. The Portuguese section has a quieter current, and Villavelha, the highest point to which boats cali ascend, lies within the Portuguese froatier. Regular river-navigation begins only at Abrantes, a few miles below which the Tagus is greatly widened by receiving on its right bank the impetuous Zezere from the Serra da Estrelha. Passing Santarem, the highest point to which the tide ascends, and the limit of navigation for large sailing vessels and steamers. the river divides below Salvaterra into two
arms, called the Tejo Noro (the only ono practicable for ships) and the Mar de l'edro, and these arnis enclose a deltaic formation, a low tract of marshy alluvium known as the Lezirias, traversed by several uatural canals or minor branches of the river. Both these arms enter the upper end of the fine Bay of Lisbou ($11 \frac{1}{2}$ miles long by about 7 broad), and the Tagus leaves this bay in the form of a channel $4 \frac{1}{2}$ miles long by 2 wide (see vol. xiv. p. 692), communizating with the outan, but having uufortunately a bar at its mouth. On the north side of this channel stands the city of Lisbon. Only slight traces are still to be found of the gold for which the sands of the Tagus were anciently celcbrated.
The narrower part of the Tagus basin lying to the south, the tributaries on the left bank are alnost all mere brooks, most of which dry up in summer. The principal exception is the Rio Zatas or Sorraya, which, rising in the Serra d'Ossa, flows westwards across the plateau of Alerutejo, and joins the Mar de Pedro. The principal tributarics on the right bank, besides the Zezere, are the Jarama, descendiug from the tableland of New Castile a little below Aranjuez, the Alberche and the Tietar, which eollect their head waters from opposite sides of the Sierra lo Gredos, and the Alagon, from the rough and broken sountry between the Sierras de Gredos and Gata.
THHITI ARCIITPELAGO. The eastern Polynesian asland-group generally knoiva as the Society Islands (Isles de lab Suciété, or Tcuili) lies betweon 16° and $18^{\circ} \mathrm{S}$. lat. and 148° and $155^{\circ} \mathrm{W}$. long, and stretches for nearly 200 miles in a worth-west and south-east direction; the total area does not exceed 650 square milos, of which 600 fall to Tahitialone. To the east and north-east a channel of only 140 miles in breadth, but over 2000 fathoms in depth, eparates this group froin the great chain of the Low Islands, beyond which the ocean extends unbroken to America. To the west as far as Fiji-the main islands of which group lio between the same degrecs of latitude as those of Tahitithere are 1500 miles of open water. About 300 miles southwest lies C'ook's Archipelago, and at the same distance south are the Austral Islands. To the north, excepting a few coral banks, there is open sea to Hawaii, a distance of 2600 miles.

Tahiti occupies a central position in the Tacific. Sydney lies about 3400 miles to the west and Sau Francisco about as far to the north-north-east. Honolulu, Nounea, and Auckland are each somewhere about 2400 miles away; Panama is at a distance of 4600 miles.

The archipelago consists of eleven islands, which are divided into two clusters-the Leerand and the Windward Islands-by a clear channel of 60 miles in breadth. The Leeward Islands, to which alone the name of Society Islands mas given by Cook, are Tubai or MIotu-iti, a small uninhabited lagoon island, the most northern of the whole archipelago ; Maupiti or Mau-rua-" Doublo Mountain," the most western; Bora-bora (Bola-Bola of the older navigators), or Fáarui ; Tabas; Raiatea or Ulietea (Boenshea's Princessa), the largest island of this cluster, and Hnabine, which approacb each other very closely, and are eacircled by one reef. To the Windward Islands, the Georgian Islands of the carly missionaries, belong Maiaiti or Tapamanu (Wallis's Sir Charles Saunders Island and Boenshea's Pelada) : Mlorea or Eimeo (Wallis's Duke of York Island and Bosnshea's San Domingo); Tahiti-Cook's Otaheiti (probably Quiros's Sagittaria; Wallis's King George's Island, Bougainville's Nouvelle Cythère, and Boenshea's Isla d'Amat), tho most southern and by far the largest of all tue islands; Tetuara or Tetiaroa-"The Distant Sea" (?Quiros's Fugitiva; Bougainville's Umaitia and Boenshea's Tres Hernanos); and Matia or Naitea (ßQuiros's La Dezaua, Wallis's Osnaburg Island, Bougain-
villo's Boudoir and Pic de la Bnudense, and Boenshea's San Cristoval), which is by a degree the most eastern of the archipelago. Bellinghausen, Scilly, and lord llowe (Mopia) are three insignificant clusters of coral islets to the northwest and west, and, like Tubai and Tetuara, are atolls. The leugth of the 'Cetuara recf ring is about six miles; it bears ten palm-covered islets, of which scveral are in habited, and has one narrow boat-passage leading into the lagoon. With the exception just named, the islands, which agree very closely in geological structure, aro mountainous, and present perhaps the most wonderful example of volcanic rocks to be found on the globe. They are formed of trachyte, dolerite, and basalt. There are raised coral beds high up the mountains, and lava occurs in a variety of forms, even in solid flows; but all active voleanic agency las so long ceased that the craters have been almost ontirely obliterated by denudation. Hot springs are unknown, and earthquakes are slight and rare. Nevertheless, under some of these ficers remains of plants and insects of species now living in the islands lave been found,-a proof that the fornation as well as the denudotion of the country is, geologically speaking, recent. Is profite the islands are rugged. A high mountain, usually with very steep peaks, forms the centre, if not the whale island; on all sides steep ridges descend to the sea, or, as is oftener the case, to a considerable belt of flat land. These mountains, excepting some stony crags and cliffs, are clothed with dense forest, the soil being exceptionally fertile. All voyagers agree that for varicd beauty of form and colour the Socicty Islands are unsurpasscd in the Pacific. Innumerable rills, fed by the fleeting cloudy which circle round the high lands, gather in lovely streans, and, after heavy rains, torrents precipitate themselves in grand cascades from the mountain cliffs-a feature so striking as to have attracted the attention of all voyagers, from TVallis downwards. Round most of the islands there is a luxuriant coral growth; but, as the reefs lie at no great distance, and follow the line of the coast, the interisland channels are safer than those of the neighbouring Tuamotus, which exhibit the atoll formation in perbaps its fullest derelopment, and in consequence lave been justly called the "Lou" or "Dangerous Archipelago." Maitea, which rises from the sea as an excecdingly abrupt cone, and Tapamanu appear to be the only islands which have not their fringing and more or less completely encircling barrier-reefs. ${ }^{1}$ The coasts are fairly indented, and, protected by these reefs, which often support a chain of green islets, afford many good harbours and safe anchorages. In this respect the Society Islands have the advantage of most of the Polynesian groups.

The island of Tahiti, in shape not unlike the figue 8, has a total length of 35 miles, a coast-line of 120 , and a super. ficial area of 600 square miles. It is divided into two distinct portions by a short isthmus (Isthmus de Taravao) less than a mile in width, and nowhere more than 50 feet above sea-level. The southern, the peninsula of Tairabu, or Tahiti-iti (Little Tahiti), alone as large as Raiatea (after Tahiti the most important island of the group), measures 12 miles in length by 6 miles in breadth; while the northern, the circular main island of Porionuu, or Tahiti-uni (Great Tahiti), has a length of 23 miles and a width of 20. The whole island is mountainous. A little to the north-west of the centre of Great Talitit the Society Islands attain their greatest altitude. There the doublepeaked Orohena rises to 7340 fcet, and Aorai, its rival, is only a few hundred feet lower. Little Taliti cannot boast of such mountains, but its tower-like peaks are very striking. The flat land of the Talitian coast, extending to a width of several miles-with jits chain of villages, its. ${ }^{1}$ Darwin, Structure of Coral Reefs, London, 1842
fertile gardens, and its belt of palms, sometimes intersected by stream-fed valleys which open on the sea-shore-forms a most pleasing foreground to the grand amphitheatre-like urountain ranges. A good road surrounds the entire island, which is divided into eighteen districts, each under a chief and a municipal council of which be is president. A railroad is in contemplation. By the last census the population of the entire island was 9194 , one-eighth being French and foreigners. The majority of the natives profess the Protestant religion. ${ }^{1}$

The extreme north of the island is formed by Point Venus, to the east of which lies the Bay of Matavai, and some miles still farther east Papeete, the European town and the seat of government. The besutiful harbour, of fair size and depth, is entered by two passages in the reef, Papcete to the north, 7 fathoms in depth, and Taunos to the east, the wider and noro couvenient, though Ghallower. The town, in 1881, had a population of 3224 , helf of whem were French or Frecch half-castes, but at least a dozen different nations were represented is the 800 whites. The little citr is decidedly French in character. "Papeeto is the emporium of trade for the products of the South Sea islands east of $160^{\circ} \mathrm{E}$. long. Small schooners of from 20 to 50 tons burden bring the produce of the rarions groups to Trahiti, whence they are shipped direct for Europe, either by Cape Horn or the Cape of Good Hope, according to the season of the year. These schoozers, of which about twenty fly the Tahitian flag, take back portions of the cargoes of vessels arriving from Europe for sale or barter amongst the islands. The chief exports are cocoa-puts, mother-of-peail, cotton, and some sugar, mainly to Eagland and Germany, rery little to Frasce; and, oranges, trepang (for China), and edible fungus to California." Many whalers formerly visited Papecte harbour, but for some years there has been a steady diminution in their number. In 1845 forty-eight called there, in 1860 five, and none in 1874. Commerce has also in other respects decreased. Three sugar-mill9 with distilleries attached, two cotton manufactories, and a manufactory of cocoa-nnt fibre were at work in
1886 . Oranges and vanilla are profitably 1886. Oranges and vanilla are profitably grown. The timber of the country is hardly nsed, great quantities of Californian pine
being imported.
Oxen and hogs are reared The being imported. Oxen and hogs are reared. The artificial culture of the pearl oyster is beginning to be discussed, but the pearls of the Society lisladd are not to be compared in number or quality to those of the Tuamotus. A good deal of trading in fruit, fibre, ehell, \&c., is carried on with the natives, but still mainly by barter. The corapetition of the Chidese immigrants, of whom in 1886 there were already 400 on Tahiti and Eimeo, is beginning to be keenly felt. The importation of "labour," chiefly for the plantations, from other Polynesian islands was placed under Government control in 1862. The Tahitians themselves prefer handicrafts to agricultural work, and many are employed as artisans ly European masters, Who find them as handy and industrious as their own constrymen, bnt fo: domestic service they show no aptitude. Papeete is in direct sailing communication with San Francisco, and with Sydney by a Governinent ateamer which calls every five months; also with France by Bordeaux steamers which touch on their way te Noumea. ${ }^{3}$
Climate-The seasons are not well defined. Damp is excessive; there is little variation in the weather, which, though hot, is nevertheless not depressing, and the climate for the tropics must be consilared remarkably healthy. The rainfall is largest between Deccrmber and April, b:t there is so much at other times of the jear also that these months hardly deeerve the name of the rainy ecason. Doring this period north-west winds are frequent, continuing at times for weeks, and there are thunderstorms and luurricanes, though they ara not nearly so destructive as in some of the neighbouring islands. During the eight drier and cooler nont ths south east winds (correspondiug with the trades) prevail, but there are southerly winds which bring rain, and even westerly breeres are not unfrequent. The mean temperature for the year is $77^{\circ} \mathrm{F}$; maximum 84°, minimum 69°. The average rainfall froin December to March' (4 months) is 29 inches; from April to November (8 months), 19 inches. The above observations apply
to the coast ouly to the coast ouly.
Fauna.-Neither the zoology nor the botery of the archipelago has been thoroughly investigated. Mammalians, as in other Polynesian iolands, are restricted to a ferv species of bats (mostly of the genus Pleropus), rats, and mice, none of them peculiar. of domestic animals, the pig and the dog-the former a small breed which quickly disappeared before the stronger European strainswere plontiful even in Wallis's days. The ornithology is very poor as compared with that of the Western Pacific; and, in marked

1 The best chart of Tahitl is that published by the French Government in 1876, and corrected down to 18s1. Morea is fiven on the same sheet.

2 Wallace, Australasia, London, 1884.

- For fuller atatlstlcs, see Notices Coloniales, Puls, 1896, rol. II.
contrast to the isolatcd Hawaiian archipelago, the Society Islands possess no reculiar genera and but few peculiar species. They clain, howcver, a thrnsh, several small parrots of great beauty, doves, pizeons, rails, and a sandpiper. Of this sandpiper, Tringa lencoptera, which, with many of the birds here mentioned, was discovered as far back as Cook's stay in the islands, only one specimen (now in the Leyden museum) is known to exist; and of the rest; their range being often limited to one portion of a small island, several species are (fl.rough the increase in the number of cats, \&c.) threatened with extermination. A jungle-fowl (rar. of Callus bankiva) is found in the mountains, but as donnesticated fowls were abundant, even wher Tahiti was frat discovered by Europeans, these rild birds are doubtless the offspring of tame hirds, probably -imported with the rigs and dogs by Malay vessels. There are no peculiar reptiles, and batrachians are entirely mauting. The lagoons 6 marm with fish of many species. Insects are poor in species, though some of them are indigenous. Crnstaceans and molluscs, on the other hand, aro well represented ; worms, echinoderms, and corals comparatively poorly. A Doteworthy feature of Tahitian conchology is the number of peculiar species belonging to the genus Partula, almost every valley being the habitat of a dis. tinct form. ${ }^{1}$

Flora. - This, theugh luxuriant, is not very rich. Like the zoology, it is much poorer than that of the more westers groups of the Pacific. Mew osideros, Melastoma, and Acacia are the only links which this typically Polynesian region has retained to join it to Australia. Four gesera are peculiar, of which three are claimed by the Composite and Lobeliacer, orders characteristic of Hawaii. It is rich in trees, shrubs, and hardwood plants, poor in the smaller undergrowth. Orchids, including some beautiful specics, and ferns are abundant; but, bere as in Polynesia generally, Rubiaces is the order best represented. Remarkable are the banana thickets, which, chiefly on Tahiti, grow at an altitude of from 3000 to 5000 feet Along the shore-in oome places almost to the extinction of all Dative growth-many exatics have established themselves; and a great variety of fruit-bearing and other useful trees have been successfully introduced in to most of the islands. ${ }^{5}$
Inhabitants. -The Tahitians are a typical Polynesian race, closely connected physically with the Marquesaus and Rarotongans, but widely divided from them is many of their customs. The dialects, also, of the three groups sre different, the Tahitian being perhaps the softest in all Oceania. The women rank with the most beantiful of the Pacific, though the accounts given of them by early voyagers are much exaggerated; aod for general symmetry of form the people are unsurpassed by any race in the world. Even now in its decadence, after generations of drankenness and European disease and vice, grafted on inborn indolence and licentiousness, many tall and robust peoplo (6 feet and eren upwards in height) are to be found. The women, as a rule, are small in prc弓ortion to the men. Men and women of good birth can geserally be distinguished by their height and fairness, and of ten, even in carly age, by their enormons corpuleace. The skin varies from a very light olive to a full dark brown. The wawy or curly bair and the expressive eyes are black, or nearly so; the month is large, but well-shaped and set with beautiful teeth; the nose broad (formerly fattened in infancy by artificial means); and the chis well developed. Solong as the rative costume Was retained, the liputa, an oblong piece of bark cloth with a holo in its centre for the head, and the paru, a plain piece of cloth round the loins, were worn alike by men and women of the higher classes. Med of all ranks wore, with or without these, the maro, or T bandage. The women concealed their breasts except in the company of their superiors, when etiquette demaz:ded that inferiors of both sexes should uncover the upper part of the body. The chiefs wore short feather cloaks, zot unlike those of the Hawaiians, and beantiful semicircular breastplates, dexterously interwoven with the black plumage of the frigate bird, with crimson feathers, and with sharks' tecth ; also most elaborate special dresses ss a sign of mournitg. The priests had strange cylindrical hats, made of wicker-work and over a yard in height. Circnmeision, and in both sexes tattooing, were generally practised, and much significance was attached to some of the marks. The houses (vare) were long, low, and oper at ths sides. Honsehold ntensils were fow-plain round wooden dishes, sometimes on legs, cocoa-nut shells, baskets, \&c. Low stools and head-rests were used." Pottery being unkoown, an food was baked in the "pative over" or roasted over the fre. Their chief musical instruments were the nose-flute (viro) -often used as the accompani, ment of song-and the drum (pahu). Of the latter, those kept in the marai were huge elaborately carved hollow cylinders of wood, the upper esd of which was covered with sharks' skin. Cosch. shells (bu) were also used. Tahitian stone adzes, thich are greatly inferior in finish to those of the Hervey Islands, are, like the adzes of eastern Polynesia in gemeral, distinguished from those of western Polynesia by their triangular section and adaptation to a socket.,

[^10]Slings were-perhaps the farourite weapons of the Tahitians; they had also plain spears expanding into a swite blade, and clubs. The bor and arrow seem only to have been used in certain ceremonial games (lecs). Their canoes (vara), from 20 to 70 feet in length, were double or single, and provided with sail and outriggers. They were not well finished, but the high curved sterns. rising sometimes to a height of 20 feet, of those destined to carry the images of their gods, were carved with stranga figures and hung with feathers. ${ }^{\text {? }}$ Connibalism is nnkuown in the Society Islands, though somo ceremonies which were performed in connexion with hnman sacrifices masy possibly be survivals of this practice. The staple food of the islanders consisted of the bread-fruit, the taro-root, the yam, the sweat potato, and in some districts the wild plantain (fei); but they also ate inuch fish (the turtlo was considercd sacred food), as well ss pigs and dogs, though of the latter, as pets, the women were 6o fond as to suckle the puppies sometimes even to the exclusion of their own childron. Popoi was a favonrite dish made of bananas and cocos-nut. Kava (ava), which was prepared in the usual Polynesian manner, was drunk, but in moderate quantities and ouly by the chiefs.

Tahitians were good fisherinen and bold seamen. They steered by the stars, of which they distinguished many constellations. The land was carefully tended and tha fields well irrigated. Three great classes were recognized:-(1) the huiari, of divine origin, which included only the suzerain (arirai), who bore a semi-sacred as woll as a political character, and the reigning chiefs of districts; (2) the bue-raatira, proprietors and cultivators of inherited land, who also built canues, made arms, \&ic.; to these two classes elso belonged the priests (tahora), who were medicine-men as well; (3) the manahrone, fishers, artisans, \&c., and slaves (titi). As wars and infanticide depopulated the island this class gradually acquired land and with it certain privileges. Rank is hereditary and determined by primogeniture, not necessarily in the male line. The firstborn of an arirai received at birth the title of otu; the father, who was the first to pay homage to his own child, then abdicated, and henceforth took up the position of regent. It is easy to sce that, while this custon tended to kecp honours within a family, it may have encoursged the practice of infinticide, which was common in all grades of society when Tahiti was first visited by Enropeans. The age at which the otu's authority became real varied according to lis own abilities and the will of his subjects. Though arbitrary, the power of the arirai was limited by the power of his vassals, the district chiefs (raatiras), who ruled absolutely over their respective districts, and who misht be of as good blood as the arirai himself. The arirsi had a councillor, but was alone responsible for any act. The bi-insular form of Tahiti promoted the independence of the chiefs, and war was rarely declared or an army or fleet despatclied without the raatiras being first sumnoned to council. Withont their favour nothing could be accomplished, for their power over their own people was absolute. The form of goverument was thus strictly feudal in character, but it gradually centralized ioto a monarchy, which, in the person of Pomare 11., the English missionaries greatly helped to regulate and streugthen. The arirai seut his commands by a messenger (vea) whose credentials were a tuft of cocoa-nnt film. This tuft was returned intact as a sign of assent or torn in token of refusal. After the chief the wife ranked first, and then his brother. The arirai was carried on the shoulders of his subjects, and chicfs were not sllowed to feed themselves. Women always ate apart. Their places of worship (marai)-national, local, or private-were square tree-surrounded enclosures. They each had a single entrance, and contained several small courts, within which were honses for the images and atteudant priests. A pyramidal stone structure, on which were the actual altars, stood at the furtlier end of the square. The marais were also used as places of sepulture of chieis, whose embalmed bodies, after being exposed for a time, were buried in a crouching position. Their skulls, however, were kept in the houses of their nearest relations. In tha great marai at Atahura the stone structure was 270 feet long, 94 feet wide, and 50 fcot high, and its summit was reached by a llight of steps, built of hewn coral and basalt. Sacrificial offerings, including human sacrifices, formed a prominent part of Tahitian worship. An eye of the victim was offered to the arirai, and placed within his mouth by the offciating priest. Every houseliold possessed its own guardian spirits (tii), but there were several superior divinities, of which, at the berianing of this century, Oro was the most venerated. The images, which are less remarkoble than those of Hawaii, were rough representations of the human form carved in wood. Some were covered from head to foot with small human figures cut in relief; others were mere sticks clothed with feathers. The areoi, a licentious association of strolling players, men and women, which numbered among its ranks the highest chiefs, and practised infanticide, was a special feature of Tahitian society.
The Tahitians are light-hcarted, frivolous, courtcous, and gencr-
1 The masean of the London Missionary Somety and the British Museum contain important colleztions of Tahitian images, dresses, weapons, \&c.
ous; but with these traits are blended deceit, irritability, and crivelty, which formerly reached an unexamuled degree of savage brutality. Their notions of morality were never, according to our ideae, very precise; and their customs, such as the tayo, or exchange of name with the rights which it carricd over the wifo of the giver of the name and all her female relations, seemed to the earlier European observer strangely revolting. It would appear, however, that with the introduction of the vices of civilization such limita. tions as their primitive morality recognized have disappeared and all self-respect has been lost. Especially characteristic were the elaborate costumedances (heivas) performed by women. Besides dancing, the singing of songs (pehe), and the recitation of historical and mythical ballads (ubus), the natives had also a variety of sports and games. During the periodical seasons of rejoicing wrestling (naona), boxing (noto), and spear-throwing (vero patia) matches, with foot and canoe-races, were held; also sham fights and naval reviews. They had several games in which a ball was used, -one, apai, not unlike our bandy, while another, twiraa (played chiefly by women), was a kind of football; but surf-swimming (faahee) was perlaps the most favourite sport with hoth sexes. Kites were known. Cock-fighting (factitoraamoa) was much practised.

Discorery and Exploration.-There is little doubt that the main island and some other members of the group were visited by the Spaniard Pedro Feruandez de Quiros in Fehrnary 1607. They were rediscovered in June 1767 by Wallis in the "Dolphin," who took nnminal possession of Taliti for George I11. and named it after him. In the following year Bongainville visited Tahiti, claimed it as French, and called it La Nouvelle Cythérc. With Tetuara (called by him Umaitia) and Eimeo it makes up the Archipel de Bourbon of his most inaccurate chart. Almost all we know of the early state of the islands is, however, due to Captain Cook's visits in 1769, 1773, 1774, and 1777. The name of Society Islands was given to the Leeward group on lis first poyage in honour of the Royal Society. In 1774 T'ahiti was also visited by two Spanish vessels, which left two priests, who remained for ten months on the island Tha Spaniards named it Isla d'Amat. The islauds were again nneited in 1788 by the "Lady Penrhyn." Bligh in the "Bounty" spent five months on the island in the same year, and it was revisited by that ship after the famous motiny. At this time the leading chief was Pomare, whose family had been pre-ominent in the isiand for more than a century. Aided by sixteen of the "Bounty "mntineers, and armed with guns procured from Bligh and a Swedish vessel, Pomare greatly strengthened his power and brought to a successful close a long struggle with Einueo. In 1791 the "Pandora" carried off fourteen of the "Bounty" mutineers, and from this time forward visits were frequent.

Missions.-7he attempt of the Spauiards in 1774 was followed by the settlement of twenty-five persous bronght in 1797 by the missionary ship "Duff." Though befriended by Pomare I. (who lived till 1805), they had many difficulties, especially from the constant wars, and at length they fled with Poware II. to Eimeo and ultimately to Now South Wales, returning in 1812 when Pomare renounced heathenism. In 1815 he regained his power in Tahiti. For a time the missionaries made good progress, -a pribting press was established (1817), and coffee, cotton, and sugar were planted (1819); but soon there came a serious relapse into heathen practices and imnorality. Pomare II. died of drink in 1824. His successor Pomare III. died in 1827, and was succeeded by his half-sister Aimata, the unfortunste "Queen Pomare." In 1828 a new fanatical sect, the "Mamaia," arose, which gave much trouble to the missions and whose influence is still felt. The leader proclaimed that he was Jesus Christ, and promised to his followers a sensual paradise.

French Annexation.-In 1836 the French Catholic missionaries in slangareva attempted to open a miesion is Tahiti. Queer Pomare, advised by the English missionary and consul Pritchardrefused lier consent, and removed by force two priests who had landed surreptitiously and to whom manyy of the opposition party in the state had rallied. In 1838 a French frigate appeared, under the command of M. Du Petit-Thouars, and extorted from Pomare the right of settlement for Frenchmen of every profession. Other acts of interference followed, and at length, in 1842, Admiral du Petit-Thonars procured the signature of a document placing the islands under French protection, the authority of the queen and chiefs being expressly reserved. In 1843 Petit-Thouara reappeared, and, alleging that the treaty of 1842 had not been duly carried out, deposed the queen and took possession of the islands. His ligh. handed action was not countenanced by the French Government, but, while it professed not to aanction the annexation, it did not retrace the steps taken. Two years were spent in reducing the party in the islands opposed to French rule; an attempt to conquer the western islands failed; and at length, by agreement with England, France promised to return to the plan of a protectorate and leave the western islands to their rightful owners. The London missionaries were replaced by French Protestants, but neither they nor the priests have been very successful, possibly bocause Franch is a compulsory subject in the Government achools. In 188:

Tahiti, includiug Eimeo, was proclaimed a French colony. It is the residence of the governor-general of the Freuch dependencies iff the Pacific.
Esterature. -The following list Includes the zooks which seem most to descive meation: Hawkesworth's Foyages, especially Walis"s Voyage, H.MI.S. "Dolphin." in vol. 1., Londoa. 1773 ; Cook's Three Voyages, with Forster's accoust of the secoad voyage; Freycinet, Fogage de la Coquille, and Lesson"a account of the same voyage, Paris, 1839 ; Benaett, Whaling Voyage, Londod, 1840. For manners and customs of the natires, see Cook, Duff Ellis. For modern atatistics, see Deagraz, La Tahiti, Parls, 1845 ; Notices Coloniales, Paris, 1886, sol. Ii. For the early history of the -islands, see Ellis, Polynesian Researches, London, 1829 ; Vineendon-Domoulln and Desgraz, Iles Tuîti, Paris, 1844 . For misston history, see Foyage of the Duff, London, 1799: Ellis; Willians, Missionary Enterprise in the South Sea Islands, London, 1939. "For the French occupation, see Moerenhout, Voyage aux lies du Grand Ocían, Paris, 1837; Vlaceadon-Dumoullu and Desgraz; Pritchard, Polynesian Reminiscences, London, 1866.
(A. V. H.)

Taiwan. See Formosa.
TAJAK, TAJIK, or TAUSIK, a term originally occurring in the Pahlavi writings, and explained to mean, first, the Arabs in general, then their descendants born in Persia and elsewhere out of Arabia, and, lastly, the Persians in general and their descendants born in Turkestân and elsewhere out of Persia. Tajak has thus come to be the collective name of all communities of Iranian stock and Persian speech, wherever found in Central Asia. These are co-extensive with the former eastward and northward limits of the Persian eapipire ; but, since the ascendency of the Turki races, they have become the subject element in Turkestan, Afghánistán, Bokhára, Khiva, Kashgaria, while still politically dominant in Badakhshán, Wakhân, Darwáz, Kost, and Karatéghin. In most of these places the Tajaks, with the kindred Galchas, seem to form the bulk of the population, the distinction being that Tajak is apphed rather to the settled and more civilized luwlanders of modern Persian speech, Galcha to the ruder highlanders of Ferghána, Kohistán, Wakhán, dec., who speak cither archaic forms of Persian or dialects intermediate between the Iranian and Sanskritic (Indian) branches of the Aryan linguistic family. The Tajaks are thus a settled Iranian people, agriculturists in the conatry, traders and artisans in the towns, and are essentially "Parsivan," that is, men of Persian speech, -this term, however, being more specially applied to those of Afghánistán. But, although mainly of Iranian stock, with light complexion and regular features, the Tajaks claim Arab descent, regarding the district about Baghdad as their primeval home, and cousidering themselves the descendants of the Arabs who overran Central Asia in the first century of the Flight. At the same time, "it is evident that the ic. sabitants of the greater part of this region (Central Asia) must from an early period have come in contact with the successive waves of Turkish (Tarki) and even Mongol population which b:oke over them; accordingly we find that, ilthough the type is essentially Iranian, it has undergone a certain modification, . . . face, though obriously ?ersimn, is more oblong than that of the Turk, more or less leavy cheeks, thick nose, large mouth, wide forehead, middle height, powerful frame, and broad shoulders, . . . dark hair, but among the Galchas a few fair people are found " (Capt. J. M. Trotter, Bokhara, p. 169). The term Tajak must also be distinguished from Sarte, the latter simply meaning "trader" or "shopkeeper," and being applied indiscriminately to the settled as opposed to the nomad element, and especially to the urban populations, of whatever race, in Central Asia. ${ }^{1}$ The Tajaks are known as Tats on the west side of the Caspian (Baku, Lenkoran, \&c.).
taka. See Nubia.
talavera de la Reina, a town of Spain, in the

[^11]province of Toledo, is situatad on the right bank of the Tagus, and on the railway from Madrid to Caceres, some 40 miles below Toledo and 64 miles south-east from Madrid. It was formerly surrounded by a triple circumvallation, portions of which still remain. It bas no buildings of special interest, and its commerce and manufactures are inconsiderable. The population within the municipal limits in 1877 was $10,029$.

Talavera is the birthplace (1536) of Mariana the hisiorian. Wellington overcame a superior French force here on July 27-28, 1809.

TALBOT, FAMILY oF. Apart from its achievements, this is one of the few families in the English aristocracy which traces alike its descent and its surname from the Norman conquerors of England; and it may really be said that there has hardly been a time during the last eight hundred years in which the Talbots have not been of considerable account in public life. Yet in some periods they appear rather as a potential influence, while at certain marked epochs they stand out among the most prominent actors in English history. The name of Richard Talbot occurs in Domesday Book as the holder of nine hides of land in Bedfordshire under Walter Giffard, earl of Buckingham. There is no evidence that he came over to England with the Conqueror hinself ; and, as he did not hold of the king in capite, it is clear that he was not a leader. His son Geoffrey Talbot took part with the empress Maud against King Stephen. But apparently it mas another son Hugh who continued the line; of whom it is recorded that he held the castle of Plessi against Henry I. for Hugh de Gournay, and afterwards became a monk at Beaubec in Normandy. His son Richard obtained from Henry II. the lordship of Linton in Herefordshire, and from Richard I. the custody of Ludlow castle; and his descendants for some generations appear to have been wardens of various castles on the borders of Wales. Under Edward II. a Gilbert Talbot was head of the house, and invaded Scot. land in the king's company, but afterwards took part with Thomas of Lancaster against the king. He, however, was pardoned, and obtained from Edward III. a confirmation of the grant of the manor of Liston and other lands to himself and his heirs.

His son Richard, who had married a daughter of John Comyn of Badenoch, laid claim to certain lands in Scotland in her right, and, when restrained from entering that country by land (Edward IIL. having then made an alliance with King David), he joined in a successful expedition which invaded it by sea in the interests of Edward Baliol. Three years later he was taken prisoner in Scotland, and redeented for 2000 marks, after which the king made him governor of Berwick. He took part also in Edward's wars against France, as did likewise his son Gilbert, who succeeded him, At this time the family possessed lands in the counties of Oxford, Gloucester, Hereford, and Keut, and a little later in Berkshire, Wilts, Salop, and Essex. Another Gilbert Talbot, grandson of the last, claimed to carry the great spurs at the coronation of Henry V., and had a commissiou to receive the submission of Owen Glendower and his adherents. He also distinguished bimself in the invasion of Normandy. He was twice married, his second wife being a Portugueso lady, but he left no male issue, and was succeeded by his brother John, the special hero of the family.

Hitherto the head of the house had borne the aame of Lord Talbot; but this John, after obtaining by marriage the title of Lord Furnivall, was for his distinguished actions created earl of Shrewsbury. He made his name so terrible in France that for several generations afterwards French mothers used to threaten refractory childres that the Talbots would come if they were not quiet (Brown's Venetian Calendar, ii. 75). He rescued Maine from the

TALBOT

French and took Pontoise ; but his own capture by the Maid of Orleans was what probably discouraged the English most of all in their disasters beyond sea. He was exchanged for an eminent French prisoner and a heary ransom, besides. He served also several times as lieutenant of Ireland, and in 1446 was created earl of Wexford and of Waterford, in addition to the title of Shrewsbury, which hạd been conferred upon him in 1442. He died in 1453, in, an unsuccessful expedition for the recovery of Guienne, which had lately submitted to the French. His son John, Viscount Lisle, was slain along with him in the same fatal battle.

But, besides his martial exploits which live in history, this John claims some attention for his family alliances. His first wife Maud, a granddaughter of Thomas, Lbrd Furnivall, brought him the castle of Sheffield as part of her inheritance, and he was accordingly summoned to parliament in the days of Henry IV. as John Talbot of Hallanshire, otherwise Lord Furnivall, more than thirty years before he was made earl of Shremsbury. The property remained in the hands of his descendants, and became a favourite residence of the family during the whole of the Tudor era; and, but for the death in 1616 of Gilbert, seventh earl of Shrewsbury, without male issue, it has been remarked by Hunter that Sheffield might have remained much longer a centre of feudal magnificence rather than of conmerce and manufactures. The second wife of John, earl of Shrewsbnry, was Margaret, the eldest of three daughters of Richard Beanchamp, earl of Warwick, by his second wife, a daughter of Thomas, Lord Berkeley. By her he obtained a third part of the Berkeley property; and, though she did not become the mother of a line of earls, her eldest son, Joln Talbot, was created Viscount Lisle, and it was he who fell along with his father at the disastrous battle of Chatillon in Gascony. His son Thomas, who inherited the title of Viscount Lisle, was also slain at the early age of twenty-two io a feudal contest with Lord Berkeley, arising out of a dispute as to the possession of Berkeley castle, at Nibley Green, near Wotton-under-Edge, March 20, 1470; and the title was afterwards conferred on Edward Grey, the husband of one of his.two sisters.

John, the second earl of Shrewsbury, was the first earl's son by his first wife. He had beeu knighted at Leicester in 1426 along with the infant king Henry VI., had served in the wars of France, and been made chancellor of Ireland during his father's lifetime, when he was only Lord Talbot. Afterwards he was made lord high treasurer of England, and in 1459 was rewarded for his services to the house of Lancaster with a grant of 100 marks a year out of the lordship of Wakefield, forfeited by Richard, duke of York. But next year he and his brother Christopher were slain at the battle of Northampton, fighting in the caus of Henry VI. His son John succeeded him, and then his grandson George, who fought for Henry VII. at Stoke, and whom King Henry VIII. sent as his lieutenant against the rebels in that most formidable insurrection, the Pilgrimage of Grace. But perbaps the thing which most redounds to his credit is the humanity with which (as related by Carendish) he received the fallen Cardinal Wolsey into his house at Sheffield when he was on his way up to London as a state prisoner, and endeavoured to remove those gloomy anticipatious of his fate which in fact brought on his last illness.

Francis, the fifth earl, took a leading part in the invasions of Scotland under Henry VIII. and Edward VI., and was one of the tro peers who alone opposed the bill for abolshing the pope's jurisdiction under Elizabeth. His son George, who succeeded, was the earl to whom the custody of Nary Stuart was committed, his delicate and
onerous task being rendered all the more difficult for him by the intrigues of his bold, ambitious second wife, Bess of Hardwick, the builder of Chatsworth, who had married three husbands before her union with him. Two sons of this last earl succeeded one another, and the title then devolved, for want of male issue, on the lineal descendants of Sir Gilbert Talbot of Grafton ir Worcestershire, third son of John, the second earl. This Sir Gilbert had fought for Henry VII. at Bosworth, where he was severely wounded, was knighted on the-field, and was throughont one of the first Tudor's most trusted councillors. He fought also at Stoke against the insurgents with Lambert Simnel, was made a knight banneret, governor of Calais, and lord chamberlain.

The ninth earl, George, dèscended from this Gilbert, is not distinguished by any prominent actions. He died unmarried, and his brother, who followed next, was succeeded by his grandson Francis, chiefly memorablo for his unhappy fate. His second wife, a daughter of the carl of Cardigan, was seduced by the duke of Buckingham, whom the outraged husband challenged to a duel. The countess, it is said, was present at the scene, and held Buckingham's horse in the disguise of a page, saw her husband killed, and then clasped her lover in her arms, recciving blood-stains upon her dress from the embrace. Charles, the twelfth earl, son of this unfortunate nobleman, was raised by William III. to the dignity of a duke for his important diplomatic services. His position in those slippery times was altogether exceptional. Abandoning the religion of his ancestors he became a Protestant, was one of the seren who signed the invitation to William of Orange to come over, and was continually consulted by him on state affairs after he becapme king. Yet, being apparently of a very sensitive disposition, he seems to have at times repented what he liad done, and even corresponded with James at St Germain ; yet again, in times of danger, he was as ready as erer to stake his life and fortunes in the service of his country to preserve the new settlement. It was apparently his extreme sensitiveness that caused him to be spoken of as "the king of hearts." In 1694 he was created marquis of Alton and duke of Shrewsbury, but as he left no son these titles died along with him, and the earldom of Shrewsbury divolved on his cousin Gilbert, a Roman Catholic priest.

From this time the direct line of Sir Gilbert Talbot of Grafton began to fail. A nephew three times succeeded to an uncle, and then the title devolved upon a cousin, who died unmarried in 1856. On the death of this cousin the descent of the title was for a short time in dispute, and the lands were claimed for the infant son of the duke of Norfolk under the will of the last earl; but the courts decided that, under a private Act obtained by the duke of Shrewsbury in the sixth year of George I., the title and estates must go together, and the true successor to the earldom was found in Earl Talbot, the head of another line of the descendants of Sir Gilbert Talbot of Grafton, sprung from a second marriage of Sir Gilbert's son, Sir John Talbot of Albrighton. The head of this family in the beginning of the last century was a divine of some mark, who died bishop of Durham in 1730. His son Charles, who filled the office of lord chancellor, was created Baron Talbot of Hensol in Glamorganshire in 1733; and his son again was advanced to the dignity of Earl Talbot in 1761, to which was added that of Baron Dynevor in 1780 . Then succeeded a nephew, who was also created Viscount Ingestre, and assumed by royal licence the surname of Chetwynd before Talbot, from his mother.

The Earl Talbot who successfully claimed the Shrews. bury title (as the eighteenth eárl) was the present earl's
grandfather, and all the titles just mentioned bave been united in his line ever since.
(J. GA.)
talbot, Willay Hemry Fox (1800-1877), a dis. covercr in photography, was the only child of William Davenport Thalbot, of Laycock Alboy, Wilts, and of Lady Elizabeth Fox Strangways, daughter of the second earl of Ilchester. He was born in February 1800, and educated at Harrow and at Trinity College, Cambridge, where he gained the Porson prize in 1820, and graduated as twolfth wrangler in 1821. From 1822 to 1872 he frequently communicated papers to the Royal Society, many of them on mathematical suljects. At an early period ho had begun his optical researches, which were to bave such important results in connexion with photography. To the Edinburgh Journal of Science in $18 \geqslant 6$ he contributed a paper on "Some Experiments on Colcurcd Flane"; to the Quarterly Journal of Science in 1827 a paper on "Monochromatic Light"; and to the Philosophical Magesine a number of papers on chemical subjects, including one on "Chemical Changes of C'lour." Before Daguerre exhibited in 1839 pictures taken by the sun, Talbot had obtained similar success, and as soon as Daguerre's discoveries were whispcred communicated the results of his experiments to the Royal Society (see Photograpiry, vol. xviii. p. 824). In 184] he made known his discovery of the calotype process, but after the discovery of the collodion process by Scott Archer, with whom he Lad a lawsuit in reference to his patent rights, he relinquished this feld of inquiry. For his discoveries, the narrative of which is detailed in his Pencil of Nature (1844), he received in 1842 the medal of the Royal Society. While engaged in his scientific researches he devoted a considerable portion of his tinie to archæology, and this Eeld of inquiry latterly occupied his chief attention. Besides reading papers on these subjects before the Royal Society of Literature and the Society of Diblical Archrology, he published Hermes, or Classical and Antiquerrian Rescar ches (1838-39), and Illustrations of the Antiquity of the Book of Genesis (1839). With Sir flenry Rawlinson and Dr Hincks he shares the honour of having been one of the frst decipherers of the cuneiform inscriptions of Nineveh. He was also the author of English Etymologies (1846). He died at Laycock Abbey, 17 th September 1877.
talc. See Gelogy, vol. x. p. 228, and Mlveralogt, vol. xri. p. 414.
TALCA, a town of Chili, capital of the province of Talca, is situated on the Claro, a tributary of the Maule, nearly due south of Saxtiage, with which it is connected by rail. The town has a lyceum and some woollen manufactures (especially of "ponchos"). In 1875 the population aumbered 17,496 , and in 1885 about 19,000
Talent. See Numismatics, vel. avii. p. 631.
TALES are, in the usual acceptance of the word, fictitious narratives, long or short, ancient or modern. In this article "tale" is used in a stricter sense, as equivalent to the German "Volks-märchen" or the French "conte pepulaire." Thus understood, popular tales mean the storics handed down by oral tradition from an unkuown antiquity, among savage and civilized peoples. So understood, popular tales are a subject in mythology, and indeed in the general study of the development of man, of which the full interest and importance is scarcely yet recognized. Popular tales won their way into literature, it is true, at a very distant period. The Homeric epics, especially the Odyssey, contain adventures which are manifestly parts of the general human stock of popular narrative. Other examples are found in the Rigreda, and in the myths which were handled by the Greek dramatists. Collections of popular tales, more or less subjected to conscious literary freatment, are found in Sanskrit, as in the work of

Somadeva, whose Kathe Sarit Sigurn, or "Ocean of the Streams of Story," has been translated by Mr l'awney (Calcutta, 1880). The Thotasad avip Oae Nicirrs (2. er.) are full of popular tales, and popular tales art the stople of the medireval Gesto Romenorum, and of the collectious of Straparola and other Ttalian conteurs. In all these naid similar gatherings the story, long circulatal from woulh to mouth among the pcople, is handled with consciuns art, and little but the gencral outline of plot and chinacter of incident can be regarded as original. Iu the llisturies on Contes du I'emp)s Passé of Perranlt (Elzevir, Amsterdum, 1697; the Parisian cdition is of the same date) we have one of the carliest gatherings of tales which were taken down in their wursery shape as they were told by nurses to children. This at least seems probable, though M. Alfred Maury thinks Perrault drew from literary sources. Pcrrault attributed the conpposition to his son, P'. Darmaucour, at that time a child, and this pretext enabled bim to give his stories in a simple and almost popalar guise. In the dedication signed by the boy, Perrault offers remarks which really do throw a certain light on the origin and characteristics of "märchen." He says, "Ils renferment tous une morale très sensée et domnent une image de ce qui se passe dans les moindres familles, ou la lonable impatience d'instruire les enfans fait imaginer des histoires dépourvûes de raison pour s'accomoder ì ces mênics enfants, qui n'en ont pas encore." It seems that popular tales in many cases probably owe their origin to the desire of enforcing a moral or practical lesson. It appears that their irrational and "infantile" character-" "d́pourvaes de raison"-is derived from their origin, if not actually among childron, at least among chiidlike peoples, who have not arrived at "raison," that is, at the scientific and modern cenception of the world and of the nature of man.

The success of Perrault's popular talcs brought the genre into literary fashion, and the Comtesse d'Aulncy invented, or in seme cases adapted, "contes," which still retain a great popularity. But the precise and scientific collection of tales from the lips of the people is not much earlier than our century. The chief impulse to the study was given by the brothers Grimm. The first edition of their Kinder-und Haus-Märchen was published in 1812. The English reader will find a very considerable bibliography of popular tales, as known to the Grimms, in Mrs Alfred Hunt's translation, Grimn's Household Tales, with Notes (London, 1884). "How unique was our collection when it first appeared," they exclaim, and now merely to enumerato the books of such traditions would occupy much space. In addition to the märchen of Indo-European peoples, the Grimms became acquainted with some Malay steries, some narratives of Bechuanas, Negroes, American Indians, and Finnish, Esthonian, and Magyar storics. Thus tho Grimms'knowledge of non-European marchen was extremely slight. It enabled then, however, to observe the increase of refinement "in proportion as gentler and more humane manners develop themselves," the monstrositics of Finnish and Red-Indian fancy gradually fading in the narratives of Germans and 1taliaus. The Grimms notice that the evolution of popular narrative resembles the evolution of the art of sculpture, from the South-Sea idel to the frieze of the Parthenon, "from the strongly marked, thin, even ugly, but highly expressive forms of its carliest stages to those which possess external beauty of mould." Since tho Grimme' time our knowledge of the popular tales of nonEuropean races has been greatly cnriched. We possess numbers of North-Auerican. Brazilian, Zulu, Swahili, Eskimo, Samoan, Maori, Kaffir, Malagasy, Bushman, and even Australian märchen, and can study them in comparison with the steries of Hesse, of the West Highlapds of Scotland, of Scandinavia.

While the popular romances of races of all colours must be examined together, another element in this subject is not less important. It had probably been often observed before, but the fact was brought out most vividly by Von Hahn (Griechische und albanesische Märchen, Leıpsic, (1864), that the popular tales of European races turn on the same incidents, and display the same succession of situations, the same characters, and the same plots, as are familiar in the ancient epic literature of Greece, India, Germany, and Scandinavia. The epics are either fully-developed märchen evolved by the literary genius of poets and saga-men, or the märchen are degenerate and broken-down memories of the epics and sagas, or perbaps there may be examples of both proccsses. The second viers, -namely, that the popular tales are, so to speak, the scattered grains of gold of which the epic is the original "pocket" or "placer,"-the belief that the märchen are the detritus of the saga,-was for a long time prevalent. But a variety of arguments enforce the opposite conclusion, namely, that the märchen are essentially earlier in character than the epic, which is the final form to which they have been wrought by the genius of Homer or of some other remote yet cultivated poet. If this view be accepted, the evolution of märchen and of certain myths has passed through the following stages:-
(1) The popular tale, as current annong the uncultivated peoples, such as Iroquois, Zulus, Bushmen, Samoans, Eskimo, and Samoyedes. This tale will reflect the mental condition of rude peoples, and will be full of nonstrous and miraculous events, with an absence of reason proper, as Perrault says, "a ceux qui n'en ont pas encore." At the same time the tale will very probably enforce some moral or practical lesson, and may even appear to have been invented with this yery purpose, for man is everywhere impressed with the importance of conduct.
(2) The same tale-or rather a series of incidents and a plot essentially the same-as it-is discovered surviving in the oral traditions of the illiterate peasantry of European races. Among them the monstrous element, the ferocity of manners observed in the first stage, will be somewhat modified, but will be found most notable among the Slavonic tribes. Nowhere, even in German and Scottish märchen, is it extinct, cannibalism and cruel torture being favourite incidents.
(3) The same plot and incidents as they- exist in the heroic epics and poetry of the cultivated races, such as the Homeric books, the Greek tragedies, the Cyclic poets, the Kalewala of the Finns, certain hymns of the Rigveda, certain legends of the Brahmanas, the story of the Volsungs,-in these a local and almost historical character is given by the introduction of names of known places, and the adventures are attributed to national heroes, -Odysseus, CEdipus, Sigurd, Wainamoinen, Jason, Pururavas, and others. The whole tone and manners are nobler and more refined in proportion as the literary workmanship is more elaborate.

This theory of the origin of popular tales in the fancy of peoples in the savage condition (see Mythology), of their survival as märchen among ine peasantry of IndoEuropean and other civilized races, and of their transfiguration into epics, could only be worked ont after the discovery that savage and civilized popular tales are full of close resemblances. These resemblances, when only known to exist among Indo-European peoples, were explained as part of a common Aryan inberitance, and as the result of a. malady of language. This system, when applied to myths in general, has already been examined (see MyтнoLoay). According to another view, märchen everywhere resemble each other because they all arose in India, and have thence been borrowed and transmitted. For this
theory consult Benfey's Panchatantra and M. Cosquin's Conies de Lorraine (Faris, 1886). In opposition to the Aryan theory, and the theory of borrowing from India, the system which is here advocated regards popular tales as kaleidoscopic arrangements of comparatively few situations and incidents, which again are naturally devised by the early fancy. Among these incidents may be mentioned, first, kinship and intermarriage between man and the lower animals and even inorganic phenomena. Thus a girl is wooed by a frog, pumpkin, goat, or bear, or elephant, in Zulu, Scotch, Walachian, Eskimo, Ojibway, and German marchen. This incident is based on the lack of a sense of difference between man and the things in the world which is prevalent among savages (see Mythology). Other incidents familiar in our nursery tales (such as "Cindereila" and "Puss in Doots") turn on the early belief in metamorphosis, in magic, in friendly or protecting animals (totems or beast manitous). Others depend on the early prevalence of cannibalism (compare Grimm, 47, "The Juniper Tree"). This recurs in the mad song of Gretchen in Foust, concerning which a distinguished student writes, "This ghost of a ballad or rhyme is my earliest remembrance, as crooned by an old East-Lothian nurse." (Compare Chambers's Popular Rhymes of Scolland, 1870, p. 49.) The same legend occurs among the Bechuanas, and is published by Casalis. Yet another incident springs from the taboo on certain actions between husband and wife, producing the story of Cupid and Psyche (see Lang's Custom and Mylh, 1884, p. 64). Once more, the custom which makes the youngest child the heir is illustrated in the märchen of the success, despite the jealousy of the elders, of Cinderella, of the Zulu prince (Callaway's Tales from the Amazulu, pp. 64, 65), and in connfless other märchen. In otaer cases, as in the world-wide märchen corresponding to the Jason epic, we seem in presence of an early romantic invention, -how diffused it is difficult to imagine. Moral lessons, again, are inculcated by the numerous tales which turn on the duty of kind. ness, or on the impossibility of evading fate as announced in proplecy. In opposition to the philological explanation of the story of Edipus as a nature-myth, this theory of a collection of incidents illustrative of moral lessons is admirably set forth in Prof. Cauparetti's Edipo e lo Milologia Comparata (Pisa, I867).

On a general view, then, the stuff of popular tales is a certaia number of incidents and a certain set of cembinations of these incidents. Their strange and irrational character is due to their remote origin in the fancy of men in the savage condition; and their wide distribution is caused, partly perbaps by oral transmission from people to people, but more by the tendency of the early imagination to run everywhere in the same grooves. The narratives, in the ages of heroic poetry, are elevated into epic song, and in the Middle Ages they were even embodied in legends of the saints. This view is maintained at greater length, and with numerous illustrations, in the introduction to Mrs Hunt's translation of Grimm's Kinder-und HausMärchen, and in Cusionn and Myth, already referred to.

A complete bibliography of the literature of popular tales would fill many pages. The reader who is curious about savage popular tales may turn to Theal's Kaffir Folk Lore (2d ed., London, 1886); Callaway's Nursery Tales of the Amazulu (London, 1868); Schooleraft's Algic Researches; Gill's Myths and Talcs of the South Pacific; Petitot's Traditions Indiennes (1886); Shortland's Maori Religion and Mytholomy (London, 1882); The South African FolhLore Record; the Folk Lore Reoord (London, 1879-85, Malagasy stories) ; Rink's Tales and Traditions of the Eskimo; Bleek's Hottentot Tales and Frables (London, 1864); Castrén's Samoyedische Miarchen ; and Leland's Algonqutu Legends (London, 1884). For Europeau tales, the bibliography in the translation of Grimm already referred to may be used, and the Maisonneuve collection, Les Litteratures populaircs may be recommended. The names of

Liebrecht, Köhler, Dasent, Ralston, Nigra, Pitré, Cosquin, Afanasief, Gaidoz, Sébillot, may serve as clues through the enchanted forest of the auisery tales of Europe.
(A. L.)

TALFOURD, Sir Thowas Noox (1795-1854), was at once eminent as a lawyer, as a vriter, and as a member of a brilliant and polished society. H_{θ} had the faculty of winning friendships; so sympathetic indeed was his nature that he unconsciously biassed many of the most acute among his acquaintances towards an estimate of his genius as an author-more especially as a dramatist-hardly commensurate with what more impartial criticism has decided to be his just meed of praise. But, though even his most excellent work in literature has now ceased to bo generally cared for, his poetry must always bo interesting to the literary student.

The son of a brewer in good circumstances, Talfourd was born on January 26, 1795, at Doxey, near Stafford (some accounts mention Reading). He received his early education, first at an institution near Hendon, and later at the Reading grammar-school under Dr Valpy. Here, it is said, he acquired his taste for dramatic poctry, presumably uuder the guidance of Dr Valpy. At the age of eighteen the lad was sent to London to study law under Mr Chitty, the special pleader. Early in 1821 be joined the Oxford circuit, having been called to the bar at the Middle Temple in February of that year. When, fourteen years later, he was created a serjeant-at-law, and when again he in 1849 succeeded Mr Justice Coltman as judge of the Court of Commor Pleas, he attained these distinctions more perhaps for the zeal and lahorious care which he invariably displayed in his conduct of the cases confided to him than on account of any brilliance of forensic talent or of any marked intellectual subtlety. A parliamentary life had always had an. attraction for him, and at the general electiou in 1835 he was returned for Reading. This seat be retained for close upon six years, and he was again returned in 1847. In the House of Commons he was no mere ornamental member. Those efforts of his which have most interest for us of later date were made on behalf of the rights of authors, for whose benefit he introduced the International Copyright Bill; his speech on this subject was considered the most telling made in the House during that session. The bill met with strong opposition, but Talfourd had the satisfaction of secing it ultimately pass fato law in 1842, albeit in a greatly modified form.

At the period of his elevation to the bench he was created a lnight, and thenceforward his life was, in the intervals of his professional labours, devoted to scholarly and literary pursuits. From his school days he had entertained dreams of attaining eminence as a writer; and to the last be remained a diligent student of literature, ancient and modern. During his early years in London Talfourd found himself forced to depend-in great measure, at least -upon his literary exertions. He was ąt this period on the staff of the London Magazine, and was an occasioual contributor to the Edinburgh and Quarterly reviews, the New Monthly Magazine, and other periodicals; while, on joining the western circuit, he acted as law reporter to The Times. His legal writings on matters germane to literature are excellent expositions, animated by a lucid and sufficiently telling, if not highly polished, style. Among the best of these are his article "On the Principle of Adrocacy in the Practice of the Bai" (in the Law Magazine, January 1846); his Proposed New Law of Copyright of the Highest Importance to Authors (1838) ; Three Speeches delivered in the House of Commons in Favour of an Extension of Copyright (1840); and his famous Speech for the Defendant in the Prosecution, the Queen v. Moxom, for the Publication of Shelley's Poetical Works (1841).

But Talfourd cannot be said to have gained any position
arnoug men of letters until the production of his tragedy Ion, which was privately printed in 1835, and produced in the following year at Covent Garden theatre. The tragedy was also well received in America, and it met with the honour of reproduction at Sadler's Wells in December 1861. This dramatic poem, its author's masterpiecc, tunis upon the roluntary sacrifice of Ion, king of Argos, in response to the Delphic oracle, which had declared that only with the extinction of the reigning family could the prevailing pestilence incurred by the deeds of that family be removed. As a poem Ion has many high qualities. The blank verse, if lacking the highest excellence, is smooth and musical, and the lines are frequently informed with the spirit of genuine poetry; the character of the high-souled son of the Argive king is finely developed, and the reader is affected throughout by that same sense of the relentless working and potency of destiny which so-markedly distinguishes the writings of the Greek dramatists.

Two years later, at the Haymarket theatre, The Athenian Captive was acted with moderato success. In 1839 Glen. coe, or the Fate of the Macdonalds, was privately printed, and in 1840 it was produced at the Haymarket; but this home drama is indubitably much inferior to his two classic plays. The Castilian (1853) did not excite a tenth part of the interest called forth by Ion. Before this he had produced various prose writings other than those already referred to,-among them his "Hiśtory of Greek Litera. ture," in the Encyclopædia Metropolitana.

Besides the honour of knighthood and his rarious legal distinctions, Talfourd held the honorary degree of D.C.L. from the university of Oxford. He dieù in court during the performance of his judicial duties, at Stafford. on March 13, 1854.
In addition to the writings above-mentioned, Talfourd was the author of The Letters of Charles Lamb, with a Sketch of his Life (1837); Rccollections of a First Visit to the Alps (1841); Vacation Rambles and Thoughts, comprising recollections of three Contipental tours in the vacations of 1841,1842 , and 1843 (2 vols., 1844); and Final Memorials of Charles Lamb (1849-50).

TALisman. See Amolet.

TALLAGE, or Talilage (from the French tailler, i.e., a part cut out of the whole), appears to have signified at first a tax in general, but became afterwards confined in England to a special form of tax, the assessment upon cities, boroughs, and royal demesnes-in effect, a land tax. Like Scotage (q.v.), tallage was superseded by the subsidy system in the 14 th century. The last occasion on which it was levied appears to be the year 1332. The famous statute of 25 Edw . I. (in some editions of the statutes $34 \mathrm{Edw}. \mathrm{I)}$. De Tallagio non Concedendo, though it is printed among the statutes of the realm, and was cited as a statute in the preamble to the Petition of Right in 1627 , and by the judges in John Hampden's caso in 1637, is probably an imperfect and unauthoritative abstract of the Confirmatio Cartarum. The first section enacts that no tallage or aid shall be imposed or levied by the king and his heirs without the will and assent of the archbishops, bishops, and other prelates, the earlś, barons, knights, burgesses, and other freemen in the kingdom. Tallagium facere was the technical term for rendering accounts in the exchequer, the accounts being originally kept by means of tallies or notched sticks. The tellers (a corruption of talliers) of the exchequer were at one time important financial officers. The system of keeping the national accounts by tallies was abolished by 23 Geo. III. c. 82. the office of teller-by 57 Geo. 'III. c. 84.

Talleyrand de perigord, Charles Maurice (1754-1838), created by Napoleon a prince of the empire under the title of the Ṕrince de Bénévent, was born at Paris on 2d February 1754. His father, who was of a yoninger branch of the princely family of Chalais, was an
officer in the army of Louis $X V$., and his mother, also of noble family, was a member of the royal household at Versailles. An accident in infancy rendered Talleyrand lame for life, and changed his whole carecr. His upbringing was, in accordance with the fashionable heartlessness of the day, entirely left to strangers ; and while a boy he was, in consequence of his lameness, formally deprived by a conscil de famille of his rights of primogeniture, -his younger brother, the Comte d'Archambaud, taking his place; and he was destined for the church. Ho keenly felt the blow, but was powerless to avert it; and he used his enforced profession only as a stepping-stone to his ambition, always despising it, and coolly and defiantly forsaking it when he found it an embarrassment.

When he was removed from the country he was sent to the Collége d'Flarcourt, where he speedily distinguished himself; and in 1770, when sixteen years of age, he became an inmate of the Séminaire de St Sulpice, his education being completed by a course in the Sorbonne. Much as Talleyrand despised the church as a career, be never ceased highly, to appreciate theology as a training, and he publicly testified to its valuo to the statesman and specially to the diplomatist. While achieving distinetion as a student, he carefully cultirated such society as might promote his advancement; and it was in the circle of Madame du Barry that his cynicism and wit, reported by her to the king, gained him the position of abbé. To his arts of manner were added, not only his advantages of birth and scholarship, but a penetrating judgment of men and afiairs, a subtle audacity, and a boundlessly selfish ambition. As early as 1780 we find this abbé malgré lui to have reached the important position of "agent-general" of the French clergy. His ability and his flagrant immorality alike rendered him a marked man, and the latter did not prevent his appointment, in accordance with his father's dying request to the king, as bishop of Autun in January 1789. The clergy of his own diocese immediately elected him a member of tho states-general; and he delivered before his constituents ono of the most remarkable speeches which the crisis produced, containing a sagacious and statesmanlike programme of the reforms which the condition of France demanded. He thus entered the assembly as one of its leaders.

The states-general had hardly met ere Talleyrand's influence was called into play. He successfully urged the clergy to yicld to the demand of the commons that the three estates should meet together; and the nobles could thereafter only follow the example thus set. On the question of the extent of the asscmbly's authority he again sided with the popular leaders. As a financier of great foresight and porver he soon became justly celebrated; and his position in the assembly may be estimated by his appointment as one of a committee of eight to frame the project of a constitution. All his previous successes were, however, eelipsed by the daring with which he attacked the rights and privileges of his own order. He had seconded the proposals that the clergy should give up their tithes and plate for the benefit of the nation, and on loth October 1789 ho himself projosed a scleme whercby the landed property of the church should be confiscated by the state. On 2 d November, after violent deoates, his project was carried, and the old clergy thereafter ranked him as an enemy. But his general popularity so much inereased that he was charged by the national assembly to prepare a written memoir in defence of its labours; and the manifesto, read on February 10, 1590, was received with great approval thronghout the country. On. the 16 h he was elected presicent of the assembly for the usual brief term. On various subjects he was now looked up to as an authority, -on education, on electoral and ecclesiastical
reform, on banking, and on general finance. His career se a diplomatist had not jet begun.

On July 14, 1790, Talleyrand, at the head of 300 clergy, assisted at the fête in the Champ de Mars in commemoration of the fall of the lastille; and publicly blessed the great standard of France. By this time, however, the dispute as to the civil constitution of tie clergy had broken out, the decision of the assembly being resisted by the king, backed by the pope. When in November the king yielded, Talleyrand boldly took the required oath, only two bishops following his example. New bishops were elected by the assombly, and these he, in open defiance of the chpreh, consecrated. In the end of April 1791 he was suspended from his functions and exconmmnicated by the pope. Without a moment's hesitation Talleyrand abandoned his profession, which he never afterwards resumed. He had been false to its vows, and had seandalized it by his shameless life. It was only in the preceding February that he had, in declining nomination for the archbishopric of Paris, felt, indiscrectly enough and contrary to his usual practice, the necessity of writing to the Moniteur a hypocritical confession of his- gambling propensities, stating his gains at 30,000 francs. Although in 1801 the excommunication was recalled, it was nearly half a century after his first act of defiance ere he became personally reconciled to the church, and then only when he was at the point of death.

On purely political lines, however, Talleyrand's career became more and more celebrated. In the beginning of the same month of April 1791, his friend Mirabeau having just died, he was appointed to succeed him as a director of the department of Paris, a position which still further increased his influence in the circles of the metropolis. On the flight of the king in June, Talleyrand leaned at first and cautiously towards the duke of Orleans, but finally declared for a constitutional monarchy with Louis XVI. still on the throne. Ere the constitutional assembly brought its existence to a close on 14 th September, be unfolded before, it his magnificent scheme of national education, which, in the words of Sir Henry Bulwer, "having at one extremity the communal school and at the other the Institute, exists with but slight alterations at this very day." The assembly had voted that none of its members should be members of the new legislative body, so that Talleyrand was free ; besides, events were hurrying on with strango and critical rapidity ; and Talleyrand left France for England, reaching London in the end of January 1792. With this visit his diplomatic career may be said to have begun.

He was not formally aceredited, but had in his pocket an introduction to Lord Grenville by Delessart the foreign minister; the king himself was aware of his mission, the ostensible object of which was to conciliate England. Talleyrand for his part shared tho ulterior views of Narbonne, the minister of war, that it would be for tho advantage of his country to divert its encrgies, which were morbidly directed to its internal troubles, into another clannel, and to precipitate an Austrian war. Although received well in London society, he found the want of official credentials a fatal obstacle to his diplomatic negotiations, and he returned to Paris, whence he was almost immediately again despatched to the English court under much more favourable conditions. He was nominally only attendant with Do Chauvelin, the minister plenipotentiary, but he was really the head of the embassy, and he carricd with him a letter of Louis XVI. to George III. At this time, indced, Talleyrand's relations with Louis were very close, -far closer than he afterwards cared or dared to avow. All, however, was of no avail. The startling course of the Revolution made the English look oskance
apon his mission, and he returaed bafled to Paris, where be arrived shortly before the coup d'état of the 10 th of Angust. But this place, where his mariest manourres were outdone by the rapidity of the popular movements, and where at any turn of affairs he might lose his head, was not to his liking; and by the middle of September he is for the third time in London. It is characteristic of the man-of the dexterity as well as audacity of his intrigue-that he who had but shortly before carried with him a letter of favour from Louis XVI. was, now that royalty was abolished, the bearer of a specific passport"going to London by our orders"-under the hand of Danton. Equally characteristic is the express falsehood with which be opens his negotiations: he writes at once to Lord Grenville, "I have at this time absolutely no kind of mission in England "-he was selling his library and seeking repose. His courtesies were not returned; and, although be succeeded in making friends in certain high quarters, he was, in tho end of January 1794, under the provisions of the Alien Act, ordered to leave England. Fortified with an introduction by Lord Lansdowne to Washington, he sailed for the United States.

A decree of the convention had issued against Talleyrand during his stay in England. He was an émigré. But as the excesses of the period drew to a close the proscription was recalled on the appeal of Chénier, who founded on Talleyrand's relations with Danton and his mission to England in the service of the Revolution! On July 25, 1795 , he arrived at Hamburg, whence he passed to Berlin, and, after a short stay there, to Paris. He mas received.with enthusiasm in the circles of fashion and intrigue. He mould have been eagerly welcomed by any of the political parties as a strength; but the Directory was in power, aad he supported it. Withia the Directory he supported Barras, as against his compeers. He was thus a moderate constitutionalist and in the way of advancement.

During his absence from France he had been elected a member of the Institute. He was now elected its secretary. In this capacity he read before it two memoirs-one on the "commercial relations of the United States with England," and the other "on the advantages of withdrawing from new colonies in present circumstances." These memoirs exhibit Talleyrand at the very maturity of his powers, and aro sufficient to establish his position as one of the most far-seeing and thonghtful statesmen that France ever possessed. The first paper shows how, in spite of the War of Independence, the force of language, race; and interest must in his vies bind England and the States tagether as. natural allies; and it contains that remarkable passage (which once read is never forgotten) in which the civilization of America is described as exbibited in space as well as in time, -as the traveller moves westward from State to State he appears to go backward from age to age. The papers, which were read in April and July of 1797, made his claim to state recognition irresistible, and towards the end of the latter month he was appointed to the post of foreign minister.

He had been carcfully scanning the political situation, and be accurately foresaw that the Directory, which represented no one set of opinions, but only a vaia compound of all, could not stand against unity of policy backed by force, and in the meantime could be manipulated. Thus with a brutal swiftness its personnel becomes changed. Barras with his sluggish moderation remains; but, behind and through hin, it is tho dexterous purpose of Talleyrand that is at work. This is the first characteristic of his administration. "Its second is the ability which ho displays in his communications with tho diplomatic service, in view of the rupture with Englad. Its third is
the shamelessly corrtpt manner in which ho approaches the American ambassadors on the subject of the seizure of certain ships, on the conclusioa of a commercial treaty between England aad the States, putting himself in his public and powerful position at their service, - if the bribe were suitably large. And its fourth is that he is hardly in the chair of office until he has shrewdly selected Bonaparte as the object of his assiduous flatteries, writing to him in semi-confidence, and laying the basis of their future intimacy. But his first term of office was short: the American ambassadors spurned his offer and let his conduct be publicly known, with the result that for this and other reasons he resigned his post. Public opinion was outraged. His official corrnption, however, was not ended, for Talleyrand turned everything into gold ; in his later diplomacy also ho could almays be bought; and this public immorality was but too faithfully reflected in his private life, in which gambling tas his passion and a source of his vast wealth.

Out of office, but still pulling the strings of the Directory, he awaited the arrival of Napoleon in Paris, and it was his hand which was most powerful in shaping the events of the 18 th and 19 th Brumaire- 9 th and 10 th November 1799. He reconciled Siejes to Bonaparte; a majority of the Directory-Sieyès, Ducos, and at last at his persuasion even Barras-resigned; the Directory collapsed, and the consulate was established (see Napoleon and Sieyès). Napoleon was the first and Talleyrand the second man in France.

He was now an absolutist, the whole drift, of his influence being ia the direction of consolidating, under whatever title, the power of Bonaparte. For many years henceforward Talleyrand's career is part of the general history of France. He is soon again foreign minister; and he is acknowledged to have been the ablest diplomatist of an age when diplomacy was a greater power than it has ever been before or since To him falls a full share of responsibility for the kidnapping and murder of the Duc d'Enghiea in March 1804 (sce Savary). He had assisted at the councils when the atrocity was planned, and he wrote to the grand-duke justifying the seizure of the priace while on Baden tertitory. His hend in the matter was of courso concealed. But, when one adrised him to tender his resiguation, he demurely remarked, "If, as you say, Bonaparte has been guilty of a crime, that is no reason why I should bo guilty of a folly." In other and more agreeable directions he had prostrated himself before Napoleon's purposes, approving among other things of the policy of the Concordat :(15th July 1801), and securing thereby the recall of his excommunication. To the pope's grateful brief, which gave him liberty "to administer all civil affairs," he coolly gare a wide interpretation, and he shortly thereafter married. He of course supported and defended first the consulship for life and thea the crowaing of the emperor.

By and by, however, a change comes over his political attitude, and it is not long ere Napoleon detects it. This change we date, with Sainte-Beuve, from the end of January 1809. Before the peace of Tilsit, July 8, 1807, from Jena onwards, he lad personally accompanied the great conqueror ; after it they stood apart, for the statesman saw in those brilliant but ceaseless conquests the prelude to the ruin of his master and his country. He was now prince of Berievento, and he withdrew from the ministry, receiving at his own desire the title of vice-grandelector of the empire. Yet he had not disapproved of the Spanish war; the young princes had even been entrusted to his surveillance at his country house at Valençay", Piut anything might have happened to the einperor in Snain, aud Talleyraud had evidentlv bean calculating the chances
of the future. So at the date stated the explosion occurs, Napoleon pouring upon Talleyrand all the fury of his invective, reproaching him with the affair of the Duc d'Enghien, and clamouring to know where his enormous wealth had come from, -how much he had gained at play or on the stock exchange, and what was the sum of his bribes by foreign powers. Over and over again such scenes are repeated, the burden of the fierce reproaches being always the same; but Talleyrand staads impassive as a statue, remarking once, but not till he is out of the room, and is limping away, "What a pity that such a great man has been so badly brought up!" or sending in, at another time, a resignation, which of course is not accepted. The reproaches of the emperor were only too well founded, his minister having reaped a vast harvest from the smaller powers at the formation of the Rhenish Confederation; it is indeed recorded that Talleyrand once put a figure upon his gains in this department of corruptionthe figure beiog no less than sixty million francs.

It is undonbtedly to his credit, however, that he steadily resisted a warlike policy, and that he was particularly opposed to the Russian invasion. He was occasionally employed in diplomatic negotiations, and was even again offered the post of foreign minister if he would give up that of vice-grand-elector. This offer, which would have placed him at the mercy of Napoleon, he declined, and the breach between the two widened. Before the events of 1814 his hotel had become the centre of anti-Napoleonic intrigue; as the crisis approached he communicated with the allies; when it was at haud be favoured a regency, and appeared anxions that Marie Louise should remain in Paris; and when this was abandoned he carefully arranged a feigned departure himself, but that his carriage should be turned back at the city gates; he did return; and the cmperor Alexander was his guest at the Hôtel Talleyrand! The revolution was his work; and his nominee Louis XVIII. ascended the throne.' For a third time, and again under a new master, he was appointed foreign minister. It would be difficult to overestimate the splendid services which he now rendered to France. . In Paris, on 23d April, the treaty was concluded under which the soldiers of the allies were to leave French soil'; and Talleyrand successfully urged that the territory of France should be the enlarged territory of 1792 , and also that the great art treasures of which so many European cities had been despoiled should remain in Paris. A final treaty of peace between Europe and France was concluded on 30th May, and in September the congress of Vienna assembled. It was the scene of Talleyrand's greatest triumphs. He succeeded aingle-handed in breaking up the confederation of the allies, and in reiatroducing the veice of France into the deliberations of the European powers. Further, on Jamuary 3, 1815 , a secret treaty was concluded between Austria, France, and England.

When Napoleon escaped from Elba and advanced towards Paris, Louis XVIII. retired to Ghent. Although the congress of Vienna was thus broken up, Talleyraad made no haste to follow him thither. He was puzzled, and remained so during the Hundred Days. He despised Louig, and an early approach to Bonaparte was out of the question. .Ho therefore coolly betook himself to Carlsbad, remarking, when an explination was asked for, that the first duty of a diplomatist after a congress was to attend to his liver! Waterloo of course decided him. He appeared at Ghent, and was but coldly received. The foreign powers, however, intervened, conscious after. Vienna of Talleyrand's value ; and, among others, Wellington insisted that the great diplomatist must be taken into the councils of Louis, - with the result that he becaine prime minister at the secund restoration. But his position was one of
extreme difficulty. The king disliked him; there were scenes bordering on violence in the royal presence; the Russian emperor intimated his hostility to him; he shared the odium of having a man like Fouché for a colleague ; Chateaubriand and his party hated and beset him. Fortunately on excuse of a broad and national kind soon presented itself. He oljected to the conditions which the allies were imposing upon France, refused to sign the treaty, and on 24 th September resigned office.

He retired into private life, in which he remained for fifteen years. Ho only spoke in the House of Peers three times during this period,--twice (1821 and 1822) in favour of the liberty of the press, and once (1823) to protest against the Spanish war. But in 1830 , when Charles X.'s reign was evidently imperilled, he again is at the centre of intrigue;-and it is actually at his private but urgent suggestion that Louis Philippe heads the revolution, taking, to begin with, the title of lieutenant-general of the kingdom. Declining the post of foreign minister, he proceeded to London as ambassador, conducting himself and serving his country with his usual corsummate skill. Ho returned crowned with success after the formation of the Quadruple Alliance. In November 1834 he resigned, and quitted public life for ever.

He emerged from his retirement on March 3, 1838, to pronounce before the Institute the éloge of Reinhard, and in so doing to treat of diplomacy in general, and to suggest an indirect but adroit apology for his own career. He was received with unbounded enthusiasm by the élite of French literature and society-Cousin even exclaiming that the cloge was worthy of Voltaire. His last illness, which had by this time shown itself, soon prostrated him. He was visitcd on his death-bed by crowds of celebritics, ibcluding the king. He died on May 17, 1838, at the great age of eighty-four. He is buried at Valençay.

According to his desire, his memoirs under his own hand will not appear till 1890 .
There is a considerable body of anonymous aud untrustworthy literature both in French and English on the subject of this sketch. For the earlier nart of Talleyrand's career, see the general litersture of the Revolution; for the Napoleonic, the general histories, including especially the Alemoirs of the Duc de Rovigo; for the third aud last, slso the general histories, and especially the Correspondence between Talleyrand and Louis XVIII., edited by Pullain (1880; transl. into English, 1881), and the Nemoirs of Guizot. Refercnces abound to the private life of Talleyrand, and on it see also the Histoire Politique et Tie Intime, by G. Touchard-Lafosse (1848), and the Souvenirs Intimes sur MI. de Talleyrand, by Amedée Pichot (1870). The student must be on his guard in perusing most of this last-mentioned literature. For many years the \vec{H} is. toire Politique et Privé, by G. Michaud (1853), stood practically uncorrected, although evidently a studied and bitter attack. The view taken by Louis Blanc in his Dix. Ars (translated into English in 1845) is also quite distorted, and if one wishes to see a completo misreading of Talleyrand's career it can be found in Blanc's tenth chapter of his fifth book. Sir Henry Lytton Bulwer rendered great service by his life of Talleyrand, published in his Historical Characters; and the worth and sccuracy of Bulwer's biography, which was speedily translated into French, has been amply acknowlodged by Sainte-Beuve in his valuable treatiso (lectures) on Talleyrand, published in 1870. Reference should also be made to Mignet, Bastide, and the Memoircs Politiques or Lamartine.
Cation will have to be exercised in reading Talleyrand's autobiography, which will not appear till 1890. The testimony of contemporaries will not be available to check it, and Talleyrand is proved to have presided at the destruction of much documentary evidence implicating himself, e.g., at the moment when the Russian emperor was living at his house.
(T. S.)

TALLIEN, Jean Lambert (1769-1820), the chief leader of the party that overthrew Robespierre, was the son of the mâ̂tre dhôtel of the Marquis de Bercy, and was born in Paris in 1769. The marquis, perceiving the boy's ability, had bin well educated, and got bin a place as a lawyer's clerk. Being much excited by the first events of the Revolution, he gave up his desk to enter a printer's office, and by 1791 he was overscer of the priatiug
topartment of the Moniteur. While thns employed he annceived the idea of the journal-affiche, and from January to. Yay 1791 he placarded a large printed sheet on all the walls of Paris twice a week under the title of the Ami cles Citoyens. This enterprise of his, of which the expenses were defrayed by the Jacobin Club, made him well known to the revolutionary leaders; and he made himself atill more conspicuous in organizing the great "Fête de la Liberte" on April 15, 1792, in honour of the released soldicrs of Chattean-Vienx, with Collot d'Herbois. On July 8, 1792, hie was the apokesman of a deputation of the section of tho Place Royale which demanded from the legislative assembly the reinstatement of Pétion and Manuel, and he was one of the most active popular leadera in the attack upon the Tnileries on 10th Auguist, on which day he was appointed secretary or clerk to the revolutionary commune of Paris. In this capacity he exhibited an almost feverish activity; he perpetually appeared at the bar of the assembly on behalf of the commune; he announced the massacres of September in the prisons in terms of praise and apology; and be sent off the famous circular of 3 d September to the provinces, recommending them to do likewise. At the close of the month he resigned his post on being elected, in apite of his youth, a deputy to the Convention by the department of Seire-et-Oise, and he commenced his legislative career by defending the conduct of the commune during the massacres. He took his seat upon the Monntain, and showed himself one of the most vigorons Jacobins, particularly in his defence of Marat; be voted for the execution of the king, and was elected a member of the. Committee of General Security on January 21, 1793. After a short mission in the westeru provinces he returned to Paris, and took an active part in the coups d'état of 31 st May and 2d June, which resulted in the overthrow of the Girondins. . For the next few months he remained comparatively quiet, but on September 23, 1793, be was sent with Ybabeau on his famous mission to Bordeaux. This was the very month in which the Terror was organized under the superintendence of the Committees of Public Salety and General Security, and Bordeaux was one of the cities selected to feel its full weight. Tallien ahowed himself one of the most vigorous of the proconsuls aent over France to establish the Terror in the provinces; though with but few adherents, he soon awed the great city into quiet, and kept the guillotine constantly employed. It was at this moment that the romance of Tallien's life commenced. Among his prisonera was Theresa, Comtesse de Fontenay, the daughter of the great Spanish banker Cabarrus, the most beautiful and fascinating woman of her time, and Tallien not only spared her life but fell deeply in love with her. She quickly abated the fierceness of his revolutionary ardour, and from the lives ohe saved by her entreaties she received the name of "Our Lady of Pity." This mildness, however, displeased the members of the committees; Tallien was recalled to Paris ; and Madame de Fontenay was imprisoned there. Danton and his friends bad but just fallen, and the members of the committees were hadf afraid to strike again at the moderates, so Tallien was apared for the time, and was even elected president of the Convention on March 24, 1794. But the Terror could not be maintained at the same pitch : Robespierre began to see that he must strike at many of his own colleagues in the committecs if he was to carry out his theories, and Tallien was one of the men condemned with them. They determined to strike first, and on the great day of Thermidor it was Tallien who, urged on by the danger in which his beloved lay, opened the attack upon Robespierre. The movement was onccessful; Ruhespierre end his friends were guillotined; sud the young Tallien, as the leading Thermidorian, was
elected to the Committee of Public Safety. Now came the great months of his career: he showed himself a vigorous Thermidorian; he was instrumental in suppressing the Revolutionary Tribunal and the Jacobin Club; he attacked Carrier and Lebon, the proconsuls of Nantes and Arras; and he fought bravely against the insurgents of Prairial. In all these months he was supported by his Theresa, whom he married on December 26, 1794, and who became the leader of the social life of Paris. His last political achievement was in July 1795, when he was present with Hoche at the destruction of the army of the émigres at Quiberon, and ordered the executions which followed. After the close of the Convention Tallien's political importance came to an end, for, though he sat in the Council of Five Hundred, the moderates attacked him as terrorist, and the extreme party as a renegade. Madame Tallien also got tired of him, and became the mistress of the rich banker Ouvrard. Bonaparte, however, who is said to have been introduced by him to Barras, took him to Egypt in his great expedition of June 1798, and after the capture of Cairo be edited the official journal there, the Décade Égyptienne. But Menou sent him away fron Egypt, and on his passage he was captured by an English cruiser and taken to London, where he had a good receptiva among the Whigs and was well received by Fox. On réturning to France in 1802 he got a divorce from his nufaithful apouse (who eventually married the Prince de Chimay), and was left for some time without employment. At last, through Fouché and Talleyrand, he got the appointment of consul at Alicante, and remained there until he lost the sight of one eye from yellow fever. On returning to Faris he lived on his balf-pay until 1815, when he received the especial favour of not being exiled like the other regicides. His latter days were apent in the direst poverty; he had to sell his books to get bread. He died at Paris on Norember 16, 1820.
Tallis (Tallys, Talye, or Tallisids), Thomas (c. 1515-1585), justly styled "the father of English cathedral music," was born, as nearly as can be ascertained, about the year 1515. Tiue history of his youth is involved in some obscurity ; there seems, howeven but little doubt that, after singing as a chorister at old Saint Paul's under Thomas Mulliner, he obtained a place among the children of the chapel royal. Yis next appointment was that of organist at Waltham abbey, where, on the dissolution of the monastery in $15 \ddagger 0$, be received, in compensation for the loss of his preferment, 20s. for wages and 20 s . for reward. An interesting relic of this period of his career is preserved in the library of the British Museum, in the form of a volume of MS. treatises on music, once belonging to the abbey, on the last page of which appears his autograph, "Thomas Tallys," with the final letter prolonged iuto an elaborate flourish-the only apecimen of his handwriting now known to exist.
Not long after his dismissal from Waltham, Tallis waa appointed a gentleman of the chapel royal; and thenceforward he laboured so zealously for the advancement of his ait that his genius has left an indelible impression upon the English school, which owes more to him than to any other composer of the I6 th century, and in the history of which his name plays a very important part indeed.

One of the earliest compositions by Tallis to which an approximate date can be assigned is the well-known Service in the Dorian Mode, consisting of the Venite, Te Deum, Benedictus, Kyrie, Nicene Creed, Sanctus, Gloria in Excelsis, Magnificat, and Nunc Dimittis, for four voices, together with the Preces, Responses, Paternoster, and Litany, for five, all published for the first time, in the Rev. John Barnard's First Bnok of Selected Chuich IIfusic, in 1641, and reprinted, with the exception of the Venits
XXIII.
and Paternoster, in Boyce's Cathedral M/usic in $1760{ }^{1}$ That thi, work was composed for the purpose of supply. ing a prewing need, after the publication of the second prajer-book of king Edward VE. in 1552 there can be no reasonabie doubt; and its perfect adaptation to its intended purjose is sufficiently proved by the fact that. for n:ore than three hundred years, its claim to occupy the first and bighest place among compositions of its class has becu undisputed. Written in the style known among Italian composers as lo stile famigliare, i.e., in simple counterpoint of the first species, nota contra notam, with no attenpt at ingenious points of imitation, or learned complications of any kind-it adispts itself with equal diguty and clearncss to the expression of the rerbal text it is jutended to illustrate, bringing out the sense of the sumds so plainly that the listener cannot fail to interpret them aright, while its pure rich harmonies tend far moro surdy to the excitement of devotional feeling than the uarvellons combinations by means of which too many of 'I'allis's contemporaries sought to astonish their hearers, while forgetting all the loftier attributes of their art. In this noble quality of self-restraint the Litauy and Responses bear a close analogy to the Improperia and other similar norks of Palestrina, wherein, addressing himself to the heart rather than to the ear, the princeps musica produces tlie most thrilling effects by means which, to the superficial critic, appear almost puerile in their simplicity, white those who are able to look beneath the surface discern in then deptlis of learning such as none but a very highly cultitated inusician can appreciate Of this profound learning Tallis possessed an inexhaustible store; and the rich resources it opened to his genius not only placed his compositions on a level with those produced by the best of his Italian and Flemish contemporaries, but enabled him to raise the English school itself to a height which it hail nerer previously attained, and which, nevertheless, it continued to maintain undiminished untilothe death of its last representative, Orlando Gibbons, in 1625 . Though this school is generally said to have been founded by Dr Tye, there can be no doubt that Tallis was its greatest master, anil that it was indebted to him alone for the infusion of new life and vigour which prevented it from degenerating, as some of the earlier Flemish schools had done, into a mere vehicle for the display of fruitless erudition. Tallis's ingenvity far surpassed that of his most erudite contemporaries; but he never paraded it at the expeuse either of intrinsic beauty or truthfulness of expression. Like every other great musician of the period, he produced occasionally works confessedly intended for no more exalted purpose than the exbibition of his stupendous skill, one of the most remarkable characteristics of which was the apparent ease with which it disposed of difficulties that, to composers of ordinary ability, would have prored insurmountable. In his canon, Misereve nostri, the intricacy of the contrapuntal devices seems little short of miraculous; yet, so smooth and flowing is the effect produced by their dizzy involutions, that no one unacquainted with the secret of their construction would suspect the presence of any unusual element in the composition. In his motet, Spen in "lium non habui, written for forty voices disposed in eight five-part choirs, each singer is intrusted with a part, ?.rreeable and interesting in itself, jet never for a moment interfering with any one of the thirty-nine equally interesting parts with which it is associated. These tours de force, however, though approachable only by the greatest contrapuatists living in an age in which counterpoint

[^12]was cultivated with a success that has never since nezm equalled, serve to illustrate one phase only of Tallis's many-sided genius, which shines with equal brightness in the eight psalm-tunes (one in each of the first eight modes) and unpretending little Treni Creator, printed in 1567 at the end of Archbishop Parker's First Quinquagene of Metrical Psalms, and many other compositions of like simplicity.

In 1575 Tallis and his pupil William Byrd-as great a contrapuntist as himself, though by no means his equal in depth of expression-obtained from Queen Elizabeth royal letters patent granting them the exclusive right of printing music and ruling music-paper for twenty-owe years; and, in virtuc of this privilege, they issued, in the same jear, a joint work, entitled Cuntiones quæ ab argumento Sacrex vocantur, quinque et sex partium, containing sixteen motets by Tallis and eighteen by Byrd, all of the highest decree of excellence. Some of these motets, adapted to English words, are now sung as anthems in the Anglican cathedral service. But no such translations appear to have been made during Tallis's lifetime; and there is strong reason for believing that, though both be and Byrd outwardly conformed to the new religion, and composed music expressly for its use, they remained Catholics at heart to the end of their days.

Tallis's contributions to the Cantiones Sacra were the last of his compositions pablished during his lifetime. He did not, indeed, live to witness the expiration of tles patent, though Byrd survived it and published two more books of Cantiones on his own account in 1589 and $159 I_{4}$ besides numerous other works. Tallis died November 23 1585, and was buried in the parish church at Greenwich, where a quaint rhymed epitaph, preserved by Strype, and reprinted by Burney and IFawkins, recorded the fact that he served in the chapel royal during the reigns of Henry VIII., Edward VI., Mary, aod Elizabeth. This was destroyed with the old church abont 1710; and it was not until about twenty jears ago that a copy was placed in the present building. Portraits, professedly authentic, of Tallis and Byrd were engraved by Vaodergucht in 1730 , for Nicolas Haym's projected History of Mfusic, but never published. One copy only is known to exist.

Not very many morks besides those already mentioned were printed during Tallis's lifetime; but a great number are still pre. served in MS. Unhappily, it is to be fenred that many more were destroyed, in tho 17 th century, during the spoliation of the cathedral libiaries by the Puritans
(W. S. R.)

TALLOW is the solid oil or fat of ruminant animals, but commercially it is almost exclusively obtained from oxen and sheep. The fat is distributed throughout the entire animal structure; but it accumulates in large quantities as "suet" in the body cavity, and it is from such suet that tallow is principally melted or rendered. The various methods by which tallow and other animal fats are separated and purified have been dealt with under Oils (see vol. xvii. p. 743). In commerce ox tallow and sheep tallow are generally distinguished from each other, although much nondescript animal fat is aiso found in the market. Ox tallow occurs at ordinary temperatures as a solid hard fat having a yellowish white colour; when fresh and new it has scarcely any taste or smell ; but it soon acquires a distinct odour and readily becomes rancid. The fat is insoluble in cold alcohol, but it dissolves in boiling spirit of $0.822 \mathrm{sp} . \mathrm{gr}$. in chloroform, ether, and the essential oils. The hardness of tallow and its moltingpoint are to some extent affected by the food, age, state of health, dec., of the unimal yielding it, the firmest ox tallow being obtained in certain provinces of Fussia, where for a great part of the year the oxen are fed on hay. New tallow melts at from $42^{\circ} 5$ ta $43^{\circ} \mathrm{C}$., old tallow at $43^{\circ} 5$,
and the melted fat remains liquid till its temperature falls to 33° or $34^{\circ} \mathrm{C}$ ．Tallow consists of a mixture of two－ thirds of tho solid fats palmitin and stearin，with one－third of the liquid fat olcin．A fluid oil known as tallow oil is obtained from solid tallow by the separation by pressure of the greater part of the olein．To facilitate the separation of the olein，tallow is first melted and just before resolidi－ fying it is mixed with about 10 per cent．of benzeue or petroleum spirit．The mixtura is then allowed to solidify in flat cakes or slabs，which are placed in press bags and piled between iron plates in a hydraulic press．On the application of pressure the olein inixed with the selvent hydrocarbon ${ }^{\text {fllows freely }}$ out，leaving a hard dense cake of stearin and palmitin in the bags．The velatile solvents are subsequently driven off by blowing steam through the oil，which remains a turbid fatty fluid from the proportion of solid fats it carries over with it from the bydraulic press．Tallow oil is a usefui lubricant and a valuable material for fine soap making，but it is not now abundantly prepared．Mutton tallow differs in several respects from that obtained from oxen．It is whiter in colour and harder，and contains only about 30 per cent．of olein． Newly rendered it has little taste or smell，but on exposure it quickly acquires characteristic qualities and becomes rancid．Sweet mutton tallow melts at 46° and solidifies at $36^{\circ} \mathrm{C}$ ．；when old it does not melt under 49° ，and be－ comes solid on reaching 44° or $45^{\circ} \mathrm{C}$ ．It is sparingly soluble in cold ether and in boiling spirit of 0.822 sp．gr．

In early times tallow was a most important candle－making substance，，nd candles made from this material are still consumed in no inconsiderable quantity，but the greater proportion of the supply is now absorbed by the soap trade；thic artificial butter trade which has sprung up since 1872 also takes up large quantitics of sweet tallow．Tallow is further used extensively as a lubricant and in leather dressing，\＆c．It is of course a product of all cattle and aheep－lcaring countries，and it forms an important article of export from the United States，the Argentine Republic，and the Australian colonies．Till within the last quarter of a century Russia supplied nearly all the tallow imported into the United Kingdom；but now the imports from that source are on tlie most mearre scale，although Russian P．Y．C．（pale yellow candle）con－ tinues to represent the finest commercial brand．

TALLOWS，Vegetable．See Oils，vol．xvii．p． 746.
TALMA，Joseph Frunçors（1763－1826），French tragedian，was born at Paris 15 th January 1763．After attending the Mazarin college，he accompanied his father， who was a dentist，to Jondon，where he studied in the hospitals．While in London he took part in some amateur theatricals，and，his talents at ouce attracting notice，a pro－ fessional engagement was offered him．To this，however， his father would not consent，and shortly afterwards he was sent to Pacis，where for some years he was assistant to $\$$ dentist．His predilection for the drama could not be restrained，and on 21st November 1787 he made his début at the Comédie Française in Mahomel．His efforts from the first won appreciation，but for a considerable time ho was restricted to secondary parts．It was in jeune premier parts that he first came prominently into notice，and he attained only gradually to his unrivalled position as the exponent of strong and concentrated passion．In 1791 he and other dissentients founded the Théâtre Français de la rue do Richeiieu，－a name changed in 1792 to Théâtre de la République，where he won his most striking successes． Talma was among the earliest advocates of realism in scenery and costume，being greatly aided in his reforms by bis filiend the painter David．He possessed in perfection the physical gifts fitting him to excel in the highest tragic prorts，an admirably proportioned figure，a striking counten－ ance，and a voice of great beauty and power，which，after he had conquered a certain thickness of utterance，enabled him to acquire a matchless elocution．At first somewhat atilted and monotonous in his manner，he gradually
emancipated binself from all artificial trammels，and became by perfection of art a model of simplicity．Talma enjojed the intimacy of Napoleon，with whom he had an acquaintance before Napeleon attained greatness；and ho was a friend of Chénier，Danton，Camille Desmoulins， and other revolutionists．He mado his last appearance 11th June 1826．and died at Paris 19th October of that jear．
Talina was the suthor of Mémoires de Le Kain，precedes de Riflexians sur cet Actuer et sur l＇drt Theatral，contributed to the Collection des Memoires sur l＇Art Dramalinue：It wes published scparatcly at Paris in 1856 ，under tho titlc Riefexians de Talma sur Le Kain et l＇Art Theatral．See Memoires de J．F．Talma，érits par tui－méne，el recevillis el mis ext ordre sur les papiers de sa jamille． by Alex．Dunas（1856）．

TALMIUD signifies－（1）＂study of and instruction in anything（whether by any one else or by oneself）＂；1（2） ＂learning acquired＂；（3）＂style，system＂：${ }^{3}$ as such it is synonymous with Mishnah in its fifth signification，vol． xri．p． 503 ；（4）＂theory，＂in contradistinction to＂prac－ tice，＂＂－synonymous with Midrash in its fourth significa－ tion，vol．x xi．p． 285 ；（5）such interpretation of the Mosaic law as is apparent on the surface thereof and does not necessitate any further disquisition；${ }^{5}$（6）Boroitho，or the non－canonical Mishnah；${ }^{6}$（7）Gemarr，i．e．，the oldest com－ mentary on the canonical Misinale；（8）the texts of Mish． nah and Gemara combined，－the meaning which is the one most commonly attached to the term Talmud．Although the word Talmud is not to be found in the Bible，there can be littlo doubt that it is a classical Hebrew term，as may be seen by the analogy of Tahămun，＂supplication，＂Tan hum，＂consolation，＂\＆c．

Recensions of the Talmud．－The Talmud exists in two recensions，－the Palestinian，commonly，but by mistake， called Talmud Yerushalmi（sso below），and the Babylonian， correctly called Talmus Babli．The Talmud Yerushalmi embodies the discussions on the Mishnar（q．v．）of hundreds of doctors，living in Palestine，chiefly in Galilee from the end of the $2 d$ till about the middle of the 5 th century，whilst the Babylonian Talmud embodies chiefly the discussions on the same Mishnah of hundreds of doctors living in various places in Babylonia，such as Neharde ${ }^{\circ}$ ，${ }^{8}$
 tho studying of the Law balances them all＂）；Abolh，iv．13，7י7； （＂be circumspect as regards instruction＂）．
 not arrogant on account of his learning＂）；ef．T．B．，Pcsahim，leaf $49 a$ ；

 study prevalent in Babylonia＂）：comp．T．B．，Pesahion，34b，＂ベクココ
 （＂foolish Babylonians，who，because ye dwell in a land of darkness， say sayings that are obscure＂），and T．B．，Laba A［eșia，leaf 85a Ralbi Zera fasted a hundred fasts on going up to Palestine，so that he might forget the style of Babylonico－Talmndic atudy（הא゙ゥ ב กボלココ ベTท方），that it should not trouble him any further．Rashi takes the quotation from Baba Mesia to signify the concrete Babylonian Talmud，which，however，is impossible．
＊See T．B．，Kiddushin，leaf 40b：＂Is theory（7וDלク）greater＂or practice（ \because UYM）greater？．．They all answered，Theory（רוsh： is greater because it leads to practice．＂Talmud，as will havo beer seen，is here given as synonymous with Linmud．
 this is a plain［Mosaic］teaching＂）．

6 See T．B．，Baba Bathra，leaf 130b，catchword Y7טל リ＇N，and Varix Lectiones in loco．
${ }^{7}$ See T．B．，Baba Mcsiáa，leaf $33 b$ ，and compare Rashi in loco．
－ 8 The rector of this academy was Shernuel，court physician of Shapur I．，and astronomer．Whilst his friend and fellow－pupil RAB（q．v． they both attended the lectures of the priecipal editor of the Misk． nah）excelled in the other parts of the Jewish law，Shemuel was pre－ eminent in the civil law．On account of this to is repeatedly called in the Talmud both＂Shapur＂（like bis master）and＂Aryokh＂（lion， king，teacher）．To him io duo tho legal principle that＂tho lsw of

Kaphri，${ }^{1}$ Mahuza，${ }^{2}$ Shekhansib，${ }^{3}$ but notably at the two great academies of Sura and Pumbaditha，from about 190 to nearly the end of the 6 th century．The doctors of both recensions，although they primarily discuss the correctness of the text and meaning of tho Mishnah，and what should be the right legal decisiou according to it，do not confine themselves to this．They introduce，as occasion serves， not merely the whole of the oral tradition handed down to their time，and the necessary references to，and interpreta－ tions of，the various laws to be found in the Pentateuch and the other sacred writings，but exhibit also，though only in a fragmentary manner，an almost complete cycle of the profane sciences as current orally and known to them by books composed by Jews and Gentiles．The doctors of both these recensions were and are called Amoraim
 the Mishnic doctors，who were and are called Tannain （ ${ }^{\text {NuTjM }}$ ），i．e．，＂learners，teachers，＂they abstained from inak－ ing new laws unless absolutely compelled by circumstances to do so．${ }^{5}$ These Amaraim stand，on the whole，in the same relation to their Mishnic predecessors as counsel giving a legal opinion，or judges deciding legal cases，stand to the legislature which frames the laws．In these points the doctors of both recensions agree．There are，however， also points of considerable difference between the two Tal－ muds．These are not merely geographical，and so neces－ sarily linguistic，${ }^{6}$ but also material．Whilst the discussions in the Palestinian Talmud are simpie，brief，and to the point，those in the Babylonian Talmud are subtle，long－ winded，and，although always logical，sometimes even far－ fetched．${ }^{7}$ But there is another difference．The Palestinian Talmua，besides containing legal and religious discussions， is a storehouse of history，geography，and archæology，
the civil government is the law，＂i．e．，that except io religions matters the Jew must sulmit to the laws of his country（＇T．B．，Bala Dathra， 54b）．Shemuel and Rab（like Rabbi Yohanan and Rest Lakish， Abayya and Raba，and others），though intimate friends，nevertheless differ on nearly all imagiaable point．s， 8 that when the Talmud wishes to give firmaess to a certain decision or opinion，it naes the phrase： ＂Rab aad Shemuel，\＆c．，both agree．＂

1 The rector of this school was Rab Hisda，the father－in－law of Raba（q．v．）．

2 The rector of this achool was Raba（q．v．）．
${ }^{3}$ The rector of this school was Rah Mnhmon b．Yishak（T．B．，Gittin， 31b，Rashi，catchword SJN），husband of the learned and accomplished Yaltha，the danghter of the resh galutha（T．B．，IIullin，leaf 109b），\＆c．

4 Amora may also mean an interpretcr．The great teachers of the first five centuries had gencrally a man（or several men）at their side， who to the learning requisite to translate the master＇s teaching given in Hebrew，and dilate on it in Aramaic，added a Stentor＇s voice，and could by fascinating speech command the attention of the audience． The first Bubylonian Amorc，i．c．，explainer of the Mishnah，who had su Anora，i．e．，s popular teacher，was Rabbi Shila．The first who is koown to have acted as Amora，i．e．，popular teacher，to sul Amora， i．e．，an explainer of the Mishnah，was the famous Rab（q．v．）．See ＇T．Y．，Berahhoth，iv．1，2，\＆c．；T．B．，Berakhoth，Jeaf $27 b$ ；and T．R．， Yome，leaf 200 （against Rapoport，＂Erekh Millin，s．v．＂Amora＂）．
${ }_{5}$ This certainly was not unfrequently the case，but even then they did $e 0$ only in the spirit of the Tonnaim．
－The Palestinian A moraim，teaching people who understool Greek， had not to explain the Greek terms which frequently occur in the Mish． nah and other works kindred to it．The Babylonian Anoraim，how－ ever，who in common with their hearers were ignorant of Greek，had a oomewhat irregular thougb certainly effective way（received by them traditionally）of explaioing the Greek terms in the Mishnah，\＆c．，by Aramaic etymology．We will give two instances only of this practice：
 T．B．，Baba Mesi＂a，leaf 66b，M他 אלN ן get no payment except from this，＂－evidently＝＂Np אin ins o ＂upon this thou shalt ataed，＂i．e．，＂if l do not pay，this shall aerve as my security＂；compare Rashi on Daba Kamma，11b，catchworl ＂P＇תiפN；（2）＂p＇ת’’ ia evidently the Greek $\delta / \alpha \theta \dot{\eta} \kappa \eta$ ，and is ex－
 stand when I am no more，＂i．e．，＂this is my last will and testa－ ment．＂From T．B．，Baba Bathra，leaf $135 b$（evidently a Babylouian Boroitho），we aee that in T．B．，Baba MEssi＂a，leaf 19a，three worda ＇ทコ コ1תปe ל）have fallen out． 7 Compare p．35，footnote 3.
whilst the Babyloniau Talmud，taking into consideratiou that it is treble ${ }^{8}$ the size of its fellow Talmud，contains less of these．On the other hand，it bestows more care upon the legal and religious points，and，leing the later and the more studied of the two，it is also the more trustworthy．

System of the Taland．－Most people imagine not only that the Talmuds are a pathless wilderness，without so much as grammatical rules in their respective languages，but that the laws laid down in them rest on mere tradition．In reality their languages have strictly grammatical rules（see below under Aids，dc．），and their laws rest on a strictly logical system．The laws in both Talmuds are discussed and argued on philosophical rules，for which it is claimed that they have existed from time inmemorial，and can be traced to the Pentateuch itself．These are－（1）the Seven Rules （שׂע מדות（י），put forth by Hillel（T＇osephto Synhedrin，vii．， last \S ；Siphro，towards the end of the Introduction；A loth de－Rabbi Nathan，xxxvii．）but a great deal older than his time；（2）the Thirteen Rules（שלש עשרה מדות），put forth by R．Yishma＇el（Introduction to Siphro），which can，how－ ever，be traced in nuce to the foregoing＂Seven Rules＂： both these are for the IIalakhah；and（3）there are also the Thirty－two Rules（שלשים וטתים טרות），put forth by R． Eli＇ezer b．R．Yose Haggalili（vol i．of most editions of the Babyloniau Talmud），which are for the Agadah．In additiou，most of the points to which these rules apply are secured by early tradition．It is quite true that by idiosyn． crasy digressions are very frequent both in Talmud and Midrash；but in the Halakhah the digression，however long，invariably ends in coming back to the original cause of the logical combiuation，whilst in the Agadah the digression either comes back to the place from which it started，or else will be found，on examination，to have been introduced for its own sake，and have served its own pur－ pose．As the doctors of Talmud and Midrash are mostly introduced in dialogues，this is the only practical if some－ what uncommon，method．

Division of the Talmud．－The external division of both Talmuds is identical with the divisiou，subdivision，and sub－subdivision of the Mishnah，although there is not aiways Gemara in the one when there is Gemara in the other．${ }^{9}$ This，however，need not be further discussed here， as all on this head is minutely specified in Misunar （q．v．）．Concerning the internal division into Halakhah and Agadah，it ought to be said that the former is more largely represented in the Babylonian Talmud，whilst the latter is more largely and more interestingly given in the Palestinian Talmud．Whole collections of Midrashim now in our hands have constituted（if we may judge from the known to the unknown）part of the Palestinian Talmud，${ }^{10}$ and seem to bave chiefly belonged to those portions of it which have bcen gradually lost．

Purpose．－The Talmud，unlike the Mishnah，contains not only individual decisions，but everything that is necessary for arriving at legal and religious decisions of whatever description these may be，whilst，like the Mishnah，it is not itself a handbook of decisions．This is only in accordance with the nature and spirit of an oral law which delegates the decisions to the Talmudico－speculative capacities of the teachers of every age．Even several of the comparatively few instances in which the words ．．＇＇כ（＂and the

[^13]decision 1．5 according to so and so＂）occur in the Babylonian T＇almud ne alater addition．They belong to the IIalakhoth Gedoloth，${ }^{1}$ and are coasequently，at the earliest，of the Sth reutury，but are probably of even much later date．
Editors．－Tie editorship of the Palestinian Talmud is generally，after Maimonides，${ }^{2}$ ascribed to Rabbi Yohanan （b．Naןl！a）．But this，if literally taken，is a gross mistake， as that teacher（ob．279）died more than a hundred years before the latest A moral（c．450）mentioned in that Talmud． A similar error is made with respect to the editor，or editors of the Babylonian Talnud，whose names are given as Rab Asslii（see liab）（ob．42i）and Rabina（ob．550）， and who lived still much earlier than the last teachers mentioned in that Talnud（Sth century）．But it ought to be remembered that when the ancients speak of editors of books of such a mixed character as the Mish－ nah，the Z ohar，both Talmuds，sc．，they mean the person or persons who gave the first impulse to the collection or redaction of such books．In this sense，certainly，Rabbi Yohanan was the editur of the Palestinian and Mab Asshi and Tabina were the editors of the Babylonian Talmuds． For，whilst the first of the latter pair went more than once tlurough the discussion of the whole Mishnah by the Imorain from 190 to lis time（c．427），the latter supple－ mented the collection down to his own time（550）．As regards the Babylonian Talmud，the Amoraim were succeeded by a new order of men called Saborainn（רבנן ＂סבורא），i．e．，＂opiners，＂who ventured only occasionally to revise and authenticate the sayings of their predecessers． The last of these Saboraim were Rab＇Ina（or Giza）and Rab Simona（c．550－590）．In any case neither the one Talnud nor the other was writtea down，slight private uotes excepted（מללות סתרים），before the close of the 6th century，if then．The apparently insuruountable diff． culty of keeping such vast masses of literature in the head is removed when one takes into consideration that both teacher and studeut had means of help to their memory fully corresponding to the vastness of the literature．In the first place，they had the numbers already occurring in the Mishnah（e．g．，five must not separate the heave－offering or account of the benediction to be recited in connexion with the act；Tereanoth i．1），\＆c．Secondly，they had namies．Since to the sayings of the Talmud were generally attached the names of those who nttered them，saying and name became in the inemory of the student identical．If somebody who had heard a certain saying from somebody， who in his turn bad heard it from somebody else，was mentioned in the Talmud，all other sayings，however unlike these in nature，if they had only the same link of tradition，were recited on the same occasion：e．g．，in the Palestinian Talnud，Megillah iv．1，＂sajs Rabbi Haggai， says Rabbi Shemuel b．Tal Yiṣhak，＂，\＆c．；；T．B．，Berakhoth， leaf $3 b$ ，\＆c．，＂says Rahbi Zerika，says Rabbi Ammi，says． Rabbi Yehoshua ${ }^{\circ}$ b．Levi，＂\＆c．Thirdly，other oral tradi－ tions，which went by the order of the Pentateuch，received in the written Peutateuch rast aids to memory．Fourthly， the Mishnach（althongh itself not written down），by its divisions，subdivisions，and sub－subdivisious，became，in its turn，a mighty aid to memory．Fifthly，as regards the Kalylonian Talmud，there are additional means of aiding meinory in existence，for every now and then one meets with a Arnemosynon（Siman），which strings together the order of suljects（e．g．，T．M．，Berchlhoth，32a，last line）． Both in MSS．and printed editions these Simanim are given in brackets．Rapoport and his followers would have

[^14]us believe that these mnemonc phrases are late muentions， but they have as yet failed to make gond their assertions． See T．B．，Shabbah 104 a，and T．B．，＇Erubin，54b，whero these Simanime are positively mentioned carly in the fth century ：cf．Rashi in loco．

Falue－The value of the Talınuds may be estimated by the fact that they contain the dfishuch in various recen－ sions and a large portion of the contents of Midrashic col－ lections，and in addition comprise a vast anount of Sopheric literature not to be found in the caupnical Mishalh and Agadic matter not to he found in the known Micluckshim， and have thousands of notices on secular knowledge of all kinds．Here，however，the reader ought to be again ro－ minded that，whilst the Babylouian Talnud，the one of much larger extent，contains a great deal more Judwo－ religious matter，the Palestinian Talmud－of much smaller extent－is of much greater value for the historian，the geographer，the nunismatist，and other students．

Vicissitudes of the Talmud．－Whilst the Babylonian． Talmud commanded the attention of a hostile world，and was proscribed，mutilated，${ }^{\circ}$ and condemned，and finally delivered over to the flames ${ }^{4}$ by popes and kings，the Palestinian Talmud suffered still more from one cingle enemy－neglect．${ }^{5}$ Thousands of copies of the former recension were destroyed in the course of time，but，this Talmud being studied in all parts of the world，the few copies surviving became the means of an＇endless supply． Not so as regards the Palestinian Talnud，which found no students，or but few，after the closing（c．450）of the Jewish academies in Palestine；and we have even to thank the enemies of traditional Judaisn，the Karaites，who used it in controversy with their Rabbanite opponents，for the preservation of some copies of it．By degrees the neglect of the book became so great that whole chapters of treatises， whole treatises of orders，and almost two whole orders themselves，disappeared，and are lost to this day．${ }^{6}$
Aids to the Study of lhe Tatmutds．－（a）Lexicons．－The first rank is occupied by lexicons for both Taluuds and Midrashim，and of these that by R．Nathan b．Ychiel of Rome，compiled in the 11th and 12 th centuries，claims the first place．All other lexicone，from Elias Levita，Pliilip Aquinas，Johannes Buxtorf，\＆c．，down to Levy and Jastrow，are more or less bascd upon this grand work called＇Arukh．${ }^{7}$（b）Grammars．－A slight attempt at compiling a
${ }^{3}$ Raymundus Martin（Ramon Martirez），backed up by his teacher Pablo Cristiani（see Ramban），was ons of the first five（or rather sir） mutilators（called censors）of the Talmud and kindred books．See Touron，Histoire des Hommes lllustres de l＇Ordre de Saint Dominigue． i．（Paris，1743，4to）p．492；Jour．Phitol．，xvi． 134.
${ }^{4}$ In the midsurmmer of 1244 twenty－four waggons full of Talmnd copies were burned in France（sea Joumal of Philology，svi．133）． A certain Donin（afterwards called Nicolaus），a converted Jew，by bis accusations against the Talmud，managed that Rabbi Yehiel of Paris＇ had to dispute with bim publicly about its coutents．The disputation took place in the midsummer of 1240；and R．Yehiel cama out of it so victoriously that ouly after four years＇further machinations the Talmud was actually burned．The disputation is printed under the Dama of Disputatio cum Nicolas A． 1252 （！）habita cum Versione Latina in Wagenseil＇s Tela Ignea Satunc（Altdorf，1681，4to）；a less incorrect Hebrew edition cama out in $1873,8 \mathrm{vo}$ ，at Thorn．This event of burning the Taluud called forth three elegies－（1）by R ． Binyamin b，Abrabanı De＇Mausi，hegiuni－g Div תicc，and the refrain of which was הר（see MS． Add．374，Camb．Univ．Lib．，leares $307 a-308 a$ ）；（2）by R．Mifir of Rothenburg（seo Rosk），the beginning of which is どMン （in the Ashkeazic ritual for tha 9th of Ab）；and（3）by H．Abrahau b．Yiṣhak（see Zunz，Zur Gesch．u．Lit．，pp．463－4）．This A bralam b．Yishak is the father of the famous En－bonet Abrara Bederesi（not Bedarshi ；aee Schiller－Szinessy，Cotal．，i．correctiou 5），the author of the Behinoth ${ }^{\text {＇OLam．}}$
${ }^{5}$ See Schiller．Szinessy in the Academy，1878，p．171，and extract from Excursus iii．（to the Catalogue）on the Palestinian Talmud in Occasional Notices，\＆\＆．，i．，Cambridge，1878，Svo．
${ }^{6}$ See the before－mentioned Occasional Notices．
7 Rabbenu Nsthan b．Yehiel b．Abraham was，on his father＇s side an＇Anar（y）－and not an＇Akko（1כy＇）as Rapoport，no doubt after Ibn Yahya，writes it in Bikkure Haittim，x． 7 －i．e，of the family ＇Anarim（Dei Mansi，Dei Mausuett，Dei Pirtelli，Dei Pietosi，Dej
grammar，and this only for the Babylonian Talmud，was made by the late learned S．D．Luzzatto．It exists in Italian（Padua，1865）， Gernan by Kruger（Breslan，1873），English by Goldainmer＇（New York，1876），and Hebrew by Lerner（St Petersburg，1880）．Of more value，however，is Noldeke＇s Mandaitic Grammar，although it stands in connexion with the Babylonian Talraud only in an indirect wey．（c）Comntutaries．－Commentaries on the greater por－ tion of the Babylonian Talmud ara extant，by the fanous Rabbenu Hananee］of Kairwan，the teacher of Riph（q．v．），by Rashi（q．v．）， and by the descendants and disciples of this latter conimentator， who composed the Tosaphoth．All these are included in the latest Talinud edition of Vilna．It is asserted by Rabad II．（q．v．）that the whole（B．）Talmud liad been commented on in Arabic．As regards the commentaries cn the Palestinian Talmud，it ought to be said that the Pene Mosheh，\＆．c．，by R．Mosheh Margaliyyoth， and the Korban Hiedaii，\＆c，，by R．David Frankel（the teaclier of Mendelssohn），make more than one commentary on the whole，and they are embodied in the Zintomir edition（1860－67）．（d）Meihod－ ology．－Among the many Introductions to the Babylonian Talmud that of R．Shemuel Haznagid must now be considered the first， not only in time but also in value．There was indoed an earlfer， and perhaps a etill moro valuable one in existence（see SAADIA）， but it 18 now unfortunztely lost．As regards the Palestinian Talmud，the only one in existence is that by the late Z．Frankel （Breslau，1870，8vo）．The Euthor was a most learned man，but somewhat confused in his diction．（s）Translations．－Renderings of isolated treatises of the Babylonian Talmud exist in Latin， Ugolini，Thesaurus，six．，Zebahim and Menahoth，and xגv．， Synhedriu；${ }^{1}$ in French，e．g．，Berakhoth，hy Chiarini（Leipsic，1831，
Umani，Dei Umili），and，on his mother＇a sida，of the Tappuhim，i．e．， De Pomis，to which the celebrated quthor of the Lexicon Semah David belouged．Rabbenu Nathan＇s father and grandfather，like Rubbeuu Nathan himself and his brother＇s descendants，were，no doubt，papal court Jews（ond not linendrapers，as the latest editor of tbe＇Arukh， by misreading and misinterprating the aomewhat hord verses of his author，contrives to show）．This lucrative position furnished them witb ample means not only for their nobla charities to congregational insti－ tationa（a synagague，religious bath，\＆c．），but also with the leiaure aecessary for tha pursuit of Talmudic studies．Rabbenu Nathan was resh kaitah（rector of the Jewish university），and unquestionably the greatest Talmudist，even as he was the poorest Habrew poet，in Italy in the 11th and 12th centuries As regards his teacbers we know four，three of whom he attended，whilst ba atudied and digested the works of the fourth so well that，though personally unknown to one nnother，they may be justly called master and discipla．His 6rst teacher was his own fathar；bis aecond tercher，from whom Rabbenu Nathan no doubt obtained his thorough knowledga of Babylonian habits，was R．Masliah of Sicily，who had been a hearer of the greatest ＂gaon＂of Pumbaditha；his third teacher was R．Mosheh b．Ya．akob b． Slosheh b．Abbun of Nerbonae（or Toulouse；letter known under the name of R．Mosheb Haddarshan）；and the fourth was Rabbenu Han－ aneel of Kairwan．He owed so mach to this teacher that as soon as tha＂A rukh bad appeared most people took it for granted tbat Rabbenu Hananeel had lived at Rome，and accordingly called him＂a man of Rome－＇1sh Romi＇＂；see MS．Brit．Mas．Add．27，201，leaf 73b，and Tosaphoth，passim．（That Rabbenu Gershom，Rabbenu Mosheh＇Diפy， and othera were his teachers，as Rapoport，loc．cit．，asserts，is a fic－ tion．）Rabbenu Nathan，in bis＇A rukih，does not merely explain the foreign（i．e．，Aramaic，Persian，Greek，Latin，and Arabic）words occur－ ring in the Targums，Talmuds，and Midrashim，but the subject－matter alao，and thereby proves himself a donbly useful guide．In this，al． though he had been preceded by no lesa a personaga than the Gaon Semah b．Paltoi（f．870），who also composed such an＇A rulh，Rabbenu Nathan was virtually the first，as the Gaon＇s work hed been early lost．Tho assertion that the fourth of the four men captured by the Spanish admiral（see below，p．39）was R．Nethan Habbabli，that he livad in Narbonne，and that he also composed a similar＇Arukh，rests on a misunderstanding，as the quotation in the Iohusin claarly showa， The passages there given under R．Nathan Habbabli ara taken verbatim from the Arukh of our author（compare the article $\mathcal{V} \sum \mathrm{E}$ ，\＆c．）．That Rome bas been at times called in Jawish writings＂Babel，＂and that consequently Habbabli may mean＂the Roman，＂is clear from tha writings of the New Testament．We will only add here a few words concerning the biblingraphy of the book．Of the＂A rukh exist ao far teu editions，the first of which came out undated，but before or ebout 1480．The seventh edition was enriched by tba physician R．Binyamin Musaphia＇s Musaph，i．e．，Additamenta（Musaphia was a Greek and Latin acholar），and the latest edition by Dr Kobut is now in progress． As regards the MSS．of this remarkabla laxicon the best copies are to be found partly in the University Library，Cambridge（Add．376， which has all the verses of the nutbor and additamenta by R．Shemuel Ibn עDd，and Add．471－72），and partly at the Court Library，Vienns （Cod．cvi． 1 and 2）．The lattar were carried off by Napoleon I，to Paris in 1809，but in 1815 were returned to Vienna．
${ }^{3}$ Varions writers assert that tbere exist many books containing Latio translations of various treatises of the Babylonian Talmud．

8vo）；and in German，c g，Berakhoth，by Rabe（Halle，1777，4tos， regard bcing had also 1 m both to the asme treatise of the Palestinian recension，and again by Pinner（1842）；Baba Mcsi＂a ，by Sammter （1876），both at Berlin and in folio；＂Abodah Zarah，by Ewald （Nuremberg，1856，8vo）；Ta＇anith，by Straschun（Halle，1883）； Dfegillah and Rosh Haschanah，by Rawicz（Frankfort－on－the－Main， 1884 and 1886）．The assertion that the whole ef this Thalmud has breen translated into Spanish has yct to be proved．As regards the Palestinian Talmud，Ugolini＇s Thcsanurus contains the following treatises in Latin ：－Pcsahim（vol．xvii．）；Shckalim，Yoma，Sulikah， Mosh Hasshanah，Ta＇anith，Megillah，Hagigah，Besth，Mo＇cd Kalan （vel．xviii．）；Ma＇ascroth，Maaser Sheni，Hallah，Orlat，Bikikurion （vol．xx．）；Synhedrin，Makkoth（vol．xxv．）；Kiddushin，Sotah， Kethuboth（vol．xxx．）．M．Sohwab（of the Bibliothique Nationale， Paris）lias undertaken a French translation of the entire Palestinian Talmud，which is now in progress；from this Ber Ri／hoth has been trauslated into English（London，1886， 4 to）．
Editions．－The editions of the Palestinian Talnud，iu what was then called its entirety，are only four：－（a）Venice， 1523 ，without any commentary；（b）Cracow， 1609 ，with a short commentary，the text apparently from a different MS．from that used for the editio princeps ；（c）Krotoschin，1866，with a short commentary differing from that of Cracom：these three editions are each comprised in one volunie；（d）the fourth edition came out at 7hitonil；with commentaries by different meц（see Commentarics above）．All theso editions are in folio．Of the editions of iselated treatisea，which are not a few，we will only mention those of Berakhoth（Vienna，1874） and Peah and Demai（Breslau，1875，both in 4 to），witl a new com－ mentary by Z．Frankel．The editions of the Babylonian Talmud are so humerous that they would reiuire soveral entire shcets for enumeration．There is in existence an approximately good treatise on them（see Varim Lectiones，vols．i．and viii．）．We will only name three of the entiro editions：－（1）the editio princeps，Venico， 1520－23，－which，though disfigured by numeroue misprints，was not mutilatel by the censer；（2）the edition of Basel（1578－81）， which omits＇Abodah Zarah altogether，and has a cheering（？）notice in Latin；${ }^{3}$（3）the latest edition，now printing at Vilna，with old commentaries hitherto unpublished．Of isolated treatises，which may be counted by more than hundreds，we will only mention one （the Portuguese of at least Berakhoth），tho existence of which was asserted in the last century（Pahad Yishak，s．v．ヘึクาภПロコ ベコンコ）， then again called in question in our own times，but positively proved by the present writer from an eally work composed at the time when but fow editions of the Talmud existed．It is the Zora Abraham（Camb．MS．Ti．6．50，leaf 59b）．Materiels for the critical editiou of the Babylonian Talmud from an ancient MS．formerly in the monastery of Pfersee，but now in the Royal Library of Munich， and other MSS．and early prints of isolated treatises in varions public and private libraries of Europe，Asia，and Africa，have been collected and are being published by Rabbinovicz．Of this import－ ant work fifteen volumes，containing the following trestises，have already come out：－the whola Serlcr Zeraim（1867）；Besah，Hagigah， Móed K̈atan（1869）；Sukkah，Ta＇anith（1870）；Rosh Hasshanah， Yoma（1871）；＇Erubin（1873）；Pcsahim（1874）；Shabbath（1875）； Mcgillah，Shekalim（1877）；Synhedrin（1878）；Abodah Zarah， Makleoth，Shebuioth，Horayoth，＇Eduyyoth（1879）；Baba Baihra （1881）；Baba Kamina（1882）；Baba Mesi＂a（1883）；Zebahim（1884）； Menahoth（1886）．All these were printed in 8ro and at Munich． except vol．ix．，which came out at Mainz．

Influence of the Talmud．－It must be admitted by every critical student of history that the Talmud has not merely been the means of keeping alive the religious idea among the Jew＇s，but has fornied their strongest bond of union． When，after the fall of the city of Jerusalem and its temple， and the expatriation of the Jews from Palestine，a goodly portion of the Mosaic law lost its application，the Talmud became the spirit which put fresh life into the letter which
Upon examination these books turn out to contain either a transla－ tion ouly of Mishnic treatises with or without excerpta from，and with or without schalia on，Gemara，or disputations wbich introduca omall piaces of Gemara．Tbe utmost they contain is a chapter or two translated from Gemara itself（as，for axample，＂Edzard，Aboda Sara，＂ \＆c．，Hamburg，1705－10 4 to which containg Gemara of the first two Perakim）．
${ }^{2}$ The paging of this has been followed in all subsequent editions．
－Nunc ab omnibus iis quæ contra religionem Christianam facie． bant recogaitum，at juxta mantem Sacri concilii Tridentini expurga－ tum et approbatum，ut non modo citra impietatem verum etiam cnm fructu a nostris legi possit．
＊The notes in the first fourteen volumes go under the name of D＇רפา． 7 7，whilat those of the fifteenth volume have tha title of Dהาבバ 71ゴ，in memory of the late Abrabam Merzbacher，who not merely proved the Mrecenas of this publication during his lifetime， but left a coosiderable sum for its continuation and completion．
had become to a great extent dead Moreover, by the Talmud, the interpretation of which was chiefly in the hands of the academies of Sura and Pumbaditha, the Jews of all the world found, if not a new Jerusalem, at least a new Yabneh (Jamnia), i.e., a place where the old learning was not merely continued, but made to shine with a yet greater eplendour. This fact will be the more readily acknowledged and appreciated when one casts a glance at the miserable religious condition of the Karaites, the so-called Scriptural Jews.

T'ransference of Talmudic L̈earning from the Enst to the West.-There naturally came ε time when Talmudic learning, if it was to maintain its influence upon the Jews, could not be confined to one spot. We have secn under Rashi (q.v.) that the great emperor of the West (Charlemagne) had been the means, torrards the close of the 8th century, of bringing learned Talmudists not only to Provence but to the north of France and the south of Germany. ${ }^{1}$ But when nearly two hundred years later the academies of vabylonia were threatened with extinction (because of their lacking, from varions causes, the means of subsistence), so that they had to send out members of their body to supplicate the support of their richer brethren in other countries, it providentially happened that the four men whom they sent were taken by a Spanish corsair admiral and sold in four different slave-markets. Rabbi Shemaryah was sold at Alexandria, and was redeemed by the Jews, and great was their astonishment when they recognized in him a most able Talmudist. He became the head of the Cairo community, and one of the most successiul Jewish Talmud teachers Egypt ever had. Rabbi Husshiel was taken to Kairwan, in Africa. There the Jews redeemed him ; and when his great learning was found out he was named the spiritual head of the Jews in that place. From the school which he founded sprang not merely his own son, the famous Rabbenu Hananeel, but also the great Rabbenu Nissim, hath teachers of Ripy (q.v.) Another learned captive, R. Mosheh, was brought to the slave-market of Cordova, the rabbi of which town, a noble and rare example of unsel Gishness, modesty, and love of truth, placed the ragged stranger who had only been ransomed for charity's sake a day or so before at the head of the community instead of himself. The name of the fourth is unknown (see Rabad II., and Yohasin, ed. Cracorr, leaf 125l). Some assert that he was R. Nathan Habbabli, and that he became the teacher of the Jews in Narbonne, but this is a mere conjecture, the truth of which has yet to be proved (see page 37, footnote ${ }^{\circ}$). Be this, however, as it may, four great Talmodists, who had come direct from the Babylonian acadcmies, becane the means of bringing Babylonico-Talmudic learning, to places the Jews of which had been dependent on the religious and literary crumbs that fell from the richly-laden tables of Sura and Pumbaditha. Some years afterwerds the former acadcmy was closed, and a short time afterwards the same fate befcll that of Pumbaditha, the sunset of which, if not the noonlight, in the persons of Ilab Sherira Gaon and his son Rab Hai Gaon was even more glorious than that of the sister academy, the last "gaon" of 'which was Rab Shemuel b. Hophni, father-in-law of Rabbenu Har. Meanwhile, however, Talmotic learning had not merely become naturalized, but eventually indigenous in rarious parts of Africa, and part of Europe (Spain, Italy, Provence, the south of Germany, ard the north of Francc). Rabbenu Gcrshom b. Yehudah of Mete and his disciple Rabbenn Tishak of Troyes, Rabberu Ia'akol b. Yakar of Worms, Rabbenu Eliezer Haggadol and his disciple and successor Rabbenu rishak Sezan Leviyyal, Rabbenu Yishak b. Tehudah of Mainz,

[^15] talned her teachers direct fron Irak.

Rabbenu Elyakin of Spires, Rabbenu Nathan b. Yehiel of Rome, and last but not least Rashi himoelf, and his sons-in-law and other disciples, represented Talmudic learning in such perfection as had not been found before as regards the Babylonian Talmud, even in the land of its birth and growth. It was the disciples' disciples of these men who studied and taught in various towns of England within a hundred years (1150) after the Conquest. When, towards the end of the 13th century and the commencement of the 14th, the Jews were driven out of England (1290) and France (1306), and flocked chiefly to Italy, Greece, Germany, and Poland, the last-named country appropriated the lion's share of Talmudic learuing, so that till within our own centary the rabbis of the clief communities in Hungary, Moravia, Bohemia, and other Austrian states, and in Germany, Holland, England, \&c., had to be fetched from Poland. Talmudic learning, since Mendelssohn and his school arose, threatened to die out not merely among the Jervs in Germany, but also among those of the other countries where the Jews syoke the German tongue in some form or other. Within the last twenty-five years, however, fresh impulse has been given to these studies, not merely among Jewe but also among Christians.
(s. м. s.-s.)

TAM, commonly called Rabbent Tam, more correctly
 known two eminent Rablinic scholars, both named YA'AROB, to whom this epithet was given in allusion to Genesis xxy. 27: "And Jacob was a perfect man" (Ish Tam, 唃 UN). They belonged to the north of Frunce, lived in the 12th century, and avere master and pupil.

1. Ribbenu Ya'akob b. Meir b. Saemuel was, on his mother's side, a grandson of Rashi (g.v.). He was his parents' third son, younger brother of Ribam and Rashbac (q.v.), older brother of Rabbenu Shelomoh of Rameru, ${ }^{2}$ and brother-in-law of Rabbena Shemuel b. Simhah of Vitry the younger ${ }^{3}$ (the reputed author of the Mali:or Fitry, ${ }^{4}$ now apparently lost ${ }^{5}$). Fabbenu Than had, like his grandfather Rashi, six teachers:-(1) his own father, (2) his brother Ribam, (3) his brother Rashbam, (4) Rabbenu Ya'akob b. Shimshon, ${ }^{6}$ (5) his grandfather Rashi, ${ }^{7}$ and (6) Rabbenu Yoseph Tobe Elem the younger. ${ }^{8}$ Rabbenu Tham bad at least five children. ${ }^{9}$ The names of three of his sons were Yoseph, ${ }^{10}$ Yislhak, ${ }^{11}$ and Shelomoh. ${ }^{12}$ Rabbenu Tham was unquestionably among Jews the foremost man of his age. For not only was lie the greatest Talmudist after his maternal grandfather's death, but he also added reading wide and varied to a stupendous memory and a marvellou 3
${ }^{2}$ Sce MIS. Add. 27,200 is the Br. Mıa., leaf 1586.
${ }^{2}$ See Rashi's Siddur, i. leaf $1 b$.
*See Schiller-Szinessy, C'atalogue, ii. p. 88

- See art. Rasai (vol. xx. p. 284, yote 10).
- This rabbi was a disciplo of R. Shemnel Hallevi (see Schiller. Szinessy, Caial., ii. P. 65, note 1) and of Rashi, aad was not only a great Talmudist, an were all the disciples of the laat-named emiaeat teacher, but also a great mathemstician aod istronomer, tbough a terribly bad poot His commentary on Aboth is ia part printed, add is to be found, inore or less perfect, in various libraries is Eurone, although not recognized as his. It is ascribed variously to Rashi, to Rashbam, aod others. Tllera ara copies of it iu Caobbridge (Ald. 1213; Adl. 1523), Oxford (Opp. 31\%), tha British Musenal (Add. 27201), the Beth Hammidrash of the Ashkenszim in Lonilon, \&c. (The master of St Jolin's, Cambridge, is preparing an edition of it.) A work on intercalation by Rabbenu Yarakob b. Shimshon exists in MS. at the Bodleian (Opp. 31 $)$) under tbe nanie of Scpher Haclleshi. From hin, no doubt, Robbonu Tham imbibed his love for scienca. On the fact that Rabbenu Yaiakob J. Shimshon was Rabbemu Tham'a tencher (agaiost Zuoz), see Schiller-Szinessy, C'atal., ii. p. G6, note.
${ }^{7}$ Rabbenu Tham, dying an old man, must have been from fourteen to sixteen years of age when Raslii died.
${ }^{9}$ See Sepher Mayyashar, $\S 620$ (leaf $74 a$, col. 2).

9. See Camb. MS. Aud. 667, 1, leaf 64b, col. 1.
${ }^{10}$ See Brit. Mlus. MIS. Alld. 27200, leaf 1583.
${ }^{11}$ See Sepher Mayyashar, § 604.
12 Sce shibbite llalledet (erl Buber), p 10
power of comhination, sucl as appeared only again in the last century in the persons of R. Yelonathan Eybenschütz (0). 176t) and R. Yehezkel Landau (ob. 1793). Let us add that he was a lexicographer, grammarian, and Biblical rommentator of no inean order; that ho was a poet in Hebrew and Aramaic ${ }^{1}$ inferior only to Ibn Gebirol (Avicebron. q. 0. .), Mosheh Ibn 'Ezra, and Yehudab Hallevi (and by far greater in this art than the commentator, Abrahanı 1 bn ${ }^{\text {'E Era }}$): : that he was held in high esteem by prince and nobles; ${ }^{2}$ and that he was a man of great wealth, with which he generously supported, not merely his own poorer hearers, but other itinerant scholars also. ${ }^{3}$
His works are the following:-
(1) Commentary on Job, and, no donbt, ou other rarts of the Pible (sea Camm. Univ. Lib. MiS. Dd. 8. 53 , leaves $1 b, 4 a, 11 a$, 12b). All these are apprarently now lost. (2) Hakhridioth, i.e., lexical and grainmatical decisions between Ienateen lbo Seruk and Dunash L. Labrat (see Scrher Testuboth Dunizash b. Labrat, Ediuburgh, 1885, $8 \mathbf{0} 0$). That these "decisions" are really by Rahbenu Tham is proved by the before-named MS., leaves $10 a$ and $16 a$, where the book is quoted ly an suthor of the 13th century. (3) Sepher Hayyashur (Vienna, 1810, folio). Although this work, in its present forn,1, is the compilation of one of Ralbenu Than'a disciples, R. Yishak b. Durbal ly name (also called Isanc of Russia; see Schiller-Szinessy, Cuttatogue, i. p. 164, and ii. p. 66), not only ia the foundation Rabbenu Tham's (sea Preface), but the contents also are virtually his. Compare the Cambridge MS. Add. 667. 1, passim. (4) The grester part of the Tosaphoth in the Babylonian Talmud are indirectly also by Rablenu Tham ; and he is virtually the first Tosaphist. It is true that liis tather, his brother Kashbam (q.v.), and his nncle Rabbenu Yeluudah b. Nuthan had written Tosaploth before him, and that this kind of literary activity lasted to within the first quarter of the 14 th century. Still, loost and the best of the Tosaphoth now in our hands rest on Rallbenu Tham and his school. (5) Malcor', i.e., a prayer-book, \&c., for the whole year, with Rabbinic ordinances, \&c. See Tosaphoth on T. B., Borukhoth, leaf 37a, catchword DDIza, and Birekhoth Mruhnareun of R. Meir b. Barukh of Rothenburg (Riva di Trento, $1558,8 \mathrm{vo}$), leaf 4π. (6) Pocms. These are partly dilactic and partly liturgical," Of the former kind a specimen will be foumd ("On the Accents," communicated by Halberstam) in Kobak's Yeshurun, v. D. 125 sq. The liturgical poenis, gaviin, are of tivo kinds: (a) such ns have no metre and rhyme only by means of plurals, possessive pronouns, and such like (rliymed prose), and which perfectly resemble most of the productions of the FrancoAslhkenazic school (see, for example, the facsimile in Muller's Cata. logue, Amsterlanin, 1868, 8vo); (b) anch as lave metre and rhyme, and resemble the productions of the Seplaradic seliool, c.g., the one beginniug " 102a). (i) Parious ordinances, \&c., are to be found in later writers (see IIS. Add. 667, in Cambridge, passim, end Teshuboth Maharam, Prague, 1608, folio, \& 1023, \&c. .). Rabbenu Thanı died in 1171 ; see Rashi's Siddur, ii (furneerl) Luzzatto's, then Halberstam's, and now the property of the master of St John's College, Cambridge), leaf $48 a$.
10. Rabbent Tacakob of Orleans, rabbi of London (3). He is often quoted in the Toscphoth (both on the Pentateuch and on the Babylonian Talmud). No independent works of his, however, are extant. He was killed at London in the tumult on the coronation day of Richard Cceur-de-Lion (September 3,1189; Schiller-Szinessy, Catal., i. p. 117).
(s. M. S.-s.)

TAMLAQUA, a borongh of Schuylkill county, Pennsylvania, United States, in a broken, hilly country, upon the

[^16]Little Schuylkill river, 98 miles nearly north of Phidadelphia. It is in the midst of the anthracite coal region, and coal mining is one of its priacipal interests. It is an important railroad centre, upon the Philadelphia and Reading system, being the point of intersection of three main lines and the terminus of several minor branches. The borough had a population of 5960 in 1870 and of 5730 in 1880.

TAMARIND. This name is popularly applied to the pods of a Legnminous tree, which are hard externalls, but within filled with an acid juicy pulp containing sugar and various acids, such as citric and tartaric, in combination with potash. The acid pulp is used as a laxative and a refrigerant, the pods being largely imported both from the East and the West Indies. The tree is now widely distributed in tropical countries, bat it is generally considered that its native country is in eastern tropical Africa, from Abyssinia southward to the Zambesi. Sir Ferdinand von Mueller notes that it is truly wild in tropical Australia. The name (meaning in Arabic "Indian date") shows that it entered inedieval commerce from India, where it is used, not only for its pulp, but Ior its seeds, which are astringent, its leaves, which furnish a yellow or a red dye, and its timber. The tree (Tamazindus indirc, $\mathrm{L}_{\text {. }}$) attains a height of 70 to 80 feet, and bears elegant pinnate foliage and purplish or orange veined flowers arranged in terninal clusters. The flower-tube bears at its summit four sepals, but only three petals and three perfect stamens, with indications of six others. The stamens, with the stalked ovary, are curved away from the petals at their base, but are directed towards them at their apices. The antherd and the stigmas are thus brought into such a positiou as to obstruct the passage of an insect attracted ly the brilliantlycoloured petal, the inference of course being that insecta are necessary for the fertilization of the flower.

TAMARISK. The genus Tamurix gives its name to a small group of slrubs or low trees constituting the tamarisk family. The species of tamarisk and of the very closely ailied genus Myricaria grow in salt deserts, by the sea-shore, or in other more or less sterile localities in south temperate, subtropical, and tropical regions of the eastern hemisphere. Their long slender 1 ,ranches Lear very numerous small appressed leaves, in which the evalorating surface is reduced to a minimam. The thowers are minute and numerous, in long clnsters at the ends of the luranches or from the trunk. Each has t-6 free sepal.3, and as many petals springing with the $4-12$ stamens from a fleshy disk. In Tamurix the stamens are free, while in Myricaria they are united into one parcel. The free ovary is onecelled, with basal placentas, and surmounted by $3-5$ styles. The fruit is capsular, and contains numerous seeds, each usually with a long tuft of bairs at one end. The great value of these shrubs or trees lies in their a Lility to withstand the effects of drought and a saline soil, in consequence of which they grow where little else can lourish. It is on this account that the common tanarisk, T. gallice, is planted on our sea-coasts, and affords shelter where none other could be provided. The light feathery appearance of the branches, and the pretty rose-coloured flowers, render it also an elegant and attractive shrub, very different-in character from most others.

Some species produce galls, valued for their tannin, while the astringent bark of others has been valued for medicinal purposes. The ashes of the plant, when grown near the sea, are said to contain soda : but, when cultivated inland or on sweet soil, they are, it is alleged, free from soda.

For tamarisk manna, see Manna, vol. xv. p. 193.
TAMBOFF, one of the largest and moit fertile governments of central Russia, extends from north to south between the basins of the Oka alid the Dor, and las

Vladimir and Nijni-Novgorod on the N., Penza and Saratoff on thie E., the Don Cossacks and Voronezh on the S., Tula and Ryazañ on the W. It consists of an undulating plain intersected by deep ravines and broad valleys, ranging between 450 and 800 feet above sea-level. Chalk and Jurassic deposits, thickly covered by boulder-clay and loess, are widely spread over its surface, concealing the ${ }^{\circ}$ underlying Devonian and Carboniferous deposits. These last appear only in the deeper ravines, and seams of coal lave been noticed at several places. Iron ore (in the north-west), limestone, clay, and gypsum are obtained for building and manufacturing purposes; traces of naphtha have been discovered at Tamboff. The mineral waters of Lipetsk, similar to those of Franzensbad in their alkaline clements, and chalybeate like those of Pyrinont and Spa ${ }_{2}$ are well knowu in Russia. Tamboff is watered by the tributaries of the Oka and the Don. The Oka itself only touches the north-west corner of the government, but its tributaries, the Moksha. and the Tsna, are important channele of traffic The Don also only towches Tamboff, and of ite affluents only the Voronezh and the Khoper and its tributary the Vorona are at all navigable. As a whole, it is only in the north that Tamboff is well watered; in its southern part, which is exposed to the influence of the dry south-eastern winds, the want of moisture is much felt, especially in the district of Borisoglyebsk, which belongs to the dry ateppes of the lower Volga.

The climate is continentel, and, although the average tempere. ture at Tamboff is $42^{\circ} \mathrm{F}$., the winter is comparatively cold (Jannery, 13°; July, 68°). The rivers remain frozen for four monthe eud a half. Forests occupy less then one-sixth of the total area, and occur chiefly in the west; in the eouth-east wood is acarce, and atrew is resorted to for fuel. The soil is fertilo throughout; in the north, indeed, it is clayey and sometimes sandy, but the rest of the goveroment is covered with a aheet, 2 to 3 fect in thickness, of the most fertile tchernozem, of such richness, indeed, that in Borisoglyebsk corn-fields which have not bean menured for eighty years still yiald good crops.

Tamboff is one of the densely peopled provinces of Russie. Its population in 1883 reached 2,519,600, and in several districts (Kozloff, Lebedyañ, Lipatsk) there are from 110 to 130 inhsbitants per square mile. It is creat Russian in thic centrel portion, but has a notable admixture of Mondviniana (q.. .) and Mescheriake in the west and north-west, as also of Tsrtare: the Mordiviniane (who ere rapidly becomirig Russified; constitute 4 per cent. of the aggregate population of Tamboff; the Tartars numocr about 20,000, and the Mescheriaks about 4000. Nenconformity is widely apread, although the official figures disclose caly 14,500 Rasko!niks, Notmithstanding a high birth-rate (45 in the thousand), the annusl increase of population is but slow (0.5 ver ceat. anamally).

The pravailing occupation is egriculture, and in 1883 only 168,200 pereone had their reaidence in towns, which ere mostly thamsolves nothing but large villages of egriculturists living tegether, with a few merchents. More than two-thirds of the area is areble, and of this proportion 58 per cent. belongs to peassut communities, 36 per cent. to privats individuals, and 11 por cent. to the crown. The crops of the years 1883 to 1885 yielded on the average $8,885,000$ quartars of grain (helf being rye, and onc-third oats). Corn is exported to e considerable extent from the eouth, dlthough it is deficient in the north. Homp and linsced ere also cultivated for exportation. The cultivation of tobacco is yearly increasing: 5220 ecres were under this crop in 1885 , end yielded nearly 50,000 cwts. In the samb year 15,950 acres were under beetroot, and yielded . 1,660,000 iwts. Cattle-breeding, thcugt less extensively carried on than formerly, is atill inportent ($850 \hat{0}, 300$ horess, 399,500 horned cattle, and 1,326,600 sheep in 1883). Excellent breeds of horses are met with, not only on the lerger estates, but also in the herds of the wealthier peasants, those of the Bityug river bning most esteemed. Mannfactures are rejresantad chiefly by distillerics, tallow-malting works, sugar-works, and a few woollencloth mills. The petty trades are not very extensivaly carried on in the villages. Commerce is very brisk, owing to tho large amounts of corn exported, -Kozloff, M orehansk, Tambođt, and Borisoglyebsk baing the chief centres for this traffic, and Lebedyañ for the trado in horees end cettle. Tamboff is rathor hackwerd educationally: in 1883 there were only 629 schools, attonded by 34,739 boye and 5680 girls. The government is divided into twolve districts, the ohief towns of which, with their populations in 1884, are Tamboff (34,000 inhabitants), Borisogly obsk (13,000), Elatma (7560), Kirz3noff (7770), Kozloff (27,900), Lebodyañ (6250), Lipotsk (15, 860),

Morahansk (21,200), Shetsk (7260), Spassk (5010), Temnikoff (13,700), and Usmañ (8110 in 1880). A distiuctive feature of Tannboff is its vary lerge villages of crown-peasants, a dozen of which have from 5000 to 7000 iuhabitants each. Several of them-like Reskazoro (a great centre of Nonconformity), Atabukhi, Sasovo, lzberdai, ead Arklangelskoye-are important commercial centres.
The region now included in the uorth of the govermment was settled by Russians during the cerliest centuries of the principality of Moscow, but until the end of the 17 th century the fertile tracts to the couth remained too iusecurs for settlers. In the following contury a few immigrants began to coms in fiom the steppe, and lendowners who hed recsived large grants of land as gifte of the czars Liggari to bring their aerfs from ceutra! Russia. ' 'lie popula. tion has very rapidly incrcaeed within tha present century.

TAMBOFF, capital of the above government, 300 miles distent from Moscow, is situated on the Tsas river, and on the railway from Kozloff to Saratoff. It is almost entirely buill of wood, with broad unpaved streets, lined with low houses aurrounded by gardens. It has a small public library, a theatre, and this few cducational institutions which are usual in the chief towns of Russian provinces. Its marnufi ctures are insignificant ; and its trade, in local grais and in cattle purchased in the south and sent to Moscow, is far less impcritant than that of Morshansk or Kozloff. The population in 1884 was 34,000 .
Tamerlane. See Timur.
TAMILS. The word Tamil (properly Tumil) has been identifed with Dravida, the Sanskrit generic appellation for the South Indian peoples and their languages; and the various stages through which the word has passedDramida, Dramila, Damila-have been finally discussed by Bishcp Caldwell in his Comparative Grammar of the Dravidian Langiages (2 d ed., 1875 , p. 10 sq.), and the derivation has recently been endorsed by Col. Yule and Dr Burnell in their Glossary. (p. 251b). The identification was first suggested by Dr Graul (Reise nach Ostindien, vol. iii., 1854, p. 349), and then adverted to by Dr G. U. Pope (Tamil Handbook, 1859, Introduction) and Dr Gundert (Malayalma Dictionary, 1872, s.v.). It should, however, be mentioncd that the former prefers now to take the word Tamil to be a corruption of tenmoli, southern speech, in contradistinction to vadugu, the northern, i.e., Telugu language. As in the case of the Kafir, Turkish, Tagala, and other typical languages, the term Tamulic or Tamulian las occasionally been employed as the designation of the whole class of Dravidian peoples and languages, of which it is only the most prominent member. The present article deals with Tamil in its restricted sense only.
The Tamils, taken as the type and representatives of the Dravidian race, do not now, owing to early intermixture with the Aryan immigrants, materially differ in physical character from the other curly-haired indigenous population of 1ndia. They were at one time, on the ground of the general structure of their language, classed with the Mongoloid (Turanian, Scythian) and even the Australian races, but that classification is rejected by all the leading ethnologists. They form, in fact, with the other members of the group, a separate and distinct family, which is of the dolichocephalic class, and comes near the IndoEuropean or Aryan type; while there are scattored remuants of a still carlier population of India (Mundas, Kolarians), whose race characteristics, however, do not so essentially differ from those of the Dravidians as to constitute them a class by thenselves. The Tamils proper are smaller and weaker-built than the Europeans, though more graceful in shape. Their physical appearance is described as fillows:- a pointed and frequently hooked pyramidal nose, with conspicuous nares, more long than round; a marked sinking in of the orbital line, producing a strongly defined orbital ridge; hair and eyes black; the latter, varying from small to middle-sized, lave a peculiar aparkle and a look of calculation ; mouth large, lips thick
and frequently turgid; lower jaw not heavy, its lateral expansion greater than in the Aryan and less than in the Turanian type, giving to the middle part of the face a marked development and breadth, and to the general contour an obtuse oval shape, somewhat bulging at the sides; forehead well-formed, but. receding, inclining to flattish, and seldom high; occiput somewhat projecting; beard considerable, and often strong; colour of skin very dark, frequently approaching to black (Manual of the Administration of the Madras Presidency, Madras, 1885, vol. i., Introd., p. 36 ; see also Caldwell, Comparative Grammar of the Dravidian Languages, 1875, pp. 558-79). The Tamils hare many estimable qualities,-frugality, patience, endurance, politeness,-and they are credited prith astounding memories; their worst vices are said to be lying and lasciviousnebs. Of all the Soutl-Indian tribes they are the least sedentary and the most onterprising. Wherevel money is to be earned, there will Tamils be found, either as merchants or in the lower capacity of domestic servants and labourers. The tea and coffee districts of Ceylon are peopled by about 800,000 ; Tamils serve as coolies in the Mauritius and the West Indies. In Burmah, the Straits, and Siam the se-called Klings are all Tamils (Graul, Reise nach Ostindien, Leipsic. 1855, vol. iv. pp. 113-212).

Languuge.-The area over which Tamil is spoken extends from a few miles north of the city of Madras to the extreme south of the cestern side of the peninsula, throughout the country below the Ghats, from Pulicat to Cape Comorin, and from the Gháts to the Bay of Bengal, including also the southern portion of Travancore on the westeru side of the Ghats and the northern part of Ceylon. According to the census of 1881, the number of Tamil-speaking people throughout the province was 12,413,517, inclusive of 21,992 Yerkalas, 3843 Kurumbas, und 287 Irulas, three tribes speaking rude dialects of the language. To these should be added about 160,000 in the French possessions. But, as of all the Dravidian languages the Tamil shows the greatest tendency to spread, its area becomes ever larger, encroaching on that of the contiguons languages. Tamil is a sister of Malayâlma, Telugu, Canarese, Tulu, Kudagu, Toda, Kôta, Góñ, Ǩhond (Ku), Urâon, Râjmahâl, Keikâdi, and Brahuî, the nine last-naned being uncultivated tongues; and, as it is the oldest, richest, and most inghly organized of the Dravidian languages, it may be looked upon as typical of the family to which it belongs. The one nearest akin to it is Malayâlma, which originally appears to hase been simply a dialect of Tamil, but differs from it now both in pronunciation and in idiom, in the retention of Old-Tamil forms obsolete in the modern language, and in having discarded all personal terminations in the verb, the person being always indicated by the pronoun (F. W. Ellis, Dissertation on the Malayalma Language, p. 2; Gundert, Malayalma Dictionary, Introd. ; Caldwell, Comparative Gir., Introd., p. 23 ; Burnell, Specimens of South Indian Dialects, No. 2, p. 13). Also, the proportion of Sanskrit words in Malayâlma is greater, while in Tamil it is less, than in any other Dravidian tongue. This divergence between the two languages cannot bo traced farther back than about the 10 th century; for, as it appears from the Cochin and Travancore inscriptions, previous to that period both languages were still substantially identical; whereas in the Ramacharitam, the oldest pocm in Malayâlıa, composed probably iu the 13th century, at any rate long before the arrival of the Portuguese and the introduction of the modern character, we see that language already formed. The modern 'Jamil characters originated "in a Brahmanical adaptation of the old Grantla letters correaponding to the eo-callcd Vatteinttu," or round-hand, an
alphabet once in vogue throughout the whole of the Pindyan kingdom, as well as in the South Malabar and Coimbatore districts, and still sparsely used for drawing up conveyances and other legal instruments (F. W. Elhis, Dissertation, p. 3). It is also used by the Mappilas in Tellicherry. The origin of the Vatteluttu itself is atill a controverted question. The late Dr Burnell, the greatest authority on the sulject, has stated his reasons for tracing that character through the Pehlevi to a Semitic sonrce (Elements of South Indian Palxography, 2d ed., 1858, pp. 47-52, and plates zvii. and xxxii.). In the 8tl century the Vatteluttu existed side by side and together with the Grantha, an ancient alphabet still used throughout the Tamil country in writing Sanskrit. During the four or five centuries after the conquest of Madura by the Cholas in the 11th it was gradually superseded in the Tamil country by the modern Tamil, while in Malabar it continmed in general use down to the end of the 17 th century. But the earliest works of Tamil literature, such as the Tolkappiyam and the Kural, were atill written in it. The modern Tamil characters, which have but little changed for the last 500 years, differ from all the other modern Dravidian alphabets both in shape and in their phonetic value. Their angular form is said to be due to the widespread practice of writing with the style resting on the end of the left thumb-nail, while the other alphabets are written with the style resting on the left eide of the thumb.
The Tamil alphabet is sufficiently well adapted for the expression of the twelve vowels of the langugge $\left(a, a, i, \frac{\hat{\delta}}{2}, u, \ell, e, \ell, 0,0, e i, a u\right)$, -tbe occasional sonads of o and u, both alort and loug, being covered by the signs for e, ℓ, i, ℓ; bnt it is utterly inadequate for the proper expression of the consonents, inasuuch as the one charseter k hes to do duty also for $k h, g, g h$, and similarly each of tho other surd consanants ch, f, t, p represents also the remaining three letters oi its respective class. The letter k has, besides, occasionslly the eonnd of h, and ch thst of s. Esch of the five consodsuts $k, c h, t, t, p$ has ita own nasal. In sddition to the four semivowels, the Tamil possesses a cerebral t and h and has, in common with the Malayalma, retained a liquid l, once peculiar to sll the Dravidias languages, the sound of which is 60 dificult to fix graphically, and varies so much in different districts, that it bas been rendered is a dozen different way: (Manual of the Alininistration of the Madras Presidency, vol. ii p. 20 sq). Fr. Muller is probably correct in spproximating it ts thas of the Bohemisn $\overline{7}$. There is, lastly, a pecularar n, differing in function but not in pronunciation from the dental n. The thren sibilants and h of Ssaskrit have no place in the Tamil alphabet but ch often does duty ss a sibilant in writing foreign words, auc tho four corresponding letters as well as j and k sh of the Granths alphabot are now frequently called to sid. It is obrious thal many of the Sanskrit words imported into Tamil at various periodr (Csldwell, loc. cit., Introd., pp. 86 sq.) have, in consequence of the incongruity of the Sanskrit and Tamil notation of their respective phonetic systens, assumed disguises under which the originsl is scarcely recognizahle: examples are ulagı (loks), uruvam (rûpa), arıhkiken (arka), arputam (adbhutam), natchattiram (nakshs tram), irudi (rishi), îrkam (dírgbs), arasen (rajann). Besides the Ssnskrit ingredients, which appear but aparsely in the old poetry, Tamil has borroved from Hindustani, Arsbic, and Persian a large nnmber of revenue, political, and judicial terme, and more recenily a good many Englisb words have crept in, such as tiratfi, treaty, pallar, butler, akt, act, kulob, club, kazaraar; goveroor, pinnathodus, pensl code, stikiu, sick, megastiraltu, magistrate. But, as compared with its literary sister languages, it has preserved its Dravidian character singulsrly frce from foreign influence. Of Tamil words which bave found a permanent home in English may be mentioncd curry (kari), mulligatawny (milagu, pepper, and kunkr, cool water), cheroot (suruitu), parıh (parayon).
The laws of elphony (avoiding of hiatas, softening of initial cousonants, contact of final with initial cousonants) are far more comphicated in Tamil than in Sanskrit. But, while they wore rigidly adlered to in the old poetical language (Sen-Tamil), there is a growng tendency to peglect them in the language of the present day (Kodun-Tamil). It is trne the Tamil rules totally differ from tho provailing Sanskrit; still the probability is in favour of a Sanskrit infuence, inasmuch as they appear to follow Sapskrit molels. Thus, irul nikzinda becomes irunitheinan; pon pattiram, porpullirum; rilfit kanden, vilfit kandin; valsirumei, salsirumez, palars landin, yalanrandan. Nouns are divided into high-casto
or personal and low-caste or impersonal, -the former compriaing words for rationsl beings, the latter all the rest. Only in highcaste nouns a distinction botween masculine and feminine is observed in the singular; both bave a common plural, which is indieated by change of a final n (feminine l) into r; but the neuter plural termination kal (gal) may be ouperadded in every case. Certain nouns change their base termination before receiving the case affixee, the latter being the same both for singular and plural. They are for the acc. ei, instr. al, social odu (odu, udan), dat. ku, loc. il (idallil, in), abl. ilirundu (inintu), gen. udciya (adu). There is, hesides, a general oblique affix in, which is not only frequently used for the genitive, but may be inserted before any of the above affixes, to some of which the emphatic particlo c may aleo be superadded. In the old poetry there is a atill greater variety of affixes, while there is an option of disjensing with all. $\Delta d j e c t i v e s$, when attributive, precode the noun and are unchangeable; when predicative they follov it and receive verbal affixes. The pronouns of the 1st person are eing. $n d n$ ($y A n$), inflexional base en, plural ndm (yam), infl. nam, including, nangal, infl. cngal, exclading the person sddrossed; of the 2 d person n; infl. un (nin, nun), plural nir (niyir, nivir), ningal, infl. um, ungal (num). To each of those forms, inclusive also of the reflexive pronouns tan, tsm, tangal, a place is assigned in the acale of hovorific pro. nouns. As in the domonstrativo pronouns tho forms beginoing with i indicate pearness, those with a distance, and (iu the old poetry) those with of what is between the two, oo the same forms beginaing with e (or $y d$, as in $y a r, d r$, whol) express tho interrogative. The rerb consists of three elements-the ront (generally reducible to one syllable), the tease characteristic, and tho personal affix. There are three original moods, the indicative, imperative, and infinitive (the $2 d$ singular imperative is generally identical with the root), as well as three original tenses, the present, past, and future. The personal affixos are-sing. (1) etn; (2) - \boldsymbol{a}_{y}, honorifie © ; (3) masc. - $a n$, fem. -dl, honor. - Ar, neuter -adi6; plural (1) - Cm (- $\left.2 m_{3}-\ell m\right)$; (2) -\{rkal; (3) mase. fens. Arkal, weut. -ana. These affxes serve for all verbs and for each of tho three tenses, except that, in the future, -adu and -ana are replaced by $-\imath / m$ ($k k u m$). It is only in the formation of the tenses that verbs differ, intransitive verbs gonerally indicating the present.by $-k t r-(-k i n r-)$, the past by -d., -nd-, or $\cdot i n$, and the future by $\cdot v=\left(-z_{-}\right)$, and transitive verbs by the corresponding infixes, $-k$ kir $\cdot(-k$ kinr -$),-\ell \cdot(-n d-)$, and $\cdot p p-$; but there are numeraus exceptions and aeemingly anomalous formations. Other tenses and moods are expressed with the aid of special affixes or auxiliary verbs. Czusal verbs are formed by variaus infixes (-ppi-, $-v i-, \cdot \ell u-)$, and the passive by the auxiliary padu, to fall, or by $u n$, to eat, with a noun. The following four pecul. iarities are charactoristic of Tamil :-first, the tenseless negative form of the verb, expressed by the infix α, which is elided bafore dissimilar vowels; second, the predicative employnent of two negetipe particles illei and alla, the one denying the existeace or presence, the other denying the quality or essence; third, the use of two sets of participles,-one, called adjective or relative participle, which supplies tho place of a relative clauso, the language possessing no relative pronouns, and an ordiuary adverbial participle or gerund; and, fourth, the practice of giving adjectives a verbal form by means of personal affixes, which form may again be treated as a noun by attaching to it the deciensional terminations, thus: periyns, great ; periyon, we are great ; periydinukku, to us who are great. The old poctry abounds in verbal forms now obsolete. Adjoctives, adverbs, and abstract nouns are derived from verbs by certain affixes. All post-positions were originally cither nouns or vorbal forms. Oratio indirecta is unknown in Tamil, as it is in all the other Indian languages, the gerund enru being used, like iti in Sanskrit, to indicate quotation. The structure of sentences is an exact counterpart of the structure of words, inasmuch as that which qualifies always precedes that which is qualified. Thus the attributive precedes the aubstantive, the substautive precedes the preposition, the adverb precedes the verb, the secondsry clause the primary one, and the verb closes the sentence. Th.s sentence, "Having called the woman who had killed the child, lie askod why ehe had committed such infauticide," runs in Tamil as follows:Kolandelyel ksonrupottavelel alclppittu an un ippadt The child her who hed killed liering cansed to be called, "Thnu why thus ppstita elst.v-attl eeydty enra kittin.
Much as the similarity of the structure of the Tamil and its oister languages to that of the Ugro-Tartar class may hare proved suggestire of the assumption of a family affinity between the two classes, such on affinity, if it exist, must be held to be at least very distant, inasmuch as the assumption receives but the faintest shade of support from an intercomparison of tho radical and leset variable pertion of the respectivo languages.

Literature. -The early existence, in southern India, of peoples, localities, animals, and products the names of whieh, as mentioned in the Old Testament and in Greek and Roman writers, bave been identified with correspond.
ing Dravidian terms goes far to prove the high antiquity, if not of the Tamil Ianguage, at least of sume form of Dravidian speech (Caldwell, loc. cil., Introd., up. 81106; Midras Districl Manual, i., lutrod., p. 13 ! sq.). But practically the earliest extant records of the Tamil language do not ascead higher than the middle of the 8 th century of the Christian era, the grant in possessiou of the Israelites at Cochin being assigned by the late Dr Burnell to about 750 A.D., a period when Malayâlma did not exist yet as a separate language. There is every probability that about the same time a number of Tamil works sprung up , which are mentioned by a writer in the IItb century as representing the old literature (Burncll, luc. cit., ! $] 27$, note). The earlier of these may have been Saiva books; the more prominent of the others were decidedly Jaina. Though traces of a north Indian influence are palpable in all of them that have come down to us (see, e.y., F'. W. Elljs's notes to the Kural), we can at the same tine perceive, as we must certainly appreciate, the desire of the authors to oppose the influence of Jrahmanical writings, and crcate a literature that should rival Sanskrit books and a!peal to the sentiments of the people at larise. But the refinement of the poetical language, as adapted to the genius of Tamil, has been carried to greater excess than in Sanskrit; and this artificial character of the so-callcd High-Tami! is evident from a comparison with the old inscriptions, which are a reflex of the language of the people, and clearly show that Tamil has not undergone any essential change thicse 800 years (Burnell, lac. cil., p. 142). The rules of IIighTamil appear to have becn fixed at a very early date. The Tolkappiyam, the oldest extant Tamil grammar, is assigned by Dr Burnell (On the Ainelra School of Sunstrit Grounmarictus, pp. 8,55) to the Sth century (best edition loy C. Y. TAmodaram Pillei, Madras, 1885). The Virasúliyam, another grammar, is of the IIth century. Both have been superseded by the N anuı̂l, of the 15 th century, which has exercised the skill of numerous commentators, and continues to be the leading native authority (English editions in Pope's Third Tamil Grammar, and an abridgment by Lazarus, 1884). The period of the prevalence of the Jainas in the Pandya kingdom, from the 9 th or lotb to the 13 th century, is justly termed the Augustan age of Tamil literature. To its earlier days is assigned the Naladiyâr, an ethical poem on the three objects of existence, which is supposed to have preceded the fiural of Tiruvalluran, the finest poetical production in the whole range of Tamil composition. Tradition, in keeping with the spirit of antagonism to Brabmanical influence, says that its author was a parial priest. It consists of 1330 stanzas on virtue, wealtl, and pleasure. It has often beer. edited, translated, and commented upon; see the introduc. tion to the excellent edition, just publisbed, by the Rev. Dr Pope, in which also a comprehensive account of the peculiarities of High-Tamil will be found. To the Arrei, or Matron, a reputed sister of Tiruvalluvan, but proliably of a later date, two sborter moral poerns, called A tiisudti and Konreivêyndan, are ascribed, whicb are still read in all Tamil schools. Chintamani, an epic of upwards of 3000 stanzas, which colebrates the expluits of a King Jivakan, also belongg to that early Jain period, and so does the Divakaram, the oldest dictionary of classical Tamil. The former is one of the finest poems in the language; but no more than the first and part of the third of its thirteen books have been edited and translated. Kamban's Rimdyanana (about 1100 A.D.) is the only other Tamil epic which comes up to the Chintamani in poetical beanty. The most brilliant of the poetical productions which appeared in the yeriod of the Saiva revival (13th and lith centuries) are two collections of hymns addressed to Siva, the one called Timuâsakam, by Mânikka-Vâsakan, and a later and larger
one called Tivaram, by Sambandhan and two other devotees, Sundaran and Appan. Both these collections have been printed, the former in one, the latter in five volumes. They are rivalied both in religious fervour and in poetical merit by a contemporaneous collection of Vaishnava hymns, the Nelayira-prabandham (also printed at Madras). The third section of it, called Tirwáymoli, or "Words of the Saored Mouth," has lately been published in Telugu character8, with ample commentaries, in ten quartos (Madras, 1875-76). After a period of literary torpor, which lasted nearly two centuries, King Vallabha Deva, better known by his assumed name Ativirarâma Pâṇ̣iyan (second half of the 16 th century), endeavoured to revive the love of poetry by compositions of his own, the most celebrated of which are the Neidadam, a somewhat extravagant imitation of Srî Harsha's Sanskrit Naishadham, and the Verrivêrkei, a collection of sententious maxims. Thongli he had numerous followers, who made this revival the most prolific in the whole history of. Tamil literature, none of the compositions of every kind, mainly translations and bombastic imitations of Sanskrit models, have attained to any fame. An exceptional place, however, is occupied by.certain Tamil sectarians called sittar (i.e., siddhas or sages), whose mystical poems, especially those contained in the Sivavakyam, are said to be of singular beauty. Two poems of high merit, composed at the end of the 17 th century, also deserve favourable notice-the Nitinerivilakkam, an ethical treatise by Kumâragurupara Desikan, and the Prabhulingalilei, a translation from the Canarese of a famous text-book of the Vira-Saiva sect. See the analysis in W. Taylor's Catalogue, vol. ii. p. 837-47.

The modern period, which may be said to date from the beginning of the last century, is ushered in by two great poets, one native and the other foreign. Tayumânavan, a philosopher of the pantheistic achool, composad 1453 stanzas ($p d d a l$) which have a high reputation for sublimity both of sentiment and style; and the Italian Jesuit Joseph Beschi (d. 1742), under tlıe name Viramâmuni, elaborated, on the model of the Chintdmani, a religious epic Tembavani, which, though marred by blemishes of taste, is classed by native critics amang the best productions of their literature. It treats of the history of St Joseph, and has been printed at Pondicherry in three volumes, with a full analysis. English influence has here, as in Bengal and elsewhere in India, greatly tonded to create a healthier tone in literature both as to stylo end sentiment As one of the best Tamil translations of English books in respeci of diction and idiom may be mentioned the Batarydparikal, or "Little Merchants," published by the Vernacular Text Society, Madras. P. Percival'e collection of Tamil Proverbs (3d od., 1875) should also be mentioned. The copper-plate grants, commonly called sasanams, and stone inscriptions in Tamil, many of which have been copied and translated (Archaological Survey of Southern India, vol. iv.; R. Sewell, Lists of the Antiquarian Remains in the Presidency of Mradras, vols. i., ii.), are the only authentic historical records. (See also Sir Walter Elliot's contribution to the Iuternational Numismata Oricntalia, vol. iii. pt. 2.) As early as the time of the Chinese traveller Hwen Tsagg, hooks were written in southern India on talipot leaves, and Albiruni mentions this custom as quite prevalent in his time (1031).. It has not died ont even at the present day, though paper imported from Portugal has, during the last three centuries, occasionally been used. Madras is now the largest depository of Tanil palm-leaf MSS., which have been described in Wilson's Catalogue of the Mackenzie Collection (Calcutta, 1828, 2 vols.), W. Taylor's Catalogue (Madras, 1857, 3 vols.), and Condaswamy Iyer's Catalognc (vol. i., Madras, 1861). The art of printing, however, which was introduced in southern India at an early date, while it has tended to the preservation of many valuable productions of the ancient literature, has also been the means of perpetuating and circulating a deal of literary rubbish ond lasciviousness which would much better have remained in the comparatively safo obscurity of manuscript. Dr Burnell has a nate in bis Elements of South Indian Paleography (2d ed., p. 44), from which it appears that in 1578 Tamil types were cut by Father João de Faria, and that a hundred years later a Tamil and Portnguese dictionary was published at Ambalakkâdu. At present the number of Tamil books (inclusive of newspapers) printed annually far exceads that of the other Dravidian vernaculars put togetber. The earliest Tamil version of the New Teatament was commenced by the Dutch in Caylon in 1688; Fabricius'e translation sppeared at Tranquebar in 1715. Since then many now
translations of the whole Bible have been printed, and eome of them have passed through several editions. The German missionary B. Ziegenbalg was the first to make the study of Tamil possible in Europe by the publication of his Grammatica Damulica, which appeared at Halle in 1716. Some time later the Jesuit father Beschi devoted much time and Iabour to the composition of grammars both of the vulgar and the poetical dialect. The former is treated in his Grammatica Latino-Tamulica, which was written in 1728, but was not printed till eleven years later (Trsnquebar, 1739). It was twice reprinted, and two English translations have been published (1831, 1848). Hia Sen-Tamil Grammar, accessible since 1822 in an English translation by Dr Babington, was printed from his own D1S. (Clavis humaniorum litterarum sublimioris Tamulici idiomatis) at Tranquebar in 1878. This work is especially valuable, as the greater portion of it consiats of a learned and exhaustive traatise on Tarnil prosody and rhatoric. (See, on his other works, Graul's Reise, vol. iv. p. 327.) There are also grammars hy Anderson, Rhenius, Graul (in vol. ii. of his Bibliotheces Tamulica, Leipsic, 1855), Lazarus (Madras, 1878), Pope (4th edition in three parts, London, 1883-5), and Grammaire PrancaiseTamoule, by the Abbe Dupuis, Pondicherri, 1863. The last two are by far the best. The India Office library possesses a MS. dictionary and grammar: "par le Rév. Père Dominique" (Pondicharri, 1843), and a copy of a MS. Tamil-Latin dictionary by the calebrated missionary Schwarz, in which 9000 words are explained. About the like number of words are given in the dictionsry of Fabricius and Breithaupt (Madras, 1779 and 1809). Rottler²s dictionary, the publicaticas of which was commenced in 1834, is a far more ambitious work. But neither it nor Winslow's (1862) come up to the atandard of Tamil scholarship; the Dictionnairs Tamoul-Francais, which appeared at Pondicherri in 2 vols. (185562), is superior to both, just as the Dictionariucm Latino-GallicoTamulicum (ibid., 1846) excala the various English-Tamil diction. aries which have been published at Madras.
Compara tha collowing works of referenca:-A. T. Mondidre and J. Vinaon The Tamil Plufarch, Jaffna, 1859; J. Murdoch, Classified Catatogue of Tamil Printed Books Madras, 1865: C. E. Gover, Folk-Songs of Southern India. Printed Books, Madras, Caldwell'a Comparafive Grammar of the Dravidian Languages, 2d ed., London, 1875 : Granl'a Reise nach Ostindien, vols, Iv. and v.: the quatterly Lisis of Books rogistered in tha Modras prestdency; [Or Maclean'e] Manual of the Administration of the Madras Presidency, vols. i. and II, Madras, 1885 , follo; and F. Muller, Grundriss der Sprachwissenschaf, Vienna, 1884, III. 1 162-246.
(R. R.)

TAMWORTH, a municipal borough and market-town of England, on the borders of Stafiordshire and Warwickshire, chiefly in the former, is situated at the junction of the Tame with the Anker, and on branches of the London and North-Western and Midland Railway lines, 7 miles south-east of Lichfield, 20 north-west of Coventry, and 110 north-west of London. The castle, situated on a height above the Anker near its junction with the Tame, is now chiefly of the Jacobean period, but is enclosed by massive ancient walls. It was long the residence of the Saxon kings, and, after being bestowed on the Marmions by William the Conqueror, remained for many years. an important fortress. Through the female line of the Marmions it has doscended to the Marquis Townshend. Formerly the town was surrounded by a ditch called the King's Dyke, of which some trace still remains. The church of St Editha, originally founded in the 8th century, was rebuilt, after being burned by the Danes, by Edgar, who made it collegiate, but the present building in the Decorated style was erected after a fire in the 14 th century. Since 1870 it has been undergoing restoration at a cost of £10,000. The free grammar school, refounded by Edward VI., was rebuilt in 1677, and again in 1867-68 at a cost' of $£ 3000$. The other public buildings are the swimming bath and boys institute (1885), the town-hall (1701), and the arcade, formerly used as a covered market, but recently obtained by the Salvation Army. The charities include Guy's almshouses, endowed in 1678 by Thomas Guy, founder of Guy's Hospital, London, and the cottage hospital with twenty-one beds. Waterworks have recently been erected at a cost of over $£ 25,000$. On the "moors" burgesses have rights for cattle. Coal, fireclay, and blue and red brick clay are dug in the neighbourhood; and there are also market gardens. The town possesses a clothing factory, paper-mills, and manufactories of small wares. The population of the municipal borough (area

200 acres) in 1871 was 4539 , and in 1881 it was 4891 , that of the parliamentary borough (area 11,602 acres) in the same years being 11,493 and 14,101 . Tamworth ceased to be a parliamentary boraugh in 1885.

Tamworth is situated near the old Roman Watling Street, and occupies the site of a fort which, from the beginning of the 8th century, was the chief royal residence in Mercia. The town, after being burnt by the Danes, was rebuilt and fortified by Ethelfeda, daughter of Alfred the Great. From the reign of Edward the Martyr to that of William Rufus it was a royal mint, and come of the coins struck at Tamworth are still in existence. The torm was incorporated in the 3d year of Elizabeth, from whom it obtained the grant of 3 fair and tho confirmation of various privileges bestowed by Edward 111. The Elizabethan charter was superseded by one conferred by Charles II., which continued to be the governing charter of the towa till the passing of the Municipsl Act. The town, with occasional intermissions, returned members to parlia. ment from the reign of Heary 1. till 1885. Among its more distinguished representatives have boon Thomas Guy and Sir Robert Peel.

TANAGER, a word adapted from the quasi-Latin Tanagra of Linnæus, which again is an adaptation, perhaps with a classical allusion, of Tangara, used by Brisson and Buffon, and said by Marcgrave (Hist. Rer. Nat. Brasilix, p. 214) to be the Brazilian name of certain birds found in that country. From them it has since been extended to a great many others mostly belonging to the southern portion of the New World, now recognized by ornithologists as forming a distinct Family of Oscines, and usually considered to be allied to the Fringillidx (cf. Finch, vol. ix. p. 191); but, as may be inferred from Prof. Parker's remarks in the Zoological Transactions (x. pp. 252, 253, and 267), the Tanagridx are a "feebler" form, and thereby bear out the opinion based on the examination of many types both of Birds and Mammals as to the lower morphological rank of the Neotropical Fauna as a whole (cf. Birds, vol. iii. p. T43).

The Tanagers are a group in which Mr Sclater has for many years interested himself, and his latest treatment of them is contained in the British Muscum Catalogue (xi. pp. 49-307). Therein ho almits the existence of 375 species, which be arranges in 59 genera, forming six Subfamiliss, Procniatine, Euphoniinæ, Tanagrinæ, famprotinx, Phanicophilinse, and Pityline. Theso are of very unequal extent, for, while the first of them consists of but a single species, Procnias tersa, - the position of which may be for several reasons still open to doubt, - the third includes more than 200. Nearly all are birds of emall eize, the largest barely exceeding i Song-Thrush. Most of them are remarkable for their gaudy oolouring, and this is especially the case in those forming the genns called by Mr Sclater, as by most other suthors, Callistc, a term inatinissible through preoccupation, to which the name of Tanagra of right scens to belong, while that which bo names Tanagra should probably be known as Thraupis. The wholo Family is almost confined to the Neotropicsl Region, and there are geveral forms peculiar to the Antilles; but not a tenth of the species reach even southern Mexico, and not a dozen appear in the northern part of that country. Of the genus Pyranga, which has the most northern range of all, three if not four opecies are common summer immigrants to some part or otber of the United States, and two of them, P. rubrca and P. . stiva, - there known respectively as the Scarlet Tanager and the Summer Redbird,-resch even the Dominion of Cansda, visiting as well, though accidentally, Bermuda. P. æstiva has a westera representativo, P. coopcri, which by some authors is not recognized as a distinct species. The males of all these are clad in glowing red, P. rubra having, bowever, the winge sud tail bleck. The remaining species, P. ludoviciana, the males of which are nostly yellow snd black, with the head only red, does not a ppear eastward of the Missouri plains, and Lis not so northerly a rango. Another species, P. lepuica, has just shewu itself within the limits of the United States. In all these the femalcs are plainly attired; but generally among the Tanagers, however bright may be their coloration, hoth sexcs are nearly slike in plumage. Little has been recorded of the habitg of the epecies of Central or South America, but those of the north have been as closely observed ss the rather retiring nature of the birds renders possible, and it is known that insects, cspecially in the larval condition, and berries afford the greater part of their food. They have a pleasing song, and buill a ohallow nest, in which the eggs, cenerally 3 in number and of a greenish-blue marked with brown aud purplo, are laid.

On a whole the Tanayrids may perhaps be considered
to hold the same relation to the Fringillids as the Icterila do to the Sturnidx and the Mniotiltidæ to the Sylvidæ or Turdidx, in each case the purely New-World Family being the " feebler" type.
(A. N.)

TANCRED (d. 1112), son of the marquis Odo the Good and Emma the sister of Robert Guiscard, one of the most famous heroes of the first crusade. See Crosades, vol. vi. p. 624 sq.

TANCRED, the last Norman king of Sicily, reigned 1189-1194. See Sicily, vol. xxii. p. 26.

TANGANYIKA, a lake in East Central Africa, called Msaga ("tempestuous") by the Wakawendi and Kimana by the Warungu. The meaning of the mame Tanganyka is, according to Cameron, nothing more than "the mixing place." It is the longest freshwater lake in the world being about 75 miles longer than Lake Michigat. Although the Arabs had long known of the existence of the lake, the first Europeans who discovered it wcre Speko and Burton in 1858. It has since been visited by Living* stone, Cameron, Stanley, Thomson, and Hore, who have all added to our knowledge of it. Tanganyika, which is situated some 600 miles as the crow flies from the east coast of Africa, extends from $3^{\circ} 16^{\prime} \mathrm{S}$. Iat. to $8^{\circ} 48^{\prime} \mathrm{S}$. lat., and lies between $29^{\circ} 10^{\prime} \mathrm{E}$. Iong. and $32^{\circ} 30^{\prime} \mathrm{E}$. long. Its length is 420 miles, and its breadth varies from 10 to 50 miles. Its area is 12,650 equare miles, and its altitude may be taken as 2700 feet above sea-level (Cameron, 2710 ; Stanley, 2770; Hore, 2750 ; Popelin, 2665). It has a coast-line of 900 miles in extent. Its greatest depth has not yet been determined, but Hore ctates that a 168 -fathom rope often failed to reach the bottom. Tanganyila may be described as an enormous crevasse. It is bordered on all sides by hills and mountains, some of which rise to from 5000 to 10,000 feet above its waters. The scenery is marked by exceptional grandeur, and is well calculated to impress the traveller. Burton bays:-
"It filled us with armiration, with wonder, and delight. Beyond the ehort foreground of rugged and precipitous hill-fold, down which the footpath painfully zigzzgs, a narrow plot of emerald green shelpes gently towards a riblon of glistening yellow sand, here bordered by sedgy rushes, there clear and cleanly cat by the breaking wavelets. Farther in front etretches an expanse of the lightest, eftest blue, from 30 to 35 miles in breadth, and sprinkled by the east wind with crescents of snowy foam. It is hounded on the other बide by tall snd broken walls of purple bill, flecked and capped with pearly mist, or standing sharply pencilled against the azure sky. To the soath lie high bluff headlands and capes; and as the eyo dilotes it falls on little outlying islets, speckling a sea horizon. Villsges, cultivated lands, the frequent canoes of the fishermen, give a something of Jife, of variety, of movement to the scensry."

Tanganyika is fed by numerous rivers and streamlets which flow from the surrounding hills, the yearly rainfall being about 27 inches, but the rainy seasons vary extremely in different years, altering the ourface area of the lake accordingly. Hore found that between March 1879 and August 1880 the waters had fallen . 10 feet $4 \frac{1}{2}$ inches, as marked by a water-gauge he had erected at Újiji, and he also saw evident signs of the receding of the waters all round the sheres of the lake-belts of dead timber and bleached rock. Some 120 rivers and streams flow into the lake; the most important river is the Malagarasi, near Ujiji. Just below the rapids its width is 500 feet, and the average depth 5 feet. For many years Tanganyika was a riddle to African explorers,-Livingstone, Baker, and others believing that it belonged to the Nile system, and that it was connected with the Albert Nyanza. That this theory is incorrect was proved when Livingstone and Stanley explored the north end of the lake in November 1871, finding no outlet. It was Cameron, in March 1874, who first solved the riddle, and found that the outlet of Tanganyika was the river Lukuga, at about the centre of the western shore of the lake, $5^{\circ} 52^{\prime} 45^{\prime \prime} \mathrm{S}$. lat. In 1876
this outlet was visited by Stanley, who found that there was no apparent outlow, and doubt was thrown upon Cameron's observations, which, however, have been proved to bo correct by Hore, who in 1880 found a strong current setting unequirocally out of the lake. Not ouly so, but he obtained good views of the river, which gradually widens soon after the rapids near the lake are passed. He followed the river to $5^{\circ} 50^{\prime} \mathrm{S}$. lat., and, from an altitude of 1100 feet above the river, he saw it flowing far away to the westward. The question is therefore settled that Lake Tanganyika belongs to the Congo system, but it is only an occasional tributary to that mighty river, its contribution depending upon the rainfall. The lake is subject to frequent storms, especially from the S.S.E. and S.T., lasting sometimes for two or three days, and Jeaving a heavy swell, which proves a great hindrance to navigation. Hore says -"I have never witnessed such wondrous cloud-scenery and majestic effects of thouder and lightuing as on Tanganyika."
The shores and water of the lake abound in animal lifo,-crocodiles, the hipponotamus, otters, aud many kinds of fish being found in its waters. Flocks of waterfowl abound in the river mouths: fulls, divers, berons, kingfishers, eagles, fish-hawks, and black ibis are very numerous. The shores are very fertile, -rice, manioc, kaffre corn, two kinds of ground nuts, maize, uleysi, pumpkins, smeet potatocs, sugar-cane, castor-oil tree, tamariind, cotton, tomato, ${ }_{\text {and }}$ patcucanber growing luxuriantly. The oil palm grows at Ujijii, Urundi, and at the southe end of the lake, tive borassus near the Malagarasi river, the screvw palm in Uguha, and the raphra in aeveral localities. The tzetse fly is found on the shores of the lake from Ujiii round the southern end as far as Ubwari on the west coast. A Inongst the useful timber trees may be noticed the gigantic mbule, the nininga, lignum vitex, and ebony. The pcople inhabiting the counties on the borders of the lake form ten distinct tribes, nith separate national peculiarities ond customs. They live in well-organizell rillares, in which considerable social order is maintainel. They have also learnt, to some extent at any rate, to utilize the products of their country: they work their "wni iron end copper ; salt is prepared for barter ; palm oil is collected; and in some places there are large pottery works. Their fishing industry is extensive, and dried fsh is exported; boathuilding is carried on to a small extent ; cotton cloth is manufactured at several places, and at others the fannous grass or palm-fibre cloth; whilst the dairy farms of Uhha export packages of butter. There are eeveral London Missionary Society stations on Lake Tanganyika, aliso one belonging to the Roman Catholics; and a station of the African International Association is situated at Karema. Ujiji, an Arab town of some importance, stands on the eastern shore of the lake.
TANGIERS, or Tavgier (Tanja), a seaport of Morocco and capital of a pashalik, on the Strait of Gibraltar, about 14 miles to the east of Cape Spartel, stands on two eminences at the north-west extromity of a spacicus bay. The town has a fine appearance from the sea, rising gradually in the form of an amphitheatre, and defended by walls and a castle. The streets, which are unpared, are very narrow and crooked, and the houses, except those occupied by foreign ambassadors or consuls and a few others, are mean. The main thorouglfare is that which leads from the Bab-al-Marsa (Gate of the Port) to the Bab-al-Sok (Gate of the Market Place) ; the sol presents a lively spectacle, especially on Sundays and Thursdays The manufactures of Tangiers are of little importance, consisting chiefly of coarse woollen cloth, mats, and pottery; tanning is also carried on, but the leather, thongh much esteemed in Europe, is inferior to that made in other parts of Morocco. The harbour is a mere roadstead, but it is the best Morocco possesses, and affords good anchorage and shelter to the largest vessels, except during the prevalence of strong winds from the north-west or east. Tangiers Las a large trade with Gibraltar. The climate is temperate and healthy, but the inhabitants often suffer much in summer from deficiency of water-supply. Tangiers, which is the residence of all the foreign ministers ana consuls to the court of Moroceo, has a population estimated at about 20,000 , of whom some 400 are Europeans.

The Roman Tingis, which stood in the immediate vicinity of the site of Tangiers, boastel of great antiquity; under Augustus it became a free city, and Claudius made it a Roman colony and capital of Tingitana. It was held successively by Vandals, Byzantines, and Arabs, and fell into the hands of the Portuguese towards the end of the 15 th century. In 1662 it was made part of the domry of Catherino of Braganza on ber marriage rith Cbarles 11. of England; the English defended it in 1680, but, on account of its expense, dismantled it in 1684 and abandoned it to the Moors, who fortified it anew. It was bombarded by a Spanish flect in 1790 and by the French in 1844.

TANEÄUSER, or TANNHÄUSER, the subject of one of the most famous of old German legends, is represented as a knight who after many manderings comes to the Venusberg. He enters the cave where the Lady Vcnus holds her court, and abandons himself to a life of sensual pleasure. By and by he is overcome by remorse, and, invoking the aid of the Virgin Mary, ho obtains permission to return for a while to the onter world. He then goes as a pilgrim to Rome, and entreats Pope Urban to secure for him the forgiveness of his sins. The pope, who happens to have a rod in his hand, says it is as impossible for him to be pardoned as for the rod to blossom. Tanhäuser therefore departs in despair, and returns to the Lady Venus. In three days the rod begins to put forth green leaves, and the pope sends messengers in all direc tious in search of the penitent; but he is never seeu again. This legend was at one time known in every part of Germany, and as late as 1830 it survived in a popular song at Entlibuch, a version of which was given by Ubland in his Alle hoch- und niederdeutsche Volhssieder. It cau be traced back to the 14th century, but in ite original form seems to have bclonged to the period of Teutonic paganism. According to some legends, the Venus berg is the Hoselberg or Hörselberg, a hill near Eisenacb associated with the Teutonic goddess of the nether world, who was known by various names, such as Hulda, Hilda, and Hel. To this goddess the name of Venus appears to have been transferred. Among the attendants of Hulda was the faithful Eckhart, and in the preface to the Heldenbuch he is said to sit before the Venusberg, and to warn passers-by of the dangers to which they may be exposed if they linger in the neighbourhood. The legend has been reproduced by several modern German poets, and forms the subject of one of Wagner's operas.

In the 13th century, contemporary with Pope Urban IV., there was a Gerınan knight called Tanhäuser, who was well known as a minnesinger at the court of Frederick II., duke of Austria. After Duke Frederick's death Tanhäuser was received at the court of Otho IL, duke of Bavaria; but, being of a restless disposition, and having wasted his fortune, he spent much time in wandering about Germany. He also went as a crusader to the Holy Land. His poems (printed in the second part of the Minnesinger, edited by Von der Hagen) are fresh, lively, and graceful, but lack the ideal tone which marks the writings of the earlier minnesinger. He was much esteemed by the meistersinger, and it is possible that the story of his adventurous life may have been connected with the old legend about the Vennsberg.
See Kornmann, Nons Veneris (1614), and Grässe, Die Sage vomo Ritter Tanhauser, and Der Tanhauser und Ewige Jude; also Zander, Die Tanhäuser Sage und der Miinnesänger Tanhäuser.
TANJORE, a district of British India, in the Madras presidency, lying between $9^{\circ} 50^{\prime}$ and $11^{\circ} 25^{\prime} \mathrm{N} .1 \mathrm{lat}$. and between $78^{\circ} 55^{\prime}$ and $79^{\circ} 55^{\prime}$ E. long., with an area of 3654 square miles. It forms a portion of the Southern Carnatic, and is bounded on the N. by the river Coleroon; which separates it from Trichinopoly and South Arcot districts, on the E. and S.E. by the Bay of Bengal, on the S.TF. by Nadura district, and on the W. by Madura and Trichinopoly and Pudukotta state. Tanjore
is known as the garden of Southern India. It is well watered by an elaborate system of dams, cuts, and canals in connexion with the rivers Canvery and Coleroon, and the soil is exceedingly productive. The delta of the Canfery occupies the flat northern part, which is highly cultivated with rice, dotted over with groves of cocoa-nut trees, and densely populated. Tanjore is a land of temples, many of them being of very carly date. The great temple of Tanjore city is said to be the finest in India; it is of the llth century, and remains in excellent preservation to the present day. The district has a coast-line of 140 miles, but communication with shipping is unsafe, owing to a heary surf which breaks incessantly on the shore. The rainfall, as elsewhere on the Coromandel coast, varies considerably from ycar to year; the mean annual fall, as observed at ten stations for four years, was $47 \cdot 14$ inches. Tanjore is amply provided with means of communication. It is traversed by two branches of the South Indian Railway.
The census of 1881 returned the population of the district at $2,130,383$ (males $1,020,52 \mathrm{~S}$, females $1,103,855$), of whom $1,939,421$ were Hindus, 112,058 Johammedans, and 78,255 Christians. Tanjore is the frst district in which Protestant missions began, and new it is eecond only to Tinnevelly in the number of its Christian misaions. These cstahlishments were taken over in 1826 hy the Society for the Propagation of the Gospel, which subsequently founded missions in eeveral parts of the district. The quently number of native Protestants belonging to tha various societies in 1881 was 8255 . Romau Catholic missions in Tanjore dete from the first half of the 17 th century, and the number of native Roman Catholics in 1881 was 67,745 . Five towne have populatious ex. ceeding 10,000 , viz, Tanjore (sce below), Negapatam 53,855 , Comhaconnm 50,099 , Majavarara 23,044 , aud JIunnargudi 19,40 .
Or the total area of the district, reckoned at $2,392,117$ acres, 1,468,500 were returned in 1884-85 as cultivated, aud 149,228 os aral, ahlo for cultivation, while forests covered 21,422 acres. Rice is the stap!e crop, and is raised almost entirely by artificial irrigation; green crops are common; plantain and Letel-vine gardens abeund in the delta, where eugar-cane and tobacco are also cultivated. The chief manufactures are metal wares, silk cloths, carpets, ond pith-work. Imports consist chiefly of cotton piece goods, twist and yarn, metals, timber, and hatel nuts. Rice is by far the most important article of export alike by sea and land. The gress reveune in 1884-85 was $£ 549,982$, the land rielding $£ 389,755$.
The medern history of Tanjore commences with its occupation by the Mahrattas in 1678 under Venkaji, the brother of Sivaji the Great. The Britial first came inte contact with Tanjore by their expedition in 1749 with a view to the restoration of a deposed rajia In this they failed, and a subsequent expeditiou rras bought off. The Blahrattas practically hclil Tanjore until 1799. In October of that jear it was ceded to the East India Comprany in absolnto sovereignty by Rajaí Sharabhoji, pupil of the missionary Schwartz, the company engaging to pay the rajus of Tanjore one-fifth of the net revenne of the territory which was transferred to them, with a further sum of $£ 35,000$. Rajá Sharabhoji retaincd only the capital and a small tract of country aronnd. He died in 1833, and was succeeded by his ren Sivaji, on whose death in 1855 without an heir the house became extinct, the rignts and privileges apiertaining to it ceased, and Tanjore becane British territory.

TANJORE, capital and administrative headquarters of the above district, is situated in $10^{\circ} 47^{\circ} \mathrm{N}$. lat. and 79° $10^{\prime} 24^{\prime \prime}$ E. long. As the last capital of the ancient Hindu dynasty of the Cholas, and in all ages one of the chief political, literary, and religious centres of the south, the city is full of interesting associations. Its monuments of Indian art and early civilization are of the first importance. Besides its great temple, the city is Iamed for its artistic manufactures, including silk carpets, jewellery, repoussé work, copper wares, \&c. It contained a population in 1881 of 54,745 (26,272 males and 28,473 females). The South Indian Railway connects Tanjore with Negapatam, its seaport on the east, and Trichinopoly on the west.

TANNAHILL, ROBERT (17T4-1810), one of the most popular of the successors of Burns in song-writing, was a weaver in Paisley, where he was born in 1774 . He was apprenticed to his father's trade at the age of twelre, in the year of the first publication of the poems of Burns, which quickened the poetic ambition of so many Scottish youths in humble life. The young apprentice studsed and
composed poetry as he drove the shuttle to and fro, with shelf and ink-bottle rigged up on his loom-post. Apart from bis poetry, he had littlo variety in his life. He was shy and reserved, of small and delicate physique, and took little part in the vigorous social life of the tomn, beyond sitting and smoking at a club of local worthies, and occasionally writing humorous verses for their amusement. He had apparently but one love affair, the heroine of which was the original of "Jessie, the Flower of Dunblane." He bade her farewell in indignant rhymes after three years' courtship. The steady routine of his trade was broken only by occasional excursions to Glasgow and the land of Buras, and a year's trial of work at Bolton. He began in 1805 to contribute verses to Glasgow and Paisley periodicals, and published an edition of his pocms by subscription in 1807. Three years later the life of the quiet, gentle, diffident, and despondent poet was brought by his own act to a tragic end. Tannahill's claims to remembrance rest upon half a dozen songs, full of an exquisite feeling for nature, and 8 n happily wedded to music that their wide popularity in Scotland is likely to be enduring. "Loudon's Bonnie Woods and Braes," "Jessie, the Flower of Dunblane," and "Gloomy Winter's Noo Ara" are the best of them.
Tannalill's ceatenary was celebrated with great bonour at Prisley in 1874; and, in au edition by Mr David Semple, published in 1876, there is an exhaustive and minutely les rned account of all that bas been preserved concerning tha poet, his ancestry, and the occasions of his various noerns.

TANNIN, a generic name for a class of vegetable substances which, as the name indicates, are all available for tanning, meaning the conversion of animal hide into leather. Tarnin is widely diffused throughout the vegetable kingdom. An cnumeration of the principal materials which form the commercial sources of the substance mill be found under Leather, vol. xiv. p. 381, and in various special articles referred to from that heading.

Our chemical knowledge on the subject is very limited; and, as long as we know no better, each of the various tanning materials must be viewed as containing a "tannia" of its own kind. ${ }^{1}$ Only a few have as yet been obtained in a state approximating chemical purity. The following characters are common to them all :-
(1) All are colonrless or little-coloured non-volatile solids, solnble in water and in alcohol ; the solution has an astringent tasta.
(2) They colour blue litmus paper feehly red, yet all unite with the alkalies into soluble salta; the solntions of these eagerly absorb oxygen from the ait, with formation of dark-coloured products.
(3) They form insoluble salts with the oxides of lead, zinc, copper, preducible by addition of solution of the tannin to one of the respective acetate.
(4) They form very dark-coloured (green or blne) compounds with ferric oxide, conveniently producible by addition of the tannin to ferric or ferroso-ferric acetate. Ordinary old-fashioned black (gall-nut) ink may be quoted as an illnstration.
(5) Tannin eolutions precipitata gelatine as an insoluble compound, gencrally assumed to be chenically similarto the eubstance of leather.
(6) If a piece of raw hide he placed in a solution of any tannin, it inbibes the latter with formation of Iesther (q.v.).
(7) Aqneous tannin-solutions, if mised with dilute snjphuric acid, ore readily ordized by solution of permanganate of potash, which, being reduced to manganonss salt, loscs its intense violet colour.
Upon the last two propositions Lömenthal has based a convenient mathod for the assaying of tannin materials. A known weight of the substauce to be anelysed (say sumach) is extracted with water, and the extract diluted to a kruwn volume. An aliquot part of the estract is then mixed with a certain proportion of a standard solution of indigo-carmiz and of sulphuric acid, and, after large dilution with mater, standard permanganate is dropped in from a buretto (graduated glass tube) until the colour of the indigo is completely discharged. After deducting the volume of reagent which would have been taken ap by the indige alone, the reat is put down as corresponding to the "permanganate reducers generally." Another measnred volume of the extract is then poured over a eufficient weight of dry shaviags of rew hide, after having been suitably duluted, and the whole is alluwed to stand until the tannin has all passed into the hide. The liquid is then filtored,

[^17]and a measured volume, corresponding to exactly the qnantity of extract used for the assay, tested with permanganste. The volume of reagent ased this time is deducted from that used in the assay as a cerrection. From tho net permanganate the weight of pure gsllotannic acid which it would oxidize is calculsted on the basis of standard experiments, and from this weight the "percentage of tannin" is deduced. The method is purely empirical, and the results are of ne value unless obtained according to a rigorously prescribed mode of procedure. Of individual tannins that of the gall-nuts, known as gallotannic acid, is best kuown. Fer its prepsration (according to Pélouze) powdered gall-nuts are placed in an apparatus for extraction "by displacement," aud in it soaked in a mixtnre of 9 parts of ether and 1 part of water for twenty-four hours. "The liquid is then allowed to drain off, sud the residne washed with aqueous ether. The liquid on standing eeparates into two layers, -a lower heary layer, which contains the tannin, and an upper mors purely ethereal layer, which contains gallic acid and other impurities. The lower layer is drawn off, washed once or twice with ether, and then evaporated to dryness at a gentle heat; the tannin remains as a poreus friable mass of a slightly greyish-yellow colour This is the tannin of the pharmaceutist.

Such tannin is not by any mesns an absolutely nnitary substance. Its solution, if allowed to stsnd in the presence of a ferment which is naturally present in gall-nut extract, or mere readily if hoiled with sulphuric acid, yields a large propertion of gallic acid, which is easily obtained in pure crystsis. According to Strecker, glucose is formed at the same time, whence he viewed tannin as a glucoside (see Sugar). But this is now recegnized as a mistake, since Hugo Schiff showed that pure tannin is only digallic acid, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{9}=$ $2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{5}$ (gallic acid) minus $1 \mathrm{H}_{2} \mathrm{O}$. Pure tannin, according to Schiff, can be obtaned hy dehydrating pure gallic acid by means of chloride of acetyl. The tannin of the Chinese grll-nuts ecems to be identical with gallotsnn:e acid.

Quercitannic Acid. -The tannin of osk bark is certsinly different from gallotannic scid, because it yields no gallic scid when boiled with dilute vitriol. Etti (Jahresb. uiber die Fortschr. der Chemie for 1880, p. 898) prepares it by extracting the powdered bark with dilnte alcehol at s gentle heat, adding ordinary ether to the slcoholic extract, and shaking out the tannin with acetic ether. The acetic ether extract is distilled to recover the solvent, the residue filtered, and the filtrate evaporated to dryness to ohtain the pure (?) tannin as a reddish-white porder of the composition $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{90}$ At 130$140^{\circ} \mathrm{C}$. it leses water sud forms phlabaphen, $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{17}$, a brown solid insoluble in water but eoluble in solution of the tannin. Quercitsnuic acid forms quite a series of sueh snhydrides: $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{17} ; \mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{16} ; \mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{15} ; \mathrm{C}_{84} \mathrm{H}_{24} \mathrm{O}_{14}$. Some, if not all, of these are contained in aqueous oak-bark extract, and they play an important part in its application for tanning. According to Etti, quercitannic acid is a tri-methyl substitution-product of digallic acid, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}$ minus 3 H plus $3 \mathrm{CH}_{5}-\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{9}$.

Besides these two tannins, those of coffee and cachon are the only ones which have bcen obtained in a relatively definito form.

TANNiNG. See Leather.
TANTALUM. A rare element closely allied to Niobitm. See vol. xvii. p. 513.
TANTALUS, a hero of ancient Greek myth and legend. He was a soh of Zeus and Pluto ("Wealth"), and becane the father of Pelops, Proteus, and Niobe. He dwelt in splendour on Mount Sipylus near Smyrna, and was admitted to the table of the gods themselves. But he abused the divine favour by revealing to mankind the secrets he had learned in heaven, or by killing his son Pelops and serving him up to the gods at table. Another story was that he stole nectar and ambrosia from heaven and gare them to men. According to others, Pandareus stole a golden dog which guarded the temple of Zeus in Crete, and gave it to Tantalus to take care of. But, when Pandareus demanded the dog back, Tantalus denied that he had received it. Therefore Zeus turned Pandareus into a stone, and flung down Tantalus with Mount Sipylus on the top of him. The punishment of Tantalus in the lower world was famous. He stood up to his neck in water, which fled from him when he tried, to drink of it; and over his head hung fruits which the wind wafted away whenever he tried to grasp them. From this myth is derived the English word "tantalize." Another story is that a rock hung over his head ready to fall and crush him. The tomb of Tantalus on Mount Sipylus was pointed out in antiquity, and has been in modern times identified by Texier with the great cairn beueath Old Magnesia;
but Prof. W. M. Ramsay anclines to identify it with a remarkable rock-cut tomb beside Magnesia. The story of Tantalus contains a reminiscence of a semi-Greek kingdom which had its seat at Sipylus, the oldest and holiest city of Lydia, and one of the chief birthplaces of early Greek civilization. Of this ancient city the remains are still visible on the northern slope of Mount Sipylus, and abont 4 miles east of Magnesia. They consist of sepulchral mounds, rock-cut tombs, and a small acropolis perched on an almost inaccessible crag which juts out from the nearly perpendicular limestone wall of Mount Sipylus. There was a tradition in antiquity that the city of Tantalus had been swallowed up in a lake on the mountain; but the legend may, as Prof. W. M. Ramsay thinks, have been suggested by the vast ravine which yawns beneath the acropolis. ${ }^{1}$ This acropolis is too small ever to have been the seat of a great empire ; rather, like Pessinus and sther great religious centres of Asia Minor, it may have been "the seat of a priestly suzerainty maintained over the Fiero-donloi [sacred slaves] of the surrounding district." Connected as the city was on the one hand with the sea, and on the other with the capital of the ancient kingdom of Phrygia by means of the "royal road," it was a natural meeting-place for Greek and Oriental culture. A comparison of the art of Phrygia with the early art of Mycenæ and Olympia has fully confirmed the legend which connects the family of Tantalus with the Peloponnesus.

See Pelors, Phriora, and a paper by Prof. W. M. Ramsay in Journal of Hellenic Studies, iii. p. 33 sq.

TAOISML See Lîo-tsze.
TAORMINA (Tauromenium), now an unimportant village of about 3000 iahabitants, is magnificently situated at the edge of a precipitous cliff 900 feet high on the east coast of Sicily, about 32 miles from Messina and the same from Catania. The original city was founded by a tribe of Siculi after the destruction of the neighbouring city of Naxos in 403 b.c. by Dionysius of Syracuse. It was built on the hill of Taurus, whence came the name Tavpopévor (Diod., xiv. 58). In 358 в.c. the city was increased by the settlement of the exiled survivors from Naxos, which was only 3 miles distant ; and hence Pliny (II. N., iii. 8) speaks of Naxos as having been the original name of Tauromenium. Owing to its commanding site, the city has frequently been the scene of important struggles. When with the rest of Sicily it passed into the possession of the Romans, it shared with two other Sicilian cities the privileges of a "civitas feederata." During the Servile War (134-132 в.c.) Tauromenium was occupied by a body of rebel slaves, but was finally taken by the consul Rupilius, and the whole garrison slaughtered. In 36 b.c. it was one of Sextus Pompey's chief strongholas in his war with Augustus, who after his victory established a Roman colony there. Under the empire it was a flourishing city, famed for its wine (Pliny, H. N., ziv. 6) and red mullets (Juv., v. 93). In 902 A.D. it was taken from the Byzantine emperor by the Saracens, who called the place Moezzia. In 1078 it was captured by the Normans. A large number of ancient remains bear witness to its former importance. Fine autonomous silver coins of c. 300 ह.c. exist, with obv. a laureated head of Apollo, and rev. a tripod, with the legend TAYPOMENITAN, and a magistrate's initials AI. The theatre is, next to that at Aspendus (Pamphylia), the best preserved in existence. It is Greek in plan, but the existing structure belongs mostly to the Roman period, and is specially remarkable for the preservation of its lofty scena wall, and two large chambers which form entrance-porches to the cavea. It is oxcavated in an 1 Legends of sabmerged cities and castles are common in different
parte of Earope. It has been suggested that they are confused recolparts of Earope. It has been suggested that they are confused recol-
lections of the sucient villages built on piles in lakes (Wood-Martin, Lake Dwellings of Ireland, p. 28).
elevated peak of rock, and commands one of the most magaificent views in the world, with Mount Etna in the distance. Remains of five piscinæ and a largo bath, popularly called a naunachia, still exist, together with remains of the ancient city wall and that of the arx.
See Sarradifalco, Antichitio di Sicilia, Palermo, 1834-42, vol. v.; Hittorff and Zanth, Architecture Antique de la Sicile, Paris, 1870.

TAPACULO, the nanie ${ }^{1}$ given in Chili to a bird of singular appearance, - the Pieroptochus allicollis of oraitho-logy,- -and, throughout this aeries of articles (Birds, vol. iii. p. 743 ; Ornithology, vol. xviii. p. 40 , et alibi), applied in an extended sense to its allied forms, which are now found to constitute a small Family, Pteroptochidx,

Tapaculo.
welonging to the Tracheophonous division of Passeres, and therefore peculiar to South America. About 20 species, which are disposed by Mr Sclater (Ibis, 1874, pp. 189:06) in $\$$ genera, are believed to belong to this group.

The epecies of the Family first insde known is Seytalopus magellanicus, originally described in 1783 by Latham (Synopasis, 5v. p. 484) a Warblar. Even in 1836 Gould not unnaturally took it for a Wren, when establishing the genus to which it is now referrad ; but somo ten yeara after Johannes Muller found that Scytalopus, together with the trua Tapaculo, which was first described by Kittlitz in 1830, possessed anstomical charactera that removed them far from any position previously assigned to them, and determined their true place as above given. Ia the mean while a kindrad form, Mylactes, also first described in 1830, had been shewn by Eyton to hava aome very exceptional osteological features, and these were found to be also common to Pteroptochus and Seytalopus. In 1860 Prof. Cabanis recognized the Pteroplochidat as a distinct Family, but made it also include Menura (ef. Lyrebind, vol. xv. P. 115), and in 1874 Mr Selater (ut supra) tbought that Alrichia (cf. Scrub-bird, vol, xxi. pp. 554) might belong here. It was Garrod in 1876 and 1877 who finally diveated the Family of these aliens, but, until examples of some of the other genera have been anatomically examined, it may not be safe to sav that they all belong to the Pteroplochide.

The true Tapaculo (P. albicollis) has a general resemblance in plumage to the females of some of the smaller Shrikes (Lanius), and to a cursory observer its akin might

[^18]$p^{\text {ass }}$ for that of one ; but its shortened wings and powerful feet would on closer inspection at once reveal the difference. In life, howcver, its appearance must be wholly unlike, for it rarely flies, hops actively on the ground or among bushes, with its tail erect or turned towards its head, and continually utters various and strauge notes,-some, says Mr Darwin, are " like the cooing of dovea, others like the bubbling of water, and many defy all similes." The "Turco," Mylactes megapodius, is larger, with greatly developed feet and claws, but is very similar in colour and habits. Two more species of Hylactes are known, and one other of Iteroptochus, all of which are peculiar to Chili or Patagonia. The species of Scytalopus are as small as Wrens, mostly of a dark colour, and iahabit parts of Brazil and Colombia, one of them occurring so far northward as Bogota. (A. N.)

TAPESTRY. See Textiles.

TAPE-WORMS, or CEsTODA, are a group of worms forming one of the three main divisions of the Platyhelminthes, the other two being the Turbellaria (seo Planarians and Nemertines) and I'rematoda (see Trematoda). They have been defined as follows :-"Flat worms withent mouth or alimentary canal, which typically develop by alternation of gencrations, by budding from a gencrally pear-shaped nurse, with which they remain united for a lengthened period as a ribbon-like colony or 'strobila. The individual joints of the colony, i.e., the sexual avimals or 'proglottides,' increase in size and maturity as they are removed farther from their origin by the intercalation of new buds, but are not distinguished in any special way. The nurse, however, known by the name of the 'head' (scolex) is provided with four or two suckers, and usually with curved claw-like hooks. The dorsal and ventral surfaces of the bead are perfectly identical, so that the arrangement of the hooks presents a atrikingly radiate appearance. By means of this apparatus the worms fasten themselves on the intestinal membrane of their hosts, which (except in the case of the otherwise peculiar Archigetes) all belong to the Vertelrata The nurses develop from little round six-hooked embryos in a more or less complicated fashion as so-called 'bladder-worms.' The latter iohabit very diverse, but usually parenchymatous, organs of the higher and lower animals, and are thence passively transferred to the intestine of their subsequent host" (Leuckarit, 1, ${ }^{2}$ p. 270).

Historical Sketch.-Certain forms of Cestodes have been koown from time immemorial. The bydatid cyst is alluded to by early medical writers, and Aristotle speaks of examining the tongue of pigs to ascertain the presence of bladder-worms. By this author and Hippocrates the Cestodes and other flat worms are spoken of as è $\lambda \mu \tau v \theta \varepsilon$ aौarciat, in opposition to the atpogyúdas or "round worms"; the word Trnia (Gr. tavia) does not occur in Greek authors, but is first used by the Romans (Pliny, II. N., xi. 33). In the treatises of the Middle Ages the tape-worm figured aa Lumbricus latus, only one species beiog recognized. Felix Plater (23) separated Bothriocephalus from the other humsn tape-worms, and Andry (24) gave it the name Ténia a épine, mistaking the nodular generative organs for vertebre. The appellation Bothriocephalus latus dates from Bremser, 1819 (25). Like other Entozoa, the tape-worms and bladder-worms were supposed to arise by spontaneons generation; it waa found, however, that animal forms atrikiagly like the Entozoa sometimes lived freely. Pallas (19), seeing that the cggs of intestinal worms are expelled from the animats in which they live, and may remain for some time unaltered in water, suggested the hypothesis that the Entozoa agreo with other animals in originating from eggs which can be

2 These figuree refer to the bihliography, pp. 55, 56.
rarried from one animal to another. He also supposed that they reached the liver and other internal organs by means of the blood-stream. Other authorities endeavoured to explain the presence of Entozoa by supposing that they were transmitted from parents to children. Von Siebold (26) in 1838 discovered the six-hooked embryos of Txnia, and came to the conclusion that they could only pass into the fully-formed animal by a kind of metamorphosis. The subject was fully discussed by Eschricht (27), who endearoured to prove that this phenomenon was of common occurrence among the ©Entozoa. Shortly afterwards appeared Steenstrap's famous work upon the alternation of generations (28), which furnished a ready explanation of the isolated facts till then observed regarding the Cestodes. The most important advances in modern times have been due to the introduction of helminthological experiment by Küchenmeister, by means of which the demonstration has been furnished that certain bladder-worms are the larval stages of particular tape-worms. The first of these experiments took place in 1851, when Küchenmeister fed a dog with bladder-worms from the rabbit, and a cat with specimens from the mouse, and succeeded in rearing tapeworms in their intestines (29). Similar investigations on different species have been made by Van Beneden, Leuckart, and others. Of systematic treatises the most important are those of Rudolphi (35), Diesing (20), and Van Beneden (13), while Von Linstow, in addition to numerous scattered papers (30,36), has given us an invaluable list of bosts with their respective parasites (21).

Analomy.

In considering the anatomical peculizrities of the Cestoda it will be convenient to describe one particular specics and afterwards to indicate the chief differences presented by other members of the group. For this purpose Tænia saginata, Göze (T. mediocanellata, Küchenmeister), may be selected os a type, as it has been perheps more studied than any other, and is one of the species most commonly found in man; for further details, see Sommer (81).

Dimetaions. - An average specimen of this tape-worm (fig. 1, A) vill measure in a state of moderate coutraction about 500 cm ., sad consist of neavly 1400 segments; of those which immediately follow the head more than 250 will be found within a length of 5 cm ; -hey gradually widen posteriorly, until the widest, which are situated sbout half-way down the chsin, have a bread th of 14 mm . and a length of 6 mm .; whilst the terminal segments measure 5 onm. in breadth by 19 nm . in length.

The head (6g. 1, B) is spheroidal, 1.5 mm . in diameter, a ud besrs on its lateral surface four equidistant suckers, which serve for the sttachment of the whole worm. After death these are generally retracted, but during life they can be protruded and moved in all directions. They are a special development of the musculature of the body-wall, the radial fibres being the most conspicuons. The taperworm now being described is abnormal, inasmuch as the front of its head is not provided with a circlet of hooks; these are well seen, however, in the other common human tape-worm (Tania sotium), which bears a double ring of them, situated around s button-shaped, muscular pad (rostcllum) which forms the apex of the hesd (fig. 1, C). By the varying contraction of the separato parts of this orgsn the hooks may be moved in different directions, and when the xorm is sttaching itself they are first extended directly folwards, and then brought back so as to force the rostellum into the tissues of the host. Esch hook has a brosd bifid base, to which the muscles sre sttached, supporting a long curved point. In Tænia saginata, to the consideration of which we now returu, the rostellum is quite rudimentary, and has been described by earlier authors as a fifth sucker or even as s mouth; it is intereating to note that duriug its incipient stages it bears a number of minute spines homologous with the hooks of other species. "The head contains furthermore the anterior portions of the nervous and excretory aystems. The latter of these consists of an annular vessel placed iminediately below the rostellnm, from which four canals, corresponding to the four suckers, pass backwards: two of these gradually disappear, leaving two which pursue their caurse down the proglottides, in connexion with which they will be egain olluded to, and open at the hinder extremity of the worm by a common pore. The nervous system of the Cestodes was long sought in vain: although some early Investigators described a ganglion, they were unable to give any satisfactory pronf of its existence, this having been first furnished by Schneider. It seems generally to consist of a central ganglion
lying within the hear, from which two cords proceed backwards; these were regarded by Sommer and Lendois as part of the alimentary system. Niemiec (6) has recently given s dẹtailed account of its structure in seversl different species, and its relations have been discussed by Isng (7).

The proglottides arise by a species of budding in the nerrow neck which immediately succeeds thie head; they are separated from each other by grooves. which are at first so shallow and

Fig. 1.-Aaatomy of Tenia (from Leackart). A, Portone of Tenia saginata; $\times \frac{3}{3}$. B, head of tha amme $\times 8$. C, head of T, solium, showing the crown of hooks; $\times 22$. D, a segment of T. sagutata, ahowing tha generative organs: n., Dervous ystem; ex., longitudinal excretory tubes: tr., trensverse vessel: g.p., geniral papila; ch., cloaca: c.p., cirrus pouch; o.d., vas defereas; f.e., testes: D., Vagina; ov. on., ovaries; sh.g.. shell gland; y g.. yolk gland: r.s., receptactum demlnis: uf. uterus; $\times 7$. E, the connexions of the geoerativeorgane, lettering of T. sagnara, bliowing rlpe uterus; x 2. G, six-hooked embryo, highly magnifled.
indistinct that it is impossible to say with certainty where the segmentation really begins. The proglottides which have sttained' sexual maturity sre situated some $30-40 \mathrm{~cm}$. from the head, and measure 1.5 mm . in length by 5 mm , in breadth. The segments, like the head, consist of a solid mass of tissue in which the various orgsus are imbedded. Like the Trematodes, the Cestodes were lonf thought to have no body-cavity or cœlons, and hence were called "parenchymatous" worms. Recently, however, a series of iytercellular spaces has been described by Fraipont (8) as lesding int, the terminal excretory organs, and these spaces lave been inter. preted both by himself sud others ss the homologue of a bodycavity, slthough this opinion has not been allowed to pass unchallenged (seo Pintner, 9). The surface of the body is coverel? by a thin clear homogeneous cuticle, which, according to some suthorities, is perforated by fine closely-set pores. The hooks which have been described above, is well as the amsll spines snd bristles found in certain species, are devclopments of this cuticle. This external covering cannot, according to Leuckart (1, p. 289), be regarded as homologous with the cuticle of other invertebrates; inasmuch as it is not a secretion from a special layer of subjacent cells, but is "the structureless limiting membrane of the connective tissuc substance, and is comparable with the so-called besemento membrane found in the other flat-worms . . . between the nuscular layer and the derma! epitheliom." It is to he observed, however, that this viem has by no means found uuiverssl acceptance (ser

Steudener, 10), aod it is a miori improbable, since the Cestodes (and Trematodes) would thus form an exception to the general rule by whieh ali suinals are clad with an epithelivat derived fiom the embryonic ectoderm. The subcuticular layer is described as consisting of long fusiform rells (probably motlificd connective-tissue cells) disposec perpendirularly to the cuticle. It oeems possible that they are in lircct connexion with tho transverse muscles of the bntly. The matrix of the Cestode borly consists of connective tissnc, the cells composing which are seldom [unvided with a dis. tinct inemhraue, and sometimes can only lie separately distinghished by their nuclei. The layer of muscles (seo below) separates this matrix into a central and a cortical portion. Digtributed in it, and esperially in its cortical portion, are numerous calcareous corpuseles, which are gencrally spheroidal in form, varying up to 0.019 mm . in diameter and concentrically laminated; they contain a large amonnt (oftcu 20 jer cent.) of linge salts, diffinsed through an organir busis, from whirli the salts can he removed with effervescence by the action of acids. 'Thesc corpuscles have been variously interfreted by the oller anthors as emos, or as lymph or blood corpuscles, but the only theories which have been serionsly maintained in modern times are-(1) that they are skeletal (Von Sicbold); (2) that they are excretory (Claparese, Gricsbach); or (3) that they form a rescrve store of calcarous matcrial to be used either in connter. acting the acisl aligestive juices of the host or for the production of egershells (l.cirkait, 1, p. 233).

The musmular system consists of three sets of fibres-longitudinal, tiansversc, aul sagittal. The hirst are the best devcloped, sud rum town the inner part of the cortical laser in the form of strong bands; the seconil set lie inmediately helow them and pass across the holly in the form of two flat muscular plates, which converge towards each other ns they approach the margins of the proglottis; the sagittal muscles rum prinitively straight from one fat surface of the borly to the other, but their direction is mucli modified after the growth of the genital ongans, between the varinus parts of which they lie as isolated bundles; they are the weskest of all the sets. The muscular fibres are non-striated, and when they are fully dereloped no nucleus can be letected in them. They taper towards the extremities, sometimes branching dichotomonsly, and, as above mentioned, a connexion has becu asserted to bo visible between thera and the subcuticular cells.

The excretory system in the proglottides consists of two or four longituinal canals which lio slong their two nsrrow margins (fig. $1, D, e x$.). The origin of these in the head has been already noted, and they pass continuously down the whole worm until they open into a vesicle at the posterior extrenity of the terminal segment. In the hinder part of each proglottis they are connected by a traosverse vessel (fig. 1, D, li.), immediately sbove which a valve is formed by a duplicature of the wall, so that it is impossible to juject the excretory sjetem from behind whilst fluid can be readily forced along it from before backwards. Fraipont has drawn a distinction between ascending and descending canals. Excretory openings have been described by rarious observers in the anterior portion of the worm, near the suckers (Wagencr, 11; Fraipont, 8; Riehm, 12), and, slthough their presence is denied by Pintuer (9), there eeems sufficient evidence to show that they are more generally present than was formerly supposed. A ramifying network of smaller vessels connected with the main trunks just described is fount in the more superficisl parenchyma, snd this in its turn gives off still finer sapillaries which terminato in ciliated funnels. According to Fraipont these open into the intercellular lacune which are the representatives of the colom (see above), whilst Pintner maiotains that the tcrminal funuels are completely closed, and are to be regardell is unicellular glands. The subject, however, is one of axtreme lifficulty and demands forther investigation. It is worthy of notice that each of the thrce eystems of canals above described maintains its proper cliameter throughont, and that no intermediate sizey can bn found. The "plasmatic vascular system" describad by Sommer and Lindois, and regarded by them sa part of the elimentary system, consists partly of some of these delicate canels and paitly of the two cords of the nervous system. The main canals opin prosteriorly into a pulsatile vesicle, at the end of the last proglottis; when, however, some of these have been cast off the opening may be either by a shortened transverse vesicle, as Leuckart (1) naintains to be the case in the nresent species, or by separate openings, one for each canal.

The reprodnctive organs are eerially rcpeated io the proglettides, esch of which contains a complete set of male and female organs (fig. 1, D). The male organs msy be discussed first. The testes (ℓ_{0}, .) are very numerous and scattered throughout the greater part of the proglottis; they are round vesicles (015 mm . in diameter) contsining spermatozoa, and attached like berries to the terminal ramifications of the ras deferens (v.d.); these gradually unite, forming larger and larger branches until they reach the main cansl, which runs in a geries of coils transversely bslf way across the joint a little behind its midille, and ends in a common cleaca (cl.), which receires both the male and femsle organe, and is conaected with the outer r.orld by the porus genitalis. The onter por-
tion of the vas las a thickened nuscular wall. nnil this part of it is capable of extrusion aud retraction, thus forming the male sutropuittent organ or "cirrus" (c.p.). The cuticle which lines ali the distal portion of the vas deferens is lere thin and delicate and armed witla serics of minute spines, which are directed backwands (Echencibnthrium) The cirrus in the present species is vary sliort, but in otlier forms its length is somctimes considerable. Tlie protrusion is effected by circular muscles placed around the ent of the vas deferens, while the retraction is brountht about by special longitudinal fibres, lying along the walls of the evaginshle portion.

The female organs may be most conveniently studied by tracing them inwards from the cloaca. The vagina (v.) opens immelliately posterior to the vas deferens, smd like it is lined by a continuation of the external cuticle. Atter passing sbout half way scross the segment it bends backmarils and terminstes in a small cyst, the receptaculnun seminis (fig. $1, E, r . s$.); this reccives and stores up the male fertilizing elements, retaining them until the ova are ripe. From its posterior extremity there passes a thin-wallel canal, wider than the varima (f.), which serves to convey the spermatozoa to the ova, and hence is termed the "fertilizing cansl" (Befruchtungscanal of German authors). It unites with the common oviduct, \& tube formed by the union of the two oviducts ($0 . d_{j}$), and the two together poss backwards into a spherical glandular structure, called from its discoverer "Mehlis's borly" or the shell gland (fig. 1, D and E, sh.g.). Within this apparatus it receives the duct of the yolk.nland (y.g.), and then jissses directly forwards to open into the uterus. The ovaries (ov.) are two in number, situated one on ench side of the middle line of the body; they are fan-shaped, and consist of a system of blind tubules situsted on s'buncheal efferent ditct. The cells of the ovary (primitive eggr) have a ghar]' contour and a large nuclens; the yolk-gland (y.g.) is very similar to the ovaries, behind and between which it is sitnated, but is distinguighed by various histological details (it is called "ovary" by Moniez). The shell-gland, formerly regarded as the ovary, consists of closely compressed uncleated cells, and is provided with small thin ducts opening into fthe narrow internal cavity of the organ. The uterus (ut.), in its early stage of development, is a long straight tube, lying almost in the longitudioal axis of the proglottis, and receiving posteriorly the oviduct after it emerges from the sliell-gland (fig. 1, E, ut.). From whst hes been ssid it will appear that the ova on their way down the common oviduct sre impregnated ss they pass the end of the fertilizing canal, and then receive in succession, first their supply of food-yolk and their shell, during their sojourn in Mehlig's body, sfter which they go forwards into the uterus, where they undergo the first stageg of their development. The nterus assumes a very different ohape as it becomes distended with eggs, which are far too numerous to be contained in a simple otraight tube; snall protubcrances arise from its walls, growiog rapidly and bifurcating here snd there, so, as to produce the complicated branched appesrance seen in fig. $1, F$. As the uterus grows, the male, and later the female, genitnlia degenerste and disappear, and in the proglottides which are rearly to be liberated the only organ visible is the distended uterus. One of the most charscteristic peculisrities in the sexusl system just described is that there is no passage by which the ripe eggs can make their exit from the proglottis; these sre therefore extruded only on its rupture; a very different state of things obtains in the genns Bothriocephalus (see below). Self-impregnation certainly occurs, and is probably the rule; it is obvious that the contrary case can only happen where two individuals lie side by side wifhin the same host. Furthermore, the cirrus has been seen protruded into the vagine of the same joint, and the emission of sperm bas been witnessed (Leuckart, 1; Yan Beneden, 13, p.601).
The eggs are ovoid or spherical, and consist of the kerm.cell (nncleus and protoplasm) with an albuminous enveloping substance, which is gain surrounded by a thin transparent skin. Tho ohell frequeatly presents one or more appendages, probably the sccretion of the shell-gland dramn ont into threads. The structure of the egg has been best studied in Teenia serrata (Van Beneden, 14), where it consists of \& delicate ghell containing a germ-cell, with a quantity of secondary yolk; the former divides into a "granular" cell, which eegmenta no further, and an "embryonic" globe, which agsin divides into a number of cells, of which three are larger and congtitute the "slbuminogenous layer," whilst the remsinder are smaller and form the "embryonic mass," and secrete a delicate ouperficial cuticle, the cell-limits being indistinct. In the embryonic mass from three to five flattencd cells form a chitinogenous layer, and give origin to a sunerficial homogeneons cost, a shell of radislly disposed chitiooid cylinders, and an internal faintly stristed lining, whilst the remaining cells become the six-hooked embryo or proscolex, a superficial layer to which the hooke belong, and a central mass of clesrer cells. When the nreacolex is'mature the originsl egg-ahell sad the albuminogenous layer disappear; and only the chitinoid costs remain.

The proglottides sre cast off by muscular action; the fibres are not continuous between the enccessive segments, so that these are con, nected merely by soft connective tissue, which readily giree way; the
suptoretakes place through the trsnsverse vessel above described, sud, as the hinder margin of the proglottis contracts forcibly when the next one has left it, the transperse vessel gives rise to the rounded vesicle which forms the termination of the excretory system.

Life-History and Development.

The six-hooked embryo (fig. 1, G) may be conveyed to the inter. mediate host in several ways, but the commonest is for it to be taken intu the slimentary cansl along with food to which it may have allhered, or with water in which it was swimming; the infection may take place either by means of free eggs or by whole proglottides. Iu the latter case the soft tissues are first digested by the gastric juice of the host, and in eitler case the egg-shell is dissolved or rendered so brittle thst the embryo readily escapes hy the movemeuts of its hooks. The proscolex; after spending a longer or shorter time free in the atomach or intestine, procueds to perforate the wall of these organs by means of sctive burrowing motions. Although the embryo of a Tenia has only once been captured in its progress through the wall of the alimentary canal (Raum, 15, p. 28), there cen be no doubt that this is tho route by which it usually proceeds, sud thst its wext locslity is s blood-vessel, rebably some suall branch of the portal vein, in the blood of which it has been found by more than one observer. This would explain the freyuency with which the next stage is found in the liver. There eeems, however, reason to believe that many embryos peaetrate the intestinal wall completely snd reach the body-cavity, in which they can wander freely. When the six-liooked embryo has reached its rcsting-place, which in addition to the liver may be lung, muscles, braid, counective tissue, or eye, it at ouce commences its further development, and in a few days becones visible to the naked cye. Like any other foreigo body, it causes a proliferation of cells, which in due time form a sheath of connective tissue, with a cellular liniog, and smooth like a serous cavity within; this covering, lowever, is not found when the barasite is situated in the brain or the eye. The embryo now growa in size, generally bfcoming aomewhat elougated, and the hooks drop off, Sometimes they can be found lying detached in the councctive-tissue sheath. The central cells enlarge and become clear, and in all the Truise they liquefy, forming a qusntity of fluid which fills the ceutre of the blsdder-worm, At this atage the lerve constitute the so-called "measles" of bcef (that of pork being due to Cysticercus cellulose, the immature stage of Tænia colium); they are ovoid vesicles lying between the muscle fibres and varying in length from 4 to 8 mm , snd being ususlly about 3 nim. in diameter (fig. 2, A). At a poiut on one side of the bladder there applears a emall thickenngg, the meniscus or rudimicut of the future liead; this is soon followed by an invagination of the cuticle (fig. 2, 13). When the rudimentary head thus formed is about 0.2 wni. in length (the hladder being 1.5 mm . in dismeter) the forma. tion of muscles in its walle commences. At four equidistant points pear the bottem of the invaginetion the suckers are developet, and at the lowest part of the cavity the rostellum (and the double circlet of hooks in the armed alecies) is formed. Surrounding the head-rudinicut ou that aurface which is towards the cavity of the bladder is a thin layer, known as the "receptacle." This is best oeen in Cysticercus cellulose, in which there is also a very clarscteristic bend or kink u the pedicle of invagination, which in inost other blanhler-worme remains straight (see fig. 2, C). The rudiments of the vascular system of the bladder bave already sppeared before the formstion of the liead, and now they extend into it es four longitudial vessels, which become connected st the bottom of the invagination by a circular vessel. About this time, too, the cslcarcous corpuscles above described make their appearance. When the looks aud suckers are fully formed, the bead undergoes a process of evagination, so that what was previously a hollow cavity beconcs a solid cylinder, and the houks, which were below the ouckers, come to lie above them. Mature blsdder-worms vary in size from Cystcercus fasciolaris, the size of a pea, to Cysticereus tenuicollis, six inches or more in length.

The development into the adult tape-worm takes place only alter the Cyslicercus bas been awallowed by the permanent or definitive loost. The course of this metamorphosis has beeu followed experimentally, and it has been found that first the bladder and next the neck of the worm are dissolved by the gastric juice. The head ouly is luft ; in the moist warmth of the intestioe its ouckers and rostellunt cxhibit very lively motions, which serve to briug about its sttachment to the intestinal wall. It gradually increases in length, and the formation of segments speedily commences.

The life history of the Cestodes is generally summed up ss consistiog of three different forms:-(1) the proscolex, or six hooked -mbryo, which gives rise to the bladder-worm; (2) the scolex, which dovelops the chain or etrobila by a process of budding; and (3) the proglottis, or sexual animal, which prodoces eggs. Each of these three forms has certain claims to be regerded as a zoological "individual." Vso Beneden (13, Vers Int., p. 251) has laid great atress upon the correspondence between \& Trematode and a ripe proglottis, and it bas been since pointed out that a proglottis may
ullder favorable circumstances (that is, within the intestine) continue to grow after being detached from the pareut chain; it cannot be said, however, that the evidence upon which this rests is quite incontrovertible. Regarded from this point of view the life-bistory

Fio. 2.-Developmeat of Tensa (from Leuckart). A, Cysficercus bovis In beel: pat. alze. B, Invaginated licad of a Cusficercus befora the furmation of tha auckers; $\times 25$. C, Invaginated head of Cysicercus cellulosex, ahowing tha bent anck and receptacla $r_{;} \times 30$, D, atages ln the development of tha trood cupaules ta Echinococcus: a, tha thickening of tho parenchyme of the bladder , apsulequent formallon of a cuvity in it; c, development of the aackera,
of the tape-worms furnishes an admirable instance of the alternation of geoerations. The individuality of the proglottides, howe ver, slthough maintained by anthorities so eminent as Jeuckart, is by no means universally accepted; a distinction has been drawn between their formation and true budding seen in other animal colonies, such as the Polyzor; and Riehm, in a recent work (12), has pointed out that the casting off of these sexusl segments is in some respects compriable to the detachment of the hectocotylized arm of a Cephalopod, and the formation of new joints to the davelopment of an Oligochretous worm from a few eegments; furthermore, certain organs-for cxample, the nervous and excretory gystems-are continuous throughout the whole chain, and an isolsted proglottis is nnable to maintain its existeuce for more than a very limited period. According to this view, alternation of generations only occurs in Cestodes in forms such as Connurus, where there is a proliferstion of heads in the wall of the bladder. ${ }^{1}$

The Cestode larva corresponding to the stage which lras just beeu described present considerable varistions both in form and atructure, and upon these classifications of the group have been based, and generic names have been given to the different forms; Von Linstow (36) bas, however, pointed out the undesirableness of this, as they sre all parts of the life-history of one genus, Tænia. The nost recent arrangement is that of Villot (16), which is as follows:-
I. The ceudsl blsdder arises from the proscolex by simple growth and atructural modification, without the fornation of any new parts. A larger or smaller quantity of tuid is present, and also a connective-tissue sheath; the bost is a vertebrste. Cysticercus (true bladder-worms), Piestocystis, Canurns, Echinococcus.
11. The caudal bladder ariscs from the proscolex by budding, that is, by the formation of now parts; there is no connective-tissue aleath, and the host is an invertebrate. Cysticercoidei, Leucksrt (a) Csudal bladder formed by endogenons budding; the hesd is ourrounded, not only by the body of the worm sad the caudsl bladder, but also by the blastogen (proscolex). Polycercus (from the earthworm), Monocercus (from the black slug, Arion) (b) Caudsl bladder formed by exogenous budding; the liead is only aurrounded by the body of the worm and the caudal bladder. Cercocystis (from Tenebrio), Staphylocystis, Urocystis, Cryptocystis.

Of these the most important are the first group, and regarding some of them a few words must be added. In the great majority of apecies only one tape-worm bead is prodoced, and such bladderworms constituted the genns Cysticercus of the older heluintho. logists. In certain cases, however, notably is the worm which produces the "staggers" of sheep, numerons heads are formed in the wall of each bladder; such larvi formed the genus Conurus; but apart from their polycephalous condition there are no structurl peculiaritiea calling for apecisl notice. The third variety of bladder.
1 At the mament of golng to presn, Grassi (Zeischr. f. Parasitenk., 11. 1I) makes the important communlcation that Jruig murina ($=7$, masa) my develop without un Intermedlete host.
worm (Echinococeus) is characterized by the fact that the tape-worm heads are not directly developed in the wall of the bladder itself, but from "brood capsules" which lis in numbers on the inger wall of the bladder.

Development of the Echinococcus. -The amallest bladder yet aecn was reared by Lenckart in the pig, and consisted of a minute protoplasmic mass surcounded by a alructureless cuticle. This cuticle thickens by deposition of new layers as growth proceeds, and the lamination of the cuticle is one of the characteristic peculiarities of the Echinococcus, another being the absence of an excrotory system. At certain points in the parenchyma lining the cyst small warts are noticed (fig. 2, D, a), which enlarge and become hollow; theu the cavity enlarges in a direction opposite to the point of origin, and at the extremity of this hollow suckers and hooks are formed as in the case of Cysticercus described above (b, c). No sooner has the development of the first of these reached a certain degree of completeness than others are formed in similar fashion. The first part of the invagination takes place, by which tho future head comes to lie within the brood-capsuls and tle pedicle is no longer hollow but aolid (c) ; the suckers and hooks are, however, still iuveginated, and remain so for a coasiderable period. Seeing that the interior of the brood-capsule is lined with caticle, it corresponds to the outside of the parent cyst, and hence is probably the representative of a provious iavagination. If this bo so then the development of Echinococcus would be quite comparable with that of Cysticcrcus, the ouly difference being that, instead of the head heing an invagivation of the wall of the cyst itself, it is a eecondary invagina. tion, the primary being the brood-capsule. This does not, however, exhaust the peculiarities of the Echinococcus; the form just deacribod, wita a simple cyst and brood-capsules, is common in cattle, and hence goes by the name of Echinococcus vetcrinorum; but cases are frequent, and are the most common in the human aubject, in which the cyst contains daughter-vesicles, differing from those just described in being alerile-giving riso to no heads. These daughter-uladders may originate in threo different waya: (1) from little granular heaps, which are seen between the different layers of the cuticle, and which are probably derived piinarily from the parenchymal layer, -since new layers of cuticle are contioually formed internally, these bladders gradually make their way outwards, until they come to lie externally to the mother-vesicle (Echinocaccus cxagena, Kuhn; E. scalcciparicns, Kïchemmeister); (2) from brood-capsules; (3) from Echinococcus-heads; these last two modes of ouvclepment give rise to vesicles, which are within the nother-vesicle, and produce a form which has been varionsly called Echinococcus, endogcna, Kuhn, E. altricipariens, Küchenmeister, and E. hydatidosus. A very remarkable form is Echinococcus multilocularis, which consists of a number of very small vesicles embedded in a common soft stroma; it is found exclusively in man, and for long was regarded as a forin of alvcolar cancer. The noole of its dovelopment is unknown (for further information, aee Virchow, 17). Compound bladdera occur in man and the ox, whilat other ruminants, swine, and monkeys usnally harbour the simple or exogenous forms. The organs most often affected are liver and lungs. The adult tapo-worm (T. echinococcus) is found in tbe iutestine of the dog, jackal, and wolf, occurring in consiler. ablo numbers between the villi. Its length (fig. 3, A) is at most 5 mm . and it coasista of only threa or four segmenta; the bead has four suckers and a double circlet of books.

Pathological Effects.

The pathological effects of Cestodes fall naturally into two categories-(1) those due to the adult worm, and (2) those due to the larve or bladder worms.
(1) Those of the first group are in general slight, being confined to the abstraction of a certain amount of nutriment, and to a more or lcss acute feeling of irritation, sometimes amounting even to colic-like pains, in the intestine. There have indeed been many authorities who have maintained that they were beneficial; Jürdens went so far as to describe them as the good angels and unfailing helpers of children, and Schimper records that the Abyssinians consider that they prevent constipation, and only regard them"as disadvantageous when they grow too long. Notwithstanding all this, however. there are not a few cases on record in which aræmia and neurotic, or even mental, diseases have been caused by the malnutrition and irritation which they occasion. ${ }^{1}$

[^19](2) The effects of Cestode larvæ may again be divided into two subdivisions. (a) That due to the invasion and wandering of a large brood of six-hooked embryos has been most successfully studied in cases in which animals have been fed for experimental purposes with fragments of ripe tape-worms; in such instances a train of symptoms has been observed to which the name "acute cestodic tuberculosis" has been given. It is characterized by loss of appetite, fatigue, ruflling of the hair, and fever ; on post-mortem examination it bas been found that the lympbatic systern is in a state of inflammation, while the muscles present the appearance which has already been described. (b) The effects of formed bladder-worms may be summed up as dependent upon the pressure of the growing cyst and the consequent absorption of the surrounding tissues of the host, so that the importance of the results depends almost entirely upon the organ which is affected. Bladder-worms in the brain are, of course, the most frequently fatal, especially when, as is not unfrequently the case, they exert pressure upon the ganglia at its base. Küchenmeister bas collected a considerable number of occurrences of cystic worms in the brain; among these sixteen were not accompanied by pathological symptoms during life; in six others these were slight; twenty-four were cases of epilepsy, six of cramp, fortytwo of paralysis, and twenty-tbree of mental disturbances of varying intensity. Cysticerci in the brain vary greatly in size and form according to the precise situation which they occupy; in its ventricles they have been found as large as a pigcon's egg. In the meshes of the arachnoid the bladder sometincs grows into a remarkably branched structure, which has been called Cysticercus racemosus by Zenker (3). Another peculiar form from the same organ hás ween described by Köberlc (4); it is claracterized by the great length of its head-process (2 cm .) , which is coiled up into a regular spiral of sometimes thrce turns, it has received the uane Cysticercus turbinatus, though its specific distinctness is doubtful. The occurrence of Cysticerci in the eye is of special interest, because of the opportunity it affords of observing, by means of the ophthalnuscope, the development of the worm in its natural environment. It seems generally to lie at first below the retima, and is visible as a bluish-white sharply defired body; subsequently the retina is destroyed by the pressure, and the worm falls forward into the ritreous body; sometimes the head may be seen protruding first through the opening; in the chambers of the cye the Cysticercus is almost always free, that is, without a capsule, and swinuming in the fluid, so that its form and motions may be readily and accurately observed. A large number of cases of this affection bave been recorded, principally by Von Graefe in Berlio (5), and in some the bladder as been successfully removed by operation.

The special symptoms of the Echinococcus vary, like those of other bladder-worms, with its situation and size when it grows within cavities with more or less firm limits compression of adjoining vessels and glandular passages often results, producing cedema, varicose veins, congestion of various organs, or even dyspocea, if the parasite occuin the thorax. The liver is its nost frequent seat, and next the lung; but there is scarcely any organ of the body in which it has not been fuund, even the bones being sometimes affected. Since the expanding cyst grows in the direction of least resistance, it has a tendency to pass
Which the first two are the arost reliable. Turpenting may be giver In half-ounce doses along with castor oil, or made up ioto at emulsioe with yolk of egg; while tha malo fera is usually administered in the form of liquid extract (half a drachm to one drachm). Careful scaral should be made in the evacuations for the head or scolex, without that expulsion of which thers is no certain evideace that the parasita hqu been renoved from tho bods.
cowards the surface of organs, and sometimes a sure is effected spontanenusly by its rupturing into the alimentary canal or into some other passage leading to the exterior. Cases in which the cyst opens into the blood-vessels are

Fib. 3.-Varlous Formo of Tape-Werme. A, Tania echinococrus: $\times \mathbf{1 2}$ (from Lenckart). B, Archigetes sieboldi; $\times 60$ (from Leuckatt). C, Echinobolhrium fypus; $\times 10$ (from Van Booeden). D, Caryophylleus mutobilis; x about 5
(from Carus).
almost always suddenly fatal. When the Echinococcus occure near the surface of the body, it may be evacuated by puncture and a cure effected with but little risk.

Systcmatic Arrangoment of the Cestoda.

The following classification of the Cestodea, based mainly on that of Van Benceden, exhibits the present atate of our knowledge of the group :-

Class Cestoda.

Family I. Amphilinidx.-Body oval, flattened, with a sucker at the anterior extremity; testes resicular, vas deferens opeuing posteriorly; opary (germarinen) single, yolk glands double, vagins opeoing near the vas deferens, uterus opening nuteriorly; embryo ciliated in front and with ten hooks. Examples: Amphilina, Wagener (ae日 below), Amphiplyches, Wagener.
Family 11. Caryophyllxida_-Body nnsegmented, fat, extended ; head expanded, bilobed, and without hooks; a singla aet of nexual organs in the hinder portion; development probably a aimplified metamorphosia. Example: Caryophyllews mutabilis, from the intestise of Cyprinoid fishes (fig. 3, D).
Family 111. Pscudophyllida.-Head provided with two sucking grooves; proglottides not always well defined; a uterine aperture always present in aldition to the openings of the vas defercoa and vagina ; embryo alroys (?) with a ciliated cont, and eyg-shell with an operculum. Examples: Bolirioccphalus (see below), Triæn ophorus (- Tricuspidarin), Solenophorks, Schistocephalus, Ligula, Archigctes, and perhaps Duthiersia (sce below).
Family IV. Diphyllidx.-Neck and two snckers armed with liooks. Exampla : Echinobothrium, two apecies known from Selachians, one immature from a mollusc (fig. 3, C).
Family V. Fctrarhynchids.-Head provided with four suckera and four protractile proboscidcs armed with hooks; sexual openings marginal. Example: Telrarhynchus (see below), about ferty apecies known, many only described from immature forms.
Family Yl. Tetraphyllids. - Head with four very mobile and distinct suckers, which are often armed with hooks or clitinous rods; body segmented, proglottides cast off when mature ; sexnal openings margimal.
Subfanily i. Phyllobothrine. - Suckers without hooks or spines. Examples: Echeneibothriun, Ihyllobothrium, Anthobothrium, a fow apecies of cach, all from Elaamobranch fishes.
Subfamily ii Phyllacanthine.- Suckers each with two to four hooks Examples: Caltiobothrium, Onchobothrium Acap-thoboth-uthe, two or three species of cacli genns known Irom Belachiaus.

Fanily VII. Traiadra.-Head furnishad with four auckera and often with a single or donble circlat of hooks; proglottides well-defined and caat off when mature ; yo uterine aperture. Example: Tænia (aee below).
It aems advisable to add a faw details regarding some of the forms alluded to iu the above synopsia.

Amphilina foliacea, deseribed as a Trematodo by Rudolphi, is found in the body-cavity of the sturgeon. A number of uvicellular glands open into the sucker, and are surrounded by the muacles of that organ; the nervous aystem consists of two ganglia, with a commissure, and two lateral nerves; the male organs resembla those of Bothriocephalus, the female those of the Trematodes; the family is generally regarded as furuishing a connecting link between the C'cstoda and Trematoda; see Salensky (18) and Lang (7).

Fio. 4.- Bothriocephalidre. A, A segment of Bothriocephalus latus, sliowing the generativa organs from the ventral surface; ex., oxcretbry vessels; c, clirua; r.p., cirrus pouch; v.d., vas deferene; v.0., vaginal opening; v, veglna; wh.0. ohell-gland; od., culduct; ov., ovary; $y . g, y$ yolk-gland ; y.d., ita duct; uf., utes us; u.0., uterina opening; tha teates are not visible from thils. slde; $\times 23$ from Sommer and Laadols). B, C, marginel end lateral vlewa of tha aaterlor purt of B, cordatua, elrowIng tha cephelic grooves; $\times \delta$ (Irom Leackart). D, Cilated ambryo of B. Iafus ; $\times 00$ (from Leuckert).
Bothriocephatus latus (32) is the most conapicuous example of tho family Pscudophyllidæ; and is, moreover, noteworthy as being the largest tape-worm found in man; its length often reaches 8 to 9 metres, and its extreme breadth 10 to 12 mm . The head bears two grooves, which corrcsposd in position with the flat sides of the body. There are two (more correctly three) genital openings, which are situated, not on the margin bat on the flat aide of the body, on that surface which is usially called the ventral. The most anteriur of these is the raale aperture (fig. 4, A, c.), and immediately behind it is that of the vagina (v.o.), so close that on superficial examination thatwo often aeem to coincide. This vaginal onening, like that of the Tæniadæ, aerves for the intromission of the peois and for the fertilization of the ova, but not for the exit of the ripe eggs; this being provided for by a apecial aperture at the other end of the aterns from that at which the eggs enter it This uterine opening (u.o.) is aituated at a short distance behind the other two. Thie result of this arraagement is that the egga can be evacuatcd without any injury to the proglottis, and consequently their discharge commences before its scparation from tha parent worm and may continue for a long period. The uterns (ut.) itself, owing to its disposition in folled coils, when full of eggs, presents an irregular, round, lobular appearance, which has been compared to a flower or herallic lily. Tho yolk-gland (y.g.) is widely disseminated in the latcral areas of tho segments, and its ducts (y.d.) form a series of branching tubules, first lescribed by Eschricht (27) under the name "yellow dncts." The excretory organs (ex.) differ from those of the Treniadm in that the canals exhibit a reticulate arrangement. The embryo (fig. 4, D) as it leaves the egg is covered with a ciliated mantle, which corresponds to the firm eggshell and associstcd membrane of the cystic taje-worms, and perhaps also to the ciliated envelope of certain Trematore larve (sce Trematoda). This ciliated organism swims freely about in the water, but after a thoo the six-looked proscolex escepes from it. The next stage in its life-history is not yet known, but it has been recently ahown by Braun of Dorpat (33) that at a anbsequent atage it inhabits tha pike and buvbot, and develops into the eexnal adnit when transferred in tha intestine of the human subject. The geographical distribation of Bolhrioecphalus is limited; it has been recerded with certanty in but feur piaces outsido Enrope; while withia that continent the coasts of the Baltic and Switzerland aro
sbe principal localities; it is widely distributed in Russie, ond has been recoricd from Polend, Denmark, Germany, es well as from Fance and Britan, though it is possible that the cases occurring in these latter countries lave been duo to importation.
The genus Ligula has the segmentation obscure or indistinguishable. About six species are known. One is found encapsuled in a monkey, one in the common seal, others in reptiles and teleosteans, Archigeles sieboldi ($\mathrm{fig} .3, \mathrm{~B}$) occura in thio body-cavity of an Oligochætous worm (Tubifex rivelorum); it is about 3 mm . long, and consists of an nval body (scolex), to which is attached a cylin. drical tail (proscolex), bearing et the posterior extremity three pairs of hooks; both these parts are capable of notion. Tbe scolex has eight longitudinal excretory canals, and a terminal vesicle; the ventraly situated genital aperture is the common exit of the vas deferens, the vagina, and a uterus selarate from the latter; the development is direct, and it attains sexual maturity without a chaoge of host. Duthiersia, Perrier (34), contains two species, both from the intestines of varanian lizards. The genus is characterized by the presence of two large compressed frilled suckers, separated by a septum and perforated at their bascs. The proglottides have three genital apertures resembling those of Bothriocephalus.

Fig. 6-Tetrarhynchus A, General vlew of the worm; $\times 4$. B, head ahowing the suckers, probuscides, and excretory canals ; $\times 25$. C C_{4} portion of a proboscis showing the two forms of hoaks ; highly megnified. (All from Pintner.)

The genus Tetrarhynchus was, a fery years ago, maile the subject of ao elaborate memoir by Pintuer (9), who investigated T. longicollis, V. Ben. The head, in which its most striking anatomical peculiarities are situated, really includes both the head and neck of previous authors (fig. 5, A) ; it is some 9.94 mm . long, but only 0.75 mm . in diameter, and bears at its anterior end two obliquely placed oval disks (fig. 5, B), each of which is perforated towards the apex by two rouod holes through which the four proboscides pro. trude. Each of these disks, norcover, shows traces of a division irto two, a fact which indicates that it is formed by the fusion of two suckers corresponding to those commonly fonnd io tape-worms. The flattening in this genus seems to be in a direction at right angles to that in which it usually takes place. The proboscides, which are the most characteristic orgaus of the gen a, are four in number, and protrude from or cao be retracted into the siterior surface of the bead. Each consists of three parts:-(1) the toothed portion is the most anterior; it is shaped like a long darrow glovefinger, like which it is invaginable; on its external surlace it bears rows of hooks, closely set in diagonal lides (fig. 5, C); there are two forms of these: those which are directed outwards are large triangular hooks, with apices pointing backwards, whilst those situated on that surface of the proboscis which is turned towards the other proboscides are fine, delicate, and curved; between the hooks are fine chitinous bairs; (2) the membranous sheath is firmly attached where the general surface of the body passes over into the toothed portion around the orifice of the invagination ; it consists of a thick homogeneous transparent skin, apparentiy an excretion of cells lining the cavity of the proboscis; (3) the muscular portion in the most posterior of all, and is composed of six layers, remarkable as containing striped nuscular fibres ; throughout all these three portions of the proboscis there extends a retractor muscle. The action of these various structures is not thoroughly understood, but it is probable that the proboseis is pratruded by the action of the last-named muscular sheath, whilst it is retracted, after the relaxation of this, partly by the retractor muscle and partly by the pressure of the surrounding medium.
The family Taniade is usually described es containing only the
one genus Tratia, but, owing to the number and rariety of its species, of which more than 850 have been described, it lins bee subdivided into groups, regarded by different authora as genera or subgenera. The aubjomed arrangent.e. is mainly that of Leuckart It labours muder the disadvantage that its rlief divisions are hased upon the bladder-worm or larral stage, whelh is only known in tha casa of comparatively fer species

1. Cystici (cystic tape-worms). -Head rarely unarmed; nsually provided with a rostellum and with oue or more fowa of hooks; proglattides longish oval when mature; uterus with mediau stent and lateral brauches: the larva has a caudal bladder contrining flud.
2. Cystotznia, Leuckart-The head arnes in the wall of the embryonic blalder.
a. Tenia saginalu, Guze. - Mithout hooks (- T. nedio. canellata, Kíchenmeister, - genus Taniarhynchus, Weialand).
b. Twnia soliun, limilolphi- Head with a double circlet of hookz.
c. Tania acanthotrius, Weinlend. - Il cad with a triplo circlet of hooks (- genus Acanthotrias, Weinland).
2 Echinococcifer, Weinland. -The heads arise in special brood-cspsules. Tania echinococeus, V, Siebold.
3. Cystoidei (ordinary tape-worms). -The larva has no distended caudal bladder containing fiuid.
4. Hymenolenis, Weinland. -Troboscis with a single row of Wmall hooks. Ternia aiara, V. Siebold, T. favopructata, Weinland.
5. Dipylidium, Lenckart. -IIcad with seseral rows of hooks, each with a discoilal base; a right and left set of genital organa in eacli joint, the uterus, however, being single and commou to the two. Tania cucumerina, Rodolphi ($=$ T. elliplica, Batsch).
Hamann (2) has recently proposed a new genus, Ptychophysa, for Truia lineala, Göze, which is defined by the following characters:-(1) the porus genitalis is on the surface and not on the unargin of the joints ; (2) the vaginal opening is anterior to that of the cirras; (3) at a certain period the uterus is convoluted; (1) there is a peculiar shell-gland. In many of these charecters the species shows a resemblance to the Bothrincephutida.

Occurrence in Man.-The Cestodes which in the adult state infest man, with their corresponding arve and temporary hostg, are as follows:-

Tania saginuta.	Cysticercus bovis.	Ox.
T. solium.	C. cellulosx.	Pig, man
T. nana.	(3)	(?)
T. Jlavopunctata.	(3)	(?)
T. madagascarimusis.	(?)	(?)

T. cucuncriza.

Bothriocephatus latus.
B. cristatus.
B. cordatis.

Other species, homever, inhabit the human body in their larval coudition; a list of them, with. the corresponding adult forms and permanent hosts, is subjoined :-

Cysticercus cellulosæ.	Tania soliun.	Man.
C. acanthotrias.	T. acantholvias (incog.)	(?)
C. innuicollis.	T. marginala.	Dog, wolf.
Echinococcus.	T. echinococcus.	Dog.

Phylogeny. -There can be no doubt that the Cestodes and Trematodes are intirately related and lave surung from a common ancestor; there are so many structural peculiarities in which they agree (compare Trematodes), and tliey are connected by so many interinediate forms, that their affinity can admit of no doubt According to Leuckart, the original ancestor of hoth was probably allied to the Planarians, while IIuxley ($22, \mathrm{pp} .213,676$) points out that it is at all events possible that they bave no connexion with free forms iut have always been anenterous, and in fact are nothing but "gigantic mornl), so to speak, which have never jassed through the gastrula stage."
Bibliography-(1) Leuckart, Dic Parasiten des Menschen, Leipste, 1863-76; 31 ed. 1a79-86; Eng iransl. The Pavasiter of Jant, Bva Edinburgh. 1886. (2) IIamann, Zeilschr.f. wiss. Zool., shi., 1885. (3) Zesker, in Ziemssen's Cyclop. of Prac. Lediti. (4) Köberlé, Des Cystucerques des Twnias do r Homme, Paris, 1861. (5) Gruefe. Archuo ophthalmologie, xil., 1374, (6) Niemlec, Rec. Zool. Suisse, 11, 1885, (7) Lang. Milth. Zool. Stat. Wenpel, [i., 1881. (8) Frsipont, Archives de Biol., 1.01880 , 11., 13s1. (9) Pintner. Asb. Zool. Inst., iit., 'Menna, 1891. (2') Steodener, Abhandl. naturf Geellsch, xiih., Halle, 18i7, (11) Wagener, Nova hela Ces, Leop.-Carol. Acad xxic., Suppl. 1854. (12) Piehn, Curreapbl. d naturte. Ver. fo Sachsen u Thuringen, 1-ss. (13)P J, Van Reneden. "V Vels Cestoldes" Afen, Acorl. Bruzellea xxr..18s1, and "Vers I testinatx," Comptes Rendus. Paris, Sippl., 11., 18is. (14)
 yeseh. der Cysticercen, Dntpat, 1883 (16) Villor, Reo. Sci. Nat. Nontpellior, Sepp. 1882, 1883. (17) Virchow, Verhandl. W'urzb. phys.-med. Gesellsch., vi., 1856. (18)
 1., it., 1781. (20) Diesing. Sysiema flelminthum, Bro, V1-nna, 1850. (21) Linstnu,
Comp. der Helminthologie, aro, Hanover, 18ia. (22) Muxley, Anat. Invertebr. Comp. d/r Helminthologie, Avo, Haliover, $18 i i^{\text {a }}$. (22) Muxley, Anat. (nvertebr.
Anim., 8ro, London, 1877. (23) Plater, Opus Praseos Afedice, 1601. (24) Andry, Anim., 8ro, London, 187eding of Florms in Human Bodies, Svo, London, 1701 An Account of the Breeding of lebms in Human Bodies,
(tranash). (25) Bremser. Ueber lebende Wurmer im lebenden Menschen, 420,

Flenns, 1819. (26) Burdsch's Physiologie, li., Lelpsic, 1838. (2\%) Eschricbt, Nova Acla Cat. Leop.-Carol. Acad., xlx.. Suppl., 1841. (28) Steenstrup, On the Alternafon of. Oenerations. Ray Socicty, 8vo, London, 1845, (29) Küchenmeister, flon of. Oenerations, Ray Socicty, 8vo, London, 1845 . (29) Kz̈chenmeister, Animal Parasiles. Sydenham Society, $8 r 0$, London, $185 ;$ new German ed.. Lelpsic, 1880-81. (30) Linstow, Archiy f. Naturgesch, 1872 gq. (31) Sommer, Zeitschr. f. ${ }^{\circ}$ wiss. Zool., xxiv., 1874 _ (32) Sommer snd Landols, op. cit., xxll,, 1872. (33) Braun, Zur Entwickelungsgesch. des bletien Bandiourmes. Wïrz. burg. 1883. (34) Perrier, Arch. de Zool. Ezpér. Il., 1873 (35) Rudolph1, Entozoorum Eist. Nat., 8vo, Amsterdsm, 1808, (36) Linstow, Arch. f. Naturgesch., 1886, p. 113. For a conclso account of the comparative anatomy and cophous blbllogrsphy, aeo Jsckson, in liolleston's Forms of Animal Life, 2d ed.;
Oxford, 1887.
(W. E. HO.)
(W. E. HO.)

TAPIOCA is a farinaceous food substance prepared from cassava starch, the product of the large tuberous roots of the cassava or manioc plant, Manihot utilissima (Jatropha manihot), native of Brazil (see Cassava, vol. v. p. 182, and comp. Arrowroot, vol. ii. p. 631, fig. 6). Cassava starch, being separated from the fibrous and nitrogenous constituents of the roots, is in a moist condition spread upon iron plates, and with constant stirring exposed to such heat as causes a partial rupture of the starch granules, which agglomerate into irregnlar pellets, becoming hard and translucent when cooled. In this partly torrefied condition the starch forms the tapioca of commerce, a light, pleasant, and digestible food, much used in puddings and as a thickener for soups. The French prepare an artificial tapioca from potato starch, mixed with various vegetable substances, for use in soups, \&c., which is found in the market under such names as tapioca. Crecy,tapioca Julienne, \&c., according to the dried vegetables with which the preparations are made.
TAPIR. The general characters of the animals of the $\vec{\theta}$ perissodactyle or odd-toed section of the hoofed manmals are described under Mammalia, vol. xv. p. 427. This oñce numerous group is at present represented by only three rather isolated families, the Horses, Rhinoceroses, and Tapirs. The last of these have retained much more of the original characters of the primitive Ungulates of the Eocene period than the others, and have indeed remained practically almost unchanged since the Miocene period, while almost all other mammalian forms which existed then have either become extinct or undergone extensivo modification. The tapirs constitute the single genus, Tapirus, of the family Tapivida.'
The dentition is $i \frac{3}{3}, c \frac{1}{1}, p \frac{5}{3}, m \frac{5}{3}$; total 42 . Of the upper Incisors, the first and second are nearly equal, with short, broad crowns, the third is large and conical, considerably larger than the true canino, which is separated from it by an interval. Lower incisors diminishing in size from the first to the third; the caninc, which is in contact with the third incisor, large end conical, working against (and behind) the canine-like third npper incisor. In both jaws there is a long interspace between the canines and the contmencement of the teeth of the molar series, which are all in contact. First upper premolar with a _triangular crown, narrow in front owing to the absence of the anterior inner cuap. The other upper premolars and molars all formed on the same plan and of nearly the same size, with four rootg and quadrate crowns, rather wider tranaveraely than from before backwards, each having four cusps, conncted by a pair of transverse ridgea, anterior and posterior. The first lower premolar compressed in front; the others composed of a simple pair of transverse crests, with a small anterior and posterior cingulaf ridge
Skull elevated and coupressed. - Orbit and temporal Cossa widely continnous, there being no trua post-orbital process fron the frontal bone. Anterior narial apertures very largo, and extending high on the face keliveen the orbits; nassl bones short, elevated, triangular, and pointed in front. Vertebra: C 7, D 18, L 5, S 6 , C sbout 12. Limba short and stouto Fore feet with' four toes, having distinct hools: tne frrst is absent, the third the longest. the second and fourth nearly equal, the fifth the shortest and scarcely reaching the ground in the ordinary atanding position. Hind feet with the typical perissodactyle arrangement of three toos, - the middle one being the largest, the two others nearly equal. Nose and upper lip elongated into a fexible, mobile enout or thort proboscis, near the end of which the nostrils are situated. Eyes rather small. Ears of moderate size, ovate, erect. Tail very ghort. Skin thick and but acentily covered with lair.

The existing species of tapir may be grouped into two sections, the distinctive characters of which are only recognizable in the skeleton. (A) With a great anterior
prolongation - of the ossification of the nasal septum (mesethmoid), extending in the adult far beyond the nasal bones, "and supported and embraced at the base by ascending plates from the maxillx (genus Elasmognathus, Gill). Two species, both from Central America, Tapirus Zairdi and T. dowi. The former is found in Mexico, Honduras, Nicaragua, Costa Rica, and Panama; the latter in

American Tepir, from a living specimen in the London Zoologicat Gardens.
Guatemala, Nicaragua, and Costa Rica. (B) With ossifica. tion of the septum not extending farther forward than the nasal bones (Tapirus proper). Three species, T. indicus, the largest of the genus, from the Melay Peninsula (as far north' as Tavoy and Mergui), Sumatra, and Borneo, dis. tinguished by its peculiar coloration, the head, neck, fore and hind limbs being glossy black, and the intermediate part of the "body white ; T.' americanus (1. terrestris, Linn.), the conmon tapir of the forests and lowlands of Brazil and Paraguay; and T. roulini, the Pinchaque tapis of the high regions of the Andes. All the American species are of a nearly uniform dark brown or blackish colour when adult; but it is a curious circumstance that when'young (and in this the Malay species conforms with the others) they are conspicuously marked with spots and longitudinal stripes of white or fawn colour on a darker ground.

The habits of all the kinds of tapirs appear to be very similar. They are solitary, nocturnal, shy, and inoffensive, chiefly frequenting the depths of shady forests and the neighbourhood of water, to which they frequently resort for the purpose of bathing, and in which they often take refuge when pursued They feed on various vegetable substances, as shoots of trees and bushes, buds, and leaves. They are hunted by the natives of the lands in which they live for the sake of their hides and flesh.
The singular fact of the existence of so closely allied animals as the Malayan and the American tapirs in such distant regions of the earth and in no intervening plases is accounted for by what is known of the geological history of the race, for, if we may judge from the some what scanty remains which have been preserved to our times, consisting chiefly of teeth, the tapirs must once have had a very wide distribution. There is no proof of their having lived in the Eocene epoch, but in deposits of Miocene and Pliocene date remains undistinguishable generically and perhaps specifically from the modern tapirs (though named $T_{\text {, }}$, priscus, T. arrernensis, itc.) have been found in France; Germany, and in the red crag of Suffolk. Tapirs appaas
and is separately condensed, the lightest portion passing through a worm condenser. From treatment in close retorts resinous roots yield from 16 to 20 per cent. of tar. with some oil of turpentine and pyroligneous acid.

Wood tar is a serci-fluid substance, of a dark brown or black colour, with a strong pungent odour and a sharp taste. Owing to the presence of acetic (pyroligneous) acid, which is a collateral product, it has an acid reaction : it is soluble in that acid, as mell as in alcohol and the fixed and essential oils, \&c. Tar consists essentially of a misture of homologous hydrocarbons, and by redistillation it can be fractionated into a-series of bodies Laving fixed boiling points. Some varieties of tar have a granular appearance, from the presence of minuto crystals of pyrocatechin, which dissolve and disappear on heating the substance. Pyrocatechin dissolves freely in water, and to it the tar water (liquor picis) of pharmacy probably owes its value.

Crude tar from retorts, when submitted to redistillation, gives off wood spirit (methyl-alcohol), and then acetic (pyroligneous) acid, and finally, on forcing the heat, pitch cil is driyen off. The residuum left in the still hardens into a solid-vitreous mass, which forms the black pitch of commerce. Tar and pitch are most largely used as protective coatings for woodwork and other materials much exposed to water and the weather. Thus tar is of great ralue in connexion with shipbuilding and shipping generally. A considerable quantity is used in manufacturing tarred ropes, and in the "smearing" of highland sheep to afford a protection against the weather. Pitch also is the basis of the Berlin black or Brunswick black used for coating cast-iron goods and for "japanning " preparations.

Coal Tar.-The art of distilling coal for the production of tar was discovered and patented by the earl of Dundonald in 1787, and till the general introduction of coal gas some amount of coal was yearly distilled in Scotland for the production of coal tar. The demand for the substance was limited, it being principally used for coating iron castings and smith work, for making an inferior lamp black, and as a source of a solvent oil. With the extensive use of coal gas the necessity for this separate distillation ceased, and soon tar was produced in the manufacture of gas in quantities that could not be disposed of. It was burned up for heating gas-retorts; it was mixed with coal dust, sawdust, \&c., for making patent fuel; and it was distilled for producing a series of hydrocarbon oils, heavy tar, and pitch; but it was only after the discovery and introduction of "tar-colours" that the substance came for some time to be really valuable. Since that time its price has fluctuated greatly; and in the United Kingdom alone there are now distilled annually about $10,000,000$ tons of coal for gas-making, producing $120,000,000$ gallons of crude tar, - a quantits greatly in excess of the ordinary dcmand.

If wood be distilled slowly at low temperatures, the gases consist chielly of carbonic oxide and carbonic acid, mixed with only very little of carburetted hydrogens, and consequently little luminous on combustion; the watery part of the tar includes relatively much of methyl-alcohol, acetone, and acetic acid; the oily part of the tar (tar proper) has a certain proximate composition characteristic of this mode of distillation. Our present knowledge in regard to this last-named point is very incompleto: of definito species the following have been discovered:-

> (1) Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (aynongm carbolle acld).
> (2) Cresol, $\left(\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{CH}_{3}\right) \mathrm{OH}$.
> (3) Phlorol, ($\left.\mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{OH}\right) \mathrm{C}_{2} \mathrm{H}_{5}$
> (4) Pyrocatechine, $\left(\mathrm{C}_{0} \mathrm{H}_{4}\right)\left(\mathrm{OH}_{2}\right)_{2}$, one of thre isomertdes.
> (5) Guzlacol, $\mathrm{C}_{6} \mathrm{H}_{5}\left\{\begin{array}{l}\mathrm{OH} \\ \mathrm{OH}_{3}\end{array}\right.$, methyl-ester of \$io. 4.
> (6) Homo-pyrocatechine, $\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)\right\}(\mathrm{OH})_{2}$.
> (7) Creosol, $\left\{\mathrm{C}_{4} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)\right\} \mathrm{OH}_{8}{ }^{\prime}$ methsl-cister of No. 6.

Gennine creosote consists of (1), (2), (5), and (7). In aadition, there aro numberless bodies which still await acientific definition.

If the distillation of rood is carried out at a very high tempera-ture,-if, for instance, the wood is placed in a relatively large retort
proviously branght up to a Dtigntraest heat and kept at ouch temperature, or if the vapours produced at a relatively low temperacure ane piseed, through intensely heated pipes before reaching the condenser (28ttenkoler's method for producing illuminating gas from wood), - the gas produced contains a considerable admixture of luminiferous hydrocarbons, the proportions of metliyl-alcohol, acetone, and ecotic acid get less, and the tar proper assumes more of the character of coal-gas tat (seo below). Similar observations we make in the case of coul. About 1862 Wigan cannel coal used to be distilled industrially at low temperatures to produce "light oils." Schorlemmer examined chose and found them to consist chiefly of "paraffins" (see P"RafFin) from $\mathrm{O}_{5} \mathrm{H}_{12}$ upiwards. A similar result is obtained with ordinary coal, although in its case the "benzols" are morr largely leureosuted. If we distil any kind of coal at high temperatures-i.e. in the way customary for illumin. ating-gas naking-the distillable port of the tar proper consists chiofig of benzcne, $\mathrm{C}_{6} \mathrm{H}_{8}$, and beuisro-derivatives, i.e., benzols, $\mathrm{C}_{6} \mathrm{H}_{6}+2 \mathrm{CH}_{2}$; pheaols, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$ and homolognes, $\left(\mathrm{C}_{6} \mathrm{H}_{3} .22 \mathrm{CH}_{4}\right)$ OII; amido-bodies, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (aniline), and homologues; condensed benzols, such as naphthalene, $\mathrm{C}_{20} \mathrm{H}_{8}=2 \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}$; anthracene, $\mathrm{C}_{14} \mathrm{H}_{10}=3 \mathrm{C}_{6} \mathrm{H}_{8}-\mathrm{C}_{4} \mathrm{H}_{6}$; chrysene, $\mathrm{C}_{18} \mathrm{H}_{12}=4 \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{12}$; \&c. The parafinu then become an altogether subordinate feature.

A great and neritorions research of Berthelot's has thrown considerable light on the chemical mechanism of dry distillation. As found by him, even the most complex of the substances named are producible by the interaction upon one another of a fur bedies of very simple constitution, or even one or other of these by the mere action of a high temperature. To give a few examples. Marshgas, CH_{4}, when passed through red-hot tubes, yields olcfines, $\mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{8} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{8}$, \&c., with elimination of hydrogen, H_{2}. The same CH_{4}, if subjected to a spark-current (i.e., local application of intense heat), yields acetylene and hydrogen, $2 \mathrm{CH}_{4}=\mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2}$, and tho acetylene produced passes partly into beuzeqe, $\mathrm{C}_{6} \mathrm{H}_{6}=3 \mathrm{C}_{2} \mathrm{H}_{8}$. Ethylene, $\mathrm{C}_{2} \mathrm{HI}_{4}$, when passed throngh a porcelain tube kept at a maderato red heat, yields benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, styrolene $=$ phenylethyleye, $\mathrm{C}_{2} \mathrm{H}_{3} . \mathrm{O}_{6} \mathrm{H}_{5}$, naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, and perhaps also its hydride, $\mathrm{C}_{10} \mathrm{H}_{10}$. Acctylene, qua potential benzene, and ethylene yield styroleae and hydrogen, $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{I}_{4}-\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}$; and otyroleno plus ethylenc yields hydrogen and naphthaleno, $\mathrm{C}_{10} \mathrm{H}_{6}$.

Benzol at a high temperaturo loses hydrogen, and, so to say, doubles up into di-phenyl, $\mathrm{O}_{22} \mathrm{H}_{10}$; and this latter, when licated with ethylene, yields anthracene, $\mathrm{C}_{14} \mathrm{H}_{10}$, and liydrogen, $\mathrm{C}_{12} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{4}=$ $\mathrm{C}_{14} \mathrm{H}_{10}+2 \mathrm{H}_{2}$. Conversely, hydrogen may, so to say, turn olit its equivalent of a hydrocarbon; thus, for instance, chrysene, $\mathrm{C}_{16} \mathrm{H}_{12}+$ $2 \mathrm{H}_{2}$, yields di-phenyl, $\mathrm{O}_{12} \mathrm{II}_{10},+$ benzenc, $\mathrm{C}_{6} \mathrm{H}_{6}$.

Pyrogenic reactions generally arc reversible; thus, any of the following three equations is correct, whether wo read it from the left to the right or from the right to the left:-

> (1) $\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane), at \& red hest becomes $\mathrm{C}_{2} \mathrm{I}_{1}+\mathrm{H}_{2}$. (2) $\mathrm{C}_{12} \mathrm{H}_{10}+\mathrm{C}_{6} \mathrm{H}_{8}=\mathrm{C}_{18} \mathrm{H}_{12}+2 \mathrm{H}_{2}$. (3) $\mathrm{C}_{14} \mathrm{H}_{10}+2 \mathrm{H}_{2}=2 \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2}$.

Hence no siugle pyrogenic reaction gocs to the end; if it does not, so to eny, cleek its own progress, other secondary reactions set in and do 60 , the general result being that ultimately, but in general slowly, a stato of dyuamic equilibrium is attained in which a set of synthetic reactions on the one land and a set of analytic reactions on the other compensate one another.

Industival Working of Coal Tar. ${ }^{1}$ - Conl tar, as it comes from the gas-works, is uscil for a variety of purposes, such as-(1) for fuel, the tar beiug made into a spray by means of a steam-injecto and the spray kindled; (2) for the preservation of building materials, porous stones, and bricks, \&c.; (3) for making roofing. felt (in 1868, five-sixths of the yono tons of tar produced at the Berlin gas-works was thus utilized ; the case, howercr, is different now) ; (4) for making a low quality of lamp-black. At present, however, most of tho tar produced, in centres of industry at least, is worked up by distillation. The tar as it cones from tho gas. works is allowed to rest in a "pond" nutil tho tar-water (solution elifefly of anmonia and certain ammonia salts) has gone to the top. The tar proper is then pmomped into a large wrought-iron still (of apriglit-cylinder form preferahly) and therein subjected to distillation over a naked fire. A nceessary preliminary, however, is the removal of the unavoidablo remnant of water, which is best effected by cautionsly heating the tar in the still so as to remer it more fluid and enabie the water to riso to the top and then letting the opper stritum run out by an overflow tap at the sido. The distillation is then started. It involves the formation of tro sets of volatile products, namely- (1) combustible gases (including sulphuretted hydrogen and Lisulphide of earbon vapour), which must bo led away to aroid nuisance and danger of fire, and (2) a very complex liquid or semi-liquil distillate. This latter is collected in surcessive fractions, generally in this unanner :-(1) as "first runnings," what comes over at temperatures below 105° to $110^{\circ} \mathrm{C}$. ; (2) as "liglit oils," at touperatmes between 110° and $210^{\circ} \mathrm{C}$. ; (3) $99^{* 6}$ carbolic oil," at temperatures between 210° to $210^{\circ} \mathrm{C}$. ; (4) is
"creosote oil," at temperatures betreen 240° to $270^{\circ} \mathrm{C}$. ; (b) as anthracene oil, at temperatures above 270°.

In the carlier part of the "first runnings" and light-ail period the condenser must be kept cold ; towarls the end it nubt be kept warm to prevent choking by solidified maphthalcue. In practice, the operator does not go entively by the boiling point, but to a great extent by the specific gravity of the distillate, which, in general, increnses as the boiling point rises. As soon as a drop of the last runnings floats in water (exhibits the specific gravity 1), the "light oil" is sulplosed to be over. That the fractionation is not alirays and everywhere elfected in the same way nceds hardly bo caid. If the manofaeture of earbolic acid is amed at, it is hest (accorling to Lunge) to selcet the fiaction 170° to $230^{\circ} \mathrm{C}$. for this purpose. Naplithalene boils as high as 217°, yet a dlal gocs into this earbolic-acil iraction. As soon as naphthalene begins to crystallize out largely (on cooling (lown a sumple of (listillate), the carbolic acid may be presumed to bo over. What follows next is put asicle as creosote oil, until, aftor the disalpearance of the naphthaleno, a new solid product, namely, antluacene, lucrms to slow itself. With any tar that contains a remmerative proportion of anthracene, the anthracene oil is the most valuatbe of the products, as the raw material for the making of artificial olizarius.

Supposing tho anthracene to havo been extracted as completcly, as practicable, the residue in the still consists of "hard pitch," a viscid black fluid which on cooling freezes into a fragilu solid. In former times more commonly than bow "soft pitels" used to be produced by leaving wore or less of the anthracone oil aud even creosote oil in the still. At the end of the anthracene stage of the distillation it is as well, if not aecessary, to help tho very high boiling vaponi out of the still by means of superheated stean, and to keep tho romn at $100^{\circ} \mathrm{C}$, to prevent choking. At a German establishment a vacumm is used with great adrantage,

We como now to explain briefly how the scveral fractions are worked up.
The pitch (which wo assume to be "hard pitcl" ") inust be run off hot through a tap at the bottom of the still and led into a low. roofed and well closed-in "house," hecruse it would take firo in the open air. After it las cooled down sulficiently in the "house," the pitch is run into pitch-loles in frent of the loonse and allowed to ficeze there. The depth of pitch in a hole is alonat 12 iuclies. The solid pitch is hacked out with pickaxes and sent into commerce. A sujperior apparatus for tho recovery of the pitch, which prechudes all danger of conflagration and many inconveniences of the ordinary system, lias hcen devised for the Paris gas-works by Regnault. ${ }^{2}$ Lunge found, from inany distillations, that tar from the midland counties yields about 55 per cent. of hard pitch.

Hard pitch is used chiefly for making tho following. (I) Asphatt.-The pitch is fused ip-perhaps in tho still which produed it-with the requisite proportion of creosote and anthraceno oil, previously freed from their valuable components. Suclu asplialt is used for street-lyaing, i.e., filling up the epaces betwecu the paving-stones, and, in admixture with snad and generally more or less of natural asphalt, for tho making of footpaths and floorings generally. In Germany it serves for the makiug of pipes for eonveying reid liquids in works and chemical laboratories, \&c. Endless hemp-raper is soaked in liquefied asphalt and wound spirally around au iron core, previonsly smeared over with soft soap, in about 100 layers. The whole is then exposed to strong pressure while still loot, and is scparated from the core after being allowed to cool. Such pipes stand 'almost any kind of acid, but they must not be used for hot liquids. (2) Varuishes. -The pitclı is dissolved in suitable tar oils, -creosote oil for a lower and light oil for a higher quality. (3) Coke, - In fonnce tines more frequently than now pitch was inade into coke by transferring it to a special flat still and distilling as long as any volatile products caino olf. The coke which remains is a very pure and consequently valuablo fucl. (1) Lamp Blach (as a last resonnce, if no other modo of utilization is practicable). -The pitch is subjected to martial combustion on hot iron plates and the smoke conveyed into chambers to deposit its carbon. The yield is about 40 per cont.

Anthracene Oil. - The oil is allowed to stand cold for a week or so until tho antluaceno has erystallized ont as completely as possible. The mother-litpor is then eliminated, the bulk by means of a filter-press, the rest, at a higher than tlo ordinary temperature, by hydraulic pressure. The crude product inclukes far more than half its weight of impuritics-phenanthrene, parallin, naphthalene, \&c. To remove these as far as possible, tho erumb anthracene is ground up and treated with petroleum spirit (boiling at 70° to $100^{\circ} \mathrm{C}$.) or coal tar naphtha (120° to 190°), in which real anthracene is relatively insoluble. The insoluble prart is seprarated by filtering arrangements and presses (so construeted as to avoid danger of fire), and at last oublimed, mose with tho view of brioging it into a eustomary convenieat form than with tho object of etfecting forther purification. Such final anthraceno may contain 50 to 65 per cent. of pure substance. Tho only reliable method foz

2 It is describer In Lunge's Treatise on the Distillation of Coal Tar, Londun 1882, to which this article is lurgely indebten.
determining its strength is to couvert a known weight into anthraquinone, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}$, by boiling it with a glacial acetic acid solution of chromic acid, separating out the quinone by diluting with water, collecting and weighing the product. One part of quinome corresponds to 0.8558 of anthracene.

Creosotc Oil is either used as it is for pickling timber, softening of pitch, \&c., or else redistilled to extract from it what there is of anthracene oil and carbolic acid oil, which are worked up with the respective priocipal quantitics.

Carboic Dil.-Assuming this oil to havo been collected (as it should be if intended for the making of carbolic acid) between 170° and 230°, the process of extraction is, briefly, as follows. The oil is mixed with a suitable proportion of canstic-sode ley (ascertained by an assay) in an iron vessel at 40° to $50^{\circ} \mathrm{C}$. Charles Lowe recom! mends loy of 1.34 sp . gr., diluted with water to five times its volume. After settling, the aqueous layer is withdrawn into a lead-lined vessel, and the soda supersaturated by sulphuric acid. Crude carbolic aeid rises to the top as an oil, and is withdrawn to be sold as such or purified. See Carbolio Aoin.

Vaphthatene abounds in the oil left after extraction of the carbolic acid by caustie soda and in the more volatile fractions of the creosete oil. From these it aeparates out (not completely), on standing, in crystals. These are collected, best in a filter-prees, and then subjected to hydraulie pressure to force ont the rest of the mother-liquor. The crude naphthalene thus obtained contains an impurity which causcs it to become red on standing in the air. To remove it, the crude product is mixed with 5 to 10 per cent. of vitriol of at least 1.7 sp . gr., at a moderate heat (addition of a little binoxide of manganese is an improvement, Lunge); it is then washed, first witl water, then with dilute alkali, and lastly again with water, to be ultimately distilled or suhlimed. In the latter case it is obtaiaed in the form of thin colourless plates of great beauty. It fuses at $80^{\circ} \mathrm{C}$. and boils at $217^{\circ} \mathrm{C}$. Naphthalone is nsed largely in the making of certain tar colours, such as Manchester yellow, $\mathrm{C}_{10} \mathrm{H}_{6}\left(\mathrm{NO}_{2}\right)_{2}$, and the beautiful scarlets and crimsons made by the "farbwerke" in Höchst, Germany; theser latter are diazo: compounda derived from β-naphtliol, $\mathrm{C}_{18} \mathrm{H}_{7}(\mathrm{OH})$. Coal gas, if impregnated at a suitable temperature with nephthalene vapour immediately before issuing from the burner, gains greatly in luminosity. This is the principle of the "albo-carbon " gas lamps.

First Runnings aud Light Oit. -These mgy be said to include all the iodustrially valuable "benzols" (taking "benzol" as a generic term for beuzol or benzene itself and its higher homologues, $\mathrm{C}_{6} \mathrm{H}_{8}, \mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{C}_{8} \mathrm{H}_{10}$, \&c.). As the distiller in most cases does not aim at on actual separation of all the individual benzols from one another, but at the production of certain benzel mixtures demanded by the trade, the mode of working mey assume a great variety of forms; yet the first aim in all cases is the same, being the elimination of all the non-benzol Irom the given oil or olls. For this purpose the light oil is, as a rule, subjected to a preliminary fractionation ovor a naked fire to aplit it up into fractions fit to be worked for (crude) benzol ($\mathrm{C}_{8} \mathrm{H}_{8}$ and $\mathrm{C}_{7} \mathrm{H}_{8}$), for carbolic acid $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right)$, and to be incorporated with the creosote ail respectively; the carbolic acid is extracted, and the creosote-oil part put aside, and thus one or more mixtures of "benzols" are obtained.

The first ruunings contain the bulk of the benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, and a little of its higher homologues, associated, however, witl bisnl phide of carbon, low-boiling olefines, $\mathrm{C}_{n} \mathrm{H}_{2 n}$, traces of carbolic acid, \&c. To remove theso impurities as far as possible, the oil is thoroughly agitated with concentrated oil of vitriol (which takes up the impurities except the bisulphide of carbon), and the "dirty" acid allowed to settle out. The acid.is then withdrawn as reatly as possible, and the residual oil washed, first with water, then with dilute caustic soda, and, lastly, again with pure water. The washed oil then is subjected to a preliminary fractionation by distillation - ver a paked flame in the "crude benzol still."

The sevoral mixed benzols obtained are subjected finally to a further fractionation in stills worked with stean, to be divided into mixed products known by specifie names in cominerce. But these we cannot possibly consider here. We will rather give an idca of the way in which the soveral chemical species (benzene, toluene, \&c.) are being isolated in a state of approximate purity to meet the demands of the tar-colour industry. To do so even for one named component by means of ordinary stills would require an endless number of fractional distillations. The work is very materially shortened if, as proposed by Mausfield longi ago, we combine the still with an inverted condenser (still-licad, dephlegmator), inserted between the still and the worm, and keep that intermediate condenser at a suitable constant temperature, so that all the less volatile part of the vapour. is jecondensed and sent back to tho still. An excellent apparatus of this kind was constructed and worked successfully by Coupier. His apparatus consists of three parts, viz.:-(1) a still heated by means of a coil of close steam pipes ; (2) a columnar rectifier-" colonnen-apparat" as the Germans call it, which comm micates with the still, and which B divided into many compartmeots by horizontal septaso contrived chat the vapour in nassing from a compartment to the next higher
one must bubble through the liquid condensed there from preceding vaponr, -an overflow pipe, trapped below by condensate, lindering accumulation of the liquid in any compertment beyond a certain level; (3) a constant temperature atill-head, consisting of a succession of communicating riog-बhaped tubes, which are immersed in a bath of .Water or molten parallin kept at a preacribed constant temperature. Only the most volatile part of the vapour aurvives as such in the celumnar rectifier, the degree of its rolatility depending, of course, other things being equal, on the rate at which we distil. This most volatile part suffers partial condensation at the prescribed temperature in the still-head; tlie condensod parts are sent back to compartments of the "colrmn" by pipes bent in to the ebapo of a U at the point where they join the "column," so as to prevent vapour from ontering them. The uncondensed vapour goes to the worm, and is condonsed as usual.
To prepare benzene, the still-head is kept at 60° to $70^{\circ} \mathrm{C}$. At first a mixture of low-boiling bodies and benzene goes over, which is rejected, but soon pure benzol follows and continues until almost all this component has distilled over. The benzol obtainc.' Boils between 80° and $82^{\circ} \mathrm{C}$., and consequently is practically pure. In order now to extract the toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, we raise the temperature of the still-head to $100^{\circ} \mathrm{C}$. A small quantity of a mixture of benzene and toluene follows, which is rejected. After it comes a continuous distillation of almost pure toluene, boiling at 110° to $112^{\circ} \mathrm{C}$. In a similar manner (relatively) pure xylene, $\mathrm{C}_{8} \mathrm{H}_{10}$, boiling point 137° to 140°, and tri-methyl-benzene, $\mathrm{C}_{9} \mathrm{H}_{22}$, boiling point 148° to 150°, can be extracted ancessively; but the process becomes troublesome with anything ahove toluene on account of the high temperatures involved for still and still-head. Coupjer's apparatus is now superseded by other constructions, but they all work on the samo principle, -that of the Coffey still, as ased for the rectifying of spirit of wine.

Pure benzene, tolnene, and xylene are used largely for the manufacture of tar-colours. The following (and other) mixtures are produced directly from the light oil or first runnings:-

90	..fnitlal boinag polut		$82^{\circ} \mathrm{C}$
(2) 80 per cent. benzol.	"	\cdots	88
(3) "Toluol".	"	"	100
(4) Carburettlog naphtha	"	"	108
(5) Solvent naphtha.	"	"	110
(6) Barning naphtha	",	,	138

No. 4 serves for enriching coal-ges and adding to its luminiferous power, No. 5 for varnishes, No. 6 for feeding primitive lamps used in the open air, where smoke is no objection.
The following perceutage table for the tar from the Berlin gas. works (given in Chemische Industrie for 1879) gives an idea of the quantitative composition of this most complox material :-

Benzol (Includilng talool, \&c.).........................	0.80	
Higher benzols...	$0 \cdot 60$	
Crystallized carbolic acld	$0 \cdot 20$	
Cresol for disinfecting purposes....................	0.30	
Naphthalene..	8.70	
Creosote oll..		24.00
Anthracene (pure)...		$0 \cdot 20$
Pltch ..		85.00
Water and loss.		$18 \cdot 20$

TARAI, a British district in the Kumáun division of the lieutenant-governorship of the North-West Provinces and Oudh, India, lying between $28^{\circ} 51^{\prime}$ and $29^{\circ} 30^{\prime} \mathrm{N}$. lat. and $78^{\circ} 46^{\prime}$ and $79^{\circ} 47^{\circ}$ E. long. It contains an area of 938 square miles, and is bounded on the N. by the Khumáun Bhábar, on the E. by Nepal and Pilibhit subdivision of Barcilly district, on the S. by the districts of Bareilly and Moradabada and the native state of Rámpur, and on the W. by Bijnaur. The headquarters of the district are at Naini Tal. Tarai (" moist land") consists of a long narrow strip of country running for about 90 miles east and west along the foot of the Himalayas, with an average breadth of about 12 miles. At its northern edge, where the waterless forest tract of the Bhábar ends, a series of springs burst from the surface, and thesc, increasing and uniting in their progress, form the numerous streams that intersect the Tarai. The Deoha is the great river of the Tarai proper, and is navigable at Pilibhit. Elephants, tigers, bears, leopards, hyænas, and other wild animals are found in the district. The climate is normally bad, but improvement is gradually following the spread of sanitary measures.

According to the census of 1881 the ponulation was 206,993 (113,315 males and 93,678 femalest. Hindus numbered 131,966 and Mohammedans 74,982. The only town with a population exceeding 10,000 is Kásipur, with 14,667 inhabitants. The whole tendency of the population is to agricultural and not to urben lifa.

The total area under crop in 1884-85 was 254,288 acres, of which rice occupied 92,186 acres, wheat 54,627 , and other food grains 80,304 acres. There are no manufactures worthy of note, and the chief trade is the export of grain. The gross revenue in 1884-85 amonnted to $£ 42,048$, the land yielding $£ 35,507$. The Tarai came under British rule at the time (1802) avhen Rohilkhand was ceded to the East India Company. Tho Government is said to hare looked with indifference on this nninviting tract, but since 1831, when the revenue settlements were revised, this reproach has been less deserved. With an improved system of embankments and irrigation in 1851, the formation of the Tarai into a separate district in 1801, and its complete subjection to Kumaiun in 1870, the moral and meterial history of this tract has greatly improved.

TARANTO. See Tarentum.
TARANTULA. The tarantula (Lycosa tarantula) belongs to the mining section of the family Lycosidx or Wolf Spiders. Its cephalothorax is dorsally of a brownish grey colour, whilst the abdomen is more distinctly brown, and marked with either two or three pairs of triangular black spots above the apex of the triangles pointing backwards. One of the most striking specific characteristics of this spider is a large circular black spot which covers the anterior ventral half of the abdomen, the remainder of this surface presenting an ochreous hue. The largest species does not exceed $\frac{3}{4}$ inch in length. The eight eyes are arranged in three transverse rows, the anterior containing four small eyes, while behind this two pairs of larger eyes are arranged in two rows, the eyes of the hindermost row baving between them a wider interval than the first pair.

Tho tarantula is widely distributed in southern Europe, round the shores of the Mediterranean. It accurs throughout Spain and is found in southern France, and extends into Asia. In Italy it is said to be especially common in Apulia, round the town of Taranto, from which place the name of this spider is usually derived. A species has also been described from northern Africa. It is usually to be fonnd in dry pieces of waste land exposed to the sun. It lives in an underground passage, which it digs for itself and lines with its web. These passages are round in section, and sometimes an inch in diameter, and may extend to a depth of a foot or more below the surface. The tube first descends vertically for some inches, then bends at an obtuse angle, becoming vertical again near its closed end. The tarantula takes up its position at the first bend, where it can command the entrance, on the lookout for prey. In some cases the tube is prolonged above the surface of the earth by the formation of a small funnel, built up of fragments of wood and earth, and lined like the walls of the tunnel by the web. The females show considerable maternal care for their offepring, and sometimes sit upon their egg sacs; and the species, although somewhat fierce and combative amongst themselves, are capable of being tamed.

Tarantism. The terentula has given its nsme to one of those dancing manias which overspread Europe during the Middle Ages. The bite of the epider threw the cufferer into s depressed otate of melancholy, accompanied by various nervous disordera. The condition was accompanied by s_{s} increased sencibility to the power of music. The excitement of the nervous eystem amounted in some cases almost to insanity. The symptoms of the patient seem to have varied a good deal with the character of the individusl attacked: the most common were s lividity of the body, icy coldness, great depression, namsea, 6exusl excltement, and loss of sight and hearing. The only masns of arousing the eufferer from the lethsrgy into which he sauk was music. Under the influence of this he awoke ss it were, snd commenced noving rhythmically, then began to dance, and continuon increasing the rapidity of the motion until he fell exhausted to the ground. By this means it was considered that the poison of the tarantula was clistributed through the oyetem and worked out through the okin. If the nueic cessed whilet the patient wes dencing, he st once esnt back into the state of lethargy from which he had been aroused, but when thoroughly exhansted be generally a woke relieved and cured t least for a time. This dencing manis became contsgious: one erson caught it from snother quite independently of the bito if the tarentule, and in thie way whole districte becsme sffected. ?ne of the most Deculiar characteristice wes the sttrection that
bright pieces of metal, or brilliant pieces of colour, exercised over the imagination of the dancers. This was particularly marke in the later history of the disease. Each sufferer apparently admire. one particular hue, the sight of which seemed to cisuse him th greatest rapture. Red was a very general favourite, thongh thi colour threw St Vitus's dancers into a frenzy of rage; green yellow, snd other colours also bàd numerons admirers. Othe colours, on the contrary, they detested, and attempted to destro: articles of the obnoxions shade.

In marked contrast to the effect produced by hydrophobis tarantism appeared to ovoke in its victims an intenso longing fo the sea, into which at times they would precipitate themselves at all times they seemed to prefer the-vicinity of water, sometimea carrying globes of this fluid whilst dancing.

In its origin tarantism appears to have luen contemporaneons with the St Vit:s's dance of Germany. It first appeared towards the end of the 14 th century in Apulis ; thence it spread gradually throughout Italy, and reached its height during the 17 th century, by which time the dancing manias of the North had already died out. It affected not only inhabitants of the country but foreigners visiting it; age appears to have had no aving infuence: children and old people alike commeuced dancing at the sound of the tarantella, hut as a rule women were more susceptible than men. From the 17 th century onwards it has gradually declined, and is now practically unknown, the only relic of it being the graceful dance of southern Italy called the tarsutella. The bite of the tarantula is painful but not dangerous, and the real cause of the phenomens described above must be sought in the temporary epidemic prevalence of an hysterical condition.

The Lycosm carantula is ggured in $\Delta n s$, Sc. Nat., 2d ser., ill. Zoologle, 1835.
TARARE, on the Turdine, a manufacturing town of France, and the second most populous in the department of Rhônc, is 25 miles north-west of Lyons. Within a circle drawa 25 or 30 miles from the town more than 60,000 workmen are employed, and the value of the textile fabrics produced exceeds $£ 600,000$ per annum. Tarlatans are made in 'Tarare on more than 3000 Jacquard looms. The manufacture of Swiss cotton yarns and crochet embroideries was introduced at the end of last century; in the beginning of the 19th figured stuffs, openworks, and zephyrs were first produced. The manufacture of silk plush for hats and machine-made velvets, which was set up a few years ago, now employs 2900 workmen and 500 girls, the latter being engaged in silk throwing and winding. There are, besides, four or five dyeing and printing establishments, and silk looms working for the Lyons trade. An important commerce is carried on in corn, cattle linen, hemp, thread, and leather. In 1886 the population was 11,848 (commune 12,980).
Till 1756, when Simonnet introduced the msnufacture of muelins from Switzerland, Tarare lay unknown among the mountains. On the old castle to which the town owes its origin may be oeen the arms of the family of Albon.

TARASCON, a town of France, ; the department of Bouches-du-Rhône, is situated on the left bank of the Rhone, opposite Beaucaire, with which it is connected by a suspension and a railway bridge. - It is on the Lyons and Marseilles Railway, 156.miles south of the former town. The church of St Martha, built in 1187-97 on the ruins of a Roman temple, rebuilt in 1379-1449, has a Gothic spire, and many isteresting pictures in the interior, which is of fairly pure Pointed architecture. Of the original building there remain a porch, and a side portal with cepitols like those of St Trophimus at Arles. The former leads to the crypt, where are the tombs of St Martha and Louis II., king of Provence. The castle, picturesquely situated on a rock, was begun by Count Louis II. in the I4th century and finished by King Rene of Anjou in the 15 th. It contains a turret stair and a chapel entrance, which are charming examples of 15 thcentury architecture, and fine wooden ceilings. It is now used as a prison. The civil court of the arronassement of Arles is situated at Tarascon, which also possesses a commercial court, a hôtel de ville, and fine carairy barracks. Hats, and the so-called Arles sausages, are made hera The popnlation in 1886 was 6617 (commune 3314)

The tomn wakas up for the fair of Beaucaire and the fête of La Tarasque, the latter in celebration of St Martha's deliverance of the towu from a legendary monster of that name. King Rene presided in 1469, and grand exhibitiona of costume and strange ceremonies take place during the two daya of the featival. Tarascon was originally a settlement of the Massaliots, built on an ialand of the Rhone. The medixval castle, where Pope Urban II. lived in 1096, was built on the ruins of a Romau castrum. The inhabitants of Tarascon preserved the municipal institutiona granted them by the Romans, and of the absolute power claimed by the counts of Provence they only recognized the rights of sovereignty. Tarascon played a bloody part in the White Terror of 1815.

TARAXACUM is the name usually applied in medical practice to the common dandelion (Taraxacum officinale, Wiggers). The DAxDenios ($q . v$. .) is a plant of the northern bemisphere, extending to the Arctic regions, and is cultivated in India. The preparations chiefly employed are the fluid extract, the preserved juice of the root, or succus, and the solid extract. The dried and roasted root, mixcd with ground coffee, is often sold under the name of dandelion cofiee for use as a beverage. The root is most bitter from March to July, but the milky juice it contains is less abundant in the summer than in the autumn. For this reason, the extract and succus are usually prepared during the months of September and October. After a frost a change takes place in the root, which loses its bitterness to a large extent. In the dried state the root will not keep well, being quickly attacked by insects. Externally it is brown and wrinkled, internally white, with a yellow centre and concentric paler rings. It is 2 inches to a foot long, and about $\frac{1}{4}$ to $\frac{1}{2}$ inch in diameter. The juice when first exuded is bitter and neutral, but on exposure to the air soon acquires an acid reaction and a brown tint, coagulating and depositiog a complex substance, to which the name of "leontodonium" has been given. From this deposit a bitter principle, "taraxacin," and an acrid crystalline substance, "taraxacerin," soluble in alcohol," have been obtained, but to which of these the medicinal properties are due is not known. In autumn the root contains about 24 per cent. of inulin, but in summer barely 2 per cent. When the juice bas fermented, mannite is found in it. Taraxacum is chiefly emploged as a stimulant tonic in hepatic disorders. In some cases it acts as a cholagogue and mild aperient, and in others as a diuretic.
The roots of other Composito plants are eemetimes gathered by careless conlectors for dandelion, eappecially that of Leontedon hispidus (L.). The root of this plant is tough when fresh, and rarely exudes any milky juice. The forwers, moriocer. have feathery pappus, while in the dandelion it is simple.
TARBES, a town of France, cheiflieu of the department of Hautes-Pyrienés, is situated in one of the most beautiful plains of France, on the left bank of the Adour, streams from which are conducted through all parts of the town. The lines of railway from Paris to Pierrefite and from Toulouse to Bayonee cross here. Among the many gardens and open spaces for which Tarbes is distinguished is the Massey garden (35 acres), given to his native town by a Versailles official of that name, in which his statue faces the towa museum, founded by the collector Achille Jubinal. The varied collections include Roman remains, and specimens of the fauna and flora of the Pyrenees. The architecture of the cathedral is heary and uppleasing, but the cupola of the transept (1 tth century), the modern glass in the 12th-century apse, and a rose window of the 13 the ceatury, in the north transept, are worthy of notice. The Carmelite church has an interesting steeple, and there are the ruins of a chapel and cloister, and Roman remains in the garden of the former episcopal palace, ncw occupied by the prefecture. The municipal buildings, with the public library (22,000 volumes), the lyceum, the court of justice, and the barracks (which are large and fine) may also be mentioned among the public buildings. The garrison and artillery establishments, the latter associated
with an arsenal and large workshops, nave considerable im. partance. Other industrial establishments are a foundry machine manufactory, felt and woollen factories, and wool and flax spinning mills. Paper, lace, knitted goods, carriages, and leather are also made here, and marble from the Pyrenees is prepared for the market. There are important fairs and markets, particularly for horses, as Tarbes is a well-known centre for a special breed of light horses, its stud being the most important in the south of France. The population of the town was 24,882 in 1886.

Tarbes, a mere vicus in the time of Gregory of Tours, rose into impertance after the destruction of the ancient Aquitanian town of Turba. The seat of the bisholric was transferred to it about the 9 th century, wheu a castle was also built. Rayniond I., towards the middle of the 10th century, rebuilt the town, fortified it, and made it the capital of the county of Bigorre. The English helrl the town from 1360 to 1406 . In 1569 Tarbes was burat by Mentgomery, and the inlabitanta were driven eut. This happened a second time, but in August 1570 the peace of St Germain allowed the inhabitants to return to the grass-grown strcets. Subsenuently Tarbeg was Cour times taken and re-taken, and a number of the inhabitants of Bigorre were forced to take refuge in Spain, bnt in 1594 the menbers of the League were finally expelked. The Englisis, under Wellington, gained a victory over the French near Tarbes in 1814. Théophile Gautier was born here in 1811.

TARENTUM, or Taras, now Taranto, a famous Greek city of southern Italy, situated on the north coast of the bay of the same name, at the entrance of the ooly secure port on the gulf. This port, now called the Mare Piccolo, is a bay 16 miles in circuit, landlocked by a low rocky peniasula. The entrance is so narrow that it is crossed by a bridge of seven arches; it was already bridged in Strabo's time. The modern town, in the province of Lecce, winch is the see of an archbishop and had in 1881 a population of 26,611 , stands on the pevinsula, which is now rather an island, the isthmus connectiog it with the mainland having been cut through for defeoce by Ferdinand I. The ancient citadel occupied the same site, but the city in its best days was much larger, traces of the walls being visible about 2 miles from the gates of the modera town. The remains of antiquity are inconsiderable.
Tarentum was a Spartan colony founded about the close of thö 8th century B. C. (Jerome gives the date 708) to relieve the parent state of a part of its population which did not possess, but claimed to enjoy, full civic rights. Legend representa these Parthenize (se they are called) as Spartans with a stain on their birth, but dhy accounts are neither clear nor consistent, and the facts that under: lie them lare not been cleared up. The Greeks were not the firs settlers on the peninsula : recent excavations have brought to light signis of a pre-Hellenic trading-place, and the name of Taras may bi older than the colony. To the Greeks Taras was a mythical hero, son of Neptune, and he is sometipes confounded with the œcist 0^{\prime} the colony, Phalanthus. Situated in a fertile district, especially famous for olives and shcep, with an admirable harbour, great fisheriss, and prosperous manufactures of wool, purple, and potiery Tarentum grew in power and wealth and catended its domair - inland. Even a great defeat by the natives in 473 b.c., wheu more Greeks fell than in any battle known to Herodotus, did not break its prosperity, though it led to a change of goverument from aris: tocracy to democracy. A feud with the Thurians for the distric of the Siris was settled in 432 by the joint foundation of Heraclea ${ }_{5}$ which, however, was regarded as a Tarentioe colony. - In the 4th century Tarentum was the first city of Great Grecce, and its wealth and artistic culture at this tine are amply attested by its rich and aplendid coins; the gold pieces in particular (mainly later than 360) are perhaps the most beautiful ever struck by Greeks (see Nemissiatics, vol. xvii. p. 637). In the second half of the century Tarentum was in constant. war with the Lucanians, and did not hold its ground without tho aid of Spartan and Epirota condeltieri. Then followed war with Rome (281), the cxpedition of Pyrrhua, and at length, in 272, the surrender of the city by its Epirote garrison (see the details in vol. xx. p. 743 sq.). Tareotum retained nominal liberty as an ally of Rome. In the Second Punic War it suffered severely, when it was taken by Hannibal (212), all but the citadel, and retaken and plundered by Firbius (209). After this it fell into great decay, but revired again after receiving s colony in 123 B.c. It remained a considerable scaport, and its, purple, second only to that of Tyre, was stlll valued, but in Strabo'a time it had abrunk nearly to the limits of cbo present town. After the fall of the Western empire it was beld from time to time by

Goths, Lombards, and Sarscens, but was not fiaally wrested from Byzantium till Robert Guiseard took it in 1063.
For special hitereture about Tarentum, see Busolt, Griech. Gesth., 1. 206 sq.
TARES, or Vetches. See Agriculture, vol. i. p. 376.
TARGUM (뇍ำ) in its concrete sense signifies the paraphrastic translation of the Hebrew Scriptures, or parts thereof, into the Aramaic tongue. It has, however, three other meanings:-(1) a translation from any language into another; ${ }^{1}$ (2) an interpretation in any language; ${ }^{2}$ and (3) the Aramaic portions of certain books of the Bible (notahly Daniel and Ezra). ${ }^{3}$

The word is not itself found in the Bible; but the participle methurgam (מְרְ) occurs in Ezr. iv. 7. The noun Targum, a form similar to Talmod (q.v.), occurs for the first time in the Mishnah, both canonical ${ }^{4}$ and noncanonical, ${ }^{5}$-the latter being apparently the older source.

Origin.-Although none of the Targums now in our hands are as old as the Septuacint (q.v.), the public nse of Targums on Sabbaths, festivals, \&c., is very ancient, and indeed their language was for several hundreds of years tho sole one understood by the majority-of the Jews in Palestine and Babylonia. How the Hebrew people of Judæa came so entirely to unlearn their own Hebrew tongue as to stand in need of an Aramaic translation of their Scriptures need not be dwelt on here (see vol. xi. p. 597 and vol. xxi. p. 648). But an important contrast between the Aramaic and Greek versions deserves particular notice. The use of the Septnagint by the Greek-speaking Jews of Alexandria, Asia Minor, and elsewhere caused those who adopted it to forget entirely their own Hebrew tongue. The Aramaic version (Targum), however, springing from a religious necessity, was the cause of revival of the knowledge of Hebrew, which had been nigh forgotten. It is therefore easy to understand why the Jews in general have shown comparatively little attachment to the Septuagint, whilst they ever ardently revered the Aramaic version, even after the instifution of publicly reciting it had ceased. ${ }^{6}$ To this day pions Jews privately prepare themselves every Friday for the lessons of the coming Sabbath by reading the weekly portion twice in the sacred text and once in the Targum (シֵנים מקרא ואחר תרגום).

Former Use of the Targum in Public.-The following rules had to be observed in the reading of the Scriptures at the synagogal service:-
I. As regards the Law (Pentateuch). (1) The private person called to the Law (which cliefly contains halakhic? matter) read ouc verse of it, which the official methurgeman or turgeman (translator) immediately paraphrased ; (2) whilst the reader of the Law was not allowed to take his eye off the written scroll, the methurgeman was forbidlen, not merely to read out of a written Targum, buteveu to look in to the sacred text; ${ }^{8}$ (3) each of these had to wait till the other had quite finished the reading and translation respectively ; (4) one was not allowed to raise his voice in a louder key tlisn the other; (5) a certain mumber of passages, although allowod to be read, were not allowed to be translated; theso were-

${ }^{1}$ Hence "תג (Gerouan translation), \&c.

${ }^{2}$ When the word is used in either of these two senses the language Kat, which the traaslation is made, or in which an interpretation is given, must be specified, or otherwisa indicated, e.g., (נ)
 translated), excapt when it is Aramaic, in which case the language 'may be named (as in Ezra 1r. 7) or not (Tosephto, Shabbaih, xiii. [xiv.] 2).
${ }^{3}$ Compare Mishnah, Yadayim, iv. 5 . \$See last note.
8. Siphere (see vol. xvi. . p. 507) on Deuteronany (Pericope Shophetim), Pisko 161.

8 "Let not the Aramaic be lightly esteemed by thee," says the Jerusalem Talnud, "seeing that the Holy One (blessed be He !) has given houour to it in the Pentateuch (Gen. xxxi. 47), in the Prophets (Jer. x. 11), aod in the Hsgiographa (Daa. ii. 4)," (Sotah, vii, 2). Instead of "Arammi" (Aramaic) the Midrash Rabbah on Génesis reads "Parsi" (Persian); the reading here ia "Surai" (Syriac).

J Seo Mishnah, vol. xvi. p. 503.
${ }^{-}$This was done to prevent its being thought that the Targum (the exponent of the oral Law) was to be found in writing in the geatateuch (the exponent of the written Law).
(a) such as might reflect unfarourably on a father of a tribe, or on an eminent tereher (T. B., Megill., 25b, Tosaph., caichword העשע (b) such as might encourage the ignoraut to think that there was some truth in idolstry ; (c) such as might offend decency (Mishnah, Megillah, iv. 10 ; Tosephlo, ibid, 35,37 ; T. Yer., ibid., iv. 10; and T. B., ibid., leaf 25b) ; (d) such as were fixed by the Lord Himself to be read in Hebrew only (as the sacerdotal benediction, Num. vi. 24-26); ${ }^{9}$ (6) the translator wes neither allowed to give a literal tranalation nor to add anything that had no foundation in the Divine word; he had to give the opirit of the letter. ${ }^{10}$
IL. As regards the Prophets. (1) The person called to read the Prophets (which chielly contain agadic master ${ }^{11}$) might read three verses, of which the translator, who might be the reader himself, ${ }^{\text {r2 }}$ eought to render the meaning to the best of his ability; (2) the translator was allowed both to read out of a Targum volume and to look also into the book containing the prophetie text; (3) if reader and translator were two different persous they observed the third rule given above for the case of reading the Law; (4) here also certain passages were not sllowed to he translated :-(a) auch as reflected on great men of the Israelite nation; (b) such as offend decency ; (5) any one- sufficiently intelligent might read, and of course paraphrase, the portion from the Prophets.
III. As regards the Hagiographa. The widest range of Jiberty must have been granted botli to reciters and translators, as very scanty mention of any particular provision concerning it is to be found in the Talmuds. The Psalms and the book of Esther are classed together in so far as they may be read end paraphrased even by ten persons (T. B., Meg., 21b). For Job and Lamentations, see below.

Duration of this Practice.-The practice of publicly reciting the Targum continued somewhat later than the last of the geonim. Within the last 400 years of that period, however, the power of this ancient institution began to fluctuate, gradually declined, and finally almost -but not entirely ${ }^{13}$-died out. The causes of this were twofold. One was, that after the Mohammedan conquests Arabic supplanted Aramaic as the vernacular, and the Targums thus became unintelligible to the mass (see Seder Rab 'Amram, i., Warsaw, 1863, leaf 29a), eren as was already the case in the Western world. A second and more important canse, however, was the spread of Karaism, whose criticism of the Rabbinic contents of the Targums provoked the Rabbanites to pay more attention to the etymology and grammar of the Hebrew text of the
${ }^{2}$ The Babylonian Taimnd (Megillah, 25b) Eays that the priestly benediction was not to be recited in Aramaic on account of the phrase "the Lord shall lift up His countensace upon thee," which would appear as if the Lord had been a respecter of persons. In Talmudic times they had apparently, in Babylonia, lost the real reason of the Miahnic prohibition, which is that this benediction is doubly, yea, trably Divinc, being franed in its every word by God Himself, and cau thus only be recited in those very words (17 , thus; Num. vi. 23). See Mishnah, Sotah, vii. 2 ; T. Yerushslmi, ibid., and Megillah, iv. 11, and, finally, Bemidbar Rabbah, cap. xi. in medio.
${ }_{10}$ See Tosephlo, Megillah, iv, in fine.
${ }_{11}$ See Midrasi, vol. xvi. p. 285.
12 Thus Jesus (Luke iv. 16-27) no douht read the Haphtarah (prophetic portion) himself, and paraphrased it himself. From this custom of reading and paraphrasiag by one and the sanue person the sermon (กயา7) sprang. The passage in question (1sa. Ixi. 1, \&c.) was resd on tho Sabbath before the New Year (day of memorial).
${ }^{13}$ Long after the institution of publicly reciting the Targum on the Law had generally declined, it was yet retajned in Germany and ltals on certain days of the three high festivals, viz., (a) the seventh day of Passover, (b) the first day of Pentecost, and (c) the last day sttached to the festival of Tabernacles (i.e., הาทก תחロU). The passages so recited were-(a) parts of the lessoa for the day-the song of Moses and the children of Israel, with the introduction; (b) the Decalogue in Exodus; (c) the last portion of Deuteronomy. In the first case the paraphrase was from the three Targums mixed, in the second from the Targum Yonathan with devistions, in the last from the Targurg Orkelos. (These pieces are interspersed with sundry bits of poetry; see Caınb. MS. Add. 374, leaves 169a-171b, 199a-203a, 423b-427b.) Towards the end of the 14 th centory, as regards Passover and Pentecost, thio custom fell into desuetude, but down to our own days some of the congregations of Italy continue the usage of reciting the Targin Onkelos in comexion with the sarration of the death of Moses. This custom, however, is now rapidly dying out. As regards the recitation of the Targum on the Prophets, a smell remnant of the cangregations following the rite of Rome (i.e., the so-called Ilaliani) continue it to this day on the festival of Passover. For the use of the Targam On Pentecost, see Responsa, by R. Meir of Rothenburg (Rosy, g.v. footnote 3), No. 59.

Sible. Thus the Targume, both in their periods of vigour and decay, exercised, directly and indirectly, a salutary influence. In each case the knowledge of Hebrew was promoted; and it advanced so much, that by 1000 A.D. the Jews of Irak, like those of the rest of the world then, and as in our own days, certainly knew the pure Hebrew better than the Aramaic idiom. The same was the case in other Arabic-speaking parts, as Spain, Africa, \&c.,-Yemen then and still forming a solitary exception. ${ }^{1}$

Authorship and Age of the Various Targums.-The Tafrums on the various books of the Bible are not merely by various authors, but also of various ages. They have only one thing in common,--all of them rest on oral traditions, which are hundreds of years older than the earliest form of the written Targums now it our hands We enumerate them according to Biblical order, although that is not necessarily the chronological order in which they were either composed or committed to writing.
I. The Pentatcuch.-(a) There is a complete Targum known as
 even the name of Onkelos havo been for the lest three handred years a crux criticorumi.
Accordiog to the Babylonisn Talmud, Megil., 3 a, "Onkelos (son of Calonicurs, Gill., $56 b$, or of Calonymus, 'Ab. Zar., 11a), the proselyte, composed the Targum on the Pen tateuch (inpop) out of the mouth of R. Eliezer and R. Yehoshua'," who taught in the 1st and 2 d centriies. In the Jerusalem Talmud, Jcç, i. 9 , the same thing is related on the sanne autherities, and alnost in the same morda, of the prosclyte Aquila (Akylas) of Pontus, whose Greek version of the Bille was much ussed by Greek-spoaking Jews down to the time of Justioian (Nov., exlvi. cap. 1).2. There are other parallels between what Tosephoo and the Rabylonisn Talund tell of Onkelos and what the Jerasalem Talmod sind the Midrash tcll of Aquila. Both throw their idolatrous inheritance into the Dead Sca (Tos., Demai, vi. 12; T. Y., Demai, vi. 10), aud both have connaxions with
Roman emperass, Onkelos being sister's son of Titus (Gitin, $56 \downarrow$),
 Onkelos, 'Ab. Z., $11 a$, and for Aquila's connexion with Hndrian, T. Y., Hag., ii. 1; Shem. Rabb., xxx.; Epiphanius, De Dfens. el Pond., xiv, sq.). From theso fncts nome (see N. Adlcr, Nethinah lagger, in the Vilna Pent., 1874, Introd.) still argue that Ookelos is but another name for Aquila, and that the Greek translator elso wrote our Targum. This view was long ngo refuted by R. 'Azaryah do' Rossi, ${ }^{3}$ nnd is quite untenable. It is incredible that $\Delta q u i l a$ or any other Greek could have had the mastery of Aramaic and of traditional lore as well as of Hebrew which the Targum displays; and the phrase of T. Y., Ifegil., i. 9 , ", an nntutored person picked out for them Aramaic from the Greek,"," is quite inapplicable to Onkelos, and ought to be taken as referring to the Peshito Syriac, which is admittedly dependent on the LiX. In a Jevisi writing "for them"-set absolutely-means "for the Christians." The view now accepted hy most critics is that the word Onkelos is a Babylonian corruption of Akylas, but that the name "Targum Oakelos," originally meant no more than "Targum in the style of Aquila," i.e., bearing to the freer Palestinian Targums a similar relation to that of Aquila's version to the Septuagint. ${ }^{4}$ On this riew there nezer was a real person called Onkelos. . But how Akylas
 could be corruptod into Onkelos has not been sstisfactorily ex. plained ; and, besides the traditions about Onkelos which resemble what is known about Aquila, there ere others, ind these older than
${ }^{1}$ In Yemen the Targum is pablicly recited to this day, and, strange to say, by boya of nine years of age or 80 in turn. See J. Saphir, Eben Sappir, 1. (Lyck, 1866 , 8 vo) leavea 53b, 61a. Saphir once tald the present writer that a youth, eighteen yeara 0 : age ($u \ell$ supra, 61b), who carried hls travelliog-bag zad ecrved as his guida over the monntaiaa, Said, i.e., Såadyah, by name and a ahoemaker by trada, could translate to him in Aramaic from inemory any passage Saphir recited in Hebraw.
${ }^{2}$ For the coasexion of Aquila with R. Eliezer and R. Yehoshua', see also Beresh. Rab., flxx.; Bemidb. Rab., viii. end; Kohel. Rab., vii 8.
a I.e., "min Haadummim." The Adunımim are aupposed to bo one of the fonr noble families caried to Rome by Titus.

4 The Jerusalem Talmud repeatedly cites Aquila'a renderings and never names Onkelos. But it does ahow acquaintance with readeriags found in Onkelos (e.g., Megil., iv. 11; cf. Oak. on Exod. xxxii. 35) In the Midrash Rabbah, besides many citations from Aquila, we find ons of Onkeloa by name (in Bem. R., ix in fine; Onk. on Dent. zxxii. 24) and varlous allusions (without name) to renderings found in him. Fo la alao cited byame in the Palestinian Pireke de.R. Elifezer, xuxviii.
eitner Genara, which have no such resemblance, and assign to lim an earlier date, associating him with R. Gamliel the elder, the teacher of St Paul (Toscphto, Shab., vii. [vin.] 18; Hag., iii. 2, 3 ; Kel. Bab. Balh., ii. 4; Mikv., vi. 3; Talmud B., Ab. Zar., Ila; Mas. Semah., vini. init.). The Tohar (ini. leaf $73 a$ of the small ed.) ascribes his being circuincised to Hillel (R. Gamliel's grandfather) and Shammai. These notices, it is true, do not speak of Onkelos as a targumist; and, indead, the Targum beinf a representative pieca of the oral law एas certainly not written down, private notes (nugilloth setharim) excepted, belore the λ (ishnah, Tosephto, \&c., i.e., till ebout the end of the 6th or the beginning of the 7th ceutury. But in the opinion of the preseut writer this need not prevent us from recognizing Onkelos as a carrector and compiler of oral Targum in the Ist century. As regards the mane, it may be suggested that Onkelos is a deliberate perversion of Evangelus, a Greck proper name which exactly translates the Jewish (aud especially Babylon-ian-Jewish) name Mebasser. As the Christian writings are called Aven (iniquity, idolatry), and as tho pre- Mi ishnic teacher R. Meir calls tho gospel (vangelion) ongillayon (iniquity of the roll; T. B., Shab., leaf 116, Amst. ed. of 1645), or, by inversion, gilyon-aven (roll of iniquity), the name Evangelus, which suggested associations with the gospel, might be perverted into Onkelos quasi On-keles (iniquity of disgrace). And, while a Balylauian Jew comiug to Palestine might find it convenient to tramsla to his Hebrewname into Evangelus, this good Greek name was enough to suggest in after times that he was of heathen origin and so to facilitate tha confusion with Aquila. The idiom of the Targum Onkelos, which is held to be Palestinian with some Babylonian featrires, points to Babylonia as the country of its final redactor, if to Palestine as its source. It must be remembered that Hillel and other great fountains of Palestinian learning were of Babylonian origia. ${ }^{\circ}$
(B) Certain Targumic fragments on the Pentateuch go under the nsme of Targum Yerushalmi, or, rather, Palestinian Targum. These are the remeins of a much larger Jcrusalem Targum, once current in Palestine. But, the Palestinian rabbis not having approved of it, perhaps because it accorded in various of its iuterpretations and phrases with intorpretations and phrases to

* Bibtiography of the Targum Di>p:in.- (A) There are very fina MSS. of this Targars at Parma, Oxford, Canbridge (Dd. 11, 26, Add. 446, 1053), the British•Museum, Kissiugen (Ralbiu Bamberger), \&c. (B) A Massoreth on our Targum by an anonymous author, who must hava lived in or before the-12th century, lias been pub-liahed-(1) by Luzzatto (Oşar Nehmad, iv.); (2) by Adler (Vilua edition of the Peatateuch of 1874); aad (3) by Berliaer (with a German translation, \&cc., Leipsic, 18ĩ, 8vo). (C) Leading edltions: -(1) Bologna, 1482, edilio princeps, without rowel-points; (2) tha Complutensian polyglott; (3) the Bomberg Rabbinic Bible of 1517 ; (4) Sabbioneta, 1557, 16 mo (repriated, not without mistakes, at Berlig, 1884, intp. 8vo) ; aad (5) Vilas edition of the Pentateuch of .1874, the Targum heigg pointed according to n Bodleian MS. (Canon. Orient. 91). (D) Translations :-(a) into Latin-(1) by Alphoasua Zamorensis (Polygl., 1517, \&c.) ; (2) by P. Fagius (Strasburg, 1546, folio) : (b) into English by Etheridgo (Targums, Loadoa, 1862-65, 8vo). (E) Commentaries, all in llobrew:-(1)' Pathshegen, by an noosymona Provençal rabbi of the 12th ceutury (8e日 Magzor), is the Vilaa Pentatench of 1874; (2) by R. Mordekhai b. Naphtali (Amsterdanı, $1671-77$, fol.) ; (3) Lchem Vesimlah (doubla conmeatary) by H_{m} Beasiyyon Berkowitz (Vilaa, 1846-56); (4) by Dr Nathaa M. Adler (Yiloz Pentatench of 1874 , ut supra). (F) Other literature (also for the other Targums):-(a) in Hebrew-Mcor "Enayim, by R. Azaryah m. Haadummini (cheapest and best edition, Vilns, 1863; Mine Targumo, by R. X. Berlin or Pick (Breslau, 1851, 4to); Oheb Ger, by S. D. Luzzatto (Vienna, 1830); "Oteh Or, by tha beforanemed B. Berkowitz (Viloa, 1843) ; Fggereth Bikkorcth, by R. Z. H. Hayyuth (Chajes), ed. Briull, Presburg (1853, 8vo); Rayoport, 'Frekh Millin, (Prague, 1852, 4to); Löwy, Eilizoreth IIallalmud, i. (Vienna, $1863,8 v 0$); (b) in Latin-Morinus, Exercitationes, ii. viii. 6 (Paris, 1660); Winer, De Onkeloso (Leipsic, 1820, 4 to) ; R. Anger, De Oukelo (Leipsic, 1845-46) ; (c) iu (rerman-Zunz, Gollesd.~Vorlrage (Berlio, 1832); Geiger, Urschrifl (Breala, 1857) ; Hamburger, Real-Encyklopadie; Targum Onkelos, by Dr A. Berliner (Berlin, 1884, ia1]. 8ro). On this work, ses Noldeke, in Zaracke' Centralbl., 1884, No. 39, and Lagarde in Gult. Gel. Anzeig., November 1886 (No. 22); (d) in Eaglish: E. Deutsch, in his Litcrary Remains-to ba used with cantion. (G) Lexicons to this and other Targunis:-(1) as for the Talmads and Midrashim, so also for the Targum, R. Nathan b. Yehiel'a :Arukh (see Talkod, p. 37, note 7) stands first; (2) next to it is Elias Levita's Methurgeman (1sny, 1541, fol.); (3) Buztorfa Lexicon Challaicum, Talmudicum, et Rablinicum (cheap and uew, thongh by no means best, edition, Leipsic, 1869-75); (4) Lery's Chald. Wörlerb. (1866-68) ; (5) Jastrow's Dictionary, i. (New York, 1886). (H) Grammars:-(1) Juda Jeitteles's Mebo Hallashon (Pracne, 1813, 4to); (2) Blücher's Mfarpe Leshont Arammi (Vicana, 1838); (3) Fürst's Lehrgeb. d. Aram. Idiome (Leipaic, 1855); (4) Lerner's Dikduk Lashon Arammith (Warsaw, 1875) ; sll in 8vo.
bo found in the Gospels，${ }^{1}$ it Eradnally lost its anthority and the greater portion of its original matter，and is now in our hands what it is．It certainly rever was part of the T．Onkelos，nor was the T ．Onkelos part of it，though the two are closely related．As rergards its age，several of the pieces formerly foumd in it（now in T．Yonathan）were in thr 2 d and 3 d centuries distinctly quoted ${ }^{2}$ with disapurobation．But like Onkelos it cannot have been written down Lefore tlo Mishah and other parts of the oral Law．${ }^{s}$
（y）Tho Targum Yonathan，or T．of Jonathan，on the Fentateuch is also Paleatinian．This Targum was no doubt undertaken，as Dr Bucher has shown（Z．D．AK．G．，xxviii．p．69），to combine the finest parts of what earlv T．Onh．clos and T＇Yerushalmi contained．＇Yhis attempt conld not have been made without both these Targums lying in writing isfore the compiler of the third Targun．The Turyam Yonothru on the r＇entateuch is a product，at the carliest， of the 7th century，to which conelnsion internal evidence also points．${ }^{4}$ The anthor is，of course，not the Yonathan b．＇Uzziel， principal of the eighty diseiples of Hillel（T．B．，Sukkah，28a）， who，according to＇T．Bab．，Megall．， $3 a$ ，composed a Targum on the Prophets from the traditions of Hagrai，Zechariah，and Malachi．${ }^{5}$
11．Targum Yonathan on the lrophets．－It las been kiown from early quotations，as from Rashi（q．v．）and others，but notably from Kmani（q．v．），that，in addition to the complete extant Targum on the Prophets，there existed other Targams or fragments of them． These aro now known from the marginal additiona to tho leuch－ linian Codex of the Targum on the l＇rophets published by Lagarde （Lcipsic，1872），and have been discussed by Bacher（ut sup．）．As regards the complete Targum on the Prophets，no mistake can be greater than to believo that Rab Yoseph，a teacher of the 34 and 4th centmies，and heal of the acadeny of Pumbaditha（see Rabbain），was the author of this Targum in whole or in part．This mistake lias its oricin in the repeated phrase of the Babyloniau Tal－ mud，وอリ בา อมาภาขาะ（＂as Rab Voseph targumizes＂）；but then a similar phrase exists with regard to Rab Shesheth，ภerw （＂as Rab Sheshath ${ }^{6}$ targumizes＂）．And in like manner the expres－
 this last instance the words mean＂as we are in the habit of translating certain passages in Holy Writ according to a Targun we have reccuved．＂Λ s applicd to Lab Yoseph and Rab Shesheth the plirase may certainly mean more and yet not imply that these teachers were in nay way authors of the Targum on the Law，the Proplieta，or Hagiographa．Kab Yosejh and Rab Shesheth wero both blind，and as such were not allowed to quote in extenso tho written word of the Law，which it was forbidilen to recite orally． They therefore committed to memory the oral Targum，and so werc， of course，appealed to as Targumic authorities，\＆c．${ }^{\text {a }}$ That Rab Yoseph was not the author of the Targum on the Prophets will be clearly seen from the following Talmudic passage（B．，Mccgillah，3a； Alocd Katan，284）：－＂Were it not for the Targum of that verse ［Zechar．xii．11］I shoull not know the meaning of the prophet．＂ This verse is from the last but one of all the Prophets；${ }^{8}$ and we see that lab Voseph mnst lave had the Targum on the Prophets before him．In the opinion of the present writer this Targum was composed by Yonathan ；and，not being on books of the Law，there was no reason why it slionld not have been there and then written
${ }^{1}$ See T．Yer．，Berakhoth，v．3，and compare with it Luko vi． 36. Corapare Berliner，ut supru，yp．85， 86.

Bibliography of the Targum I゙erushalmi on the Pentateuch．－（A） There is a MS．of this Targum preserved in the Vatican library（eccexl．）． （B）The first edition of thisTargum is in the so－celled Cbristian Rabbinic Bible of 1517．It is to be found also in most polygiott and Rabbinic Bibles，including the Polish editious（Warsaw，\＆e．）．（C）Transiations： －（a）Latin－（1）by Taylerus（London，1649，4to）；（2）by Chevalier （io the Polyglott，London， $1653-57$ ）．（b）In English by Etheridge（Tar． gums，London，1862－65，8vo）．（D）Thero nre two commentaries on this Targum in Hebrew：－（1）by R．David b．Ya＂nkob（Prague， 1609 ， 4 to）；（2）by R．Mordekhai b．Naphtali（Amsterdam，1671－77，fol．）． See our Targum on Gen．xxi．21，where Mohammed＇s first wife （Kliadidja）and their youngest daughter（Eātima）are mentioned by name．
${ }^{5}$ Bibliography．－（A）There certaifly exists，somewhere in Italy，a MS．of this Targum，although the owner is at present unkuown．（B） This Targum appeared for the first time in the Pentatencb edition of Venice（1590－91，8vo）．（C）Translations：－\｛a）Latin by Chevalier （London，1653－57）；（b）iu Euglish by Etheridge（op．cit．）．（D）Com－ mentarjes：－（1）by F．Davill b．Yaakob（Prague，1609，4to）；（2）by P．Mordektari b．Naphtali（Anst．，16i1－77，fol．）；（3）by an anony－ mous author in the Warsaw edition．
－In the editions before us（T．B．，Sotah，4Sb）Joseph stands on the marcin instead of Shesheth；but in the edition before R．＇Azaryah in． Haadummin tha reading was absolutely Shesheth；see Mcor＇Enayim， cap．xlt．
a This is by no means ac isolated Fhrace ；in I．B．，Sym redrin，94b， a aimilar one cisurs，referrlog to Isa，viii． 6 ．
down．${ }^{\text {a }}$ Althoughothe traditions it embodies came original！；from Babylonia and returned to Babylonia，its language has yet a mere marked colouring of the Palestinian idiom than that of Onkelos， because it was not studied so much and therefore not so much modified and interpolated．Some of the Agadoth occurring in this Targum are ascribed in the Talmnd and Midrash to later men，but this is ne conclusive argument against an early date．It can be shown that nuany laws and sayings supposed to be of the 2d，3d，and 4th centurics of the Cliristian era are actually of pre－ Christian times，aud，indeed，certain explanations，figures of speech，\＆c．，liad been，so to say，floating in the air for centuries． Certain passages in the Septuagint contain Agadoth which re． eppear，secmingly for the first time，in the Talnondic literature． The Prophets themselves knew Agadoth which only reappear in What are believed to be late Midrashin（comp．，e．f．，Isaiah xxix． 22 with T．B．，Synh．， 198 ；Isa．xxx． 26 with Targum on Judges v．31，Ber．Rab．，xii．；Ezek．xxii．24，\＆c．，witl，Ber．Rab．，xxxiii．）．${ }^{10}$

11I．Targum on the Hagiographa．－No author＇s nanie is attached to this Targun iu whole or in part．The Psalms must havo had one ${ }^{11}$ or two ${ }^{12}$ Targums；the hook of Proverbs at least two ；${ }^{13}$ the book of Job at least three．${ }^{14}$ ．There must have been two Targums on Canticles，${ }^{15}$ Ruth，${ }^{15}$ Licelesiastes，${ }^{17}$ and Estlier，${ }^{18}$ and probably thece on Lamentations，${ }^{19}$ the carliest of which was，no doubt，simeltanc－ onsly coming iuto existence with the earliest on the book of Job． For Ezra－Nehemual no Targum exists．Daniel only in part wanted a Targum，and it is smpposed to have had one；${ }^{0}$ and the books （or rather the book）of Chronicles have a by no means late one，＂l althongh it is not by Rlab Yoseph，of the 4 th century．${ }^{22}$
see，however，vol．xxi．p． 648.
10 Bibliography．－（A）There are MSS．of the Targum on the Prophets in the Bodleian（OpI）．Add．，4to， 75 and 76 ，U1i 4 and Keooicott 5）．（B）The earliest edition is in the Rabbinic Bible of 1517．（C） Translations ：－（a）in Latin－（1）by Alphonsus Zanorensia（rovised by Arias Montanus and afterwards by Clericns）；（2）Jereminh，by Ghislcrus，1023；（3）Minor Prophets，by Nercerns，1559，Tremellius， 1567，and Figuciro，1615；（4）Hosea，Joel，and Amos，by Quinquar． boreus， 1556 ；（5）Ohadiah，by Bedwell，1601，and Leusden， 1656 ； （b）in English－Iaaiah，by Pauli（London，1871，8vo）．（D）Besides the general literature mentioned under＂Onkelos＂（in fine），we must mention Frankel，Zum Targum der Propheten（Breslau，1872，4to）， which ninst be used with caution．
${ }^{11}$ See T．B．，Megillah，2Ia，and also Rashi on T．B．，Ta＂anith，leaf 18a．Zumz is gieatly mistaken when he says（Golt．Vortr．，p．64）that the Targuns ou Psalms，Job，and Proverbs have one and the aame linguistic character．The Targum ou Proverbs is almost jura Syriae． 32 See the Targum itself on Psalu lxxvi． 11.
13 There，no donbt，existed another Targuni on thia book，older than that now in our hands；see Eer．Rab．，xciii．
${ }^{14}$ See the extant Targum on Job xxiv．19，nnd comp．note 19 infra．
15 See R．Nathan b．Yehiel＇s Arukh，a．v．N゙טלפ．A．＂Yerushalmi Targum＂presupposes at least one other．
${ }^{18}$ The Targum on the Five Megilloth has all one character，ani：is therefore wholly Verusialmi．
${ }^{17}$ The Targum itself repeatedly quotes another Targum．
19 See Rashi on＇T．B．，Megillah，leaf 13b，catchword הコ：．We have still two Targums ou Esther．It ought to be nueptioned here that in the post．Talumdic Masseliheth Sopherm，xiii．6，an Aramaie translation of Esther iii． 1 is given with the introluctory words： ■ฎาภ รดั בา（＂Rab Yoseph targumized＂）．This somewhat lengthy translation is found（the quatation from the Targum on Proverbs excepted）almost verbatim in the Targum Sheni $2 n$ loc．
19 Tha book of Lamentations，and consequently a Targun thereon， was Do doubt used along with the book of Jub and the Targuni thereon，by mourners．See Schiller－Szinessy，Catalogue，i．p． 27.
20 See Munk，＂Notice sur Saadia＂（Caheo，La Bible：Isaľe，Paris， 1838），p．159．His ingenious remarbs are scarcely borne out by fact． 21 From a late name occurring in a book oo couclusions must be drawn，as isolated words may be a mere interpolation．The interbal character of a work must decide the age in which it was composed．
a3 Bibliography．－（A）There are MSS．of the Targum－（1）on the Psalms，io Parma（De－Rossi，31，32，732）and Paria（110）；（2）on Proverbs，in Parma（31，32）and Paris（as before）；（3）on Job，in Parma（31，32）and Paris（as before）；（4）on the Five Megilloth， in the Court Library of Vienna（xxix．），Parma（31，32），the Bud－ leian（Uri 1，44），Cambridge（Ald．，436）；and（5）on Chroniclea in the Vatican（Urb，i．），t＇．Erfurt ministerial library，Cambridge（ $\mathbf{E}_{\mathbf{0}}$ 5，9），and the Bodleian（Uri 35，36）．（B）The earliest editions of the Targum on the Hagiographa fexcept on Daniel，Ezra－Nehemiah，nad Chronicles）are the Rabbinic Bibles，and on Chroniclea those of 1680－83 by Beck and 1714 by Wilkins．（C）Translations：－（a）in IIebrew－ the Tasgum Sheni－（1）Lcshon Zahab（Coast．，1732），and（2）Path． （b）in Latin－（1）Amst．，1770，repr．An Sutin，1038），－ali 8vo； Arias Montanus ；（2）on Proverbs，by Alphonsus Zamorensls；（3）on Job，by the seme；（4）on Canticles，by the same，and again by Schreckenfuchs（Basel， $1558,8 v 0$ ）；（ 5 ，on Riatis．by Arlas Moutanus．

State of Tcxt. -The Targum text is, taken as a whole, in a very corrupt state The causes of this comuption are many, but chipfly the following:-(1) mistakes ordinarily made by scribes through carelesaness, or ignorance, or beth; (2) the Targumis had passed from cellury to century and from country to comitry without having been written down; (3) when written down they were probably not provided with vowel points at once ; (4) when provided with vowel-points most of them were first provided with Babylonian ior Assyriaii), which afterwards were changed into Palestinian ones; this change was a fertile source of fresh mistalies; (5) the loss of tho general knowledge of the Targumic idiom contingent on the decline and final fall of the institution of publicly reciting the Targum was au additional source from which mistakes arose; (6) conjectural emendations contributed their nuota to the corruption of the text; (7) Buxtorf's emendations founded on the diction of the Biblical Targum (as suggested in the Methurgeman) are a gross mistake, inasmuch as they lack the criticism of history; (8) printers mistakes, increasing in every new edition, have ail but ruined the text. The remedies for this corruption are :-(1) good Targun MSS. in private hands and public libraries, notably in Italy, Germany, and England; (2) Targunt MSS, according to the Babylonico-Assyrian system of punctuation, chiefly preserved in South Arabia, Russia, and England; (3) some early and comparatively gool printed editions; (1) the Massoreth of the Targum.

Value of the Targums. - The idea so long entertained, even by the learned, that these old rersions were valuable chiefly as guides to the original radings of the sacred text must be given up. All of them contain more or less, whether visible at first sight or not, certain paraphrastic clements, which give no absolute security for the exact reading of the pristine Hebrew text But besides their importance as linguistic monmments they have the highest value as historical records-(1) of the exegesis which obtained at the time of their composition, and (2) of the then current manners, thoughts, and aspirations both of the Jews and of the surrounding nations. ${ }^{1}$
(S. M. S. -S.)

TARIFA, a seaport of Spain, in the province of Cadiz, at the extreme south point of the Peninsula, 59 miles southeast from Cadiz and (by land) 21 miles west-south-west from Gibraltar. The town is nearly quadrangular, with narrow crooked streets, and is still surrounded by its old Moorish walls. On its east side, just within these, stands the alcazar. The rocky island in front of the town, con nected with the mainland by a causeway, is strongly fortified, and in some sense commands the Strait of Gibraltar It has a lighthouse, 135 feet high, which has a range of 30 miles. The population within the municipal limits was 12,234 in 1877. Anchovy and tunny fishing is carried on, and there is some coasting trade. The mantufactures (leather sud earthenware) are unimportant. Tbe oranges of Tarifa are famed for their sweetness.

Tarifa is the Julia Joza of Strabo, between Gades and Belon, which, according to that writer, was colonized by Romans and the removed inhabitants of Zelis in Mauretania Tingitana The Julia Transducta or Traducta of coins and of Ptnleny appears to be the eame place. Its present name (Arabic Jazirat Tarlf) is derived from Tarif, the forerumer of Tarik (see vol, xvi. p. 573). After a long siege it was taken from the $\$ 100 r s$ in 1292 by Sancho IV. of Castile, who entrusted it to the keeping of Alouzo Perez Quinquarhoreus (Paris, 1556, 4to), Mercerus (Paris, 1564-65; revised 1657); (6) ou Lamentations, by Alph. Zanı, by Quinquarboreus (Paris, 1549, 4t0), by Ghislerus (Leyd., 1623, fol.), and again by Taylerus (Lond. 1651, 4to) ; on Ecclesiastes, by Ar. Moat., by Scbreckenfucbs (Basel, 1555, 8\%o), aad again by Costus (Leyden, 1554, 4to); (7) on Esther, by Ar. Nont. (1572, folio); (8) Chronicles by Beck from the Erfurt MS. (imperfect, Augsb., 1680-83), and by Wilkins from the Cambridge MS. (Amst. 1715) ; (c) in German(1) on the Fivo Megilloth, by R. Ia'akob b. Shemuel (Breisgau, 153f, 4to); (2) on the Targum Sheni, by David Ottensosser (Sulzbaeh, 1820, 8vo). (D) Commentaries:-(a) in IJebrew-(1) on the Targuna of the Five Megillotb, by R. Elyakim Rutbenburg (Prague, 1018); (2) on Esther alone, by R. Shem"el Makshan (Prague, 1601, 4to); (3) on the same Targum, by Pi. Di sid b. Yehudah Melammed (Cracow, 1644, 4to); on the Targum Sheni, by P. David b. Ya'akob (Prague, 1609, 4to); (b) in Spanish-on Canticles, by F. Mosheh Laniado (Venice, 1619, ito).
R. Yehudah Ibn Koreish fully understood the value of the Targums. See his interesting epistle, addressed to the Jewisb community of Fez, published at Paris (1857. 8vo), under the name o: Epistola de Stzdii Targum Ulitzale. A transiatios of the intro ductory part (by Wetzstein) is given in the L. I. O., iii, col, 22 (reprinted by Dr Berlacer, T. U., p. 163 sq.) 1 $1, n$ Kioreish belonged to the 9th century, aud not, as Berliner says, to the l0th or 11th; por was he a Kiaraite as Graetz (v. 1. 293) halr believes.
de Guzman ; the heroic defeace by the larter, conmenorated in the Romancero, earacd for him the name of Guzman "el Bueno.* It was in the defence of Tarifa that Alfonso X1. gained the battle of Salaio, a short distance to the westward, in 1340 . The place was successfully defended against the French by Gough in 1812.

TARN, a department of southern France, formed in 1790 of the three dioceses of Albi, Castres, and Lavaur, all belonging to the province of Languedoc, lies between $42^{\circ} 23^{\circ}$ and $44^{\circ} 12^{\prime} \mathrm{N}$. lat. and $1^{\circ} 32^{\prime}$ and $2^{\circ} 56^{\prime} \mathrm{E}$ long. It is bounded N. and E. by Aveyron, S.E. by Hérault, S. by Aude, S.W. and W. by Haute-Garonne, N.W. by Tarn-et-Garonne. The slope of the department is from east to west, and its general character is monntainous or hilly; its three principal ranges, the Mountains of Lacaune (peak of Montalet, 4154 feet), the Sidobre, and the Montagne Noire, belonging to the Cevennes, lie on the south-east. The stony and wind-blown slopes of the firstnamed are used for pasturage. The highest point of the range and of the department is the Pic de Montalet ($415 \frac{1}{2}$ feet) ; several other summits are not much short of this. The granite-strewn plateaus of the Sidobre, from 1600 to 2000 feet high, separate the valley of the Agout from that of the Thore. The Montagne Noire derives its nanse from the forests on its nortlern slope, and some of its peaks are from 3000 to 3500 feet high. The limestone and sandstone foot-hills are clothed with vines and fruit trees, and are broken by deep alluvial valleys of extraordinary fertility. With the exception of a small purtion of the Montagne Noire, which drains into the Aude, the whole department belongs to the basin of the Garonne, -indeed, if the rivulet Giron be excepted, to that of the Tarn, which flows in a westerly direction past Albi, Gaillac, Lisle, and Rabastens, receiving on the left the Agout at St Sulpice. Northern Tarn is drained by the Aveyron and its tributary the Viaur. The eastern portion of the department has the climate of Auvergne, the severest in France, but that of the plain is Girondin. At Albi the mean temperature is 55°, and the rainfall 29.5 inches. The population of the department in 1886 was 358,757 .

Of the total area of 2217 square miles, or $1,418,969$ actes, there are 887,709 acres of arable land, 118,071 of meadows, 118,934 of vineyards, 186,594 under wood, and 52,408 of moorland. 广y last returns there were 11,360 horses, 3280 mules, 5430 asses, 20,550 bulls and oxen, 53,900 cows and heifers, 13,240 calves, 455,500 sheep (wool-clip in 18781209 tons), 87,700 pigs, 5350 goata, and 17,190 bee-bives. In 187837 tons 14 cwt. of silk cocoons were produced. Oxen and sheej are fattened; ewes milk cheese like that of Ronuefort is made; and geese and turkeys are reared. The crops in 1881 were-wheat, $3,429,112$ bushels; meslin, 53,113 ; rye, $1,371,040$; barley, 37,730 ; buckwheat, 8448 ; maize and millet, 1,566,873; nats, 538,422 ; potatoes, $2,554,860$; dry vegetables, 374,715 ; chestnuts, 268,125 ; beetroot, 196,$625 ; 782$ tons of hemp; 476 of flax; $9,676,476$ gallons of wine fonly lalf the quantity of the previous year, owing to the phylloxera). Both conmon and good table wines are produced.
The mineral products include marble, porplyry, granite, lime, inanganese, sulphate of baryta, alum, iron liguite, and tourmaline In 1881335,430 tons of coal were taken from seven pits, and other mines are about to be opened. There are iron, alkaline, thermal, and carbonate of lime springs. The chicf contre for the manafacture of woollen stuffs (in 1875287 mills, 6457 workmen, and 98,615 spindles) and for wool-spmning and weaving ($\$ 893$ machino and band looms) is at Mazamet (q.v.), but all sorts of woollen and cotton stulls are produced in other localities. Other iudinstrial products are woollen hosiery, cotton, silk, and linen thread, morocco, hats, eartheuware, glass, soap; anl thero are tanneries, distilleries, flour-mills, breweries, dyeworks, sawmills, printing works, and numerous limekilns. In 1881929 tons of steel aud 1947 tons of iron of rarious kints were produced. The Tarn is navigahle for 43 miles; therc are 203 miles of rational roats, 4274 of other roads, and 120 of railway. The department forms tho diocese of Albi, and belon"s to the 16 th corps d'arme (Montpellier), and the court oi appeal is at Toulouse. The chef-lieu is Albi. There are 4 arrondissements (Albi, C'astrcs, Caillac, Lavaur), 35 cantons, and 318 commusies.

TARN-ET-GAllONNE, a department of south-western France, was formed in 1808 of districts formerly belonging to Guienne and Giascony (Quercy, Jomagnc, Armagrace.

Rouergue, ${ }^{,}$Agenaie), with the addition of a small piece of Languedoc. From 1790 to 1808 it was divided between the departments of Lot, Haute-Garonne, Tarn, Aveyron, Gere, and Lot-et-Garonne. Lying between $43^{\circ} 47^{\prime}$ and $44^{\circ} 25^{\prime} \mathrm{N}$. lat. and $0^{\circ} 55^{\prime}$ and $1^{\circ} 58^{\prime}$ E. long., it is bounded on the N. by Lot, on the E. by Aveyron, on the S. by Tarn and Haute-Garonne, and on the W. by Gers and Lot-et-Garonne. The Garonne and its tributary the Tarn unite a few miles below Moissac, and separate the elevated lends to the north, which belong to the Cevennes and the central plateau, from those to the south, which are a continuation of the plateau of Lannemezan. The principal tributary of the Tarn on the right is the Aveyron, the affluents of which run through remarkably parallet valleys from north-east to sonth-west. The general slope of the department is from east to west; the highest point (1634 feet) is on the border of Aveyron, the lowest (164 feet) where the Garonne leaves it. The winter temperature is $37^{\circ} \mathrm{F}$., that of spring and autumn $54^{\circ} \mathrm{F}$., and that of summer $72^{\circ} \mathrm{F}$. Rain falls seldom, but heavily, especially in spring, the annual rainfall being 28.9 inches.
Of a totel area of about 1436 square miles, or 919,265 acres, arable land occuries 552,708 acres, meadows and grass 45,073, vineyards 102,849 , woods 115,429 , moorland and pasturage 41,819 . The raturns in 1883 showed $2,167,000$ bushels of wheat, 35,062 of maslin, 62,975 of rye, 77,000 of barley, 2,722,500 of oats, 759,000 of maize, $1,867,250$ of potatoes, 35,468 tons of beetroot, 172 tons 8 cwt . of colza sced, 399 tons of hemp, 394 tons of flax, 250,788 tons of fodder, 12 tons 15 cwt. of silk cocoons, $20,048,380$ gallons of wine. The live stock in 1881 included 14,336 horses, 1680 mules, 2120 asses, 89,295 cattle of varions descriptions, 116,349 sheep, 1358 goats, 32,375 pigs ; 6347 beehives gave 25 tons 13 cwt. of honey and 8 tons 2 cwt . of wax. There are 57 quarries, employing 426 workmen, where phosphates of lime, lithographic stone, freestone, potters' clay, gypsum, and schist for slating are worked, as are also iron and copper. The manufacturing industry is represented by flour-mills, yarious kinds of silk-mills (1317 workmen), and manufactories of linen, wool, and paper. Much fruit is grown, and the principal exports are fresh fiuit, wine, flour, phosphates, lithographic stone. There are 83 miles of waterway, including 48 of canal, 156 miles of national roads, 3515 of other roads, 127 of railway lines, tho centre of which is Montauban. Tarn-et.Garonne is one of the least densely peopled departments of France: in 1886 there wera 214,046 inhabitants, and their number is dccreasing. Except some 10,000 Calvinists, all are Roman Catholics. Tha department forms the diocese of Montauban, and belongs to the jurisdiction of the Toulonse court of appeal and to the district of the 17th corps d'armée (Toulouse). It has 3 arrondissements (Montanban, Moissac, and Castel-Sarrasin), 24 cantons, and 194 communes.
TARNOPOL, a market.town in Galicia, Austria, on the Sereth. It was formerly a fortress, and rendered valuable services to Polish kings, who, in their turn, conferred upon it important privileges. The town enjoys a brisk trade in grain and wine, and has some sugar factories. Its yearly horse fairs are famous throughout the country. The population in 1885 was 27,000 , about half of them Jews.
TARPAULIN is a waterproof sheeting consisting of a stont canvas cloth impregnated and coated with tar. It is employed for covering hatchways and other openings into the holds of vessels, for making covers for railway and other waggons and farm ricks, and generally for protecting bulky goods and structures from weather and damp. Many waterproof compositions other than tar are nsed for similar purposes, the principal ingredients being solutions of india-rubber, gutta-percha, and varions resinous bodies combined with pigments. See Waterproofing.
tarquinji. See Etruria, vol. viii. p. 634.
TARQUINIUS PRISCUS, Lucius, fifth legendary king of Rome, is represented as the son of a Greek refugee who removed from Tarquinii in Etraria to Rome, by the advice of his wife, the prophetess Tanaquil. Appointed guardian to the sons of Ancus Marcius, he slicceeded in supplanting them on the throne on their father's death. It was he who first established the Circus Maximus, built the great cloace, and founded the triple temple on the

Capitol,-the expense of these vast works being defrayed by plunder seized from the Latins and Sabines. Many of the ensigns both of war and of civil office are assigucd to his reign, and he was the first to celebrate a Roman triumph, after the Etruscan fashion, in a robe of purple and gold, and borne on a chariot drawn by four horses. After a reign of thirty-eight years he was assassinated by the contrivance of the sons of Ancus Marcius, but Tanaquil had influence enough to secure the succession to Servius Tullius, his son-in-law. See vol. xx. p. 733.

TARQUINIUS SUPERBUS, Lucios, son of the preceding, and son-in-law of Servins Tullius, immediately succeeded the latter without any of the forns of election, and proceeded at once to repeal the recent reforms in the constitution, seeking to establish a pure despotism in their place. Wars were waged with the Latins and Etruscaus, but the lower classes were deprived of their arms, and employed in erecting monuments of regal magnificence, while the sovereign recruited his armies from his own retainers and from the forces of foreign allies. The completion of the fortress temple on the Capitoline confirmed his authority over the city, and a fortunate marriage of his son to the daughter of Octavius Manilius of Tusculum secured him powerful assistance in the field. His reign was characterized by bloodshed and violence ; the outrage of his son Sextus upon Lucretia precipitated a revolt, which led to the expulsion of the entire family, after Tarquin had reigned twenty-five years. All efforts to force his way back to the throne were vain, and he died a loncly and childless old man at Cumx. See vol. xx. p. 734.

TARRAGONA, a maritime province in the north-east of Spain, with an area of 2451 square miles and a population in 1877 of 330,105 , was formerly part of the province of Catalonia. It is bounded on the S.E. by the Mediterranean, on the N.E. by Barcelona, on the N. by Lerida (the Sierra de Almenar), on the W. by Saragossa and Teruel, and on the S.W. by Castellon-de-Ia-Mlana. The Ebro flows throagh the southern portion of the province, and the other chief strearus are the Gaya and the Francoli. The district, although mountainous, is the richest in Catalonia. The hills are clothed with vineyards, which produce excellent wines, and in the valleys are cultivated all kinds of grain, vegetables, rice, hemp, flax, and silk. Olive, orange, filbert, and almond trees reach great perfection, and the mountains yield rich pastures and timber trees of various kinds. Manufactures are well advanced, and comprise all textile fabrics, soap, leather, and spirits. There are also several potteries and cooperages, and flour, paper, and oil mills. Silver, copper, lead, and barytes are plentiful, and quarries of marble and jasper are worked in the hills. The military government of the province is dependent on the captaincy-general of Catalonia. For administrative purposes the district is divided into eight partidos judiciales, containing 186 ayuntamientos, and returns three senators and eight depaties to the cortes. Besides the capital, the towns in the province with more than 10,000 inhabitants are Reus (27,691), Tortosa (23,808), and Valls $(13,256)$.

TARRAGONA, the capital of the above province, is a flourishing seaport, the seat of an archbishopric, at the mouth of the Francoli, 63 miles by rail west-southwest of Barcelona, in $41^{\circ} 10^{\prime} \mathrm{N}$. lat. and $0^{\circ} 20^{\prime}$ E. long., with a population of 23,046 in 1877. The picturesque but badly built older portion of the town stands on the steep slope of a hill 760 feet high, and is still surrounded by walls of Roman (in parts Cyclopean) origin. Below the walls a broad street, the Rambla, divides the upper from the lower town, which has been more regularly built in modern times along the low promontory which stretches out into the Mediterranean. The city is most beautifully situated, and

' $\mathrm{A} A-T A B$

gains considerably in effect from its magoificent cathedral, one of the noblest exampies of eariy Spanish art. It is 300 feet in length and 100 feet in breadth, and consisted originally of a nave, aisles; transepts with an octagonal lantern at the crossin \because and an apsidal chancel. Several extericr chapels have been added in later times, and on the south-east stends a 14 th-century steeple raised on a Romanesque tower. The east end was probably begun in 1131 on the ruins of au earlier chnrch, but the main body of the building dates from the end of the 12th century and the first half of the 13 th, and is of transitional char-acter,-the exuberant riclness of the sculptured capitals being admirably kept in snhordination by the Romanesque simplicity of the masses. Considerable changes were introduced at a later date; and the present west end of the nave cannot have been completed till late in the 14th century. On the north-east side is a cloister contemporary with the church, with which it communicates by a very fine doorway. The cloister contains nuch remarkable work, and the tracery of the windows bears interesting marks of Moorish influence. Two other noteworthy churches in the city are San Pablo and Santa Tecla la Vieja, both of the 12th century. The mole, begun in 1491, was chiefly constructed out of the Roman amplitheatre, of which a few rows of seats can still be seen on the sea-shore. The remains of a Roman aqueduct form a picturesque feature in the landscape. The Carcel de Pilatos is said to have been the palace of Augnstus Cæsar; it was partly destroyed by Suchet, and now serves as a prison. The museum contains a collection of the Roman antiquities which are continually being discovered during excavations.

The trade is steadily ivcreasing. During 1885 the ressela cleared amounted to 377,250 tons (45,795 tons British, 47,181 French, and 42,617 Swedish and Norwegian). The exports were valued at $£ 1,289,533$ (wine $£ 1,023,847$), and the imports at $£ 1,237,012$. The exports were mostly to France, Great Britsin, and the River Plate; the imports were chiefly from Germany, Russia, France, and Sweden. There is communication by rail with Barcelona, Valencia, and Lerida, and by steamer with other porta of Spain.

Tarraco was one of the earliest strongholds of the Romans in Spain, and became a colony (of Julins Cæesar), the capital of Hispania Citerior, and the richest town on the coast. To the Romans the Visigaths under Earic succeeded in 467, but on their expulsion by the Moors in 710 the city was razed to the ground. It was long before the ruins were again inhahited, bat by 1089 , when the Moors were driven out by Raymond IV. of Barcelona, there must have been a certain revival of prosperity, for the primacy, which had been removed to Vich, was in that jear restored to Tarragona. In 1118 a grant of the fief was made to the Norman Kobert Burdet, who converted the town into a frontier fortress against the Moors. In 1705 the city was taken and burned by the English, aud a cen. tury later, after being partly fortified by them, it was captured and sacked by the French in 1811 under Suchet.

TARSHISH. See Phexicla, vol. xviii. p. 806.
TARSUS, now Tarsés, an ancient city in the fertile plain of Cilicia, lay on both sides of the Cydnus, whose cool and swift waters were the pride of the city (Die Clurys., vol. ii. p. 2, Reiske's ed. ; Tita Apollon., i. 7), and bore traffic to and from the port of Rhegma. In the time of Xenophon (Anab., i. 2. 23) Tarsus was already great and flourishing, and was the residence of the vassel king of Cilicia. Its civilization at this time seems to have been mainly Semitic, as was to be expected from the geographical relations of Cilicia, which have generally associated its history with that of Syria. We have coins of Tarsus (7 ת) of the Persian period, bearing Aramaic inscriptions; and the deities of the town, known in later times as Heracles, Persens, Apollo, Athena (Dio Cbr., ii. 22), seem to have been akin to those of the Ploenicians and Syrians (see below). The \cdot Semitic infinence was donbtless very ancient ; indeed, the Assyrians invaded Cilicia in the 9 th century b.c., at which date Tarsus is perhaps mentioned on the monuments under the name of Tarzi (Schrader, Seilinschr. und_Gesch., 1878, p. 240 ; the reading is not
certain). Atter Tarsus was Hellenized the citizens learned to boast that they were Argives sprung from the conlpanions of Triptolemus (Strabo, xiv. 5. 12; Dio Chr., ii. 20), and the town became the seat of a famous school of philosophy which mas frequented almost exclusively by natives, but sent forth teachers as far as Ronie itself. ${ }^{1}$ 3iore than one of these philosophers, notably Athenodorus the teacher of Augustus, and Nestor the teacher of Marcellus, held the chief magistracy of the city. Athenodorus and his predecessors were Stoics, but Nestor was an Acadenic (Strabo, xiv. 5. 14), ${ }^{2}$ so that the Platonic philosophy is that with which Paul would probably have come in contact if he gave heed to the Greek wisdom of his native city. Presumably, however, he formed we higher opinion of the culture of Tarsus than did his contemporary Apollonins of Tyana, whose testimony as to the character of the citizens (Vit. Ap., i. 7) is confirmed by Dio Chrysostom. Tarsus lad made rapid material progress since Cilicia became Roman (66 b.c.). It was the capital of a rich province, and bad received freedom from Antony, and from Angustus the dignity of a metropolis and important immunities for its commerce (Dio Chr., ii. 36). The inlabitants were vain, effeminate, and loxurions, more like Phenicians than Greeks. Their sensuous Eastern religion in these golden days of affluence had more attraction for them than the grave philosophy of the Porcly; and the legend supposed to be graven on the statue of Sardanapalus, at the neighbour city of Anchiale, "let us eat and drink, for to morrow we die," which Panl quotes in 1 Cor. xv. 32, might have been the motto of the mass of the townsmen. ${ }^{3}$ At Tarsus the emperor Tacitus died, and Julian was buried. The city was deserted and lay waste duriug the frontier wars of Greeks and Arabs in the first century of Islam: a Moslem general, who saw the ruins, estimated its former population at 100,000 (Beladhori, p. 169). It was rebuilt and settled as a military colony and frontier post by Hárún al-Rashíd in 787 A.D., and became a starting point of forays against the Christians. On such a campaign the caliph Ma'mún died, and was buried at Tarsus (833), having caught a fever, like Alexander the Great, by bathing in the cold Cilician waters. Tarsus was temporarily recovered to Cbristendom by Nicephorns Phocas, and again by the crussters under . Baldwin. Finally it remained in the hands of the Torks.
The Heracles of Tarsus was the Cilician god Sandan. Dio Chrysostom calls him the àpxny's of the Tarsians (ii. 23), and he may be ilentified with the Baal of Tarsus named on the coins alreedy spoken of. He was worshipped by, the periodical erection of "a very fair pyre" (ibid.), a rite presumably ainalogons to that described in the De Dea Syria, ch. 49; and the remarkall, zuin of Dönijk-tash, a vast conrt with massive walls curclosing two lofty plationns of concrete, probably marks the site of his sanctuary (see Perrot and Chipiez, Hist. de l' Art, iv. 536 sq., and Langloiq, Voyage dans la Cilicie, p. 265 sq.). A tradition making Sandan the founder of Tarsus is given by Δ mmianus (xiv. 8. 3); and, as the Greeks appear to have taken elcments of the myth of Sandan (including the pyre) into their legend of Sardanapulus, this explains the current story that Sardanapalus founded Anchiale and Tarsus in one day (Arrian, ii. 5,2 ; Athen., xii. p. ${ }^{5} 29 \mathrm{sq}$.). On Sandan, see K. O. Mtuller, in lihein. Mhus., 1829, and E. Mryor, in Z. D. M. G., 1877, p. 736 sq. Another account in Anmianus makes Persens the fonnder of Tarsus, aud it aprears from Jio ('hr: that he was almost or quite as much honoured. The foot pinint of Pegasus was shown st Tarsus (Avienus, 1031 sq; ; comp. 1) io, ii. 24); and his rapats (wing?) ras said to have fallon therc (Alex. Molylh. in Steph. Byz., s.v,). This worship reappears at Joppia. Apmllo "with the trident" had a secred sword at Tarsus, which conld be cleansed only by the water of the Cydnns (Plut., Def. Orac., 41), and is probably the same as the harpe sliown on coins of Hadriari's time ; if so, he is presumably a differentiated form of Perseus. ${ }^{1}$ To Strabo's list must be added Zeno, the successor of Chrysilius.
${ }^{2}$ Lucian, Macrob., 21, makes him a Stoic and teacher of Tiberius.
3 Athenæus, v. p. 215, tells of an Epicurean philosopher, Lysias, who, becoming priest of Heracles, lecame tyrant of the city, taxiug the rich to provide Largesses. for the poor. A The fact is probable, tha date quite uncertain.

The worship of Athena may be connected with the etatement of Athenodorus (the famous philosopher of Tarsus) that the ancient name of the city was Parthenia (Fr. Hist. Gr., iii. 487); Abydenus in Eusb., Chron., p. 35, ed. Schöne) ascribes the foundation of her tomple with its brazen columns and of the city itself to Sennacherib. Thus with the Baal of Tyre there was worshipped an unmarried goddess, as in so many shrines of Syria and Asia Minor. Dio Chr., ii. 2, speaks also of Titans as lords of the city. The reference is to Jspetus (Japhet?), grandfather of Cydnus (Athenodorns, ut sup.).

TARTAGLIA, Niccold (c. 1500-1557), a self-taught mathematician, was born at Brescia about 1500. His father, Michele Fontana, was a postal messenger between Brescia and the neighbouring towns, who, dying in 1506, left two sons and a daughter to the care of their penniless mother. Niccold's childhood was accordingly passed under the stress of dire poverty, and was marked by a cruel misfortune. During the sack of Brescia in 1512 ho was, in the cathedral where he lad vainly sought a refuge, horribly mutilated by some infuriated French soldiers. His skull was laid open in three places, his palate cloven, both jawhones fraetured. Yet he recovered with no further assistance than-his mother's patient care. He, however, long continued to stammer in his speech, whence the nickname, adopted by himself, of "Tartaglia." His edueation remains a mystery. Save for the barest rudiments of reading and writing, he tells us that he had no master; yet we find him at Verona in 1521 an esteemed teacher of mathematics. In 1534 he transferred his residence to Venice, and was there met by Antonio del Fiore with a challenge to one of the intellectual duels then customary. Del Fiore relied on his possession of an undivulged formula by Scipione del Ferro for the solution of a particular case of cubic equations. But Tartaglia had attained in 1530 a similar result, which he now, in February 1535 , greatly extended. His consequent triumph over his adversary gave him a. high reputation, aud his house became the resort of the learned of all grades and nations. The mystery in which he chose to shroud his metbod of dealing with cubic equations promised him a highly effective weapon in future contests, as well as leisure to perfect, before publishing, the coveted rules. But in 1539 Cardan enticed him to Milan, and there, by unremitting solicitations, proeured from him the rude verses in which he had enshrined hls discovery (see Alarbra, vol. i. p. 513). The Milanese physician's breach of his oath of seerecy gave rise to a bitter and lifelong quarrel, the most conspicuous incident in which was a public disputation at Milan, August 10, 1548, at which Cardan shrank from appearing. In 1548 Tartaglia accepted a situation as professor of Euclid at Brescia, but returned to Venice at the end of eighteen months. He died at Venice December 13, 1557. Aerid and emulous in disposition, he incurred abundant enmities; yet his honesty, uprightness, and the morality of his life remain unimpeached. He was keen-witted, diligent, and ingenious, and by his discoveries in the solution of equations helped to initiate the rapid progress of modern mathematics.
Tartaglia's first printed work, entitled Nova Sceientia (Venice, 1537), dealt with the theory and practico of gunnery, to which his attention laal been drawn in 1531 by the question of a bombardier at Verona as to the elevation giving the greatest rango. He easily found it to be 45° (true only in vacuo), but failed to demonstrate the correctness of his intuition. Indeed, be never shook off the erroncous ideas of his time regarding the paths of projectiles, further than to see that no part of them could be a straight line. He meverthcless in augurated the scientific treatment of the subject, and his propositions reappeared in most lallistical treatises down to Blondel's in 1683. Tho publication of the Aora Scientia was determined by the menacing attitude of Soliman II. Unless in the interests of Christendon, Tartaclia regarded it as a crime to promote arts of destruction. Inquiries rendered lawful by necessity were, however, resumed in his Qucsiti ct Invensioni Divicrsc, a collection of the sutlor's replies to questions addressel to him by parsone of the most varied conditions, published in 1546, with a oedation to Heary VIll. of England. Problems in artillery
occupy two out of nine books; the sixth treats of fortification ; the ninth gives several examples of the solution of equations of the third degree. His last years were full of activity. He published in 1551 Regola Generale per sollevare ogni affondata Nave, intitolata la Travagliata Invenzione (an allusion to his personal troubles at Brescia), setting forth a method for saising sunken abips, and describing the diving-bell, then little known in western Europe. He pursued the subject in Ragionamenti sopra la Travagliata Invenzione (May 1551), adding a table of specific gravities. Of his largest work, entitled General I'rattato di Numeri e Misure, two parts appeared at Venice in 1556 , the remaining four posthumously in 1560. This is a comprehensive mathematical treatise, including arithmetic, feometry, mensuration, and algebra as far as quadratic equations. He designed to embody the results of his original investigations in a separate form; but his Algelra Nova remained unwritten. He published the first Italian translation of Euclid (1543) and the earliest version from the Greek of some of the principal works of Archimedes (1543). Thesc included the tract De Insidentibus Aqua, of which his Latin now holds the place of the lost Greek text. An Italian version of it is appended to his Ragioncenenti. Tartacrlia was the first Italian writer on fortification, and claimed the invention of the gunner's quadrant.

- Tartaglia's own account of his early life is contained in hia Quesiti, lib. vi, p. 74. See also Bittantía Discurso di Niccolo Tartaglia, Lrescia, 1871, Bnoncompagni, Mhorno ad un Tes?amento inedito di M. Tartagiza, Silan, 1881; Libl, Hist. des Sciences diathematiques, t. iii. P. 149: Montucia, /hist. des srath., vol. ${ }^{\circ}$ p. 567; Marle, Mist. des Sciences, t. H. p. 24.: Hankel, Zur Gesch. e. Bath., 1874, were ; rasslated ine enalish by Lucar in 1588 and into Freach by kiefel in 1845 , were iranslated into English by Lucar in 1588, and into French by Rleffel in 1845. Thos. Salusbury published (London, 1564) nn English version of his Travagizata Invenzione, And a selection irom his wimings appeared at Venice in 1606 with the
title Opere del Famosissimo Niccolo Tartagha, 1 vol, 8vo.
TARTAN is a worsted cloth woven. with alternate stripes or bands of coloured warp and weft, so as to form a chequered pattern in which the colours alternate in "scts" of definite width and sequence. The weaving of particoloured and striped cleth cannot be claimed as peculiar to any special race or country, for indeed such checks are the simplest ornamental form into which dyed yarns can be combined in the loom. But the term tartan is specially applied to the variegated cloth used for the principal portions of the distinctive costume of the Highlanders of Scotland. For this costume, and the tartan of which it is composed, great antiquity is claimed, and it is asserted that the numerous clans into which the Highland population were divided had each from time to time a special tartan by which it was distinguished. After the rebellion of 1745 various Acts of Parliament were passed for disarming the Scottish Highlanders aud for prohibitiug the use of the Highland dress in Scotland, under severe penalties. These Acts remained nominally in force till 1782, when they were formally repealed, and since that time clan tartan las, with varying fluctuations of fashion, been a highly popular article of dress, by no means confined in ịts use to Scotland alone; and many new and imaginary " sets" have been invented by manufacturers, with the result of introducing comfusion in the heraldry of tartans, and of throwing donlt on tho reality of the distinctive "sets" which at one time nudoubtedly were more or less recognized as the badge of various clans. The manufacture has long been carried on at Bannockburn, in the neighbourlood of Stirling, and it still conitinues to be a feature of the local industries there.

Undoubtedly the term tartan was known, and the material was woven, "of one or two colours for the poor and moro varied for the rich." as early as the middle of tho 15 th century. In the accounts of John, bishop of Glasgow, treasurcr to King James Ill. in 1471 , there occurs, with other mention of the material, the following:-"Ane elne and ane halve of blue Tortane to loue his gowne of cloth of Gold." It is here obvious" that the term is not restricted to particoloured chequered texturcs. ${ }^{1}$ In 1538 accounts wore innirred for a lighland dress for King Janes V. on the occasion of a hunting excursion in the Hlighlands, in which there are charges for "variant cullorit velvet," for "ane schort Heland coit," and for "Heland tartane to le hose to the kinge's grace." Bishop Lesley, in his Dc Origine, Moribus, et Rcbus Gcstis Scotornm, published in 1578, says of the ancient and still used dress of ihe Highlanders and islanders, "all, both noble and common people, wore mantles oi one sort (except that the nobles preferred those of several colonis):" George Buchanan, in his Rerum stoticarum
${ }^{1}$ Neither so is it in the French tiretaine or in the Spanisb diritana

Historia (1582), as translatel hy Monypenny (1612), says of the Highlanders, "they delight in marlect clothes, specially that have any long stripes of sundiy colours; they love chiefy purple and blue. Their predecessors used short mantles or plaids of divera colours sundry wejs divided; and amongst some the same custom is observed to this day." A hint of clan tartan distinctions is given by Martin in his Western Isles of Scolland (1703), which work also contains a minte description of the dress of the Highlanders and the manufacture of tartan. "Every isle," he observes, "differs from each other in their fancy of making plaids, as to the stripes in breadth and colours. This humour is as different through the mainland of the Hizhlands, in so far that they who have secn those places is able at the first view of a man's plaid to guess the place of his residence."
See W. and A. Smith, Tortans of the Clans of Scotland, 1850; J. Sobleski Stuart, 「estiarium Scoticum, 1842 ; R. R. M1'lan, Clans of the Scottish Highlands, 1815-46; J. Grant. Tartans of the Clans of Scotiand, Edinburgh, 1855.
rARTARIC ACID, in its ordinary acceptation, refers to one acid, $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{H}_{2}$, which occurs in most acid fruit juices, in association generally with malic or citric, or both. Grape-juice owes its sourness almost entirely to acid tartrate of potash. While the juice ferments into wine, the greater part of the acid tartrate separates out, along with tartrate of lime, colouring matter, and othcr impurities, as a hard crust adhering to the sides of the cask. Such impure acid tartrate of potash is known commercially as "argol." It was known to the Greeks as $\tau \rho v \xi$, to the Romans as frex: vini. The alchemists from the 11th century called it fartarus, which name has survived in familiar chemical parlance to this day. The true constitution of tartarus vini was discovered by Scheele in 1769. He was the first to isolate the acid from its acid potash salt by a method which is still used for its industrial extraction.

Manufacture.-Crude tartar (10 to 14 corts.) is placed in a tank, and dissolved in sufficient water with the help of steam. The surplus acid is then neutralized by addition of powdered chalk, and precipitated as lime salt:-

$$
2\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}\right) \mathrm{KH}=\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{K}_{2}+\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}\right) \mathrm{H}_{2}
$$

$$
\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{H}_{2}+\mathrm{CaCO}_{3}-\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}\right) \mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} .
$$

The other half of the tartaric acid which remains dissolved as normal potash salt is then precipitated in the same form by addition of chloride of calcium :-

$$
\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{K}_{2}+\mathrm{CaCl}_{2}=2 \mathrm{KCl}+\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{6}\right) \mathrm{Ca} .
$$

The tartrate of lime precipitate is collected, washed, and decomposed by an cacess of sulphuric acid at $75^{\circ} \mathrm{C}$: :-

$$
\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{Ca}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CaSO}_{4}+\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{H}_{2} .
$$

The sulpbate of lime is removed by decanting and filtering, and the acid solution evaporated in leaden pans to a sufficient degree to deposit crystals on standing in the cold. The crystals are purified by redissolving them in hot water, decolorizing the solution with animal charcoal, and causing the acid to crystallize a second time after addition of sulphuric acid, which promotes the formation of large crystals. The crystals contain a little sulphuric acid and a trace of lead; if intended for internal use, they must be recrystallized from pure water.

Tartaric acid forms hard colourless transparent monoclinic prisms of 1.764 spec. grav., casily solublo in cold and abundantly in hot water. It has a strong but agreeable sour taste. At $15^{\circ} \mathrm{C} .100$ parts of water dissolve 138 parts of the acid, 100 of alcohol (absolute) $20 \cdot 4$, and 100 of ether 0.39 . It fuses at $135^{\circ} \mathrm{C}$. and passes into an amorphous modification known as meta-tartaric acid; when heated more strongly it loses water, and passes into the forms of anhydrides. At ligh tempcratures it is decomposed with formation of charcoal and volatile products, which smell pretty much like those formed from sugar in the same circumstances. Most oxidizing agents produce formic from the aqueous avid Poiling with oxide of silver and excess of caustic alkali produces oxalate.

Tartaric acid is used largely in callco printing as a discnarge. In pharmacy and households it serves, conjointly with bicarbomate of soda or potash, for the extem-
poraneous preparation of effervescing drinks. The socalled Gernan effervescing powders are a combination of weighed-out doses of tartaric acid and of bicarbonate of soda. In the so-callcd "seltzogenes" (glass apparatus in which carbonic acid is produced in one compartment, to be forced by its own pressure into a mass of water, wine, \&e, in the other) the gas is similarly produced.

Tartrates.-The acird potash sall, $\left(\mathrm{C}_{4} \mathrm{II}_{4} \mathrm{O}_{8}\right) \mathrm{H} \mathrm{K}$, "cream of tartar," is preparcel from crule tartar (argol) ly dissolving it in hot water, filtering off what remains of tartrate of lime and other mpurities, and allowiug the filtrate to crystallize. The crystals are generally contaminated with a little of the lime-salt, for the removal of which the lest methol is to treat the powdered crystals with cold dilnte hydrochlnric acid and then wash then with cold water by displacement. The lime passca into the filtrate. Cream of tartar forms small colourless liard crystals which dissolve in olout 200 parts of cold and in 15 parts of beiling water. In alcohol the salt is cren less soluhle than in water.
The normal (neistral) potash sell, ($\left.\mathrm{C}_{4} \mathrm{I}_{4} \mathrm{O}_{6}\right) \mathrm{K}_{2}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, is prepared by dissolving powdered cream of tartar in hot solution of carbonate of potash until a neutral or slightly alkaline solution is preduced. The salt, bcing extremely solnble in water, does not crystallize very readily. In former times the carbonate of potash required used to be made by igniting one half of the cream of tartar to be operated upon in a cruciblc. Hence the name of tartarus tartarisalus, which ia still familiar in plarnacy. The salt is used onedicinally, and also for remoring free acid from excessively sour wine by formation of relatively insoluble bitartrate (Liebig's method).
Rochelle salt, $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{KNa}+4 \mathrm{H}_{2} \mathrm{O}$, is prepared by not quite neutralizing hot solution of carbonate of soda with powdered cream of tartar. The (filtered) hot solution deposits on cooling magnificeut crystals, readily soluble in water, though less so than the unmixed potash salt. Rochelle salt is used as a mild purgetive The so-called Seidlitz powders are effervesciag powdera with a considerable addition of Rochelle salt to the bicarbonate.

The normal tartrates of lime, baryte, \&c., are insolublo precipitates producible by double decompositions.

Tartar emelic, $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{K}(\mathrm{SbO})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, is produced by boiling 4 parts of oxide of antiniony, $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and 5 of powdered cream of tartar with 50 of water for about an hour. The filtered selution, on cooling, deposita crystals of the ebove composition seluble in 15 parts of cold and 2.8 of boiling bet water. The crystals generelly exhibit the appearance of tetrahedra; yet they ere rhembio prisms combined with pyramids. The process geing on in the formation of the salt is easily understood if we remember that $\mathrm{Sb}_{2} \mathrm{O}_{3}$ often acts on aqueous acids $s s$ if it were the monoxide, (SbO) ${ }_{2} \mathrm{O}$, of a radical (SbO) antimonyl. (SbO) ${ }_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ is equivalent to $2(\mathrm{SbO}) \mathrm{OH}$, and

$$
\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{KH}+\mathrm{OH}(\mathrm{SbO})=\mathrm{H}_{2} \mathrm{O}+\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{K}(\mathrm{SbO}) .
$$

Tartar emetic has long had a standing in medicine. In doses of 1-3 grains it acts as a powerful emetic; very small dobes (of to $\frac{1}{10}$ grain) induce perspiration. Large doscs preduce poisenous effects.
Analysis.-Tartaric acid is characterized chiefly by the relative insolubility of it 3 acid potash salt. To produce it from a solution of a neutral tarirate, add acetic acid and acetato of potash, and stir vigereusly; the salt gradually separates out as a crystallino precipitate. Neutral tartrate solutions, with chloride of celcium, give a precipitate of tartrate of lime, which is at first amorpbous, and in tbis condition dissolves pretty readily in excess of reagent or tartrate, but in general re-separates in the crystallipe form (the undissolved tartrate likerise becemes crystalline) on standing.
Anhydrides. - Tartaric acid, when kept at 135°, fuses and becomes' meta-tartaric acid without change of weight, and on continued appli.' cation of $140-150^{\circ} \mathrm{C}$., ditartrylic acid, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{21}=2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{8}-\mathrm{H}_{2} \mathrm{O}$; and at 180° tartrelic acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{10}=2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}-2 \mathrm{H}_{2} \mathrm{O}$, is produced. All these three acids ferm salta of their own, which, however, tend to become tartrates in the presence of water. At 180° real tartario anhydride (like tartrelic, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{20}=2 \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{5}$) is produced, in addition to tartrelic acid, as an infustble jellewish mass, inseluble in water and in ether. By continued contact with water it is converted finaliy into tartaric acid solutiou.
Isomeric Modifcations. - Among theso racemic acid hes long been known as an occasional bye-product in the manufacture of tartario acil. It used to be believed that racemic acid is present rendy formed in certain grape-juices, and thus comes to make its appearance occasionally; but it is well known new that the bulk of it at any rate is produced from what was originally tartaric acid, by the centinued action of high temperatures and water. Racemic acid is almost identical with tartaric acid; the only purely chemical point of difference is that correspending salts of the tro sclds often crystallize with different proportions of water. The two acils, heverer, are easily distinguished by their action on polarized light (see Pozarity, vol. xix. p. 314). A solution of tartaric acid turns the plane of polarization to the right; racemic acid is, in thie eense.
optically inactive. These leng-knewn farts led lasteur to the discovery of the true rulations of the two acids. If the double incemate, $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \mathrm{Na}^{2}\left(\mathrm{~N}_{4}\right)$, is allewed to crystallize alowly, two kinds of crystals are protluced, both beariug hemiedric faces, but dilfering from each other in tlie situation of these, exactly as tho right hand difers from the loft. Pasteur separated the two linds of crystals, and found that one kind is ilentical with the ordiuary (dextro-) tartrate of seda and ammonia, while the other contains a now kind of tartaric acid, which ho called levo-tartaric acid hecanse it turns the plave of polarization to the left. Erlual veights of the two acids, when dissolved separately in water and mixed, unite, with perceptible evolution of heat, into optically neutral racemic acid. Pacemic acil, then, is levo- and dextro-tartaric minted (loosely) into one molecule. There are a mumber of optically inactive tartaric acida, not susceptible of decouposition in the se'.av as which racemic acid is.
(W. D.)

I aRTARS (more correctly Tatars, but Tartars is the form generally current), a name given to nearly three millon inhabitants of the Russian empire, chietly Mosleu and of Turkish origin. The majority-in Enropean Rus ia-are remnants of the Mongul invasion of the 13th centiry (ses Mionaols), while those who inhabit Siberia are survivals of the once much more nunerous Turkish population of the Ural-Altaic region, mised to some extent with Finnish and Samoyedic stems, as also with Mongols. The name is derived from that of the Ta-ta Mougols, who in the 5th century inhabited the northeastern Gobi, and, after subjugation in the 9th century by the Tungus Kidañs, migrated southward, there founding the Mongolian empire nuder Jenghiz Kitan ($q . v$.). Under the leaderslip of his grandson (Batu) they moved westwards, driving with them many stems of the Turkish UralAltaians towards the plains of Russia. The ethnographical features of the present Tartar inhabitants of European Russia, as well as their language, show that they contain no admixture (or very little) of Mongolian blood, but belong to the Turkish branch of the Ural-Altaic stock, necessitating the conclusion that only Batu, his warriors, and a limited number of his followers were Mongolians, while the great bulk of the 13th-century invaders were Turks. On the Volga they mingled with remnants of the old Bulgarian Turkish empire, and elsewhere with Finnish stems, as well as with remnants of the ancient Italian and Greek colonies in Crimea and Caucasians in Caucasus. The name of Tatars, or Tartars, given to the invaders, was afterwards extended so as to include different stems of the same Turkish branch in Siberia, and even the bulk of the then little known inhabitants of the high plateau of Asia and its north-western slopes, which was described under the general name of Tartary. This last name has almost disappeared from geographical literature, but the name Tartars, io the above limited sense, remaios in full use.

The present Tartar inhabitanta of the Russian empire iorm three large groups, - those of European Russia and Poland, those of Cancasus, and those of Siberia. The discrimination of the sefarate stems included under the name is atill far from completion. The following subdivisions, however, may be regarded as established. (1) The liazañ T'artais, descendanta of the Kiptclaks settled on the Volga in the 13th century, where thoy mingled with survivors of the Bulgar Turks and partly with Finnish Etens. Thcy number ahout half a million in tho gnvernment of Kazañ, about 100,000 in each of the govermments of Ufa, Samara, and Simbirsk, and abont 300,000 in Tyatisa, Saratoli, Tamboff, Penza, Nijni-Novgorod, Perm, and Orenburg; some 15,000 belonging to the same stem havo migratal to Ryazan, or have been settled os prisoners in the 16 th and ITth centurios in Lithmania (Vilna, Grodno, and Podolia); and there are some 2000 in St Petersburg. In Poland they constitute 1 per cent. of the population of the rlistrict of Plock. The Kazan T'artars speak a purc Turkish dialect; they are mitlde-sized, broad. shoulilered, and stroag, and mostly have black eyes, a straighit nose, and salient cheek boaes. They are Mohammedans; polygamy is practiscd only by the wealthier classes and is a waning institution. Eacellont agioculturista and garleners, very laborious, and loaving a good reputation for honesty, they live on the best terms with their Russian peacant ncirhboura. It may be ndderl that, aecorrling to M. Iuférnff (Etule ह́lhoz. sur les Bachたirs, 1881), those Bashkirs who live between the Kiama, Ural, apd Volga are not of Finnish origin, hut in virtue of their bistory, language, authronological features.
and custoun must be regerded as Tartare. (2) The Astrakhan Tartart (about 10,000) are, with the Dlengol Kalmucka, all that now remains of the ouce so powerful Astraklian empire. They also are agriculturista and gardencrs; while sone 12,000 Kundrovsk Tartars still continue the momadic life of their ancestora. (3) I'he Crinıean Tartars, who occup,iel the Crimea in the 13th century, have preserved the name of thic leader, Nogai. During tho 15 th, $1 \$$ th, and 17 th centuries they constituted a riel empire, which prospered until it fell umler Turkish rule, when it had to auffer much from the wars fought between Turkey and Russia for the prossession of the peninsula. The war of 1853 nnd the laws of $1860-63$ and 1874 caused an exodus of the Crimean Tartars; they abandoned their odmilably irrigated fiella and gardens and moved to 'I'urkey, so that now their number falls below 100,000. These of the south coast, mixed nith Greeks and Italians, aro well known for their skill in garclening, their honesty, and tbeir lahorious habits, as well as for their fine features, presenting the Tartar typo at its best. The monntain lartars closely resemble theso of Cuncesiss, while these of the steppes-the Nogais-are decillally of a mixell origin from Turks and Mougolians.

The 'lartars of C'aucasus, who inhabit the rlpee" Fuhañ, the ateppes of the lower Kuma and the Kura, ami the Araxes, numbir about 1,350,000. Of these (f) the Nogais on the Kinma slow traces of an iatimate nixture with Kaluncks. They are nomads, suluniting thenselves by cattle-hreding and fiahing; fuv are arimiturists. (5) The Karatchais (18,500) in tho upper valleys alont Elburz Jive by agrienlture. (6) 'The monntain Tantara (about 850,000), divided into many tribes and of an origin still nuluterminel, are scattered thoughont the provincca of Baku, Erivan, Tillis, Kınais, Jathcatan, and jurtly also of Batum. They are cortainly of a mixed origin, and present a variety of othnolorical ty jes, all the roore so as all who aro neither Armenians nor Kussians, nor belong to auy clistinct Cancasian tribe, are often called Tartar's. As a ritle they are well built and little helind their Caucasian brethren. They are celebratel for their excellence as gardeners, arricultwists, catlietentlers, aud artisans. Althongh most fervent Shititus, they aro on very good terus both with their Sumite and witly their lknssian veighbours. Polygany is rare with them, anl their womeu go to work unveiled.
Tho Siberiau Tartars, mostly mixed with Finnislı atems, ars the most dificult to classify. They occupy three diatinet regions,-strip runuing west to east from Tobolak to Tomsk, the Altai and its apurs, and Soutlı Yeniseisk. They origiuated in the agglo. merations of Turkisl! stems which in the region north of the Altai succecled the Ug:0-Samoycdic civilization (sce Sibenia), and reached a relatircly high degree of culture between the 4 th and the 8 th centuries, but were subuned and enslaved by tha Mongols. In the meautime the following subrlivisjons of the Siberinn Tartars may be arcepited. (7) The Barabs Tartars, who tako their weme from one of their stems (Barama), number about 50,000 in tho government of Tobolsk aud ahout 5000 in Tomsk. After a strennons resistance to Russian conquest, and much suffering at a later period from Kirghiz and Kalmuck raids, they now live by agriculture, either in separate villages or along with Russiuns. (8) The Tcholym or Tchulym Tartars on the Teholyin and both the rivers Yus apeak a Turkish language with many Nongoliun and Yakut words, antl aro more like Mongols tlian Turka. In last century they pail a tribute for 2550 arbaletes, but they now are rapidly hecomiug fuscl with Rucsians. (9) The Abakau or Minusinsk Tartars occhipied the steppes on the Abakan and Yus in the 17 tl century, after the withdrawal of tbe Kirglizea, and represent a mixture with K nibals iwhom Castrén considers as partly of Ostiak and partly Sanoycdic origind and Beltirs-also of Finnish origin. Their langusge is also mixed. They are known under the name of Sagais, who numbered 11,720 in 1864, and are the purer Turkish sten of the Mlinusinsk Tartars, Roibals, and Kyzyl or Red Tartars. Fornaerly; Shamanists, they now are, nominally at least, adherents of the Greek Orthodox Church, and support thensclves mostly by cattle breeding. Agriculture is a preading but slowly among them; they still prefer to plunder the atores of hulbs of Lilium Martagon, Pronia, ank Ervthonirm Dens canis laid up by the steppe monse (Ifus socialis). The Soyotes, or Soyons, of the Sayan Mountains, who aro Finns mixed with Turks, the Uryankhes of north-west Mongolia, who are of Turkish origio but follow Buddhism, and the Karagasses, aiso of Turkish origin but mucl like the Kirghizes, and reduced now tc a few lusulreds, are akin to the above. (10) The, Tartars of the northern slopes of the Altai (nearly 20,000 in number) are of Fianish origin. They comprise some hundreda of Kumandintses, the Loherl Tartars, the Tchernevyie or Black. Foreat Tartars, and the Shors (11,000), descenlaata of the Jiluzaetsk or Iron-Smith Tartars. They are chiefly huaters, passionately lov. ing their taiga, or wild foresta, and have maintained their Shaman religion and tribal organization into suoks. They live partly also on cedor-nuts and honey collected in the forests. Their dress is that of their former rulers, the Kalmucks, and their language contains many Mongolian words. (Il) The Altai Tartars, or "Altaians"." comprise-(a) the Mountain Kalmucke (12,0noj, io whom this name
has been giveu-by mistalic, and who have nothing in common with the Falmucks except their dress and mole of life, while they speak a Turkish dialect, and (b) the Teleutes, or Teleughites (5800), a remainder of a formerly numerons and warlike nation who have migrated from the monntains to the lowlands, where they now live along with Russian peasants.

Finally, there are a number of Tartars in Turkestan and Central Asia. Without including under this name the. Sarts and the Kuramintses of Turkestan, still less the Kirghiz-Kazaks, it may be reckoned that thace are still ucarly 30,000 survivors of the Uigurs in the valley of the Ili, about linlija, and in tbe Khami oasis.

As is evident from the above, although the name Tartars eriginated in an indiscriminate application of the werd to the Turkish and Mongolian stems which invaded Europo six centuries ago, and its gradual extension to the Turkish stenns mixed with Mongolian or Finnish blood in Siberia, it still represents an aggregate of characters which warrant at least a provisional use of this genetic name, if those to whom it is given are properly subdivided. It embodies stems which, although widely distinct, still have some common ethnographical and philological features, besides being to some extent of like origin and history.
The litcrature of the subject is very extensive, and biblographleal indexes may be found in the Geographical Dicfionary of P. Semenoff, appended to the articles devoted respectively to the names giren sbove, as miso in the yearly Indczes by M. Mezhoff. Eexides the well-known works of Castren, which are a very rich source of informatlog on the subject, Schlefner (St Petersburg academy of science), Donner. Ahlgsist, and other explorers of the Ural-Altsians, as also those of the fussion historlana Solovieff, Kustomaroff, Bestuzheft-Riumin, Schapoff, zod llovalokiy, the followiog containing valuasle information may be mentloned:- the publications nf the Russlan Geograplical Society and Its brenches; the Russian Efnographicheskiy Soornik; the Ievestia of the Bloscow coclety of the amateur's of natural aclence; the works of the Rosslan ethnographical congresses: Kostroffa rescarches on the Siberlan Tartars in the memoins of the Siberian branch of the geogr. coe.; Radlaffs Reise durch teen Allai, 4 us Sibirien; " Plicturesque Russis, (Jvopisnaya Rossiya); Semenoff ond Potanin's "Supplements" to Rifter's Asien; Ilarkavi's reporl to the coneressat Kazaf ; Hortakhai's "\#ist. of Crimean Tatars," In Tyestnik Ebropy, 1866 sod 1867; "Katchinsk
Tartors," In Krcestia Russ. Geogr. Soco, xx., ISS4.
(P. A.K.) Tartors," In Krcestia Russ. Geogr. Soc., x., ISsq.

TARTARUS,' in the Iliad (viii. 13 sq., 481), is a dark underground prisou with iron gates, as far below Hades as earth is below heaven, whither Cronus and the Titans were thrust down by Zeus (vol. xxi. p. 321), and to which the sovereign of Olympus threatens to consign other gods who may disobey his behests. Later writers make Tartarus the place of punishment of the wicked after death : Æoeas, in his visit to the abode of the shades, comes to a point where the road divides, the branch to the right leading to Elysium and that on the left to the prison-house of Tartarus, girt about by a triple wall, with the fiery Pllegethon as a moat, and guarded by the fury Tisiphone (En., vi. 540 sq.). Tartarus is personified as the son of Ether and Ge, and father of the giants Typhoeus and Echidna.

TARTINI, Gioseppe (1692-1770), violinist, composer, and musical theorist, was born at Pirano, April 12, 1692, and in early life studied, with equal want of success, for the church, the law courts, and the profession of arms. His life as a young man was wild and irregular, and bis temper extremely violent and impulsive. His unfitness for an ecclesiastical career was manifest; and, after failing in jurisprudence, he crowned his improprieties by clandestinely marrying the niece of Cardinal Cornaro, archbishop of Padua. Though the family of Tartini had been legally ennobled, the cardinal resented the marriage as a disgraceful mésalliance, and denounced it so violeatly that the unhappy bridegroom, thinking his life in danger, fled for safety to a monastery at Assisi, where, calmed by the soothing infucace of the religious life, his character underwent a complete change. Docile and obedient, as he had before been passionate and headstrong, he studied the theory of music under Padre Boemo, the organist of the monastery, and, without any assistance whatever, taught himself to play the violin in so masterly a style that his performances in the church became the wooder of the neighbourhood. For more than two years his identity remained undiscovered, but one day the wind blew aside a curtain behind which be was playing, and one of his hearers recognized him and betrayed his retreat to the cardioal, who, hearing of his changed character, readnitted him to favour and restored him to his wife.

Tartini next removed to Venice, where the fine violin-
playing of Veracini cxcited his admiration and prompted him to repair, by the aid of good instruction, the shortcomings of his own self-tauglit method. - After this he studied for some time at Ancona; and here, about 1714 , he made the curious acoustical discovery on which his fame as a theorist chiefly rests. He observed that, when two notes are sounded together on the violin with sufficient intensity, a third sound, distinct from bath, is simultaneously produced. For the production of this "third sound," as he called it, Tartini failed to account on strict mathematical principles. When the two primary notes form an impure consonance, the "third sound" of Tartini (now known as a difference tone of the first order) is accompanied by beats due to the presence of different toaes of higher orders, the existence of which, unknown of course to Tartini, has been established by Helmholtz. Tartini made his observations the basis of a theoretical system which he set forth in lis Trattalo di Musica, secondo la verce scienzia dell' Armonia (Padua, 1754) and Dei Principij dell' Amonia Musicale (Padua, 1767). In 1721 be returned to Padna, where he was appointed solo violinist at the church of San Antonio. From 1723 to 1726 he acted as conductor of Count Kinsky's private band, but afterwards returned to his old post at Padua, where he died on February 16, 1770.
Tartini's compositions are very numerous, and faithfully illustrate his passionate and masterly style of execution, which surpassed in brilliancy and refined taste that of all his contemporaries. He frequently headed his pieces with an explanatory poctical motto. such as "Onibra cara," or "Volgete il riso in pianto o mie pupillc." Concerning that known as $1 l$ Trillo del Diavolo, or The Deril's Sonata, he told a curions story to Lalande, in 1766. He dreamed that the devil had hecome his slave, and that he one day asleed him if he could play tho violin. The devil replied that he beliercl he could pick out a tune, and thereupon lie playcd.a sonata so exquisite that Tartini thouglit he had never heard any music to equal it. On awaking, he tried to note down the composition, bat succeeded very inperfectly, though the resulting Devil's Sonala is one of his best and inost celebrated productions.
Besides the theoretical works we have mentioned, Tartini wroto a Trattato delle Appogiature, posthumously printed in French. and an unpublished work, Delle Ragioni o delle Proporaioni, the MS. of which has been lost.

TARUDANT. See Morocco, vol. xyi. p. 834.
TASHKEND, or Tasheent, one of the largest and most important cities of Central Asia, now the capital of Russian Turkestan, is situated in the valley of the T'chirtchik, some 50 miles above its junction with the Syr-Daria, in $41^{\circ} 20^{\prime} \mathrm{N}$. lat. and $69^{\circ} 18^{\prime} \mathrm{E}$. long. The city, formerly enclosed by walls which are now ruinous, is surrounded by rich gardens, and its houses are buried among the fruit and other trees which grow all along the numberless ramifications of the irrigation canals. The buildings, which are of stone and sun-dried bricks, are mostly low, on account of the earthquakes which frequently disturb the region. Like all old cities of Asia, Tashkend is șubdivided into sections (yurts), which are characterized by the special trades carried on in each. Asiatic Taslakend in 1871 had 78,130 inhabitants, mostly Sarts (75,176), with a few Uzbegs, Kirghizes, Jews, Kussians, and Germans. A depression in the south-east is occupied by Russian Tashkend, dating from 1865, which has clean, broad streets lined with poplars, the low nicc-looking houses being surrounded by gardens. In 1875 its population, exclusive of the military, was 4860 , mostly Russians. It has a public library containing a rich collection of works on Central Asia, an observatory, a museum, two gymnasia, a seminary, and the buildings occupied by the administra. tion. A branch of the Rissian Geographical Society has been opened at Tashkend, and its publications, as also those of the statistical committee and the Turkestan Gazefie, contain most valuable information about Turkestan. According to the most recent estimates, the population of

Tashkend, with its suburbs, is reckened at 100,000 . In consequence of the chequered histery of the town (see Turkestan), few old bnildings have been preserved, and only the madrasah Beklar Bek, with its fifty students, and the graves of Sheikh Zenedjin-baba and Zenghi-ata are worthy of mention. The former is four centuries old, and that of Zenghi-ata, a saint held in high veneration throughout Central Asia, yearly attracts thousands of jilgrius.
A variety of petty trades are carried on in numerons simall work. shops, -weaving and dyeing of eottons and the manufacture of small brass and iron wares, of harness, and espccially of beots, being the chief. Most of the inhabitants are also engaged in raising corn. xice, oil-plants, cetton, wine, and lacerne, and in gardening. Tho trade of 'Inslikeud has lost ite former inportance, but corn, cattle, silk, cotton, and fruits are still cxported, and all kinds of manafactured wares are imported from the countries to the south.
TASMAN, Abel Janszen (c. 1602-1659), a distinguished Dutch navigator, bern at Hooru, North Holland, prebably in 1602 or 1603. He is known to have made two important royages of discovery in the Pacific and Southern Oceans; only of the second of them have we a full account. In June 1639 Tas: nan, along with Matthew Quast, was despatched by Van Diemen, governorgeneral of the Dutch East Indics, on a vowage to the Western Pacific, which was fist directed to the Pbilipyine Islands; part of the coast of Luzon was explored. Sailing east and north Tasmian and Quast tenched at several of the Benin Islands, which they were probably the first to discover. Sailing still farther north, in quest of what were then known as the "islands of gold and silver," they reached the latitude of $38^{\circ} 40^{\prime} \mathrm{N}$., about 600 iniles east of Japan, and continued east for other 300 miles en the parailel without discovering anything. On October 15 the navigators decided to return, and, after tonching at Japan, anchored at Taiwan-fu, Formosa, November 21. After this, Tasman was engaged in operations in the Indian seas until 1612, when he sct out on his first great expedition. ${ }^{1}$ Several Dutch navigaters had already discovered varieus portions of the west coast of Australia, and the Dutcl East India Cempany were anxious to obtain a more accurate and extended survey of that land. Sailing from Batavia on Angust 14, 1642, with two vessels, the "Hcemskirls" and "Zeehaan," Tasman on November 24 sighted the land to which he gave the name of Van Diemen, in honour of the governer-general, but which is now named Tasmania. He doubled the land, which he evidently did net know was an island; and, running up Storm Lay, anchored on Decemher 1 iu the bay to which he gave the name of Frederick Henry. There he sct up a post on which he hoisted the Dutch flag. Quittiug Tan Dicmen's Land on December 5, Tasinan steered castwards with a rague idca of reaching the Solomon Islands, and on December 13 he discovered a. "high monntainous country," which he called "Staatenland" (New Zcaland). Cruising along the west coast of the South Island, he anchered on the 18 th in $40^{\circ} 50^{\prime} \mathrm{S}$. lat., at the cutrance of a " wide opening," which he teok to be a "fine bay," but which was no doubt Couk's Strait. He gave the name of Moordenaars (Massacre) Bay to the bay, at which he attempted to land, and where scveral of his men were killed by the natives. Leaving New Zealand, and pursuing an irregnlarly north direction, but never coining in sight of Australia, he discoverch, on January 21, 1643 , two islands belonging to the Friendly group, to which he gave the names of Miblellurg (Eova) and Ansterdam (Tongatabur). After discovering sevcral other islands in the Friendly group and their neighbourhood, Tasman stecred north and west, reaching the neighbourleod of New Britain on March 22. On the 24th he

[^20]passed Morghen Isiands, and, sailing round New Ireland and along the north coast of New Guinea, he cleared the straits between New Guinea and Jilolo, arriving at Batavia on June 15 , after a ten menths' voyage. ${ }^{2}$ The materials for an account of Tasman's inportant second voyage in 1644 are extremely scanty; they consist of Tasman's own chart and some fragmentary notes by Burgomaster Witsen in his work (1705) on the migrations of the human race (translated in Dalrymple's collection). Further information as to authorities ${ }^{3}$ will be found in Mr R. H. Major's Hakluyt Society volume on Eurly Voyages to Australia. where also will be feund the "Instructions" given te Tasman for his voyage to New Cuinea. He is instructed to obtain a thorouch knowledge of Staten and Van Diemen's Land, and "whether New Guinea is a continent with the great Kuidland, or separated by chamels and islands," and also "whether the new Van Diemen's Land is the same continent with these two great countries or with one of them." In this royage Tasman had three ressels under his command. His discoveries were confined to the nerth and north-west coasts of Australia, and his chart gives the soundings for the whole of this line of coast. He discovered the Gulf of Carpentaria, and established the continuity of the north-west coast of the land designated generally "the great known south continent," as far south as about the 22 d degree. The fullest details as to maps of the voyage and other anthorities will be found in Mr Majer's Hakluyt Society volnme referred to above. Tasman rightly ranks as one of the greatest navigaters of the 17 th ecntury. He died at Batavia in October 1659.
For personal details, see paper on Tasman by Ch. M. Dozy in Dijdragen tot de Taal., Land-, en Volkenkunde van NederlundschIndië, 5th series, vol. ii. p. 308.
TASMANIA, formerly Van Diemen's Land, is a compact island, forming a British colony, which lies to the south of Anstralia, in the Southern Ocean. It has an area of 24,600 square miles (about three-fourths of the size of Ireland), and some fifty islets belong to it. Most of these lie between it and the southern shore of Victeria, in Bass's Strait. It is a land of mountain and flood, with picturesque scenery. The centre is a mass of hills, generally covered with forest, with large lakes nearly 4000 feet above the sea; and this high land is continued to the west and nerth-west, while southward are other elevations. Ben Lomond in the cast rises to a height of 5020 feet; in the north-west are Dry's Bluff (4257 feet) and Quamby (4000); while westward are Cradle (5069), Hugel (4700), Prenchman's Cap (4760), and Bischoff (2500). Wellington, near Hobart, is 4170 feet. Anong the rivers flowing nerthward to Bass's Strait are the Trmar, Inglis, Cam, Emu, Blyth, Forth, Don, Mersey, Piper, and Ringarooma. The Macquarie, receiving the Elizabeth and Lake, falls into the Sonth Esk, which unites with the North Esk to form the Tamar at Launceston. Westward, falling into the ocean, are the Hellyer, Artlur, and Pieman. The liing and Gordon gain Macquarie Harbour ; the Davey and Spring, Port Davey. The central and seuthern districts are drained by the Derwent from Lake St Clair,-its tributaries being the Nive, Dee, Clyde, Ouse, and Jordan. The Huen falls into D'Entrecastcanx Channel. The chief mountain lakes

[^21]TASMANIA
PLATEI.

are the Great Lake (50 miles in circuit), Sorell, St Clair, Crescent, and Echo. The colony is divided into eighteen counties. The principal towns are Hobart, the capital; on the Derwent, with a population of 21,118 in 1881 (25,044 in 1886), and Launceston (12,752 in 1881; 19,379 in 1886), at the bead of the Tamar. The rugged western half of the island has only a few small settlements, while the eastern country is increasing in population on account of the mines.

Climate.-This small colony has a far greater range of climate than can be experieuced throughout the Australian continent. The eastern side is dry ; the western is very 'wet. Tin and gold miners are partially arrested in their ;work during summer from want of water in the north-east. Dense forests and impracticable scrubs result in the west from deposition of a bundred or more inches of rain in the year, whilo other parts to the east occasionally suffer from drought. Tasmania does not escape the summer v isit of an Australian hot wind. Hobart and Launceston, being near the sea, have greater equability of temperature, with rare frosts. The mean temperature of Hobart is 54°, of Waratah in the north-west 44°. Hobart averages 22 inches of rain, less than Melbourne, Sydney, and Brisbane. Inland, in the settled parts, cold is severe in winter, but only for a short period. The wooded north-west shore has no cold and no excessive heat, but plenty of showers. Up in the lake country the climate rather resembles the Highlands of Scotland. On the west and southern coasts the winds are usually strong, and often tempestuous.

Like New Zealand, Tasmania is very bealthy. No miasma is retained in its forests. Rheumatism and colds may prevail, but little fever or dysentery occurs. Perhaps no part of the world can show relatively so many aged people. Children generally display the robustness of English village life. As a retreat for Australians, Tasmania in the summer has strong claims. Cool and strengthening airs, magnificent forest solitudes, and secluded fern-tree vales may be enjoyed along with all the comforts of modern civilization.

Geology. - The comparatively recent connexion of Tas. mania with Victoria is evidenced not less by rocks than by flora and fauna. The granitic islands of Bass's Strait are as so many stepping-stones across, a depression having converted the loftier districts into islands. The want of similarity, however, between the tufted-haired Tasmanians and their Australian neighbours would indicate that the disruption took place before the advent of the younger race on the northern side. While doubts exist as to the presence of rocks older than the Silurian, a Palæozoic floor exists north, east, south, and west, though often thrown up into irregular ranges, sometimes over 5000 feet, by igneous irruptions. Convulsions have distinguished the bistory of the little island from one end to the other. Not only is granite in all its varieties very prevalent, but there is an immense amount of metamorplism in different directions. Then, at another period, not merely porphyries, but basalts and greenstones, were widespread in their ravages. They consumsed or deranged beds of coal, and overflowed enormous tracts. Earthquakes were busy, and tremendous deluges denuded great areas to depths of thousands of feet, leaving mountains of Primary rock, with peaked or platean summits of basalt or greenstone. There are prismatic walls several hundreds of feet in height, and 4000 feet above the sea-level; as at Mount Wellington, looking down upon "ploughed fields" of greenstone blocks. Still, unlike Victoria, there are not the extinct craters to tell the tale of more modern lava flows. The lake district, up to over 4000 feet, is a tangled mass of granitic and metamorphic rocks. Quartz is so common a feature that the western storm-bound cliffs reflect a white light to passing ships; *hile mica, talcose, dolerite, and siliceous schists are
common over the island. Contorted slate and the tesselated pavement of Tasman's Peninsula are effects of that transmuting period. Granite is strong at eastern and northern points, at western localities, in the interior, and in the straits. Greenstone is exhibited southward in enormous fields, as well as in the western and lake districts, and alternates often with basalt. Silicified trees are seen standing upright in the floor of igneous rock. The Prim ary rocks have more casts of former life than fossils in ordinary condition. The Hobart clay-slate abounds in Fenestella or lace coral, and trilobites occur in limestone. Slate is abundant on the north-west coast, the South Esk, and westward. New Red Sandstone near Hobart is marked by the presence of salt-beds. The Carboniferous formations are not much exhibited on the western half of the island, but are prominent along the Mersey and other northern rivers. The southern fields are torn by igneous invaders. Anthracitic forms are conspicuous on Tasman's Peninsula. Inland, on the eastern side, the formations spread from near Hobart northward for scores of miles, and even to a thousand feet in thickness. The Fingal and Ben Lomond north-eastern districts are remarkably favoured with Carboniferous sandstones and crinoidal limestones, bearing excellent seams, and like strata are noticed in islands off the east coast. Carbonaceous non-coal-bearing, beds by the Mersey are 500 feet thick. Tertiary rocks are not extensive, save in the breccia and coarse sandstone south of Launceston, over Norfolk plains, and along some river valleys. Alluvial gold deposits beloug mainly to the Pliocene formations,- -the ancieut Primaries containing the auriferous quartz reins. Greenstone and basalt belong to various periods, the latter being specially apparent in the Tertiary epoch. Travertine, near Hobart and Richmond, is from freshwater actiou. The Pleistocene development was claracterized by overwhelming denuding forces. Raised beaches are noticed along some of the larger rivers, and westerly moraines would imply a greater elevation of the country formerly. Caves and recent beds exhibit marsupial forms analogous to existing ones. Not far from Deloraine are limestone caves, with passages two miles in extent. The density and intricacy of the island scrubs have interfered with the investigation of its geology.
Minecrats.-Tasmania has failed to take a very inportant position as a gold producer. Still, when the crushing of 1300 tons in one mine produced $£ 11,528$, ?dventurers may well be hopeful. From Beaconsfield mine, west of the Tamar, gold was obtained to the value of $£ 615,330$ from July 1878 to Jannary 1, 1887. In 1885 there were five districts under commissioners of mines. Westward, gold is found from Arthur river to Point Hibbs; north-westward, from Blyth river to Cape Grim. . In the north-east are Scottsdale, Ringarooma, Mount Victoria, and Waterhonse fields; east, Fingal and St George river. Arsenic and silver are found with gold in the north-east; and iron, arsenic, copper, and lead with it at Beaconsfield. For 1885 the gold export was 37,498 oz, worth $£ 141,319$. Silver occurs at Pengnin, Monnt Ramsey, and Waratah (Muant Bischoff), combined with lead. Copper is met with at Mount Maurice, \&c., but not in paying quantities. Bismuth at Mount Ramsey is rich, but the country is difficult to reach. Antimony, zinc, manganese, copper, plumbago, and galena are known west of the Tamar, where also asbestos in serpentine hills is plentiful. Tin is well distribnted in Tasmanian granite. Mount Bischoff, in the scrubby, rocky, damp west, has the richest lodes; other mines are in the north-cast and west. In ten years the prodnct came to two and a half million pounds sterling. Bischof district in 1885 gave 2871 tons of ore, much being found in hage blocks. Want of water in the north east prevents much hy draulic working. An thracito coal is pretty abundant at Port Arthur. Near Hobart are werkings of poor quality. Around Ben Lomond are bituminous seams, but difficult of access. Fingal district has coal equal to that of Newcastle, with a seam of 14 feet, but carriage is difficult. ${ }^{1}$ 'ersey river coal mines yiolded 60,000 tons in the course of over a dozen years. Iron was worked near the Tamar, but did uot pay, excess of clironium making it brittle; its stecl was very malleable: All varieties of iron ores are known. Hebart freestone is largely exported to othcr colonies. Tasmanite or dysodile in the Merseg district is an inflammable resinous suiostance. During 1884 thers
were raised $41,240 \mathrm{oz}$. of gold, 5461 tons of tin, and 5334 tons of coal. The total exnort of gold and tin during the five years 1880 to 1885 was of the value of $£ 2,591,320$, -being $£ 642,230$ more than for the ten years preceding. The oxport of tin averaged $79,682 \mathrm{cwt}$. Agriculture. - The island has not a large area fit for cultivation. A great part is very mountainous; and densa serubs, with beary furesis, are imperiments to the farmer. The west side is too wet, stormy, and sterile for settlement. Almost all the farms lie in the line between Hohart and Launceston and between Launceston and Circular Head. The climate being cooler and moister than in most prits of Australia, the productious are of an English charactcr, hops, barlej, and onts being freely raised. Cropping land for many successive years rith wheat has lessened the produce of what mas fertile country, as little manure had been used. In later times there has heen a great improvenent in agriculture. For some time Tasnaanian growery did well, supnlying Anstralia and New Zealand wish flour, potatoes, and fruit; but, as their customers became in there turn producers, the old narkets failed in all but apples and otone fruit. Fresh and preserved fruit, with jams, together with excellent hops, continue to afford the islauders a good trade. In 1885-86 there were 417,777 acres in eultivation; in crop, 144,761; in grasses, 181,208. Wheat occupied 30,266 aeres, barley 6833, oats 29,247, pease 7147, potatoes 11,073, hay 41,693, turnips 3680 , and gardens and orchards 8198.

So large a part of the island is covered with thicket, rock, and marsh thot it appears less pastoral than eastern Australia The total number of sheep in 1886 amounted to $1,648,627$, the horses to 28,610 , and the cattle to 138,642 . Of $16,778,000$ acres only 4,403,888 have been sold or granted.

Flora. -This differs but little from that of south-eastern Anstralia, with which it was formerly conuected. Over a thousand apecies are represented. The eucalypts are gums, atringy bark, box, peppermint, ironrood, \&c. Tbs celobrated bluo gum (Eucalyptus Globulus), so eagerly sought for pestilential places io southern Europe, Africa, and America, flourishes best in the southern districts of the island. For shipbuilding purposes the timber, which grows to a large size, is much prized. Acacias are abundant, and manna trees are very productive. Sassafras (Atherosperma mos. chata) is a tall and handsome tree. Pines are numerous. Tha Huon pine (Dacrydium cuprcssinum), whose satin-like wood is so sought efter, flourishes in Hoon and Gordon river districts. The colery pine is a Phyllocladius, and the pencil cedar an Athrotaxis. The pepper tree is Tasmania fragrans. The Myrtaceas are noble trees. The lakes cider trea is E'ucalyptus resinifera, whose treaclelike sap was formerly msde into a drink by bushinen. Xanthorroas or grass trees throw up a flowering spike. The charming red flowers of the Tasmanisn tulip tree (Telopea) are seen from a grest distrace on the sides of mountains. The so-called rice plant, with rica-like grains on a stalk, is the grass Richea. Of Borenia, Epacris, and Orch is thero are numerons species. The Blandfordia, a Liliaceous plant, has a head of brifliant crimson flowera. The Casuarina, Exocarpus, Banlesio, and tree fern resemble those of Australia. Tasmanian evergreen forests are very aromatic. At one tima the islend had an extensive timber trade with Sydney, Melbourne, and Adelaide, and it still exports $£ 50,000$ to $£ 80,000$ worth annually of planks, shingles, paling \&c.

Fauna. - Animal life in Tasmanis is similar to that in Anstralia. The dingo or dog of the latter is wanting; and the Tasmanian devil and tiger, or molf, aro peculiar to the sland. The Marsupials include the Macropus or kangaroo, Didelphys or opossum, Petaurus or flying phalanger, Perameles or bandicoot, Hypsiprymines or kangaroo rat, Phascolomys or wombat; while of Ifonotremata there are the Echidna or porcupine anteater and the duck-billed platypus. The marsupisl tiger or Tasmanian wolf (Thylacinus cynocephalus), 5 feet long, is yellowish brown, with several stripes across the back, having short stiff hair and very short legs (see vol. xv. p, 380). Tery ferv of these nocturnal carnivores are now alive to trouble flocks. The tiger cat of the colonists, with weasel lega, white apots, snd nocturnal habits, is a Jarge species of the untameable pative cats. The devil 'Dasyumus or Sarcophilus ursinus) is black, with white bands on oeck and haunches. Tha covering of this savage but covardly little pight-prowler is a sort of short hair, not for. The tail is thick, snd the bull-dog mouth is formidable. Among the birds of the island ara the eagle, hawk, petrel, owl, finch, peewit, diamond bird, firetsil, robin, emu-wren, crow, swallow, magpie, blackcan, goatsucker, quail, ground dova, jay, narrot lark, mountain thrush, cuckoo, wattlobird, whistling duck, horeybird, Capa Barreo goose, penguin duck, waterhen, enipe, albatross, and laughing jackass. Snakes are pretty plentiful in serubs; the lizards aru harmless. Insects, though similar to Australian ones, ara far less troublesomo; many are to be sdmired for their great besuty.

Fisheries. - In the eally years of occupation the island was the resort of whalere from tha United Kingdom, the United States, and Erence. Both sperm and black oil, with whalobone, were important articles of export till tha retreat of the whales to other sess. Seal. ing was carried on auccossfully for many years in Bass'e Streit. ontil the sesls were utterly destroyed. There has recsutly been a
revival of whaling, the product of the island fisbery for 1885 being £12,600. The bays contain some cxcellent fish, much esteemed in the neighbouring colonies, particulatly the trumpeter, found on the southern side of the island. Of nearly 200 sorts of fishes a third can be considered good for food. The outer fisheries extrad to 16 miles from shore, being from 20 to 80 fathoms deep. The species include the trumpeter (Latris, found up to 60 it weight), the "salmon " of the ofd sectlers (Arripis), the flathead (Platycephalus), tresally (Neptonemus), garfish (Hemurhamphus), barracouta and kingfish (both Thyrsite's). There are thirteen sorts of perch, and five of bream. The anclovy is migratory. English mackerel have been scen off the east coast; and some of the herrings are much like the English. Rock cod and bull-kelp cod are favourites. Mud oyaters are nearly worked out; artiticial oyster-beds are being formed. Euglish trout (Salmo fario) are more certainly found than the true saluon (Salno salar); the last are doubtful, thougls num. bers have beeu raised in hatcheries on tha Derwent. Among freshwater fish are a so-called freshmater herring (Prototroctes), various kinds of what the old settlers called trout (Galaxias), blackfish (Gadopsis), aml fine perch.

Commerce. - Soon after the colony was founded thera was a great trade iu whale onl, as well as in the oil and skins of seals. When this declined, merchants did well in the exportation of breadstuffs, fruits, and vegetables to the ueighbouring and more recently estab. lished colonies, not less than to New South Wales. Timber was also freely sent to nlaces less favoured with-forests or too busy with other employments. When the trade with England in oil fell off, the export in wool and then of metals succeeded. Tasmanio has now an active commerce with Victoria, but has a competitor rather than a customer in New Zealand. Tho shippiog during 1885 was 342,745 tons inward, 335,061 outward. The imports for that year came to $£ 1,757,486$; the exports to $£ 1,313,693$. Of the exports, $£ 1,299,011$ were of Tasmanian products and manu-factures,-including wool, £260,480; tin, £357,587; gold, £141,319; fruit, $£ 105,363$. The baaks of the colony at the eud of 1885 shorved assets $£ 3,754,226$ and liabilities $£ 3,814,631$. The saviogs banks early in 1886 declared $£ 455,774$ to the credit of depositors. Attempts hare been recently mau'e to draw Tasmania into eloser commereial and fiscal relations with Victoria.
Manufactures. - Numerous industries are practised, though not to the extent of exportation, excepting from the working of 28 tanneries, 62 sawmills, 33 breweries, 7 manufactories of jam, and a rising wool factory.
Roads and Railuizys. - No colony, for its area, was ever so favoured with excellent roads as Tasmania has been. There arb now about 5000 miles of good roads. The priocipal line of reilvay is toat from Hobart to Launceston. Altogether, 260 iniles of railway were open in 1887.
Post-Office. - In early years letters were carried by runners on foot across the island. In 1885 there were 246 post offices, and the telegraph had 1579 miles of wire A submarine line connects Tasmania with Victoria.

Administration. - l'he governor is appointed by the British crown. The legislative council has eighteen members, and the assembly thirty-six. The revenue for 1885-86 was £571,396, the expeaditure $£ 585,766$. The public debt, contracted for publio works, amounts to three and a third millions. The customa provided $£ 276,100$. The official machinery is as extensive as for a colony with seven or eight times the population.

Edication. - At first tha state made grants in aid to schools established by private persons and religious denominations, but ultimately, ss in Victoria and New Zealand, education was mada secular and compulsory, roligions teaching being out of school hours, or depondent on Sunday schools, which are to be found all over tho island. There are 204 public scliools, maintained out of a fund of $£ 32,793$. In eight grammar and collegiate sehools a higher standard of instruction is reached. Tbe degree of Associate of Arts is conferred on deserviug scholars in the atate schools; and exhibitions (up to $£ 200$ a year for four years) euable pupila to study at the higher schools or colonial or European universities, No state grant is now made for the support of any religious denomination.

Population. - The whites have entirely displaced the blacks. Outrages and cruelties led to conflicts; and now tha last individual of tha tribes hss passed away. There are, howover, some halfcastes on islands in the Straits. The colonists in Tasmania are more concentrated than in other settlements. In 1818 there were 2320 men, 432 romen, and only 489 children. At the census of 1881 the population numbered 115,705 (61,162 males, 54,543 females) ; in 1886 it was estimated at 133,791. The birthe in 1886 sveraged $34^{\circ} 6$ per thousand, the deaths $15 \cdot 2$.

History. -The Duteh navigator TAsMAN (q.v.) sighted the island November 24, 1642, and narned it Van Diemen's Land, aftor the Dutch gorernor of Java. He took possegsion at Frederick Henry Bay in the name of the stadtholdtr of Holland, and then passed on to the discovery of New Zealend. The French Captain Mariou in 1772 came to blows with the netives. Cantain Cook was at

Adventure Bay, to the south, in 1777. His companion, Captain Fnrneanx, bad entered tha bay four years previously, assuring Cook that Van Diemen'a Land was joinoll to New Holland. Admiral Bruni d'Eutrecastenux, with the uaturalist La Billariliere, entered the Detwent, calling it North River, in 1792. Two years after, Captain H:yes namel it Derwent. Mr Bass anl Licutenant Flinders passoll through Bass's Strait, and first sailed round the island, in 1798. The high terms in which they spoke of Sullivan's cove, at the mouth of the Derwent, afterwards led to tho sestloment of Hobart there. "Tha Freach discovery ships, "Geagraphs" and "Naturalisto," under Commodore Baudin, were off the coast in 1801-2. The island was settled from Sydney. A small party was sent to the Derwent, under Licutenant Dowen, in 1803, and another to Port Dalrymple next year under Coloacl Paterson, who was ren:oved to Launceston in 1806. Captain Collins, who had been sent with a largo mumer of convicts from England to form a penal colony in Port Phillip, thonght proper to remove thence after three moutlis, and establish liniself at Hobart Town, February 1804. The carly days were trying, from want of supplies and of good government ; and confiets arose with the natives, which led to the celchrated Black War. In 1830 nearly all the settlers, with 4000 solliers and artocl constables, attempted to drive the aborigines into a peninsula, but canght only one lad. Mr George Rabinson afterwards succeeded in indacine the few hunted ones to surrender and bo taken to Flinders Island. Deaths rapidy followed. The last man dici in 1862, tha last female in 1872 . Bushrangiug was common for years in this scrubly land. The colony was aubject to Now South Wales till 1825, when independence was declared. On free acttlers being permitted to go to Van Diemen'a Lavd, they endeavoured to get frecdom of the press, trial by jury, and a popular form of rulo. After long struggles, the liberties they sought for were gralually granted. A respousibla goverament was the last boon received. Oppressed by the number of convicts thrown into the country, the free inhabitants petitionel again avd again for the cessation of transportation, which was evertually allowed. Among the governors was Sir John Franklin, of polar celebrity. The first newsinpur, The Derwent Star, came out in 1810. Literatura advanced from that humbla begiming. At first the Governneent entircly supported achouls and churches, and for many years state aid was affordect to the Churcin of England, Presbyterion, Wesleyan, and Roman Catholic charcles, but this ail is now withdrawn. The islanl poving too small for a large population, uumbers swarmed off to tho neighbourity settlemens'\%, and Port Philip, now Victoria, received its first inhabitants from Tasmania. Though not so prospcrons as Victoria, the little island enjoys an amount of easo aud confort which few, if any, settlenents elsewhere hara been known to experience.
(J. BO.)

TASSIE, JAMEs (1735-1799), gem-engraver and modeller, was born of lumble parentage at Pollokshars, near Glasgow, in 1735. During his earlier years he worked as a stone-mason, but, having visited Glasgow on a fairholiday, and seen the collection of paintings brought together in that city by Robert and Andrew Foulis, the celebrated printers, he was seized with an irresistible desire to become an artist. He remorcd to Glasgow, attended the academy which lad been established there by the brothers Foulis, and, applying hinsself to drawing with indomitable perscverance, seconded by great natural aptitude, he eventually became one of the most distinguished pupils of the school. When his traiuing was completed he visited Dublin in search of commissions, and there becane acquainted with Dr Quin, who had been experimenting, as an amateur, in initating antique engraved gems in coloured pastes. He engagce Tassie as an assistant, and together they perfected the discovery of a vitreous paste composition, styled "enamel," a substance adinirably adapted, by its hardness and beauty of texture, for the formation of gems and medallions. Dr Quin encouraged his assistant to try his fertune in London, and thither be repaired in 1;66. At first he had a hard struggle to make his way, for he was modest and diffident in the extreme, and without influential introductions to a mateurs and collectors. But he worked on steadily with the greatest care and accuracy, scrupulously destroying ${ }_{a} l l$ impressions of his gems which were in the slightest degree inferior or defective. Gradually the beauty and artistic claracter of his productions came to be known. He received a commission from the empress of Russia for a collection of about 15,000 examples; ail the richest
cabinets in Europe were thrown open to him for purposes of study and reproduction; and his copies were frequently sold by iraudulent dealers as the original gems. He exhibited in the Royal Academy from 1769 to 1791. In 1775 he published the first catalogue of his works, a thin pamphlet detailing 2856 items. This was followed in 1791 by a large catalogue, in two volumes quarto, with illustrations etched by David Allan, and descriptive text in English and French by Rudolph Eric Raspe, F.S.A., enumerating nearly 16,000 pieces Materials exist in MIS., in the possession of a descendant of Tassie's, for a list of moro than 3000 further items.

In addition to his impressions from antıque gems, Tassie executed many large profile medallion portraits of his contemporaries, and these form the most original and definitely artistic class of his works. They were modelled in wax from the life or from drawings done from the life, and-when this was impossible-from other authentic sources. They were then cast in white enamel paste, the whole medallion being sometimes executed in this material; while in other cases the head only appears in enamel, relieved against a background of ground-glass tinted of a subdued colour by paper placed behind. His first large enamel portrait was that of John Dolbon, son of Sir William Dolbon, Bart., modelled in 1793 or 1794; and the series possesses great historic interest, as well as artistic value, including as it does, portraits of Adam Snith, Sir Henry Raeburu, Drs James Beattie, Blair, Black, and Cullen, and many other celebrated men of the latter half of the 18th century.

At the time of bis death, in 1799, the collection of Tassie's works numbered about 20,000 pieces. (J. M. а.)

TASSIE, Willians (1777-1860), gem-engraver and r. deller, nephew of the above, was born in London on the 4th of December 1777. He succeeded to the business of his uncle, to whose collection of casts and medallions he added largely. His portrait of Pitt, in particular, was very popuar, and circulated widely. When the Shakespeare Gallery, formed by Alderman Boydel was disposed of by lottery in 1805, William Tassie was the winner of the prize, and in the same year he sold the pictures by auction for a sum of over $£ 6000$. He died at Kensington on the 26 th of October 1860, and bequeathed to the Board of Manufactures, Edinburgh, bn extensive and valuable collection of casts and medallions by his uncle nnd himself, along with portraits of James Tassie and his wife by David Allan, and a series of water-colour studies br George Sanders from pictures of the Dutch and Flemish ε hools.
(s , M. o.)
TASSO, Torquato (1544-1595), who ranks with Dante, Petrarch, and Ariosto among the first four poets of Italy, was the son of Beruardo Tasso, a nobleman of Bergano, and his wife Porzia de Rossi. He was born at Sorrento in 1544. His father bad for many years been secretary in the service of the prince of Salerno, and his mother was closely connected with the most illustrious Neapolitan families. The prince of Salerno came into collision with the Spanish Government of Naples, was outlawed, and was deprived of his hereditary fiefs in this disaster of his patren Tasso's father shared. He was proclaimed a rebel to the state, together with his son Torquato, and his patrimony was sequestered. These things happened during the boy's childhood. In 1552 he was living with his mother and his only sister Cornelie at Naples, pursuing hiseducation under the Jesuits, who hac recently opened a school there. The precocity of intellect and the religious fervour of the boy attracted general admiration. At the age of eight he was already famous. Soon after this date he joined his father, who then resided in great indigence, an exile and witteut occupaticn, in.

Rome. News reached them in 1556 that Porzia Tasso had died suddenly and mysteriously at Naples. Her husband was firmly convinced that she had been poisoned by her brotber with the object of getting control over her property. As it subsequently happened, Porzia's estate never descended to her son ; and the daughter Cornelia married below her birth, at the instigation of her maternal relatives. Tasso's father was a poet by predilection and a professional courtier of some distinction. In those days an Italian gentleman of modest fortunes had no congenial sphere of society or occupation outside the courts of petty ecclesiastical and secular princes. When, therefore, an opening at the court of Urbino offered in 1557, Bernardo Tasso gladly accepted it. The young Torquato, a bandsome and brilliant lad, became the companion in sports and studies of Francesco Maria della Rovere, heir to the dukedom of Urbino. The fate whick condenned him for life to be a poet and a courtier like his father was sealed by this early entrance into princely palaces. At Urbino a society of cultivated men pursued the æesthetical and literary studies which were then in vogue. Bernardo Tasso read cantos of his Amadigi to the duchess and her ladies, or discussed the merits of Homer and Virgil, Trissino and Ariosto, with the duke's librarians and secretaries. Torquato grew up in an atmosphere of refined luxury and somewhat pedantic criticisn, both of which gave a permanent tone to his claracter. At Venice, whither his father went to superintend the printing of the Amadigi, these influences continued. He found himself the pet and prodigy of a distinguished literary circle. But Bernardo had suffered in his own career so seriously from addiction to the Muses and a prince that he now determined on a lucrative profession for his son. Torquato was sent to study law at Padua. Instead of applying himself to law, the young man bestowed all his attention upon philosophy and poetry. Before the end of 1562 he had prolluced a narrative poem called Rinaldo, which was meant to combine the regularity of the Virgilian with the attractions of the romantic epic In the attainment of this object, and in all the minor qualities of style and handling, Rinaldo showed such marked originality that its author was proclaimed the most promising poet of his time. The flattered father allowed it to be printed; and, after a short period of study at Bologna, he consented to his son's entering the service of Cardinal Luigi d'Este. In 1565, then, Torquato for the first time set foot in that castle at Ferrara which was destined for him to be the scene of so many glories and such cruel sufferings. After the publication of Rinaldo he had expressed his views upon the epic in some Discourses on the Art of Poetry, which committed him to a distinct theory and gained for him the additional celebrity of a philosophical critic. The age was nothing if not critical ; but it may be esteemed a misfortune for the future author of the Gerusalemme that he should have started with pronounced opinions upon art. Essentially a poet of impulse and instinct, he was hampered in production by his own rules.
The five years between 1565 and 1570 seem to have been the happiest of Tasso's life, although his father's death in 1569 caused his affectionate nature profound pain. Young, handsome, accomplished in all the exercises of a well-bred gentleman, accustomed to the society of the great and learned, illustrious by his published works in verse and prose, he became the idol of the most brilliant court in Italy. The princesses Lucrezia and Leonora d'Este, both unmarried, both his seniors by about ten years, took him under their protection. He was admitted to their familiarity, and there is some reason to think that zeither of them was indifferent to him persorally. Of the celebrated story of his love for Leonora this is not the
place to speak. It is enough at prcsent to observe that he owed much to the constant kindness of both sisters. In 1570 he travelled to Paris with the cardinal. Frankness of speech and a certain habitual want of tact cansed a disagreement with his worldly patron. He left France next year, and took service under Duke Alfonso II. of Ferrara. The most important events in Tasso's biography during the following four years are the publication of the Aminta in 1573 and the completion of the Gerusalenme Liberata in 1574. The Aminta is a pastoral drana of very simple plot, but of exquisite lyrical charm. It appeared at the critical moment when modern music, under Palestrina's impulse, was becoming the main art of Italy. The honeyed melodies and sensuous melancholy of Aminta exactly suited and interpreted the spirit of its age. We may regard it as the most decisively important of Tasso's compositions, for its influence, in opera and cantata, was felt tbrough two successive centuries. The Gerusalemme Liberata occupies a larger space in the history of European literature, and is a more considerable work. Yet the commanding qualities of this epic poem, those which revealed Tasso's individuality, and which made it inmediately pass into the rank of classics, beloved by the people no less than by persons of culture, are akin to the lyrical graces of Aminta. It was finished in Tasso's thirty-first year; and when the MS. lay before him the best part of his life was over, his best work had been already accomplished. Troubles immediately began to gather round him. Instead of having the courage to obey his own instinct, and to publish the Gerusalemme as he had conceived it, he yielded to the critical scrupulosity which formed a secondary feature of his character. The poem was sent in manuscript to several literary men of eminence, Tasso expressing his willingness to hear their strictures and to adopt their suggestions unless he could convert them to his own views. The result was that each of these candid friends, while expressing in general high admiration for the epic, took some exception to its plot, its title, its moral tone, its episodes, or its diction, in detail. One wished it to be more regularly classical ; another wanted more romance. One hinted that the Inquisition would not tolerate its supernatural machinery ; another demanded the excision of its most charming passages-the loves of Armida, Clorinda, and Erminia. Tasso had to defend himself against all these ineptitudes and pedantries, and to accominodate his practice to the theories be had rashly expressed. As is the Rinaldo, so also in the Jerusalem Delivered, he aimed at ennobling the Italian epic style by preserving strict unity of plot and heightening poetic diction. He chose Virgil for his model, took the first crusade for subject, infused the fervour of religion into his conception of the hero Godfrey. But his own natural bias was for romance. In spite of the poet's ingenuity and indnstry the stately main theme evinced less spontaneity of genius than the romantic episodes with which, as also in Rinaldo, he adorned it. Godfrey, a mixture of pious Æneas and Tridentine Catholicism, is not the real hero of the Gerusalemme. Fiery and passionate Rinaldo, Ruggiero, melancholy impulsive Tancredi, and the chivalrous Saracens with whom they clash in love and war, divide our interest and divert it from Goffredo. On Armida, beautiful witch, sent forth by the infernal senate to sow discord in the Christian camp, turns the action of the epic. She is converted to the true faith by her adoration for a crusadiag knight, and quits the scene with a phrase of the Virgin Mary on her lips. Brave Clorinda, donning armour like Marfisa, fighting in duel with her devoted lover, and receiving baptism from his hands in her pathetic death; Erminia seeking refage in the shepherd's hut,-these lovely pagan women, so touching is
their sorrows, so romantic in their adventures, so tender in their emotions, rivet our attention, while we skip the battles, religious ceremonies, conclaves, and stratagems of the campaign. The truth is that Tasso's great invention as an artist was the poetry of sentiment. Sentiment, not sentimentality, gives value to what is immortal in the Gerusalemne. It was a new thing in the 16 th century, something concordant with a growing feeling for woman and with the ascendant art of music. This sentiment, refined, noble, natural, stecped in melancholy, exquisitely graceful, pathetically touching, breathes throughout the episodes of the Gerusalemme, find metrical expression in the languishing cadcnce of its mellifluous verse, and sustains the ideal life of those seductive heroines whose names were familiar as honsehold words to all Europe in the 17 th and 18 th centuries.

Tasso's self-chosen critics were not men to admit what the public has since accepted as incontrovertible. They vaguely felt that a great and beautiful romantic poem was embedded in a dull and not very correct epic. In their uneasiness they suggested every course but the right one, which was to publish the Gerusalemme without further dispute. Tasso, already overworked by his precocious studies, by exciting court-life and exbansting literary industry, now grew almost mad with worry. His health began to fail him. He complaiued of headache, suffered from malarious fevers, and wished to leave Ferrara. The Gerusalemme was laid in manuscript upon a shelf. He opened negotiations with the court of Florence for an exchange of service. This irritated the duke of Ferrara. Alfonso hated nothing more than his courtiers leaiving him for a rival duchy. He thought, moreover, that, if Tasso were allowed to go, the Medici would get the coveted dedication of that already famous epic. Therefore he bore with the poet's humours, and so contrived that the latter should have no excuse for quitting Ferrara. Meanwhile, through the years-1575, 1576, 1577, Tasso's health grew worse. Jealousy inspired the courtiers to calumniate and insult him. His irritable and suspicions temper, vain and sensitive to slights, rendered him only too easy a prey to their malevolence. He became the subject of delusions,thought that his servants betrayed his confidence, fancied the had been denounced to the Inquisition, expected daily to be poisoned. In the autumn of 1576 he quarrelled with a Ferrarese gentleman, Maddalo, who had talked too freely. about some love affair; in the summer of 1577 he drew bis knife upon a servant in the presence of Lacrezia d'Este, duchess of Urbino. For thie excess he was arrested; but the duke relessed him, and took him for change of air to hie country seat of Belriguardo. What happened there is not known. Some biographers have surmised that a compromising liaizon with Leonors d'Este came to light, and that Tasso agreed to feign madness in order to cover her bonour. But of this there is no proof. It is only certain that from Belriguardo he returned to a Franciscan convent at Ferrara, for the express parpose of attending to his health. There the dread of being murdered by the duke took firm hold on his mind. He escaped at the end of July, disguised himself as a peasant, and went on foot to his sister at Sorrerto.

The truth seems to be that Tasso, after the beginning of 1575, became the victim of a mental malady, which, without amounting to actusi insanity, rendered him fantastical and insupportable, a misery to himself and a cause of anxiety to his patrons. There is no evidence whatsoever that this state of thinge was due to an overwhelming passion for Leonora. The dake, instead of acting like a
 epd =ni s.rmpathetic man, as egotistical as a princeling of that ags ras wint to be. But to Tasse he whe never
cruel,--hard and unintelligent perbaps, but far irata being that monster of ferocity which has been painted. The subsequent history of his connexion with the poet, over which we may pass rapidly, will corroborate this vicw. While at Sorrento, Tasso hankered after Ferrara. The court-made man could not breathe freely outside its charmed circle. He wrote humbly requesting to bo taken. back. Alfonso consented, provided Tasso would agree the undergo a medical course of treatment for his melancholy. When he returned, which he did with alacrity under those conditions, he was well received by the ducal family. AlI might have gone well if his old maladies had not rerived. Scene followed scene of irritability, moodiness, suspicion, wounded vanity, and violent outbursts. In the summer of 1578 he ran away again; travelled through Mantua, Padua, Venice, Urbino, Lombardy. In September he reached the gates of Turin on foot, and was courteously entertained by the duke of Savoy. Wherever he went, "wandering like the world's rejected guest," he met with the honour due to his illustrious name. Great folk opened their houses to him gladly, partly in compassion, partly in admiration of his genius. But he soon wearied of their society, and wore their kindness out by his querulous peevishness. It seemed, moreover, that life was intolerable to him outside Ferrara. Accordingly he once more opened negotiations with the duke ; and in February 1579 he again set foot in the castle. Alfonso was about to contract his third marriage, this time with a princess of the house of Mantus. He had na children; and, unless he got an heir, there was a probability that his state would fall, as it did subsequently, to the Holy Sie. The nuptial festivals, on the eve of which Tasso arrived, were not therefore the occesion of great rejoicing to the elderly bridegroom. As à forlorn hope he had to wed a third wife ; but his heart was not engaged and his expectations were far from-sanguine. Tasso, preoccapied as always with his own sorrows and his own sense of dignity, made no allowance. for the traubles of his master. Rooms below his rank, he thought, had been assigned him. The princesses did not want to see him. The duke was engaged. Without exercising common patience; or giving his old friends the benefit of a doubt, he broke into terms of open abuse, behaved like a lunatic, and was sent off without ceremony to the madhouse of St Anna. This happened in March 1579; and there he remained until July 1586. Duke Alfonso's long-sufferance at last had given way. He firmly believed that Tasso was insane, and he felt that if he were so St Anna was the safest place for bim. Tasso had put himself in the wrong by his intemperate conduct, but far more by that incomprehensible yearning, after the Ferrarese court which made him return to it again and yet again. It would be pleasant to assume that an unconquerable love for Leonora led him beck. Unfortunately, there is no proof of this. His relations to her sister Lucrezia were not less intimate and affectionate than to Leonora. The lyrice he addressed to numerous ladies are not less respectful and less passionate than those which bear her name. Had he compromised her honour, the duke would certainly hare had him murdered. Custom demanded this retalistion, and aociety approved of it. If therefore Tasso really cherished a secret lifelong devotion to Leonora, it remaine buried in impenetrable mystery. He did certainly not bebave like a loyal lover, for both when be returned to Ferrara in 1578 and in 1579 he showed no capacity for curbing his peerish humours in the hope of access to her eociety.

It was no douibt very irksoms for a man of Tasso's pheasure-loring, restless, and self-conscious spirit to be kept for more than seven years in confinement. Yet we must weigh the facts of the case rather than the fancies which
hape been indulged regarding them. - After the first few months of his incarceration he obtained spacious apartments, received the visits of friends, went abroad attended by responsible persons of his acquaintance, and corresponded freely with whomsoever he chose to address. |The letters written from St Anna to the princes and cities of Italy, to warm well-wishers, and to men of the highest reputation in the world of art and 'learning, form our most valuable source of information, not only on his then condition, but also on his temperament at large. It is singular that he spoke always respectfully, even affectionately, of the duke. Some critics have attempted to make it appear that he was hypocritically kissing the hand which had chastised him, with the view of being released from prison. But no one who has impartially considered the whole tone and tenor of his epistles will adopt this opinion. What emerges clearly from them is that he laboured under a serious mental disease, and that he was conscious of it. He complains that his disorder at times amounted to frenzy, after which his memory was weakened and his intellectual faculties enfeebled. He saw visions and heard phantom voices. Puck-like spirits made away with his books and papers. The old dread of poison, the old terror of the Inquisition, returued with greater violence. His bodily condition grew gradually worse; and, though he does not seem to have suffered from acute attacks of illness, the intellectual and physical constitution of the man wa's ont of gear. Mcanwhile he coccupied his uneasy leisure with copious compositions. The mass of his prose dialogues on philosophical and ethical themes, which is very considerable, we owe to the years of imprisonment in St Anna. Except for occasional odes or bonnets-some written at request and only rhetorically interesting, a few inspired by his keen sense of suffering and therefore poignant-he neglected poetry. Rut everything which fell from his pen during this period was carefully preserved by the Italians, who, while they regarded him as a lunatic, somewhat illogically scrambled for the very offscourings of his wit. Nor can it be said that society was wrong. Tasso had proved himself an impracticable human being; but he remained a man of genius, the most interesting personality in Italy. Long ago his papers had been sequestered. Now, in the year 1580, he heard that part of the Gerusalemmee was being published without his permission and without his corrections. Next year the whole poem was given to the world, and in the following six montlis seven editions issued from the press. The prisoner of St Anna had no control over his editors; and from the masterpiece which placed him on the level of Petrarch and Ariosto he never derived one penny of pecuniary profit. A rival poet at the court of Ferrara undertook to revise and re-edit his lyrics in 1582. This was Battista Guarini; and Tasso, in his cell, had to allow odes and sonnets, poems of personal feeling, occasional pieces of compliment, to be collected and emended, without lifting a voice in the matter. A few years later, in 1585, two Florentine pedants of the Declia Crusca academy declared war against the Gerusalemme. They loaded it with insults, which seem to thoso who read their pamphlets now mere parodies of criticism. Yct Tasso felt bound to reply; and he did so with a modoration and urbanity which prove him to have been not only in full possession of his reasoning faculties, but a gentlefnan of noble manners also. Certainly the Listory of Tasso's incarceration at St Anna is one to make us pause and wonder. The man, like Hamlet, was distraught through ill-acconmodation to his circumstances and his age ; brain-sick he was undonbtedly; and this is the duke of Furrara's justification for the treatment he endured. In the prison he bore hiaself pathotically, jcevishly, but never ignobly. We ehowed a singular
indifference to the fate of his great poem, a rare magnanimity in dealing with its detiactors. His own personal distress, that terrible malaise of imperfect insanity, absorbed him. What remained over, untouched by the malady, unoppressed by his consciousness thereof, displayed a swcet and gravely-toned humanity. The oddest thing about his life in prison is that he was always trying to place his two nephews, the sons of his sister Coroclia, in court-service. One of them he attached to the duke of Mantua, the other to the duke of Parma. After all his father's and bis own lessons of life, he had not learned that the court was to be shunned like. Circe by an honest man. In estimating Duke Alfonso's share of blame, this wifful idealization of the court by Tasso must be taken into account. That man is not a tyrant's victim who moves heaven and earth to place his sister's sons, with tyrants.

In 1586 Tasso left St Anna at the solucitation of Vincenzo Gonzaga, prince of Mantua. He followed his young deliverer to the city by the Mincio, basked awhile in liberty and courtly pleasures, enjoyed a splendid reception from his paternal town of Bergamo, and produced a meritorious tragcdy called Torrismondo. But only a few months had passed when he grew discoutented. Vincenzo Gonzaga, succeeding to his father's dukedom of Mantua, had scanty leisure to bestow upon the poet. Tasso felt neglected. In the autumn of 1587 we find hinn journeying through Bologna and Loreto to Rome, and taking up his quarters there with an old friend, Scipione Gonzaga, now patriarch of Jerusaiem. Next year he wandered off to Naples, where he wrote a dull poein on Monte Oliveto. In 1589 he returned to Rome, and took up his quarters again with the patriarch of Jerusalem. The servants found him insufferable, and turned him out of doors. He fell ill, and went to a hospital. The patriarch in 1590 again received hinı. But Tasso's restless spirit drove him forth to Florence. The Florentines said, "Actum est de" eo." Rome once more, then Mantua, then Florence, then Rome, then Naples, then Rome, then Naples-such is the weary record of the jears 1590-94. We have to study' a yeritable Odyssey of malady, indigence, and misfortune: To Tasso everything came amiss. He had the palaces of princes, cardinals, patriarchs, nay popes, always open to him. Yet be could rest in none. To rest would bave been so easy, had he possessed the temperament of Bernior of Horace. But he was out of joint with the world. No sensuous comforts, no tranquillity of living, soothed his vexed soul. Gradually, in spite of all ventration for the sacer vates, he made himself the laughing-stock and bore of Italy.
His health grew ever feebler and his genius dimmer. In 1592 be gave to the public a revised version of the Gerusalemme. It was called the Gerusalemme Conquistata. All that made the poem of his early manhood charming he rigidly erased. The versification was degraded the heavier eloments of the plot underwent a dull rhetorical development. During the same year a prosaic cumposition in Italian blank verse, called Le Sette Giornate, sary the light. Nobody reads it now. We only mention it as one of Tasso's dotages-a dreary amplification of the first chapter of Genesis.
It is singular that just in these years, when mental disorder, physical weakness, and decay of 'inspiration seemed dooming Tasso to oblivion, his old age was cheered with brighter rays of hope. Clement VIII: jascended the papal chair in 1592. He and his nephew, Cardinal Aldobrandini of St Giorgio, determined to befriend our poet. In 1594 they invited him to Rome. There he was to assume the crown of hays, as Petrarch bad assumed jit; on the Capitol. Lean and worn out with siekness, ready to
totter into the tomb, where rest might possioly oe found, Tasso reached Rome in November. The ceremony of his coronation was deferred because Cardinal Aldobrandini bad fallon ill. But tha pope assigned him a pension; and, under the pressure of pontifical remonstrance, Prince Avellino, who held Tasso's maternal estate, agreed to discharge a portion of his claims by payment of a yearly rent-charge. At no time since Tasso left St Anna had the heavens apparently so smiled upon him. Capitolian honours and money were now at-his disposal." Yet this good fortune came too late. . It seemed as though fate had decided that this man, in all his weakness of character and pathetic grace of genius, should win the stern fame of martyrdom. Both laurel wreath and wealth must be withdrawn from him. Before the crown was worn or the pensions paid he ascended to the convent of .St Onofrio, on a stormy lst day of April in 1595. Seeing a cardinal's coach toil up the steep Trasteverine Hill, those good monks came to the door to greet it. From the carriage stepped Tasso, the Odysseus of many wanderings and miseries, the singer of sweetest strains still rocal, and told the prior he was come to die with him.

In St Onofrio he died, on the 25th of April of that year 1595. He was just past fifty-one; and the last twenty years of his existence had been practically and artistically ineffectual. At the age of thirty-one the Gerusalemme, as we have it, was accomplished. The world too was already ringing with the music of A minta. More than this Tasso had not to give to literature. But those succeeding years of derangament, exile, imprisonment, poverty, and hope deferred endear the man to ns. Elegiac and querulous as he must always appear, we yet love Tasso better because be suffered through nearly a quarter of a century of slow decline and unexplained misfortunc.
Taken altogether, the best complete edition of Tasso's writings is that of Rosini (Piss), in 33 vols. The prose works (in 2 vols., Florence, Le Monnier, 1875) and the lettors (in 5 vols., same pub. lishers, 1853) have been admirably cdited by Cesare Guasti. This edition of Tasso's Letters forms by far the most valuable source for bis biography. No student can, however, omit to use the romantic memoir attributcd to Tasso's friend Marchese Mlanso (printed in Rosini's edition of 'Tasso's works above cited), and the important Vita di Torguato Tasso by Serassi (Bergamo, 1790). To give anything like a complete account of more recent critical and biographical Tasso literature is impossible within the limits of this article.
(J. A. S.)

TASSONI, Alessandro, Italian poet, was a native of Modena, where he was born in 1565 , and where he died in 1635. From 1599 till 1608 he was secretary to Cardinal Ascanio Colonna, and in this capacity saw some diplomatic service ; he was afterwards employed for some time in similar occupations by Charles Emmanuel, duke of Savoy. His best-known literary work is a burlesque epic entitled La Secchia Rapita, or "The Rape of the Bucket" (1622), the reference being to a raid of the Modenese upon the people of Bologna in 1325, when a bucket was carried off as a trophy. As in Butler's Hudibras, many of the personal and local allusions in this poem are now very obscure, and are apt to scem somewhat pointless to the general reader, but, in spite of Voltaire's contempt, it cannot be neglected by any systematic student of Italian literaturé (compare vol. xii. p. 512). Other characteristic works of Tassoni are his Pensieri Diversi (1612), in which he treats philosophical, literary, historical, and scientific questions with unusual freedon, and his Considerazioni sopra il Petrarcha (1609), a piece of criticism showing great independence of traditional views.

TASTE is the sensation referred to tne mouth wheo certain soluble substances are brought into contact with the mocous membrane of that cavity. The sense is located almost entirely in the tongue. Three distinct sensations are referable to the tongue - (1) taste, (2) touch, and (3)
temperature. The yosterior part of its surface, whero there is a Λ-shaped group of large papillæ, called circnmvallate papillæ, supplied by the glosso-pharyngeal nerre, and the tip and margins of the tongue, covered with fliform (touch) papillæ and fungiform papille, are the chief localities where taste is manifested, but it also exists in the glosso-palatine arch and the lateral part of the soft palate. The middle of the tongue and the surface of the hard palate are devoid of taste. The terminal organs of taste consist of peculiar bodies named taste-bulbs or tastegoblets, discovered by Schwalbe and Lovèn in 1867. They can be most easily demonstrated in the papilla foliatx, large oval prominences found on each side near the base of the tongue in the rabbit. Each papilla consists of a series of laminæ or folds, in the sides of which the tastebodies are readily displayed in a transverse section. Tastebodies are also found on the lateral aspects of the circumvallate panillæ (see fig. 1), in the fungiform papillæ, in the

F10. 1.-Transversa section of a circumpallate papilla: W, the papilla: \boldsymbol{v}, \boldsymbol{v}, the wall in aection; R, R, the circolar alit or fossa; R, R, the taste-balbs in posi. 2lon; N, N, the nerves. The figures are from Landols and Stirling ${ }^{\prime \prime}$ Fhysiology.
papillæ of the soft palate and uvula, the under surface of the epiglottis, the upper part of the posterior surface ol the epiglottis, the inner aides of the arytenoid cartilages, and even in the vocal cords.

The taste-bulbs are minute oval bodies, somewhat like an old-fashioned Florence flask, about $\frac{1}{300}$ inch in length by $\frac{1}{800}$ in breadth. Each consists of two sets of cells,-an outer set, nucleated, fusiform, bent like the staves of a barrel, and arranged side by side so as to leave a small opening at

 barrel), called the gustatory cell.
pore; and an inner set, five to ten in number, lying ia the centre, pointed at the end neat the gustatory pore, and branched at the other extremity. The branched ends are continuous with non-medullated nerve fibres from the gustatory nerve. These taste-bodies are found in immense numbers: as many as 1760 have been counted on one circumvallate papilla in the ox. They are absent in reptiles and birds. F. E. Schultze states that they exist in the mouth of the tadpole, whilst the tongue of the frog is covered with epithelium resembling that of the gustatory bodics. Leydig has described organs having a similar structure in the skins of freshwater fishes and the tadpole: these may possibly be widely distributed taste-organs." The proofs that these aro the terminal organs of taste rest on careful ohservations which have shown (1) that taste is only experienced when the sapid substanco is allowed to come into contact with the taste-body, and that the sease

T A T-. T A '

is absent or much weakened in those areas of mucous membrane where these are deficient; (2) that they are most abundant where the sense is most acute ; and (3) that section of the glosso-plaryngeal nerve which is known to be distributed to the areas of mucous membrane where taste is present is followed by degeneration of the tastebodies. At the same time it cannot be asserted that they are absolutely essential to taste, as we can hardly suppose that those animals which have no special taste-bodies are deyoid of the sense.

Taste is no doubt closely allied to smell; hence in invertebrates organs are found that may be referred to either of the senses (see Smell). Tastes have rien variously classified. One of the most useful classifications is into sweet, bitter, acid, and saline tastes. To excite the sensation, substances must be soluble in the fluid of the mouth. Insoluble substances, when brought into contact with the tongue, give rise to feelings of touch or of temperature, but excite no taste. The specific mode of action of sapid substances is quite unknown. The extent of surface acted on increases the massiveness of the sensation, whilst the intensity is affected by the degree of concentration of the solution of the sapid substance. If solutions of various substances are gradually diluted with water until no taste is experienced, Valentine found that the sensations of taste disappeared in the following ordersyrup, sugar, common salt, aloes, quinine, sulphuric acid; and Camerer found that the taste of quinine still continued although diluted with twenty times more water than common salt. Von Vintschgau found that the time required to excite taste after the sapid substance was placed on the tongue varied. Thus saline matters are tasted most rapidly (17 second), then sweet, acid, and bitter (258 second). This is probably due to the activity of diffusion of the substance. No relation between the chemical constitution of the substance and the nature of the taste excited by it has yet been discovered, and there are many curious examples of substances of very different chemical constitutions having similar tastes. For example, sugar, acetate of lead, and the vapour of chloroform have all a sweetish taste. A temperature of from 50° to 90° F. is the most favourable to the sense, water above or below this temperature either masking or temporarily paralysing it. Taste is often associated with emell, giving rise to a sensation of flavour, and we are frequently in the habit of confounding the one sensation with the other. Chloroform excites taste alone. whilst garlic, asafutida, and vanilla excite only smell fhis is illustrated by the familiar experiment of blindfolding a person and touching the tongue successively with slices of an apple and of an onion. In these circumstances the one cannot be distinguished from the other when the nose is firmly closed. No doubt also experience aids in detecting slight differences of taste by suggesting to the mind what may be expected ; it is not easy, for instance, to distinguish the tastes of red and white wine when the eyes are blindfolded. Taste may bo educated to a remarkable extent; and careful observation-along with the practice of avoiding all substances having a very pronounced taste or having an irritating effect-enables tea-tasters and winetasters to detect slight differences of taste, more especially when combined with odour so as to produce flavour, which svould be quite inappreciable to an ordinary palate. . As to the action of electrical currents on taste, observers have arrived at uncertain results. So long ago as 1752 Sulzer stated that a consfant current caused, more especially at the moments of opening and of closing the current, a sensation of acidity at the anode (+ pole) and of alkalinity at the katode (- pole). This is in all probability due to electrolysis, the decomposition products exciting the taste-
bodies. Grünhagen found that rapidly interrupted current fail to excite the sense ; Von Vintschgau, who has directed much attention to the sense of taste, says that when the tip of his tongue is traversed by a current theze is only a tactile sensation. Again Hönigschmied, on the contrary, found that a current excited the metallic or acid taste at the anode placed on the tip of the tongue, whilst the alkaline taste of the katode was absent. The writer of this article has found that this is the experience of most persons examined by him.

Disease of the tongue causing unnatural dryness may interfere with taste. Substances circulating in the blood may give rise to subjective sensations of taste Thus santonine, morphia, and biliary products (as in jaundice) usually cause a bitter sensation, whilst the sufferer from diabetes is distressed by a persistent sweetish taste. The insane frequently have subjective tastes, which are real to the patient, and frequently cause much distress. In such cases, the sensation is excited by changes in the taste-centres of the brain. Increase in the sense of taste is called hypergensia, diminution of it hypogensia, and its entire loss ageusia. hare cases occur whero there is a subjective taste not associated with insanity nor with the circulation of any known sweetish matters in the blood, possibly caused by irritation of the gustatory nerves or by changes in the nerve centres.

As to the comparative anatomy of tho tougue, sco Owen's Com. parative Anatomy and Physiology of Vertebrates (London, 1863). For a full a acount of the pliy siology of tasto, oce Yon Vintschgau: articlo "Gcschmackssinn," in Hermann's Handbuch der Physiologic, vol. iii. part ii.
(J. G. M.)
tatars. See Tartars.
TATE, Naifos (1653-1715), poot-laureate, was born in 1652 in Dublin, and was educated at Trinity College there. He aftcrwards removed to London, and adopted literature as a profession, sncceeding Shadwell as poetlaureate in 1692. Ho died within the precincts of the Mint, Southwark (whither he had taken refngo froni his debtors), August 12, 1715.
His namo is atill remenbered in connoxion with the S° eto Version of the Psalms of Datid, which, in conjunction with Nicholas Brade (g.v.), he publishach in 1696 (see Hysiss, vol. xii p. 590). Tate was also the author of some ten dramatic pieces (sce Diogr. Dranatica, i. 703) and a great number of pooms, including ons ontitled The Innocent Epicurc, or The Art of Angling (1697).

TATIAN, one of the earliest Christian apologists, whose personality and work had an important influence on the history of the church duriug the period of the Antonines. He was by birth an Assyrian (according to Zahn of Sem. itic descent), but received a Greek education, and, after acquiring a very extensive knowledge of Greek literature, began to travel about the Roman empire as a wandering teacher or "sophist." But his inquiring disposition and his earnest spirit remained unsatisfied alike with the religions and the philosophies he encountered, while the doings of men, their greed for amusement and pleasure, their vanity and treachery, disgusted him. In this temper, about 150 A.D., he reached Rome, where the Old Testament fell into his hands, and at the same time he came into closer :elations with the Christians; their firm faith, chaste morals, fearless courage, and close fellowship deeply impressed him, and in the end the spectacle of their life and their monotheistic doctrine founded upon prophetic revelation completely conquered him. Henceforward the whole unchristian world, with all its philosophy and culture, presented itself to him as mere darkness and the deception of demons, but the "barbarian philosophy" (for so he calied Christianity) as the wisdom of God. He became a convert, and soon afterwards (153-153) wrote (most probably in Greece, where he stayed for some time) his Oratio ad Gracos, which gained lim great repute
alnong the Christians, and is still extant. This discourse is distinguished from the other apologies of that century hy the brusqueness with which its author repudiates the culture of the Greeks; his scorn, however, does not forget to a vail itself of the resources of Greek philosophy and rletoric. His polemic often reminds the reader of the Cynics and of such scoffers as Lucian ; his view of things, howerer, is very different from that of the last-named writer, for with Tatian the "barbarian philosophy," oo behalf of which he speaks, which teaches a moootheistic cosmology and inculcates rigid asceticism and renunciation of the world, is indisputably certain. In many details, and even in the general outline of his philosophy, Tatian the Christian continued without knowing it to be a Platonizing philosopher; but that he had undergone a radical change is shown by lis views of history and civilization, his faith in one living God, his conviction that truth is contained nowhere else than in the Christian Scriptures, his attitude of trust towards the Logos, made man in Jesus Cbrist, aud finally by his earnest and world-forsaking expectation of judgnent to come. The Oratio, which is polemical rather than apologetic in its character, has a special importance in the 0 history of Christian dogma, inasmuch as it gives an elaborated exposition of the doctrine of the Logos; it was also read by subsequent writers, as, for exanple, by Julius Africanus, for its chronological data. Tatian was the first apologist to undertake, on behalf of Christianity, a work of the class which afterwards developed into the numerous "world-histories" written from the Christian point of view. Tatian's diction is often rough, harsh, and abrupt, his sentences involved and inelegant. He has the art, indeed, of expressing himself with uncommon freedom and independence, and can put things also in a very graphic way, but at the same time he is a careless stylist, or rather, as an apostate from the Greek view of things, he has tried to accentuate his breach with classical traditions by elaborate carelessness and deliberate eccentricity.

Tatian soon returned from Greece to Rome, and came into close relations with the famous apologist Justin, whom he reverenced greatly. He himself established a school, to which the afterwards celebrated ecclesiastical writer Rhodon belonged for a time. So loug as Justin lived (i.e., till 166) Tatian's doctrines excited no feelings of offence in the Christian community, although even in his Oratio there are germs of questionable and unorthodos views. These germs, however, he continued to develop until about 172 ; and, as about this very time the Roman church became severely opposed to everything Gnostic and heretical, a rupture was inevitable; the date of the breach is given by Eusebius (doubtless 'following Julius Africanus) as having been 172. But the teaching of Tatian had really become open to challeage. He drew a distinction between the supreme God and the demiurge, coosiderais the latter to be good in his natuie iodeed, bul quite a subordinate being; he accepted the doctrine of a pariety of æons; be utterly rejected marriage and the use of animal food; he denied the blessedness of Adam; he began to abandon the allegorical interpretation of the Scriptures and to see genuine difficulties and contradictions in them; he sought to demonstrate from the epistles of Paul the indispensableness of the most rigid asceticism; but indeed all his "heresies" (and he has also been charged with docetism) have their explanation in this desire of his to establish a theoretical basis for his doctrine of the Christian duty of complete world-renunciation. He joined the "Encratites," a sect which indeed had existed before this time, but which received new life from his presence. Of his numerous writings belonging to this period nothing hias survived the hostility which sought their repression
 $\sigma \omega \tau i \bar{\rho} a$ катартוб,woù, \&c.) and one or two very interesting fragments in the works of Clement of Alexandria, Origen, and Jerome. Clement of Alexandria seems personally tc have known Tatian, and even to have been his pupil for a time. Soon Tatian began also to be assailed in writing by the teachers of the church, and to be set aside as a very prodigy among heretics, and as a man who united the errors of Marcion with those of Valentine. Musanus, Rhodon, Irenæus, the author of the Muratorian fragment (see below), Tertullian, Hippolytus, Clement of Alexandria and Origen all took part in refuting him.
Towards the end of his life, or perlaps even between 152 and 172, Tatian went from Rome to Nesopotamia, aud there-probably in. Edessa-wrought a great deal. It is probable that he was in Rome about the year 172, but whether he died there or in his native country is not ascertained. It is very possible that in Syria, where ecclesiastical matters had not been developed so far as in the West, the doctrines of Tatian met with toleration within the Christian communities, but neither of this can we be certain. ${ }^{1}$ But this we do know, that a a work of Tatian's not yet mentioned, the Diatessaron, held its ground in the Syrian churches and even in ecclesiastical use for two whole centuries.
The Diatessaron is a gospel very freety and boldly constructed by Tatian out of tha four Gospels known to us. It cannot have heen produced during his latter years, for all traces of dualism are absent. On the other hand, however, it exhibits certain peculiarities of the theology of its compiler. Probably one would not be far wrong in assigning it to the first years of the reign of Marcus Aurelius. It was written by Tatian in Greek, not in Syriac as Zahn has tried to make out; this is shown-(1) by the title, it being known even among the Syrians as Diatessaron; (2) by a few Greek frayments which still survive; (3) by the Latin redaation which it received in tha 6 th century; (4) by its rejcction in the Muratorian fragment-for that the word " m -tia- -i ," carelessly corrected hy the transcriber, stood originally "tatiani" may be regarded as certain. ${ }^{2}$ In estimating the work scholars were formerly entirely dependent on certain meagre notices in Euse bius, Theodoret, Ephraem Syrus, Epiphanius, and tha later Syrians, ${ }^{3}$ but we bave recently becoma possessed of large portions of it, and are now in a position to form for ourselves an idea of its character and plan. In 1877 there waa published ${ }^{4}$ a Latin translation, by Aucher the Mechitarist, of Ephraem's gospel commentary, which had been preserved in Armenian, and it then became apparent that Ephraem bad taken the Diatessaron as his basis.. This led to further research.' Recognizing with other scholars that other Syrian writers also, down to the middle of the 4th century, had used the Diatessaron (Theodoret tells us that in bis diucese alone ba caused more than 300 copies to be withdrawn from n99), Zahn uudertook the labo. rious task of restoring the work with the help of Ephraem's commentary and other aources.a In details much of what Zahn has given as belonging to the text of the Diatessaron remains problem. atical, --in particular he has not been sufficiently careful in his exarnination of the work of Aphraates, - but in all the main points his restoration has been successful. The rediscovery of such a work is in a variety of ways of the very highest importance for the early history of Christianity. (1) It is of interest for the history of the canon. It showa that in Tatian's time there was still no recognized New Testament canon, and that tha texts of the Gospels were not regarded as inspired. He could not possibly have treated them with such freedom bad they been held to be otherwise. But the ecclesiastical use made of his work in Syria shows that Tatian intended it for the church, and, as we are informed further by Eusebins that Tatian also edited the Pauline epistles, we are entitled to couclude that, like Marcion, be .wished to frame a special New Testament canon. (2) It is of importance for the Gospels as we now have them. We learn fron the Diatessaron that about 160 A.D. our four Gospels lad already taken a place of prominence ir the clurch and that no others bad done so; that in Irarticular the Fourth .Gospel had taken a fised place alongside of the three

[^22]synoprics. (3) As regards the text of the Gospets, we can conclude from the Dinlessaron that the texts of our Gusjels about the year 160 already ran essentially as we now read then, but that intentional changes were not watiting about the middle of the 2 d century. I'hus, for cxample, T'atian in his Gospel according to liatthew found nothing ahont the "church" and about the building of the church upon l'etcr the rock. These sentences therefore are very probably of lister interpolation. (4) It is of importance for the light it throws on 'Tatian's Christianity. The Syriac translation of the Diatessaron still falls withiu the 2 d centmy, but Zahn was mistaken in assuming it to presuppose a prior Syriac translation of the separate Gospels the so-called Syrus Curetoriams); Bacthgen' has shown the latter to be the later. It was only gradually that the "evangelium der Getrennten" superseded thie "evangelium der Gemischten."

The best cultions of the Oratio ad Griecos are those of Worth (Oxford, 1:00), M1. Hanus (Paris, 1742, and Oito (Jena, 1851). See Danitel, Tatian der APologet, 15si; Zahn, Tatian's Diatessaron. EElingen. 1581 (cempare alvo his Erango.Coumn. des Theophizus, Evilangen, 1883, p. 286 sq.): Harnack, Texte u. Zintersuchungen z. Gesch. d. altchr. Lit., i. 1; 1, Z, Zeschr. f. Kirchengesch., Iv. 471 so.: and Tubian's Reve an die Griechen ubersetzt ue eingelettel. Giessen, 1884; Hilgenfeld, Ketzergesch, Leppsic, 188; ; MÖller. art, "Tatian." in Herzog. Plitt's Encykt., vol. Xv.i and Donsldson. Hist. of Christ. Lit, hin. p. 3-62.
(A. HA.)

TATIUS, Achilles. See Romance, vol. xx. p. 635 sq.
TAULER, Johann (c. 1300-1361), was born about the year 1300 in Strasburg, where his father was a wealthy burgher. It is probable that he entered the Dominican convent in his native city about the year 1313, while Meister Eckhart was still professor of theology 11312 1320) in the monastery school. From Strasourg he went to the Dominican college of Cologne, and some believe that his superiors sent him a few years later to St James's College, Paris. After his theological education was finished he returned to Strasburg. In 1324 the pope placed under an interdict these parts of Germany, including Strasburg, which supported the excommunicated emperor Louis of Bavaria. It was one of the privileges of the Dominican and Franciscan orders to be allowed to perform religious services when the secular and all other regular clergy were silenced by an interdict. The Dominican order, however, had taken the side of Frederick, and in most places refused to say mass ; but in Strasburg they remained in the deserted city, kept their churches open, and administered to the citizens the consolations of religion. It is supposed that this conduct of the Strasburg Dominicans was due to the influence of Tauler. In 1339 the heads of the order interfered, and commanded the monks to close their churches. The town council in return banished the Dominicans from the city. Tauler, with some of "his brethren, found refuge in Basel, although that city, like Sirasburg, sided with the emperor. During these years Basel was the headquarters of the "Friends of God" (Gottesfreunde, see Mysticism, vol. xvii. p. 133), and Tauler was brought into intimate relations with the members of that pious mystical fellowship. He returned to Strasburg probably in the year 1346. It is somewhat difficult to trace his later life. The Black Death came to Strasburg in 1348 , and it is more than probable that, when the city was deserted by all who could leave it, Tauler remained at his post, encouraging by sermons and personal risitations his terror-stricken fellow-citizens. His correspondence with distinguished members of the Goltesfreunde, especially with Margaretha Ebner, and the fame of his preaching and other work in Strasburg, had made him known throughout a wide circle of pious people. He seems to hare made preaching journeys, in the later years of his life, to Cologne and to other places iu the Khineland. He died in the year 1361.

[^23]It is somewhat difficult to form an estimate of the religions life and opinions of Tauler. For many yuas the chief inodern authority upon the subject was the late Prof. ('. Sclamilt of Strasburg, whose views had been introfncad into Enerland in Miss Winkworth's book upon 'Tauler. According to Schanidt, 'Tunler's religious lite divides into two parts, before and alter what may be called his sccoml conversion. In the fist period Ecklart rules his religions life; in the second he is under the infuence of the mysterions "Friend of God in the Oberland," Whem Schmidt asserts to be Kicholas of Basel. Denifle doubts the historical character of this elisode and the genuineness of the book, while Preger admits the fact of the convcrisiou, but refuscs to ilentify the mysterious stranger with Nicholas of Basel.
It is still more difficult to determine the grecise nature of the theological ppinions of Tauler. Denitle maintains that the only genuine remains of Tauler are the eighty Well-known Scrmons included in the carliest edition and four others in two manuscripts, all of which bear Tauler's mame; Preger seems inclined to admit in addition the S'mons in the account of "lauler's conversion; both critics exclude the famous Buok of Spuribual Porcrity. Scinuidt, on the other hand, while almitting the anthenticity of oll the above-named sermous, calls the Book of Spiritual Poveriy Tauler's masterpiece.

If we take the Semons by themselves, then Tauler's teachers in theology were the Psendo-Dionysius, Angustine, Gregory, Bennand, the two abbots of St Victor, Thomas Aquinas, and, above all, Theodoric of Freiburg and Meister Eckhart. His theology will represent the purest and lighest tylueof German mysticism (see Mrstucrsu), and, by insisting upon persunal relationship to God, freedom from thic thiallom of authority, and the worthlessucss of nere good works without the renewal of the inward life, will represent a tendency in theology which founcl full expression in the reformation of the 16 the century. If, ou the other hand, the Book: of Spiritual Povcrly be included among the genuine writings of Tauler, then undoubtedly his views have nore distinct connesiou with that doctrine of the appropriation of the benefits of Christ's work of redemptiou by an inilatio Christi finding expression in a life of evangelical poverty which is such a characteristic of the religious lite of the century to which he belonged. The problen is a very difficult one, and it may be questioned whether we aro yet in a position to solve it. Denifle is mudoubtedly correct in his statement that we need critical texts of 14 th-century mystical writers, and that very great uncertainty exists with reference to the authons of the individual mystical writings of that feriod. It may be added that it is vcry probable, when the organization and method of work among the "Friends of God" are taken into consideration, that many mystical books of devotion were the work, not of ane, but of severdi authors, and that the condstions of the problem concerning tho authenticity of Tauler's writings are not unlike those which exist among the books and tracts ascribed to Wicklilfe. This at all events may be safely asscrted, that Tauler's sermons are anong the noblest in the German language. They are not so emotional as Suse's, nor so speculative as Eckhart's, but they are intensely practical, and touch on all sides the deeper 1 broblems of the moral aud spiritual life.
Tauler's Sermons were printed first at Lelpsic in 1498, and reprinted with additions frum Ecklart an! uthers at Basel ($1521,1.52$) and at Cologno (1513). There is a recent editlon by Jullis Hamberger, Frankfort. 1864. See Denifle, Das Buch von geisticher Armuth, 1877; Carl Schmat. Johama Tauler con Strassburg, Hainburg, $18+1$; Mi-s Wamkerth, Tuuler's Life and Sermons; R. A.
Vauglan, Jours wilh bhe Mrystics, 3 d ed., vol. L pp, $21+-307$. The third volumo Yaughan, Hours with the Bfystics, 3d ed.. vol. i. pp. 21t-307. The third volmmo
of Preger's Gesch. der deufschen Mystit im, Millelaller, which will treat of Tauler, is in the press.

TAUNTON, a municipal borou-u and market-town of Somerset, England, is situated in the beautiful and fertule vale of Taunton Dene, on the river Tone, on the Taunton and Bridgwater Canal, and on several branches of the Great Western liailway, 45 miles south-sonth-west of Bristol, 31 north-east of Exeter, and 163 west-south-west of London. The river is crossed by a stone bridge of three arches. The town is well built, the three main streets being wide and regular, and mceting in a triangular space in the centre called the Parade, where there is a market cross. The castle, now occupied by the museun of the Somerset Archeological and Natural History Sociciy, is reputed to have been founded by Ine, king of the TVest Saxons. The earliest portion of the present building w'as erected by Walter Giffard, bishop of Winchester, in the tine of Henry I., but the whole building was repaired in 1496, and an embattled gateway erected by Bishop Langton The church of St Mary Magdalene, a spacious building with double aisles both north and south of the nave is chiefly Perpendicular. but has remains of Normau work in
the chancel arch, and of Eary English in the north aisles and transepts. It possesses one of the finest of the sharacteristic towers of Somerset, but only a facsimile reproduction (erected 1857-63) of the old one. There are still some remains of the Augustinian priory founded by Bishop Giffard, and there are also two mudern convents. Taunton is an irpportant centre of education, the principal institutions being the grammar school (founded in 1522 by Richard Fox, bishop of Winchester), Huish's schools, the Independent college (1841), and the Wesleyan collegiate iostitution (1847). The other principal public buildings are the old market-house, the assenbly rooms, the new market in the Ionic style, and the shire lall in the Elizabethan style, opened in 1858 at a cost of $£ 28,000$. The charitable iostitutions include the Taunton and Somerset hospital (opened in 1809 and extended in 1850 and 1873), the eye infirmary (1816), Gray's almshouses and chapel (1635), St Saviour's home for boys (1870), and the servants' training home (1882). The town possesses manufactories of silk, collars and cuffs, and gloves, iron and brass foundries, coach-building works, and breweries. . There is also a considerable agricultural trade. The population of the municipal and parliamentary borough (area 1249 acres) in 1881 was 16,614 . The population of the same area in 1871 was 15,466 .
Taunton las played a prominent part dûring the troubled periods of English history. Various Roman remains prove it to have been occupied by the Romans; but it first obtained historical notice when Ine, king of the West-Saxons, made it the border fortress of lis kingdom. It takes the name Taunton, or Thoneton, from its situation on the Tone or Thonc. The castle was razed by Ethelburg after oxpelliog Edbricht, king of the South-Saxons. About the time of William the Conqueror the town and castle were granted to the bishop of Winchester, and for many years the castle was the bishop's principal residcace. In the reign of William it possessed a mint. in 1497 the town ond castle were seized by the impostor Perlkin Warbeck. Tauaton was mado the seat of the suffragaa see of Taunton and Bridgwater in 1538, but, on the desth of William Fincl, the first bisbop, in 1559, the Act had no further operation in reference to Taunton. Like the o ther towns of Somarset, Taunton was strongly Puritan in its sympathies. Situated at a point where the main roads of the conaty met, it was during the Civil War almost coustantly in a state of siege by one or other of the rival parties. Having been garrisoned by the Parlianeutary forces, it was captured by the Royalists in the sumnier of 16 ± 3, but on 8 th July 1644 it was, after a long siege, taken by Blake, who held it witli heroic pertinacity till reliered by Fairfax on the 11th May 1645, and agaio after it was invested by 10,000 troops under Goring till the siege was fimally raised on the 3d July. Still constant to its Puritan traditions, Taunton welcomed Soamouth in 1685 with acclanation, and he was proclaimed king there on the 20th June, the naidens of the town presenting him with a standard. As a consequeace, Tauuton was made the chief example of the fearful vengeance of Jiffreys, who, at the assizes held in the casile. coudemned no fewer than 134 inhabitants of the town and neighbourhood to death, and a much larger number to transportation. Taunton obtained a municipal clanter from Charles I. in 1627, which was revoked in 1660. A second charter, granted by Clarles I1. in 1677, was permitted to lapse in 1792 oming to the corporation allowing a majority of their number to die withont filling up the vacancies, From this time uatil it again received municipal government, 17 th April 1877, it was under the care of two bailiff appointed at the zeurt leet of the lord of the manor. Formerly tho town returucd two members to parliament, but in 1885 the number was reduced to one.
See Toulmin's Sistory of Taunton, cdited by Sarnge, 189?; and several papers in the Procecdings of the Someliset Alchixollogical Society or 18 is?

TAUNTON, a city of the Unived States, the county seat of Bristol county, Massachusetts, lies some 31 miles nearly south from Boston. The town proper, sometimes called Taunton Green, stands on the right bank of the Taunton river, at the head of narigation, about 17 miles above its mouth. The entire area enclosed within the coiporate limits is 37 square miles. Taunton is traversed by the main line of the Old Colony Railway, which conaects it with Boston and Fall River, Mass., and Providence, R.I. Owing to its situation and its connexions by rail and sea, Taunton bas become a supply point for the
greater part or south-eastern Massachusetts. The pnpula: tion of the city was 18,629 in 1870, 31,213 in 1880, and 23,674 in 1885 , showing an increase somewhat in excess of that of the State at large. Fully one-fourth of the population are of foreign bitth, and the proportion is increasing. The State lunatic asylum is in Taunton. The leading industries are the manufacture of cotton goods, iron and steel products (particularly locomotives, machinery, nails and spikes), and silver-plated table ware. Taunton as incorporated as a town in 1639, and received a city chartef in 1864.
TAURIDA, a government of southern Russia, includes the peninsula of Crimea (q.v.) and a tract of mainland situated between the lower Dnieper and the consts of the Black Sea and the Sea of Azoff, and is bounded by these two seas on the S., while it has on the N. 'the governments of Kherson and Ekaterinoslaff. The area is 24,540 square miles, of which 6990 square miles belong to the Crimea; its continental part consists of a gently undulating steppe of black earth, with only a few patches of salt clay on the banks of the Sivash or Putrid Sea, and sands in the lower course of the Dnieper. It is watered by the Dnieper, which flows along the frontier for 150 miles, and by two small rivers, the Molotchnaya and Berda. Many sinall lakes and ponds occur in the north, especially among the Dnieper sands, as well as on the Kinburn peninsula, at the mouth of the Dnieper, where salt is made. There are no forests except the artificial plantations in the colonies of the Mennonites. The climate is continental, and resembles that of central Crimea and Kherson. The population- in 1883 was 940,530 (247,780 in Crimea). The continental portion, although less mixed than that of the peninsula. consists of Russians (Great, Little, and White Russians), who constitate 83 per cent. of the population, Germans (11 per cent.), Bulgarians (5 per cent.), and Jews (1 per cent.). Agriculture ond cattle-breeding are the leading foccupatiens. Wheat is the chief product, and by the Germaus and Russian Nooconformists on the Molotchnaya agriculture is carried to a high degree of perfection. In 1882 there were within the government 356,270 herses, 485,800 cattle, and $3,985,300$ slieep (2, 891,700 merinos). Salt is made both on the mainland and in the Crimiea, and the fisheries aloog the coast supply au export trade. Manufactures are insigoificant, but there is a brisk cxpart trado in grain, salt, fish, wool, and tallov. The main centres of trade are the Kakhorka port, on the Daieper, Berdyansk on the Sea of Azoff, and tbe seaports of Enpatoria, Sebastopol, Sudak; and Theorlosia. The government is divided into cight districts, the chicf towns of which (with populations in 1881) are Sinferopol (29,030), enpital of the goveriment, Eupatoria $(13,420)$, and Theodosia (10.800) in Crimea, und Aleshki ($(915$), Berdyansk (18,180), Helitoppl $(13,310)$, Perekop (4280), and Yalta (3000) on the continent. Several villages, such as Bolshoy Tokinak (8000) and Andreevka (7300), liave eacl. a population of more than 5000 .

TAUROMENIUM. See Taormina.

TAURUS. See Asfa Mivor, vol. ii. p. 704-5.
Tavernier, Jean Baptiste ($1605-1689$), the celebrated traveller and pioneer of French trade with India, was born (1605) at Paris, where his father Gabriel and uncle Melchior, Protestants from Antwerp, pursued with reputation and success the profession of geographers and engravers. The conversations he heard in his father's housc inspired Jean Baptiste with an early desire to travcl, and in his sixteentl year he had already visited England, the Low Countries, and Germany; and seen something of war with the imperialist Colonel Hans Brenser, whom he met at Nuremberg. Four and a lalf jears in the household of Brenner's uncle, the viceroy of Hungary (1634-29), and a briefer connexion in 1629 with the duke of liethel and his father the duke of Nevers, princo of Mantua, gave him the habit of courts, which was invaluable to him in lator years, and at the defence of Mantaa in 1629, and in Cer. many in the following ycar with Colonel Walter Butler (afterwards notorious through the death of TVallensteio)
he gained some military experience. When he left Butler to view the diet of Ratisbon in 1630, he had seen Italy, Switzerland, Germany, Poland, and Hungary, as well as France, England, and the Low Countries, and spoke the principal languages of these regions. He was now eager to visit the East, and at-Ratisbon he found the opportunity to join two French fathers, M. de Chapes and M. de St Lieban, who had received a mission to the Levant. In their company he reached Constantinople carly in 1631, and here he spent eleven months, and then procecded by Tokat, Erzermm, and Erivan to Persia. His farthest point in this tirst journey was Ispalian; he returned by Baghdad, Aleppo, Alexandretta, Malta, and Italy, and was agaiu in Paris in 1633. Of the next five years of his life nothing is known with certainty, but it is probable that it was during this period that he became controiler of the honsebold of the duke of Orleans. In September 1638 he began a second journey (1638-43) by Aleppo to Persia and thence to India as far as Agra and Golconda. His visit to the court of the Great Mogul and to the famons diamond mines was, of course, connected with the plans realized more fully in his later voyages, in which Tavernier travelled as a merchant of the lighest rank, trading in costly jewels and other precious wares, and finding his chief customers among the greatest princes of the East. The second journey was followed up by four others. In lis third journey (16+3-49) he went as far as Java and returned lyy the Cape; but his relations with the Dutsh proved not wholly satisfactory, and a long lawsuit on his return yielded but imperfect redress. In his last three journeys ($1651-55,1657-62,1664-68$) he did not proceed beyond India. The details of these voyages need not detaia us bere, and indeed are often obscure: but they completed an extraordinary knowledge of the routes of overland Eastern trade, and brought the now famous merchant into close and friendly communication with the greatest Oriental potentates. They also secured for him a large fortune and great reputation at home. He was presented to Louis XIY", "in whose service he had travelled sixty thousand leagues by land," received letters of nobility (16th Febraary 1669), and in the following year purchased the barony of Aubonne, near Geneva. In 1062 he had married Nadeleine Goisse, daughter of a Parisian jeweller.
Thus settled in ease and aflluence, Tarernier occupied himself, as it would seem at the desire of the king, in publishing the account of bis journeys. He had neither the equipment nor the tastes of a scientific traveller, but in all that referred to eommerce his knowledge was vast and could not fail to be of much public service. He set to work thsrefore with the aid of Samuel Chappuzeau, a Freuch Protestant littérateur, and produced a Fonvelle Relation de l'Intérieur du Séruil du Gvand S'eigneur (4to, Paris, 1675), based on two risits to Constantinople in his first and sixt' journeys. This was foilowed by Le Si.. Toyages de J. B. Tacermier (2 vols, 4to, Paris, 1676) and hy a supplementary Recucil de Plusienrss Relatoons (4to, Paris, 1679), in which he was assisted by a certain La Chapelie. This last contains an account of Japan, gatleered from merchants and others, and one of Tong-king, derived from the olservations of his brother Janiel, who had shared his second voyage and settled at Batavia; it centained also a violent attack on the agents of the 1)natch East India Company, at whoso hands Tavernier had suffered more than one wrong. This attack was elaborately answered in Dutch by H. van Quellenburgh (Tindicia Bataricæ, Anist., 1684), but made more noise because Arrauid drew from it some inaterial unfa vourable to Protestantism for bis Apoloyie poru. Les Cutheliqurs (1601), and so brought on the travelier a ferocious onslauglit in Jurieu's Esprit de
M. Arnuald (1684). Taverner made no reply to Jurieu; he was in fact engaged in weightier matters, for in 1684 he travelied to Berlin at the invitation of the Great Elector, who coummissioned hinn to organize an Eastern trading cont-pany,-a project never realized. The closing years of Tavernief's life are obscure ; the time was not favourable for a Protestant, and it has even been supposed that he passed some time in the Bastille. What is certain is that he left Taris for Switzerland in 1687, that in 1689 he passed through Copenhagen on his way to Persia through Minscovy, and that in the same year he died at Moscow. It appears that he had still business relations in the East, and that the neglect of these by his nephew, to whom they were intrusted, had determined the indefatigable old man to a fresh journey.

Tavernier's travels, though often reprinted and translated, havo two defects . tho anthor uses other men's nuterial without dis. tinguishing it from his own observations; and the namative is much confused by his plan of often deserting the ehromological order and giving instead notes from various jomsmeys about cestain routes. The latter defect, it is true, while it embarrasses the biograplier, is hardly a blemish in riew of the object of the writer, who sounght mainly to furnish a guide to other merchants. A careful attenurt to disentanglo the tbread of a life still in many parts obscure has been made by Charles Joret, Jcan Eaptiste T'avernic, d'umis des Docriments Nozicarex, 880, Paris, 1886, where tho literature of the subject is fully given.

TAYIRA, a seaport of Portugal, in the province of Algarves, at the month of the Seca, 21 miles east-north-east of Faro. It is regularly built, and has an alcazar, used as an official residence, besides other public buildings. It has sardine and tunny fisheries, and carries on a considerable coasting trade. Excellent fruit is grown in the neighbourhood. The population in 1878 was 11,459 .
TAVISTCCK, a town of Devonshire, England, is finely situated in the valley of the Tavy, on the western border of Dartmoor, and on the South Devon Railway, 15 miles north of Plymonth, 14 soutl-east of Launceston, and 213 west-south west of London. The town has been greatly improved since 1845 , chiefly at the expense of the duke of Bedford, by the constrnction of a system of sewage and the erection of many new dwellings suitable for the working classes There are some remains (including a portion in the square, now used as a public library established in 1799) of the magnificent abbey of Sts Mary and Rumon, first fourded in 961 by Orgar, earl of Devon. After destructior by the Danes in 997 it was restored, and among its famous abbots were Lyfirg, friend of Canute, and Aldred, who crowred Harold II. and William, and died archbishop of York. The abbey church was rebnilt in 1285, and the greater part of the abley in 1457-58. The church of St Eustachius possesses a lofty tower supported on four open arches. Among the principal public buildings are the guildhall (1848), the corn market (1838), the market bnildings ($18: 8$), and the rew hall for concerts and public entertainments. Near the town is Kelly College, opened in 1877, founded by Admiral Benedictus Marwood Kelly, with a preference for the founder's kin. Mines of copper, manganese, lead, silver, and tin are in the neigbbourhood, and the town possesses a considerable trade in cattle and corn, as well as a brewery. The population of the township in 1881 wâs 6914 . The parliamentary borough (area 11,450 acres), which bad a population in 1871 of 7725 and in 1881 of 6879 , was merged in the county in 1885.
The town owes its origin to the foundation of the abbey in 961 . From Henry 1. the abbots obtained the entire jurisdiction of tho hundred of Thevistock, with a weekly market. A school for Saxon literature wes estabilished by the monks, which flourished till the Reformation. The Royalists were quartered at Tavistock after the cefeat of the Parlismentarians on Bradock Down in 1643, and Charles 1. visited it on his way to Cornwall. It returned memburs to parliament from the time of Edward I. till 1885, among its representatives haring heen John Pym, the great opposer of the policy of Charlcs 1 ., and William, Lord Russell, bebeaded in the
reign of Charles II. Among the famous natives of Tavistock ore Sir Joln Glanville, judge under Jannes I., William Brown, the author cf Britannia's Pastorals, and Sir Francis Drake, of whom a colossal statue by Boekm was preseuted to the town by tho duke of Bedford in 1883.
TAVOY, a British district in the Tenasserim division of Barmah, lying between $13^{\circ} 15^{\prime}$ and $15^{\circ} 11^{\circ} \mathrm{N}$. lat. and between $97^{\circ} 48^{\prime}$ and $98^{\circ} 44^{\prime}$ E. long. It has an area of 7200 square miles, and is bounded on the N. by Ainherst district, E. by the Yoma Mountains, S. by Mergui district, and W. by the Bay of Bengal. The district is enclosed by mountains on three sides, viz., the main chain of the Yomas on the east, rising in places to 5000 feet, which, with its densely wooded spurs, forns an almost inplassable barrier between British and Siamese territory ; the Nwahlabe in the centre, which takes its name from its loftiest peak (5000 feet) ; and a third range, under the name of Thinmaw, between the N wahlabe and the seacoast. The chief rivers are the Tenasserim and Tavoy, the former being formed by the junction of two streams whick unite near Mift-ta; for the greater part of its course it is dangereus to navigation. The Tavoy is navigable for vessels of any burden. It is interspersed with many islands, and with its numerous sualler tributaries affords easy and rapid commanication over the country. The clinate is on the whole pleasant. The rainfall averages about 190 inches a year.
The census of 1881 returned the population of Tavory at 84,988 (males 41,785 , Semales 43,263), of whioni 82,187 wero Buddhists, 828 wero Mohamniedans, and 1365 were Christians. The headquarters and capital is Tavoy town, which is situated on the left Lank of the 1 iver of the same rame, and contained a pepulation of 13,372 in 1881. Of the total area, only 83,740 acres are (1885-86) cultivated. Rico is the principal product: the betel-nut is cxtensively grown for home consumption ; and the district is larticularly rich in fruit trecs. With its only port difficult of access, and with no means of internal communication, the trade of Taroy district has always been small and almest entirely confinod to Stam and the Straits Settlements. The principal imports are p:ece goods and other cotton manufactures, raw silk, tea, crockery, wines and spirits, metals, and previsions The cr ief manufactures are salt and earthen pots. Tie gross revenue of the district in $1885-86$ was $\{20,235$, of which tho lani contributed $£ 12,663$. Tavoy was lianded over to tlie Britishl at the cml of the first Burmese war in 1824 A revolt broke out in 1829, healed by Mousg Da, the former goveruor, which was at once quelled, and since then the district has remained in undisturled possession of the Eritish.

TAWING. See Leather.

TATATION. With regard to laxes in general Adam Smith lays down four maxims which tave been briefly described as the maxims of equality, certants. conrentence, and cconomy. The treatment of the generai principles of taxation by subsequent writers consists in the main of the development ard criticism of these celebrated canons.

Equality of Taxution.-The suljoined passage from Adam Snith contains the gerns of several distinct theories of what constitutes just or equa! taxation:-
"The snlujects of every state ought te contribnte tomards the support of its goverument as nearly as possible in proportion to theil respectivo abilities, that is, in proportion to the revenue whicis they respectively enjoy under the protection of the state The expense of gorernment to the individuals of a great wation is like the expense of management to the joint teanats of a great estate, who are all olliged to contribute in proportion to their respective interests in the estate. In the observation or neglect of this maxim con ists what is callce the equality or inequality of taxation. Every tax, it must be observed once for all, which fallis fually upoul ne only of the three sorts of reveune above.mentioned [viz., rent, wages, profits) is necessarily nnequal in so far as it does not atfect the other two. In the following exasination of differeut taxes I shall seldon take much further notice of this sort of inequality, bat slaall in most cases confine my observations to that incquality wlich is occasioned by a particnlar tax falling unequally mpout that partienlar sort of priviste revenue whicl: is affected by it ", The first sentence implies (a) that every Gevernment has the right to exact contributions for its suppert from all its subjects. According to this view. the right of taxation is
derived directly from the conception of sovereignty. It was the determination to insist on this principle whick. led to the retention of the 3 d . per id duty en tea, thar "figment of a tax, that peppercern rent," which lost the British their American colonies. The Americans opposed tc this absolnte doctrine the maxim that taxation onght to bc coincident with representation,-that only those whe ebared in the powers shonld have the burdens of geveramert. Il the latter opinion is strictly construed it would follon that all taxes on articles of cniversal consumption are urjuat except in a country where all who have the natural have also the legal capacity of roting. The doctrine of sovereignty as the basis c: taxation, pushed to its legical extreme, results in the maxim that a Government should impase snch taxes as are "most easily assessed and collected, and are at the sane time most conducive to the public interests" (M"Culloch). Just as a general leoks to the efficiency of his army as a whole, and is prepared to sacrifice any pertion if necessary, so, it may be said, the state should net regard the particular interests of individuals, but should ratber consider the wation as an organism, or, to adopt older phraseology, a leviathan. So far as the political existence of a state is concerned, this view seens to meet with general acquiescence even in modern times, when patriotism is often classed amongst the doubtful virtues, but no ideal of a perfect state has yet met with such acceptance in any nation as to reader popular a complete neglect of private interests.

Accordingly, a second basis of taxation (b) is found ir the expansion of the term "abilities" used by Adan. Smith, which leads to the position that taxes oughi to be levied so as to involve equality of sucrifice on the part of the contributors. This is the ideai of taxation which advocated by Mill and Farcett. "Equality of taxation, as a maxim of politics," says the former, "means equality of sacrifice. It means the apportioning the contribution of each person towards the expenses of government, so that he shall feel neither more nor less inconvenience from his share of the payment than every other person experi. ences fren: his." IIt is admitted that this standard cannot be completely ralized, but it is thought to furnish a proper foundation of remission in some cases and of pro portional increase of taxation in others. It is generally on this ground that it is proposed to leave incornes belor a certair: anount untaxed,-a rlan which, so far as direct taxes are concerned, las been adopted in the United Kingdom. It is clear, however, that any taxes on commodities in general use must infringe this canen, whilst the distinction between "necessaries" and "luxuries," as Adan Smith peinted out, is difficult to draw in comnumities advancing in civilization; and certaialy a considerable portinn of the taxes on stimnlants is, as a matter of fact, derived from persons whose incomes are below what is generally considered a reasonable minimuta for the standard of couffort, and such persons would prob. ably consider enfereed abstinence a greater sacrisice thar, the payment of a direct tax. It is also principally on the ground of equality of sacrifice that the proposal for graduated or progressive tasation rests. It is argued tbat a person with $£ 10,000$ a year can pay 10 per cent. (for example) as easily as a person with $£ 1000$ can pay 5 per cent. It is to be observed that the principle of equality of sacrifice regards the payment of taxcs as duty imposed on the subjects of a state incependently of the advantages they may derive indıvidually from the exjenditure of the amount levied.
A third basis of taxation, however, is found in the principle (c) that taxes ougbt to be considered as payment for raluable services rendered by the state to indivicuais. and this seems to be tbe position Adom Smith had in vi:
in introducing the clause "under the protection of the state," and in comparing the individuals of a great nation to the joint tenants of a great estate. It is easy to show, as Mill does, that, if protection is taken in its narrowest signification, as a matter of fact the poor need more protection than the rich, but the argnment becomes more plausible, and more consonant with the general teaching of Mill, if stress is laid on the protection and assistance afforded by the state in the process of acquisition of individual fortunes-a; view of taxation sometimes called the social dividend theory (cf. Walker, Helferich). It is really on this ground that Mill proposes that the "unearned increment" from land should be taken by the state, and, as has often been pointed out, "unearned increments" are by no means confined to land. JVithout much exaggeration the state may be regarded as a partner in all industrial undertakings, and is therefore eotitled to a share in the proceeds. In a somerwhat similar manner, poor rates, education rates, \&c., have been regarded as of the nature of insurance paid by the rich against the carelessaess of the poor. The priaciple under consideration has becu generally applied in cases in which the service readered by the state and the benefit accruing to individuals are easily discovered and estimated, especially in connexion with local taxation.

The object of taxation is in general to provide the state with an adequate revenue, but in all cases the indirect effects are important, and somctimes provision of revenue is considered of sccondary importance. Accordingly it has been maintained (d) that the state ought to use its powers of taxation for the promotion of various social ends. Adam Smith remarks that "it bas for some time past bcen the poliey of Great Britain to discourage the consumption of spirituous liquors, on account of their supposed tendency to ruin the health and corrupt the morals of the common people," and in our own times the falling off in the revenue from alcobolic drinks often furnishes a subject for appareat congratulation in "budget" speeches. German writers with socialistic tendencies (e.g., Wagner) have emphasized this social point of taxation; and Mill, although disapproving of graduated taxation of income, adrocated the imposition of extremely hcary succession duties, with the object of promoting a better distribution of national wealth and compelling individuals to rely on themselves. Many rations again have inposed duties on. imports with the view of protecting and encouraging home industries, and most of the import duties levied in England before the great reforms of Peel were of this nature. Accordingly, both theoretically and .practic-lly, the promotion of social or moral ends may be considered as a fourth basis of taxation. It is worth noticing that in early times the fines received in the courts of justice were an important source of revenue.

Whatever basis of taxation be adopted, the elementary principle of justice noticed in the conclusion of A. Smith's first canon must be considered. If it is just to tax A, it is just to tax B under precisely similar circumstances. Thus stated, the principle seems almost formal, but for practical purposes small differences in cireumstances may be neglected, and it is clear that in any great nation the taspayers may be arranged in a. limited number of groups, within each of which the constituent individuals may be regarded as similarly situated. A tax on rent, or wages, or profits would be obviously unequal if those in one place or employment were taxed while those in another were left free. The practical difficulty is to discover what cases may fairly be regarded as similar, especially if equality of sacrifice be taken as the ideal.

As a matter of fact, in every civilized community a complex system of taxation is adopted, the diferent parts
of whieh rest in different degrees upon the various principles just noticed. Some taxes are jnstified on the grounds of their coaveaience to the sovereign porer, and others are increased or diminished in certain cases in accordance with the principle of equality of sacrifice; some are regarded as payments for services readered by the state, others partake of the dature of sumptuary regulations or are approved on various social or moral grounds; and sometimes the imposition of one productive tax involves, on the ground of simple equality, the adoption of similar taxes which are hardly worth collecting.
Tho remaining canons of Adan Smith are partly, like the first, ethical in cbaracter partly purely economic. Of the second-the cavon of certainty-Adam Smith remarks :"The time of payment, the manner of payment, the, quantity to be paid, ought all to be clear and plain to the contributor and to every other person [on the ground of the otherwise arbitrary powers which are given to the taxgatberer] . . . The certainty of what each individual ought to pay is in taxation a matter of so great importance that a very considerable degree of inequality, it appears, I belicve, from the experience of all nations, is not near so great an evil as a very small degree of uncertainty." Perhaps the best example of the infringement of this canon is furnished by the taxes levied from the miserable provincials ly their Roman governors.
The third rule-the canon of convenience-which enjoins that "every tax ought to be levied at the time or in the nanner to which it is most likely to be convenient for the contributor to pay it," may be justificd, not mercly on general grounds of good government, but also on the special coonomic ground of the increase in the productiveness of taxes which satisfy the condition. It has been found possible to raise a considerable revenue by taxes on commodities, the payments of which by the consumers are made in insensible portions, when it would have becu impossible to collect the sane amount by direct taxation at comparatively long intervals Taxation is in this respect like bleadiag.
The fourth rule-the canon of economy-states as its general principle that "every tax ought to lo so contriscd as both to take out and to keep out of the pockets of the people as little as possible over and above what it brings into the public treasury of the state." Taxcs inay, according to Adam Smith, break this rule by requiring a large number of officials for their collection, by restraint of trade and production, by encouraging smuggling, and by causing unnecessary vexation; "and, though vexation is not, strictly speaking, expense, it is certainly equiralent to the expense at which every man would be willing to redeem himself from it." On smuggling Adam Simith else where remarks that "to pretend to have any scruple about buying smuggled goods would in most countries bo regarded as one of those pedantic pieces of hypocrisy which serve only to expose the person who affects to practive them to the suspicion of being a greater knave than bis neighbours." It may be observed that in practical politics it is generally taken for granted that a tax which can be evaded will be evaded, and indirect methods of taxation are to a great extent devices by which possibilities of evasion are restricted.
To these general rules of taxation explicitly given by Adam Smith, the following may be added, nost of which, are implied in different passages of lis treatment of taxation, but have been expounded and emphasized by subse. quent writers. A coavenient summary is given by Hel. ferich in Schönberg's Handbutch der Politischen Oekonomie (vol. ii. p. 138). (a) A given amount of revenue is. as a rule, both from the point of view of the Government and its subjeets, more couveniently raised from a small number
of very productive taxes than from a larger number with smaller returns per unit. This was one of the principal finaneial reforms advocated by Adan Sinith with reference to the custons duties, and has been carricd out in the United Kingdom by Sir Robert Pcel and his successors. The inextricable confusion of the customs duties levied before these reforms were effected can only be realized by those who study the details of the? istory of taxation. A similar process of simplification has been partially applied to the direct taxes, but in many cases (esprecially in local taxation) the rule is more honoured in the breach than in the observance. (b) A good system of taxation ought to provide for a self acting increase in the revenue in proportion as the population and the consequent deroands for governmental expenditure increase. It has been found by experience that an old tax causos less inconvenience than a new tax of smaller amount, a fact which is so striking in some cases as to have given rise to the saymg that an old tax is no tax. (c) Those taxes are best which yield a steady and calculable return, instead of a return fluetuating in eharacter and difficult to estimate. (d) Those taxes are best which in case of need can be most conveniently increased in amount. It is this characteristic of the incone tax which renders it so popular with chancellors of the exclequer, and it was partly on this ground that Mr Gladstone substituted a tax on beer for the tax on malt. (e) Regard must always be paid to the real ineidence of tazation, and care taken that the real burden of the tax falls on those aimed at by the legislature. No part of the theory or practice of taxation has giren rise to so much controversy as the incidence of particular taxes, a subject indeed of so much difficulty and importance as to ocsury the greater portion of the treatment by systematic "riters.
Incidence of Taxation.-Taxes are generally divided inso direct and indirect. A direct tax is defined by Mill as, one "demanded from the very persons who it is in. fended or desired should pay it." Others (e.g., M ${ }^{\prime}$ Culloch) letine it as a tax taken directly from income or capital. In the former definition non-transferable taxes on expenditure would be included (e.g., a tax on livery servants), but not in the latter. Mill's definition has been generally adopted (e.g., by Wagner, in the German Hancluuch, vol. ii. p. 152); but in any case the most important direet taxes practically are those levied on income or capital directly, and the nost important indireet the customs and excise duties. In examining the iacidence of taxation the - order oi arrangement adopted by Adam Smith seems best. He disensses separately taxes on the three great species of income,-rent, profits, and wages (appending to the articles on the first two an examination of tares upon the capital value of land, bouses, and stock), and taxes intended to fall indifferently upon every species of revenue, viz., capitation taxes and taxes upon consumable commodities.
Taxes on Rent.- What is commonly known as rent consists in general of two parts, which may be termed economic rent and profit rent. Eeonomic rent arises from the superiority of advantage of any source in the production of a certain amonnt of utility over the least prodnctive source which the conditions of demand and supply (including transmission to market) render it possible to employ. Thus, in the production of food, some lands have an advantage in fertility or situation; again, in furnishing amenities of accommodation or facilities for business, some houses have from their situation a sinnilar advantage; and again, different processes in the arts and manufactures are superior to others (giving rise to patents). In all these cases where the amont of the 'superior sources is limited (naturally or artificially), and recourse must be made to inferior suurces of supply, economic rent is oaid for the
superior advantage Any tax imposed on this syectes of revenne falls on the owner. If levied in the first instanec from the lessee, he will pay so mueh less rent, and any nen taxes imposed during the eurrency of leases onglit, il intended to fall on the owner, to be taken directly from him. It may be assumed othat every owner of a superion source has exacted the highest price obtainable for its use, so that he cannot transfer the tax to the tenaut, no through the tenant to the coustumer. If, for example, ε tax is inposed ote the economic rent of agricultural land the landlord cannot exact it from the temant (for if the temant could afford nore rent, why under competition was he not forced to do so before?) nor from the consumer ol the produce, for the price is obviously determined inde pendently of rent. Siinilarly a tax on the ground rent of houses, if it be assumed that the land is nseless for other purposes, mûst fall on the owners; although a certain portion will be transferred to the occupier if the landlord could use it otherwise and escape the tax (cf. Alill, bk. v ch. iii. §6) Taxes on economic rent of various kinds, se heary as to absorb the whole amount, lave been advocated by some theorists on grounds noticed under Adaus Smith's: first canon. It is said they would impose no burden on the state as a whole, that they would not affect production or accumulation, and even that the substitution of the state for private owners-who are simply nati consumere fruges-would really increase the wealth and power of the mation by compecling these unprodnctive consumers to work, and by lightening the pressure of taxation on industry. It is, bowever, obvious that the confiscation of rent would, seeing that land has for generations been it the circle of exchangenile commodities, strike at the root= of the institution of private property. Apart from this general objection, there would in the case of agricultural land be gieat difficulty in selarating economic from profil. rent, and any exceptional tax on the latter would obviously tend to cleeck agricultural improvements.

Taxes on Profits.-Profits; as commonly used, is a term embracing three elements which, from an economic and financial point of view, are quite distinct in character, viz, interest (pure and simple), insurance against risk, and earnings of management. The interest on capital in any industrial area, lent on the same security, tends to equality If, then, a tax is imposed on interest in every form, the incidence in the first place will be on the owners of capital. But two indirect consequences will follow. (I) As Adam Smith remarks, "the proprietor of stock is properly a citizen of the world, and is not necessarily attached to any particular comitry. He would be apt to abandon the country in which he was exposed to a vexations inquisition in order to be assessed to a burdensome tax, and would remove his stock to some other country, where he could either carry on his business or cujoy his fortune more at his ease." In this case the ultimate result would be that the country in which the tax was imposed would possess less eapital, and thus would yield a liigher rate of interest sufficient to counterbalance the burden of the tax (2) The tax wonld tend to cheek the accumulation of capital within the country, so far as the interest received is a cause of aceumulation, with the same ultimate result as in the former case. It must, however, be observed that the rate of interest is only one of the causes affecting the accumulation of capital.

A tax on some particuiar form or interest (security still being supposed perfect), for example on mortgages on land, would obviously fall on the berrowers. In the samo way a tar on that part of the profit rent of houses rhich is interest on capital tends to fall on the occupier. In gene ral, however, the security is more or less imperfect, and the insurance against risk is allowed for in the rate of
interest charged on borrowed capital. Thus a tax which took equal percentages from all species of interest would be in part a tax on insurance against risk, and the tendency must be for snch a tax to fall on the borrowers of capital. Suppose at any time a perfect security yields 3 per cent. and one with greater risk 6 per cent., then 3 per cent. represents the estimated value of the insurance against risk. A tax which reduces the net yield on the first to 2 per cent. would reduce the net yield on the latter to 4 per cent. In order, then, for the insurance against rists to remain the same, the rate yielded by the latter must rise from 6 to $7 \frac{1}{2}$ per cent. It follows, then, that a tax levied on all forms of interest (no allowance being made for risk) would tend to check investinent in proportion as risk was involved, and would thus check industrial enterprise. This result would follow even although the rate of interest on perfect security, owing to the causes mentioued abore, were raised in proportion to the tax.
A tax on that part of profits known as earnings of management would, if imposed generally, fall in tho first instance on the entreprenears or employers of capital, and with similar indirect consequences to those just noticed in regard to interest. Capital would tend to flow abroad, and accumulation would be checked, since in general the employers of capital are also to a large extent the owners. So far as profits, in this sense, are of the nature of rent (a view recently advocated as regards all profits by Prof. Walker), a tax on profits would be analogous to a tax on rent. If the differences in the net advantages of different methods of employing capital are supposed to remain constant (according to Prof. Marshall's view of earnings of management), a proportional tax on profits must be in part transferred to the consumers of the articles produced, in the same way as a tax on interest with risk was shown to fall on the borrower. It will be seen from this general survey that the incidence and effects of a tax on profits (taking the term in its common acceptation without analysis) are extremely difficult to determine, and the practical difficulty is still greater than the theoretical. For, as M'Culloch and others have shown, profits are always fluctuating and dificult to estimate. So great, for example, is this difficulty felt to be as regards farmers' profits that in the income tax it is assumed that such profits bear a certain proportion to the rent paid for land on a purely empirical rule, which may bappen to hit the mark in a majority of cases, but is much more likely to be unequal and unjust in its operation.

A tax on some particular form of profits (as distinct from a general tax on profits) will, it is generally said, fall on the consumer of the article produced, on the ground of the teadence of profits to equality. This view will be noticed below under taxes on consumable commodities.

T'axes on Capitai.-In early English histō̃y taxes upon capital of a very simple kind played an important part. A grant, for example, of certain fractional parts of movables, commencing with the famous Saladin tithe (on both rent and movables in 1188, and gradually setting dorn to a fifteenth for the counties and a tenth for the towns, prevailed for more than three centuries. In 1334 a fifteenth and tenth was fixed at a certain sum for each township, and after this date a grant of one or more "fifteenths and teaths" meant simply a grant according to the scale then fixed (Dowell, rol. iii. p. 75). But in our own times taxes on capital are levied principally when mroperty changes hands, and may be divided, as they are by Adam Smith, according as they are levied when property passes (a) from the dead to the living, (b) from the jiving to the living.

It is obvious, as regards incidence, that taxes of the
first class (a) are the most direct of all taxes, in the sense that they cannot be transferred to other persons by the beneficiaries. The principal difficulties connected with the "death duties," as they are often called, arise in connexion with the canon of equality of taxation. Opinion is still divided on the proportions which ought to be paid by personal and real estate respcctively, as well as on the advisability of the taxes being made progressive according to the value of the property, and there are still greater difficulties in connexion with life interests in settled pro perty. Mill was strongly in favour of making the death duties very heavy and also graduated. "I conceive," he says (Pol. Econ., bk. v. ch. ii. § 3), "that inheritances and legacies exceeding a certain amount are highly proper subjects for taxation, and that the revenue from these should be made as great as it can be made without giving rise to evasions by donation during life, or concealment of property, such as it would be impossible adequately to check. The principle of graduation, that is, of levying a larger percentage on a larger sum, though its application to general taxation would be in my opinion objectionable, seens to me both just and expedient as applied to legacy and inberitance duties." The principal objections urged against such taxation are, that a stimulus. would be given to personal extrapagance and a check placed on accumulation, and that in consequence indirect production would be lessened, partly by want of capital and partly by the check placed on production on a large scale. As regards the want of capital, apart from the check placed on saving, there would be a tendency to send it abroad. A heavy tax on large capitalsat home will place a premium on investments abroad, in which erasion would be easy. Perhaps, with the present rate of accumulation, tho objection may be made light of, as it is by Mill; but the second, if less ohvious, is more inpportant. All our great staple manufactures are necessarily conducted on a large scale, and in many respects also large agricultural capitals are most productive. In manufactures, as a rule, the larger the scale of operations the more extended will be the division of labour in prodnction, and the greater the facilities for ready sale in foreign markets. Of all the causes which contribute to our commercial prosperity, perhaps the most important is the large scale on which our operations are conducted. We are able to employ machinery where the foreigner, working on a smalles scale, is obliged to use manual labour. There can be little doubt that graduated taxation, even on the modified form proposed by Miil, would tend to check production on a large scale. Indirectly it might artificialiy foster joint-stock compauies. (b) Taxes on the transference of property frou the living to the living cannot, as Adam Smith points out, be very easily taken directly, as such transactions for the most part actually are or might be secret. This has led to the invention of stamp and regis. tration duties. The penalty of invalidity attaching to unstamped documents of various kinds has proved a very effective ceterrent to evasion. A tax on sales will vary in its incidence according to the nature of the commodity and the degree of competition or monopoly (cf. HJ. Sidgwick's Principles of Pol. Econ., bk. ii. ch. x.). The most important case is that of taxes on the transfer of land. Theoretically it seems that, just as the farmer who takes land on rent offers more or less rent according to the burdens imposed on the land by rates, \&c., so the purchaser of land will consider any expenses connccted with its acquisition as part of the capital value, and thus any taxes on transfer will really fall on the sellers. If, lowerer, the taxes are imposed in such a way as to fall less heavily of land wheu sold in larser than in sumald
quantities, it is clear that the tendency will be for the differential pertion of the tax at least to fall on ths purchaser of a small amount; and practically at present this feature is cbaracteristic of the English system. A tax on the transfer of stocks and shares is generally held to fall on the seller, as in case of repeal he would obtain so much mere; but in this case the same cousiderations apply as in the case of interest noticed above. Acurieus example of legal evasion is furnished by time-bargains; and the inposition of the tax direstly on the contracts of sale, instead of as at present on the actual transfer, has been strongly urged.

Taxes on Wages.- It is clear that the treatment of taxes on wages will depend on the general view taken of the determination of the rate of wages. Adam Smith appears to lay undue strass on the price of provisions, and to think that in most cases taves on wages must fall on the employer of labour (bk. v. ch. ii. art. iii.). There seems, hewever, to be no sufficient reason why a tax on labour should be transferred to the employer, excent in the case where the wages are really at a ininimum below which the supply of efficient labour could net be kept up. Even in this case, as Prof. Walker shows, there would probably be a degradation of labour tefore the rise in wages was effected. Certaialy no practical statesman at the present time weuld venture to propose a direct tax on wages, under the idea that it would be transferred to the employer. Jn Germany it was found necessary to abandon the system, owing to the hardship inficted on the poor. At any rate, in all cases in which the rate of wages is above the "necessary" minimum, a tax on wages must fall on the labourer. Λ differential tax on seme particular species of employment would, unless it partook of the nature of a monopoly, tend to fall on the consumer of the article produced or the person who enjoys the service rendered. In every case, speaking generally, the incidence of the tax will depend on the conditions of the demand and supply of the labour in question, and no further analysis can be given without entering into the general principles governing wages. See Wages.

Capitation taxes are chiefly of interest historically, as illustrated in England by the poll-tases imposed at various times. The income tax as at present levied is in reality not a single nuiform tax, as mght at first sight anpear, but a tax on the various species of rent, interest, profits, and wages. The anomalies which arise from practically taking income as uniform bave often been pointed out and acknowledged, but the autherity of Mr Gladstone may be quoted in support of the view that the practical difficuities in the way of a readjustment more in accordance with theoretical principles are insuperable. The objections noted above to a graduated property tax apply, mutatis mutandis, to a graduated income tax, which appears, bewever, to find increasing faveur on the Continent. A full discussion of the anomalies of the inceme tax would involve a repetition of the analysis of the taxes on the varions species cf income.

Taxes on Commodities.-The general principles applicable in this rase are that, where production takes place under free competition, the tax will, owing to the tendency of profits to equality, be transferred to the consumer, but thet, when the article is practically monopolized, a tax must tall on the menopelist, on the assumption that he has already fixed such a price fer the article as mill, considering the law of demand and the expenses of production, yield him a maximum revenue. The practical difficulties connected with the assumption of equality of prefits have been well exposed by Cliffe Lesiie (Financial Reform: Cobden Club Essays, 2d series, 1871-72).

The incidence of export and impert daties is peculiarly Nifficult to ascertain even theeretically. The prevailing
opinion that an import duiv necessarily falls on thes consumer of the import necessarily involves as its counter part the position that an expert duty must fall on tiue consumer of the expert. If the latter view is upheld it is curious that expert duties find such little favour with practical statesmen. It is clear, however, that the real incidence of expert and import duties will depend partly on the conditions of production in various countries, partly on the variations in demand due to changes in price, partly on the indirect influence on the general balance of trade, and partly on the pessibility of using substitntes for the article taxed (cf. H. Sidgwick's Principles of Pol. Econ., bk. iii. ch. v.; Cournot, Revue Sommaire des Doctrines E'conomiques, sects. 5 and 6). A fuller examination is not possible in the limits assigned to this article. In con. clusion, it may be pointed out that a thorough investigation of the general principles of taxation must presuppose the principles of political philosophy, whilst a full inquiry inte the incidence of particular species of taxes must pre suppose the principles of political economy. (J. s. N†.)

TAXIDERMY, the art of preserving the integument together with the scales, feathers, or fur, of animals Little is known of the beginnings of the practice of the "stuffing" or "setting up" of animals for ernament or for scientific purpeses; and it is highly probable, from what we gather from old works of travel or natural histery, that the art is not more than some three hundred years old. Il was practised in England towards the end of the 17th century, as is proved by the Sloane collection, which in 1725 formed the nucleus of the collection of natural history now lodged in the galleries at Sonth Kensington.

It was not until the middle of last century that any treatise devoted to the principles of the then little under stood art was published in France, Réaumur's treatise (1749) being probably the first. This was fellowed al intervals by others in France and Germany, until the be ginning of the present century, when the English begat to move in the matter, and several works were published, notably these by E. Deneran, ${ }^{1}$ W. Swainson, ${ }^{2}$ Capt. Thornas Brown, ${ }^{3}$ and others. These works, bowever, are now in adequate ; and since the Great Exhibition of 1851, when the Germans and French taught British taxidermists the rudiments of scientific treatment of natural objects, several works have appeared upon the subject frem the pens of Amerizan and Euglish authors, such as J. H. Batty, ${ }^{4}$ R Ward, ${ }^{5}$ and Mentagu Browne. ${ }^{6}$

The first principle governing the art is that, after the sporimen has been procured, in as fresh and clean a state as may be, it should have the skin stripped from the bedy in such a manner as not to disturb the scales if a fish or a reptile, the feathers if a bird, or the fur or hair if a mammal. To do this correctly requires a small stock of tools, as well as a great amount of patience and perseverance. The appliances comprise several sharp knives (some pointed and some obtuse), a pair of scissors, a pair of pliers, a pair of nippers or "cutting-pliers," some tow, waduing, needles and thread, also a "stuffing-iron," some crooked awls, a pair of fine long flat-nosed pliers, and a camel-hair brush. The preservative compeund is often the original (Béceeur's) "arsenical soap," made by cutting up and boiling 2 tb of white soap, to which 12 oz . of salt of tartar and 4 oz . of powdered lime (or whiting) are added

[^24]
T A X I D E R. M Y

when dissolved; to this mixture, when tuarly cold, 2 fb of powdered arscnic and 5 oz . of camplor (the latter previously triturated in a mortar with spirits of wine) are added. The mixture is put away in small jars or pote for use. Like all arsenical preparations, this is exceediagly dangerous in the hands of unskilled persons, often causing shortness of breath, sores, brittleness of the nails, and other symptoms ; and, as arsenic is really no protection against the attacks of inseets, an efficient substitute has been invented by Browne, composed of 1 th of white curd soap and 3 th of whiting bailed together, to which is added, whilst hot, $1 \frac{1}{2}$ oz of chloride of lime, and, when cold, 1 oz. of tucture of musk. This mixture is perfectly safe to use when cold although when hot the fumes should not be inhaled, ,wing to the chlorine given off), and is spoken of as doing ts work efficiently. Solutions of corrosive sublimate, often recommended, are, even if efficient, dangerous in the extreme. Powders consisting of tannin, pepper, camphor, and burnt alum are sometimes used for "making skins," but they dry them too rapidly for the purposes of " mounting." Mammals are best preserved by a mixture of 1 tib of burnt alum to $\frac{1}{4}$ ib of saltpetre; this, when intimately mixed, should be well rubbed into the skin. Fishes and reptiles, when not cast and modelled, are best preserved in rectified spirits of wine; but this, when economy is desired, cas be replaced by "Möller's solution" (bichromate of potash 2 oz , sulphate of soda 1 oz ., distilled water 3 pints) or by a nearly saturated solution of chloride of zinc. The cleaning of feathers and furs is performed by rubbing them lightly with wadding soaked in benzoline, afterwards dusting on plaster of Paris. which is beaten out, when dry, with a bunch of feathers.
The preparation and mounting of bird epecimens, the objects most usuafly aelected by the amateur, are parformed in the following manner. The epecimen to be operated npon ehould have its nostrils and throat closed by plugs of cotton wool or tow; both wing-bones should be broken close to the body, and the hird laid upon a table on its back; and, as birds-espocially white-breasted voes-should eeldom, if ever, be opened on the breast, an incision should be made in the skin noder the wing on the side most damased, from which the thigh protrudes when pushed up slightly; this is cut through at its junction with the body, when the knifo ie gentiy used to soparate the skin from this, uatil the wiog-bono is been on the open side. This is then cut through by ecissors, and by careful manipulation the elkin is further freed from the back and breast antil tho neck can be cut off. The other sido now remains to be dealt with; from this tho wing is cut by travelling downwards, tho remaining leg is cut amay, eod yery careful skinning over the stomach and upon the lower back brings the operator to the tail, which is cut off, leaving a small portion of the bone (the caecyx) in the skin. Tho Eody now falls off, a ad nothiog remains in the skia but the neck and head. To slik these ont properly without unduly atretching the integumcut, is a task trying to the patieace, but it can be accomplished by gradually working the $6 k i o$ away from the back of the head forward, taliog care to svoid cutting the eycs or the oyelids, but, by cautious managemeot, to cut the memliranous skin over those parts, so that the eyes aro easily extracted from the orbits without lursting. The ekin ehould be freed down pearly to the beak, and then the back of tho head, with neck attached, should be cut off, the breins oxtracted, all the flesh cleared from the skull and from the hones of the wings, legs, and tail, the skin painted with the preservetive, aod ultimately turned into its proper position. When "skins" only are to he made for the cabinet, it is suffecient to fill the head and ner.k with chopped tow, the body with a false one made of tere, lightly packed or loose according to tho genius of the preparer, to sew up the skin of the stomach, and to place a band of paper lightly pinned around the body over the breast and wings, and allow it to romain in a warm rosition, freo from dust, for several days or weeks, according to the eizo of the specimen. It should then bel labelled with namo, sox, locality, and date, and put away pith iosect porder around it.
When, howerer, the specimen is to be "monnted," the operations shonld be carried up to the point of returning the skin, and then a false body of tightly wrapped tow is made upon a wire pointed at its urper end. This is inserted through the incision under the wing, the pointed end going up the neck and through the ekull to the outside. When the imitation body rests within the skin, pointed wires are thirust through the solos of the feet, up
the skin of the back of the legs, and are finally clenched in the body. Wires aro also thrust into the butts of tho wings, foisow. ing the skin of the aoder surfaco, and also clonched through into the bmiy. A stand or perch is provided, and the bird, being fixed upin this, is, after the oyes have been inserted, arrangod in the uost natural attitude which the skill of the taxulermist can give it.

Mammals are cut along the stomach from uearly the middlo to the broast, and are skinned by working out tho hand legs first, cutting them off under tho skin at the junction of the fensur with the tibia, and carcfully stripping the skin otl the lowe twack atad front until the tail is reached, the flesh 8 nd booes of wlich are pulled out of the skin, leaving the operator free to folloa cas ug tise back and chest nutil the fore legs are reached, which are cut off in like manner. The neck and head aro skiuned out down to the inner edges of the lips and nose, grest care being exerciscd not to cnt the outer portions of the ears, the eyelids, the uuse, or tho lips. The flesh being cleased off, and the brain and eyes extractcu, the okull ghould adhere to the skin by the inner edges of the lips. All the flesli should he trimneal from the bones of the logs. The head, being slaped, where the flesh was remored, hy tow and clay, is returasd into the okin. A long wire of sufficient strongth is tightly bound with tow, making a long, narrow body, throumh which wires are thrust by the skio of the soles of the fcet. The leg wires and bowes being wrapped with tow and clay into shape, the points of the wires are pushed through the tow body and clenched. They and the body are then beot into the desired position, and modelled up by the addition of more tow and clay, untib the contours of the natural body are imitated, when the stomach is sewn up. A board is provided apon which to fix the specimen, artificial eycs are inserted, the lips, nose, and eyelids fixed by means of pins or "peedle-points," and tlie specimen is then placel in a warm situstion to dry.

Reptules, wheo small, have their skin removed by cutting away the attachment of the skull to the cervical vertebres, and by turning the decepitated trunk out at the mouth by delicato manipulation. When large, they are cut along their modian line, and treated in the same manner as mammals.

Fishes, after being covered ou their best side with paper or rouslin to protect the seales, are cut along the of her side from the tail to the gills, and are skinned out by removiug "cutlets," as large as is possible without cracking the skin, which, indeed, sbould be kept damp during work. After being cured with a pre servative, they are flled with sawdnst or dry plaster of Paris, sewn up, turned over on a board, the fins pinned out, and the month adjusted, aud, when perfectly dry, the plaster may bo shaken out.

A new school of taxidermists, with new methods, whose aim is to combine knowledge of anatomy and modelling with taxidermic technique, are now coming to the front and the neat gencration will discard all processes of "stuffing" in farour of modelling. Within the limits of an article dike the present it is impossible to do more than glance at the intricate processes involved in this. In the case of mammals, after the skin has been completel: removed, even to the toes, a copy is made of the body, posed as in life, and from this an aceurate representation of form, inciuding delineation of muscles, \&c., is built up in light materials; the model is then covered with the skin, which is damped, and pinned in to follow every depression and prominence; the study is then suffered to dry; and, models baring been made, in the case of large animals, of the mucous membrane of the jaws, palate, tongue, and lips, these are truthfully reproduced in a plastic naterial. The ordinary glass eyes are discarded, and hollow globes, specially made, are hand-painted from nature, and are fixed in the head so as to convey the exact expression which the pose of the body demands. Birds, if of any size, can be modelled in like manner, and fishes are treated by a nearly identical process, being finally coloured as in a "still lile" painting.

To give a life-like representation. attention is also paid to artistic "monoting." By the is meant the surrounding of speeimens with arppropriate accessories, and it is well exemplified by the new work shown in the natural history museum at South Kensington, where, for example, birds are arranged as in a state of nature, feeding or flying to their young, sitting on their eggs, swimming in miniature nools, or preening their feathers whilst perched lovingly side by side, and surroundeo by exquisitely modelled.

T A X - T A Y

foliage and Howers. This, with correct modelling of the specimens, which, excent in rare instauces, is not guite so striking in the new groups, indicates the future of the art, the hope of which lies in the better education of taxidermists as designers, artists, and modellers.
(3. B.)

TAXlla. See Rawal Pindi.
TAY, Tue, the longest river in Scotland, has its sourco on the worthera side of Ben Lui, on the borders of Argyll,hire and Perthshire, being known in its earlier courso as th: 2 Filtan, and, after forming Loch Dochart, as tho Dochart, until satering Loch Tay, 25 miles from its scurce, at an elevaticn above eca-level of 553 fect. Its course through Perth:shire is described in the article on that county. Its total length to the town of Perth is about 95 miles, and it drains a total area of ahout 2400 square miles, while its estuary extends for about other 25 miles. The navigation of the estuary is somewhat impeded by aandbanks. The only important port is Dundce, but vessels of 100 tons can pass up to l'erth, the river being tidal to 2 miles above is The salmon fisheries on the river and its estuary aro anone the most valuable in Scotland. A railway bridge over tha Tay at Jundee, designed by Sir Thomas Bouch (see Bradocs, vol. iv. p. 346), was opened for traffic 31st Jlay 1878 , but was blown down during the crossing of a passenger train 28th December 1879. Somo distance to the west a new bridgic, designed hy W. H. Barlow, was commenced in 1882, and was opened for general traftic 20 th Juno 1887.

TAYLOR, Bayard (1825-1878), one of the most prolific among American authors, was born it Kennett Square in Chester county, Pennsylrania, on January 25, 1825. Tho son of a well-to-do farmer, he received his early instruction in an academy at West Choster, and, later, at Unionvilic. At the age of seventeen he was apprenticed to a printer in West Chester. A little volume, published in $18+\frac{1}{4}$ under the title Ximena, or the Battle of the Sierva Morena, and other Porms, brought its author a little cash and indirectly it did him better service as the means of his introduction to The New York Tribune. With the moncy thus obtaiaed, and with an advance made to him on account of soma journalistic work to bo done in Europe, "J. B. Taylor" (as he had op to this time signed himself, thnugh he bore no other Christian name than Bayard) set eail for the East. The young poet spent a happy time :n roanlog through certain districts of England, France, Gernany, and Italy; that ho was a born traveller is evident from tho fact that this pedestriau tour of almost two years cost him only £100. The graphic accounts which be sent from Europo to The Nero Tork Tribune, The Satuday Evening I'ost, and The United Stales Gazette wero so highly appreciated that on Taylor's retura to America be mas advised to throw his articles into book form. In 1816, accordingly, appeared his Viers Afoot, or Europe seen with Knapsack and Staff. This pleasant book had considerable popularity, and its author now found himsolf a recognized man of letters; moreover, Ногасө Greeley, then editor of the Tribune, placed Taylor on tho staff of that journal, thus securing him a certain if a inollonate income. His next journey, made when the goldfever was at its beight, was to Califoraia, as correspondent for the Trilune: fron this expedition be returned by way of Mlexico, and. seeing his opportuoity, published (1850) a highly aucecssful book of travels, entitled Eldorado. or Ademtures in the Puth of Empire. Ten thousand copics wero said to have been sold in America, and thirts thousand in Great Fritain, within a fortnight from the date of issue. Bayard Taylor alnays coosidered himself native to tho East, and it was with great delight that in 1851 ho found binself on the banks of the Nile. He ascended as fart $13^{\circ} 30^{\circ}$ N. lat., and stored his memory with count-
less sights and delights, to many of which he afterwards gave expression in metrical form. From England, towards the end of 1852, he sailed for Calcutta, proceeding thence to China, where he joined the expedition of Commodoro Perry to Japan. Tho results of theso jouraeys (hesides his poetical memorials, to which referenco will bo afterwards made) were Δ Jouney to Central Africa, or Life and Landscapes from Eigypl to the Negro Kingdoms of the. Nile (1854) ; The Land of the Saracens, or Picturs of Palestine, Asia Minor, Sicity. and Spain (1854); and 4 Visit 10 India, China, und Japan ine the Iear 1853 (1855). On his return ($185 t$) from these various journeyings le entered, with marked success, upon the carcer of a public lecturer, delivering addresses in every town of importanco from Naine to Wisconsin. After two years' experience of this lucrative profession, he again started on his travels, on this occasien for northern Europe, his special object being tho study of Swedish liîo, language, and literature Tho most noteworthy result was the long narrative poom Lars, but his "Swedish Letters" to the Tribune were also republished, under the title Norkerne Travel (1857). In October 1857 lie married Naria Hansen, the daughter of the well known German astronomer. The ensuing winter mas spent in Gircece. In 1859 Taylor cnce more traversed the whole extent of the western American gold region, the primary caliss of the journey lying in an invitation to lecture at San Francísco. About thrco years later be cotered the diplomatic service as secretary of legation at St Petersburg, and the following year (1863) became chargé d'affaires at the Russian capital. In 1864 he returned to the United States and resumed his active literary labours, and it was at this period that Mamah Thurston, the first of his four novels, was published. This book had a moderate success, but neither in it nor in its successors did Bayard Taylor betray any special talent as a norelist: some of hiz characters are faithful studies from life, and he could describe rell the aspects of nature,-but a good deal more than this is necessary for the creation of noteworthy romances. In 1874 he went to Iceland, to take part in tho centennial celebration which was held in that year. In June 1878 he was accredited United States minister at Berlin. Notmithstanding the resistless passion for travel which had always possessed him, Bayard Taylor was (when not actually en route) sedentary in his babits, especially in the Iater years of his lifo ; and at Berlin ho aggravated a constitutional liver affection by too sedulous devotion to literary studics and pursuits, in the intervals of leisure from his diplomatic duties. His death occurred on the 17 th of December, only a few months after his arrival in Berlin.

The main drawback to the widespresd acceptance of Bayard Taylor's poetry as a whole is its porpetual difuseness. His incst ambitious productions-his Masque of the Gods (1872), Prince Deukalion (1877), The Pichure of St John (1865), Lars (1873), and The Prophict (1874)-are marred by a ceaseless eflort to overstrain his powicr. Lars is the least likely of his longer poems to aurviro any length of time: it lacks the grandiose eloquence and impressive "adjuncts" of the Masque or Prince Deukalion, irlile in tbeme and treatment it is, ot most, only sedately agrecable. The Poents of the Oricnt contains his most genuinely satisfactory poetic writings. But probably long after even the most familiar of the pocma just mentioned havo ceased to be popular, when even the Vicus Afoot and Eldoralo po longer bold tha attention of the numerous publis interested in rivilly parrated experiences of travel, Bayard Teyler will be remenabered by lis poctic and execllent translation of Fisust. Taylor felt, iu all truth, "tbo tornent and the ecstagy of verse "; but, of a critical friend has writteu of him, "his natura was 6 ardent, yo full-blooded, that slight and commor sensations intoricated him, and he estimated their effect, and his power to transmit it to others, bejond the true velue.". Ho felt lifo as perlaps only tho poetic temperament cau experionce the beauty of tho world; eingle worde thus became for him so charged with poatry that ha overlooked the fact that to most peoplo these were, aimply in themselrea, mera abstract terms-sunshine, sea, spring, morning, night, and ao forth. Thus a otauza baving absolutely nothing original or ntriking or even poetic in it would, because
born of him, seem to be poetry unadulterate: to his mind, each line, each word, was charged with delightiful significance, thereforo -so he felt--would be so also to the synupathetic reader. Ho had, from the carliest period at which be began to compose, a distinct lyrical faculty: so keen indeed was his car that he became two insistently haunted by the music of others, pre-eminently of Tennysun. But he liad often a true and fine note of his own. His best short poems are "The Metempsychosis of the Pine" and the well-known Bedonin love-song, tho latter a stirring lynic that ought assuredly to endure. In his eritical essays Bayard Taylor had himself in no inconsiderable degree what be wrote of as "that pure pootic insight which is the vital spinit of criticism.' The most valuable of these prose dissertations are the Studics in German Literature.

TAYLOR, Brook (1685-1731), a distinguished mathematician of Newton's school, was the son of John Taylor, of Bifrons House, Kent, by Olivia, daughter of Sir Nicholas Tempest, Bart., of Durham, and was born at Edmonton in Middlesex, Angust 18, 1685 . He entered St John's College, Cambridge, as a fellow-commoner in 1701, and took degrces of LL.B. and LL.D. respectively in 1709 and 1714. Having studied mathematics with applause under Machin and Killl, he obtained in 1708 a remarkable solution of the problem of the "centre of oscillation," which, Lowever, remaining unpublished until May 1714 (Ihi.. Trans., vol. xxviii. p. 11), his claim to priority was unjustly disputed by John Bernoulli Taylor's Methodus Incrementoram Directa et Inversa (Loudon, 1715) added a new branch to the higher mathematies, now designated the "calculus of finite differences." Among other ingenious applications, he used it to determine the form of novement of a vilurating string, by him first successfully reduced to mechanical principles. The same work contained (p. 23) the celebrated formula known as "Taylor's theorem." It is of extensive use in almost every analytical inquiry; but its. full importance remained unrecognized until pointed out in 1772 (Berlin Memoirs) by Lagrange, who later termed it "le principal fondement du calcul différentiel."

In his essay on Linew Perspective (Loudon, 17J5) Taylor set forth the true principles of the art with much originality, and in a more general form than any of his predecessors. The little work suffered, however, from the brevity and obscurity which affected most of his writings, and needed the elucidation bestowed on it in the treatises of Joshua Kirby (1754) and Daniel Fournier (1761).

Taylor was elected a fellow of the Royal Society carly in 1712, sat in the same year on the committee for adjudicating the claims of Newton and Leibnitz, and acted as secretary to the society Jantary $13,1711,10$ October 21, 1718. During a visit to Paris in 1716 he made acquaintance with Bossuet and the Comte de Caylus, and knit a warm friendship with Bolingbroke, whom he visited at La Souree in 1720 From 1715 his studies took a philosophical and religious bent. He corresponded, in that year, with the Conte de Montmort on the subject of Malebranche's tenets; and unfinished treatises, "On tho Jewish Sacrifices" and "On the Lawfulness of Enfing Blood," written on his return from Aix-la-Chapelle in 1719, were afterwards found among his papers. His marriage in 1721 with Miss Brydges of Nallington, Surrey, led to an estrangement from his father, a person of somewhat morose temper, which terminated in 1723 alter the death of the lady in giving birth to a son. The ensuing two years were spent by him with his family at Bifrons, and in 1725 be maried, with the paternal approuation, Saletta, danghter of Mr Sawbridge of Olantigh, Kent, who, by a strange fatality, died also in childbed in 1730 ; in this case, however, the infant, a daughter, survived. Weighed down by repeated sorrows, Taylor's fragile health gave way; he fell into a decline, died 1) ecember 29, 1731, at Semerset House, and was buried at St Ann's. Soho. By his father's deaill in 1729 he
nad inherited the Bifrons estate. Socially as well as intellectually gifted, he possessed a handsome person and engaging manners, and was accomplished to an unconmon degrec in music and paiuting. As a mathematician, he was the only Englishman after Newton and Cotes capable of holding his own with the Bernoullis; but a great part of the effect of his demonstrations was lost through his failure to express his ideas fully and clearly.
A posthunous work entitled Contempratio Philusophica was printed for private cirenlation in 1793 by his grandson, Sir William Young, Bart., prefaced by a life of the author, and with an appendix containing letters addressed to him by Polingbroke, Bossuct, \&u. Severai short papers by him were published in Phil. Traise, vols. xxvii. to xxxii., incluling accounts of somu interesting experineents in magnetisno and capillary attraction. He issued in 1719 an improved version of his work on perspective, with the title Xcho Principles of Linerr Perspective, revised ly Colson in 1719, and printed agziu, with portrait and life of the author, in 1811. A French trauslation appeared in $37 \overline{5} 3$ at Lyons. Taylor wave (dfe. thodus Inerementorm, p. 108) the first satisfactory insestigation ed astronomical refraction.
 Phys. Astronomy, p. ग77; Suliie, Hist. des Seccuces, vil. p. 23il.
TAYLOR, Sir Henry ($1800-1886$), poet and colerial statesman, was born October 18, 1800, at Bishop. Wid dleham, in the county of Dirhan. His ancestors bad beeu small landowners for kome generations, and both his studious father, who late in life cmerged for a time /fom a recluse existence to make an efficient secretary to t, e Poor Law Commission, and his original warm-hearted fother were interesting persons. His mother dicd while ic was yet an infant, and he was chiefly educated by his fatber, who, finding him less quick and deening him less intel ligent than his two elder brothers, allowed him $t 0$ go to sea as a midshipman. Eight months summeri up bis naval career: it had taken much less to dughst him with it. After obtaining his discharge he was appointed to a clerkship, in the storekeeper's office, and liad scarcely entered upon his duties ere he was attacked by typhus fever, which carried off both his brothers, theu living with him in Jondon. In threc or four years more his uffice was abolished while he was on duty in the West Indies. On his return he found his father happily marred to a lady whose interest and sympathy proved of priceless value to him. Through her he became acquainted with her cousin Isabellit Fenwick, the neighbour and intipate friend of Wordsworth, who introluced him to Wordsworth and Southey. Under these influcuces he lest his carly admiration for Byron, whose school, whatever its merits, ho at least was in no way calculated to adorn, and his intel. lectual powers developed rapidly. In October 1822 an article from his pen on Moore's Mrish Mefulters appeared in the Quarterly Revitew. A year later he departed for London to seek his fortune as a man of letters, and met with such mpid success, though not precisely in this capacity, as has but rarely attended au unknown young man. He became editor of the London Mlayazine, to which be bad already contributed, and in January 1821 obtained, through the influence of Sir Jlenry Holland, an appointment in the Colonial Office, insurigg him, not only an ample salary, but considerable influence in this depart ment of public affairs. The gencrnl standard of the office was probably at that time low; at all events Taylor was immediately entrusted with the preparation of conlidential state papers, and his opinion soon exercised an important influence on the decisions of the secretary of state. He visited Wordsworth and Southey, travelled on the Continent with the latter, and at the same time, mainly through his friend and official colleague, the Hou. Hyde Villiers, became intimate with it very different set, the younger followers of Bentham, without, bowever, atop,ting their opinions, -"young men," he aIterwards reminded

Stuart Mill, "who every one aaid would be rained by their independence, but who cinded by obtaning all their hearts' desires, except one who fell by the way." The reference is to Hyde Yilliers, who died prematurely, and for whose sister, afterwards Lady Theresa Lewis, Taylor was an unsuccessful suitor. He actively promoted the emancipation of the slaves in 1833, and became an intimate ally of Sir James Stephen, theno counsel to the Colonial Office, afterwards uuder-secretary, by whom the Act of Emanclpation was principally framed. His first drama, Israc Comnenus, was published anonymonsly in 1827. Though highly praised by Southey, it made little impression on the public. Philip van Artevelde, the snbject of which had been recommended to him by Southey, was begun in 1828, published in 1834, and, aided by a laudatory criticism from Lockhart's pen, achieved extraordinary snccess. Edwin the Fair (1842) was less warmly received. In the interim he had married (1839) the daughter of his former chief Lord Monteagle, and, in conjunction with Stephen, had taken a leading part in the abolition of negro apprenticeship in the West Indies. The Stutesuan, a volume of essays suggested by his official position, had been published in 1836, and about the same time he had written in the Quarterly the friendly advertisements of Wordsworth and Southey, sulsequently published under the somewhat misleading title of Notes frome Books. In 1847 he was offered the under-secretaryship of state, which he declined. Notes fron Life and The Eve of the Conquest appeared in this year, aud Notes, from Books in 1849. An experiment in romantic comedy, The l'irgin Widow, afterwards entitled A Sicilian Summer, was published in 1850. "The pleasantest play I had mitten," says the author ; " and I never could tell why people would not be pleased with it." His last dramatic work was $S t$ Clement's Eve, published in 1862. In 1869 he rras made K.C.M.G. He retired from the Colonial Office in 18i2, though continuing to be consulted by Government. His last days were spent at Bournemouth in the enjoyment of oniversal respect ; and the public, to whom he had hitherto been an-alnost impersonal existence, becane familiarized with the extreme picturesqueness of his appearance in old age, as represented in the photographs of his friend Mrs Cameron. He died on March 27, 1886.
Sur Heury Taylor is pre-eniueutly the statesuan awong Eoglish poets. When he can speak poetically in this claracter he is impressive, almost great; whea he deals with the more prosaic aspects of poliey he is digoificd and weighty, without being altogether a poet, wheu lis theme is entirely nn relatell to the eonduct of public affairs or private life he is usually little noore than an gecomplished man of letters. An exception must he made for the interesting character of Elena in Philip van Artevelde, and for Artevelde's early love explerience, which reproduces and transfigures the writer's own. The circuustance of Philip venh Artevelde beiog to a great extent the velicle of his own ideas and feelings explains its great superiority to his other works. It is suljective as well as objective, and to a certain exteat lyrical io feeliog, though not in foral. Though more elaborate thaa auy of his other dramas, it seems to suell less of the lamp. He Las thoroughly jdentified himself with his hero, and the ooly fault to be found with this nolle picture of a cousummate leader and statesiman is the absence of the shadow required for a tragic portrait. The blame allotted to Aitevelde is folt to he merely couventioual, and the delioeation of uniforn excellence becomes monotouous. The hero of Edwein The Fuir, Dunstan, the ecclesiastical statesnan, the man of two worlds, is less sympathetic to the author and less attractive to the reader. The chazacter is perertheless a fine psychological atudy, and the play is full of historieal if not of dramatic interest. Isacce Comuenus is more Elizabethan io tone than lis other dramas. Coinnenus is like a preliminary sketeh for Yan Artevelde; and the picture of ihe Byzantive court and peoplo is exccedingly lively. The idea of the revival of romantic comedy in The Virgin Widon is exeellent, but the play lacks the humour which might have made it a success. The length of the speeches, even, when not set speccles, is a drawback to all these dramas. Taylor's lyrical work is in general laboriously artificial. It is therefore extraordinary that he slould have produced two songs ("Quoth tongue of neither
mald nor wife" and "If I wad the wings of a dove") whith it would hardly be an exaggeration to call worthy of Slakespuare. His character as au essayist repeats his character as a drannatist. The essays published nuder the title of The Statesmanz oceupy a peculiar place in literature. They bave serions fuults, especially the too obvious initation of Bacon, but they ueverthe less are origiaal in their 1 10int of viev, and their wisdon is the result of a differeut kind of observation from that which qualifies the bulk of essayists on human life. When writing as one of these Taylor is less removed from the commonplaee, though wany of his remarks are admirable. As a literary critic le seenis nnable to get beyond Wordsworth aud the select circle of peets admired by the latter. His essays on Wordsworth did much to digpei the conveutional prejodices of the day, but will not adrance the atudy of the poet where his greatuess is already recognized. His strietures on Byron and Sleelley are narrow and not a little presumptuous. Presump. tion, iodeed, the last fanlt to have been expected in so grave ond measured a writer, is one of those of which he uncst freely accuses hiunself in the autobiography published a year before his death. It is not other vise apparent io this highly interesting book, which, sioning a little by the egotisnı pardonable io a poet and the garrulity uatural to a veteran, is in the main a pleasiug and faillf ful picture of an aspiring youth, an active maturity, and a bappy aud honoured oll age.
(1. G.)

TAYLOR, Isaac (1787-1865), a voluminous writer ou philosophical and theological suljects, was born at Lavenham, Suffolk, in 1787, and was trained by his father to be an artist, but early adopted literature as a profession. From 1824, the year of his marriage, he lived a husy but uneventful life at Ongar, in the parish of Stanfond Pivers, Essex, where he died on June 28, 1865.
He early became a contributor to the Eclectic Revicro, when it was conducted by Robert Hall and Jolu Foster, and in 1892 he published a small volune cntitled Elements of Thought 'Clis was followed by a translatiou of Theophrastus with origioal etcliings, a History of the Transmission of Ancicit Books to DIDdern Tumes, Menoirs and Correspondence of Jane Taylor (his zister, who died in 1821), and a trauslation of Herodotus. None of these works attaiued very great popularity; but in 1829 le published anooymously a work bearing upoa the religious and political problems of the day, eutitled The Natural History of Enthusiusin, which was eagerly read and speedily ran through eight or nine editious. The sucess of this publication encouraged himito produce, also anony. mously, The Natural History of Fanaticism, Spiritual Despotisisn, Scturilay Evening, and The Physical Thcory of A nother Life, all of which conmanded a large circulation. Among his subsequent works may be mentioned Ancient Christianity, , series of dissertations in reply to the "Tracts for the Tines," a volume eutitled The Restorction of Belicf, and a courso of lcetures on The Svirit of Hebrow Poctry.
TAYLOR, Jeremy (1613-1667), was a native of Camtridge, and was baptized on the 15th August 1613. His father, Nathaniel, though a barber, was a man of some education, respected by his tormsmen, and lineally descended from Dr Rowland Taylor, Cranmer's claplain, who suffered martyrdom under Mary. Jeremy, after passing through the grammar school, was entered at Caius College as a sizar in 1626, eighteen months after Milton lad entered Clirist's, and while George Herbert was public orator and Edmund Waller and Thomas Fuller were undergraduates of the university. He was elected a fellow of his college in 1633, but the best evidence of his diligence as a student is the enormous learning of which he showed so easy a command in after years. Accepting the invitation of Risden, a fellow-student, to-supply his place for a short time as lecturer in St Paul's, he at once attracted attention by his remarkable eloquence as well as by his handsome face and youthful appcarauce. Archbishop Laud, ever on the outlook for men of capacity, sent for Taylor to preach before him at Lambeth, and, discern. ing that his genius was worth fostering, dismissed him from the overpressure of the metropolis to the quiet of a fellowship in All Souls, Oxford, and at the same time, by making him one of his own chaplains, showed his desire to keep him in permanent connexion with himself. At Oxford Chillingworth was then busy with his great work, the Religion of Protestants, and it is possible that by intercourse with him Taylor's mind may have beea turned
towards the liberal movement of his age. After two years in Oxford, in March 1638 be was presented by Juxon, bishop of London, to the reetory of Uppingham, in Rutlandshire. In the autumn of the same year ho was appointed to preach in St DIary's on the auniversary of tho Gunpordor Plot, and apparently used the oceasion to clear himself of a suspieion, whieh, however, haunted him throngh life, of a seeret leaning to the Romish communion. This suspicion seems to have arisen chiefly from his intimacy with Christopher Davenport, better known as Franeis a Saneta Clara, a learned Franeiscan friar who became chaplain to Queen Henristta; but it may lave been strengthened by his known connexion with Laud, as well as by his aseetic habits and ritualistie propensities. Hore scrious consequences followed his attachment to the Royalist eause, when in $\mathbf{1 0 4 2}$ the livings of the loyal clergy were sequestered by deeree of parliament. The author of Epiccopracy A ssertecl aguinst the Aerians and Arephati Nern and Old, ineffective as that work seems in the light of modern research, could seareely hope to retain his parish. Along with Fuller, Chillingworth, and others, he found temporary refuge with the king at Oxford. His two little boys must have been eared for by friends, for his wife, Ploebe Langsdale, whom he had married the year after his settlement at Uppingham, had died with ber third child in that disastrous year 1642 .

During the next fifteen years 'Taylor's movements are not easily traced. Sometimes he appears with the king, from whom at his last interview he received, in token of his regard, his watch and some jewels which had ornamented the ebony case in which he kept his Bible. He is supposed to be the Dr Taylor who was taken prisoner with other Royalists while besieging Cardigan castle. In $16 \leq 6$ lie is found in partnership with two other deprived elergvmen keeping a sehool at Newton Hall, in the parish of Llanvihangel. It was while resident here that be attracted the friendship of one of his kindest .patrons, Richard Vaughan, earl of Carbery, whose hospitable mansion, Golden Grovo, is immortalized in the title of Taylor's still popular manual of devotion, and whose ecuntess had the greater distinetion of being the original of tha "Lady" in Milton's Comus. It was also while resident in Tales that Taylor married his second wife, Joanna Bridges, who was generally understood to be a nacural daughter of Charles I., and who orned a good estate, though probably impoverished by Parliamentarian exactions, at Mandiaan, in Carmarthenshire. From time to time he appears in London in the company of his friend Evelyn, at whose table he met sucb men as Boyle, Berkeley, and Wilkius. Thrice he was imprisoned: in 16.53-4 for a well-intended but injudicious preface to his Golden Grove; again in Chepstow castle, from Nay to Oetober 1655, on what charge does not appear; and a third time in tho Tower in 1657-8, on account of the indiscretion of his publisher, Royston, who bad adorned his "Coliection of Offiees" with a print representing Christ in the attitude of prayer. This unsettled life, with its interruptions, harassments, and privations, would seem rather to bave stimulated than to lave stiuted the productiveness of his genius. In 1647 appeared his most important work, The Liberty of Prophesying, and in the following year the complete edition of his Apolony for Authorized and Set Forms of Liturgy ayainst the I'retence of the Spirit, as well as his Life of Chirist, or the Great Excmplar, a book whicb at once won a popularity it still in large nieasure retains. Then followed in rapid suecession tho Twenty-seven Sermons, "for the summer half-year," and the Twently-five "for the winter half year," IFoly Living, [Holy Dying, a controversial treatise on the Real Presence, the Golden Grove, and the Unum Necesarium, whieh by
its Pelagianism gave great offence. During these years be was also busy with his Ductor Dubitantium (pablished in 1660), which be intended to be the standard manual of easuistry and ethics for the Christian people.

In 16.58 settlement was at length reached through the kind offees of the earl of Carbery, who obtained for Taylor a lectureship in Lisburn. At first he de. lined a post in which the duty was to be shared with a l'resbyterian, or, as he expressed it, "where a Presbyterian and myself shall be like Castor and Pollux, the one up and the other dorn," and to which also a very neagre salary was attached. He was, however, induced to take it, and found, near his patron's mansion on Lough Neagl, so congenial a retirement that even after he was raised tn a bishopric he continued to make it his home. At the Restoration, instead of being recalled to England, as be probably expeeted and certainly desired, he was appointel to the see of Down and Connor, to which was shorty added the small and adjacent diocese of Dromore He was also made a member of the Irish privy council and vice-chancellor of the university of Dublin. Nono of these honours were sinecures. Of the unirersity he writes. "I found all things in a perfect disorder . . . a heap of men and boys, but no body of a college, no cne member, either fellow or scholar, having any legal title to his place, but thrust in by tyranny or chance." Accordingly he sut himself vigorously to the task of framing and enforeing regulations for the admission and conduct of mewhers of the university, and also of establishing lectureshins. Ilis episcopal labours were still more arduous There were. at the date of the Tiestoration, about seventy Presligterian ministers in the north of Ireland, and most of these were from the west of Seotland, and were inblucd with the dilike of Episeopacy which distinguished the Covenanting party. No wonder that Taylor, Whiting to the duke of Ormonde shortly after his consecration, should have said, "I perceive myself thrown into a place of torment." His letters perhaps somewhat exaggerate the danger in which be lived, but there is no doubt that his authority was resisted and his overtures rejected His writings al-o were ransacked for matter of aceusation acgainst him, "a committee of Seoteb spiders being appointed to sec if they ean gather or make poison out of them." Here, then, nas Taylor's opportunity for exenplifying the wiso toleration he had in other days inculeated. These Preshyterians had, like bimself, suffered under Cromwe!! for their loyalty, and might lave been expeeted to evoke his sympathy; but the new bishop, had nething to offer them but the bare alternative-submission to episcopal ordination and jurisdiction or dejrivation. Conseguently in his first visita. tion, be deelared thirty-six churehes vacant; and of these foreible possession was taken hy his orders. At the same time many of tho gentry were won by his undorbted sincerity and devotedness as well as by bis eloquence. With the Romanist element of the population he was less successful. Ignorant of the English languace, and firmly attached to their ancestral forms of wor:hip, they were yet compelled to attend a service they considered profane, conducted in a language they conld not understand. As Heber says, "No !!art of the administration of Ireland by the English crown has been more extraordinary and incre unfortunate than the system pursued for the introduction of the lieformed religion." At the instance of the Irish bishops Taylor undertook his last great work, the Dissuasive from /'opery (in two parts. 1664 and 1667), but, as he himself seemed partly conseious, he might have more effectually gained his end by adopting the inctlivds of Trssher and Bedell, and inducing his elerge to acouire the Trish tongue.

Nor were domestic sorrows awanting in thest later scars

In 1661 te buried, at Lisburn, Edward, the only surviving son of his second marriage. His oldest son, au olficer in the army, was killed in a duel; and his secoud son, Charles, intended for the church, left Trinity College aud became companion and secretary to the duke of Buckiugham, at whose house he died. The day after his son's funeral Taylor sickened, and, after a ten days' illuess, he died at Lisburn on the 13th August 1667, in the fifty-fifth year of his life and the seventh of his episcopate.
Taylor's fame has been maiutaiued by the popularity of his sermoos and devotional writings rather tban by his iulluence as a theologian or his importance as an ecclesiastic. His mind was neither seientific nor speenlative, and he was attracted rather to questions of casnistry than to the deeper problems of fiure theology. His wide realing and capacious nemory enabled liin to carry iu his mind the materials of a sound historical theology, but these materials were unsilterl ly criticism. His inmmense learuing served hinn rather as a storehouse of illustrations, or as an aruoury out of which he could choose the fittest weaplou for discomfiting an oproment, than as a quarry furnishing him with material for buikling up a completely designed and enduring edifice of systennatized truth. Iodeed, be had very limited faith in the human mind as an instrument of truth. "Theology," he says, "is rather a diviue life than a divine knowledge." His great plea for toleration is based ou the inpossibility of erecting theolocy into a demonstrable science. "It is impossible all shoull be of one mind. Aud what is impossible to be done is not necessary it slould be done.' Differences of opiniou there must be; but "heresy is not an error of the understanding but an error of the will." His aim in life was practical ; his interests were in men rather than in ideas, and his sympathies were evoked ratlier by the experieuces of indiviluals than by great moveinents. Of a decidelly poetic temperament, fervil and mobile in feeliog, and of a prolific fancy, he had also tho sense and wit that come of varied contact with men. All his zifts were made available for influencing other nifn by his easy command of a style rarely matched in dignity and colour. With all tho majesty and stately elaboration and musical rhythm of Milton's finest prose, Taylor's style is relieved and brightened by in aslonishing variety of felicitous illustrations, rauging froin the most homely and terse to the most dignified and elaborate. His seruens especially abound in quotations and allusions, which have tho air of syoutaneously susgesting themselves, but which must sometimes have bafled his hearers. This seeming pedantry is, lonever, atowed for hy the clear practical aim of his sermons, the nohlte illeal lie keens before his bearers, and the skill with which he landles spiritual experience and uyses incentives to virtuc. But, throngh all his gorgeons eloruence and genial interest in lumunu uature, thicre breaks from time to time some dead and lahoured irrelevaucy, the growth of his training in sclolastic dialectics; for. "like some other writers of the 17th century he seems alwost to have two minils, - one tender, sweet, luxuriunt to excess, the other laral, subtle, formal, proue to definition and logomacly.'
The first collected edition of his works was published by Bishop Heber (with a life) in 1822, reissued after careful revision by Charles Pago Eden, 1852-61.
(M. D.)

TAYLOR, JoHn (1580-1654), commonly called "The Water Poet," was born at Gloucester in Augnst 1580 Of his parentage and early boyhood very little is known, and that little is mainly to be gleaned from various scattered personal allusions in the numerous short writings of this prolific wit and rhynister. After fulfilling his apprenticeship to a waterman, he seems to have served (1596) in the Teet under the earl of Essex, and to have been present at the naval attack upoo Cadiz. On his return to England be took uy the trade of Thames waterman, and for a time at any rate was a collector of the dues exacted by the reutenant of the Torver on all wines destined for fondon. The title of " Water Poet," which he owes to his occupation ou the river, is a misnomer. Taylor was no poet, though he could string rhymes together with facility; his wit, Which was vigorous and vulgar, found lest expressiou in gollicking prose. He shows a lroad sense of rough fun, occasionally of humour ; but for the most part his comicalities would now meet with scanty appreciation. He lad a very good opinion of himself, his writings, and his importance; and it was he himself who set forth that he wes the "king's water poet" and the "queen's waterman." His literary perfurnances can most easily and most
satistacturily he studied in the hardsome qnarto, centaining all his proluctions, tdited by Mr C. Elindley, and published in 18.72. His" "works," sixty-three in number, first appeared in one large volune-unw a rarity souglit after by collectors-in 1630. He delighted in eccentric freaks, calculated in uarration to astound both the sober countryfolk and the somewhat sceptical Londoners. Thus, with a companion as feather-brained as himself, he once started on a voyarfe from Londou to Queenshorough in a paper loat, with two stockfisl tied to two canes for oars ; before the journey's ent was reached the frail boat collapsed, as might have been expected, though a qualified success finally met Taylor's efforts. The spinit of the bargee was in him, aud le delighted in rough give-and-take; a rude lampoon was one of his favourite verbal weapous. Thus Thomas Coryat, the author of Comlitips, baving excited the literary waterman's ridjcule, was rewarded with a ludicrous dedication in the prollaction entitled Taylor's Travels in Germanie; again, the "water puet" indulged in abusive satire to his leart's content in an "effusion" which he called A lircksey- Wiasey, or a Lervy Come-Theony-a literary castigation which he inflicted upoo those subscribers' to a certain "work" of his who omitted to substantiate their promises. This production was entitled The Penuiless I'ilgrimage, or the Moneyless Percurbulution of Johu Traylor, and consisted of an account of its author's pedestrian tour from J.ondon to Edinburgh; and to this work some sixteen liundred persons are said to lave promised their support. Another wasering veuture was a journey to Prague, where he is said to have been received and entertaiued by the sheen of Doheinia in 1620. Two years later Taylor made "a very merry, wherry ferry voyage, or Yorke for my money," and in the ensuing year another water-journey, which he subseguently described in prose and verse as A Nru Discovery by Sut with a IIherry from London to Sulishury. At the outbreak of the Civil War 'Taylor forsook the river and retired to Oxford, where he tempted fort une by keeping a pullicbouse. His sympathies were wholly with the Royalists, -the Roysterists, as he called them once; and, when the town surrendered, the "water poet" returned to London and kept a public-house under the sign of The Crown, in Phœnix Alley, Long Acre. He incurred some odium from his loyal observance of the king's death in the placement above his door of the sign of The Mourning Crown, and he was forced to take the latter down. With claracteristic readiness he substituted for it his own portrait, with some doggerel lines underneath. It was here that in December 1654 lie died, and in the neiglubouring charchyard of St Martin's-in-the-Fields his remaius were laid.
At the most, 'Taylor can only be called an amusiug and vulgarly clever pamphleteer; he wrote nothing wortly of remembrance save by the historian of the period io which he lived, by the autiquary, and by the enthusiastic student of thic many stragorling little by ways of literature.

TAYLOR, Tom (1817-1880), dramatist and art critic, was born at Sunclerland in 1817 . After attending school there, and studying for two sessions at Glasgow unirersitr, he in 1837 entered Trinity College, Cambridge, of which he became a fellow. Subsequently he held for two years the professorship of English literature at University College, London. He was called to the bar (Middle Temple) in November 1845, and went on the nortbern circuit until, in 1850, he became assistant secretary of the Board of Health. On the reconstruction of the board in 1854 he was made secretary, and on its atulition his services were transferred to the Local Government Act Office, a department of the Home Office created by the Sanitary Act of 1866. In his very early years Tom Taylor showed a predilection for the drama, and was in the habit of performing dramatic pieces along with a number of children in a loft
ever a brewer's stable. His first dramatic composition was a rhymed fairy tale or extravaganza, written in conjunction with Albert Smith and Clarles Kenny, and performed in 1846: From this time he wrote for the stage continuonsly till the close of his life, his dramatic compositions or adaptations numbering in all over 100, amongst the best known of which are Still Water Runs Deep, Victins, the Contested Election, the Overland Route, the Ticket of Leave Mann, Anne Boleyn, and Joan of Arc. He may perhaps be regarded as the first dramatist of his time, so far as general appreciation goes; and, if his chief concern was the constrnction of a popular acting play, his dramas possess at the same time considerable literary excellence, while the characters are clearly and consistently drawn, and the dialogue is natural, yet nervous and pointed. In his blank verse historical dramas, such as Anne Boleyn and Joan of Arc, be was not so successful. Taylor was also a very frequent contributor to the light magazine literature of the day. In 1872 he withdrew from puolic life, and, on the death of Shirley Brooks in 1873, he became editor of Punch. He occasionally appcared with success in amateur theatricals, more especially in the character of Adam in As You Like It and of Jasper in A Sheep in Wolf's Clothing. He had some talent for painting, and for many years was art critic to the Times. He died at Lavender Sweep, Wandsworth, 12th July 1880.
Apart from the drama, his chief contributions to literature are his biographies of paiuters, viz, Autobiography of B. R. Haydon (1853); Autobiography and Corrcspondence of C. R. Leslic, R.A. (1859); and Life and Timcs of Sir Joshua Reynolds (1865), which had been left in a very incomplete state by Mr Leslie. His Historical Dramas appeared in one volunie in 1877. He also edited, with a memorial preface, Pen Sketches from a Vanished Hand, selected from Papers of the late Mortimer Collins.

TAYLOR, Zachary ($1784-1850$), prosident of the United States, was born in Orange county, Virginia, November 24, 1784 . He entered the army as lientenant in 1808, and rose to the rank of major jn the war with Great Britain which followed. At the outbreak of the Mexican War he was in command of the American forces in Louisiana and Texas, and was directed to make the advance into the disputed territory which brought on the war. Beating the Mexicans in two battles, he followed them into Mexico, and there defeated Santa Anna in the crowning battle of his campaign, Buena Vista (1847). Dissatisfied with his treatment by the administration, he resigned and retorned to the United States, where the Whig party nominated him and elected him president (1848). The struggle over the question of the admission of slavery to the territory taken from Mexico occupied his term of office, and he died at Washington, July 9, 1850.

TCHad, Tsad, or Chad, Lake. See Africa, vol. i. p. 255 , and Soudan.
TCHEREmisseS, or Cheremisses. See Finland, vol. ix. p. 219, and Russia, vol. xxi. pp. 79-80.

TCHERKASY (Polish Czerkasy), a district town of Russia, in the government of Kieff, and 190 miles by rail to the south-east of Kieff, on the right bank of the Dnieper. It is poorly built, mostly of wood; the population has rapidly increased lately, and has doubled since 1846, reaching 15,740 in 1883. There are now two gymnasiums for boys and girls, and several lower schools. The inhabitants (Little Russian) are mostly employed in agriculture and gardening. There is a brisk export trade in corn, refined sugar, tobacco, salt, and timber ; raw sugar and manufactured goods are imported, principally by Jewish merchants.
Tcherkasy, formerly Tcherkassk, was an important town of the Ukraine in the 15th century, and remained so, under Polish rule, until the revolt of Hmelnitski, when it became free. When West Ukraine was taken again by Polanil, most of its inhabitants migrated to the left bank of the Dnieper. It was annexed by Russia in 1795 .

TCHERNIGOFF, a government of Little Russia, on the left bank of the Dnieper, bounded by Moghileff and Smolensk on the N., Orel and Kursk on the E., Poltava on the S., and Kieff and Minsk on the W., has an area of 20,233 square miles. Its surface is an undulating. plano, 650 to 750 feet high in the north, and from 370 to 600 feet in the south, deeply grooved by ravines and the valleys of the rivers. In the north, "beyond the Desna," about one-third of the area is under wood (which is rapidly disappearing), and marshes occnr along the conrses of the rivers; while to the south of the Desna the soil is dry, sometimes sandy, and assumes the characters of a stcppeland as one proceeds southward. Chalk deposits prevail in the north, and Eocene in the south. The goverument is watered by the Dnieper (which forms its western boundary for 178 miles) and its tributaries the Soj and the Desna. The latter, which flows through Tchernigoff for nearly 350 miles, is navigable, and timber is brought down its tribntäries. Corn, linseed, timber, brandy, hemp, and sugar are shipped on the Dnieper, Soj, and Desna, and salt imported. The climate is much colder in the woody tracts of the north than in the south; the average yearly temperature at the town of Tchernigoff is $44^{\circ}{ }^{\circ}$ (January, 23°; July, $68^{\circ} 5$).
The population, which is rapidly increasing, reached $1,996,250$ in 1883. It is chiefly Little Russian ($85 \cdot 6$ per cent.); Great Russians (6.1 per cent.), mostly Raskolniks, and White Rnssians (5.6 per cent.) inhabit the northern districts. Jews have spread rapidly since last century, and now number more than 45,000 . There are, besides, some 20,000 Germans as well as Greeks at Nyczhin. Agriculture is the principal occupation; in the north, however, many of the inhabitants are enggged in the timber trade and various domestic industries. Catelle-breeding. is carried on in the central districts, and there were in 1883 572,200 horses, 515,300 cattle, and 948,000 sheep. Beet is extensively cultivated, and in 1884 2 nillion cwts. of beet-root were delivered to the thirteen sugarworks within the gevernment. The culture of tobacce is also increasing, upwards of $500,000 \mathrm{cmts}$. being produced annually. Hemp is widely cultivated in the north, and the milder climate of the sonth encourages gardening. Bee-keeping is extensively earried on by the Raskolniks. Tar, pitch, and a large variety of wooden manufactures are largely produced in the forest districts, as a.so are woven fabrics, felts, and leather wares. Limestone, grindstones, china-clay, and building stone are quarried. Mannfactures have begun to develep rapidly of late; by 1881 their yearly production reached $£ 1,340,000$ ($£ 860,000$ from sugar-works and distilleries). Trade is active, especially since the opening of the railway between Kieff and Kursk, which runs through Tchernigoff. The government is divided into fifteen districts, the chief towns (with populations in 1885) being Tchernigoff (19,000), Borzma (13,700), Glukhoff (16,450), Gorodnya (3550), Konotop (16,420), Kozelets (4430), Krolevets (9190), Mglin (10, 880), Novgorod-Syeversk (8020), Novozybk off (11,920), Nyezhin (43,020), Oster (3550), Sosnits3 (5650), Starodub (23,890 in 1880), and Surazh (3770). A number of unimportant towns (14 posads and 49 myestech $k i$) possess muni. cipal institutions.

TCHERNIGOFF, capital of the above government, stands on the right bank of the Desna, nearly half a mile from the river, 476 miles from Moscow. Far removed from the great channels of trade, its sole importance is as an administrative centre. Its honses are poorly bnilt, and the streets are unpaved. The population (19,000 in 1885, one-third being Jews) is almost stationary. The ruins of its fortress, and the old cathedrals of Preobrazhenie and Borisoglebsk, founded in the 11 th and 12 th centuries, bear witness to the former importance of the town. Numerous graves scattered about, and now partly explored, speak of the battles which caused its decay.
Tchernigoff is known to have existed before the introduction of Christisnity into Russis. In 907 it is mentioned in the treaty. of Oleg as next to Kieff, and in the 11th century it became the capital of the principality of Syeversk and an important commercial city. Tbe Mongolian invasion put an end to its growth. Lithnania annexed it in the 14th century, but it was soon seized by Poland, Which beld it ontil the 17 tT century. The great rising in 1648 rendered it independent nutil 1654, when the Cossacks accepted the protectorate of the czars of Mescow. In 1686 it was definitely annexed to Rustia

TCHERNOMORSK, a gevernment of Caucasia, Russia, consisting of a narrew strip of land betwcen the main Caucasus chain and the Black Sea, formerly inhabited by the Adyghe mountaineers of Caucasus. This strip, protected by the mountains from the cold winds of the north; is in respect of climate one of the most favoured parts of the Black Sea littoral. Owing to extensive emigrations of its inhabitants to Turkey since the Russian conquest of 1864 , it is very thinly peopled, the population numbering but 25,980 , mostly Russians, on an area of 2824 square miles. The steep slopes of the Caucasus, whose summits range from 2000 to 10,000 feet, are furrowed by narrow gorges, and bear a luxuriant vegetation. The wild vinea relic of former gardens-grows freely in the forests, which are almost impassable on account of the underwood and decaying trees. The moistness of the atmosphere contributes to the spread of the Caucasian fever, which is characteristic of the littoral. Notwithstanding the proximity of the mountains to the sea, a road is now being constructed along the coast,-for military reasons.

Agriculture is carriod on, but only in the south,-gardening and the culture of the rine and tobacco being the chief occupations besides fishing and hunting. Some manufactures are rising up at Novorossiysk (3330 inhabitants) and 'Anapa (5350), the two prin. cipal towns, which also have some foreign trade. The rogion is a separate province under a military governor residing at Novorossiysk, where a new harbour is being constructed.

TCHISTOPOL, a district town of Russia, in the government of Kazain, 90 miles to the south-east of that fown, on the left bank of the Kama Before 1781 it was a mere village (Tchistoye Pole), founded by runaway eerfs ; at present it is extending rapidly and becoming an industrial town, with flour-mills, distilleries, and a few cotton-mills. The merchants carry on a brisk trade in corn brought in from the fertile tracts of Ufa, and shipped down the Kama; manufactured wares are imported. The popalation in 1883 was 18,200 .

TCHITA, capital of Transbaikalia, Eastern Siberia, stands 585 miles east of Irkutsk, on the Tchita river, half a mile above its junction with the Ingoda. It was founded in 1851 ; and military considerations led to the selection of this very small village to be the capital of Transeaikalia. Steamers on the Amur and Shilka do not penetrate so far as the upper Ingoda; they usually stay at Sryetensk, 320 miles distant. But the military supplies sent every year from Transbaikalia to the Amur region usually start from Tchita, - the forest-covered hills on the banks of the Ingoda supplying material for the construction of the barges (from 100 to 200 in number) on which these sup)plies are carried as soen as the melting of the snows in the mountains temporarily raises the water in the river to a sufficient height. Tchita is built of wood, with unpaved strcets and wide open spaces. The dryness of the Buriat steppe close by prevents snow from accumulating to any depth, even when the cold is extreme; the merchandise accordingly which is forwarded from Irkutsk to the Nertchinsk district is brought to Tchita on carts, and is there loaded on sledges for the continuation of the journey down the frozen rivers. The population of Tchita in 1883 was 12,600 . The inhabitants support themselves by agriculture, by trade in furs, cattle, hides, and tallow, which are bought from the Buriats, and in all kind of manufactured wares imported from Russia and Western Siberia.

TEA. This important food auxiliary, now in daily use as a beverage by probably one-half of the population of the world, is prepared from the leaves of one or more plants belonging to the natural order Ternströmiacex. The order includes the well-known ornamental genus of shrubs Camellia, to which indeed the tea-plants are so closely allied that by many systematic writers they are
included in the same genas. The tea-plants have been cultivated in China for at least a thousand years.

As is commonly the case with plants which have been long under cultivation, there is much doubt as to specific distinctions among the varieties of tea. Under the name of Thea sinensis, Linnæus originally described tea as a singlo species; but with fuller knowledge of the Chinese plants he established two species, Thea Bohea and Thea viridis, and it was assumed that the former was the source of black teas, while Thec viridis was held to yield the green varieties. In 1843, however, Mr Robert Fortune found that, although the two varieties of the plant exist in different parts of China, black and green tea are mado indiffereutly from the leaves of the same plant. The teaplant is cultivated in China as an evergreen sbrub, which grows to a beight of trom 3 to 5 feet. The stem is bushy, with numerous and very leafy branches; the leaves are alternate, large elliptical, obtusely serrated, veined, and placed on short channelled foot-stalks. The calyx is small, smooth, and divided into five obtuse sepals. The flowers are white, axillary, and slightly fragrant, often

F1a. 1.-Tea-Plant (Thea sinensis).
two or three together on separate pedicels. The corolla has from five to nine petals, cohering at the base. The filaments are short, numerous, and inserted at the base of the corolla; the anthers are large and yellow, the style trifid, and the capsules three-celled and three-sceded.

The viridis varieties are hardier, and possess larger and brighter green leaves than belong to the Bohea variety. No strictly wild tea-plants have been discovered in China, but an indigenous tea-tree (Thea assamica) is found in Assam, which botanists now incline to regard as the parent species of all cultivated varicties. It differs in many respects from the Chinese plants. The indigenous Assam tea-plant is a tres attaining a hoight of from 15 to 20 feet, growing in the midst of dense moist jungle and in shady sheltered situations, Its leaves vary considerably in size, form, and venation, being usually amooth, thick, and leathery, lanceolate, ovate lanceulate, or oblong lanceolate. They are varionsly dotted with pellucid cells containing essential oil, and the number of such cells shown by the leaf is held to be an indication of the quality of tea it will yield. The leaf of the Chinese plant never exceeds 4 inches in length, while that of the Assam tree reache

9 inches and upwards. The Chinese plant is hardy, and capable of thriving under many different conditions of climate and situation; while the indigenous plant is tender and difficult of cultivation, requiring for its success a close, hot, moist, and equable climate. The characteristic venation of the leaf of the Chinese tea-plant is delineated in fig. 2. In minute structure the leaf presents highly characteristic appearances. The under side of the young leaf is densely covered with fino onecclled thick-walled hairs, about 1 mm . in length and 015 mm . in thickness. These hairs eutirely disappear with inereasing age. The structure of the epidermis of the under side of the leaf, with its contorted cells, is represented ($\times 160$) in fig. 3 . A further characteristic feature of the cellular structure of the tea-leaf is the abundance, especially in grown leaves, of large, branching, thickwalled, smooth cells (idioblasts), which, although they occur in other leaves, are not found in such as are likely to be confounded with or substituted for tea. The minute structure of the leaf in section is illustrated in fig. 4.

The cultivated varietios of tea,
 being comparatively hardy, possess an adaptability to climate excelled among food plants only by the wheat. The limits of actual tea cultivation extend from $39^{\circ} \mathrm{N}$. lat. is Japan, through the tropics, to Java, Australia, Natal, and Brazil in the southern hemisphere. The tea-plant will even live in the open air in the sonth of England, and withstand some

amount of frost, when it receives sufficient summer beat to hardén its wood. But comparatively few regions are suited for practical ter-growiag.

A rich and exuberant growth of the plants is a first essential of successful tea cultivation.. This is only obtainable in warm, moist, and comparatively equable climates, where rains are frequent and copious. The climate indeed which favours tropical profusion of jungle growth-still steaming heat-is that mos: favourable for the cultivation of tea, and such climate, unfortunately, is most prejudicial to the health of Europeans. It was formerly supposed that comparatively temperate latitudes and steep sloping ground afforded the most farourable situations for teaplanting, and much of the disaster which attended the early stages of the tea enterprise in India is traceable to this erroneous conception. Tea thrives best in light friable
scils of good depth, through which water percolates freely. the plant being specially impatient of marshy situations and stagnant water. Undulating well-watered tracts, where the rain escapes freely, yet without washing away the soil, are the most valuable for tea gardens. As a matter of fact, many of the Indian plantations are established on hill-sides, after the example of known districts in China,

Fio. 4,-Section through Tea-Leaf. where hill slopes and odd corners are commonly occupied with tea-plants.

According to Chinese legend, the virtues of tea (cha, pronounced in the Amoy dialect té, whence the English name) were discovered by the mythical emperor Chinnung, 2737 в.c., to whom all agricultural and medicinal knowledge is traced. It is doubtfully referred to in the book of ancient poems edited by Confucius, all of which are previous in date to 550 B.C. A tradition exists in China that a knowledge of tea travelled eastward to and in China, having been introduced 543 A.D. by Bodhidharma, an ascetic who came from India on a missionary expedition, but that legend is also mixed with mythica! and supernatural details. But it is quite certain, from the historical narrative of Lo Yu, who lived in tle Tang dynasty (618906 A.D.), that tea was already used as a beverage in the 6 th century, and that during the 8 th century its use had become so common that a tax was levied on its consumption in the 14th year of Tih Tsung (793). The use of tea in China in the middle of the 9 th century is known from Arab sources (Reinaud, Relation des Voyages, 1845, p. 40). From China a knowledge of tea was carried into Japan, and there the cultivation was established about the beginning of the 13 th century. Seed was brought from Ching by the priest Miyoye, and planted first in the south island, Kiushiu, whence the cultivation spread northwards till it reached the high limit of $39^{\circ} \mathrm{N}$. To the south tea cultivation also spread into Tong-king and Cochin China, but the product in these regions is of inferior quality. Till well into the 19 th century it may be said that China and Japan were the only two tea-producing countries, and that the product reached the Western markets only through the narrowest channels and under most oppressive restrictions.

In the year 1826 the Dutch succeeded in establishing tea gardens in Java. At an early period the East India Company of Great Britain, as the principal trade intermediary between China and Europe, became deeply interested in the question of tea cultivation in their Eastern possessions. In 1788 Sir Joseph Banks, at the request of the directors, drew up a memoir on the cultivation of economic plants in Bengal, in which he gave special prominence to tea, pointing out the regions most favourable for its cultivation. About the year 1820 Mr David Scott, one of the Company's servants, sent toleutta from tho district of luch Behar and Rangpur-the very district indicated by Sir Joseph Banks as favourable for tea-growing-certain Ieaves, with a statement that they were said to belong to the wild tea-plant. The leaves were submitted to Dr Wallieh, Government botanist at Calcutta, who pronounced them to belong to a species of Camellia, and no result followed on Mr Scott's communication. These very leaves ultimately came into the herbarinm of the Linnean Society of London, and bave authoritatively been pronounced to belong to the indigenous Λ ssam teaplant. Dr Wallich's attribution of this and other specimens
subsequently sent in to the genus Camellia, although scientifically defensible, unfortunately diverted attention from the significance of the discovery. It was not till $183 \pm$ that, overcome by the insistance of Captain Francis Jenkins, who maintained and proved that, called by the name Cumellic or not, the leaves belonged to a tea-plant, Dr Wallich admitted "the fact of the genuine tea-plant being a native of our territories in Upper Assam as incontrovertibly proved." In the meantinie a committee had been formed by Lord William Bentinck, the governorgeneral, for the introduction of tea culture into India, and an official had already been sent to the tea districts of China to procure seed and skilled Chinese workmen to conduct operations in the Himalayan regions. The discovery and reports of Captain Jenkins led to the investigation of the capacities of A ssam as a tea-growing country by Lord William Bentinck's committee. Evidence of the abundant existence of the indigenons tea tree was obtained; and the directors of the East India Company resolved to institute an experimental establishment in Assam for cultivating and manufacturing tea, leaving the industry to be developed by private enterprise should its practicability be demonstrated. In 1836 there was sent to London 1 lb of tea made from indigenous leaves; in 1837 5 H of Assam tea was seut; in 1838 the quantity sent was twelve small boxes, and ninety-five boxes reached Loudon in 1839. In January 1840 the Assam Company was formed, and thenceforward the cultivation of tea in India was carried on as a private commercial undertaking. The tea districts of India include, in the order of their priority, Assam, Delra Dun, Kumann, Darjiling, Cachar, Kangra, Hazaribagh, Chittagong, Tarai, and the Nilgiris (MIadras).

Attempts were repeatedly made to introduce tea culture in Ceylon, under both Dutch and British authority. No permanent success was attained till about 1876, when the disastrous effects of the coffee-leaf disease induced planters to give serious attention to tea. Since that period the tea industry has developed in Ceglon with marvellons rapidity, and it has every frospect of taking the first rank among Singalese productions. Tea-planting has also been successfully established in Natal. But beyond the regions above enumerated the industry has never taken root. It bas been tried in the West Indies, the Sonthern States of America, Brazil, Anstralia, and the south of Europe ; but cheap labour is a sine qua non of success. Tea can be picked in China and the British East Indies for two or three pence a day of wages, and it is on such exceedingly moderate outlay that the margin of profit depends.

Tea is more or less cultirated for local consumption in all provinces of China except the extreme notth, but the regions from which it is exported are embraeed within the provinces in the south-cast-Kwang-tung, Fuh-keen, lieang-se, Che-keang, Keangsu, anll Gan-hwuy. Black-tea uanufactire beiongs to the more southerly portion of these regions, the green-tea comntry lying to the north. The methods emploved in cultivatiug the plants and ta making tea in China differ widely in various districts, and the teas retained for native use-especially the high-class fancy teas which are -never seen abroad, and would probably not bear ex-portation-undergo special manipulatiou. The teas exported are of three principal classes-black tea, green tea, and brick tea.

In cultivation, the young plants are not realy for picking till they are three, years old, by which time they should be well astablished, throwing out young shoots or "finshes" with vigour and profusion. It is these tender shoots, with leaf-buds aud expanding leaves, which alone are gathered for tea manufacture, and the younger the leaf-bud the better is the quality of the tea. According to Chinese statements there are four gatherings of leaves in the year. The first is made early in April, when the young leaf-buds are just unfolding, and these, covered below with their fine silky hairs, are taken for making pekoe or young hyson. The second gathering takes place about the beginuing of May, another in July, aud the fourth in August and September. On each succeeding occasion the product is less fragrant and raluable, and the final gathering is aaid to consist of large leaves of little value. These statements do not, however, accord with Indian experience.

The folloming bricf outline of the Chinese tea-making processes is given by Mr Ball (Cultization end Manufacture of Tea):-
"The leares of lack tea are exposed to the sun and sir on circular traye and treated as hay, during whisch an incipicne anceliarlne fermentatlon iv supposed to take place in conjunction with a volatile oil. Varrous modntcations of farour are thus produced by the management of this fermenration; a loss of pannin takes place by the conversion of part of the tannic acit into sugar. Doring this change the leaves become flaccid, and slightity tinged or spened with rel or brovn colouring matter, and give ont a peculiar odour, approximating ro, or, as some think, dentjeal with. the odour of tea. A certaln change in this odour s carcfulty warcied by the workmen, this being an indication that the rwasting must not bo delayed. It is not necessary to wait till the leores ave spotted with red. They
 ean be cxpressed from the leaves in the act of rolling. jimally, they are dried in sieves pliced over n charcoal fire in drying tubes, during which the leares aro necasionally talsen from the firc, and surned until completely dried. It is in this last stage of the process that the leaves tum black, though this cliange of colour is inainly dite to thic pacecse of manlpulation previously to rossting, and not to the uction of heat."
"The leares of green tea arc roasted also In an lron ressel, hat as soon as gathered, without any previous manipulation, all heating or fermentallon of the lespes being ssudlously avoisled; they uro then rolled is black tea, and finally dried in the same vessel in which they have beeo roasted, by constantly stiming and mosing them aboat. They are also fanned to hasten ernporaton, and the drying and formation of the peculiar characteristic colour of this iea, which it
gradnaily acquires in this process, and which resembles thic bioom on somo graduail
fruts."

The colour of genuine green tea is entirely due to the rapil drying of the fresh leares, whieh prevents the chlorophyll from undergoing any alteration. The greeu tea sent out of China is almost invariably faced or glazed with artificial colouring matter, priucipally with a powdered mixture of gypsum and Prnssian blue.

The names distinguishing commercial qualities of tea are almost eutirely of Chinese origin. Iu general they indicate a gradation of qualities from the fine and delicate product of the young leaf. bud ap to the hard and woody expanded and partly-grown leaf. The following list represeats the ordinary series of qualities, beginuing with the finest:-
Black: Tca.-Flowery pekoe, orange pekoe, pekoe, pekoe souchong, souchong, congon, bohea.
Grecn Tca.-Gumpowder. imperial, byson, young hyson, hyson skin, caper.

Of these names, pelioe is derived from pak-ho (wbite hairs), tho pekoes showing the fine downy tips of the young buds; souchong is from siaou-chung, little plant or sort; congon (hung-fu), labour; bobea (uru-i), the mountaius in Ful-been, the centre of the black-tea country; and hyson (yii-tsien), before the rains, or tu-chun, flourishing spring. Mlany other names occur in the trade denoting teas of special qualities or districts, such as oelong (black dragon) and twankay, from the district of that name in the province of Feangsu. Seented teas also-form a special class of Clinese produce. In scentiug the fimisherl tea, either black or green is intimately intermixed with odoriferous flowers and leftin a heap till the tea is fully impregnated with the odour, when the qwo substances are separated by sifting, and the tea so scented is immediately packed and excluded from the air.

Brick tea is the speeial form in which tea is prepared for use throughout the vast traets of Central Asia. It is made prineipally from broken leares, stalks, and fraginents of large learcs, conipressed into blocks of various sizes. The bricks are of rarious degrecs of compression, some being lightly squcezed into a loose mass and served up in cowhide bars, while others form compact resomant cakes, in which all trace of the original leaf structure is lost, with gilt characters impressed in their surface. Lrick toa is much in demaid over an area greater than the whole of Europe, amel by many tribes, it is stewed with milk, salt, and butter or other fat and eaten as a vegetable. The Pussian factors establishacl in Hoo-pilh prepare two sizes of brick tea, which they send ofl in great quantities throngli the lialgan Gate of the Great Wall.
Under European supervision the cultivation and especially the manufacture of tea have in India undergone remarkabic improvements. Indeed, the traditional and empinical teaching and proeesses of Clina proved a most serious stumblingblock to the progress of the tea industry under Western anspices. The tea plants now, cultivated in India are of three principal classes-the indigenous Assam, the Clinese, and a hy brid between the taro. 1:y much crossing aud intermixture the gradations from one extreme to the other are almout impercentible. The best qualities of hlack teas are inade from indigenous and high-class hybrid lilants, luat these are comparatively thuler and rexuire a close humid elimate. Tho hardiness of the Chinese plants is their most innortant clanaretur, for, favomably sitnated, the Assam plant gives a larger yi $1 / d$ of delicate young leaf during the season than any other.

In farourable circumstances thie" tea-plant "flushes" or sende forth a fresh rrep of teader youns shoots from twenty to whentyfive times in the course of its growing and pieking scason of about wine months. The averane annual yield per juant is very variahle; but mas be stated at about one-firth of a ith of finishod tea; and, as each acre of a garden holds 1500 to 1600 maturo flants, the yifld per ocre may be from 300 to 350 th pice annum. The diagram (fig. 5) from Col. Moncy's valuable jractical treatise on tho C'ultio
oation and Manufacture of Tca illustrates the method in which a Aush or shoot is picked, and the portions which go to make special classes of tea. The lines in the diagram show the points at which the shoot may be picked, and it is important that the lowest leaf taken should be 60 nipped off as to leave the bud in its axil aninjured on the branch, as from it the uext flush will then develop. The three leaves at the growing point (a, b, c) yield peloe, and the whole shoot down to and including f gives pekoo-souchong. Ia the order of their age, the individual leaves manufacture into a flowery pekoe, b orange pekoe, c pekoe, d pekoe bouchong, e souchong, and fcongou. Were the flush further developed another

Fig. 5.-Mode of Picking Tea
leaf might be taken, which wonld be classed as bohea, but that is not a quality recognized by Indian growera. It is not, however, the practice to pick or treat leaves separately, the whole flush being manipulated together, and the tea is only separatcd into qualities by sifting after the nanufacturing processes have been completed.

The manufacture of black tea is found to be an essentially simple matter. Many of the processes employed by the Chinese are quite superfluous, and eeveral of the manual operations which bulk largely in the Chinese manufacture, it is found, can with advantage be supplanterl by mechauical agencr. The whole object of the black-tea manufacturer is to ferment, roll, and dry the leaf, and for that purpose the leaves undergo-(I) withering, (2) rolling, (3) fermenting, and (4) fring or dholing. Between the fermenting and the firing operations it is desirable to expose the leaves to the direct sunlight for an hour or thereby. This cannot alwaye be done, as it is impossible to keep the fermented leaves after they have attained their proper state; nevertheless the best result is always attained in bright weather, when it is possiblo to expose the fermented leaves to the sun.

The fresh leaves from the garden, as they are brought in Eo the factory, are withered by being spread evenly over square wickerwork trays-leaf challanies-thickly or thinly as the weather is bot or cool. Thus they are left exposed to the air till they become quite soft sud flaccid, folding together when pressed in the hand into a clammy inass without crackling or rebound. In cloudy or rainy weather it becomes uecessary to wither by machine, acting on the leaves with artificially dried and heated air. Withering is a preliminary to rolling, in which the flaccid and velvety leaves are kneaded, twisted, and rolled back and forward over a table till the whole comes into a mashy coadition by the exudation of juice. While in Chinese ter-making that juice is squeezed out of the leaves, in India it is most carefully lapped up and absorbed in the spongy mass. In band-rolling as much as can be worked betweeu two hands is operated on, and passed from man to man along the table till fully worked, when it is made up into a compressed ball and so put aside for fermenting. This procese is the distinguisbing featare of black-tea making, and on its sufficient accomplishment depends much of the character and quality of the tea made. The piogress of the fermentation must be carefully watched, and at the point when by the colour it is known to be sufficiently advanced the tea is in favourable weather sunned by exposure, thinly epread out to the sunlight for about an hocr. It is immediately thereufter fird, either by the fumes of burning charcoal or by a current of dried and heated air from ono of the numerous machines non in use. With this single firing the process is completed, and the tea so finished is sifted by machinery into commercial qualities according to the size of the leaf.
For the entire range of manufacturing operations nnmerons forms of machinery and mechanical devices bave been adapted and intro. duced 11 Indian gardens, so that, apart from picking the leaves, tea-making las becoue practically a factory industry.
The manufacture of green tea is comparatively little prosecuted in ludia. In Europe the demand bas greatly fallen away, and, thongh the consumption is considerable in the United States, the zapply is principally drawn from Japan, where its preparation is
extensively practised. The manufacture as carried on in the Norin Western Provinces resolves itself into a rapid rolling and drying of the leaf. Withont permitting the leaves to wither after gathering, they are, if free from moisture, at once hy exposure to e brisk heat oweated and aoftened for rolling. They are then without delay rolled as in black-tea manufacture, next spread out in the suu till they take a blackish tinge, then again rolled, and this rolling and exposure may be repeated yot a third time. When the rolling i: completed the tea is placed in a highly heated pan, in which it is otirred about briskly till the whole mass becomes too hot to be worked by hand. Then it is tightly packed in a strong canvas bag, in which it is besten by a heavy flat stick to consolidate it, and in this condition left for a night. Next day it is fired off iu a pan, beginning with a high heat, which is gradually reduced during the nine hours or thereby of the operation, an incessant atirring and tossing being kept np the whole time. During this firing oll the green colour of the tea is developed; and Indian green tea never owes any of its colour to "facing" with foreign substances.
The qualities of a sample of tea and its commercial value can only with accuracy be determined by actual infusion and trial by a skilled tea-taster. Certain general and extermal appearances which indicate the class of a tea are obvious enomgh, out, although a pekoe may be readily distinguished from a souchong, the souchong of certain planters or districts may be more valuahle than other pekoes. While it is impossible to defne the conditious which determine the commercial value of an ordinary black tea, Col. Money lays down the following rules: the darker the liquer the atronger the tea, and the nearer the approach of the infused leaf to a uniform salmony brown the purer the flavour. Black tea of good quality should in infusion yield a clear bright brown liquor emitting a subdued fragrance, and in tasto it ehould be mild, bland, and sweetish, with an agreeable astringency. Green tea yields a light-coloured liquor of high fregrance, but thrn, sharp, and somewhat rasping in taste as compared with black tea.

The chemical components of tea leaves are essential oil, theine tannin, boheic acid, quercetin, quercitannic acid, gallic acid, oxal c acid, gum, chlorophyll, resin, wax, albuminoids, colouring matterg, cellulose, and mineral ash. Of these the first three-essential ail, theine, and tannin-are of importance in the infused beverage. The esseutial oil, on which the flavour of tea depends, is present to the extent of from 0.5 to 1 per cent. Theine $\left(\mathrm{C}_{6} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ is an alkaloid identical with the caffene obtained from coffee, and it is remarkable that the same substance is yielded by the mate or Paraguayan tea and the guarana of South America, and ly the kola nut of Ceutral Africa. The theobromine of cocoa is also closely allied to theine, and the characteristic components of the extract of meat similatly show certain points of contact with these stimulent bodies. 'lo the tamin of tea jufusions is due what is known as the strength of the tea. Prof. Dittmar has recently examined a number of China amd Indian teas in regard to the proportions of theine and tamiu in their infusions and to the dependence of these proportions on the time of infusion. Tlee general result was that Chinese tea yields more theine and less tanuin than Indian tea, and that in both cases 10 minutes' infusion extracte practically all the theine. Loncer infusion adds only to the tannin that passes into the oolution, and, ss excess of tannin impedes diges. tion, prolonged infusion is burtfinl and onght to be avoided.
The quantitative compositiou of tea is of course subject to great variation. The analyses by Mul. der giveu in the accompanying table furnish a general iden of the pioportion of constitnents.
A series of investigations into a large number of teas has been carried out by Mr G. W. Wigner (Pharm. Jour., 3d 6eries, vi. 261, 281, 402). In tea as imported he found large proportions of moisture which could be expelled on exposure to a temperature of

	Hyson. Green.	Congon. Black.
Volatile oil	0.79	$0 \cdot 60$
Chloropbyll	2-22	1.84
Wax.	0.28	$0 \cdot 00$
Resin..	$2 \cdot 22$	3.64
Gum.	8.56	$7 \cdot 28$
Tannin	17.80	12.88
Theinel..	0.43	0.46
Extractive matter.	22.80	$21 \cdot 36$
Colouring matter...	23.60	$13 \cdot 12$
Alburacs.	$3 \cdot 00$	$2 \cdot 80$
Woody fib	17×08	$28 \cdot 32$
	$98.78{ }^{2}$	98.30^{2}

So long as the Western world remained almoet exclusively
1 Tha theine la certainly understated; more recent observera obtain from 1 : 8 to 3 per cent., and occadionally more.
0,2 The mineral ealts (ash) partly included In these totals amonntel to $5 \cdot 85$ and 5.21 respectively
depeadent on China for its tea supply, adulteration was rampant and multiform in the trade. Especially among green and fancy teas there was ecarcely such a thing as an unsophisticated sample to be obtained. The Chinese were also expert in fabricating in artificial gunpowder-appropriately known as "Ite tea,"-which conaisted of the sweepings of tea warehouses artfully made np with a paste of rice water. Paddy husks and many kinds of leaves faced with China clay, boapstone, catechu, and black lead also found their way abundantly into tea. On the European side, exhausted leaver were again dried, impregaated with catechu and gum, and faced up to do duty os fresh tea, and the leaves of numerous plants -sloe-thorn, hewthors, willow, beech, plane, Epilobium angustifolium, \&c.-were freely worked up as tea. Λ dalterated tea is now, however, comparatively rare, largely owing ta the watchfulness of the customs authorities. Moreover, as it is ncarly as cheap to make tea from the leaves of the tea-plant as from those of any ather herb, thero is not much incentive to substitute the false for the real.

At a very early period in the European history of tea the probable effects of its use an the health and morala of the population attracted jealous attention, and a great deal was written, mostly in 3 hostile sense, on the subject. In 1678 wo find Mr Henry Savile writing to his uncle, Mr Secretary Coventry, in oharp reproof of certain frionds of his "who call for tea, instead of pipes and bottles after diuner, - a hase unworthy Iucian practice, which I must cver adnire your most Christian family for not admitting." And he adds, with an andible sigh, "the truth ia, all nations are srowing so wicked as to have some of these filthy customs!" Some of the writers, however, although resolute for its baoishment from tho caddy, were willing to give it a place in tho medicine chost. "Among many otlier novelties," saye a medical writer in 1722 , "there is one which seems to be particularly the cause of the Lypochondriac disorders, and is menorally known by the nanie of thea, or tea. It is a drug which of late years has very much iosinuated itself, as well into our diet as regales and entertainnents, though its occupation is not less destructive to the animal economy than opium, or some other drugs which we have at present learned to avoid. "i Dr Lettsom was the first medical writer who gave the public a ressonable and scicatific account of the plant; but eren he let the fear of its aluse ran away with his judrment, assertiug that "the first rise of this pernicious custom [that of drinking 日pirits to excess] is often owing to the wealness and debility of the system brought on by the daily habit of drinking tea; the trembling hand secks a temporary reliof in some cordial, in orler to refresh and excite again the enfeebled eystem, whereby such parsous almost necessarily fall iuto a hahit of intomperance." ${ }^{2}$ Jodas Haaway (Essay on Tca, 1756) was among its most vigorous assailants. "Men," be says, " seem to have lost their stature and comeliness, and women their leanty What Shakespeare ascribes to the concealment of "love is in this age more frequently occasioned by the use of tea. "To thesa complaints echoes were not wanting, but after a while the tea-drinkers had it all their owr way. In the meantime, however, tea was not without its apulogists. To say nothing of our own familiar poets and esseyists, its praises have been sung by Herrichen and by Fraacius in Greok verses, by Pecklin in Latin opigrame, by Pierre Pctit in a Latin poom of five huadred lines, and by a German. versifier, who colebrates, in a fashion of his awn, its "burial and bappy resurrectiou." ${ }^{\text {" Huet, bishop of Avraaches, has also paid his graceful }}$ tributo to a stimulaut to which, probably, no scholar was ever more indebted, and which be continued to enjoy at the are of minety. Dr Johnson draws his own portrait as "a hardened and shameless tea-driaker, who for twenty years diluted his meals with only the infusion of this fascinating plant; whose keitle had bearcely time to cool; who with tea amused the ovening, with tca solaced the midnight, and with tea welcomed the morning."

Authoritice are not yet by any means sgreed as ta the exact physiological inflence and value of tea. The very striking fect that theise is preeissly the characteristic constituent of coffee, maté, guarana, and the kolannt, all cubstances eagerly sought after iu dificrent quarters of the giobe, serves to show that the alkaloid satisfies come craving of the human oystem, al though what its effect is has not yet been certainly determined. The quantity of theine ousnured even by the most zardened tea-drinker is exceedingly ninute, and thero are not wanting authorities who assert that it is pr, tically inert, an assertion surely contradicted by the general instinct of the race. What is indisputable about tea drinking is that it forms an agreeablo merns of imbibing the proportion of sater neccos31) in horuan nutrition, which, beiug taken hot, com-

[^25]municates to the system a diffused warm glow. Further, as used by Westeru commuities, it is a medium of taking, in the form of sugar and cream, no iuconsiderable amouut of real uutriment. The other effects of tea are more a matter of general impression than of ascertained acientific reality. Its virtues have nowhere been better summarized than by the earliest Chinese writer on the subject, tho above-mentioned Lo Yu, who saya, "It tempers the spirits and harmonizes the mind, dispels lassitude and relieves fatigue, awakens thaught and prevents drowsiness, lightens or refreshes the body, and clears the perceptive faculties." The gentle exhilaration which accompanies the moderate use of tes is not followed by the depression which aucceeds the use of alcoholic stionuli. Experience has ploved that it bustains the frame mader severe mascular os mental exercise without causing eubsequent exhaustion and collapse Tea is frequently found to be beneficial to sufferers from nervou. headache, and it counteracts to some exteat the effects of aicoho. and of opiates. Taken in excess it produces cerebral excitement, elceplcesness, and general nervous irritability. The tannin contained in ifs infusions also interferes with the flow of the saliva, diminishes the digestive activity of the stomach, and impedes the action of the bowels. In this view the large quantity of strong tea used by the poor-and especially by the sedentary poor, -while eerving to blunt the keen tooth of sunger, must work incalculable havac with the digestive and nervous eystems of the consumers.

It is a remarkable fact that no mention of tea is made by Marcs Polo, and that no knowledge of the substance oppears to liave reached Europe till after the establishment of intercourse between Portagal and China in 151\%. The Portuguese, however, did little towards the introduction of the herb into Europe, and it was not till the Dutch established thomselves at Bantam early in the 17 th century that these adventurers learned from the Chinese the habit of tea drinkiog aud brought it to Europe.

The earliest mention of tca by on Englishman is probably that contained in a letter from Mr Wickham, an agent of the East India Company, written from Firando in Japan, on the 27 th June 1615 , to Mr Eaton, another officer of the company, resident at Macao, and asking for "a pot of the best sort of chaw." How the com. mission was exccuted does not appcar, but in Mr Eaton' subse. quent accounts of expenditure occurs this item-"three silver porringers to drink chaw in.

It was not till the middle of the century that the Engliob beran to use tea, and they also received their supplies from Java till in 1686 they were driven out of the island by the Dutch. At first the price of tea in England ranged from $£ 6$ to $£ 10$ per 15 . In the Nercurias Politicus, No. 435, of September 1658, the following advertisement occura:-"That excellent and by all Physitians approved China Driuk called by the Chineans Tcha, by othes nations Tay, celias Tre, is sold at the Sultaness Head, a coplec-bouse in Sweetinga Reats, by the Royal Exchange, Loudon." Thomas Garway, the first Englizh tea dealer, and founder of the well-knowiu coffee-house, "Garrabay's," in a curious broadsheet, An Exact Description of the Grouth, Quality, and Virtues of the Laff Tea, issued in 1653 or 1600 , writes, "in respect of its scarceness and dearucss, it hath been only used as a resalia in high treatments and enter tainments, and presents made thereof to princes and grandeas," In that year he purchascd a quatity of the rare and much-prized commodity, and offered it to the public, in tho lcaf, at fixed prices vary. ing from 15 s . to 50 s . tho 10 , accordiag to quality, and also in the infusion, "made according to the directions of the most knowing merchants and travellers iuto those eastern countries." In 1060 an Act of the first parliament of the Restoration imposed a tax on "every gallon of chocolate, 日lerbet, and tea, made and cold, to be paid by the maker thereof, eightpence" (12 Car. II. c. 23).
Pepye's often-quoted mention of the fact that an the 25 th September 1660, "I did sund for a cup of tee, a China driuk, of waich I never had drank before, ${ }^{3}$ proves the novelty of tee in Englead at that date. In 1664 wo find that the East India Company presented the king with 2 th and 2 oz. of "thea," which cost 40s. per f , and two years afterwards with another parcel containing $22 \frac{8}{4} \mathrm{lb}$, for which the directors paid 60s, per tb. Both parcels alpear to have been purchesed on the Continent. Not until 1677 is the Company recorded to have taken any steps for the importation of tea. The order then given to their agents was for "teas of the best kind to the amount of 100 dollars." But their instruc. tions were coosiderably exceeded, for the quantity imported in 1678 was 4713 iJ, a quantity which seems to have glutted the market for several years. The angale of the Company reeord that, in Febraary 1684, tho directors wrote thus to Madras:-"In regard thea is grown to be a commodity here, and we have occasion to make presents therein to our great friends at conrt, we would have you to send os yearly five or aix canisters of the very best and freshest thea." Until the Revolation no duty was laid on tea other than that lavied on the iofusion as oold in the coffee-housea By 1 Vivilliam and Mary c. 6 , a duty of 5 s. per th and 5 per cent. on the value was ioposed. For eeveral years the quantities im yorted were very amall, and consisted exclusively of the finer sorts. I'ho furst dircet purchacs in China was maje at Amuy, the teas
previously obtained by the Company's factors having been purchased in Madras and Sumt, whither it was lrouglit lyy. Chinese junks after the expulsion of tho Dritish from Jovn. During the closing ycars of the coutury the amonnt brought orer secms to have been, on the averaye, alont $20,000 \mathrm{tt}$ a y car. The instructions of 1700 directed the supereargoes to senct home 300 tubs of the finer green teas anrl 80 tubs of bolien. In 1703 orders were given for "75,000 1h. Singlo (green), 10,000 it jmprrial, and 20,000 lb bohea." The average price of tea at this perioul was 16 . per lt.

Duriner the 100 yerss from 1710 to 1810 the aggregate sale of tea by the l'ast Imilia Company amounted to $750,219,016 \mathrm{tb}$, worth $£ 129,804,595$, of whech $116,470,675 \mathrm{H}$ was re-cxported. The duties during that contury (excentiner a poriod of eleren years, 1784-95, when they were only $12 \frac{1}{2} p^{3 e r}$ cent.) were excessive, amounting to ahont 200 per ecut. on the value of common teas. The results of so enormons it thx wero the creation of a gigantic smuegling trade, extensive athlteration of imported teas, and mneh fabrication of counterfeit tea within tho comentry. Probably the duty-paid tea did not rimesent more than half what was consumed wnler the name of tea. The following table exbibits the priacipal facts connectel with the thate during tho period of the Company's monopoly, which terminatcal on the 2 ed of April 1834, when the trade whs thrown opien to all, the prices quoted being those of goed qualities in the Company's warchouse or in bond:-

	Average Prtee ner ${ }^{\text {rab }}$	Pates of Duty.	Home Con sumiptlon. 1b.
1728	[32/6 (duts included)]	4/ PCC 1b, and $213,18.51 \%$	1,493,0:6
1760		1/31er tb, and $£ 43,18 / 7!\%$	$3,860,976$ 6,202
$\begin{aligned} & 1783 \\ & 1783 \end{aligned}$	5/ condoa; 9.10 liyson	1/1: per 10, and $£ 55$, 15/19	$6,202,257$ $4,7+1,522$
3784	4/10 congux ; $8 / 3$ hyson.	£12, $10, \mathrm{ncr}$ ceut.	10,150,700
1785			14, 500, 032
1786	4 Ti congoul ; 71 hysm.		15,851,747
1795	\%, 3 congou; fi/t hissun..	£20 per cent	$21,3+2,845$
1801	3/5 collgou; 56 ly'son..	250 per cent., $£ 30$ under $2 / 6$.	23,730,150
1822	3/ congoll: $5 / 4 \mathrm{l}$ yson...	2100 and 200 per cent.	26,354,537
1833	2/61 congou; 4.2 hyson.	$1^{31,829,690}$

The progressive increase in the consumption of tea in the United Kingelom during 50 years from 1836 till 1886 is instructively shown in the accompanying diagram constrveted by Mlessrs J. C. Sillar ant Co., of Lomlon. The totted line represents the average monthly consumption in encly year; the fluctuations in price of foon samid congou aro thaced by the black line; and the years in which rectuced chstoms duty came into operation are indicated along the base. From 1860 onwarls the ainonnt of Indian tea cutered for lome consumption is shown in monthly average by a black column. This column brings ont the remarkable fact that the Intion tea consumad in the Unitel Kiagdom in a year now exceeds the total

consumption of all kinds in 1860, and is more than double the whole quantity used fifty years ago.

The following table sloows the growth of the British tea trade for five years cuding 1885 :-

	India.	Ceyton.	China,	Hong Kung.	$\begin{gathered} \text { Total } \\ \text { imperts. } \end{gathered}$	Home Consumpilon.
1891	45,434,130	171.676	51,742,59	10,445,35s	209,801,122	160,225,011
1882	53,576,690	50, 631	112,706,457	10,520,015	210,663,133	115,069,339
1889	50,252,435	2,005,510	145.21? 136	10,563,695	220,262,431	170,529,431
1594	63,208,309	$\because 210,983$	1.4,293.091	2,411,45;	213,87i,759	375,090,875
1885	63,794,025	4,242,24.4	131,234,354	$8,353,829$	212,123, 820	152,443,215

The consunption of tea in the United Fingdom per head was in 1840 1 22 th, which increased in 1850 to 9.86 tb ; is 1860 it reached 2.67 tt , in 18703.81 tb , in 18504.06 tt , and now (1887) it is about 5 It .

Moxt to the United liingtom, the greatest tea-mporting nation is the United States, Notwithstanding that tea has from 1873 been duty free duty 25 cents per th in 1870, 17.72 in 1871, and 15 in 1872), the habit of ten drinking does not grow in America as it is tomen to do in the British Isles, as is shown by the accompraying table. Of the $72,104,956 \mathrm{It}$ of tea imported into the United States in the year onded June 1885, $35,895,835$ tb was Chinese, $32,156,032$

Year ending 30th Junc.	ib entered ior Consumption.	Per Head.
1870	$40,812,189$	1.06
1571	$46,972,789$	1.19
18,12	$34,224,494$	0.84
1873	$106,423,570$	2.55
1875	$64,705,079$	1.47
1580	$72,159,266$	1.44
1881	$81,949,796$	1.59
1882	$79,030,854$	1.50
1893	$70,711,225$	1.31
1884	$65,774,234$	$1 \cdot 18$
1885	$69,820,172$	1.22

3,540,148 to came from England. Nearly 6,000,000 th was reexpater:, principally in Canada.

Next to the Euglish, the Dutch are the greatest consumers of tea outside of China; and the only other considerable tea-using nation 1s Russin. Tho following table rives the amount of tea iunported in the feary $185 \pm$ by the prinerpal tea-drinking comntries:-

Russia	$35,600,000$ 古 $=$	-43 tt jer head.	
Holland	3,900,000 $\quad=$	$\cdot 91$	
Demmark.	§20,000 , =	- 01	
New South Wales.	8,437,981 ${ }^{\text {, }}=$	$9 \cdot 15$,',
$V \mathrm{~V}$ torin.	11,521,205 $\quad=$	11.99	"
Sunth Anstralia	2,229,993 ${ }^{\text {, }}=$	$7 \cdot 00$	
Queenslant...........	2,757,277 ,	$8 \cdot 75$	
Cate of Goot Hope...	1,295,042 $\quad=$	$5 \cdot 00$	"

By this table the Anstraliau colonists come out as the most inveterato tea-drinkers in the work. The quantity received by Holland in 1854 was $2,250,000$ Jh less than the imports of 1883°, bitt tho average of recent times has been $4,500,000 \mathrm{Ht}$.

The yuantity consumed in China has been estimated as high as 2000 millions of pounds annually, being at the rate of a littlo nore thau 5 It per henl of the popnlation; and, considering the teadrinking labits of the poople, the estimate is by no means extravagint. In this light it nay be safe to affirm that the amonnt of tea used yearly thronghout the world reaches the gigantic totn] of 2500 millions of pounds.
Bibliography.-The frerature of tea is revy copions but much seattered. The following works may be named:-Bontekoe, Traciuh van het excellensto hruyd Thee, The Haglic, 1679: Sy Westre Dufoni:, Trailes Nouveaur et Curieux du Cafi, du The et du c\%ocolat, ed ed.. Lyons, 1658 (translation of lst edition by John Chamberlayne, London, 1 css; ; tanslations aiso in Spunish auld Latin); J. G. Houssaye, AOnographie du The, Paris, 1843; Robert Fontune, Thece Jears Ching, London, 185?: S. Ball. Tea Cultivation in China, London, 18.15. J. J. L. Jacobson, Handboek eoor de Tiulturr en Fabrikatie van Thee, 3 vols is.3. S. A. Schwarzkopf, Die narkotischen Genussmittel-1. Der Thee Hallo 18s1. Licut. Col. E. Moncy, Cultivalion and Janufackure of Tica, 3d ed., London, 1878: F T. R Deas, Young Tea Piantre Jonulachre of 2ca, 3d ed., London, 1878; F. T. R. papars and official publicatlons of Indian Government; Jour. Roy. Asiacic Soc. Jour, Agri, and LUorti. Soc. of Indic; Soc. of Arts Journ., \&c. Ry. Asiastc Soc.
(J. PA.

TEAK ${ }^{3}$ may justly be called the most valuable of all known timbers. For use in tropical countries it has no equal, and for certain purposes* it is preferable to otler woods in temperate climates also. Its price is higher than that of any other timber, except mahogany. ${ }^{2}$ Great efforts Late been made to find substitutes, but no timber has been brought to market in sufficient quanfities combining the miany valuable qualities which teak possesses.

The first good Ggure and description of the tree was given by Rheede. ${ }^{3}$ The younger Linnaus called it Tectona yrandis. It is a large decituous tree, of the natural order Verbenacer, with a tall straight stem, a spreading crown, the branchiets four-sided, with large quadrangular pith. It is a native of the two Indian peninsulas, and is also

found in the Philippine Islands, Jara, and other islands of the Malay Archipelago. In India proper its northern limit is $24^{\circ} 40^{\prime}$ on the west side of the Aravalli Hills, and in the centre near Jhansi, in $25^{\circ} 30^{\prime} \mathrm{N}$. lat. In Burmah it extends to the Mogoung district, in lat. $25^{\circ} 10^{\prime}$. In Bengal or Assam it is not indigenous, but plantations have been formed in Assam as far as the 27 th parallel. In the Punjab it is grown in gardens to the 32d.
Teak requires a tropical climate, and the most important forests are found in the moister districts of India, where dusiog the summer montlis heavy rains are brought by the south-west monsoon; the winter months being rainless. In the interior of the Indian peninsula, where the mean annual rainfall is less than 30 incles, no teak is found, and it thrives best with a mean annual fall of more than 50

[^26]inches. The mear annual temperature which suts it best lies between 75° and 81° Fahr. Near the coast the tree is absent, and the most valuable forests are on low hills up to 3000 feet. It grows on a great variety of soils, but there is one indispensable condition-perfect drainage or a dry subsoil. On level ground, with deep alluvial soil, tcak does not often form regularly shaped stems, probably because the subsoil drainage is imperfect.

During the dry scason the tree is lealless ; in hot localities tho leaves fall in January, but in moist places the tree renains green till March. At the end of the dry season, when the first monsoon rains fall, the fresh foliage comes out. The leares, which staud olposite, are from I] to 2 feet in length and from 6 to 12 inches in breadth On coppice shoots tho leaves are much larger, and not rarely from 2 to 3 feet long. In shape they somewhat rescinble those of the tobacco plant, but their substance is hard and the surface rougl. The small white flowers are fery numerous, on large erect cross-branched panicles, which terminate the branches. They appear during the rains, genarally in July and August. and the seed ripens in January and February. On the east side of the Indian peninsula, the teak flowers during the rains in October and Novcmber. In Java the forests are leafless in Septenber while duriag March and April, after the rains have commenced, they are clothed with foliage and the flowers open. During the rainy season tho trec 's readily recognized at a considerablo distance by the whitish fower panicles, which overtop the green foliage, and during the dry season the feathery seed-bearing panicles distinguish it from ail other irces. The small oily seeds are eיpelosed in a hard bony 1-4 celled nut, which is surroundied by a thick covering, consisting of a dense felt of natted hairs. The fruit is enclosed by the colarged membranous calyx, in appearance like an irreguiarly plaited or crumpled blacder. The tree seeds freely every ycar, but its spread by means of selfsomn seed is impeded by the forest fires of tho dry season, which in India generally occur in March and April, after the seeds hare ripened and have partly fallen. Of the seeds wnich escape, numbers are washed down tho bills by the first heavy rains of the monsoon. These collect in the ralleys, and it is here that groupz of seedlings and young trees are frequently found. A portion of the seed remains on the tree; this falls gradually after the rains hare commenced, and thus escapes the fires of the hot season. The germination of the sced is slow and uncertain; a large amount of noisture is needed to saturato the spongy covering; many seeds do not germinate until the eecond or third year, and many do not come up at all.

The bark of the stem is about half an inch thick, grey or brownish grey; the saprood white; the heartwood of the green tree has a pleasant and strong aromatic fragrance and a beautiful golden-yellow colour, which on seasoning soon darkens into bromra, mottled with darker streaks. The timber retains its aromatic fragrance to a great age. On a transserse section the mood is marked by large pores, which are more numerous and larger in the spring wood, or the inner belt of each annual ting, whilo they are less numerous and smaller in the autumn wood or outer lelt. In this manner the grorth of each successive jear is marked in the wood, and the age of a tree may be determined by counting the annual rings.

The principal value of teak timber for use in warn countries is its extraordinary durability. In India and in Durmela beams of the wood in good preservation are often found in buildings aeveral centuries old, and instances are known of teaik beams having Iasted more than a thousand.years.* Being one of the few Jndian timbers

[^27]which are really durable, teak has almays been used for buildings, particularly for temples, and in India it has been the chief timber cmplayed for shipbuilding. When iron commenced to he extensircly use, for the last-mamed purpose, it was supposed that the demand for teak would decrease. T'his, however, has not been the case, for the wood is still very largely used for the backing of irouiluds and for lecks of large vessels. It is also used for furniture, for door and window frames, for the construction of railway earriages, and for many other purposes. White ants eat the sapwool, but rarely attack the heartwood of teak. It is not, however, proof against the borings of the terelo, from whose attacks the teak piles of the wharves in the Rangoon river bave to be protected by a shoasthing of metal.
Once seasoned, teak timber does not split, crack, shrink, or Ther its shape. In these qualities it is superior to most timbers. I 1 contact with iron, neither the iron nor the teak suffers, and in this respect it is far superior to oak. It is not very hard, is easily worked, and takes a beantiful polish. It las great elasticity and strength, and is not very heavy. The averago weicht of perfectly seasoned wood fluctuates between 38 aud 46 th per culic foot. ${ }^{2}$ Its weight, therefore, is a little less than that of English oak. Green teak timber, however, is heavier than water, and unless thoronghly seasoned it camot be floated. In Burmah, therefore, where the rivers are used to float the timber to the seaports, a peculiar mode of seasoniog teak hy girdling has been practised from time immemorial. Girdling consists in making a deep circular cut through bark and sap into the leartwood, so as e, mpletely to sever communication between bark and sapwood above and below the cut. In teak, as in oak and other trees with well-marked heartwood, the circulation of the sap only takes place in the sapwool, and the girdleal tree therefore dies after a few days if the operation has been effectually performed. But if even the smallest band of sapwood is left connecting the outer layers of wood above and below the girdle, the tree is not killed, and of ten recovers completcly. The girdled tree is allowed to stand one or two years, and longer if a very large-aized tree. Being exposed to the wind and to the action of the sun, the timber of a girdled tree scasons more rapidly and more completely than that of a tree felled green. The teak produced in the presidencies of Madras and Bombay and in the Central Provinces is as a rule felled green, and even when dry it generally is a little beavier than the timber from Burmah. ${ }^{2}$ For a long time to come, the rivers of Burmah nad Siam will continue to afford the most convenient and most economical routes for the transport of timber. Indeed the forests drained by the Salwin and its fecders are not likely ever to be worked otherwise than an the present plan, under which the logs are floated singly orer the rapids and are caught and rafted lower Jown, at the kyodan or rope station, 70 miles above Mnulmain.

As already mentioned, teakwood contains an aromatic oil, which gives it a peculiarly pleasant smell and an oily surface when fresh cut. To this ail may probably with justice be ascribed its great durability. In Burmanoil is extracted from the timber on a small scale, for medicinal purposes, by filling an earthen pot, which is placed inverted upon another, with chips of wood, and putting fire round it, ufon which the oil runs down into the lower vessel.

Accorling to the colour and texture of the wood, several varieties of teak are distinguished in India, Burmah, and Java; in the timber trade, however, these distinctions are of no importance. Teak as well as other trees, when standing isolated, forms side branches far lown the stem, and the wood of such trees is more knotty and wary, and generally heavier and darker-coloured than the timber of trees which hare grown close together in a dense forest. Apart from the manner in which the tree had grown up in the forest, soil, elevation, and climate bave a great influence upon the grain and tho mechanical qualities of teak as of other timbers. Most of the larger logs brought to market have an irregular crack or hollow in the centre, which commences at tha butt and oftell runs up a long way. There is little doubt that this is generally due to the action of the fires, which scorcb and of ten destroy the luark of young trees. Such external injuries are apt to induce decay in the wood. Moreover, most teak seedlings which come up naturally are cut down to the ground by the fires of the hot season;
preservation and showed the peculiar structure of teak timber in a very marked manner. They had been in the building for 500 years (Indian Forester, vol. vii. p. 260). In the wall of a palace of the Persian kings near Baghdad, which was pillaged in the 7th century, two Americans found in 1811 pieces of Indian teak which were perfectly sound (Ouseley, Travels in Various Countries of the East, vol. ii. p. 250, note 67). In the old cave temples of Salsette and elsewhere in western India pieces of teak have been found in good preservation which must have been more than 2000 years.old.

1 At 44.8 th per cubic foot a load of 50 eubic feet weighs a ton (2210 tb), heoce in the Eurmah ports a ton of teak timber is taken as equivalent to a load of 50 cubic feet.

2 It has been erroncously stated that the tree in Burmah is tapped for its wid before felling.
some are killed, but many sprout again daring the rains, and this is generally repeatud year after year, until a sapling is produced strong enough to outlive the fire. Such snplings have a very larga pith, which dries up, causing a hollow in the heart. Or a piece of the old shoot killed by the fire is enclosed by the new mood, and this also is apt to gire rise to a hollow.

The leaves of the teak tree contain a red dye, which in Malabar was formenly used to dye silk and cotton. Nintives of Burmah use the leaves as plates, to wrap up parcels, and for thatching.
In its youth the tree grows with extreme rapidity. Two-yearold seedling\% on good soil are 5 to 10 feet bigh, and instances of moie rapid growth are not uncommon. In the plantations which lave been made since 1856 in Burmah, the teak has on gooll soil attaiced an average height of 60 feet in 15 years, with a girth, breast high, of 19 inches. This is between 16° aml $18^{\circ} \mathrm{N}$. lat., with a mean annuar temperature of $78^{\circ} \mathrm{F}$. and a rainfall of 100 inches. In the Burmah plantations it is estimated that the tree will, under farourable circumstances, attain a diameter of 24 ioches (girtb 72 inches) at the age of 80 . Timber of that size is marketable, but the timber of the natural forests which is at present brought to market in Burmah has grown much more slowly, the chief reason being the ammal forest fires, which harden and intpoverish the soil. In the natural forests of Burnah and India teak timber with a diameter of 24 inches is never less than 100 and often more than 200 years old. In future, the timber grown in luantations and in forests noder regular management may be expected to grow much faster; and there is no ground for anticipating that rapidly grown timber will be less valuable than that of slow growth, which is at present bronght to market.
Like the other trees of the dry leciluous forest, teak does not attain any extraordinary size. The trees are not generally more than 100 to 150 feet nigh, even under the most favourable circumstances, and stems more than 100 feet to the first branch are not often found. Exceptionally tall trees were measured in 1861 in the Gwaythay forest in Pegu, east of the Sitang river, on goeiss. The stems liad 106 to 114 feet to the first branclr, with a girth, at 6 feet off the ground, from 7 to 16 feet. Larger girths, up to 25 feet, are not uncommon.
The teak tree does not usually form pure forests. It is asso. ciated with bamboes and a great variety of other trees, which have little market ralue, and, as a rule, thrives best in such company. Hence in the plantations established in Burmah, the alject has been to raise forests of teak mixed with bauboos and other trees.

Most of the teak timber produced is consumerl in India. The produce of the magnificent forests of Travancore, Cochin, the JIadras wresidency, Coorg, Nysore, Bombay, Berar, and the Central Provinces is all so consumed. Formerly there was a considerable export from the ports of the western coast, - Maluhar, Kanara, Surat, and Broach, - but the country at present requires all the teak which its forests can produce; indeed the demand is in excess of the supply, and large quantities are imported from Burmah to Calcutta, ITadras, Bombay, and other ludian ports Small quantities are still e.ported from the ports of the western coast to Arabia and the coast of Africa. The cbief export is from Burmah, pridcipally from Rangoon and Maulmain. Of the other teak-prodncing countries, Java exports a little; there have also been exporis from Saigon; and since 1882 Eankok has sent considerable quantities to Europe. But the Burmah coast is the cbief source of supply at prosent. Rangoon bas for a very long time been an important place for shipbuilding, teak being the chief timber* used : between 1786 and 1825111 European vessels were built at Rangoon, aggregating 35,000 tons. At the same time timber was exported, and, when the nl?or. was taken by the British in 1852, teak was the chief article of export. Jlaulmain became British territory at the close of the first Burmese war in 1826. At that time the place was a large fishing village, and it was mainly througb the expert of teak timber and the shipbuilding trade that it attained its present importance. From 1829 to 1841 upwards of 50,000 loads of teak tiniber were exported, and, in addition, 68 vessels were built during that period, aggregating 15,680 tons, and estimated to have required for their construction 24,000 loads of teak tiuber. The forests from which Blaulmain first derived ita suppliea are situated on the Attaran river, a feeder of the Salwin. In 1836, however, timber began to come dewn from more distant forests, and in 1841 one-fourth only of the supply was brought from the Attaran forests.

The increase in the export of timber from the Burmah ports was slow at first, but has gone on ranidly since Rangoon became a British port. Siuce that time the timber brought to the Burmah ports has come from the following sources:-(I) from the forests in the British coast provinces, Pegu and Tenasserim ; (2) from the forests in the former kinglom of Burmah, floated to Rangoon down the Sitang and Irrawaldy rivers; (3) from the forests in the Shan states formerly tributary to Burmah, from the Karenai coantry, and from Siam, which is all floated to Maulmain by the Salwin river. Since 1856 the increase of the supply derived from these three sources has been large, as will be appareat from the following
averages for the eight years $1856-57$ to $1863-64$ and for the two years 183き－84 and 1884－85：－

	$\begin{gathered} 1856-7 \text { to } \\ 1863-4 . \end{gathered}$	$\begin{aligned} & 1883-4, \\ & 1884-5 . \end{aligned}$
From the Eritish coast provinces，Fegu and Tenasserim． From Burmah by Sitang and Irrawaddy rivers．．． Frora Shan states，Karenni，and Siam，by Salwin river．．．．	Loads． 22，675	$\begin{aligned} & \text { Loads. } \\ & 44,223 \end{aligned}$
	6，890	66，663
	55，491	163，751
Total supplles． Exports by sea． Local consumption In Rungoon and Maulmain	85，056	274，642
	76，763	153，192
	8，293	121，450

Of the quantities exported，between 38,000 and 65,000 loads ${ }^{1}$ have gone beyond India during this period，the balance having been sent to Calcutta，Bombay，and other Indian ports．The quantitics here stated do pat include the timber consumed in Upper Burmah， nor that brought from the forests draincd by the Menam and Mekhong rivers on the east side of the lndo－Chinese Peninsula，nor the teak produced in Java and the other ialands of the Nalay Archipelago，and in the extensive forests of the western peninsnla of India．No data are yet available for a precise catimate；but the total amonnt yielded by these forests，and consumed locally or exported，appears to be not less than 500,000 loads or tons a year．

In British India a large potion of tho teak－producing tracts have since 1856 been placed uuder conservancy management，and similar mensures will doubtless bo extended to the forests in Upper Burmah，now annexcd to the British empire，as well as to the forests of the feudatory uative states．In British India，the area of state forests demareated in order to loo permonently con－ ocrved ${ }^{2}$ was in 1885 （in round figures） 33,000 square miles，and the teak－producing tracts included in this area may be estimated to cover about 12，000 square miles，or $7,680,000$ acrew．Large additions will be made to this area，especially in Upper Burnah． Of teak plantations，12，000 acres have－been formod is Burmah， 563 acres in Coorg， 3436 at Nilamour in \＄lalabar，and about 2000 acres in other districts．There are good grounds for estimating the future yield of plantations at the rate of 50 cubic fect fone ton）per acre annnally．The natural fon sts will，in their preseut impoverished condition，not furnish more ：han one cubic foot per acre anmually，but，as protection against fire is gradually exteud－ ing，the proportion of teak is everywbere being increased by cultural operations in the forests，and the effect of these messures will eventually manifest itself by a considerable increase in the yield． In their present condition，the natural forests demarcated in India up to 1887 may be cxpected to yield 150,000 tons a ycar，while the produce of the plantations will eventually add 18,000 tous more．The teak forests in Java were surveyed in 1871 ，and their area was found to be 2250 Equare miles，while the plantations in that island in 1880 amounted to 24,710 acres．These figures will eerve to show that，if the system commenced in India and Java is maintained，there is no reasnn to apprehend a diminntion of the teak supply．
（D．BR．）
TEAL（OId English Tele），a word of uneertain origin， but doubtless cognate with the Dutel Tuling（formerly Talingh and Telingh），and this apparently with the Seandi－ navian Atteling－And（Brünnieh，Ornithol．Borealis，p．18） and Atling，which it seems impossible not to conneet with the Scottish Atteile or sitteal，to be found in many old records，though this last word（however it be spelt）is generally used in conjunction with Teal，as if to mean a different kind of bird；and commentators have shewn a marvellous ineptitude io surmising what that bird was．

The Teal is the Auas crecca of Linnrus，and the smallest of the European Anatidæ，ns well as one of the most abundant and highly esteemed for the table．It breeds in many parts of the British Islands，making its nest in places rery like those chosen hy the Wild Duck，A ．boscas；but there is no doubt that by far the greater number of those that are taken in decoys，or are shot，during the autuma and winter are of foreign origin．While the female pre－ aents the usual inconspicuons mottled pluange of the same sex in most species of A natinx，the male is one of the handsomest of his kind．His deep chestnnt head and throat are diversifid on either side by a line of buff，which，springing from the gape，runs upward to the eye，in front of which it forms a fork，one prong passing backward above and the other below，enclosing a dark glossj－green patch，and both losing themselves in the clongnted feathers of tho

[^28]hind－head and nape．The back and sides of tho body apper to be grey，an effect produced by delicate transverse pencillinga ot black on a dull white ground．The outer lanceolate scapulars have one－half of their nobs pure white，forming a conspicuous stripe along the sido of the back．The breast is of a palo salmon or peach－blossom colour，eacly feather in front bearing a roundish dark spot，but these spots lessen in number and size lower down，and ths warm tint passes into white on tho belly．The tail－coverts above and below aro velvety black，but those at the side are palc orange．

The Teal inhabits alnost tho whole of Europe and Asia，－from Iceland to Japan，一in winter visiting Northern Africa and India． It accasionally ocenta on the western shores of the Atlantic；but its place in North America is taken by its representative， \mathcal{A} ． carolinensis，the male of which is easily to be recognized by the absenco of the upper butf line on the side of the head and of the white scapular stripe，whilc he presents a whitish crescentic bar on the sides of the lower rock just in front of the wings．

Speeies more or less allied to these two are found in most other parts of the world，and among such species are some（for instance，the A．gibberifions of the Australian Region and the A ．eatoni of Kerguelen Island）in which the male wears almost the same inconspicuous plumage as the female．But the determination of the birds which should Lo teclunically considered＂Teal：，＂and belong to the subgenus Neftium（generally misspelt Nettion），as distinguished from other groups of Anatinx，is a task not yet successfully attempted，and much confusion has been caused by associating with them such specics as the Garganey（vol，x．p．80）and its allies of the group Quer－ quedula．Others again have not yet been diseriminated from the Wroeons．（q．r．），the Pintail－Ducks，Dafila，or even from the typical form of Anas（ef．Duck，vol．vii．p． 505），into each of which subgenera the Teals，Nettium， seem to pass without any great break．In ordinary talk ＂Teal＂seems to stand for any Duck－like bird of small size，and in that sense the word is ofter applied to the members of the genus Nettopus，though systematists will have it that they are properly Geese．In the same loose sense the word is often applied to the two most beautiful of the Family Anatidx，belonging to the genus EXx （commonly misspelt $A i x$ ）－the Carolina Duek of North Ameriea，E ．sponsa（not to be confounded with the abore－ named Anas carolinensis or Nettium curclinense），and the Mandarin－Duck of China，尼．gulericulata．Hardly less showy than these are the two species of the subgenus Euretta，－the Faleated Duck，E．falcata，and the Baikal Teal，E．formosa，－both from castern Asia，but occasionally appcaring in Europe．Some British authors have referred to the latter of these well－marked speeies certain Ducks that from time to time occur，but they are doubtless hybrids， though the secret of their parentage may be unknown；and in this way a so－ealled Bimaculated Duek，Anas bimaculata， was for many years erroneously admitted as a good species to the British list，but of late this has been properly discarded．
（A．ल．）
TECHNICAL EDUCATION．The special education， the objeet of which is to train persons in the arts and sciences that underlio the practice of some trade or pro－ fession，is technical education．Selools in which this training is provided are known as technical schools．In its widest sense，techuical education embraces all kinds of instruction that have direct reference to the eareer a person is following or preparing to follow；but it is usual and convenient to restrict the term to the special traising which helps to qualify a person to engage in some branch of productive industry．This education may consist of the explanation of the processes concerned in production， or of instruction in art or seience in its relation to in． dustry，but it may also include the aequisition of the manual skill which production neeessitates．The term techoieal，as applied to edueation，arose from the necessity of finding a word to indieato the special training which was needed in consequence of the altered conditions of
production during the present century. Whilst the changed conditions of production, coissequent mainly on the application of steam power to machinery, demanded a sjuecial training for those who were to be engaged in productive industry, the prevalent system of education was not adapted to the requirements of these persons, and schools were wanted in which the necessary instruction could bo obtained. Other circhmstances resulting mainly from the application of steam power to machinery have remdered techrical education necessary. Production on a !arge scale led to a great extension of the principle of the division of labour, in consequence of which it was found economical to keep a man constantly engaged at the same kind of work, since the more the practised it the quicker and more skilful he became. "Thus employed, the workman learned little or nothing of the.process of the mauufacture at which he assisted, or of other departments of the work thao the particular one in which he was engaged, and his only opportunity of acquiring such knowledge was outside the workshop or factory in a technical school. The economy effected by the division of labour ied to the extension of the principle to other industries than those in which machincry is largely employed. There are many trades in which manual skill is as necessary now as ever, but even in these the methods of instruction prevailing under the system of apprenticeship are now almost obsolete.
In many industries, including trades it which machinery is not as yet extensively employed, production on a large scale has increased the demand for unskilled labour, numbers of hands being required to prepare the work to be finished by a few artisans. Lapidity of exccution is attained by keeping a workonao at the same work, which after a time he succeeds in mechanically performing, and continues to do uutil some machine is invented to take his place. In most trades, as formerly practised, the master employed a few apprentices who assisted hiru in his work, and who learnt from him to understand the details of their craft, so that, when the term of their apprenticeship was over, they were competent to practise as journeymen. But now the master has neither time nor opportuoity to instruct young lads, and the old relation of master and apprentice is clanged into that of capitalist and workman. In consequence of these alicred relations between employer and employed, there is an acknowledged want of properly trained workmen in a number of trades in which skilful hand work is still needed ; and in these trades a demand has arisen for techuical schools, or some other substitute for apprenticeship, as a meaus of suit. ably training workmen and foremen. The ever-incrcasing competition in production has led to the employncut, in many trades, of childres to do work of a mechanical kind requiring little skill; but, whilst thus enuployed, these young people have little opportunity of learning those parts of their trade in which skill and special knowledge are needed ; aud when they are grown up, and seek higher wages, they are dismissed to make room for other children. Numbers of young men are thes thrown upou the labour inarket, competent to do nothing more that children's work, and to earn children's wages, and knowing no trade to which they can apply their hands. To remedy this, hy creating sone substitute for the old apprenticeshiy, is one of the objects of a system of technical education.
A complete system of technical education should provide necessary instruction for the different classes of persons engaged in productive industry. It is usual to divide these persons into three classes:-(1) workmen or journeymen ; (2) foremen or overseers; (3) managers or masters.
The industries in which they are employed may be grouped under four heads:-(1) those involving the use of extensive machinery, such as iron and steel manufacture,
machine making, the textile industries, and some of the chemical trades: (2) those which mainly require tho use of hand tools, as calinet-making, brick-work, plumLing, and tailoring; (3) those depending on artistic skill, an wool and stone carving, metal-chasing, decorative work, and industrial designing gencrally ; (\ddagger) agriculture in all its branches. These industries will be reforred to as manufactures, laadicrafts, art industries, and agriculture. The foregoing classification comprises grouns which necessarily, to some extent, overlap one another. Every factory contaius a carpenter's and suith's shop, and' handicraftsmen of group (2) are required in every manufacturing concern. Whilst the industries in which hand labour is oxelusively employed are becoming fewer and fewer, there are many trades which, owing to the frecqueut invention of labour saring appliances, are passing gradually from the class of Landicrafts to that of manufactures. in these trades, of which watch and clock making and boot and shoo making may be taken as examples, there is still a demand for grods largely if not entirely prodnced by hand work, In such trades, owing to tho absence of facilities for instruction in the ordinary slopls, there is a want of skilled hand labour which there is an iucreasing difficulty in satisfying, and to supply this want technical schools of different kinds have been established. Then, again, there are many lranches of manufacturing industry which greatly dejend for their success upon the designer's art, and it is neccessary that tho industrial designer should possess a knowledge of the processes of the manufacture in which his designs will be utilized, as well as of the properties and capabilities of the material to which they will be applicd. Indeed, it is the possession of this knowledge which mainly distinguishes the industrial designer from the ordinary artist, To determine the best training for such designers is one of the problems of tecinical education. There are many trades, too, in which the liandicraftsman and the designer should be united. This is the case in such industries as mood-engraving, metal-chasing, and silversmith's work. In these and other trades the true artisau is the artist and handicraftsman combined.
In order to reconcile some of the diferent views which are held as to the objects of technical education, it is necessary to keep in inind the broad distinction, above referred to, between the conditions of production on a large scale, as in those iudustries in whicly goods are manufactured by the use of extensive labour-saring machinery, and in those trades in which hand work is chiefly employed. Nuch of the diversity of opinion regarding the oljects of technical education is due to the difference of standpoint from which the problen is regarded. The volume of the trade and comraerce of 3ritain depends mainly on the progress of its mannfacturing industries. It is these which chiefly affect the exprorts and imports. The aim of manufacturers is to produce cheaper and Letter goods than cau be 1 roduced by other manufacturers at home or abroad; and technical education is ralualle to them, in so far as it enables them to do so. But the artisan engaged iu hand industries looks to teclmical education for the means by which lie may aceurire a knowledge of the principles of his trade, which the alsence of the systern of alprenticeship prevents hin from acnuiring in the slop. Hence the artisau and the manufacturer approach the consideration of the question from different sides. To the spinner or weaver who almost exclusively employs nomeu to tend his machincry, or to the manufacturing chemist whose workpeople are little more than labourers employed in carrying to and fro materials, knowing little or nothing of the scientific principles underlying the complicated processes in which they are engaged, the technical educstion of the workpeople may seemi to
be a matter of little moment. What such manufacturers require are the services of a few skilled engineers, artistic designers, or scientific chemists. From the manufacturer's point of view, thercfore, technical instruction is not so much needed for the hands he employs in his work as for the heads that direct it. But in trades in which machinery plays a subsidiary part, technieal teaching supplies the place of that instruction which, in former times, the master gave to his apprentice, and the workman looks to it to supply him with the knowledge of the principles and practice of lis trade, on the acquisition of which his individual success greatly depends. In the former class of industries, teclinical education is needed mainly for the training of managers ; in the latter, for the training of workmen. Hence has arisen a double cry,-for the teaching of art and of the higher branches of science, with a view to their application to manufacturing industry, and for the teaching of trades, and of the scientific facts which help to explain the processes and methods connected with the practice of these trades. This double cry has led to the establishment of technical universities and of trade schools.

Owing to the conditions under which manufacturing Industry is now carried on, it is difficult to select competent foremen from the rank and fie of the workmen. The ordinary hands gain a very limited and circumscrived acquaintance with the details, of the manufacture in which they are engaged, and have little oppostunity of acquiring that general knowledge of various departments of work, and of the structure of the machinery in use, which is essential to the foreman or overscer. It is in evening technical classes that this supplementary instruction, which it is the workman's iaterest to acquire and the master's to encourage, can be ohtained. The history of invention shows how frequently impertant improvements in machinery are made by the workman or minder in charge of it, and adds weight to the arguments already adduced for giving technical instruction to persons of all grades employed in manufacturing industry. To these advantages of technical education, as affecting the worksuen themselves as well as the progress of the industry in which they are engaged, must be added the general improvernent in the character of the work produced, resulting from the superior and better-trained intelligence of those who have had the benefit of sucb instruction.

In order that the different classes of persons who are to be engaged in productive industry may receive a fitting preparatory training, the programme of elementary and secondary as well as of the higher educution must be organized with reference to their special requirements. If the demand for technical instruction is to be fully satisfied, a great part of our existing system of education must be reconstructed, and the training provided in our several schools must be made a more fitting preparation for industrial work than it is at present.

Schools in which the course of instruction is not specialized with a view to any particular industry, but is so arranged as to form a general preparation for manufacturing or otaer trade pursnits, are often spoken of as professional, technical, or trade schools ; but such schools must he distinguished from apprenticeship schools, the object of which is to teach trades. Of the former class of schools there are excellent examples in the different countries of Europe as well as in the United States, and sone few bave recently been establisbed in the United Kiugdom. Of the latter class the best examples are found in France and Austria. The study of these schools, and of the means of providing filting education for the different classes of producers, may be simplified by a statement of the following propnsitions:-

1. The ordinary education of all persons who are likely to be engaged in productive industry should be determined by the general requirements of their fnture work. This proposition affects the curriculum of all schools in which different classes of producers are to be trained, i.e., of primary, secondary, and higher schools, and involves the consideration of the extent to which, in such schools, modern languages, science, draving, and manual instruction should take the place of literary and classical studies.
2. Special schools on classes should be established (a) for instruction in art, and in those sciences which serve to explain the processes of productive industry, inclnding agriculture, manufactures, and engineering, as well as in the application of art and science to these departments of industry; (b) for the teaching of, and in certain cases for practice io, various handicrafts or tradex
3. The special schools should be adapted to the requirements of the different grades of workers, and to the different kinds of work in which they are or are likely to be engaged.

A survey of the technical schools in different conntries shors how these different requirements are met. Owing to the complexity of the problem, a complete or an ideal system of technical education is nowhere to be found. Schools have been established to meet local and present wants, and the greatest rariety exists in the attempts that have been made to establish schools in accordance with the foregoing propositions.

1. Workmen. - Many attempts hare been made to provide a substitute for apprenticesbin, but hitherto with no great success. Two classes of workpeople bave to be considered-(1) thoss engaged in inanufacturing industries, and (2) those engaged in handicraft industries. The education of all classes of workpeople begins in the public elementary schools; and, in vicw of the finture occupation of the children, it may bo taken for grantel that primary instruction should be practical, and should include drawing and clementary scieuce, with some anount of manal training for boys, and with needlework, cookery, and domestic economy for giris. In nearly every country of Europe, and in the United Siates, primary instruction includes drawing, in addition to reading, writing, and reckoning. In Emgland this is not yet the case, drawing being taught in very few schools outside of the jurisuliction of the London school board. In France, Belgium, llolland, and Swedeu handicraft instruction is generally included in the curriculum of elementary schools. Rudimentary science is also tanght in nearly all the primary schools of Europe. Modelling is tanght both to byys aud girls in many Continental schools; and io Sweden "slojd," or elementary woodwork, in whicl: simple and useful articlos are constructed with the fewest possible tools is taught with cousiderable success to children of both seres.
In Germany and Switzerland there exists an excellent system of eveniug continuation schools, kuown as Fortvitdungs- or Ergænz-unyju-Schulen, in which the iustruction of the children who leave school before fourtcen, aud of those who leave at tbat aree, is conthued. In most of these schools draving *is taught with special reference to local industries. In Eugland an attempt is boing made to attract children to cvening schools by means of recreativo classes. These classes are inteuded to continuo the child's gencral education, and to supplement it by sonie amount of practical teaching betwecn the timo that he leares the clementary school and is prepared to take arlvantage of cvening techuical instruction. The training of most vorkpeople, and of nearly all those who are engaged in manufacturing indinstry, consists of -(1) primary teaching in elementary schnols; (2) practice ia the factory or slop; (3) eveuing technical instruction.
It all the principal towns throughout Europe evcning clessee have been established for teaching drawing, painting, and designing, and the elements of science in their application to special industries. On the Continent these classes are mainly supported by the municipalities, by the chambers of commerce, hy industrial or trade societies, by county boards, and in some cascs by the fees of the pupils. They receive little or no support from the statu. They are well attended by work peoplo of an grades, who are cucouraged by their employers to profit by these opportanities of instruction. In England evening tochnical instruction is roore systematically organized than in any other country. It is under the dircction of the committee of the council of euncation known as tha Science and Art Departmeat, aud of the Ciry and Guilds as London lnstitute for the advancement of technical educstion, as institute founded and supported bv the corborstiou and bo a liram
number of the livery companies of London. The department cncourages instructiou in pure scielloe aod iu art; the institute in the application of science, and to some extent of art also, to different trades.
Both the department and the institute make grants on behalf of properly recristered teachers on the results of the examination of their pup.ls. The directory of the department contrins a detailed gyllabus of the twenty-five different subjects on the teaching of which grants are paid, aud in the programme of the iustitute are fouml syllabuses of iuseruction in the technology of fifty different trade subjects. In the evening classes organized by the department, as mell as in those in connexion with the institute, the workman or forem, 2 engaged in any manufacturing industry has the oplortunity, ? payment of a very small fee, of studying art in all its brancles, science theoretically and practically, and the teclinology of any particular industry, Provided his early edication Enahles hiun to take adrantage of this instruction, ho better system las been ststested of enabling workmen, whilst earoiog wages at an early are, to aequire mamual skill by contionons practice, and at the same time to gain a knowledge of the priuciples of science conuected with their work and explanatory of the processes of the manufacture in which they are engaged.

For those engaged iu handicraft trades this eveuing mastraction is equally valuable, and in many jurts of Europe there exist evening trate schools in which the worknan is able to supplement the "scctional" mactice he aerquires in the ghop by more general practice in other branches of his trade. In Vieuna, for example, and in other parts of Austria, there are found practical evening classes for carpenters, turners, joiners, metal-workers, and others; and similar classes, some of which are subsidized by the City aad Guilds lostitute, have recently bcen established in Euglaud. Thoonghout Europe schools for weaving, with practical work at tiu loom and pattern designing, lave existed for many years.
'Co provide a training more like the old systens of apprenticeship, sehools have been established io mauy parts of Europe which are knowu as \quad rofessional, trade, or apprenticeship schools (ecoles professionclles, écoles des apprentis, Fachseluien). The object is to train workmen : anll the pupils, after completing their course of instruetion in such a school, are supposed to lave learnt a trade. The school is the substitute for the siop. In such a school the pupils have the alvantago of being taught their trade systematically and leisurely, and production is made sabsidiary to instruction. Under such an artificial system of production, the pupil is less likely to actuire excellenco of worknauship and smartness of habit than in the mercantile shop, under the strain of severe competition. Moreuver, the cost of manteuance of these schools renders it impossible to look to then as a general substitute for a!prenticeship. By sending into the labour market, however, a fev highly-trathed workmen, who are absorbed in various vorks and exert a beneficial influence on other workmen, these schools serve a useful purpose. Schools of this kind have been tried with more or leis success iu different countries. In Paris there is the well-kuown Ficole Diderot for tho trainiog of mechanies, fitters, smitlss, sc. ; and similar schools lave been established in other parts of france. A furuiture-trade school of the same category has recently hee: opened in Pais, and for mauy years a society of Chyistian lưthren have directed a large school in which several elifferent trades hare been taught. In this establishment, situated in the Rue Vangirard, all the secular and geueral instruction is given gratnitonsly ly the brothers, and an the several shops attaclicd to the school skilled workmen aro enn-loyed, who instruct the pupil apprentices. and utilize their labour. This bystem combinics many of the advautages of shop work and school work, but it lepends financially for its success upon the religious shirit which actuates its promoters and supporters. The Artaue Bchool, near Dublin, is conducted on sornewhat similar pricciples, but is intendea for a lower class of children. In Anstria, particularly in the rural districts, there are pumerous schools for the training of corpeuters, joincis, tumers, cabiuetuakers, workers in stone and miable, in silver and other metals, \&c. Scliools of the same class are fonnd in Gemnany, Italy, and elsewhere. It is only in certain cases, however, that apprenticeshij, schools can be said to satisfactorily answer tho purpose for which they hare been established. Whero a new industry, especially in rural districts, has to be created; where decaying industries ueed to be revived, where machinery is superseding hand rork, and, owing to the demands for ordinary liands, there is a dearth of skilled workmen ; where through the effects of competition and other causes the trade is carried on under conditions in which competent worknen cannot be properly trained in the ordinary shop,-in these cases, and in various art industries, an apprenticeship school may preve to be the best means of trainiug workmen, and of advancing particular trades. Generally, an apprenticesbip school should be Jooked upon as a temporary expedient, as a form of relief applied at tho birth or duriug any temporary depression cf a particular industry. The proper training school for workmen is the factory or shop.

Foremen. - The forman bust be familiar with the vanoma
branches of work he is to overlook, and the training which the workman receives in the factory or shop affords him but scanty opportunities of obtaining this general knowledge. The foreman needs also a generally superior education. How then are foresen to be trained? The problem is somewhat easier thau that of training workmen, because the number required is fewer. The valiety of schools in Europe devoted to this purpose is very great. There are three distioct ways in which foremen are being trained.
(a) The eveniug technical classes in Britain and on the Continent offer to ambitions workmen ao opportunity of aequiring a know. ledge of other departmeots of the trade than those in which they are eugagel, as well as of the scientific principles unterlying their work. These classes serve the double purpose of improving the workpeople and of aftording a means of discovering those who are best fitted to occupy higher posts.
(b) Spceial schools liave been established for the training of foremen. There are many trade echools of this kinel in which selected hoys are reccived after learing the elementary school. The best known are those at Chalons, Aix, Nevers, Ancers, and Lille in Franec. These schools are intended for the trainiug of formen in engincering trades. Z'liey aro state institutions, in which practical nechanical work in the shops is supplemented by theoretioal instruction. The first of these schools was founded in 1803. The course lasts three years, and the number of ctudents in cach school inust not exceel three hundred. The students, spend from six to seven hours a rlay in the workslop, and are trained as fitters, founders, smiths, and pattern-makers. As in all such schools, salcable goorls are produced, but, as production is subordinated to instrnction, the school does not hind itself to deliver work ot a given date, and therefore does not compete with any loamufacturiog establisliment. The students on learing these schools are conpetent at ouce to undertake the duties of foremen, managers, er dranghtsmen. At Komotau, Steyr, Klagenfurt, Ferlach, snd many other places schools have been established on somewhat eimilar principles. In Germany there are special schools for the training of foremen in the building trade, whien are chicfly frequented in tho winter, and numerous schools are found in all parts of the Contioent for the trainng of weavers. At W"interther in Switzerland a school has been established the main purpose of which is the training of forenieo. Io ltaly there are numerous techaical institutes, the objcet of which is to train young men for iutermediato posts in industrial works. In the United States the manual training schools, the mumber of which is rapidly increasing, have somewhat similar objects. In London, the Finsbury technical college of the City and Guilds of London Institnta has a day department, the main purpose of which is the training of youths as foremen, works managers, \&c.; but in this school, as well as in those last mentioned, the character of the iustruction deriatus considerably from that given in Freuch schools, and aims lather at preparing youths to learn, than at teaching them, their tiadc.
(c) A third method adopted for the training of foremen is by $\in \mathrm{z}$ couraging selected childreu of the ordinary elcmentary schools to continue their education in schools of a ligher grade of a technical character. It is thought that, by developing to a higher degree the iutelligence and skill of those children who show aptitude for scientific and practical work, they will be able, wheu they enter the sl:op, to lcarn their trade more quickly and more thoroughly, and to acquire that general knowlealge of their work, and to exhibit those special aptitudes, which may qualify them for the position of foreman or manager. The education fiven in these schools, althonglı having direct reference to the futire career of the pupil, is disciplinary in character, and consists of the subjects of primary instruction furtler pursucd, -of drawing, modelliug, science, mathematics, and inannal exercises. The curriculum is varied to some extent according to local requirements, the technology of the staple industries forming in many cases part of the instructiou. Such schonls, under varied forms, have been established in most Continental countries, some of the best exaniples of them being fonnd iu Paris, Lyons, Kheims, Rolen, and in otler towns of France. The want of similar schools in Britain has been frequently pointed out. Ooe of the oldest of these schocls is the Ecole Martiniere at Lyons. The school was founded in 1820 by a bequest from Major-General Martin, who had fought against the English under Tippoo Sahib. In this school, in which the education is gratuitous, as in nearly all the higher elementary schools of France, instruction is given in drawing, modelling, chemistry, mechanics, and physics, in the working of wood and iron, and in German and English in addition to the subjects of an ordinary school education. Surveying is also taught to some of the pupils, and the instruction generally is of a rery practical character. The students visit factories uuder the guidance of the masters, and ou their return they write out full descriptions of their visits. The school hours are from seven till eleved in the moruing and from 000 till seven in the aftertion. The boys from this school rapidly obtain places in the comnercial and industrial houses of Lyons, and mauy of them, after a time, succeed in obtaining high positions. A very similat school, on more modern lines, has heon established at Rhei us and
is accommodated in a buildinc especially adapted to the purpose. In this school instruction is lirected towards the staple industries of the district, namely, weaving, dyeing, and engiveering. There are many other similar schools in France, the object of wbich is to give the children of artisans and small shopkeepers a higher practical education in order to fit them to occupy the posts of foremen, overseers, and superior clerks in manufacturing and commercial firms. A large nunber of poor childreu showing talent are sclected from the primary schools and receive scholarships; and the objection sometimes urged against the establishment of higher elementary schools, - that the better elasses only are able to benefit by them-is thas obriated. In Germany the real-schools in which Latin is not tanght, known as Ohnclatein Realschulcn, nave very nearly the sanie objects as the ligher elementary schools of France. The instruction in these German schools is not yet so practical as in the schools of France. Drawing is always well taught, and the schools generally contain good chemical laboratories, as well as collectious of physical apparatus and museums. From the children of these schools the ranks of forcmen are largely recruited. They receive no special trade instruction, but the general trainiag is so arranged as to yualify then for ligher posts in industrial works. The cost of this higher education seldom excceds £3 per annum. In Bararia it is two shillings a month. In most of these schools, as well as in the chief intermediate commercial schools, the exit certificate exempts a lad from two of the thre years' compulsory military service, and this remmation, to which nothing corresponds in England, is an iuceutive to parents to allow their children to receive higher instruction, which operates rery forcibly in largely increasing the number of well-educated youths in Germany. In these opportmities for highor education England is still very deficient, and the complaint is generally lieard of the difficulties of obtaining competent formen.
3. Masters. - The best special schools for the training of future masters, managers, engineers, manufacturers, aml industrial chem. ists are in Germany, and are known as technical highty schools or polytechnic schools. Schools of a similar character are found in other conntries, and in Encland the facilities for higher technical edncation lave within the last few years greatly inıproved.

In Germany the polytechnic or techuische Hochsclucle is an institution of university type in which the education has special reference to industrial purposes. In many respects the teaching coibeides with that given in the universities. The chief distinction consists in the arrangement of courses of instraction in the several departments, in the admission of students having a non-classical preliminary training, and in the absence of certain faculties fonnd in the university and the addition of others. It is not correct to say that the polytechnic is a professional school as distingrnished from the university ; for the faculties of law, medicine, and theology give to the university as distinctly a professional character as the facnlty of engincering gives to the polytechnic. Nor can it be said that the suientitic studies at the miversities are less practical than at the polytechnic. For, whilst workshops for instructio: in the use of tools are found in very few of the nolytechuic schools, the laboratories, for the practical study of chemistry and pliysics, are perhaps better fitted and under more eminent professors at some of the German universities than at the polytechnic schools. At the same time, engineers of every description, arehitects, and bnillers, besides a great number of manufacturigg chemists, find in the polytechuic the scientificand teclinical training which the lawyer or physician, and iu many cases the industrial chemist, secks in the university.

In some of the large cities-in Berlin, Vienna, aud Munich, for instance-the university and polyteclnic coexist ; and in certain cases, in which a very special training is required to fit a youth for his career, the German stndent, after speuding three or four years at a polytecluic school, passes on to another institution, such as a dyeing school, in which lis studies are further specialized with a view to his future work.

Taking the technical high school of Munich as a type of other similar iustitutions, we fund the cost of the building and of the various collections it contains to have amounted to nearly $£ 200,000$, and the annual cost of maintenance to bo about $£ 20,000$. The iustitution consists of six schools:-(1) the general ; (2) the civil engineering; (3) the building; (4) the mechanical engineering; (5) the industrial chemical ; and (6) the agricultural. A department for electrical techmology is now being built. In other institutions there are arelitectural, pharmaceutical, and mining schools. The programme of the Munich school gives a list of about 180 different courses of instruction distributed over the several dejartments. A separate professor is engaged to lecture on that particular subject with which he is specially conversant, and the number of such professors attached to a polytechnic school is very large. In the engineering department there are six or seven distinct courses of lectures under the direction of thirteen professors. The largest and most recently constructed of all these institutions is the polytechnic school of Berlin, which was completed in 1884 at a cost of about $£ 450,000$. In Fiance tha institutions in which the highest techni-
cal instrmetiou is giveu are concentrated in the capital. There are a large number of provincial colleges where the edncation is soncwhat more practical, but where the mathematical and scientifie teaching is not earried to sa ligh a noint (tbe Ecole Centrale at Lyons, the Ecolo des Mineurs at St Etienue, and the Institut du Nord at Lille, \&c.). The École Centrale of Paris, in which the majority of Freuch engineers who are not employed in the Governneut service are trained, is a rare instance of an institution for higher technical instruction which is self-supportiug and iudependent of Government aid.

In Switzerland tho federal polytechuce of Zurich is similar to the polytechaic schools of Germany and Austria. Italy has thres superior technical institutes, - one at Milan, one at Turin, and one at Naples, in which technical education is given on the same lines as in Geman polytechnic schools. Ifolland has an excellent institution at Delft, which was opened in 1864; and in Russia the imperial techuical school at Moscow is a ligh-class engineering school, in which the theoretical studies are supplemented, to a greater exteut than in the Germau schools, by worksbop practice.

In some of the German schools the fees charged vary according to the number of lectures and to the number of hours of practical work which the student takes per week. Thus at Munich the entrance fee for each student is 10 s , aud the lecture fee is 2 s .6 d . for each honr's lecture [per week, including the use of materials. At Zurich the cost of a student in a cl:emical department, including laboratory practice, does not exceed $£ 12$ per aunum, and in other departments it does not exceed $£ 4$ per annum. At Dolft the student pays about $£ 16$ per aunum for a complete course.

In England there is a growing tendency to associate technical with university edncation. This is maialy owing to the fact that the colleges which have recently becn established to give university education are poorly endowed, aml have found it uecessary to attract students by mectiog the increasing demand for technical iustruction. Jost of the provincial colleges niay indeed be regarded as technical schools with a literary side. Iu order that they may provide university education in addition to sound techoical instrnction, it is necessary that they should be placed on a sound and satisfactory footing by means of state endowment. Of the more recently erected English colleges, the Owens College at Manchester is the most important, combiuing the faculties of a German university with those of a polytechaic school. The Yorkshire College, Leeds, possesses a special school for the teaching of weaving and dyeing. Other somewhat similar institutions are found in Birminghan, Neweastle, Sheffield, Nottinghann, Dundee, Cardiff, and elsewhere. "The university of Edinhurgh has a good school of chemistry, physics, and engineering, and the university of Glasgow has been long distinguished for the excellence of its physical laboratories. In University College and King's College, London, the metropolis possesses two institutious each of which may be likeued to a university and a polytechuic combined. In the university of Cambridge there are mechanical worksliops in conaexiou with the chair of engincering. The Royal School of Mines and the normal scbools of science and art in Sonth Kensiugton are the only technical institutions in England supported by state aid. 'Ilso central iustitution in Londou has more in common with the German polytechuic school than any other iostitution in Britain. This school is designed for the technical teachiog of engineers, architects, master builders, and industrial chemists. It was built at a cost of $£ 100,000$, and is maiutained by an annual grant from the City and Guilds of London Institute of $£ 10,000$, in addition to the studeuts' fees.

Such is a linef outline of the means provided for the techuical education of masters in different parts of Europe. It will be seen from the foregoing statement that efforts are now being made to bring Britain move nearly on a level with other conatries iu the provision of those kinds of instructiou which are best adapted to the differput classes of prolucers. But as yet only a beginning has been made, and in England technical students can be counted by hundreds, whilst those of Germany are aumbered by thousands.

For further information the meader is referred to the Report of the royal commissioners on technical instructiou, publisbed in 1884.

TEETH. See Mammalia, vol. xv. p. 349 ; Draestive Organs, vol. vii. p. 232; Irohy ; and Dentistry.

TEGEA, one of the chief cities of Arcadia, of which its territory occupied the south-eastern corner, being bounded on the S. by Laconia, on the E. by Cynuria and Argolis, on the N. by the territory of Mantinea, and on the W . by Mænalia. Its legendary founder was Tcgeates, son of Lycaon. Like many other cities of ancient Greece, Tegea was formed by the union of a population which had previously lived dispersed in villages: The people were divided into four tribes, - the Clareotis, Hippothoetis, Apolloniatis, and Athaneatis Tegea offercd a stubborn
resistance to the encroachments of Lacedrmon, and on more than one occasion defeated its ambitious ucighbour. About 560 b.c., howerer, the Lacedrmonians found the bones of Orestes in Terea and conveyed them to Sparta; and henceforward Spartan valour, backed by this powerful fetich, proved too much for the merely carnal weapons of Tegea. At Platæa (-179 B.c.) 3000 Tegeans fought the good fight of frecdom, and were the first to enter the breach which the Athenians had made in the Persian redoubt. Petween the Persian and Peloponnesian Wars hostilities again broke out between Tegea and Sparta, in tho course of which Tegea was twice defeated. However, in the Peloponnesian War (431-404), and afterwards in the Corinthian War (395-387), Tegea sided with Sparta. But after tho battle of Leuctra (371), when the star of Sparta began to decline, Tegea concluded an alliance with the victorions Thebans, and fought on their side against Sparta at the great battle of Mantinea (362). In the Macedonian period Tegea joined the Etolian League, but Cleomenes, king of Sparta, haring won it over to his side, the city was besieged and taken by Antigonus Doson, king of Macedonia, the ally of the Achrann League (222). In 218 the city was retaken, except the acropolis, by the Lacedæmonians under Lycurgus. After the defeat of Machanidas, tyrant of Sparta, by Philopœmen in 207, Tegea passed into the hands of the Achran League. In the time of Strabo it was the only town of any importance in Arcadia. In the $2 d$ century it was visited by Pausanias, who has left a fairly full deseription of it (viii. 45-53).

Of its buildings much the most famous was the great temple of Athene Alea, which bad often afforded sanctuary to fugitives from Sparta. The old templa was burned down in 394 b.c., and Pausanius speaks of the newer templa as by far the finest and largest in the Peloponnesus (that of Zeus at Olympia, however, occupied nearly double the area). The architect was Scopas; and, as the recent German excavations have proved, the temple was a Doric peripteros, with six columns at each end and fourteen at each sida. Of the columns which Pausanias mentions in addition to tha Doric, the Corinthian may have stood in the prouaos and posticum, the lonic in "tha interior of the templa" (for $\begin{gathered}\text { krebs we }\end{gathered}$ should probably read evvos in Pausanius, viii. 45, 5). The ancient imaga of Athene Alea was carricd off by Augustus, and placed at the entrance to his new forum at Rome. The statues of Esculapius and Health, which in Pausanias's time stood on the two sides of the imaga of the goddess at Tegea, were by Scopas. On tha front pediment of the temple was sculptured the hunt of the Calydonian boar, on the back pediment the combat between Telephus and Achilles. Somo flagments of theso pedimental sculptures (comprising the head of the boar and two human heads, one helmetel) have beer discovered; and, as they are the only existing sculptures which can be referred with some certainty to the hand of Scopas himself, they are of the highest importance for the history of art. The site of the temple, at the modera village of Piali, was partially excavated under the auspices of the German archeological iustitute in 1879 and 1882 . It appears that the foundations of the temple measured $49-90$ metres (nearly 164 feet) by 21.30 (70 feet). As Tegca stood on a plain surrounded by mountains and liable to inundations, its site las been covered by an alluvial soil which has been favourable to the preservation of the ruins, and a thorough excavation might yield important results.
 On the artisthe calue of tho eculptures, pee ibid., $1881, \mathrm{p} .393$ sq; Jour. Hell. Stuqu,
1886, p. 115 s . 1886, p. 115 sq.

TEGNER, E~AIAS (1782-1846), the most celebrated of Swedish writers, was born November 13, 1782, at Kyrkerud in Wermland. His father was a pastor, and his grandparents on buth sides wero peasants. His father, whose name had been Esaias Lueasson, took the surname of Tegnerus-altered by his fifth son, the poet, to Tegner -from the hamlet of Tegnaby in Smalland, where he was born. In 1799 Tegnér, hitherto educated in the country, entered the university of Lund, where he graduated in philosophy in 1802, and continued as tutor until 1810 , when he was elected Greek lecturer. In 1812 he was named professor, and continued to work as a lecturer in Luud until 1824, when he was made bishop of Wexiö. At

Wexiö he remained until his death, twenty-two years later. Tegner's early poons bave little merit. He was cumparatively slow in derelopment. His first great success. was a dithyrambic war-song for the army of 1808 , which stirred every. Swedislı heart. In 1811 his patriotic poem Svea won the great prize of the Swedish Acadeny, and made him famous. In the same year was founded in Stockholm the Cothıc League (Götiska förbundel), a sort of club of young and patriotic men of letters, of whon Tegnér quickly became the chief. The club published a magazine, cntitled ldunce, in which it printed a great deal of excellent poetry, and ventilated its views, particularly as regards the study of old lcclandic literature and history. Tegner, Geijer, Afzclius, and Nicander became the most. famous members of the Gothic League. Of the very numerons poems written by Tegnér in the little room at Lund which is now slown to visitors as the Tegner museum, the majority are short, and even occasional lyrics. His celebrated Song to the Sun dates from 1817. He completed three poems of a more ambitions character, on which his fame chiefly rests. Of these, two, the romance of Axel and the delicately-chiselled idyl of Nattvardsbarnen ("The First Communion," 1820), translated by Longfellow. take a secondary place in comparison with Tegnér's masterpiece, of world-wide fame. In 1820 he published in Iduna certain fragments of an epic or cycle of epical picces, on which he was then working, Frithiofssaga or the Story of Fritbiof. In 1822 he published five more cantos, and in 1825 the entire poem. Before it was completed it was famous throughout Europe; the aged Goethe took up his pen to commend to his countrymen this "alte, kräftige, gigantisch-barbarische Diehtart," and desired Amalie von Imhoff to translate it into German. This romantic paraphrase of an ancient saga was composed in twenty-four cantos, all differing in verse form, modelled somewhat, it is only fair to say, on an earlier Danish masterpiece, the Helge of Ochlenschläger. Frithiofsatga is the best known of all Swedish productrons; it is said to have been translated nineteen times into English, eightcen times into Cerman, and once at least into every European language. It is far from satisfying the demands of more recent antiquarian research, but it still is allowed to give the freshest existing impression, in imaginatire form, of life in carly Scandinavio. In later years Tegnér began, but left unfinished, two important epical poems, Gerda and hronbruden. The period of thepublication of Frithiofssaga (1825) was the critical epoch of his carcer. It made him one of the most famous poets of Europe; it transferred him from his study in Lund to the bishop's palace in Wexiö ; it marked the first breakdown of his health, which had hitherto been excellent; and it witnessed a singular moral crisis in the inner history of the poct, about which moch has been written, but of which little is known. Tegnér was at this time passionately in love with a certain beautiful Euphrosyne Palm, the wife of a town-councillor in Lund, and this unfortunate passion, while it inspired much of his finest poctry, turned the poct's blood to gall. From this time forward the heartlessness of woman is one of Tegnér's principal themes. It is a remarkable sign of the condition of Sweden at that time that a man not in boly orders, and so little in possession of the religious temperament as Tegnér, should be offered and shonld accept a bishop's crozier. He did not hesitate in accepting it: it was a great bouour; he was foor; and he was anxious to get away from Lund. No sooner, however, had he begun to study for his new duties than he began to regret the step he had taken. It was nevertheless too late to go back, and Tegnér made a respectable bishop. as long as his health lasted. But he became moody and melancholy; as early,
as 1836 he complained of fiery heats in his brain, and in 1810, during a visit to Stockholm, be suddenly became insane. He was sent to an asylum in Schleswig, and carly - in 1841 he was cured, and able to return to Wexiö. It was during his convalescence in Schleswig that he wrote Kronbruder. He wrote no more of importance; in 1843 he had a stroke of apoplexy, and on the 2 d of November 1846 he died in Wexiö. From 1819 he lad been a member of the Swedish Academy, where he was succeeded by his biographer and best initator Böttiger. In prose T'egnér wrote letters, which have been collected, and which are considered the best of their kind in the Swedish language. As a poet he mill scarcely be preferred to Betlman or to Runeberg by Swedish verse amateurs, but he still exceeds these and all other writers in popularity.
See Böttiger, Teckning af Tegners Lefnad; Georg Brandes, Esaias Tegner; Thomander, Tankar och Löjcn. (E. W. G.)
teherant, or, more properly, Tehran (lat. $35^{\circ} 40^{\prime} \mathrm{N}$., long. $51^{\circ} 25^{\prime}$ E.), for abont a century the recognized capital of Persia, has little to distinguish it, in general outward appearance, from other large cities of the country, though in quite recent years Parisian streets or boulevards, and even Western architecture for single houses, in the midst of mud-brick palaces or plain mud hovels, have been incongruously introduced. Formerly a kind of polygon some 4 miles in circumference-with its mcan "shahr panah" or wall, its clumsy and uneven ditch, and its six gates, two facing north, two south, one east, and one west, -Teheran has now been extended to an outer ditch and wall, thrown out on each side beyond the ancient limit. The bazaars are good, though hardly of the first class; the caravanserais deserve honourable mention; and the telegraph and arsenal are respectable institutions. The streets are for the most part narrow and wrotchedly paved. The "Ark," or citadel, contains the royal and better description of public buildings, and connecting its encircling wall with the city gates are four principal thoroughfares, of which the parallel avenues from the Násiriya and Daulat entrances are the more notable. Between these tryo gates, in a parallelogram extending from one to the other and including both, is the gas-lighted Tôp Maidan, or "Place des Canons," in the centre of which is a large reservoir. European professors are to be found in the king's college, where some 250 students, more or less, are taught mathematics, engineering military tactics, music, telegraphy, painting, together with the Arabic, Eng'ish, French, and Russian languages. Among the not rery remarkable mosques-to some of which madrasahe, or colleges, are attached-may be specially mentioned the Masjid-i-Sbah, or king's mosque, with its handsome enamelled front, and the Masjid-i-Mádar-i-Shah, or mosque of the king's mother. Water is freely supplied to the town by means of the underground canals, or kanats, from the near mountain ranges. Public baths abound, but the Europeans use those of the Armenian and not of the Mohammedan community. The British legation stands in a handsome garden of great size, in which are placed the houses of the secretaries, which resemble English villas. In the summer season the representatives of Western powers and other Europeans move out to the slope of the mountain range north of Teheran,-the' British residents to Gulhal, a village about 7 miles from the city. A prominent feature in the landscape at Gulhak and the neighbouring summer quarters, as at Teheran itself, is Demavend, the noblest and most graceful of Persian mountains.

The present population of Teheran may be taken at 160,000 at most. According to a late authority (Bassett, 1887) the European inhabitants are reckoned at about 100 only; the Jerrs number some 2500 ; and there are 150 Czbrs or Parsis, a sorry remant of the old fire-
worshippers. In 18ia there were said to be 100 Armenians, maialy traders and artisans. In 1872 there were but four legations in Teheran-those of Eugland, France, Russia, and Turkey. Since that year representatives hare been added from Holland, Austria, Germany, and the United States. The French have summer quarters at Tejrish and the Russians at Zargandab, at no great distance from the English Gullak.

Morier supposes Teheran to be the Tahors of the Theodosian Tables, and recognizes it also in the account of the journey of the Castilian ambassadors to Tinur. Porter, too, relates that in 1637 the secretary of the Holstcin ambassadors mentions Teheran as "one of the towns which enjoy the privilege of naintaining no soldicrs." Again, in the 17 th century, it was visited by Pictro della Vallo and by Sir Thomas Heroert, - the latter spelling it "Tyronn." Most writers affirn that Tcheran, though not of recent origin, can barely be held of repute till Agha Muhammad made it bis residence in about 1788, taking to himself the title of shah, as first of the Fajar kings, in 1796. Yet there is eridence that in the previous century it was a royal resort, if nothing more, in Herbert's statement that "the Toune is most heautified by a vast garden of the kinss, suecinct with a great towered mud-wall larger than the circuit of the city." Du Pre (who visited it in 1808) states that it had been pillaged and nearly destroyed by the Afghans, -evidently at their invasion of Persia in 172s. Since Agha Muhammad's time Tcheran has been the usual seat of the Kojar dynasty, a circumstance to be attributed to the political adrantages of its geographical position.
See, besides the atthoritles cited, Telegraph and Travel (1574); Dr Wills's Land of the Lion and Sin (18S3); and Mr Bassett's Land of the Inams (18S7).
TEHUANTEPEC, an isthmus in Mexico, comprising the western extremities of the states of Vera Crnz ano Oajaca, and limited eastrards by the states of Tabasco and Chiapas, thus lying between 16° and $18^{\circ} \mathrm{N} .1 \mathrm{lat}$. and 91° and 95° W. long. Between the Bay of Campeche on the north or Atlantic side and that of Tehuantepec on the sonth or Pacific side the distance in a bee line is only 125 miles. Here also the Sierra Madre falls rapidly from over 5000 fect in Chiapas to about 730 feet in the ridge skirting the Pacific coast, and leaving the rest of this district someWhat level, with a rise from the Atlantic of not more than 60 feet in the mile except at the Chivela Pass, where for S miles the gradients are about 116 feet per mile.
This favourable condition of the relief, combined with a relatively heal thy climate subject only to dangerous insect pests in summer, has naturally attracted attention to the Tehuantepee isthmus, as offering peculiar adrantages for interoceanic communication either by a navigable canal, a railway, or a ship railway. A first conces: sion was made in 1841 by the Mexican Government to Don José de Garay, who Jad the land surveyed with a view to a canal, but who, after the war with the United States, surrendered his rights to Mr P. A. Hargous of New York. The company then organized to give effect to the Garay grant caused a fresh survey for a railway to be made in 1851, under the direction of the late General J. G. Barnard. But nothing came of this or of another railway project in 1857, when a third surrey was executed, under the direction of Col. W. II. Sidell. Then the "Tehuantepee Railway Comprany," formed it 1870 in New York, and reorganized in 1879, obtained a concession from the Mexican Government to construct the "Tehuantepec Railway"; but, after a few miles were made, the work was suspended, and in 1882 the Government contracted with privato individuals for the completion of the line, which was to be 190 miles long, and to run from the mouth of the Goatzacoalcos (Coatzacoalcos) river on the Atlantic to the port of Salina Cruz on the Pacific. The work was carried to Dinatitlan, a distance of 25 miles, in 1884, and was to have been completed in 1885; but since then onerations appear to have been suspended for want of neans. A Teluantepec ship railway is also projected, as it is cxpected that most of the trade betreen the Atlantic and Pacific coasts of the United States will be attracted to this route, which shortens the distance betreen New Yorls and San Francisco by 1477 miles, and between New Orleans and the same place by 2334 miles, as compared with that by the Panama railway and future canal.
Tehuantepee, the town which gives its name to the istlimus, hay, and neighbouring lagoon, stands on the river Tehnantepec, 15 miles above its mouth on the Pacifc, where it develops a shallow and somewhat exposed harhour. Of the population, estimated at 14,000 , a large number are civilized and industrious Indians engaged in cotton-weaving and on the salt-works. Indigo is grown in the district, and there are productive pearl-fisheries in the bay. Amongst the exports are cochineal and a purple dye extracted from a shellifish abounding on the coast.

TEIGNMOUTH, a seaport and market town of England, in Devonshire, consisting of the parishes of East and West Teignmonth, and situated on the English Channel, at the mouth of the Teign and on the Great Westera Railway, 14 miles sonth of Exeter and 209 west-southwest of London. It is somewhat irregularly built, partly on a projecting peninsula and partly on the acclivities rising behind the river. The Teign is crossed by a bridge 1671 feet in length, built of wood and iron in 1824. St Michael's church, in East Teignmonth, erected in 1822-23 in the Decorated style, was enlarged in 1875. The other buildings include St Scholastica's abbey (erected for Benedictine puns in 1862), the East Devon and Teignmouth club-house, the mechanics' institute (1840), the temperance hàll (1879), the sailors' home (1881), the baths (1883), and the public market (1883). There are two commodious
quays and a pier 600 feet in length. Fine pipe and potters' clay (from Kingsteignton) is shipped to Stafordshire. Coal and culm are imported, and there is also a trade with Newfoundland. Fishing is extensively carried on. The town, which is not incorporated, was formerly governed by portreeves. It now forms an urban sanitary district, which was extended on 29th September 1881. The population of the former area (1238 acres) in 1871 was 6751 , and in 1881 it was 7120 ; that of the extended area (2347 acres) in 1881 was 8496.

Teignmouth is of very ancient origin. It received a grant of a maikel from Henry III. East Teignmouth was formerly called Teignmouth Regis, and West Teignmouth, Teignmouth Episcopi,the mauor having belonged to the see of Exeter until alienated by Bishon Vesey. Toignmouth was burned by French pirates in 1340 , and was again dovastated by the French on 26th June 1690.
TEINDS. See Tuties.

TELEGRAPH

TTELEGRAPH (from $\tau \hat{\eta} \lambda \epsilon$ and γ рá申 ω) signifies an instrument to write at a distance. The term is specifically applied to apparatus for communicating intelligence to a distance in unwritten sigas addressed to the eye or ear, and has only recently had application to those wonderful combinations of inanimate matter which literally write at a distance the intelligence committed to them. The chief object of the present article is to explain the principles and practice of the electric telegraph, and we shall allude to other telegraphic systems only to illustrate the general principles of signalling.

A word expressing an idea may, according to a prearranged plan of signalling, be communicated by voice, by trumpet calls, by gun fire, by gesture or dumb signs, by lamp signals, by flags, by semaphore, or by electric telegraph. The simplest system of word-signalling hitherto practised is that of the nautical flag telegraph, in which each hoist represents a word by a combination of four flags in four distinct positions (see Signals, Naval). If n denote the number of flags, supposed all different, out of which the four to be sent up may be selected, the number of different ideas which can be expressed by a single hoist is $n(n-1)(n-2)(n-3)$, since there are n varieties out of which the flag for each of the four positions may be independently chosen. To commit to memory so great a number of combirations, which amount to 358,800 if $n=26$, would be a vain effort ; the operators on each side must therefore have constant recourse to a dictionary, or code, as it is called. For the sake of convenient reference each flag is called by the name of a letter of the alphabet, and all that the operator has to bear in mind is the letter by which each flag is designated. Sometimes the words to be expressed are spelled out by means of the flags as in ordinary language; but, as in most words there are more than four letters, as scarcely any two consecutive words are spelled with four or less than four letters, and as more than four flags at a time cannot be conveniently used, the system of alphabetic signalling frequently requircs the use of two hoists for a word, and scarcely ever has the advantage of expressing two words by one hoist. I_{t}, is therefore much more tedious than code signalling in Line nautical telegraph.

In point of simplicity spoken words may be considered is almosi on a par with the nantical telegraph, siace each word is in reality spoken and heard almost as a single atterance. Next in order comes the system of spelling out words letter by letter, in which-instead of, as in the nantical telegraph, 358.800 single symbgls to express the same number of ideas - 26 distinct symbols are used to express by their combinations any number whatever of
distinct ideas. Next again to this may be ranked the system by which several distinct successive signals are used to express a letter, and letters thus communicated by compound signals are combined into words according to the ordinary method of language. It is to this last class that nearly all practical systems of electro-telegraphic signalling bolong. But some of the earliest and latest proposals for electric telegraphs are founded on the idea of making a single signal represent a single letter of the alphabet; as instances we may name those early forms in which separate conductors were used for the different letters; a method suggested by Professor W. Thomson ${ }^{1}$ in 1858 is which different strengths of current were to be employed to indicate the letters; and the various forms of printing telegraph now in use.

I. Historical Sketch of Early Telegraphs.

Although the history of practical electric telegraphy does not include a period of more than half a century, the idea of using electricity for telegraphic purposes is much older. It was suggested ágain and again as each new discovery in electricity and magnetism seemed to reader it more feasible. Thus the discovery of Stephen Gray and of Wheeler that the electrical influence of a charged Leyden jar may be conveyed to a distance by means of an insulated wire gave rise to various proposals, of which perhaps the earliest was that in an anonymous letter ${ }^{2}$ to the Scots Magazine (vol. xv. p. 73, 1753), in which the use of as many insulated conductors as there are letters in the alphabet was suggested. Each wire was to be used for the transmission of one letter only, and the message was to be sent by charging the proper wires in succession and received by observing the movements of small pieces of paper marked with the letters of the alphabet and placed under the cnds of the wires. A very interesting modification was also proposed in the same letter, viz., to attach to the end of each wire a small light ball which when charged would be attracted towards an adjacent bell and strike it. Some twenty years later Le Sage proposed a similar method, in which each conductor was to bo attached to a pith ball electroscope. An important advance on this was proposed in 1797 by Lomond, ${ }^{9}$ who used orly one line of wire and an alphabet of motions. Besidee these we have in the samo period the spark telegraph of Reiser, of Don Silva, and of Cavallo, the pith ball telegraph of Ronalds, and several

[^29]others. Next came the discovery of Galvani and of Volta, and as a consequence a fresh set of proposals, in which voltaic electricity was to be used. The discovery by Nicholson and Carlisle of the decomplosition of water and the subsequent researches of Dary on the decomposition of the solutions of salts by the voltaic current were turned to account in the water voltameter telegraph of Sommering and the modification of it proposed by Schweigger, and.in a similar method proposed by Cose, in which a solution of salts was substituted for water. Then came the discovery by Romagnesi and by Oersted of the action of the galvanic current on a magnet. The application of this to telegraphic purposes was suggested by Laplace and taken up by Ampere, and afterwards by Triboaillet and by Schilling, whose work forms the foundation of much of modern telegraphy. Faraday's discovery of the induced current produced by passing a magnet through a helix of wire forming part of a closed circuit was laid hold of in the telegraph of Gauss and Weber, and this application was at the request of Gauss taken up by Steinheil, who brought it to considerable perfection. Steinheil communicated to the Göttingen Academy of Sciences in Septernber 1838 an account of his telegraph, which had been constructed about the middle of the preceding year. The currents were produced by a magneto-electric machine resembling that of Clarke. The receiving apparatus consisted of a multiplier, in the centre of which were pivoted one or two magnetic needles, which either indicated the message by the movement of an index or by striking two bells of different tone or recorded it by making ink dots on a ribbon of paper. Among other workers about this time we may mention Masson, Bréguet, Davy, Deval, Billon, Soudalot, and Vorsselman who proposed to use the physiological effects of electricity in working an electric telegraph. ${ }^{1}$
Steinheil appears to have been anticipated in the matter of a recording telegraph by Morse of America, who in 1835 constructed a rude morking model of an instrument; this within a few years was so perfected that with some modification in detail it has been largely used ever since (see below). In 1836 Cooke, to whom the idea appears to have been suggested by Schilling's method, invented a telegraph in which an alphabet was worked out by the single and combined movement of three needles. Subsequently, in conjunction with Wheatstone, he introduced another form, in which five vertical indes needles, each worked by a separate multiplier, were made to point out the letters on a dial. Two needles were acted upon at the same time, and the letter at the point of intersection of the direction of the indexes was read. This telegraph required six wires, and was shortlyafterwards displaced by the single-needle system, still to a large extent used on railway and other less important circuits. The single-needle instrument is a vertical needle galvanoscope worked by a battery and reversing key, the motions to right and left of one end of the indes corresponding to the dashes and dots of the Morse alphabet. To increase the speed of working, two single-needle instruments were sometimes used (double-needle telegraph). This system required two lines of wire, and, along with all multiple-wire systems, soon passed out of uss. Similar instruments to the single and double needle ones of Cooke and Wheatstone were about the same time invented by the Rev. H. Highton and his brother Edward Highton, and were used for a considerable time on some of the railway lines in England. Another series of instruments, introdtuced by Cooke and Wheatstone in 1840, and generally known as "Wheatstone's step-by-step letter-showing" or

[^30]"A B C instruments," were worked out with great ingenuity of detail by Wheatstone in Great Britain and by Bréguet and others in France. They are still largely used for private wires, but are being rapidly displaced by the telephone. ${ }^{2}$ Wheatstone also described and to some extent worked out an interesting modification of his step-by-step instrument, the object of which was to produce a letter-printing telegraph. But it never came into use; some years later, however, an instrument embodying the same principle, although differing greatly in mechanical detail, was brought into use by Royal E. House of Vermont, U.S., and was very successfully worked on some of the American telegraph lines till 1860, after which it was gradually displaced by the Phelps combination telegraph. The House instrument is not now in use, but various modifications of it are still employed for private lines and for stock telegraphs, such as Calahan's and the universal stock telegraphs, Phelps's stock printer, Gray's automatic printer for private lines, Siemens's and Phelps's automatic type printers, \&c. (see infra, pp. 120-121).

II. General Description of Electric Telegraphs for Land and Sea.

The first requisite for electro-telegraphic communication between two localities is an insulated conductor extending from one to the other. This, with proper apparatus' for originating electric currents at one end and for discovering the effects produced by them at the other end, constitutes an electric telegraph. Faraday's term "electrode," literally a way for electricity to travel along, might be well applied to designate the insulated conductor along which the electric messenger is despatched. It is, however, more commonly and familiarly called "the wire" or "the line."
The apparatus for generating the electric action at one end is commonly called the transmitting apparatus or instrument, or the sending apparatus or instrument, or sometimes simply the transmitter or sender. The apparatus used at the other end of the line to render the effects of this action perceptible to any of the senses-eye, ear, or taste, all of which have been used in actual telegraphic signalling-is called the receiving apparatus or instrument.
In the aerial or overground system of land telegraphs the main line consists generally of a "galvanized" iron wire from one-sixth to a quarter of an inch in diameter, stretched through the air from pole to pole, at a sufficient height above the ground for security. The supports or insulators, as they are called, by which it is attached to the poles are of very different form and arrangement in different telegraphs, but consist essentially of a stem of glass, porcelain, coarse earthenware, or other non-conducting substance, protected by an overhanging screen or roof. One end of the stem is firmly attached to the pole, and the other bears the wire. The best idea of a single telegraphic insulator may be got from a common umbrofec. with its stem of insulating substance attached upright to the top of a pole and bearing the wire supported in a notch on the top outside. The umbrella may be either of the same substance as the stem-all glass or all glazed earthenware, for instance-or of a stronger material, such as iron, with an insulating stem fitted to it to support it belor. Very good insulators may be made of continuous glass; but well-glazed porcelain is more generally used, or rathér earthenware, which is cheaper, less brittle, and less hygroscopic, and insulates well as long as the glazing is sufficient to prevent the porous substance within from absorbing moisture.
One of the best forms-Varley's dou'vie cup insulator
${ }^{2}$ For the different forms. see Prescott's Electricity and the Elcinere Telegraph, pp. 562-602.
-is shown in fig. 1. It consists of two distinct cups (c, C), which are moulded and fired separately, and afterwards cemented together. The double cup gives great security against loss of insulation due to cracks exteuding through the insulator, and also gives a high surface insulation. An iron bolt (b) cemented into the centre of the inner cup is used for fixing the insulator to the pole or bracket.

In the underground system the main line generally consists of a copper wire, or a thin strand of copper wires, covered with a continuous coating of gutta percha, india-rubber, or some equivalent insulating substance, served with tarred tape and encloscd in earthenware, iron, or lead pipes laid below the surface of the ground. This system is largely used for street and tunnel work, and to a considerable extent,
 especially in Germany, for ordinary lines. Fio. 1. - Varley's Each tube generally contains a number of double cup insula. wires, which are either laid up into a cable tor, one-fourth full and covered with a serving of tarred tape or hemp before being drawn into the tube, or - as is more commonly the case in the United Kingdom-simply laid together in a parallel group and tied at intervals with binders, which are remored as the wires are drawn into the tube. On some long underground lines in Germany the insulated wires are laid up into a cable, served with jute or hemp, and sheathed with a continuous covering of iron wires, precisely similar to the submarine cables described below. The cable is laid in a deep trench and coated with bitumen. This form of cable is easily laid, and if properly manufactured is likely to be very durable.

Sulmarine Cables.-A submarine cable (figs. 2-4), as nsually manufactured at present, consists of a core a in the centre of which is a strand of copper wires varying in weight for different cables betweea 70 and 400 而 to the mile. The stranded form was suggested by Prof. W. Thomson at a meeting of the Philosophical Society of Glas gow in 1854, because its greater flexibility renders it less likely to damage the
 insulating envelopo during Fios, 2-4,-Sections of three types of submarine cables, the manipula- mediate type. Fig. Type of shore ond. Fig. s.-linterthe manipula- mediato type. Fig. t.-Deep sea type.
tion of the cable. The central conductor is covered with several continuous coatings of gutta percha, the total weight of which also varies between 70 and 800 Zb to the mile. With a light core the weight of the gutta percha generally exceeds that of the copper. While in some
heavy cores the copper is beavier. The different coatings of gutta percha and of the conductor are usually scparated by a thin coating of Chatterton's compound (a mixture of gutta percha, resiu, and Stockholm tar), in order to make them adhere firmly together. This practice bas recently been departed from by Messrs Siemens Erothers, who have succeeded by an improved process of manufacture in getting perfect adhesion without the use of the compound. The coro is served with a thick coating of wet jute, yarn, or bemp (h), forming a soft bed for the sheath, which consists of soft iron, or of homogeneous iron, wires of the best quality. The sheathing wires are usually covercd with one or two servings of tarred canvas tape (t), or of tarred hemp, laid on alternately with coatings of a mixture of asphaltum and tar. The weight of the iron sheath varies greatly according to the depth of the water, the nature of the sea bottom, the prevalence of currents, and so on, Fig. 2 shows the intermediate type again sheathed with a heary armour to resist wear in the shallow water near shore. In many cases a still heavier type is used for the first mile or two from shore, and several intermediate types are often introduced, tapering gradually to the thin deepwater type. Captain S. Trot and Mr F. A. Hamilton havo proposed ${ }^{1}$ to abandon the iron sheath and substitute a strong double serving of hemp, laid on in such a way as to prevent twisting when the cable is under tension. This suggestion, which is a revival with some modifications of an old idea, is, however, still in the experimental stage.

We will now describe very briefly a few of the most important processes in the manufacture and submergenco of submarine cables.
In manufacturing a cable (fig. 5) the cepper strand is passed Their through a vessel A containing melted Chatterion's compeund, then manuthrough the cylinder C , in rhich a quantity of gutta percha, puri- facture. fied by гереated washtion, and by filtering warm by a steamthrough, a coating of
ing in hot water, by. masticathrough wire gauze filters, is kept jackct. As the wire is pulled

Which is regulated by the dis D, is pressed ont of the cylinder by applying the requisite pressure to the piston P. The nemly coatcal wire is passed throngh a long trough T, containing cold water, until it is sufficiently cold to allow it to be safely round on a bob$\operatorname{lin} \mathrm{B}^{\prime}$. This operation completed, the wire is wound from the bobbin B^{\prime} on to anather, and at the same time carefully examined for air-holes or other flaws, all of which are eliminated. The coated wire is treated in the same way as the copper strand, the die D, or anothez of the same size, being placed at the back of the cyliader and a larger one substituted at the front. A second coating is then laid on, and after it passes throngh a similar process of examination a third coating is applied, and so on nntil the requisite number is completed. The finished core changes rapidly in its electric qualities at first, and is generally kept for a stated interval of time before being subjected to the specifed tests. It is then placed in a tank of water and kept at a certain fixed temperature, nsually 75° Fahr, until it assmmes approximately a constant electrical otete. Its conductor and dielectric resistanco and its electrostatic capacity are then measured. These tests are generally repeatcd at another temperature, say $50^{\circ} \mathrm{Fahr}$., for the purpose of obtainiog at the same time greater certainty of the conddness of the core and the rate of pariation of the conductor and dielectric resistances with temperature. Should these tests prove satisfactory the core is served with jute yarn, coiled in watertight tanks, aod surrounded with salt water. Tbe insulation is a gain tested, and if no fault is discovered the served core is passed through the sheathing machine, and the iron sheath and the outer covering are laid on. Ae the cable is sheathed it is stored in large water-tinht tanks and kept at a nearly nniform temperature by
means of water.
The cable is now transferred te a cable ship, pravided with water- Snbree tight tanka aimilar to those used in the factory for atoring it. The siru tanke are nearly cylindrical in form and have a truncated cons

[^31]fixed in tho centre, os shown at C, fig. 6. The cable is carefully coiled inte the tanks in horizontal flakes, each of which is begun st the outside of the tank and coiled towards the centre. The different
the friction between the cable and the grouvd is sufficient the cable will either break or he left in a Jong span ready to break at some future time. It is impertant to observe that the risk is in mo way obviated by the iocrcasing slsch paid out, except in 60 far as the amount of sliding which the strength of the cable is able to produce at the points of contact with the ground may be thereby increased. The speed of the ship must therefore be so regulated
F10. B.-Diegrani of cable tank and paying out apparatus of submarine cable.
cals are prevented from adhering by a coating of whitewash, and the end of each nautical mile in carefully marked for future reference. After the cable has beon again sabjected to the proper electrical tests and found to be in perfect coudition, the ohip is taken to the place where the shore end is to be landed. A oufficicnt length of cable to resch the shore or the cable-house is paid overboard and coiled on a raft or rafte, or on the deck of a steam-launch, iu order to be connected with the shore. The end is taken into the testing room in the cable-house and the conduetor connected with the testing instrumenta, and, ehould the electrical tests continue gatisfactory, the ship is put on the proper course and ateams slowly ahead, paying out the cable over her stern. The cable must not bo everstrsined in the process of submersion, and must be paid out at the proper rate to give the requisite slack. This ievolve日 the intro. duction of machinery for measuring and controlling the speed at which it leaves the ship and for measuring the pull on the cable. The essential parts of this apparatus are shown in fig. 6. The lower oude of the cable in the tank T is taken to the testing room, 60 that continuous tests for electrical condition can be made. The upper end is passed over a guiding quadrant Q te a bet of wheels or fixed quadrants $1,2,3, \ldots$ then to the paying-ont drum P, from it to the dynamometer D, and finally to the stern pulley, over which it passes into the sea. The wheels 1, 2, 3, ... are 60 arranged that $2,4,6, \ldots$ can be raised or lewered bo as to give the cable less or more bend es it passes between them, while $1,3,5, \ldots$ are furnished with brakes. The whole system prevides the mcans of giving sufficient back-pull to the cable to make it grip the drum P, round which it passes eeversl times to prevent slipping. On the same chaft with P is fixed a brake-wheel furnished with a pewerful brake B , by the proper msnipulation of which the epced of paying out is regulated, the pull on the cable bcing at the same time observed by means of D. The shaft of P can be readily put in gear with a powerful engine for the purpose of hauling back the cable should it be found necessary to do oo. The length paid out and the rate of paying ont are obtained approximately from the number of turns mado by the drum P and its rate of turning. This is checked by the mile marks, the known pesition of the joints, \&c., 8.0 they pass. The speed of the ship can be roughly cstimated from the speed of the engines; it is more accurately obtained by one or other ct the various forms of log, or it may be measared by paying out continuously a steel wire over a measuring wheel. The average speed is obtaincd very accurately from selar and stellar observations for the position of the ship. The differeace between the speed of the slip and the rate of paring out gives the amount of slack. The amount of slack varies in different cases between three and ten per cent, but some is always allowed, so that the cable may easily edapt itself to inequalities of the bottom and may be moreresdily lifted for repairs. But the mere paying ont of oufficient sleck is not a gearanteo that the cablo will slways lio closely along the bettom or be free from spans. Whilst it is being paid out the pertion between the surface of the water and the bettom of the sea lies slong s straight line, the compenent of the weight at right angles to its length being supported by the frictional resistance to siviking in the water. If, then, the opeed of the ship be v, the rate of paying out x, the angle of immersion i, the depth of the water h, the weight per unit length of the cable 20 , the pull on the cable et the surface P, and A, B constants, we have-
\[

$$
\begin{equation*}
\mathrm{P}=h\left\{v-\frac{\mathrm{A}}{\sin i} f(u-v \cos i)\right\} \tag{a}
\end{equation*}
$$

\]

and $\quad 2 \cos i=B f(v \sin i) \ldots \ldots$ where f stands for "function." The factors $A f(u-v \cos i)$ and $\mathrm{Bf}(v \sin i)$ give the frictional resistance to sinking, per unit longth of the cable, in the direction of the length and transverse to the leagth respectively. ${ }^{2}$ It is evident from equation (β) that the angle of immersion depends solely on the speed of the ship; henco in laying a cable on an irregular bottom it is of great inn. pertance that the epeed should be sufficiently low. This may be illustrated very simply as follows:-вnppose a a (fig. 7) to be the surface of the sea, $b c$ the bottom, and $c c$ the straight line made by the cablo; then, if a hill H, which is at any part steepor than the inclination of the cable, is passed over, the cable tonches it at seme point t before it touches the part immediately below t, and if

1 See Sir W. Thomsod, Mathematical and Physioal Papere, vol. Ii. n. 105.
that the angle of immersion is as great as the inclimation of the steepest alope passed over. Uader ordinary circumstances the angle of immersion i varies between six aad nine degrees. ${ }^{\text {a }}$

Fig. 7.
Qualities of a Telegraph Tine. The efficiency of the telegraph depends on three qualities of the main line-(1) its coaducting quality, (2) its insulation, and (3) its electrostatic capacity.

1. The conducting quality of a wire or other elongated portion of Coaduct? matter is measured by the quantity of electricity which it allows to ing flow through it when a stated "electrometive force," or "difference quality; of electric potentials," is maintained between its two ends. It may be most naturslly, and is in point of fact generally, expressed in terms of resistance to transmission, regarded as a quality inverse to that of conducting power, and expressed numcrically by the reciprocal of the measure of the conducting power. An independent explanation and defnition of the clectrical resistance of a conductor may be given 6 follows:--the electrical resistance of a conductor is measured by the amount of electromotive ferce, or difference of poteatials, which must be maintained between its ends to produco. a stated strength of electric current through it.
2. The true measure of the ingalation of a body is the resistance Insuls to conduction offered by its supports. The reciprocal of this, or the tion. conducting pewer of the supports, uneasures the defectiveness of the insulation. Since no substance yet known is absolutely a nonconductor of electricity, perfect iasulation is impossible. If, however, the supports on which a telegraph wire resta present, on each part and on the whole, 60 great a rcsistance to electric conduction as to allew only a small portion of the electricity sent in, in the actual working, st oneend to escape by lateral conduction, instead of passing through the line and producing effect st the other end; the insulation is as good as need be fer the mode of working adopted. With the good insulation attained in a submarine line, round every part of which the gutta percha is free from flaws, no telegraphic operation completed within a second of time can be sensibly influenced by lateral conduction. A charge communicated to a wire thus insulated nnder water, at the temperature of the seabottom, is so well held that, after thirity minutes, not so much as half of it is found to bsvo esceped. From this, according to the familiar "compound interest" problem, it sppears that the loss must be at the rate of less than five per cent. per two minutes.
3. In 1849 Werner Siemens proved that "when a current is sent Electrothrough a submerged cable a quantity of electricity is retained in static charge along the whele surface, being distributed in proportion capacity. to the tension of each point,"-that is to say, to the difference of potentials between the conductor at any point and the earth beside it. In 1854 Faraday showed the effect of this "electrostatic cliarge" on signals sent through great lengths of snbmerged wire, bringing to light msny remarkable phenomens end pointing out the "inductive" embarrassment to be expected in werking long submsrine telegraphs. In letters ${ }^{3}$ to Prefesser Stokes in INevember and December of the same year, Prof. W. Themson gare the mathematical theory of these phenemons, with formuls and diagrams of curves, containing the elements of synthetical investigation for every possible case of practical operstions. Some of the results of this theory are given at the end of the present article. The conductor of a submarine cable has a pery large electrostatic capacity in comparison with that of a land tolegraph wire in conseqnence of the induction, ss of a Leyden phial, which takes place acress its gutta percha coat, between it and its moist outer surface, which may be regarded as perfectly connected with tho earth, -that is to say, at the same potential as the earth. The mathematical expressions for the abselute electrostatic capacity C, per unit of length, in the two cases sro as follows.

Let $\mathbf{D}=$ diameter of the inner conductor, suppesed to be that of a circular cross section, or of s circle inappreciably less than one circumscribed sbout the strand which constitutes a modern submarine
${ }^{3}$ For detalls of cable manafacture and inging consult Douglas's Telegraph Electric Telegraph Cables, London, 1878.
Electric Gelegraph Cables, London, 1878.
conductor; $D^{\prime}=$ outer dismeter of the insulating cost; $I=$ specific inductive capacity of the gutta percha or other substance constituting the insulating cost. Thén

$$
C=\frac{I}{2 \log _{a} D^{\prime} / D}
$$

In the case of a single wire of circular section, diameter D, undisturbed by the presence of othere, snd aupported st a constant height h above the earth by poles so far spart as not to influcnca its capacity sensibly -

$$
C=\frac{1}{2 \log _{6} 4 h / D}
$$

Exsmple 1. In s submarine cable in which $\mathrm{D}^{\prime}=\mathrm{I}$ centimètre ; $D=0.4$ centimètre ; and $I=3.2$ -

$$
\mathrm{C}=\frac{\mathrm{I}}{2 \log _{8} \mathrm{D}^{\prime} / \mathrm{D}}=\frac{3 \cdot 2 \times 4343}{2 \times \cdot 3979}=\mathrm{I} \cdot 75
$$

Example 2. In a land line is which $\mathrm{D}=0.6$ centimètro and $h=600$ centimètres-

$$
\mathrm{C}=\frac{1}{2 \log , 4 h / \mathrm{D}}=\frac{\cdot 4343}{7 \cdot 204}=\frac{1}{16 \cdot 6^{\circ}}
$$

The capacity, therefore, is in this case less than one-twenty-ninth of that of the submarine cable of example 1 for the same length.

Telegraph Testing.

Standards of Measurement.-A brief consideration of the standards according to which the electrical qualities referred to in the last section are measured, and the measurements to he described in this section are mode, will render, the statements of those qualities and quautities more definite. A complete and uuiversally comparable system of standards for physical measurements can bo obtained by adopting arbitrarily as fundamental units thoso of length, mass, snd time, snd expressing in terms of these in a properly defined msnner the units of all the other quantities. The units now sdopted all over the world for electrical measurements take the centimetre as the unit of length, the gramme as the wnit of mass, sod the mean solar second as the unit of time. There are two systems in use, the electrostatic and the electromagnetic. In the former the rmutual forces exertad by two bodies, each charged with static electricity, sre taken as the starting-peint, and in the latter the mutual forces exerted betreen a current of electricity and a magnet. The units sccording to these two syetems sre definitely related; but as wa deal in the present srticle with the electromagnetic system (We give the following brief account of it only.

The dyne or unit force is that ferce which, acting on a gramme 'of matter, free to more, imparts to it a velocity of I centimetre per second. Unit quantity of magnetism or unit magnetic pole is that quantity of magnetism which, when plsced st a distance of 1 centimètre from an equal and similar quantity of magnetism or a msgnetic pole, repels it with unit ferce. Unit magnetic field is a field which, when a unit quentity of magnetism or a unit magnetic pole is plsced in it, is acted on by unit force. Unit current is s current which, when made to flow reund a circle of unit radius, produces a magnetic field of 2π unite intensity st the centre of the circle, or acts of s unit quantity of magnetism placed st the centre of the circle with 2π units of force. Unit quantity of electricity is the quantity conveyed by the unit current in one second. Unit difference of potential is the difference of potential between the ends of a condnctor of unit length when it is plsced with its length at right sngles to the direction of force in s unit magnetic field and kept moving with a velocity of 1 centimetre per second in the dircction st right angles to its own length and to the direction of the magnetic force. Unit eledromotive force is produced in a closed circuit if any unit of its length is held in the manuer, and moved in the direction snd with the velocity, described in the last section. Unit resistance is the resistance which, when acted on by unit electromotive force, tranemits unit current. Unit capacily is the capscity of a body which requires unit quantity of electricity to raise ita potential by unity. The units sbove specified aro generally referred to as the absolute C.G.S. electromagnotic units of the different quantities. In practice their magnitudes were found inconvenient, and certain multiples snd submultiples of them have been sdopted as the prsctical units of measurement: thus the shm is equsl to 10^{9} C.G.S. units of resistance; the volt is equal to $10^{9} \mathrm{C} . \mathrm{G} . \mathrm{S}$. units of electromotive force ; the ampere is equsl to 10^{-1} C.G.S. units of current; the coulomb is equal to 10^{-1} C.G.S. nnits of quantity; the farad is the capscity which is charged to a Folt by \& coulomb, snd is equal to 10^{-9} C.G.S. units of capacity ; tha microfarad is the millionth part of the farad, and is equal to $10^{-15} \mathrm{C} . \mathrm{G} . \mathrm{S}$. anits of capacity.
We are here chiefly concerned with the units of electromotive force, resistance, and capacity. No universally recognized standard of electromotive force has jet been established, but the want has been to a great extent eqpplied by the potential galvanometers, electrostatic voltmeters, atandsrd cells, and other instruments devised by Sir W. Thomson and others. The work of Lord Reyleigh, Dr. Fleming, snd other experimenters on the Clark and Daniell standard colls has ohown conclusively that an electromotive ferce
can be reproduced with certainty within ona-testh per cent. of sccurscy by mesns of either of theso cells. Specimens of the standsrd unit of resistance, or ohn, made of an slloy of platiuun and silver, or of plstinum snd iridium, have been constructed, and can be relied on, if properly taken care of, to remain very nearly sccurate from year to year. Similar specimens of the standard unit of capacity or microfsrad which remain very nearly constant have been successfully produced. For a fuller trestment of this subject sud of the methods of determining the different units, see Electricity, vel. viii. p. 40 sq. ${ }^{1}$
Telegraph line testing consists mostly of comparisons of the resistance of the conductor snd the insulator with sets of stendard resistances, sud of comparisens of the inductive capscity of the line or cable with standard coulensers of known capacity. When, as is sometimes the case, the streugth of the current Howing through the line or through a particular instrument is to be determined, it is measured by an electrodynsmometer, or by a current galvanometer, properly constructed for indicating currents in absoluto messure. In the sbsence of such an instrument it msy be obtained accurately by the use of a standard galranometer in a knewn or determined magnetic field, or, taking advantage of Farsdsy's discovery of the electro-chemical equivalents, by messuring the smount of silver or of copper deposited by the current when it is made to pass through an electrolytic cell ; or the electromotive forca per unit resistance of the circuit may be determined by the use of standard resistances and a standard cell. Space does uot sllow us to do more than eimply refer to these methods, the first two at least of Thich involve accurste snd somewhat difficult experimental work. ${ }^{2}$
Measurement of Wire Resistance.-(1) By Wheatstone's bridge. ${ }^{9}$ Measure earth, a snd b known resistances, earth, a snd b known resistances, G \& galvs ometer, K a siugle lever key, K_{1} a reversing key, and B a battery. Put the zinc pole of the battery to the line and adjust the resistance x until the galvanometer G shows no deflexion when K_{1} is depressed. Wo then have, assuming no electromotive
 force in the line, $l=a x_{1} / b$. Next put the copper pole to the line and repeat the test, and suppose in this case $l=a x_{2} / b$; if these t wo values
of l nearly agree the true value may be taken as $2 a x_{2} x_{2} b\left(x_{1}+x_{2}\right)$ of l nearly agree the true value may be taken as $2 a x_{2} x_{2} / b\left(x_{1}+x_{2}\right)$. The effect of an electromotive force in the line itself is nearly eliminated
(2) Let the battery B (fig. 9) be connected through the keys K_{1} and K and the galvanometer G with the line l, which has its distant end to the earth ss before; shunt the galvanometer by a shunt s antil s convenient deflexion is obtsined, and then take as quickly as possible a series of readings with zinc and copper alternately to the line. Next substitute for l a set of resistance coils and vary the resistance until the same series of readings is obtained. The resistance introduced for the reproduction of each resding indicates the apparent resistance of the line wheu that reading was taken. The readings will generally differ because of the existence of a varisble electrometive force in the line. If, however, the difference is not very great, the harmenic mean of the srithmecic mean of the
1 For tha development of this Important part of electrical science, see Weber,
"Messungen galvenischer Leitungswiderstande nach einen shsoluten Masse in Poggendorffs Annaler, March 1851 : Thomson, "Mechanical Theory of Elactrolysis," "Application of the Principlo of Mechanical Effect to the Jeasure. ment "Transient Electric Curce, and of Galvanic Resistancee in Absolute Units," Llectrodymamische Magsic Currents," in Phil. Mag., 1851 and 1852: Weber, Llectrodynamische Maassbestimmungen, insbesondere Zurückfuhrung der StromEnfensilatsmessungen auf mechanischen Maass, Leipsic, 1856; Thomson, "On the Electric Conductivity of Commercisl Copper," "Synthetical and Anelytical Attempts" on the sarae subject, end "Measurement of the Electrostatic Force between the Poles of a Daniell's Battery, and Measurement of the Electroststic Force required to produce a Spark in Air," Proc. Roy. Soc, 1857 and 1860° reprint of Reports of Brit. Assoc. Committee on Electr. Stand., \&c., edited Prof. F.Jenkin ; Thomson, Electrical Units of Measurement, a lecture delivered at Institution of Civil Engineers, I883; Reports of the Internationsl Conferenca for the Determination of the Electrical Units, held at Paris in 1882 sind 1884 ; A. Grey, Absolute Measuremenk in Electricity and Magnetism, London, I884.

3 See A. Gray, Absolute Measurements in Electricity and Maonetism, I884. 74; also T. Gray, Phil. Afag. November 18s6. The following quotation p. 27, the art. Teleorapa in the sth ed. of the Ency. Brit. Ghows how comparatively recent is the introdnction of a nything like absolute messurement in telegraph testing:-"The nrdinary test for insulation consists in appent in telegraph battery, with one pole to earth and the other through a pelvanome a galranic the line of telegraph of which the remote end is kept insulated tion of the whole line were perfect, the galvanometer needle wonld insulszero; but, when looked for with a battery of snitable power and a galvanomet of suitable sensibility, indicetions of a current ere slways found, alvanometer very short length of very perfectly insulsted line thst is tested. The shisolnto measure of the strength of this corrent divided by the absolute measure of the electromntive force of the battery gives an absolute messnre for the insulation of the cable. No tolegraphic testing onght in future to be accep the insulation partment of telegraphic business which has not this definite cheracter, elthough it is nnly within the last jear that convenient instruments for working in absolute
measure have been introduced at all, snd the whnle eyster of eng measure have been introduced at all, snd the whole eystem of abeolnte roeasureeystematically for the first time in 1859 , in cxperiments by Prof F in practice $\$$ For this theory. seo Electaicity, vol. vili. p. 44.
resistances, when zinc and copper were respectively to the line, will give nearly the true resistance. Since the deflexions are reproduced by substituting resistances for the line, the galvanometer zero may be off the cale to one side, and hence the total deflexion, and therefore the sensi. bility, may be made very considerable. In this case the reversing key K is reguired for keeping the de-

lexion in the same direc

tion. With a perfectly insulated battery this can be accomplished by putting the galvanometer between the battery and the key K; but the orrangement shown is safer. The most suitable galvano. meter for these tests is a dead-beat mirror galvanometer with a long enough suspension to prevent error from the viscosity of the fibre. Such an iostrument is much to be preferred to the astatic form, especially when variable esrth-currents are present.
(3) A highly sensitive modification of method (2) is obtaired by the use of a differential galvacometer, one coll of which is joined in circuit with the standard resistances and the other coil with the line. The resistances are then adjusted to balance, or to give no permanent deflexion when the battery circuit is closed. Several balances with pasitive and negative currents must be taken and the results combined as indicated above.
(4) Wheo an electrometer is employed for testiug insulation, as described below, it may be used for the wire resistance also either by substitutiog it for the galvanometer in Wheatstone's bridge method (fig. 8, G) or by that shown io fig. 10 . One pole of the battery B is joined to the line through the reversing key K and the resistance R , the other pole being to the earth. The electrometer El is then applied to the two ends of \mathbf{R} and to the ead of l and the earth alteraately and the relative deflexion

noted. The deflexions should be as nearly as possible equal; that is, R should be as nesrly as possible equel to l. The form of reversing key shown at K_{1} is convenient for this test, as it allows the comparisons to be made quickly; and, as the readings can be always taken to the same side of zero, the whole length of the scale is available for each deflexion. The key consists of two ordinary front and back stop single lever keys fixed together by au insulating piece i at such a distance apart that the cootact stops a, b and c, d are at the corners of a square. Suppose one pole of the battery put to the line and the resistance R adjusted until no change of deflexion is obtained by depressing K_{1}; then R is eqnal to l if thero is no earth disturbance. Then put the other pole of the battery to the line; tarn the levers of K through 90° round the pivot p; and repeat the adjustment of R for a second determination of l. Repeat these measurements several times and combine the results in the manner described in method (2). If R is not mado equal to If the resistances are in the ratio of the correspoading deflexions.

Measurement of Insulator Resistance. - (1) In the direct deflexion methed the connexions are the same as those shown in fig. 9 , except that the distant eod of the lino is insulated. Very great care mast be taken that the galvanometer and all the connexions between it and the end of the line are so well iosulated that no seosible part of the observed deflexion is due to leakage through them. In making the test, first earth the line for five minutes; then, with the galvanometer ehort-circuited, apply the rioc pole of the battery to the line ; at the end of from thirty seconds to a minute, depeading on the length and capacity of the line, remove the short-circuit plugs and record the deflexion at the end of overy ten or fifteen secouds during the whole time (usually from ten to twenty minutes) the tast is contioued. Again earth the line for an interval equal to that during which the battery was applied; theo apply the copper pole of the battery and repeat the readings as before. Using the deflexions as ordinates and the corresponding times as abscisse, construct a emooth curve for both the zioc and the copper test. The galranometer constant divided by the mean ordinate of these carves at any time gives the insalation at that time. To determine the galvanometer constant, substitute a high resistance R, say one megohm, for the line, and shunt the galvanometer with a shunt 6. If the deflexion under these circumstances is d and G is the galvanometer resistance, the constant is

$$
\mathrm{C}=\mathrm{R} d \frac{\mathrm{G}+s}{s}
$$

(2) The olectrometer method is only applicable to linee of considerable iudactive capacity, but is particularly well suited for cable testing. The battery \mathbf{B} (fig. 11) is comnected through a refersing key \mathbb{E}, to the eads of the resistance slide $a b$, one end of
which is put to earth. The slide generally consists either of 10 or 100 equal resistances, amounting in the aggregate to from 10,000 to 100,000 ohms. The cable can be counected by means of the reversing key K to either pair of quadrants of the electrometer $E l$, the slider s being at the same time put to the other pair. To determine the constant of the electrometer, con. nect the earth wire with the cable terminal and the slider with contact 1 , and observe the deflexion; this should be the same for both
 directions of the curreat through the slide; its value multiplied by 10 , when the slide is made up of ten coils, gives the value in scale divisions of the full difference of potential between the ends of the lide. Thia number added to the zero reading of the electrometer is called the inferred acro. To find the insulation of the cable, remove the wire w, put in the short circuit plug p, move the slider to contact 10 , and, the distant end of the cable being insulated, opnly by means of K_{1} the zinc pole of the battery to the cable and the copper pole to the earth. Allow sufficient time for the cable to charge-say one mioute for a cable of 2000 knots- then remove the short-circuit plug snd take readings every fifteen or thirty seconds. The difference of these readings from zero gives the fall of potential of the cablo due to discharge through the insulating coat. Next earth the cable at both ends for a time equal to the duration of the last test, and after reversing K put the copper pole of the battery to the cable and the zinc pole to the earth and take another series of readings. Subtract these readings from the inferred zero, and, using the differences as ordinates and the correspondiag times as abscissx, draw two curves. To find the insulation of the cable at any iaterval ℓ after the battery was applied, draw a tangent to the curve at the point corresponding to that time and produce it to cut the axis of the ordinates. Let D_{1} be the ordinate to the point of iutersection, and D the ordinate at the time t; then, if C be the capacity of the cable in microfarads and I its insulation in megohms,

$$
\mathrm{I}=\frac{t \mathrm{D}}{\mathrm{C}\left(\mathrm{D}_{1}-\mathrm{D}\right)}
$$

If the difference between the reading and the iuferred zero at the times l and t_{1} be D and D_{1}, the insulation is given by the equation

$$
\mathrm{I}=\frac{-4343\left(t_{1}-t\right)}{\mathrm{C} \log \mathrm{D} / \mathrm{D}_{1}}
$$

when $t_{1}-t$ is reckoned in seconds. This latter is the formula commonly uscd; it gives the insulation at come time in the interval between the two observations; the exact time depends on the rate of "absorption" of the cable.

The advantages of the electrometer method of testing cables are the comparative steadiness of the needle during earth-current disturbances, its high sensibility for the detection of small iotermittent faults, and the fact that simultareous tests can be taken from both ends of the cable. In order to test from both ends simaltaneously one or other of the following methods may bo adopted. Call tho ends of the cable A and B, and suppose the operator at A is to begin the test. The operator at B joins the copper pale to the earth and the zinc pole to the line, and leaves the slider of his slide resistance at the earth end of the alide. Then, at a time previously arranged, he watches until he sees the electrometer begin to indicate a charge in the cable, and moves the slider along the slide so as to keep the electrometer near zero. As soon as the olectrometer ceases to indicate increase of charge he ceases to move the slider and begins to record the deflexions at regular intervals, the first reading being taken as zero. The other method is to leave the slider permavently to earth and keep the electrometer so insensitive that the deflexion is always within the limits of the scale. Observe the time at which the electrometer begins to be deflected, and from that time onward take readings every thirty secouds during the time of the test. The mean of the readiogs taken at beth ends, reduced to the same sensibility, should be used for calculating the insulation. This method not only eliminates the effects of earthcurrent disturbance out also throws light on the nature and dis. tribution of such disturbances.

When an electrometer is not available and the line is too much diaturbed for good testa to be obtained by the galvanometer method, the following procedare may be adopted. Join the battery and the galvanometer in series with the cable as for the direct deflexion test. Short-circuit the galvanometer and charge the cable for one minute. Insulate the cable for fifteen seconds; then break the short circuit of the galvanometer; again apply the battery, and take the deflexion procuced by the charge. Keep the batterv on the cable for fiftern seconds, and during that time take if possibio the direct deflexion reading two or three times. Again insulate for
fiften secouds and repat the above rcadings ; and continue tho samo cycle of oporations for the whole time of the test. After earthing the cable for the proper interval repeat the above test with the other pole of the battery to the cable. To reduce the charge readings to absolute measure, find the dellexiou of the gal. vanometor noodlo due to the charge of a condenser of n microfarads capacity by the testing hattery; let d bo this deflexion. Then the dotlexion that would be obtained by charging the whole cesble would bo $C \mathscr{L} / n$, and, if D bo ony one of the deflexions during the test, $\mathrm{D}_{n} / \mathrm{Cd}$ is the fraction of the whole charge which-has been lost in the fiftecu secouds immodiately preceding this charge ; thus

$$
I=\frac{4343 \times 15}{C \log \frac{\mathrm{C}^{3} d^{2}}{\mathrm{C}^{2} d^{2}-n^{2} \mathrm{D}}}
$$

The method just described takes advantaga in a somewhat imperfect manner of both the direct deflexion and the eloctrometer test; but the galvanometer should have such a long period that the whole of the charge can take place before the needle is eensibly moved from its zero position, and that the vibration of the needle unust not be damped to any great extent, -a condition which rendera the instrument unsuitable for direct deflexion testing.

The points with regard to the cable which should be particularly attended to when testing for insulation are-the continuity of the insulation all through the test, that is, there should be no eign of a breakdown for ever so short a time; the rate of polarization with positive and negative current is always the same in a perfoct cable, but is seldom so when a fault exists ; the absolute insulation with both eurrents shouid also be the same if the cable is perfect, but is never so for any length of time when 8 fault exists. If the insulatious show any sign of being defective great caro must be taken utt to apply a powerful battery to the cable, unlass the object is to increase or "breals down" the fault. The resistance of a fanlt is generally diminished by applying the zinc pole of the battery to the cable and increased by applying the copper pole; but if tho fault is small it sometimes happens that both currents increaso the resistance. Even a very powerful battery may in ench a case fail to increase the fault.

Capacity Tests-The arrangement of the connexions for Thomson's capacity test are shown in fig. 12. 4 woll-insulatel battery 13 is connected through a reversing key K_{1}, to the clide resistance $a b$, and by means of a key I a can bo put to a standard condenser C and δ to the cable, or tho condenser and tho cable can be connected together and then both put to carth through the galranometer \mathbf{G} by closing the key K_{p} Any point in the ro-
sistance $a b$ can be put sistance $a b$ can be put the slider s. Suppase

the middle point put to the earth, then C and L will be charged to eqnal potentials but of opposite sign. If the connexions to the slide are broken and C is joined to $I_{\text {s }}$ the resulting charge will be saro when the capaclty C is equal to the capacity L, and when $\mathrm{K}_{\text {, }}$ is closed no current will fow through G. Similarly, if αs is to $s b$ as L is to C the resulting charge is zero. Hence when, after jointog C to $L_{,}$, no deflexion is shown on G when K_{2} is closed -

$$
\mathrm{L}=\mathrm{C} \frac{a s}{s b}
$$

A modification of this test has beon suggested by Mr John Gott. The condenser C is joined in series with the cable and one end of the slide is put to earth. The galvanometer G is joined from the end of the cablo to the slider 8 and the position of the latter, which gives no deflexion, is found by successive trials, the cable being discharged and recharged between the trinils, A small condonses in the galvanometor circult is an adrantage, as it allows several adjustmonts to be made witbout discharging the cable. The most suitebla instrument, however, is an electrometor, as it allows the adjustment to be made at onco.

The capacities of condensers may be compared by charging or discharging them through a galvanometer and comparing the deflexions, or, as in De Sauty's mothod, by substituting them for two sides of a Wheatatone's bridge and finding the ratio of the resistances in the other two sides; then, with the galvanometer circuit closed, the battery circuit can be closed without producing any deflexion. The galranometer circuit must join the condensers at the same points as the bridge resiatances. These methods are quite unsuited for telegraph-line testing becanse of the resistance and the inductive retardation of the line.

Tests of a Submerged Cablo.-During the submergence of a cable
is necessary to provids the means of knowing at every instant
whethor it continues in perfect electrical coudition, so that should any fault dovelop it can bo at once detected and further paying ont atopped until it is removed. It is also of great importance that tho ship and shore should bo in telcgraphic communication with. each other. The arrangements made for these purposes by different electricians vary considerably; but the general principle will be gathered from fig. 13, which includes all that is absolutely neccessary for the purpose. The principal testing station is always on board the ship, and from it all the testing operations both on board and on ehore are regulated. Roferring first to tlie arrangements on board, B is the testing battery, K the testing key, and G the teating galvano. meter; B_{1} is the sig.
 battery, K_{2} the key, and G_{1} the galvanometer; R is a resistance box and E the earth-plate-the ohip's side in this case. The battery B is connected through the key K , the resistance $\mathrm{R}_{\text {, }}$, and the galvanometer G to the cable, as for direct deflexion testing. The shore end of the cable is at the same time connected to one set of plates of a highly insulated condenser C_{r} and (although this mey be omitted) to one pair of quadrants of an electrometer El. The other pair of plateg of the condenser are put to earth through the eigoalling key K_{1}. It is convenient also to have a second condenser C , on shore, the capacity of which can be readily varied, so arranged that its capacity can be udded to that of C_{1} by depressing the key K, and again discharged through a.galvanometer G by releasing the key. The operations are then conducted as follows. The insulation is measured on board ship, alternately with positive and negative currents of from ten to fifteen minutes' duration, by observing the deflexion on the galvanometer G; and the reading at the end of ewh minute, or oftener, is recorded in a diary. The continuity of the conductor is tested at short intervals-say every five minutesby the observer on shoro depressing the key K and thus adding the capacity of C to tho cablo. This gives a sudden deflexion on the galvanometer G on board, and at the same time showe thist the conductor is continuous and that the observer on shore is attending to his duties, When the shore key K is released, the dischargo through G is indicated by a throw deflexion, the amount of which is recorded in the diary and shows the potential to which the ehore end of the abble is kept charged. When the elegctrometer $E 7$ is used, a continnous test of the poteutial at the shore end is obtained, and the development of a fault in tho cable is at once indicated. It is convenient for this purpose to dispense with the charge in the electrometer jar and needle and connect the needle to the pair of quadrants wbich are joned to the cable. The deflexion is then proportional to the square of the potential and is always to one side of zero, so that the whole range of the scale is availablo for the deflesion. The tosts for wiro-resistance and capacity are practically the eame as those already described. They are in osdinsry circnmstances of much less importance than the insulation testa. The wire rosistance test is of groat value, however, for giving a close estimate of the temperaturo of the submerged cahle, and hence for giving the means of comparing the tests of the submerged cable with those of the cable previous to submersion. In laying short lengths of cable the shore station may be dispensed with and capacity tests relied on for coutinuity. Communication betreen ship and shore is carried on by means of the keys K_{1}, K_{1}, the galvanometes G_{1}, and the batteries $\mathrm{B}_{1}, \mathrm{~B}_{1}$. The signalling key on board the ebiF adds or cubtracts the electromotive force of the battery B_{2} from the testing battery, and hence varies the potentinl of the cable. This is shown on shore by the partial charge or discharge of C_{F} passing through the galvanometer G_{1} and is interpreted in accordance witb the single needle alphabet in the ordinary way. In a similas manner the signalling key on shore varies the charge of C_{y}, and eo causes slight variations of the testing-cusecut on board the ship, which are read on the galvanometer G_{1} and interpreted in the same way. The testing is usually suspencled during the signalling; but if the mossage is long an insulation reading is taken every few minutes according to pre-arrangement.

The galvanometers used at sea require to be constructed so that the rolling of the ship does not deflect tho needle, either on account of its inertia and the action of gravity, or of the relative changes in the position of the ship's magnetism. The best form of marine galvanometer consists of two short bobbins of fine silk-covered wire placed ead to end, about an eighth of an inch apart, and having their axes in the same line, with a very light mirror, carrring cemented to its back one or more small magnets suspended between the two bobbins in such a way that the centre of the mirror is in their common axis. The mirior and magnet system weighe from ono-half to one grain. It is euspended as eloown in fige 14 by a
single silk fibre f, which passes throigb tae centre of inertio of tho mirror and needle system m and is fixed at one end directly to the frame F and at the other end to a light spring s. The frame F is made thin eoough to slide into the opening between the two bobbing, so that the mirror can be easily taken out for adjustment when necessary. So long as the suspending fibre passes through the centre of inertia of m it is clear that no motion of translation of F can produce rotation of the mirror. When the instrument requires to be highly seasitive, as for testing purposes, it is shielded from the ection of the ship's and the earth's magnetism by enclosing it in a massire iron case. For signalling purposes the controlling magoet is arianged to produce at the ucedle a field so strong
 that the effect of variations of external mag-

F10. 14.-Marino galveno. meter. netism is insppreciable.

Testing for Faults. - Numcrons methods have been proposed for the localization of faulto in telegraph lines, some of a complex character and adapted to the cases of faults of a kind which fortunately seldom, if ever, occur. Wo give here a brief outline of the tests for the cases of most common occarrence.

For the determination of the nosition of a complete rupture with the conductor insulated both the insulation and the capacity tests are theoretically applicable. The insulation of a line of uniform type and material is inversely as its length; hence if a piece is broken of the insulation is increased. If I be the total insulation before ruptures, I_{1} the insulation of one section after ruptrure, and l the total length of the line, the length of the section is $l / / I_{3}$: Unfortuastely it is difficult to obtain the necessary accuracy in insulation testing on account of the great infuence of earth-currents on the result; but apart from this there is always some ancertainty, especially in cables, as to the iosulation at tho break. For cables a fairly reliable test can be obtained from the capacity even when the insulation at the fault is somerhat imperfect, if it be sufficient to hold the greater part of tho charge for a ferr seconds, siace the amount of loss in any short interval can be estimated by a separato test. The capacity of a uniform cable is inversely as its length; hence, if C be the total capacity of the perfect cahle and C_{1} the capacity of one section, the length of that section is $l \mathrm{C}_{2} / \mathrm{C}$. Whenas is almost always the case-the cable is not quite aniform in electrical quality and in temperature, a table or a curve ahowing the wire resistance, the insulation, and the capacity up to any point from either end should be kept for reference.

It is oot at all uncommon in cables for one side of a fractiare to be partially insulated throngh the condnctor uot breaking exactly at the same point as the insulator. In this case, however, the other ond will be iu most cases almost perfectly earthed and the position of the fault can be very nearly deternined by the wire-
resistance test. When both ends are partially insnlated it is very difficult to obtain a near approach to the position of the fanlt because of the uncertainty as to which side of the break offers the greatest resistance. A frst approximation is obtained by finding the wire resistance from both ends and subtracting the total wire resistance of the cable from the sum of these. This gires the sum of tho resistances at the fracture, and half of this, if it is not too great, subtracted from the resistance of either section gives an approximation to the resistance of that section ap to the break. If, however, the resistance at the fracture is comparable to the total wire resistance of the cable, this method is useless. An approxch to the solution of the difficulty can be obtained from capacity tests, the cable being discharged through different resistances at tho testing end. But the procedure is very uncertain and difficult, and a full discussion of it would take more space than can bs afforded here. The resistance at a fault can sometimes be greatly diminished by repeated application alternately of the positive and negative poles of a powerful battery to the cable, hat this should never be resorted to if it can possibly be aroided. The direct deflexion method of taking wire resistance is most auitable for these tests. The resistance ocoms to diminish gradually after tho battery is epplied uatil it reaches a minimum value, after which it again increases. This maximum deflexion should be taken as indicating most nearly the trus wire resistance up to the fracture.

IVhen ithe fault is a partial earth without fraeture, and both ends of the cabla are arailable-as in factory testing, or when a socond well-insulated cable can be used-the most eatisfactory uncthod is the loop test. In this the two sections of the cable form two sides of the V"heatstone's bridge; one pole of tho battery is put to the juuction of the other two sides and the other pole to earth, -that is, practically to the fault. The ratio of the resistances in the bridge when balance is obtained gives the ratio of the resistances of the two eections of the cable, or the ratio of the resistance of one section to the resistance of tho other section plas \$he resistance of the sccond cable. The total resistance of the
cable being known, it is easy to determino the position of the fault: When the fault has a high resistance it is ncceseary to make a correction for the want of perfect insulation is the sound part of the cable. When both ends of the cable are not available, measure the potential at the testing end and the resistance between that end and the earth, and simultaneously measure, by means of a slide resistance and zero galvanometer or by means of a quadrant electrometer, the potential at the distant end. Then, if V be the potential at the testing ead, v the potential at the distant end, and K the resistance measared, the troe resistance of the fault is $R(1-v / V)$. Another simple, although less perfect method, may be mentioned. Measure the resistance between both ends and the earth and subtract frem the snm the true wire resistanco of the cable; the differeace is twice the resistance of the fault. The imperfection of this method, and indeed of any which involves two observations not made simnl. tancously, lies in the variable character of the resistance of a fault.

III. Modery Telegrapis.

The code of signals introduced by Morse is still emplojed in the United States and Canada, and the international codo in vogue in Europe differs only sliglitly from it. Currents in one direction onl are used, and different combinations of from one to four long and short coutacts form the lottcrs, while the numerals are represented by groups of five signals, and punctnation and other apecial aigns by groups of six and sometimes more. The iustruments ased for land telegraphs on this system are of two types,-" sounders," which indicate by sound, and "recorders," which record the eigoals.
(1) Recorders vary in details of construction, but all have the same object, namely, to record the intervals during which the current is epplied to the line. In the earlier forms of instrument the record vas made by embessing lines on a ribbon of paper by means of a slarp stile fixed to one cud of a lever, which carried at the other end the amnature of an electromagnet This metbod of recording is still largely employed in America, and certainly has the advantage of simplicity. The form of instrument almost universally used in Europe makes the record in ink, and hence is sometimes called the "ink-writer." This method has the advantage of distinctaess, and so is less trying to the ejes of the operators. The action of the instrument will be understood from the annexed sketch(fig. $\begin{array}{ll}\text { 15). Sup- } \\ \text { pose } & \text { s to }\end{array}$ be a strip of paper mhich is beingpulled towards
the left by the left by
means of two rollers r_{1} aud π_{2} moved by a train of mechanism. Uaderneath the roller r_{1} a small wheel i is kept turning by the samo mechanism, and has ita lower edge in contact with the surface of ink in the ink-well wo. When a current is sent through the magnet m, the armature a is
attracted and the lever l lifts the

Fio. 15.-Morse ink-writer, one-fourth ink-wheel i into contact with th Whk-wheel i into contact with the paper, against tise oariace. of length of which depends on the speed of the mechanism and the time the curreat flows. As the speed of the mechanism is nearly constant, the relative leggths of the marks depend only on the durstion of the current. In this wey the letters of the alphabet, or auy other understood signs, are indicated by groups of long and ehort marks, commouly called "dashes" gnd "dots."
(2) Operators who use the record- F ing instrumont soon learn to read the message by the click of tho armature against its stop, and as this is a less reading, and leaves the hands and eyes free to write, the sound is usually preferred. Thus, when it is not necessary to keep a copy, a much simpler instrument may be cmployed and the message read by sound. The earliest successful form was Bright's bell sounder, which consisted of two bells of distinet touo or pitch, ors of which was sounded when tho current was sent in one direction and the other when it was reversed.: This instrument was capable of giving very cousiderable speed, but it Was more complicated than
510. 16.-Marse sounder, one-fourth sall size. ouly of an clectromagnet, with its armature lever arranged to atop
against an anvil or screw \bar{b} (fig. 16) in such a way as to give a dis. tinct and somewhat loud sound. Dots and dashes are distinguished by the interval between the sounds of the instrument in precisaly tha same way as thay are distinguiahed when reading from the recorder by aound. The form of sounder commonly used in England is shown in fig. 16 ; it is one of the simplest possibla instruments, is easily adjusted to the currant by tightening or slackening the spring s, and is very little liable to get out of order.
Another and in some respecta a simpler method of recording is to use a chemically prepared ribbon of paper. Suppose, for inatance, tha paper ribbon to be soaked in a solution of iodide of potassinm and a light contact spring made to presa continu. ously on its surface as it is pulled forward by the mechanism. Then, if a current is sent from the epring to the rollar through the paper, a brown mark will ba mada by the spring due to the liberatiou of iodine. This was the principle of the chemical telegraph proposed by Edward Davy in 1838 and of that proposed by Bain in 1846. It gives a ready means of recording on the Morse plan at a high rate of speed, and Bain's telegraph was successfully worked for soma years in America. Several ingenious applications of his method have been proposed, as, for axample, the copying telegraph of Bakewell and of Cras, by means of which a telegram may he transmitted in the aender's own handwriting; the pantelegraph of Caselli ; the autographic telegraphs of Meyer, Lenoir, Sawyer, and others; and the autographic typo-talegraph of Bonalli. The priuciple of action of thesa instruments is this. Suppose two motallic cylinders, one at the sending and the other at the receiving station, to be kept ravolving synchrouonsly, and suppose the axis of each to be threaded with a fine screw so that as it revolves rapidly it has a slow side motion. Wrap round the cylinder at the sending statiou a ribbon oí tinfoil, or paper covered with a conducting coating, on which the message is written in varnish or soma other insulating substance. Suppose also a ribbon of paper which has been soaked in iodide of potasaium to be wrapped round tha cylinder at the receiving station. Cause a stila, as in the Bain telegraph, to press on each cylinder sad eet it in motion. It is evident that so long 'as the stile at the sending end prasses on the clean foil the stile at the receiving end will continua to make a brown mark, but that when it passes over the rarnish the mark will be interrupted. In this way, as the two cylinders revolve and move sideways, the series of interruptions made at the receiving end form an exact copy of the varnish marks at the sending ead. These instruments are at present but little used.
It has been fond pessible to make the Morsa ink-writer so sensitive that it cen record oignals sent over land lines of several hundred miles in length vary much faster than they can be transmitted by hand, and this has led to the adoption of automatic mathods of transmission. One was proposed by Bain as early as 1846, but it did not coma into nise. That now amployed is, however, practically 'a development of his idea. It consista in punching, by means of "a puncher," a series of holes in a strip of paper in such a way that, when the strip is seut through another instrument, called the "transmitter," the holes cause the circuit to be closed at the proper times and for the proper proportionate intervals for the message to be correctly printed by the receiving iustrument or recorder. The most euccessful apparatus of this kind is that devised by Wheatstoue; others have been introdnced by Sicmens and Halske, Garnier, Humaston, Siemens, and Little.

In Wheatstone's automatic appar cus three levers are placed sido by aide, each acting on a set of omall punches and on mechanism for feeding the paper forward a step after eack. operation of the levers. The punches are arranged as shown in fig. 17, and the levera are adjusted bo that the laft-hand ona mores a, b, c and punches a row of holea across the paper (group 1 in the figure), the middle one moves b only and punches

a centre hole (2 in the figure), while the right-land one movea α, b, $d_{1} e$ and punches four holes (3 and 4 in the figure). Tha whole of this operation reprasents a dot and a dash or the letter "a." The side rowe of holes only are uscd for tranamitting the messaga, the centre row being required for feading forward the paper in the transmitter. The perforation of the paper when done by hand is usually performed by means of small mallats, but at the central telograph office in London the kayo are only used for opening air-valves, the actual punching being dono by pnoumatic pressura. In this way aaveral thicknesses of papar can ba perforated at the sama time, which is a great conveniance for press work, since copias of the same message have often to be transmitted to several newspapers at the same time. The mode of asing the paper ribbon for the transmission of the message is illustrated in fig. 18. An abonito beam E is rocked np and down rapidly by a train of machanism and moves the cranka A and B by means of two matal pins p, p. A and B are in metallic contact with each other through the springs s, s, and they carry two light vertical
rods $\mathrm{M}_{1} \mathrm{M}_{1}$, the one as much in front of the other as there is apace between two successive holes in the perforated ribbon. To the other ends of A, B rods H, H_{1} are loosely hinged, their ends passing loosely through holes in the ends of the bar P, which is fixed to the divided disk D . By means of two collars $\mathrm{K}, \mathrm{K}_{1}$ and the wheel W, the disk D is made to oscillata in unison with the beam E The cranks C and C_{1} are connected with the polcs of the sending

battery B. The operation is as follews. The paper ribbon R is moved forward by its centre row of holes at the proper speed above the upper enda of the rods $\mathrm{M}, \mathrm{M}_{1}$; should there be no hole in tha ribbou it pushes tha crank A or B out of contact with the pins p, p^{\prime} and prevents a current passing to the line. Should, however, a row of holes, like group I ahove, be perforated, the rod M_{1} will first be allowed to pass through the paper and copper will be put to the line; at the next half stroke of the beam, M will pass through, and as the disk D reverses the battery zinc will be put to the line. Thua for a dot first a positive aud tljen a negative current are sent to the line, the effect of the positive current continuing during the time required for the paper to travel the space hetween two boles. Again, suppose groups 3 and 4 to be puncherl. The first part will be, as before, copper to the line; at the next half stroke of the beam M will not pass through, as there is no hole in the paper; but at the third half atroke it passes through and zine is put to the line. Thus for a dash'the interval between the positiva and the negative current is equal to the time the paper takes to travel over twice the apace between two successive holes. Hence for sending both a dot and a dash reverse currents of short duration are sent through the line, but the interval between the reversal is three times as great for the dash as for the dot. In the receiving instrument the electromagnet is so construlcted that the armature, if pulled into any position by either current, remains in that position, whether the current continues to flow or not, until a reverse current is mada to act on the magnet. For the dot the armature is deflected hy the first current, the ink-wheel heing brought into con. tact with the paper and after a short interval pulled back by the reverse current. In the case of the dash the ink-wheel is brought into contact with the paper by the first current as before and is pulled back by the reverse current after three times the interval. Tha armatura acts on an inking diak on the principlo dascribed above, aave only that the disk is supplied with ink from a groove in a second wheel, or which it rolla: the grooved wheel is kept turning with one edge in contact with ink in an ink-well. By this method of transmission the battery is alwaya to the line for the same interval of time, and alternately with opposite poles, so that the effect of electrostatic induction is reduced to a minimum. Through the instrumentality of this method as many es 400 words per minuta have lately been transmitted by Mr Preece between London and Newcastle, a distance of 278 miles.

The first considerable improvenient on the House type-printer, referred to above, was made by D. E. Hughes of Kentucky in 1855, In tha Hughes instrument (see fig. 19) two trains of clockwork mechanism, one at each end of the line, are kept moving synchronously by powerful spring governors. Each instrument is provided with a key-board, resembling that of a small piano, the key levers of which communicate with \& circular row, R, of vertical pins. A horizontal arm A fixed to a vertical ahaft in gear with the mechanism sweeps over these pins at the rate of from one to two turns per eecond. When a key is depressed, slightly raising one of the pins, the battery is put to the line for a ahort time at that part of the ravolution by means of a sledge S carried hy the horizontal arm. The current thus aent to the line may ba made either to act directly on tha printing instrument or to close a local circuit by means of a relay. For aimplicity we will supposa direct action. The current then passes through the coils of a powerful electromagnet M, which relieves the printing mechanism. The electromagnet consista of two coils each containing a aoft iroth cora of the same length as the coil. Thesa cores rest on the ends of tha two arma of a powerful horsa-shoa permanent magnet, and thus become atrongly polarized by induction. A aoft iron armature is placed across the free ends of the eoft iron cores and is pulled by a strong apring, the tension
of which is adjusted 60 as to be nearly equsl to the magnatic attraction. The carrent is eent in the proper direction to diminish the power of the magnet and allow the spring to preponderate. A rery po xarful action is thus obtained by means of a very small current, the actual work being done by motive-power in the instrument itself. After the letter ia printed the mechanism short-circuits the magnet and replaces the armature automatically. The printing action is as follows. The type-ribel W is carried round cortinu:

"American combination printing telegraph," because it entbolicd part of Hnglieg's and part of House's instruments. With this modified form somewhat greater speed was obtaiucd, lut it tuas found difficult to drive, requiring the nse of stean or some such motive-power. In a subsequent modification introduced in 1875 8n electromotor is applied to drive the printing mechanisuu. This allows a eborter train and stronger wheelwork to bo uscl, sccures moro certain action, and iuvolves less risk of derangument. Hughes's form was taken up ly the French Goverpment in 1860, ant is atill rery largely in use in France.
Stock and privato line telegraplas constitute an important class of instinments, of which Laws's "gold indicator," introduced in 1866, may be taken as the forernnner. A brief elescription of Calahan's stock telegraph, introluecd in 1867, will give a general idea of the action of this class of instrumenta. The printing mechauisin cousists of two typcwheels, on the edge of one of which are the letters of the slphabet and on thi edge of the other the numerals from 1 to 9 sud fractions by eightlis up to unity. The type-wheels are placed sife by sille, but can be turued independently of each other. Beneath them a platen is carried on one zud of a lever, whose other end is attached to the arinature of au electiomagnet. Between the platen and the Wheels a ribbon of paper broad enough to cover the edges of both wheels is passed. The instrumeut is rorked by three lines of wire, one for driring each
ously by the clockmork, to which it is attached through a friction aleeve which allowa it to be stopped, and puslied backward or forward without atopping the mechanion. Another slaft carrying three came is arranged so as to be locked into gear with the wheel. work when the armature leaves the poles of the inagnet. Tho cans then come into action in rotation; the first moves the adjustment lever, shown to the left of W in the figure, which pushes a wedgeshaped picce into the teath of the type-wheel and adjusta it exactly to the proper position for printing; the second cam presses the paper against the type ; the third mores forward the paper' ; a fourth cam replaces the armature of the magnet and relieves the ram shaft, leaving the instrument rcady to reeeive another letter. The whole of this operation occupies only a emall fraction of a secoud. By means of the adjustment lerer or "corrector" l every error in syuchronism decidedly less than half the space from letter to letter is parfectly corrected each time an impression is made. Thus, during the time the receiving instrusoent at one station is in use, ita typa. wheel is kept in perfect agreement with the sending wheel at the other atation ; sad, if the electric action keeps time, a wrong letter cannot be printed unless the rate of tho clockmork is at fault by some such amount as one or tro per cent. If the two wheels are allowed to run a long time without the electric maintenance of agreement, they will be found more or less at variance, es the pieces of clock work, however good, caunot be parfect. Au' that is neceasary to bring them in to agreement agaiu is to etrike several times the key corresponding to a prearranged adjnstment signalthat corresponding to the dot type, for instanco. The receiver knowa (sccording to the regulated system of working) that it is adjustment, not message, that is being sent; and he turns his type-wheel by hand till it prints dots. He then aignals back "O.K." "All correct !") end is ready to receive the messagc. If by any accident hia type-wheel gets on a wrong letter in the course of a message, he disturbs the sender (who all the time seea the effect of his sending printed before his own eyes) by sending back a few currenta on him ; he receives dota by way of acknowledgment, end resets his type-wheel to print correctly. This ayatem of telegraphic printing has a great advantage over the step-by-step eyster in using continuous instesd of intermittent currents, and so avoiding the uecessity for the rapidly acting elactric sacapement, which, however skil. fully planned and executed, is always liable to failure when worked too rapidly. In Hughea's instrument almost perfect accursey and certainty bare been ettained ; and in actual practice it has proved to be decidedly superior to sll provious type-printing telegraphs, not only in speed and accuracy, but in lesa lisbility to mechanical derangement from wear and tear and from accident. It involvea many novel features: the receiving electromsgnet is of peculiar construction and remarkshle efficiency ; the tranemitting apparatus has a contrivance to prevent nnintentional repetitions of a letter through the operator holding his finger too long on a key; the type-wheal has a lock for each station, to be opened by its own key, one of the letter keys of suy of the instruments in the circuit. This instrument was for some years extensively used in the United States, antil ouperseded by G. Mi. Phelps's modification of it, known as the
type-wheel and oue for printing and feeding the paper forward. The movement of the type-rheel is accomplished by ao escapement acted on by closiug and opening the circuit of an electromagnet. For the conveniance of the sender the transmitting iustruicent is made in the form of tro dials, each resembling the dial of su A B C instrument, round the edge of one of which letters are printed, and round the other thenumerala and fractions. Mechanism is provided for opening and closigg the circuit, ao that by turning a handle (fixed to an axis passing through the centre of the dial) until an index attached to it points to the letter which is to bo printed, the type-wheel of the receiving instrument is in the proper position to print that letter, aud this is accomplished ty depressing a key and closing the third circuit The printing magnet then raises the platen aud pressea the paper against the type. Supposo direct United Statca telegraph stock is to be reported end the price is $9 \frac{3}{8}$. The operator turns the index on the letter dial to \mathbf{D} and presses the priutug key; he next turns the index to period aud again pressas the priuting key; be then turns in succession to U , to period, to S , to period, and printa these; than he turns the index on the figure dial to 9 and prints it, lastly to $\frac{z}{b}$ and to period, and printa them. The quotation then rcads on the paper ribbon D. Ư. S. 9 ?

Various modifications of this instrument heva since been introduced. In one form, the "universal etock printer," two lines of mire are required, and both type-wheels are driven by one wire, the printing magnet being made to change the action from one wheel to the other when the wheels are brought into a particular position. In another, "Phelps's stock printer," only one lize of wire is required, a polarized armature leing used for moring the type-whegla and an ordinary neutral armature for the printing. The rapid reversals which work the polarized armature do not last long earough to move the printing lever, but when a pause is made the printing mechanism is relieved and a letter printed. This instrument is aimilar in principle to the House spparatus and is capable of working at a considerable speed. ${ }^{1}$
Cowper'e writing telegrsph is designed to record the mesgage in' written characters; its arrangement is as folloms:-Two lines of wire are connected, one with each of two small reaistance slides, Which are placed in such 8 wey that the sliders move in the same plane but in directions at right angles to each other. A pen placed et the point of intersection of the lines of motion of the two sliders is connected with them in such a may that, when it is mored, as in the act of writing, each slider takes np that component of the motion which is in the direction in which it is free to more. The eliders thus vary the resistance in the line circuits hy an am ount proportional to the motion of the pen, and when a battery is kept joined in the circuit the corrent raries in the same way. The current is passed through the coils of two electromamets at the receiving end, each capable of gising motion to a pencil in one line, at right sagles to the direction of motion of the other. When the pen at the sending end is moved as in the act of writing a messaga 1 For these and other type-printing instruments, see Prescott's Elechriciov and the Electric Telegraph.
the pencil at the receiving end moves in a corresponding manner on account of the variations of the current, and in this way it writes the message on a slip of paper moving beneath its point.

Methods of Working Telegraph Circuits.-(1) The arrangement on the open circuit syetem for single-current working is shown in fig. 20 , in which L_{1} represents the line, G a simple form of galrauoscope, nsed simply to show that the currents are going to line when the message is being transmitted, K the transmitting key, B the battery, I the receiving instrument, and E the earthplate. The complete circuit is from the
 plate E throngh the instrument I , the key K , and the galvanoscope G to the line L_{1}, then through the corresponding instruments to the carth-plate \mathbf{E} at the other end, and back through the earth to the plate E. The earth is always, except for some special reason, used as a seturn, because it offers little resistance and sares the expense and the risk of failure of the return wire. The earth-plate E ought to be buried in moist earth or in water. In towns the water and gas pipe systems form excellent earth-plates. It will be observed thst the circuit is not in this case actually open; the meaning of the expression "open circuit" is "no battery to line." Under normal circumstances the instruments at both ends are ready to receive, both ends of the line being to earth through the receiving instruments. A signal is sent by depressing the key K , and so changing the contact from a to b, and thas putting the battery to line. On circuits where the traffic is emall it is usual to make one wire serve several stations. The connexions at an intermediate or wayside station are shown at W. S is a switch, consisting of three blocks of brass fixed to an insulating base. W may be made the terminal station of I_{1} by inserting plug 3, and of L_{2} by inserting plug 2, or the instruments may bo cut out of circuit by inserting plug 1. In ordinary circumstances the messages from all stations are sent through the whole line, and thus the operstor at any station may transmit, if the line is free, by manipulating his key. The greatest inconvenience of this system arises from the varying strength and resistance of tho betteries used at the different stations. As, however, delicate recording instruments are seldom required on such circuits little difficulty is experienced.
(2) The connexions for positive and negative current or singleneedle working on open cirenit aro shown in fig. 21, in which all the letters hare the same meanings as before. Bat N is a single necdleinstra. ment, and K is a reversing key. The levers 1 and $2 \square$

the stops a when the line is free; hence the line is to earth at hoth ends. But, if lever 1 is depressed, one pole of the batiery is put to line; if 2 is depressed, the other pole is put to the line. In this way the meedles of the receiving instrument may be made to turn to either left or right; and, if we call a motion to the left a dot and a motion to the right a dash, the Morse alphahet may be read from these motions. The connexions for wayside stations are illnstrated at W, and will be readily naderstood from the description giren under single-current working above.
(3) When the line consists in wholo or in part of undergrouud or submarine cable the capacity canses a very considerable diminu. tion in the speed of working. This is to some oxtent got over by putting the earth connexion in of the battery and using donble the number of cells, as shown in fig. 22. The stop α of the key K is

connected
Fig. 22.
through a switch S with one pole of the battery B, and the stop b in tho usnal wny with the other pole. Suppose the acm c of the switch S to be in contact with 2 ; then when the key is mani-
pulated it sends alternately positive and negative currents into the line. If the positive is called the signalling curreut, the line will be charged positively each time a signal is sent; butas soon as the signal is completed a negative charge is communicated to the line, thns hasteuing the discharge and the return of the relay lever to its insulatcd stop. This method of workirg has been already referred to in connexion with Wheststone's automatic systern.

The connexions for single-current working on this system are Closed illustrated in fig. 23. It differs from the open circuit in only requir- circait ing one battery (although, as in the figure, half of it is often placed at each end), in having the receiving instrument between the line and the key, and in having the battery continuously to the line. The battery is kept to the line by the bar c, which short-circuits the keys. When signals are to he sont from either station the operator tnrns the bar e out of
 contact with the stop b, and then operates precisely as in open circuit sending. This system is more expensive than the open circuit system, as the battery is always at work; but it offers some ad. vantages on circuits where there are a number of intermediate stations, as the circuit is under a constant electromotive force and has the same resistance no matter which station is sending or receiving. The arrangement at a wayside station is shown at W. When the circuit is long and contains a large number of stations, the sending battery is sometimes divided among them in order to give grester uniformity of current along the line. When only one battery is used the current at the distant end may be considerably affected by the leakage to earth along the line.

In working long circuits with ordinary instruments inconven- Relay iently high battery power is required in order-to send sufficient working current to prodace the signsle. In such cases it is usual to employ a local bsttery to produce the signals and to close the local battery circuit by mcans of a delicate circuit-closing apparatus calied a relay, which is a very delicate clectromagnetic key having its lever attached to the armature of tho magnet. The arrangement at a station morked by relay is ohown in fig. 24 , where L is the line of wire, joined throngh the key K to one end of the coil of the relay magnet R, the other end of which is put to earth. When a current passes throngh R the armature A is attracted and the local circuit is closed throngh the armature st b. The local hattery B_{1} then sends a current through tho instrament I and records the signal.
 In the form of reloy indicated in the figure the armature is held. against the etop a by a spring S . In some cases-as, for example, in Siomens's polarized relay, ehown in fig. 25 -the armature α is put in contact through the pivot π_{2} with one pole N of a permanent magnet m, the other pole s of which is fixed to the yolk y of a horse-shoe electromagnet M. The armature is placed between the poles of the electromagnet, a little nearer one pole than the other, so that the magnetic attraction holds the contact lever against the insulated stop without the aid of a epring. This form of relay only answers to currents in one direction, but it is capable of giving great sensibility, and for some purposes - for instance, in some methods of quadruplex working-its directional
 polarized relay. character is au advantage.

Translation.-In a precisely similar manner a relay may be made to rc-transmit automatically the message over another line, or, what is the same thing, over a oontinuation of the same line when the whole length is too great for direct working. It is not usual in practice to emplay the delicate receiviug relay for re-transmitting the message, bat it is made to work a coarser instrument, which takes the place of the sounder, or, it may be, the sounder itself, in the local circuit. It is clear that one receiving relay may be used to work a number of re-transmitting keys in the same local circuit, and hence to distribute a message eimultaneously over a number of branch lincs from a central station.

Duplex, Quadruplex, and Multiple Telegraphy.-Duples telegraphy consists in the simultaneous transmission of two messages.
-ne is each direction, over the same wire. The solution of this problem was attempted by Gintl of Vionns in 1853 and in the following year by Frischon and by Siemens and Halske. Within a few yoars several methods had been proposed by different inventors, but nene were at first very successful, not from any fault in the principle, but becanse the effect of electrostatic capacity of the line was left out of account in the early arrangemants. The first to introduce a really good proctical syatem of duplex telegraphy, in which this difficulty mas safficiently overcome for land lino purposes, was J. B. Stearns of Boston (Mass.) In order that the line between two stations S_{1} and S_{2} may be worked on the duplex eystem it is essential that the roceiving instrument at S_{1} shall not be acted on by the currents sent into the line at S_{1}, and similarly that the currents sent into the line at S_{2} shall not act on the receiving instrument at S_{2}, whilo at the 8 me time these currents must act on the instrument at S_{2} and S_{1} respectively. The two mothods most commonly e^{-}oyed aro the following.
(1) In fig. 26 B is the bending battery, B_{1} a resistance equal to that of the vattery, R a set of resistauco coils, and C e condenser. Suppose the key at station S_{1} to be depressed; then a cur. rent flows into the line throagh circuit 1, and to earth through circuit 2. Now, if both these curronts pass, as indicated in the fig. ure, round the electromagnet of the receiving instru.
 ment, lut in opposite directions, and if thair strengths are properly adjusted, no offect will bo produced on that instrument. At station S_{3} horever, the current llows to earth, partly through circuit 1 and partly through circuit 2, but in the same direction round the coils of the receiving instrument. Hence, if the current is strong enough, the receiving iustrument at S_{2} will be set in action. Similarly the depression of the key at S_{2} can be made to produce a signal at S_{1} and yet have no effect on the instrument at S_{2}. The aecessary and sufficient condition is that the currents in circuits 1 and 2 at the sending station shall at all times bear a certain fixed ratio to each other, depending on the coils of the receiving instruncint at that station. If for simplicity we suppose the resistance of the line to be constant and not to be affected by the trans mitting apparatus, and to be of zero electrostatic capacity, the fixed ratio may be obtained by odjusting R in the auxiliary circuit 2. In actual practice the line has capacity, and this is compensated for by supplying to R from the condensor C capacity cquivalent to that of the line. O should be of such a forn that the capacity in the circuit can be varied, and it must have the same inductive retardation as the line; that is to eay, the capecity mast be distribnted along the resistance R in a manner equiralent to that in which tho capacity of the line is distributed along its resistance. A rough approximation to this adjustment will answer the purpose for ordinary land line working, but for subinarine cable work a very accarata adjustment is necessary. In order that the manipulation of the key may not affect the resistance of the line, the resistance betwean the point D and E should be as nearly as possible the same far all positions of the key. This implies that the keys shall not at any tima break circuit, nor make contact on both the front and the back stops for mors than an instant, for an instantaneous break of the circuit would affect the signals boing received from the other station. The principle o. the "continuity preserving key," used for daplex working, will be ondarstoud from the figure. So long as the kpy is not depressed the line is kopt to earth through the resistance B_{1}; when the key is pushed down it suddenly changes to the battery B, being at the ransition in contact with both B and B_{1} This produces very little disturbance, becanse the key is moving quickly at that part of its stroke, and the resistance of the lias and receiving instrument is generally much higber than that of $\mathrm{B}_{1^{\circ}}$. This is called the "differential method." The principle was first enunciated by Frischen; but its present condition is the result of the labours of a large number of experimenters, ainong whom may be mentioned Siomens and Halske, Stark, Edlund, Gintl, Nyström, Preece, Nedden, Farmer, Maren, Winter, Stearns, and Muirhead.
(2) The second mathod to which mo may here rofer 19 known as the "brilge method "from the cimilarity of the arrangement (see fig. 27) to that of the Mheatstone bridre. Instead of gending the currents in the tro branches of the divided circuit $D P$ and $D Q$ throagh the tro coils of a differentially wound relay or receiving instrument, as in Frischen's method, two resistances a Lud b are inserted and the iustruments ato joined batweon P and Q. It is claar that if the difference of potential between P and Q is nonaffected by closing the sendiag key K no change of current will take place in the instroment circuit. The relative poteutial of \mathbf{P} and Q is net
affected ly the manipulation of 5 if the resistance α is to that of b as the resistance of L is to that of R; hence that is the arrange ment used. The sams remar!ss with'regard to retardation ang

capacity that were made when describing the differential mether apply here also Oue very great advantage in this method is that the instrument used betreen P and Q may be of any ordinary form.

Most important cables, buch as those of the Eastern Telegraph Company and the parious Atlantic cables, are worked duplex on Muirhead's plan. What may bo called a mechanical mothod of duplexing a cable was deacribed by Sit W. Thomeon in a pateat takeu out by him in 1858. In this, as in the ordinary methods, a differentially wound receiving instrument was used, one coil being connected with the cable and the other mith the earth; but it difererl from other mothods in requining no "artificial" or model cable The compensation was to be obtsined by working the slides of a resistance slide included in the circuit of the compensating coil, either by the sending key or by clockwork reliered by the key, 60 as to rary the resistance in that circuit according to any lam which might be requirad to prevent the receiving instrument being aflected by the no ${ }^{+}$wing current. Four years later Varley patented his model cable, which was the first near approach to a successful colution of the duplex problem on the principle now adopted. It was not, however, a sufficiently perfect representation of a laid cahle to serre for daplexing cablee of more than a few handred miler in length. ${ }^{1}$

By an interesting modifcation of the bridge method, which has been applied with excellent results by Dr Mluirhead to submarine work, condensers are substituted for a and b, ors being also placed in the circuit betweon P and Q. In this case no curreut flowe from the battery through the line or instrumente, the whole action being inductive. As we Lave already stated, the distribruion of the capacity along the resistance \mathbf{R} must is oubmarine cable work he made to correspond very accurately with the distribution of the capacity along the resistance of the cable. This is accomplished by Dr Muirhead in the following manner. One side of a sheet of paraffined paper is covered with a sheet of conducting substance, say tinfoil, and over the other cide narrow strips of the eame substance are arranged gridironwise to form a continnous circuit along the strip. The breadth and thickness of the strip and the thick. ness of the parafined paper are adjusted so that the relative resist ance and capacity of this arrangement are the same as tbose of thie cable with which it is intended to be used. A large number of such sheets are prepared and placed together, one over the other, the end of the strip of the first sheet being connected with the beginning of the strip of the second, and so on to the last sheet, the whole represeuting the conductor of the cable. In the asme way all the conducting sheots on the other side of the paper are connected together and form the earth-plats of this artificial cable, thas represeuting the sea. The leakage through the insulator of the cable is compensated for by connecting high resistances betreen different points of the strip conducter and the earth coating. Faults or any other irregularity in the cable may be represented by putting resistances of the proper kind into the artificial lino. This system of doplexing cables las proved remarkably successful.

Quadraplex telegraphy consists in the eimultaneons transmission of tro messages from each end of the line. Tho only now problem introduced is the simultaneeus transmission of two messages in the same direction; this jo sometimes called "diplex transmission" The solntion of this problem was attempted by Dr J. B. Stark of Fionna in 1855, and during the next tan years it was workod at by Bosscha, Kramer, Maron, Schaak, Schreder, Wartmann, and othere. The first to attain success was Edison, and his method with some modifications is still used. Oze of the latest arrangements is shown in fig. 28,8 brief description of which will iodicate the general principle involved. K_{1} and K_{2} are two transmitting keys the pature of which will be understood from the jllustration; \mathcal{B}_{7} and h_{2} are two differentially wound polarized relays, both of which aro supposed to respond to positive currents and to be held agrinst pressed a current, which for convenienco we call - 4, flows to the tine; this is sufficient to overcome the pull of the spring T in the relay R_{3} (the receiving instruments are supposed to be at the other end of the line), and hence the levers of both relays are held against their back-stops. When K_{1} is depressed a current -1 is sent to the line, and, this being too weak to overcome the spring T, the lever 1 See De shuty, Journ Sor Tch Enge, vol. ii., 2578.
of R_{1} moves into centact with the ansiliary lever l and closes the circuit of the sounder S_{1}. When K_{2} only is depressed a current +4 is sent to the line. This acts ou both relays, but is powerful eneugh to overcome the polins pull of the so to move the lever l and break the circrit of the sounder S_{1} before it has time to act. Thus K_{2} acts on the sonnder S_{2} but not on the sounder S_{1}. When beth keys are depressed a current +1 is sent iuto the line. This is sufficient to move the lever of R_{1} into con. tact with l but not to overceme the pull of T_{1}, and hence the circuit of scunder S_{1} is closed; it is also sufficient to move the lever of R_{2} and close the circuit of \mathbb{S}_{2}. When therefore both keys are down the sounders S_{1} and S_{2} at the other end of the line are both cet in action; the first responds to K_{1} and the secand to K_{2}. Thus all the conditions for the cimultaneous transmission of two messages are provided for. It is not necessary to enter again into the question of continuity at the different positions of the keys. The figure illustrates how this diplox system may be duplexed, and hence how quadruplex working can be obtained. It is only necessary to wind the coils of the relay magnets differentially, when, by means of a precisoly similar arrangement to that used for simple duplex, the instruments at the sending station are left unaffected by the outgoing currents, but are affected by the incoming currents. The method here indicated is on the differential principle; but it is scarcely necessary to say that the bridge method is equally applicable. \& combination of the bridge and the differential methods hass been used by Prescett and Smith, and possesses some advantages in certain cases. It is impossible in this article to go into the great variety of detall in arrangement and method with which it is possible to ebtain grood results.
The several methods that have been proposed for the transmission of a number of messages in one direction ou the same wire are reducible to two classes. In one the time which a revelving centact slider takes to make one revolution is divided inte as many intervals as there are sete of sonding and receiving instruments on the line, and by means of it the current is closed through the different sets of apparatus in saccession. This implies the synWhronous movement of the revolving sliders at the two ends of the cine. In a cense this may be said to be simultaneous trausmission: all the messages are being sent at the same time, but the progress of any one message is slower than it would be if it alone was occupying the whqle line in the ordinary way. The method possosses some advantages when the line is capable of being werked at a higher speed than a single operator can attain, or when one of the stations can advantageously bo used as a distributing station; for in that case one set of apparatus may be used as an automatic distributor. Multiple telegraphy on this plan was proposed by Themson in 185s. 1 A very complete set of apparatus for the purpose was shern by Meyer at the Vlenna exhibition of 1873.2 Delaunay's multiple telegraph is the most recent develepment of the system, and bas been lately adoptod on some circuits in Great Britain. ${ }^{8}$

In the other class there are joined to the tre ends of the line of wire a number of branch circuits, in each of which a set of transmitting and receiving apparatus is included. In the circuit, betr een the line and each of the sending keys, an electromagnetic vibrator is placed se as to open and close the circuit a great number of timos during each signal. The vibrators in the key circuits at one end of the line have all different and, if possible, relatively incommensurable periods. The receivers at the other end of the line consist of a corresponding set of electromagnotic vibrators, mounted on resenators and baring exactly the same ribrational periods as these in the key circuits at the sending end. When any one of the keys is manipulated the currents sent into the line have such a pulsatery character that they only affect the recoiver, which is capable of vibrating freely in unison with those pulsations. When a number of keys are manipulated at the same time the receivers analyse the resultant wave, each picking out its ewn componeut, thus separating the different messages. The "harmenic telegraph" of Mr Elisha Gray of America is a good example of this class.

Working of Submarine Cables.-The arrangement of the apparatus for riorking some of the most recent cables is shomn in fig. 29. The cable is supposed to be worked duplex; but, if S, C_{1}, C_{2}, and $A C$ are removed and the key cennected directly with C_{3}, the arrangement for simplex working is obtained. The apparatus consiste of a sending battery B, a reversing transmitting key K , a slide of small

I Tel. Journ., September 1996.

resistance S, three condensers C_{1}, C_{9}, C_{8}, an articicial cahlo $A U_{1}$, the receiving instruments I and G, and one or more resistances R for adjusting the leakage current. The peculiar censtruction of AC has beon already referred to. The cenductor of the cable is practically insulated, as the cendensers in the bridge have a very high
resistance; hence no appreciable current ever flews into or out of tive line. Two receiving instrumente, a siphon recorder and a mirror galvenometor, are shown; one only is absolutely necessary, but it is couvenient.
to have the
 galvanemeter ready, 60 that in case of eccident to the recorder it may be at once switched into circuit by the switch s. When one of the levers of K is depressed, the condenser C_{3} and the cablo, and the condenser C_{3} and the artificial cable, are simultaneously charged in series; but, if the capacity of C_{1} bears the same proportion to the capacity of the cable as the capacity of C_{2} bears to the capacity of the artificial cable, and if the other adjustments are proporly made, no charge will bo communicated to C_{3}. After a very shert interval of time, the length of which depends on the inductive retardation of the cable, the condeusers correspouding to C_{1} and C_{8} at the other end begin to be clarged from the cable, and bince the charge of O_{3} passes through the receiving instrument I or G the signal is recorded. The charging of C_{3} at the receiving end will take place, no matter what is the absolute potential of the condensers, consequently the incoming siguals are not affected by these which are being transmitted from that end. In actual practice the recoiring instrument is so sensitive that the difference of potential between the twe coatings of the condenser C_{3} produced by the incoming signal is only a very emall fraction of the potential of the battery B. When the key is relieved the condensers and cables at once bogin to return to zero notential, and if the key is depressed and relieved sereral times in rapid succession the cablr is divided into sections of varying potential, which travel rapidly towards the receiving end, and indicate their arrival there by producing corresponding fluctuations in the charge of the condenser C_{3}. All cables of any great length are werked by reverse currents, the single needle alphabot being used : that is to say, curreuts in onc direction indicate dots and in the other direction dashes.
The following descriptions of the mirror galvanometer and the siphon recorder are, with some slight alteration, taken from a lecture delivered by Sir W. Thomson before the Institution of Engineers and Shipbuilders in Scotland. ${ }^{4}$
(1) The instrument first used for receiving signals through a long submarine cable (the ohort-lived 1858 Atlantic cable) was the miror galrace galvanometer, ${ }^{\text {b }}$ which consisted of a small mirror with four light meter. magnets attached to its back (weighing in all less than half a grain), suspended by means of a single bilk fibre within the hollow of a bobbin of fine wire,-a suitable controlling magnet beiug place adjacent to the apparatus. The action of the instrument is as follows. On the passage of a current of electricity through the fine "ire coil the suspended magnets with the mirtor attached tend to take np a position at right angles to the plane of the cril, and are defiected to one side or the other according as the current is in one direction or the other. Deflexions to one side are iuterpreted as dots and to the other side as dashes, and the messages are transmitted in accordance with the international Morse code of signals. (2) The spark recorder in come respects foreshadowed the xore Spark perfect instrument-the siphon recorder-which was introduced recordes some years later. Its action was as follows. To an indicator, ouitably supported, a to-and-fre metion was given by the electromagnetic actions due to the electric currents constituting the signals. The indicater was connected with a Ruhmkorff coil on other equivalent apparatus, designed to cause a continual succcossion of sparks to pass between the indicator and a metal plate cituated beneath it zad baring a plane surface parsllel to its line of motion. Orer the surface of the plate and betwe in it and the indicator there was passed, at a regularly uniform speed, in a direction perpendicular to the line of motion of the indicator, a material capable of being acted on physically by the aparks, either through their chomical action, their heat, or their perforating force. The record of the signals given by this instrument was an undulating line of fine perforations or spots, and the character and succession of thundulations were used to interpret the siguals desired to be sent.
(3) The latest form of receiving instrument for long scbmarine Siphon cables is the siphon recorder, for which Sir W. Thomsen obtained recorden

4 See his Mathematical and Physieal Papers, vol. 1i. p. 168
5 For a description of the mirror galvanometer, see art, Gaxparonerrer, fol
x p. 506 g .
his first patent in 1867. Within the three succeeding years great improvements were effected on it, and the instrument has since that date been exclusively employed in morking most of the more important submarine cables of the world,-indeed all except theze on which the mirror galvenometer method is in nse. In the siphon recorder (see fig. 30) the indicator consists of a light rectangular signal coil of fine wire, suspended between the poles of tro powerful electromagnets M, Mi so as to be free to move abont its longer axis, which is verti. cal, and so joined that the electric aignal currents through the cable pass through it. A fine glass siphon tube is suspended with freedom to more in only ono degree, and is connected with the sig. nal-coil and moves with it. The short leg of the siphon tabe dips into an in sulated ink-bottlo, so that the ink it contains becomes electrified, while the
 long leg has its open end at a very emall distance from a brass table, placed with its ourface parallel to the plane in which the mouth of the leg moves, snd over which \& slip of paper may be passed at a uniform rate, as in the spark recorder. The ink is electrified by s small induction electrical machine Eplaced on the top of the instrument; this causes it to fall in very minute drops from the open end of the siphon tube apon the brass table or the paper elip passing over it. When therefore the eignal-coil moves in obedience to the electric sigual currents passed through it, the motion communicated to the siphon is recorded on the moving elip of paper by a wavy line of ink-marks very close together. The interpretation of the signals is according to the Morse code, -the dot and dash being represented by deflexions of the line of dots to one side or other of the centre line of the psper. A very mach simpler form of siphon recorder has been de vised and brought into use within the last ferm years. Instead of the electromagnets, bandles of long bar. marnets of вquare eection and made up of equare bars of glass. hard steel are used. They are supported vertically on a castiron socket, and on the upper end of each is fitted a soft iron shoe, ehaped to concentrate the lines of force and thas produce a strong magnetic feld in the space within which the signal-coilis suspended. Instruments of this kind have been made to work both with and withont electrification of the ink.
Without electríi.

cation the instrument (see fig. 31) is very simple and compact, and capable of doing good work on cables 500 or 600 miles long. When conatructed for electrification of the ink they are svailable for much greater lengths, but for cables such as the Atlantic the original form is atill used. The strongest magnetic field hitherto obtained by permanent magnets (of glass-herd steel) is about 3000 C.G.S. With the electromagnets used in the original form of eiphon recorder a magnetic field of sbout or over 5000 C.G.S. is easily obtanned. Fig. 32 shows a facsimile of part of a message received and recorded by a siphon recorder, such as that of fig. 30 , from one of the Eastern Telegraph Company's cables about 830 miles long.
(4) The sutomatic curb sender $\begin{aligned} \\ \text { as designed by Sir Wr. Thouson }\end{aligned}$ for the purpose of diminishing the cffect of inductive einbarrassment in long cables. In ordinary hand-sending the end of the cable is put to one or the other pole of the battery and to carth alternately, the relative tinne during which it is to battery and to eartb deponding to a great extent on the operator. By the auto.

Fia. 32.-Facsimito of siphon rccorder messañ.
matic curb sender the cable is put to one or the other pole of the battery and then to the reverse pole for definite proportionsta times during each signal The cable is thas charged first positively and then negatively, or vece versa, for each signal. This method not only facilitates the discharge of the cable, and so accelerates the return of the index of the receiving instrnment to zero, but provides the mesns of sending positive snd negative curreuts into the cable at the proper times and for the proper intervals. The action of the instrument is regulated, like that of Wheatstone's automatic transmitter, by a perforsted elip of paper. The arrangement of the perforations and the method of using the paper slip are, however, quite different. The paper is fed forward by a ceutral row of holes, which are therefore continuous. The dots and dashes of the message are represented by the side rows of holes; but the two currents required for a dot are produced wholly by cne hole on one side and those for a dash by one hole on the other eide. The perforated elip is exactly similsr to the message written by the siphon tecorder, the gide holes occupying the same relative positione as the loops to one eide or other of the central line in the record. As the side holes resch a certain point in their passage throngh the instrument they sllow the end of one or the other of two levers to fall; the other end of the lever lifts a light contact apring, forming one lever of a reversing key, and makes electrical connexion betreen the bsttery and another set of springs, which also form the levers of a reversing key. The spring is held up, by a fange on the edgo of a revolving theel passing under it, during the time required by the paper to sdvance through the distance between two central holes. During this interval the current is reversed at the proper time by a pair of adjustabla cams fixed to the samo epindle as the flanged wheel. This method of transmission has been fonnd quite successful, though it has not been brought into use, as handsending bas hitherto proved sufficient for the work required.
Speed of Signalling. -The mathemstical theory of the speed of telegraphic signalling was given in a paper on "The Theory of the Electric Telegraph " communicated by Sir W. Thomson ${ }^{1}$ to the Roysl Society in 1855. He shows that, if k be the wire resistance, c the capacity per unit length, and l the total length of the line, the carrent at the receiving end st any time t after the application of the battery at the sending end is given by the equation

$$
\mathrm{C}_{\varepsilon}=\mathrm{C}\left\{1-2\left(\epsilon-\epsilon^{4}+\epsilon^{9}-\epsilon^{18}+8 c_{c}\right)\right\},
$$

Where C is the maximum current which the battery is capable of maintaining throngh the line, and ϵ is equal to $\left(\frac{3}{3}\right)^{\frac{1}{a}}$ when a is equal to $k c^{2} \log _{a}\left(\frac{3}{3}\right) / \pi^{3}$. The number 参 is quite arbitrary; it is chosen becsuse it makes a nearly equal to the time reqnired for the current to become sensible at one end of the line after the battery has been
applied to the other end. The number $10^{\frac{1}{20}}$, which is more convenient for calculation and which does not differ greatly from ${ }^{3}$, was oubsequently adopted by Sir W. Thomson, and also by Professor Jenkin. ${ }^{2}$ The eqnation may be written
which shows plainly how the current is affected by the length, the resistance, and the capacity of the line.
It is evident from this equation that a finite time is required after the battery has been applied at the sending end for the current to become eensible at the receiviug end, the interval being practically equal to a, snd also that for similar actions the intervals between operations for one line must be to tie corresponding intervals for sinother line dircetly ss the values of a or of $k c l^{2}$ for the two lincs. We $e \in$, therefore, that for lines of the same type, worked in the same manner, the eneed of working will be invereely as the square of the length of the line, or, if the type varies, inversely as the product $K Q$, where K is the total resistance snd Q the total capacity

[^32]of the line. The ister ai a must not bo confonnder mith the time required for each sighu: it is a measme of the slomuess of transmission ; but the number of signals which can be received in a given time, on any one line, depends on the method of working and on the sensibility of the instruments employed. The ratios of the number of signals which can be sent orer different lines in a stated time are the aarse as the ratios of the values of a for these lines. The value of a for the different Atlantic cables varies between a Ofth and a quarter of a second, and, as the time required for the current to reach 90 per cent. of its maximum value is ten times a, an instrument which requires as much as 90 per cent. of the full current to produce a signal and a fall to 50 per cent. between the signals could ouly receive about one signal every two seconds or between one and two words per minute. The instrments actually used attain to a speed of about twenty times this; but they are capable of showing distinctly a current of a ten-thousandth, or even less, of the maximum current. The value of a for ordinary land lines is very small, probably not exceeding the five-thousendth part of a second for a circuit 500 miles in length. The current,
thercfore, rises almost to ita full valus for each signal when the time of contact is as small as the five-hundrenth part of a second, or, on the Wheatstone instrnment, when the speed is about 500 pords per unimite. There is, however, a very aensible increase in the effective resistance of the circuit, especially when iron wire is used, wlen signals are sent as rapidly as 100 per second, so that higher battery power is required for fast than for slow rates of speed. The difficulty in working land lines at rates up to 300 , or even more, mords per minute is not to any serious extent electrical, but io in great aueasure due to material and magnetic inertia in the receiving instrumenta. Altliongh land lines can be morkerl at a very high syeed when the whole of the wire is insulated on poles, the rate is greatly diminished if a length of underground or of submarine cable is included in the circuit. In practice also the speed depends greatly on the position of the cable in the circuit; for exaniple, the actual speed from Dublin to Loudon, according to Mr Preece, is about twice as great as that fromi London to Dublin. Mr Culley states that the greatest effect is produced when the rahle is in the middle of the circnit.
(T. GRu)

TEl EMETER, or Rangefinder. This is an instrument nsed in modern warfare to deternine the distance or range to an enemy's position, in order that correct elevations may be given to guns or rifles directed against it. Telemeters have been made on three distinct principles, and classifed as acoustic, optical, and trigonometrical respectively.

Aconstic lelemeters record the time which elapses between sceing the flash or smoke and hearing the report of a gun, rifle, or shell, the range being given in gards as "the time in seconds $\times 36 t^{\circ} 6$." The Boulenge telemeter is the best known of this class. It consists of a graduated glass tube filled with liquid and containing a small metal traveller. At the flash the instrument is brought to a vertical pooition, and the traveller starts from.zero; at the detonation it is turned to a horizontal position and the traveller stops. The objections to the acoustic telemeter are that the rate of transmission of sound in air is affected by wind and other local conditions and that the instrument cannot be used until firing has conmenced.

Optical or perspective telemeters determine the distance to any point by observing the size of some object of known dimensions, as seen in a graduated telescope. Porro's telemeter, Elliott's telescope, and Nordenfelt's macrometer illustrate the principle. The chief defect of the systerii is that the objects mast comveniently observedmen and horses - vary considerably in size, so that the assumption of a constant dimension may be productive of error.

Trigonometrical telemeters shorten the ordinary methods of surveying by adapting them to military purposes They are of two kinds,-field rangefinders and rangefinders for coast batteries.
(1) Field rungefinder's exist in great variety, aud differ from one another bnth in the trigonometrical methods pursued and in the mechanical pecrliarities exdibited. The following are the common solutions of what is technically called "the range-finding triangle,"-i.e., a triangle in which O (fig. 1) is the object the distance to which is required, $A O B$ an acute angle, and $A B$ the base, - O being visible both from A and B. (i.) Where the base is a fixed length and the angles are variable.-A fixed base is rarely adopted except when the base forms part of the instrument, the angles being observed by powerful telescopes. The range is nsually read
 in yards by the assistance of verniers, extreme perfection of mechanism being uecessary. Many ingenious instruments of the kind have been devised, but none have as yet proved satisfactory. With a fixed base the accuracy diminishes as the range increases. (ii.) Where the base and the angles afe variable.-The base angles are generally olserved by instruments of the theodolite type, and the
base is actually measured or found by means of a snb-loase. The range is obtained by table or calculating scale. The Nolan rangefinder, which was the first telemeter used by the British artillery, was of this kind. (iii.) Where one base angle is a right angle, the other angles and base being variable.-The instrument used is generally double-reflecting of the sextant type, - the base being found as in (ii.) The most perfect example is the Wratkin rangefinder, used
 set in a steel arm, which is worked by a movalble collar on a graduated bar, and this again is moved by the turning of a graduated cylinder. O (fig. 3) being the object, the observer sets up a picket at A, and with the instrument at zero (the horizon glass being inclined 45° to the index glass) finds the right angle at the point C. A sab-base $A B$ of 6 yards is then set off, and (with glasses set parallel and the sliding collar at 6) the observer reflects B upon A by turning the cylinder, which is thus made to record the base AC in yards. This reading being set on the graduated bar by moving the sliding collar, the observer proceeds to A, and from there reflects C upon O , which causes the range to be given in yards on the cylinder. In this

Fig. 3. operation the position of the sliding collar regulates the movement of the steel bar so that the number of turns of the cylinder is always a true measure of the range OC, whatever the length of the base AC. (iv.) Where the angles are fixed and the base is a measure of the range. The base points are determined by the use of prisms or 01 mirrors reflecting the particular angles adopted. The base is measured or found by a subsidiary triangle, and muitiplied by a constant to give the range. The Weldon rangefinder, recently issned to the British infantry, is on this principle. It consists of three prisms, and is generally used as follows. O (fig. 4) being the object and D a convenient distant point, the observer makes with the first prism the right angle OAD. He then retires in the direc. tion DA till the second prism records the angle $O B D=1$
$88^{\circ} 51^{\prime} 15^{\prime \prime}$, when the range $=50 \times \mathrm{AB}$. If it is inconvenient to measure $A B$, the observer can retire from B in the line OB until the third prism records the ar - le $\mathrm{OCA}=7 \underline{I}^{\circ} 53^{\prime} 15^{\prime \prime \prime}$, when the range $=200 \times$ BC. The prisms must be-held in the plane of the objects and looked into at the same point. This rangefinder is tery simple and portable, but is frequently inapplimable on hilly or broken ground, and does not possess great accuracy.

The merits of different field rangefinders depend mainly upon the Fra. 4.-Weldon rangehalance of advantages they offer finder. with respect to accuracy, suitability to variety of ground, simplicity, portability, and durability, these conditions being of a more or. less conflicting character. The following are recognized principles:-(1) the naked eye cannot with certainty appreciate less than one minute difference of angle, therefore telcscopic power is necessary in proportion as the base is short compared with the range; (2) telescopes of high power cannot be steadied by hand alone ; (3) the longer the base the more inconrenient are any restrictions as to its length or direction ; (4) it is a disadvantage to be compelled to traverse the line joining base points; (5) the longest base which it is convenient to measure by hand is that length of
measuring line which can be stretched tight in a high wind.
(2) Rangefinders for Coust Buteries.-Rangefinding is less adapted to the requirements of coast defence than "position finding,"-a method which furnishes every gun with its proper training aud elevation so that it can be fired without sighting the target. Rangefinders are, however, somctimes employed. The most worthy of notice is the Watkin depression rangefinder used by the British artillery in coast batteries. The instrument resembles in principle the Watkin field rangefinder, the height above the sea-level being a vertical base. The range is found by observiag the angle of depression to the object. This is done by a powerful cross-wire telescope, which forms part of the instrument. The fastest steamer can be continuously follorred, and even the successive grazes of shot and shell can be observed. The instrument is levelled upon a tripod stand. When necessary, it finds its exact height in feet above the water-level in any state of tide by reference to a datum distance, and it records the range in yards automatically on a graduated cy linder. An interesting contrivance combining \ddagger clemeter and gun-sight, applicable to guns in permanent emplacements over non-tidal waters, has been tried in Itsly. By means of a cam the hindsight of the gun is always maintained in the position necessary to give the proper elevation in firing, so that it only remains to make the sights cover the target.
(A. W. w.*)

TELEPEONE

TTELFPHONY is the art of reproducing sounds at a distance from their source. The term was first used by Philip Reis of Friedrichsdorf, in a lecture delivered before the Physical Society of Frankfort in 1861. ${ }^{2}$ But, although this lecture and Reis's subsequent work received considerable notice, little progress was made until the subject was taken up between 1874 and 1876 by Alezander Graham Bell, a native of Edinburgh, then resident in Boston, Mass. Bell, like Reis, employed electricity for the reproduction of sounds; but he attacked the problem in a totally different manner. This will be better understood if we consider shortly on what the chief characteristics of sound depend (compare Acoustics).

The sensation of sound is produced by rapid fluctuations in the pressure of the atmosphere on the tympanum of the car. It the fluctuations are irregular and non-periodic, the sound is called a noise; if they are cyclic and follow a regulac and sufficiently rapid periodic law, the sound is musical. In connexion with the present subject it is important to notice the three characteristics of a musical sound, namely, pitch, loudness, and quality. The pitch of a musical scrud depends on the number of cycles passed through by the fluctuations of the pressure per unit of time; the louduess depends on the amount or the amplitude of the flucuation in each cycle; the quality depends on the form or the nature of the fluctuation in each cycle. The necessary cundition for a successful system of telephony is the abilisy to reprod ce these characteristics.

I. History.

In 1831 Wheatitone by his "magic lyre" experiment showed ${ }^{2}$ that, when tie sounding-boards of two musical instruments are cormected together by a rod of pine wood, a tune played on one will be faithfully reproduced by the other. This only answers, however, for telephoning musical ronuds to short cistances. Another and somerwhat

[^33]similar example is furnishel by what has been variously Mechan. designated as the "string," "toy," "Iovers," and "meckan- ical teleical "telephone. Two disks of thin metal, or two stretched phone. membranes, each furnished with a mouthpiece, are connected together by a thin string or wire attached at each end to the centres of the membranes. A good example may be made with tro cylindrical tin cups; the bottoms form the membranes and the cups the mouthieces. When the connecting string is held taut and sounds, such es those of ordinary speech, are produced in front of one of the membranes, pulses corresponding to the fluctuations of the atmospheric pressure are transmitted along the string and communicated to the other membrane, which in its tura communicates them to the air, thus reproducing the sound. In both these examples all the three characteristics-pitch, relative intensity, and quality-of sound are reproduced.

Let us now.return to the development of the application Pase's of electricity to telephony. In July 1837 Dr C. G. Page disof Salem, Mass., drew attention to the sound given out by covers. an electromagnet at the instant π hen the electric circuit is closed or broken, and in Octoler of the same year he discussed, in a short article ${ }^{3}$ entitled "Galvanic Music," the musical note produced by rapidly revolving the armature of an clectromagnet in frout of the joles. Experiments hearing on this subject were subsequently made by a great number of investigators. ${ }^{4}$ Page's discovery is of considerable importance in connexion with the theory of action of various forms of telephone, and was a very important feature in the early attempts by Reis to transmit music and speech. On

[^34]26th Aagust 1854 there appeared in L'Illusiration (Paris) an interesting article by Charles Bourseul on the electric transmission of speech. ${ }^{1}$ The writer recommended the use of a flexible plate at the source of sound, which would vibrate in response to the varying pressure of the air, and thus open and close an electric circuit, and of a similar plate at the recciving station, which would be acted on electromagnetically and thus give out as many pulsations as there are breaks in the current. These suggestions were to some extent an anticipation of the work of Reis; but the conditions to be fulfilled before the sounds given out at the receiving station can be similar in pitch, quality, and relative intensity to those produced at the transmitting station are not stated, and do not seem to have been appreciated.

In Reis's lecture an apparatus was described which has given rise to much discussion as to priority in the intention of the telephone. The instrument was described in over fifty publications ${ }^{2}$ in various countries, and was trell known to physicists previous to Bell's introduction of the electric telephone as a competitor with the electric telegraph. Reis caused a membrane to open and close an electric circuit at each vibration, thus transmitting as many electric pulses through the circuit as there were vibrations in the sound. These electric pulses were made to act on an electromagnet at the receiving station, which, in accordance with Page's discovery, gave out a sound of a pitch corresponding to the number of times it was magnetized or demagnetized per second. Reis's object was to reproduce at a distance not only music but also human speech; but that he did not wholly succeed is clear from the following extract from his lecture: "Hitnerto it has not been possible to reproduce human speech with sufficient distinctness. The consonants are for the most part reprodaced pretty distinctly, but not the vowels as yet in an equal degree." Considering the time at which he wrote, Reis seems to have understood very well the nature of the vibrations he had to reproduce, but he failed to comprehend how they could be reproduced by electricity. His fundamental idea-the interruption of the current-was a fatal mistake, which was not at the time properly understood. The suggestion of Bourseul and the experiments of Reis are founded on the idea that a succession of currents, corresponding in number to the successive undulations of the pressure on the membrane of the transmitting instrument, could reproduce at the receiving station sounds of the same character as those produced at the sending station. Neither of them seemed to recognize anything as important except pitch and amplitude, and Reis thought the amplitude was to some extent obtained by the varying length of contact in the transmittiog instrument. This might possibly be to a small extent true; but, considering the small capacity of the circuits he used and the nature of his receiving instrument, it is hardly probable that duration of contact sensibly influenced the result. The quality of the sounds was to some extent also reproduced; but, judging from the results of recent telephone investigation, it is highly probable that this was due, not to the varying duration, but to the varying firmness of the contact. Since the effect of the degree of contact has, through the researches of Bell, Berliner, Edison, Hughes, Elisha Gray, and others, become generally understood, it has become easy to make instruments very similar to those of Reis;

[^35]and even his instruments, with slight modincation, can be made to speak fairly well. The accidental transmission of words by Reis, the occasional recognition of the woice of a singer, and other instances of the trausmission of quality were no doubt due to this element, the existence of or the necessity for which was never, so far as tho present writer knows, hinted at by Reis.

The next worker at the telephone, and the one to whom the present great commercial importance of the instrument is due, was Bell. His aim was the production, by means of the undulations of pressure on a membrane caused by sound, of an electric current the strength of which should at every instant vary directly as the pressure varied. ${ }^{3}$. His first idea seems to have been to employ the vibrations of the current in an electric circuit, produced by moving the armature of an electromagnet included in the circuit ncarer to or farther from the poles of the magnet. He proposed to make the armature partake of the vibrations of the atmosphere either by converting it into a suitable vibrator or by controlling its vibrations by a stretched membrane of parchment. In the early trials the armature had the, form of a hinged lever of iron carrying a stud at one end, Which pressed against the centre of a stretched membrane. The experiments with this form were not successful, and, with the view of making the moving parts as light as possible, he substituted for the comparatively heavy lever armature a small piece of clock spring, about the size of a sixpence, glued to the centre of the diaphragm. The magnet was mounted with its end carrying the coil opposite, and rery close to, the centre of the piece of clock spring. This answered sufficiently well to prove the feasibility of the plan, and subsequent experiments were directed to the discovery of the best form and arrangement of the parts. An increase in the size of the iron disk attached to the nembrane augmented both the loudness and the distinctness of the sounds, and this finally led to the adoption of the thin iron disk now in use, whicls is supported round its edge, and acts as both membrane and armature. Again, the form of the opening or mouthpiece in front of the membrane exercised considerable influence on the efficiency of the instrument, and it was ultimately ascertained that a small central opening, with a thin air space extending across the face of the membrane, was best. It was also found that comparatively small magnets were sufficient, and that there was no particular virtue in the closed circuit and electromagnet, but that a small permanent magnet having one pole in contact with the end of the coro of a short electromagnet, the coil of which was in cirsuit with the line, but which had no permanent current flowing through it, answered the purpose quite as well. ${ }^{4}$ In fact the effect of keeping a permanent current flowing, through the line and the coils of the electromagnet was to keep the core of the electro-magnet magnetized. This seems to have been almost simultaneously pointed out by Bell and others who were working in conjunction with him and by Professor Dolbear. Many experiments were made for ascertaining the best length of wire to nse in the coil of the transmitting and the receiving instrument; but this is clearly a question dependent to a large extent on the nature of the line and the system of working adopted.

After Bell's success a large number of experimenters entered the field, and an almost endless variety of modifications have been described. But few possess any real merit, and almost none have any essentially new principle. ${ }^{5}$

[^36]A telephone transmitter and a receiver on a novel plan were patented in July 1877 by Edison, shortly after the introduction of Bell's instruments. The receiver was based un the change of friction produced by the passage of an electric current through the point of contact of certain substances in relative motion. In one form a dram, mounted in an axis and covered by a band of paper soaked in at solution of caustic potash, is turned under a spring the end of which is in contact through a platinum point with the paper. The spring is attached to the centre of a diaphragm in such a way that, when the drum is turned, the friction between the point of the spring and the paper defiects the diaphragm. The current from the line is made to pass through the spring and paper to the cylinder. Now it had been previously shown by Edison that, when a curreut is made to pass through an arrangement like that just described, tho friction between the paper and the spriug is greatly diminished. Hence, when the undulating telephonic currents are made to pass through the apparatus, the constant variation of the friction of the spring causes the deflexions of the diaphragm to vary in unison with the variation of the electric currents, and sounds are given out corresponding in pitch, and also to some extent in quality, with the sounds produced at the transmitting station. A cylinder of chalk was used in some of Edison's later experiments with this receiver. The transmitter is illustrated (see fig. 10) and described (p. 132) below.

Experiments very similar to these of Edison were made by Elisha Gray of Boston, Mass., and described by him in papers communicated to the American Electrical Society in 1875 and 1878. In these experiments the electric current passed through the fingers of the operator's hand, which thus took the place of the spring. in Edison's apparatus. The diaphragm was itself used as the rubbing surface, and it was either mounted and rotated or the fingers were moved over it. When the current passed, the friction was felt to increase, and the effect of sending a rapidly undulating current through the arrangement was to produce a sound. The application of this apparatus to the transmission of music is described by Gray. ${ }^{1}$
Olbear's In another form of telephone, brought prominently forward by Professor Dolbear, ${ }^{2}$ the effects are produced by electrostatic instead of electromagnetic forces, as in the Bell telephone. Sir W. Thomson observed in 1863^{3} that when a condenser is charged or discharged a sharp click is heard, and a similar observation was mado by Cromwell F. Varley, who proposed to make use of it in a telegraphic receiving instrument. ${ }^{4}$ In Dolbear's instrument one plate of a condenser is a flezible diaphragm, connected with the telephone line in such a way that the varying electric potential produced by the action of the transmitting telephone causes an increased or diminished charge in the condenser. This alteration of chargo causes a corresponding change in the mutual attraction of the plates of the condenser; hence the ficxuble plate is made to copy the vibrations of the diaphragm of the transmitter. It is obvious that this apparatus may be used either as a transmitter or as a receiver, but that the effects must under ordinary circumstances be in either case extremely feeble.

In the Reis instruments the transmitter and receiver are separate parts, which are not interchangeable. The Bell telephone can be used eithcr as a transmitter or as a

[^37]receiver. The Edison recerver and the Dolbear condenser were only intended to be used as receiving instruments.

It was very early recognized-and, indeed, is mentioned in the first patents of Bell, and in a caveat filed by Elisha Gray in the United States patent office only some two hours after Bell's application for a patent-that sounds and spoken words might be transmittcd to a distance by causing the vibrations of a diaphragm to vary the resistance in the circuit. Both Bell and Gray proposed to do this by introducing a column of liquid into the circuit, the length or the resistance of which could be varied by causing the vibrations of the diaphragm to vary the depth of immersion of a light rod fixed to it and dipping into the liquid (see figs. 8, 9 below). This idea has been perhaps the most fruitful of any modification of telephonic apparatus introduced.
On 4th April 1877 Mr Emile Berliner filed a caveat in the United States patent office, in which he stated that, on the principle of the variation with pressure of the resistance at the contact of two conductors, he had made as instrument which could be used as a telephone transmitter, and that, in consequence of the mutual forces between the two parts of the current on the tro sides of the point of contact, the instrument was capable of acting as a receiver. The caveat was illustrated by a sketch showing a diaphragm with a metal patch in the centre, against which a metal knob was lightly pressed by an adjusting screw. This seems to have been the first transmitter in which it was proposed to use the resistance at the contact or two conductors.

Almost simultaneously with Berliner, Edison conceived Edison's the idea of using a variable resistance transuitter. ${ }^{5}$ Ho microproposed to introduce into the circuit a cell containing $\begin{gathered}\text { phone } \\ \text { trans- }\end{gathered}$ carbon powder, the pressure on which could be varied by mitter the vibrations of a diaphragm. He sometimes held the carbon powder against the diaphragm in a small shallow cell (froin a quarter to half an inch in diameter and about an eighth of an inch deep), and sometimes he used what he describes as a fluff, that is, a little brush of silk fibre with plumbago rubbed into it. In another form the plumbago powder was worked into a button cemented together with syrup and other substances. - In the specification of the patent applied for on 21st July 1877 he showed a sketch of an instrument which consisted of a diaphragm. with a small platinum patch in the centre for an electrode. against which a hard point, made of plumbago powder cermented together with india-rubber and vulcanized, was pressed by a long spring, the pressure of the carbon against the platinum diss being adjusted by a straining screrr near the bass of the spring. Subsequently he filed an application for a patent in which various forms of springs and weights assisted in maintaining the contacts and otherwise improved the instrument.

In the early part of 1878 Professor Hughes, whilo en- Hughes'a gaged in experiments upon a Bell telephone in an electric microcircuit, discovered that a peculiar noise was produced when- thone ever two hard electrodes, such as two wires, were drawn across each other, or were made to touch each other with a variable degree of firmness. Acting upon this discovery, he constructed an instrument which he called a microphone, ${ }^{\frac{1}{6}}$ and which consisted essentially (sce fig. 11) of two hard carbon electrodes placed in contact, with a current passing through the point of contact and a telephone included in tho same circuit. One of the electrodes was attached to a sounding board capable of being vibrated by soundwaves, and the other was heid either by springs or weights

[^38]in delicate contact with it. When the sounding board was epoken to or subjected to soxnd-waves, the mechanical resistanco of the loose electrode, due to its weight, or the epring, or both, served to vary the pressure at the contact, and this gave to the current a form corresponding to the sound-waves, and it was therefore capable of being used as a speaking-telephone transmitter. ${ }^{1}$ The best transmitters now in use are modifications of Hughes's apparatus. A microphonic apparatus very similar to it is described in the specification of a German patent taken out by Robert Lutdge on 12th January 1878. In this patent the action of the microphone is also described. ${ }^{2}$

The next transmitter of note, introduced by Mr Francis Blake, U.S. (see fig. 13 below), although it does not, like the first microphones, embody anything intrinsically new, is one of the most perfect and convenient forms of microphone. It is at present almost universally used in the United States.

It appears to be pretty well established that carbon in one form or another is the best material for one or both of the contacts of a microphone transmitter. When both the contacts are of carbon and the surfaces have considerable area, say from a quarter to half an inch in diameter, the sounds are loud, but have a tendency to harshness. When, as in the Blake transmitter, one of the contacts is a piece of polished gas carbon and the other a small sphere of platinum about the twentieth of an inch in diameter, the articulation is clear, but less loud. For most purposed, however, the increased clearness more than compensates for the diminished loudness. Many transmitters in actual use-as, for instance, the "Gower," largely employed in the United Kingdom-have a number of contacts. Some of these when properly adjusted are both loud and clear in their action. Although the Blake instrument is most in vogue in America, in the United Kingdom and on the Continent multiple contact microphoues have found more favour. Carbon powder instruments have been to some extent used, and in one or two cases-as, for example, the Hunnings transmitter-with considerable success. The fault in most of them is the tendency of the powder to "pack," which causes the instrument to rapidly lose sensibility. In the Hunnings transmitter this difficulty is to a large extent overcome by the use of a coarse granular powder in a somewhat large cell (about an inch in diameter and from one-eighth to one-fourth of an inch deep). The front face of the cell is a piece of platinum foil, which serves both as an electrode and as a diaphragm. The cell is placed either on edge or in an inclined position when in use, the action being precisely similar to that in other transmitters. In addition to its freedom from packing, the carbon, in consequence of the inclined position of the cell, is also less liable to fall a way from the electrode and break the circuit. Some packing of the powder, however, does occur, and several modifications have been proposed by Blake and others for making the sound vibrations stir the powder and keep it loose. Good results appear to have been got by placing the cell mouth downwards, the carbon powder lying on the platinum foil, and by forming the upper electrode either of wire gauze or of a perforated plata completely immersed in the powder. The sound vibrations are conveyed to the bottom of the cell by a bent tube communicating with a mouthpiece. Instruments of this class are very loud-speaking, and therefore very serviceable for long or disturbed circuits.
The radiophone is an instrument proposed by A. G. Bell

[^39]and Sumner Tainter in 1880 for utilizing radiant energh such as light or radiant heat, for the transmission of sound. The apparatus forms a telephone transmitter of a particularly interesting kind. In the earlier papers describing it and the eaperiments which led to its invention it is called photophone, hecause at that time the effects were supposed to be wholly due to light. Afterwards, in order to avoid ambiguity, Bell changed the name to radiophone and sug. gested that, to distinguish between instruments depending on the different kinds of radiation, the names photophone, thermophone, \&cc., should be employed. He also proposed the name spectrophone for an application of this instrument to spectrum investigation. ${ }^{3}$ The apparatus is founded on the discovery, made by Mr May while carrying out experiments on selenium for Mr Willoughby Smith, that when selenium is exposed to light its electrical resistance is very different from what it is in the dark. This discovery led to a great many interesting experiments by other investigators. ${ }^{4}$ In thinking over this discovery in 1878 Bell conceived the idea that, if a beam of light proceeding from one station could be made to fall on a selenium plate at another station, and if its intensity could be varied by the roice of a speaker, then by connecting a telephone and a battery in circuit with the selenium plate the words spoker at the distant station would be heard in the telephone. This was found to be the case. At first, to vary the intensity of the beam, it was passed through a small opening, the width of which could be varied by the vibrations of a diaphragm against which the speech was directed. But better results were afterwards obtained when the diaphragm formed a mirror from which the beam of light was reflected. The spreading of the beam, due to the vibrations of the mirror diaphragm, served to vary its intensity 'see fig. 18 below).

Edison's phonograph (see fig. 19 below) is an instrument Fdison't whose action somewhat zesembles that of a telephone trans- phonomitter and which has been much talked of in regard to its ${ }^{\text {graph }}$ possible applications in telephony. It was invented shortly after the introduction of the telephone for the purpose of recording sounds, and was included in some of Edison's telephone patents as a means of working a telephone transmitter, and thus telephoning sounds which had been previonsly recorded on the phonograph sheets.

II. Telephomo Instriments.

One of the best-known forms of the Reis telephone is ohown in fig. 1. The tranamitter consists of a boz A, provided with a mouthpiece M. In the top of the box a round hole is cut and across it a mombrane S of hog's bladder is stretchod. A thin strip of platinum p fixed to the hox at one side of the hole and extend.

Fio. 1.-Reis's telephone. ing to the centre of the memhrane, oupports at that point one foot of a light metal tripod egf. One of the feet, e or f, rests in a cup centaining mercury, which is in metallic connexioa with the terminal b, while

[^40]the end of the strip p is similarly in connexion with the terminal a. The receiver consists of an electromarnet made up of a magnotizing coil H, with a strut knittiDg needle for a core. When in use these two instrumer* sre joined in circuit with a battery B, Bo that under ordinary circumstances a contidumis current is Howing through the line. Suppose a sound is then produced in front of the mouthpicce M, the successive varistions in the pressure of the air are communicated to the inside of the box, and canes the nembrane to vibrate in unison with the sound Reis's theory of tho action of the instrument was that at each outward impulse of the membrave the point g would be thrown out of contact with the plate underpesth it and would thus break the circuit. Tbere wouid consequently result as many breaks in the circuit as there were vibrations in the sound, and, in conformity with Page's discovery, the electromagnetic receiver would give out a rapid succession of beats, which weuld tagether form a continuous sound of the same pitch as that to which the transmitter was subjected.

Fig. 2 shows the first telephone made by Bell for transmittung speech. It consisted of a wooden frame F, to one side of which a tube T was fixed; over the end of the tube a neembrane M was stretched taut by a etretching ring R. To the opposite side of the frame and with its axis in line with that of the tube T wass fixed an electromagnet H, snd between the membrase M and the end of the electromagnet a hinged arms. ture A was arranged in such a way that its motions rould be controlled hy the membrane. The instrument was joised in circuit with battery and another aimilar iostrument placed at a distance. A contipuous current was made to flow through the circuit,
 which kept the electromagnet magnetized. Bell reasoned thus: wlren words are spoken in front of the tube T the membrane will be eet in vibration and with it the armsture A, sed the vibration of the armature in frout of the electromagnet will iuduce variations in the line current ; their magnitude will he proportional to the amplitude, and their frequency to the frequency, of the vibrations of the armature ; in fact, the difference betircen the actual and the average current in the circuit will be at each instaut proportional to the rato of motion of the armature. It follows from this that the armsture and membrane of the distant instrument should have induced in them a motion precisely similar to thst of the membrane of the transmitter. This telephone was made in June 1875, but wss put aside after trial as unsatisfactory on sccount of the feebleness of the sounds it produced; since then, bowerer, a successful telephone has beeu made on preciscly the same plan es that here indicated.

The next form tried is shown in fig. 3. It is very similar except in constructive details to the first; the hinged armature, however, is omitted, its place being taken by a emall iron disk A fixed to the ccatre of the diaphragm. D. The electromagnet H is, as before, placed so as to have the centre of the soft iron core Copposite to the centre of the disk, and the theory according to which it Fio 3.-Bell's second teleplione; one-ifth null size. was expected to act is the same. The resulte obiained with this instrument were much more satisfactory; indeed it was with one precisely like that shown in the figure that the remarkable results of the Philadelnhia exhibition in 1870 were obtained. A perspective and a sectional view of the receiving instrument used along with that shown in fig. 3 are illustrated in figg. 4 and 5. It consisted of an ircn cylindrical bor B, throagh the axis of which a rod of coft iron C was passed to form the core of 9n electromagnet, hasing the magnetizing belix H wound on the upper half of its length. Across the top of the box a thin disk D of soft iron was fixed, tho core C being just clear of the disk when the steongest current is fowing through the helix. In the perspective view the cist is pemoved, showing the end of the core.

These instruments are interesting, not only becanse they may be considered the first resily successful speaking telephones, but because they are of the same form as those brought to Great Britain in 1876 by Sir W. Thomson, and exhibited before the British Associstion at Glasgow in that jear.

Fig. 6 ehows one of the earliest forms brought into commercial nsc. On each pole of a somewhat largo horse-shoe permaneot magnet

Fio. 6.- Bell's unultiple pole telephone (1877); one-hif iull size.
Ma short coil E with a soft iron core mas fixed This is one of the early forms of permanent magnet telephones, of which there were at that time several, including a hand telephone very simlar to that shown in fig. 7. In another form, introduced about the end of 1877, the emall magnctizing coils and soft iron cores were fixed on the side and opposite the poles of the horseshoe magnet, and the diaphragn was placed wit its plane parallel to that of the magnet. The diaphragm in these telephoues was of thin sheet iron and a little over 4 inches in diameter.
The form of telephone now slmost universally in use is shows in Bell: fig. 7. It was introduced in December 1877 snd consists of a com-hand pound permanent magnet M , fitted into the centre of a teletube of vulcanite
or "hard rubber" or "hard rubber"
and carryingatone end ashort elcetromagnet, the coil of which through its terminsls t, t is iucluded in the cir-
 cuitwen the instrument is in use. In front of tbe electromagnet with its plane normsl to the axis of the magnet, is fixed a thin soft iron disk about $1 \frac{8}{4}$ inches in diameter, which has its cover cut to a convenient shape to form a mouthpicce. This telephone acts well either as a transmitter or as a rccciver ; but for the former purpose it is now seldom used on eccount of the great advances which have beeu made in "microphone" transmitters.
It has been stated that Bell and Elisha Gray almost simultane- Bell's ously suggested the nse of a column of liquid to vary the resistance liquid
in the circuit. The form of iostrument proposed by the former and said to bave been exluibited at the Pliladelphia exhihition is shown in fig. 8. It consists of a speaking tube or mouthpiece M, across the lower end of which a unembrane D is stretched. To the centre of the membrane a light rod R , made of metsl or of carbon, is fixed with its length at right sagles to the plane of the membrane. Uniler the lower end of R a small metallic vessel C is eupported on a threaded rod, working in a nut fixed to the sole F , so tbat its height 10ay be readily adjusied. Suppose C to be filled with water or sny other con-

Fio. 8.- Rell's liquind transmitter. Fio. 9.-Elisha Gray'e liquid transmitter. ancting liquid, sud the rod R to bo of metal. C is raised until the liquid just touches the point of the rod, when adrsotage is taken of the change of contact resistance with the greater or less immersion of R during the vibration of D Good results were obtained with mercury as the liquid and with a rod of carbon.
The arrangement proposed by Elishs Gray is almost identical in form with Bell's. The only differeace beems to be that Gray in. tended the rod R (fg. 9) to reach near to the bottom of the vessel B or to the end of another rod, a prolongation of b, projecting up from the bottom. The variation of the current was produced by the variation of the distance between the ends of the rod caused by the vibrations of the diaphragm. This plan was not tried until after the euccess of Bell's expleriments was known, snd when it was
tried the results did not prove encouraging. - Indeed the variations of the resistance which can be produced in this way must be excessively emall, naless the liquid hes a very high specific resistance, the distance between the eads is very small, and the eides of the r ds are prevented by 80 insulating covering from interfering with the results. Neither of these traosmitters has any great merit as such, but they ehow that both Bell and Gray clearly recognized the principle oa which successful transmission of the different forms of sound, including speech, could be accomplished.
The first successful microphone transmitter was Edison'e. An early form of it (fig. 10) somewhat resembles Bell'e hand telcphone in excell of insulating its bottom a flatecrew G ; on the layer of carbon top of that a thin D, and above cover of the cell, position by a coatre of this the diaphragm hand telephone, is hold in M. The varying pressure duced near it, causes correpressure on the carbon similarvaristionsin its elecwhen the instrument is incuit through which a curtioos io the pressure on the sponding undulations in
Perhaps the best known phone. are those introduced by the commonest is shown
two rectangular pieces of gher with their phanes at right angles to each other. D forms the base, and to B two smsll blocks of carbon C, C are attached. Between these a light rod material is supported or in C, C. To the blocks are counected for the purthe instrument in ao electric terial which Hughes found the carbon blocks and rod metallized by heating it to reduess and pluaging it while hot into mercury. If this microphone is joined in circuit with a telephooe and a small battery, say one or two small Daniell cells, the ribration pros dnced by a fly walking on
 the base D can be distinctly heard in the telephone. The sarno apparatus will also act as a microphone transmitter, but the sonnds are apt to be harsh. A better form for this purpose is shomn in fig. 12. In this a light pencil of carbon M is pivoted at h and has one end resting on two blocks of 6 carbon c, c_{3}, the lower one being fixed to the base. The pressure of ML on the carbon block is regulated by a opring s. .This arrangemenf is en-
 closed io a box of then wood, against which the sound is directed. It is canable of acting well as a transmitter, and especially in 'a modified form used by Hughes as a microphone receiver. The lower block c is then attached to the centre of a vertical diaphragm and against it the sounds are directed.

The Blake transmitter, which is perhaps most wideny rised of all, is a simple modification of the Hughes instrument last dcscribed. It consista (fig. 13) of a frame F, to which is attsched a disphragm D of thin sheet iron; in froot of this is a cover M, M provided with a suitable cavity for directing the cound-waves against the diaphragm. The microphonic arrangement consists of a spring S, about the hundredth of an ioch thick and the eighth of an inch broad, fixed st one end to a lever L, and carrying at its free extremity a brass hlock W. In one side of W a small disk C of gas carbon is inserted, resting on the hemispherical end of a small platianm pin K, about the twentieth of an inch in diameter, held in position by a thin epring A. The pressure of the carbon on the platinum point can be adjusted by the ecrew N, which turns the lever about the flexible joint G. The electrical connexions of the instrument as arranged for actual use are also illustrated in the figure. The curreat circnit gots through $\mathrm{S}_{1} \mathrm{~W}, \mathrm{C}, \mathrm{K}, \mathrm{A}$, and the
primary circuit of the induction coil I to the battery $B_{\text {, }}$ and thence to S agaio. This forms a locsl circuit at the transmitting station. The line of circuit pesses through the eecondary of the induction

Fio. 13.-Blake's transmilter.
coil I to the line, from that to the telephone T at the receiving station, and then either to earth or lack to the induction coil by a return line of wire.

Telephonic Circuits.

The lines used for telephone purposes are, generally speaking; Teles Bo far as erection, mode of inculation, and so on are concerned, much phon the same as those used for ordinery telegraphs. In towns where winad a very large number of wires radiate from one centre or exchange, as it is called, where thick wires are unsightly, and where it is often necessary to provide for long epans, a comparatively thin wire of etrong msterial is employed. For this reason various bronzes, such es silicon, aluminium, \&c., have come to be extensively used for making wires for telephons lines. They are made from shout tho twentieth to the thirtieth of an inch in diameter, and are found to wear well in the somewhat mixed atmosphere of a town; and owing to their lightness and considerable tensile strength it is com. paratively essy to erect them and keep them iu order. The majn objection to them is the high electrical resistance they oppose to the current. The lines on a town exchange system are not, however, as a rule, so long as to make this objection of great importance. But loog lines, such as those extending between towns some miles spart, should be made of pure copper wire hard drann. It has lately been found possible to draw copper so hard as to be almost equal to bronze in strength, and yet to retain about three times the electric conductivity of that substance. Copper and bronze wires posscss great, advantages for telephonic purposes over the iron wires employed in telegraph lioes, in that they offer a much lower effective resistance to the rapidly undulating aod ioternittent currents produced by telephonic transmitters. The electric resistance opposed by a wire to the passage of such a current is always greater than that opposed to a steady current, and this difference is much more marked when the wire is of magnetic material like iron. This increased resistance rises in proportion to the rapidity of the undula. tions of the current; consequently high notes are more resisted than low notes. Besides this variahle resistance, telephouy has to contend with "self-ioduction" (see Electricity, vol. viii. p. 76 sq.) of the current on itself, and this is by 110 means uaimportant, especially on long circuits. ${ }^{1}$ The marked difference betweea iron and copper for loog circuits is plaialy shown by the fact that Rysselberg and others have spokeo clearly to a distance of over 1000 miles through a copper wire insulated on poles, whereas Preece could not work a similer line of juron wire between London and Manchester.

The electrostatic capacity of the line (see Telearapy, p. 115 above) is also diminished by the use of thio wires of highly conductingmaterial. They should all if possibie be erected oo poles at a considcrable beight above the earth. It is not practicable to work an ordiaary undergroond line through more than 20 miles, and cable telephony through distances of over 100 miles may in the present state of ecience be put down as en impossibility,
Another element of great importance in connexion with telephone Roy. Soc papers by Prof. Hughes, Procs Soc. Tel. Eng., vol. xv. p. 6, and Proc. Journ, vol. zviii. p. 321 gnd vol. 大ix.
 See aloo Prof. Chrystal on the "Differential Telephone," in Trans. Rog. Soce Edinb., Vol and. Pp. 609-696'

Cines, which in most cases does not require to be attended to in ordinary telegraph circuits, is the iaduction from one line to another (see Electuicity, vol. viii. p. 76 sq.). When two lines hsving, as in ordinary telegraphy, an earth connexion at each end run for any great distance, say a aile or more, parallel to each other on the same supports, a conversation which is being carried on through ode of them can be overheard by means of the telephones on the other. This is due to the fact that, when a current is ouddenly set up in one closed circuit, it induces an instantaneous current in any other closed circait which is near to it. This induced current not only destroys the privacy of the circuit in question buc also lowers its efficiency. The mischief is even greater when telegraph and telephone lines run elong the asme route supported on the same poles, because the strong intermittent currents sent through tclegraph wires, and the irreguler manaer in which the intermittences follow each other, induce a series of such powerful secondary currents in the telephone lises that the noise heard in the telephene is often sufficient, when the line is a mile or two long, to drown all speech. In the case of parallel teleplone lines the best, if net the only, cure is to use return wires, and arrange them so that the currents induced in the outgoing wire shall he neutralized by the corresponding current induced in the incoming wire. For mixed telegraph and telephone circuits various methods have been proposed ; but the most generally approved plan is to lisve return wires. For circuits worked wholly on the return principle the main thing to be attended to is the symmetrical arrangement of the wites, so that the outgoing and incoming wires may be subjected to the same influence. This is nearly provided for by ruuuing them in such s way that they may be all supposed to lie on the surface of a cylinder io lines parallel to its axis, tho two wires at the opposite ends of a diameter being alwayg used for the same circuit. When more than four wires form the group complete compensation is not obtained in this way, becsuse the curreut is alweys atromger near the transmittiog end of the line than near the receiving ead, on account of the very sensible effect of the capacity end tlıe leaksye of the line. It is therefore best to arrange the wires in grelups of four -that is, in pairs of circuits-and run them so as to form spiral lines round an exial line equidistant from each of the four wires. Any pair of wires forming a circuit which runs parallel to other Wires can be arranged so as to lo very nearly free from induction by interchanging their position relatively to the other wires st short distances along the line. Care must. however, be taken, when moro than one group of feur or when more then one peir are run, thot the compensation produced by the twisted arrangement of oue set, or of the interchanges of the wires in the differeut paire, is not spoiled by the tristing or interchauging of another aet or pair. Telephone lines running parallel to telcraraph lines should be formed into one or mere groups, each being run on the twist plan so as to eliminate as completely as possible the effect of the telegraph signals; the smali residual effect of the telephone signals is of comperatively little importrace in such a case. A twisted cable of telephone wire may, when cach circuit is formed by dismetrically opposite wires, be placed in the same tube witto similar cables emplojed for talegroph purposes. Tho central wire of the cable may be used either as a telegraph line or as a telephone line having an earth return. Another method is to use powerful telephone transuitters and insensitive receivers; that is to say, make the telephone currents 60 powerful that the telegraphic ioduced currenta will bo 6 mall in comparison, and use zeceivers so insensitive as to suit such currents. One of the main obstacles in the wey of this method et present is the difficulty of getting strong telephonic curreats, for even tho best transmitters are not jet aufficiently porrerful, and there is, besides, a decided taudency towards a loss of quality in the sound when the transmitter is made powerful. A third method is to render the telecraplic current comparatively hermless by taking away the endenncss of the intermittences. This is quile prosible because the number of currents sent per second, even ou fast woriking circuite, is not such as to produce a high musicsl noto. If, then, the curreuts be made in some way to rise slowly to their full atreagth aad foll a gain elowly to zero the diaphragm of the receiving instrunent, instead of ahowing the sudden rise and suddeu fall as at present, would move so elowly beckwards and forwards that the car would rot be disturbed by the sonnd. Perhaps the simplest rey to accomplish this is to place an electromagnet in the circuit of the tolograph line at the seuding station, fer the self-induction of the msgnet coil prevents the current assuning its otreagth ouddenly. But on telegraph circuits where speed is of great importance this method cannot be followed owing to the retardstion of the telegraph Eirnale and the cousequent loss of speed thereby occasioned.

An ingenious application of the method of componsation just indicated has beep made by Ryssel berg, who has used not only wires carried on the same poles as the telegraph but even the tolegrsph lines themselves for telephone parposed. The arrangemont of his system is shown in fig. 14, where L and J_{1} represent two telegraph lines. Betweeu tliese, at each eml, are inserted two condensers $\mathrm{O}_{1}, \mathrm{C}_{2}$ and a telephone T, torether with transinitters, \&c., so that, $\mathrm{O}_{1}, \mathrm{C}_{2}$ and a telephone , inposing the telegraph instruments rewoved, the two wires would
be an ordisary telephone circuit worked through condensers. The telegraph apparatus consists of an ordinary rectiver R, seading battery B, and key K, together with a condenser C, inserted between the earth and the line terminal of the key, and two electromagnetic indacters E, E'. When the key is de. retarded by the electro. dense- C, which has to fact additionsl electrosending end of the line.
 further retarded by the Fig. 14. heace the condenser C_{1} becomes charged so cradusily that E^{2}; little disturbance is noticesble in the telephone T. The condensers C_{1}, C_{2} prevent leakage from one line to the other, but have eufficient capacity to allow the telephooe to act as if it were in a metallic circuit.

The Working of Telephone Circhits.

The method first employed for working a telephone line was extremely gimple. A single line of wire, like an ordinary telegraph line, hed a Bell telephone included in it at each end and the eads were put to earth. Werds spoken to the telephone at one end could be heard by holding the telephone to the ear at the other. To obviate the inconveniedce of placing the telephone to the mouth and the ear alternately, two telephones were commonly used at each end, joined either parallel to cach other or in series. The contrivance mest generally alopted for calling attention is the call bell, rung either by a small magneto-electric machine or by a battery. The telephoue wes switched out of circuit whed not iu use and the bell put in its place, an ordinary key being used for puttiog the battery in circait to make the signal. This arrangement is still employed, a hook being attached to the owitch lever so thet tho mere hauging up of the telephode puts the bell in circuit. In some ceses, when the bell is rung by a magneto machine, the coil of the machine is automatically cut out of circuit when it is not in action, but the turning of the handle movee a centrifugs] arrangement by which it is thrown in.

At first it was usual to employ the eame instrument both as trane- Workh mitter and as receiver, and to join it in the direct circuit. But it with Was aoon fonnd that the microphone transmitter could ooly be used microto advantage in this way when the total resistance of the circuit, phome exclusive of the microphona, was small compared with the resistance e of the microphone,-that is, on very ehort lines worked with low resiatance telephones. The transmitter on Iong and high resistance lines worked better by joining indirectly in a loçal circuit, in the manner ehown in fig. 13, the microphone, a battery, and the primery of an induction coil, and putting the line in circuit with the secondary of the induction coil, which acted as the traosmitter. The resistance of the microphone can thus be made a large fraction of the total resistance of the circuit in which it is placed; hence, by using considerable currents, amall varistiono in its resistance can be made to induce somewhat powerful currents in the line wire. The requisite energy is derived from the battery. If there are other resistances in the circuit it is, in some cases, better to join it as a ehuat to the primary circuit of the induction coil. It may even prove advantageous to insert resistances in the circuit, increase the battery power, and join the microphone as here indicated, because in this way powerful currents can be obtained in the line withoat the harshnees which is apt to be produced by the variations of a strong current passing through the microphone.

Iranslation from one line to auother, or from one eection to Tram another of the same line, is effected by putting the primary of an tion. induction coil in the place of the receiving telephone, the secondary being in circuit with the second line or section. Thie plan is useful where the same message is to be sent to different "places at once (distributed), and is sometimes used for trasslating from a doubla wire to a single wire system. Probably a better plen is to work a microphone by the membrane of the receiving telephone, and retransmit the message, taking new energy from a second battery. ${ }^{1}$ When the indaction coil arrangement is used for translating from a double to a single wire circuit, or vice versa, it is necessary to make the indaction coil suit the circuits, so that either coil may be used as primary, according to the end from which the message is sent. Every thing else being similar, the resistances of the coils ehould be in nearly the same ratio as the resistances of the lines in which they are placed.

In a large town it is ncither practicable nor desirable to connect each suhscriber direcily with all the other subscribers, bence s syetem of "exchangee" has beeu adopted. An exchange is a central station to which wires are bronght from the different subscribers, any two of whom can be putin telephonic communication mith eacb $\frac{\text { other when the proper pairs of wires are joined together in the ex. }}{1 \text { Bea Thombon and Bonston, Tel Journ., 15tb } \Delta \text { Lgust } 18 \text { is. }}$
change. The srrangement is illustrated in fig. 15, where C represents sn exchange from which wires radiate to the points a, b, c, d, \ldots Suppose a wishes to epcals to d; he communicates his wish to au attendant at O, who first calls d, and then connects 6 to 1 , making the circuit continuous from a to d. Tho arrangements at the ex- a phange for facilitating connexions vary coneiderably, but ars similar in principle to the awitch boards used in telegraphy. Each of the

Fio. 15.-Telephone crehange. wires is first brought to an indicator and then to a sot of torminals arranged in sn orderly manner on a board, tho number of the terminal for any one wire weing the eame as the number under the shutter of the indicator in that wire circuit. In many cases the terminals take the form of spring clips, which connect the line to earth, and under which a thin piece of metal, covered with iusulating material on one eide and called a "jack," can be readily inserted for connecting that circuit with sny other. A piece of flexible wire cord, carrying a jack at each end, forms a ready and common mediurn of connexion ; hut in many cases the switch board is arranged with cross atrips of metal so that by inserting a jack into the terminals of the two wires they can'bs both conuected to the same strip of metal and therefore togsther. In large exchanges one switch hoard of moderate size is not eufficient, and eo a number are fitted, being connected together by several conductore, in order that no interroption may ensue in consequonce of these being all oecupied. A line on one board is connected with one on another board by joining the terminal of the first to ons of the conductors connecting the two bosrds by a jack-cord, and then by another jack-cord connecting that conductor to the terminal of the other line. Thus different owitch boards may be lookod upon as sepirsto exshanges, connected together by a number of trunk wires aftor the manner described below.

In a large eystem it is much more convensent and economical to have oxchanges in the various districts, snd connert these with a central exchange by a sufficient number of truak lines. A eubseriber in ons district wishing to speak to a subscriber in another calls the exchange in his own district and is put in communication by the attendant stationed there with the central exchange. The sttendant at the central exchangs puts the subscriber in communication with the district he requires, and the attendant there calls the other subscriber and joins the two eubscribers' lines together. In some cases neighbouring district exchanges have, besides a common means of communication through the central sxchange, an independent connexion. These arrangements are diagrammatically

Fro. 10.-Telophone district ezchances.
illustrated in fig. 16, wliers 1, 2, 3, 4, 5, 6 represcnt district exchanges and C the contral exchange ; districts 3 and 4 and 4 and 5 are supposed to have independent connexions.

An arrangement was proposed about two years ago by Mr D. Sinclair of the Glasgow telephone exchange for allowing small district exchanges to be worked by the attendante at the central exchange. ${ }^{1}$ The two exchanges are connected by a trunk line and from the district exchange wires are led to the differcat subscribere. Thess wires are in the normal state of matters connected, with contact plates, over which an arm joined to the trunk wire can be made to travel. Suppose the contral exchange wishcs to apeak to any one of the oubscribers, the arm is made to travel round, by currents efnt from the exchango through an electromaguetic step by step arrangement, until if comes in contact with the proper plate, ufter which the eubscriber is called in the ordinary way. Wben one enbscriber belonging to the district exchange wishes to speak to another in the ssme district, he rings the bell in the ordionry way, and this operation disconnects all other aubscribers and puts hin in connexion throngh the trunk line with the central ex-

1 Bee Proc. Phil. Soc. of Glasgow, vol. xvil. p. 38.,
clange. The sttendant there sscertains to whom it is that ho wiohes to speak, snd by moving round the contact arm puts the two subscribers lines in contact.

The indicator, or annunciator as it is sometimes called, is shown in fig. 17. It consiets of an electromagnet M, which on a current being sent through it pulls down the asmature α, relieves the catch c, and allows the ehutter α to "fall down, exposing a plate p, on the front of which the number of ths subscriber is printed. When the exchange is called, the shutter d is dropped, the attendant connects the line leading
 to the exchanga table with the terminal corrosponding to the indicator, and finds who is wanted; then he calle that subscriber, makes the through connexiou, and puts up the shutter. When the subscribers have finished, both call the exchange or, as it is commonly put, "ring off"; this drops both shatters and eerves as the eigusl that they have finished speaking.
The principle of transmitting sonnd by the radiophone will he Racioonderstood from fig. 18. M represents a mirror, frem which a phone beam cf light is reflected through the lens l to s sscond mirror m, snd m forns a diaphragm against the back of which the sound vibrations eent through the tube t are made to impinge. The beam of limht, sfter being reflected from n, passcs through the lower lens l, and thence as a nearly parsilcl beam to the parabolic reflector R . photophonic receiver P, supposed in this case to ha s spiral of selenium wire wound on the surface of a cylinder,

Fio. 18. - Bell's radiopt 万ne. is placed st the focus of the reflector so that the beam of light from m is concentrated on it. In circuit with tha receiver Pa battery B and s telephone T are included and through the circuit a feeble clectric current flowe continuously. The photophonic receiver should be placed 50 as to recerve as little light as possitle from any other source than the mirror $3 n$. Words spoksn through the tube t make the mirror n vibrate, ,o that the beam of light reflected from it becomes mors or less spread. The lens l is then unable to bring the beam into parallelism, and the intensity of the reflexions from R to P is varied, therefors slso the current through the coil of the telephone, which in consequence gives out a sound. The amount of spreading of the beam bcing proportional to the intensity of the vibrations of m, and this agsin proportional to the intensity of the sounds, the sounds heard in the telephone are similar to those produced at the end of t. Theoretically the receiver may be at any distancs from the transmitter, but considerable difficulty arises if the distance is grest.

One of the simplest forms of the phenograph is shown in fig. 19. Phono It consists of a rigid epiadls S scrowed for about one-third of its graple. length, and fitted to work smoothly but tightly in the frams f, f, which is sccurely attached to a sole plate P . On the spindle a drum D is fixed, the axis of which coincides accarately with that of the spindle. On the surface of the drum \& acrew is
 sams pitch as that on the spindle. Δ fly.wheel W is fixed to one end of the spindle, and is provided with s handle H, by which the spindle and drum can be conveniently turned. One of the bearings has either a screw thread cut along it, or is fitted with one or more studs which work easily, but without ohake, in the screw thread. When the spindle is turned, it receives a trans. verse motion, and a point fixed relatively to the sole plate P and touching the drum traces out a spiral on its surface, exactly coinciding with the screw thread cut on it. A moutbiece M, liks that of a telephone transmitter, provided with a diaphragm of parchment or similar substance, is monnted on a lever, which is pivoted at h and provided with a set screw b. A blunt needle point is either fixed to the centre of the diapbragm or carried by a light epring in such a way as to press on the centre of the diaphragm with the ncedle point projecting outwards. To use the instrument, the drum D is covered with a sheet of somewhat stiff tinfoil, and the mouthpiece is adjusted as ehown in the figure, with the weedle point over the hollow part of the tinfoil, and fixed by the set acrev to make a slight indentation in it. The drum io then turnod and words spoken in eomowhst loud and clear tone in front of the
monthpiece. The vibrations of the diaphragm cause the needle point to make indentations more or less deep, according to the intensity of the saund, in the surface of the tinfoil. If the mouthpiece is then raised, the drum turned back to its original position, the
mouthplect rowered so that the point rests on the groove march it previously made, and the drum sgain turned, the diaphragm, scted on by the needle point passing over the indentation, will give out the same words which were spoken to it.
(T. GR.)

TELESCOPE

TIHE telescope is an optical instrument employed to view or discover distant objects, ${ }^{1}$ The fundamental optical pribciples inrolved in its construction have already been dealt with in the articles Light and Ortics, and these should be first perused by the reader.

History.

The credit of the discorery of the telescope has been a fruitful subject of discussion. Thus, because Democritus announced that the milky way is composed of vast multitudes of stars, it has been maintained that ho could only have been led to form such an opinion from actual examination of the heavens with a telescope. Other passages from the Greek and Latin authors have similarly been cited to prove that the telescope was known to the ancients. But, as has been remarked by Dr Robert Grant (History of Physical Astronomy, p. 515), we are no more warranted in drawing so important a conclusion from casual remarks, however sagacious, than we should be justified in stating that Seneca was in possession of the discoveries of Newton because he predicted that comets would one day be found to revolve in periodic orbits. Molyneux, in his Dioptrica Nova, p. 256, declares his opinion that Roger Bacon (who died c. 1234) "did perfectly well understand all kinds of optic glasses, and knew likewise the method of combining them so as to compose some such instrument as our telescope." He cites a passage from Bacon's Opus DIajus, p. 377 of Jebb's edition, 1733, translated as follows:-
"Greater things than these may be performed by refracted vision. For it is easy to understand by the canons above mentioned that the greatest objects may appear exceedingly emall, and the contrary, also that the most remote objects may appear just at hand, and the converse ; for we can give such figures to transparent bodies, aud dispose them in such order with respect to the eye and the objects, that the raye shall be refracted and bent towards any place we please, so that we shall see the object near at hend or at any dis. tence under any angle we pleasa. And thas from an incredible distance we may read the smallest letters, and may number the emallest particles of dust and asnd, by reason of the greatness of the angle under which we see them. .. Thus slso the sun, moon, and stars may be made to descend hither in appearance, andoto be visible over the heads of our enemies, and many things of the like sort, which persons unaoquainted with such things would refuse to believe."
Molyneux also cites from Bacon's Epistola ad Parisięnsem, "Of the Secrets of Art and Nature," chap. 5 :-
"Glasses or diaphanous bodies may bo so formed that the most remoto ohjects insy appear just at hand, end the contrary, во that we may read the smallest lotters et 80 incrediblo distance, and may number things, though never eo small, and may make the atars slso appear as near as we please."
These passages certainly prove that Bacon had very nearly, if not perfectly, arrived at theoretical proof of the possibility of constructing a telescope and a microscope; but his writings give no account of the trial of an actual telescopo, nor any detailed results of the application of a telescope to an examination of the heavens. It has been pointed out by Dr Smith, in his Complete System of Optics, that Bacon imagines some effects of telescopes which caunot be perforned by them, and his conclusion is that Bacon never actually looked through a telescope.

Giambattista della Porta, in his Mfagia Naturalis, printed in 1558 , makes the following remarkable statement:-

[^41]"If you do hut know frow to join the two (viz., the concare and the conrex glasses) rightly together, you will see both remote and near objects larger than they otherwise appear, and withal very distinct."
Wolfus infers from this passage that its author was the first actual constructor of a telescope, and it appears not improbable that by happy accident Porta really did make some primitive form of telescope which excited the wonder of his friends. Here, howerer, his interest in the matter appears to have ceased, and he was unable either to appreciate the importance of his discovery or to describe the means by which the object was attained. Kepler, who examined Porta's account of his concare and convex lenses by desire of his patron the emperor Rudolph, declared that it was perfectly unintelligible. Poggendorff (Gesch. der Physik, p. 134) throws considerable doubt on the originality of Porta's statement.

Thomas Digges, in his Stratioticus, p. 359, published in Leonard 1579, states that his father, Leonard Digges,
samong other curious practices had a method of discovering by perspective glasses set at due angles all objects pretty far distant that the sun shone upon, which lay in the country round about," and that this was by the help of a manuscript book of Roger Bacon of Oxford, who he conceived was the only man besides his father who knew it. There is also the following passage in the Pantometria (bk. i. chap. 21) of Leonard Digges ${ }^{2}$ (originally published by his son Thomas in 1571, and again in 1591):-
"Marrellous are the conclusions that may be performed by glasses concaro snd contex, of circular and parabolic forms, using for multiplication of beams sometime tho aid of glasses transparent, which, by fraction, should unite or dissipate the images or figures presented by the reflection of other."
He then describes the effects of magnification from a combination of lenses or mirrors, adding :-
"But of these conclusions I minde not here to intreate, having at large in a volume ${ }^{3}$ by itselfe opened the miraculous eflects of perspective glasses."
It is impossible to discredit the significance of these quotations, for the works in which they occur were published more than twenty jears before the original date claimed for the discovery of the telescopo in Holland.

That Roger Bacon had tolerably clear ideas as to the practical possibility of constructing telescopes, and that Leonard Digges had access to some unpublished IISS. of Bacon, and by their aid constructed some form of telescope, seem to be obvious inferences from the preceding evidence. But it is quito certain that previous to 1600 the telescope was unknown, except possibly to individuals Who failed to see its practical importance, and who confined its use to "curious practices" or to demonstrations of "natural magic." The practical discovery of the instrument was certainly made in Holland about 1608, but the credit of the original invention has been claimed on behalf of three individuals, Hans Lippershey and Zacharias Jansen, spectacle-makers in Middelburg, and James Metius of Alkmaar (brother of Adrian Metius the mathematician).
Descartes, in his treatiso on Dioptrics (1637), attributes the discovery to Metius "ahout thirty jears ago," whilst Schyralus de Rheita, a Capuchin friar, in his Oculus Enoch el Eliw (Antwerp, 1645), gives the credit to Lippershey about 1609. Peter Borel, plysician to the king of Franco, published ot The Hague, in 1655, a work De Vero Teleccopii Inventore. Zu was assisted in its preparation by William Borel, Dutch envoy at the court of France, and the latter declares, $8 s$ the result of patient investigation, that ${ }^{2}$ He died about 1570 . His son slludes to his untimely death in ihe preface to the Pantomelria.

There is no further trace of this volume.

Jansen and his father were the real inventors of the telescope in 1610, and that Lippershoy only mado a telescope after hints accidentally communicated to him of the details of Jansen's invention. But the zost trustrorthy information on the auhject is to be got from the researches of Van Svinden. ${ }^{1}$ Briefiy gummarized, this eridence is as follows. In the library of the university of Leyden, amongst the MSS, of Huygens there is an original copy of a document (dated 17th October 1608) addressed to the states-general by Jacob Andrianzoon (the same individual who is called James Metiue by Descartes), petitioning for the exclusive right of a日lling an instrument of his invention by which distant objects appear an instrument of distinct. Ho states that ha had discovered the instrument by accident when engaged in making experiments, and had so far perfected it that distant objects wero made as risiblo and distinct by his instrument as could be done with the one which had been lately offered to the states by a citizen and opectaclomaker of Middelburg. Among the Acts of the states-general preaerved in the Government archives at The Hague, Van Swinden found that on 2d October 1603 the assembly of the atates took into consideration the petition of Hans Lippershey, spectacle-maker, a native of Wesel and an inhabitant of Middelburg, inventor of an instrument for seeing at a distance. On 4th October a committes was appointed to test the instrument, and on the 6th of the same month the assembly agreed to give Lippershay 900 forins for his instrument. Further, on the 15 th December of the same year they examined an instrument invented hy Lippershoy at thair request to seo with both eyes, and gave him orders to executo two similar instruments at 900 fiorins each; but, as many other persons had knowledge of this new invention to see at a distance, they did not deem it expedient to grant him an exclusive privilege to aell auch instruments. The dntes of these documents dispose effectually of Borel'a gtatement that Lippershey horrowed the ideas of Jansen in 1610. They also prove that, whilst Metius was in possession of a telescope, with which he may have experimented, about the time when Lippershey presented his application for patent rights, yot the makes no pretension that Lippershey borroved the invartion from him. The conclusion is that Lippershey ras the first person who independently invented the telescope, and at the amatima made the instrument known to the world. The common atory is that Lippershey, happeniag one day, whilst holding a spectacle-lons in either hand, to direct them towards the ateeple of a neighbouring church, was astonished, on looking through tho nearer lens, to find that the weathercock appoared nearer and more distinct. He fitted the lenses in a tube, in order to adjust and preserve their relatipo distances, and thus constructed his first tolescope. But doubt may be threwn on this traditional account owing to the further statement that the image of the weathercock so viewed was geen turned npside down All the oriminal Dutch telescopes were composed of a convex and a coucave lens, and telescopes so couatructed do not invert. The inverting telescopa, composed of two convex lenses, was a later invention ; gtill it is not impossible that the original experiment was made with two conver lenses.

Telescopes seem to have been made in Holland in considerable numbers soon after the date of their invention, and rapidly found their way over Europe. Sirturus, in his De Telescopio (1618), states that "a Frenchman proceeded to Milan in the month of May 1609 and offered a telescope for sale to Count di Fuentes"; and Lorenzi Pigorna writes, ${ }^{2}$ under date 31st August 1609, that "Galileo had been appointed lecturer at Padua for life on account of a perspective like the one which was sent from Flanders to Cardinal Borghese." Simon Marius, the German astronomer, appears to have made astronomical observations in 1609 with a telescope which he procured from Hollaud, and Professor Rigaud of Oxford found from the MSS. of Harriot, the mathematician, that he had been making astronomical observations with a Dutch telescope as early as July 1609. Galileo, in his Nuncius Sidereus, states that, happening to be in Venice about the month of May 1609, he heard that a Belgian had invented a perspective instrument by means of which distant objects appeared nearer and larger, and that he discovered its construction by considering the effects of refraction. In his Saggiatore Galileo otates that he solved the problem of the construction of a telescope the first night after his return to Padua from Venice, and made his first telescope next day by fitting a convex lens in one extremity of a leaden tube and a concare lens in the other one. A few

[^42]days afterwards, having succeeded in making a better telescope than the first, be took it to Venice, where he communicated the details of his invention to the public, and presented the instrument itself to the doge Leonardo Donato, sitting in full council. The senate, in return, settled him for life in his lectureship at Padua and doubled his salary, which was previously 500 florins, and which then became treble that which any of his predecessors had enjoyed. Galileo may thus claim to have invented the telescope independently, but not till he had heard that others had done so. In fact the time was ripe; and, as often happens in similar circumstauces, only a hint was necessary to complete the latent chain of thought. Galileo devoted all his time to improving and perfecting the telescope. Knowing the theory of his instrument, and possossed of much practical skill, coupled with unweariod patience, he conquered the difficulties of grinding and polishing the lenses, and soon succeeded in producing telescopes of greatly increased power. His first telescope magnified three diameters; but he soon made instruments which magnified eight diameters, and finally one that magnified thirty-three diameters. ${ }^{8}$ With this last instrument he discopered in 1610 the satellites of Jupiter, and soon afterwards the spots on the sun, the phases of Venus, and the hills and valleys on the moon. He demonstrated the rotation of the satellites of Jupiter round the planet, and gave rough predictions of their confgurations, proved the rotation of the sun on its axis, established the general truth of the Copernican system as compared with that of Ptolemy, and fairly routed the fanciful dogmas of the philosophers. These brilliant achievements, together with the immenso improvement of the instrument under the hands of Galileo, overshadowed in a great degree the credit due to the original discoverer, and led to the universal adoption of the name of the Galilean telescope for the form of the instrument invented by Lippershey.

Kepler first explained the theory and some of the practical advantages of a telescope constructed of two conver lenses in his Catoperics (1611). The first person who actually constructed a telescope of this form was Father Scheiner, who gives a description of it in his Rosa Ursina (1630). William Gascoigne was the first who practically appreciated the chief advantages of the form of telescope suggested by Kepler, viz., the visibility of the image of a distant object simultaneously with that of a small material object placed in the common focus of the two lenses. This led to his invention of the micrometer and his application of telescopic sights to astronomical instruments of precision (see Microneter, vol. xvi. p. 242). But it was not till about the middle of the 17 th century that Kepler's telescope came into general use, and then, not so much because of the advantages pointed out by Cascoigne, but because its feld of view was much larger than in the Galilean telescope. The first powerful telescopes of this construction were made by Huygens, after much labour, in which he was assisted by Lis brother. With one of these, of 12 -feet focal length, he discovered the brightest of Saturn's satellites (Titan) in 1655, and in 1659 he published his Systema Saturnium, in which was given for the first time a true explanation of Saturn's ring, founded on observations made with the same instrument. The sharpness of image in Kepler's telescope is very inferior to that of the Galilean irstrument, so that when a high magnifying power is required it becomes essential to increase the focal length. Cassini discovered Saturn's fifth satellito (Rhea) in 1672 with a telescope of 35 feet, and the third and fourth satellites in 1684 with telescopes made by Campani of 100 and 136 feet focal length. Huygens states that he and his brother

[^43]Aade object-glasses of 170 and 210 feet focal length, ana he presented ene of 123 feet to the Royal Society of London. Auzout and others are said to have made telescopes of from 300 to 600 feet focus, but it does not appear that they were ever able to use them in practical observations. Bradley, on 27 th December 1722 , actually measured the diameter of Venus with a telescope whose object-glass had a focal length of $212 \frac{1}{4}$ feet. In these very long telescopes no tube was employed, and they were consequently termed aerial telescopes. Huygens contrived some ingenious arrangements for directing such telescopes towards any object visible in the heavens, -the focal adjustment and centring of the eye-piece being preserved by a braced rod connecting the object-glass and eye-piece. Other conrivances for the same purpose are described by La Hire 'Mém. de l'Acad., 1715) and by Hartsoeker (Miscel. Berol., rol. i. p. 261). Telescopes of sucl great length were naturllly difficult to use, and must have taxed to the utmost the skill and patience of the observers. One cannot but pay a passing tribute of admiration to the men who, with such troublesome tools, achieved such results.
-Until Newton's discovery of the different refrangibility of light of different colours, it was generally supposed that object-glasses of telescopes were subject to no other errors than those which arose from the spherical figure of their surfaces, and the efforts of opticians were chiefly directed to the construction of lenses of other forms of curvature. James Gregory, in his Optica Promota (1663), discusses the forms of images of objects produced by lenses and mirrors, and shows that when the surfaces of the lenses or mirrors are portions of spheres the images are curves concare towards the objective, but if the curves of the surfaces are conic sections the spherical aberration is corrected. He was well aware of the failures of all attempts to perfect telescopes by eroploying lenses of various forms of curvature, and accordingly proposed the form of reflecting telescope which bears bis name. But Gregory, accordjng to his omn confession, had no practical skill; he could find no optician capable of realizing his ideas, and after some fruitless attempts was obliged to abandon ail hope of bringing his telescopo into practical use. Newton was the first to constrcet a reflecting telescope. When in 1666 he made his discovery of the different refrangibility of light of different colours, he soon perceived that tho faults of the refracting telescope were due much more to this cause than to the spherical figure of the lenses. He over-hastily concluded from some rough experiments (Optics, bi. i. pt. ii. prop. 3) "that all refracting substances diverged the prismatic colours in a constant proportion to their mean refraction "; and he drew the natural conclusion "that refraction could not be produced without colour," and therefore "that no improvement could be expected from the refracting telescope" (Treatise on Optics, p. 112). But, having ascertained by experiment that for all colours of light the angle of incidence is equal to the angle of reflexion, he turned his atlention to the construction of reflecting telescopes. After much experiment he selected an alloy of tin and copper as the most suitable material for his specula, and he devised means for grinding and polishing them. He did not attempt the formation of a parabolic figure on account of the probable mechanical difficulties, and he had besides satisfied himself that the chromatic and not the spherical aberration formed the chief faults of previous telescopes. Newton's first telescope so far realized his expectations that he could see with its aid the satellites of Jupiter and the horns of Venus. Encouraged by this success, he made a second telescope of $6 \frac{1}{3}$-inches focal length, with a magnifying power of 38 diameters, which be presented to the Royal Society of London in December 1671. A third form of reflecting telescope was devised in 1672 by Cassegrain
(Journal des Sçavans, 1672). No further practical advauc appears to have been made in the design or construction of the instrument till the year 1723, when John Hadley (besi known as the inventor of the sextant) presented to the Royal Society a reflecting telescope of the Newtonian construction, with a inetallic speculum of 6 -inches aperture and $62 \frac{5}{8}$-inches focal length, having eye-pieces magnifying up to 230 diameters. The instrument.was exarmined by Pound and Bradley, the former of whom reported upon it in Phil. Trans., 1723 , No. 378, p. 382. After remarking that Newton's telescope "had lain neglected these fifty years," they stated that Hadley had sufficiently shown "that this noble invention does not consist in bare theory." They compared its performance with that of the object-glass of 123-feet focal length presented to the Royal Society by, Huygens, and found that Hadley's reflector
"will bear euch a charge as to make it magnify the object as many times as the latter with its due charge, and that it representa objects as distinct, though not altogether so clear and bright. Notwithstanding this difference in the brightness of the objects, we were able with this reflecting telescope to see whatever we have hitherto discovered with the Hugenian, particularly the transits of Jupiter's satellites and their shadows over his disk, the black list in Saturn'e ring, and the edge of his shadow cast on his ring. We have also seen with it several times the five satellites of Saturn, in viewing of which this telescope had the advantage of the Hugenian at the time when we compared them; for, being in summer, and the Hugenian telescope being managed without a tube, the twilight prevented us from seeing in this some of these small objects which at the eame time we could discern with the reflecting telescope."
Bradley and Molyneux, haring been instructed by Hadley in his methods of polishing specula, succeeded in producing some telescopes of considerable power, one of which had a focal length of 8 feet; and, Molyneux having communicated these methods to Scarlet and Hearn, two London opticians, the manufacture of telescopes as a matter of business was commenced by them (Smith's Optics, bk. iii. ch. 1). But it was reserved for James Short of Edinburgh to givo James practical effect to Gregory's original idea. Born at Edin- Sbort burgh in 1710 and originally educated for the church, Short attracted the attention of Maclaurin, professor of mathematics at the university, who permitted him about 1732 to make use of his rooms in the college buildings for experiments in the construction of telescopes. In Short's first telescopes the specula were of glass, as suggested by Gregory, but he afterwards used metallic specula only, and succeeded in giving to them true parabolic and elliptic figures. Short then adopted telescope-making as his profession, which he practised first in Edinburgh and afterwards in London. All Short's telescopes were of the Gregorian form, and zome of them retain even to the present day their original high polish and sharp definition. Short died in London in 1768 , having realized a considerable fortune by the exercise of his profession.

The historical sequence of events now brings us to thè discovery of the achromatic telescope. The first person who succeeded in making achromatic refracting telescopes seems to have been Chester Moor Hall, a gentleman of Essex. He argued that the different humours of the human eye so refract rays of hght as so produce an image on the retina which is free from colour, and he reasonably argued that It might be possible to produce a like result by combining lenses composed of different refracting media ${ }^{1}$ After devoting some time to the inquiry he found that by combining lenses formed of diffcrent kinds of glass the effect of the unequal refrangibility of light was corrected, and in 1733 he succeeded in constructing telescopes which exhibited objects free from colour. One of these instruments of only 20 -inches focal length had an aperture of $2 \frac{1}{2}$ inches. Hall was a man of independent
${ }^{1}$ The same argument was employed by Gregory more than fifty .years previously, but had been followed by no practical result. The lens of the human eye is not achromatic (see LicHT, vol. xiv. p. 601).'
XXIII. - 18

TELESOUP L

means, and seems to have been careless of fame: at least he took no trouble to communicate his invention to the world. At a trial in Westminster Hall about the patent rights granted to Dollond (Watkin v. Dollond), Hall was admitted to be the first inventor of the achromatic telescope; but it was ruled by Lord Mansfield that "it was not the person who locked his invention in his scrutoire that ought to profit for such invention, but he who brought it forth for the benefit of mankind." ${ }^{2}$ In 1747 Euler communicated to the Berlin Academy of Sciences a memoir in which he endeaveured to prove the possibility of correcting both the chromatic and the spherical abcrration of an object-glass. Like Gregory and Hall, he argued that, since the various humours of the human eye were so combined as to produce a perfect image, it should be possible by suitable combinations of lenses of different refracting media to construct a perfect object-glass. Adopting a hypothetical law of the dispersion of differently coloured rays of light, he proved analytically the possibility of constructing an achromatic object-glass composed of lenses of glass and water. But all his efforts to produce an actual objectglass of this construction were fruitlcss, -a failure which he attributed solely to the difficulty of procuring lenses worked precisely to the requisite curves (Mem. Acad. Berlin, 1753). Dollond admitted the accuracy of Euler's analysis, but. disputed his hypothesis on the grounds that it was purely a theoretical assumption, that the theory was opposed to the results of Newton's experiments on the refrangibility of light, and that it was impossible to dotermine a plysical law from analytical reasoning alene (Phil. Trans., 1753, p. 289). In 1754 Euler communicated to the Berlin Academy a further memoir, in which, starting from the hypothesis that light consists of vibrations excited in an elastic fluid by luminous bodies, and that the difference of colour of light is due to the greater or less frequency of these vibrations in a given time, he deduced his previous results. He did not doubt the accuracy of Newton's experiments quoted by Doliond, because he asserted that the differenco bctween the law deduced by Newton and that which he assumed would not be rendered sensible by such an experiment. ${ }^{3}$ Dollond did not reply to this memoir, but soon afterwards he received an abstract of a Klingen. memoir by Klingenstierna, the Swedish mathematician and etierna. astronomer, which led liim to doubt the accuracy of the results deduced by Newton on the dispersion of refracted light. Klingenstierna showed from purely geometrical considerations, fully appreciated by Dollond, that the results of Newton's experiments could not be brought into harmony with other nniversally accepted facts of refraction.

[^44]Like a practical man, Dollond at once put his deubts to the Dollond test of experiment, confirmed the conclusions of Klingenstierna, discovered "a difference far beyond his hopes in the refractive qualities of differont kinds of glass with respect to their divergency of colours," and was thus rapidly led to tho construction of object-glasses in which first the chromatic and afterwards the spherical aberration were corrected (Phil. Trans., 1758, p. 733).
We have thus followed somewhat minutely the history of the gradual process by which Dollond arrived independently at his invention of the refracting telescope, because it has been asserted that he borrowed the idea from others. Montucla, in his Histoire des Mathématiques (pp. 448-449), gives the following footnote, communicated to him by Lalande:-
"Ce fut Chestermonhall" (an obvions misprint for Chester Moor Hall) "qui, vers 1750, eut l'idée des lunettes achromatiques. Il s'adressoit ì Ayscough, ${ }^{4}$ qui faisoit travaillir Bass. Dollond ayant ou besoin de Bass pour un verre que demandoit le duc d'Yorck, Bass luif fit voir dn crown-glass et du fint-glass. Hall donna une lunetto ì Ayscouglh, qui la montra à plusieurs personnes; il en donna la construction à Bird, qui n'en tint pas compte. Dollond en profita. Dans le procès qu'il y eut entre Dollond et Watkin, au banc du roi, ccla fut pronvé ; mais Dollond gagna, parce qu'il étoit lo premier qui eatt fait connoitre les lunettes achromatiques."
It is clearly established that Hall was the first inventor of the achromatic telescope; but Dollond did not borrew the invention from Hall without acknowledgment in the manner suggested by Lalande. His discovery was beyond question an independent one. The whole history of his researches proves how fully he was aware of the conditions necessary for the attainment of achromatism in refracting telescopes, and he may be well excused if he so long placed implicit reliance on the accuracy of experiments made by so illustrious a philosopher as Newton. His writings sufficiently show that but for this confidence he would have arrived sooner at a discovery for which his mind was fully prepared. It is, besides, impossible to read Dollond's memoir (Phil. T'ranis., 1758, p. 733) without being impressed with the fact that it is a truthful account, not only of the successive steps by which he independently arrived at his discovery, but also of the logical processes by which these steps were successively suggested to his mind.

The triple object-glass, consisting of a combination of two convex lenses of crown glass with a concave flint lens between them, was introduced in 1765 by Peter, son of John Dollond, and many excellent telescopes of this kind were made by him.

The limits of this article do not permit a further detailed historical statement of the various steps by which the powers of the telescope were developed. Indeed, in its practical form the principle ofo the instrument has remaincd unchanged from the time of the Dollonds to tho present day; and the history of its development may be summed up as consisting not in new optical discoveries but in utilizing new appliances for figuring and polishing, improved material for specula and lenses, more refined means of testing, and more perfect and convenient methods of mounting. About the year 1774 William Herschel, then a teacher of music in Bath, began to occupy his leisure hours with the construction of specula, and finally devoted himself entirely to their construction and use. In 1778 he had selected the chef dowere of some 400 specula which he made for the celebrated instrument of 7 -feet focal length with which his early brilliant astronomical discoveries were made. In 1783 he completed his reflector of $18 \frac{7}{10}$-inches aperture and 20 -feet focns, and in 1789 his great reflector of 4 -fest aperture and 40 -feet focal length. The fame of these instruments was rapidly spread by the brilliant discoveries which their maker's genius and perso-

- Ayscough was an aptician in Ludgate Hill, London.
verance accomplished by their aid. The reflecting telescope became the only available tool of the astronomer when great light grasp was requisite, as the difficulty of procuring disks of glass (especially of flint glass) of suitable purity and homogencity limited the dimensions of the achromatic telescope. It was in vain that the French Academy of Sciences offered prizes for perfect disks of optical fint glass. Some of the best chemists and most enterprising glass-manufacturers exerted their utmost efforts without succeeding in producing perfect disks of more than $3 \frac{1}{2}$ inches in diameter. All the larger disks were crossed by strix, or were otherwise deficient in the necessary homogeneity and purity.

Pierre Louis Guinand, a bumble watchmaker living near Chaux de Fond in Neuchatel, Switzerland, was the first who succeeded in making marked progress in the manufacture of optical fint glass. After making preliminary experiments extending over seven years (178490), and nothing daunted by their comparative want of success, he erected a furnace near Les Brenets, and devoted most of his slender earnings (then derived from making the bells, or rather gongs, of repeating watches) to the fulfilment of his ambition. His persistency, courage, and self-denial recall forcibly the story of Palissy. In 1805 he joined the optical establishment of Fraunhofer and Utzschneider and remained with them about nine years. During this period extensive experiments were instituted with remarkable success. It is said that the disks for the Dorpat refractor $29 \cdot 6$ inches aperture, with which the observations of Wilhelm Struve were made) were manufactared during this period, though the complete instrument was not delivered till 1823. Fraunhofer had, however, profited so fully by the suggestions of Guinand, and had probably also so far improved on the original methods, that he afterwards succeeded in producing still larger objectglasses. After Fraunhofer's death in 1826 his successors Merz and Mahler carried out saccessfully the methods handed down to them by Guinand and Fraunhofer, and produced sonie large and excellent telescopes, which are hereafter mentioned. Meanwhile Guinand, having returned to his native country in 1814, resumed there the manufacture of disks of optical glass, discovered a method of removing striz by breaking and reuniting the portions by heat, when the glass was in a plastic state, and eventnally produced perfect disks up to 18 inches in diameter. Most of these he disposed of to Lerebours and Secretan, opticians in Paris, by both of whom some fine object-glasses were made. ${ }^{1}$ Guinand commnnicated his secrets to his sons before his death in 1823. About 1829 Bontemps entered into partnership with one of the sons, and another son carried on his father's manufacture in partnership with his mother. The latter firm was succeeded by Danget of Soleure, whose exhibits of optical glass excited so much attention at the London exhibition of 1851. About 1848 Bontemps joined the firm of Chance Brothers of Birmingbam, and thus carried the secret of Guinand's methods to England. It is not a little remarkable that the only firms in the world by whom large disks of optical glass have been produced trace their success to information derived more or less directly from Guinand. MMI. Feil of Paris, who are direct descendants of Guinapnd, and Messrs Chance Brothers of Birmingham are at the present time the only makers of optical glass in disks of larger- diameter than 20 inches.

Jistroments, de.

We now proceed to give an account of the methods and principles of construction of the varions kinds of telescopes,

[^45]and to describe in detail special typical instruments, which, owing to the work accomplished by their aid or the practical advances exemplified in their ronstruction, appear most worthy of resord or study.

Refracting Telescope.

In its simplest form the telescope consists of a convex objectlens capable of forning an image of a distant object and of an eye. lens, concave or convex, by which the image so formed is magnified. When the axis of the eye-lens coincides with that of the ob-ject-glass, and the focal point of the eye-Iena is coincident with the principal
 focus of the object-lens, parallel raye incident apon the object-glass will emerge from the eye-piece as parallel rays. These, falling in turn on the lens of the human eye, are converged by it and form an image on the retina. ${ }^{3}$ Fig. 1 ahows the course of the raye when the eye-lens is coavex (or positive), fig. 2 when the eyelens is concave (or negative). The former represents Kepler's,
 the latter Lippershey's or the Galilean telescope. The magnifying power obviously depeads on the proportion of the focal length of the object-lens to that of the eye-lens, that is,
magnifying power $=F / e_{\text {, }}$
Where F is the focal length of the object-lens and e that of the eye-lens. Also the diameter of the pencil of parallel rays emerging Megaity from the eye-lens is to the diameter of the object-lens inversely as ing the magnifying power of the teleacope. Heace one of the best power. methods of determining the magnifying power of a telescope is to measure the diameter of the emergent pencil of rays, after the teleacopo has been adjusted to focus upon a star, and to divide the diameter of the object-glass by the diameter of the emergent peacil. If we desire to utilize all the parallel raye which fall upon an objectglass it is necessary that the full peacil of emerging rays should enter the observer's eye. Assuming with Sir William Herschel that the normal pupil of the eye diatende to one-fifth of an inch in diameter when viewing faint objecta, we obtain the rule that the nitimum magnifying power which can be efficiently employed is five times the diameter of the object-glass expressed in inches. The defects of the Galilean and Ecpler telescopee are due to the chromatic and spherical aberration of the simple lenses of which they aro comprosed (see Optics, vol. Xvii. p. 802 sq.). The substitution of a positive or negative eye-piece for the aimple convex or concave eje-lens, and of an achromatic object-glass for the simple object-lens, transforma these early forma into the modern achromatic telescope. The Galilean telescope with a concave eye-lens instead of an eye-picee still survives ss the modern opera-glass, on account of its shorter length. but the object-glass and eye-lens are achromatic combinations.
The principles of an achromatic combinstion of prisms or lenses Achrohave been explained in Lig日t (vol. xiv. pp. 692, 595) snd further matic developed in Optics (vol. xvii. p. 804 sq.). As a lens may be re-objectgarded as built up of a series of thin slices of prisms, divided from glass. each other by planes parallel to the axia of the lens, it will be seen that, if a priam perfectly achromatic for raye of two definite wavelengths, aud approximstely achromatic for all rays, can be constructed by combining two prisms of different kiods of glass, all that is required to produce an object-glass with similar small chromatic errors is to combine a convex lens of crown glass and a concave one of fint glass as in fig. 3, their surfaces being of such curvatures as to form a series of imaginary prisms (such as we have supposed an object-glass to consist on through any one of which all kinds of light lalling on the object-glass parallel to its axis will be refracted very nearly to a common focua F. Accordingly any pro-

[^46]posed object-glass can be tested as regards its optical conditions by "tracing a ray," i.e., calculating the point at which, after refraction through the two lenses, the ray so traced will cut their common axis. For the analytical solution of this problem it
is necessary to assume that the adjacent surfaces of the supt posed infioitely numerons prisms form together some continuous

Fiz. 3.

curved surface, which practically is nearly spherical. But the actual differences between the curves which may be required in certain. conditions for producing a perfect lens differ so slightly from true spherical surfaces that it is impossible by any previously designed mechanical process to predict whether the resulting tigure will be that of a sphere or some other curve very nearly that of a sphere. The mathematician, therefore, who discusses the subject is compelled to adopt spherical curves as the basis of his calcula. tion." On this assumption we may then trace a ray rigidly through any snpposed object-glass as follows. Let $\mathrm{A}, \mathrm{B}, \mathrm{A}^{-}, \mathrm{B}^{\prime}$ be respectively the poiats where the refracted ray produced wonld intersect the optical axis after refraction at the first, second, third, and fourth refracting surfaces respectively; also let a be the first angle of incidence, μ and μ^{\prime} the refractive indexes for the crown and fint lens respectirely for a ray of the wave-length whose course is to be traced, r and s the first and second radii for the crown lens, r^{\prime} and s^{\prime} the first and second radii for the flint lens, $a, \beta, a^{\prime}, \beta^{\prime}, a^{\prime}$, and b^{\prime} auxiliary angles, d the thickness of the crown lens, d^{\prime} the thickness of the fint leos, Δ tho distance between the second and third enrfaces. Then for the intersect after refraction at the first surface

$$
\begin{aligned}
\sin a & =\frac{1}{\mu} \sin \alpha ; \\
(A) & =a-a ; A=\frac{r \cdot \sin a}{\sin (A)}+r ;
\end{aligned}
$$

for the intersect after refraction at the second surface

$$
\begin{aligned}
& \sin b=\frac{A+s-d}{s} \sin (A) \\
& \sin \beta=\mu \cdot \sin b
\end{aligned}
$$

$$
(B)=(A)+\beta-b ; B=\frac{s \sin \beta}{\sin (B)}-s ;
$$

for the intersect after refraction at the third surface

$$
\begin{aligned}
\sin a^{\prime} & =-\left(B-r^{\prime}-\Delta\right)^{\sin (B)} \frac{r^{\prime}}{} \\
\sin a^{\prime} & =\frac{1}{\mu^{\prime}} \sin a^{\prime} ; \\
\left(A^{\prime}\right) & =(B)+a^{\prime}-a^{\prime} ; A^{\prime}=r-r^{\prime} \cdot \frac{\sin a}{\sin \left(A^{\prime}\right)} ;
\end{aligned}
$$

for the intersect after refraction at the fourth surface'

$$
\begin{aligned}
\sin b^{\prime} & =-\left(\Lambda^{\prime}+s^{\prime}-d^{\prime}\right) \sin \frac{\left(\Lambda^{\prime}\right)}{s^{\prime}} ; \\
\sin \beta^{\prime} & =\mu^{\prime} \sin b^{\prime} ; \\
\left(B^{\prime}\right) & =\left(\mathrm{A}^{\prime}\right) \cdot \dot{r} b^{\prime}-\beta^{\prime} ; \mathrm{B}^{\prime}=-s-s^{\prime} \cdot \frac{\sin \beta^{\prime}}{\sin \left(\overline{\left.\mathrm{B}^{\prime}\right)}\right.} .
\end{aligned}
$$

The computation is very much simplified when we consider the angle of incidence to bo very small-i.c., the point of incidence very near the optical axis, viz.,

$$
\begin{aligned}
& \frac{r}{\mathrm{~A}}=\frac{\mu-1}{\mu} ; \frac{\delta}{1 \mathrm{~s}}=\stackrel{\mu s}{\Lambda-l}+\mu-1 \\
& \frac{r^{\prime}}{\mathrm{A}^{\prime}}=\frac{r^{\prime}}{\mu^{\prime}(\mathrm{B}-\Delta)}+\frac{\mu^{\prime}-1}{\mu^{\prime}} ; \overline{\mathrm{B}^{\prime}}=\frac{\mu^{\prime} s^{\prime}}{\mathrm{A}^{\prime}-d^{\prime}}+\mu^{\prime}-1
\end{aligned}
$$

By means of these formulæ we can compute B^{\prime} (the point where a ray, entering the first surface of the object-glass, will intersect the optical axis) for any angle of incidence $=a$, when for a ray of that wave-length the indexes of refraction are known for the glass of which the lenses are composed, if the radii of curvature of the lenses are als. known. The most perfect object-glass would be one in which the value of ' B^{\prime} is the same for two rays of the two selected wave-lengths, through whatever portion of the object-glass they may pasa. This, however, is a condition which cannot be mathematically satisfied with spherical surfaces. It is of conrse possible to find values of the four unknown quantities r, s, r^{\prime}, and s^{\prime} such that four conditions shall be satisfied. The ordinary approxi. mate method is to find such values of the radii that B^{\prime} is the same for rays of two different wave-lengths when the incident rays are near the axis, and for mean rays which enter near the margin of the lens; but of course this solution is indeterminate, and only becomes rigid when two radii are assumed. Thus, for any crown lens of any radii of curvature it is possible to find a flint lens to satisfy these conditions. The rigid solution becomes one of successive approximation to such fous conditions as the computer miay
consider most desirable. Herschel adrocates satisfying the terms depending on the secood power of the aberration, klingel that the refiractions of the rays should be as small as possible; or we may make it a coodition that tha second and third surfaces sball bave the same radius, so that the snrfaces may be cemented together. The fourth condition is of course the desired focal length. But for all practical Iurposes it is sufficient to have placed the reader in a position to test the optical cooditions of any combinations that may be proposed, and to refer him to the works mentioned in the subjoined note ${ }^{1}$; for, in fact Practics the construction of object-glasses on papcr is of far higher interest method as a mathematical exercise than as a practical matter. By a slight of coradeparture from the spherical figure - a departure so minute that putatio there are no mechonical means sufficiently delicate to measure it witll certainty - the optician may fail to realize true spherical surfaces, and thus on the one hand miss the fine definition which his calculation led him to expert, or on the other hand convert an object-glass which with splerical curves wonld have large spherical aberration into one perfectly corrected in this respect. Having, therefore, for particular kinds of glass ascertained a good general form of object-glass, it becomes only neccssary for the optician to perform an approximate calculation of the curva. tures requisite to produce correction of the chromatic abcrration, and to trust to the process of final figuring for correction of the fiual splierical and chromatic aberration, It fortunately happens that in the rigid equations the terms which express the thickness and distance apart of the leases involve only the focal distances of central rays, and have but a small influence on the ratios of the aberrations of the lenses ; and, further, they affect chiefly the focal length of the lens, and have a very small influence on the chromatic aberration. Tlus in the preliminary computation the optician may neglect the thickness of the lenses and employ the simple approximate formulæ given under OpTICs, vol. xvii. p. $804-$

$$
\begin{gathered}
\begin{array}{c}
\delta \mu \\
\mu-1 \\
\cdot \\
f^{1}+ \\
\frac{1}{\mu^{\prime}}-1 \\
\frac{\delta \mu^{\prime}}{\mathbf{F}^{\prime}} \\
=\frac{1}{f^{\prime}}+\frac{1}{f^{\prime \prime}}
\end{array},=0
\end{gathered}
$$

where $\frac{\delta \mu}{\mu-1}$ and $\frac{\delta \mu^{\prime}}{\mu^{\prime}-1}$ are the dispersive powers of tho two kitds of glass for the two rays which he desirca to unite, f and f^{\prime} the corresponding focal lengtlis of the two lenses, and \mathbf{F} the focal ledgth of the combination. The focal lengths of the two lenses which secure the cooditions of achromatism having been thus computed, the radii of curvature may bo computed far either lens hy tho nsual formula (seo Liaht, vol. xiv. p. 593)-

$$
\frac{1}{f}=(\mu-1)\left(\frac{1}{r}-\frac{1}{s}\right)
$$

In the last expression, where r and s correspond to the radii of curvature, the optician has an iofinite range of choice. He will of conrse select such a proportion of r to s as experience or moro clahorate calculation has shown to be favourable. In the form of object-glass recommended hy Sir Johu Herschel, as fulfilling the most favourable conditions for correction of a spherical aberration for parallel as well as nearly parallel rays, the required curvatures for the exterior sufaces of the crown and the flint lens were found to vary very slightly for a considerable range of the ratio of the dispersive powers of the crown aud the flint glass. Assuming μ (the mean index of refraction) to be 1.542 for crown glass and $1 \cdot 585$ for dint glass, Herschel proved that, if the radii io question are taken to be 6.72 for the crown lens and $14 \cdot 20$ for the flint lens (supposing the focal length of the desired combination to be 10), we bave only to compute the radii of the second and third surfacea 1757; D'Alembert, Dica, St Petersburg, 1 T67-71; Clairaut, Nem, de l'Acall. Scien., 1757 ; DAlembert, Opuse, rol. iii.; Lagrange, Misccl. Taurin., iii. 2, p. 152, and Mem. Acad. Berl., 1778 ; Schnidt, Lehrbuch der analytischen Optik; Santini, Trorich degli strumenti Ottici; Klügel, in Gilbert's Ann. d. Fhysit, xxxiv.; 1810, Tp . $205-275$ and $276-291$; Herschel, Phil. Trans. Roy. Soc., 1821, Hp .222 .267 . Philosophy, art, "A.S. (Londoo), vol. i11. Pp. 235-255; Robinson, Mechanical Philosophy, art. "Telescope," vol. iii. pp. 403-514; Ganss, "Ueber die achro-
matischen Doppel-objective," in Lindenau's Zeilschr, iv., 1817 , pp, $445-351$, arj matischen Doppel-Objective," in Lindenau's Zeilschr., iv., $1817, \mathrm{pp}$, S45-351, aEt
Gilbert's Ann. d. Physik, lix. Gilbert's Ann. d. Physik, lix. Pp. 188-195; Ganss, io Louvile's Journna, 1850 , 1. P05 306, and 1862, col. 269-270: A. Steinheil, Ueber Berechnung opitischer Con siructionen: Carl Bteinhenl, Reperiorium, iii., 1s67, per. $430-440$, and München Akad. Sile., 1867, ii. pp. 281 -297. Stein heil (Carl A. and H. A.), Göttingecho. Ȧackichten, 1865, PD. 131-143, 211-214.
by meane of the above aimple formalæ and the measured dispersive and refractive power of the glass of the lenses. (The method of determining μ, \&c., is givea under Optics, vol. zvii. p. 800.) The form generally adopted (see fig. 4) in the best modern object-glasses is extremely simple, viz., an equi-convex crown lens and a flint lens whore first ourface has the asme radius of curvature as the aurfaces
 of the crown lens - this radius depending on the focal length which it is deaired to give to the object-glass. . Since in order to fulfil the conditions of achromatism the focal lengtlis of the two lenses have to be proportional to their diapersive nowera (for the raya which it is desired to unite), and as in the two descriptiona of glass in question the dispersion of flint glass for C to rays between F and G is very nearly twice tbat of crown glass, the posterior surface of the fint lens becomea nearly a plane. The final correction for achromatism is made, if necessary, by departing alightly from a plane in the curvature of the last surface of the fint lens, aud the final correction for apherical aberration in the figuring of the ourfaces. In a lecture delivered at the lioyal Institution on 2d April 1886 Sir Howard Grubb, optician, of Dublin, said:
"A truly spherical curva is tha exception, not the ruls. When I tell you that a sensibla differenca in correction for spherical aberration can be mada by hall an hour's polishing, correspondlag probably to a differenca In tha frst place of dechasis in radu of the curves, you will sea that it ls practically not necessary to eater upon any calculstion for spherical aberration. FVa know a bout what form givea an approximate correction ; wa adhere nearly to that, and the rest la doas by fignring of tha aurface. To 1 lustrste what I mean. 1 would be quite willing to uodertake to alter the curves of the crown or fiat lena of any of my objectives by a very larga quantity, increasing ona and decressing tha other an as to atill satisfy tha coaditiona of achromatism, but introlucing theoretically a large amount of positive or negativa apherical aberration, and yet to niska out of tha altered lena an object-glass perfectly corrected for spharical aberration. . I raby remark that it is cometimes poasibla to maka a better objectlve by deviatiog from the curves whlch giva a true correction for apherical aberration, sad correcting that aberration by figuring, rather than by atrictly adhering to the theoratical curves."

When an object-glass is designed for use as an ordinary telescope it is usual to select for the rays of different colour to be united those near C and those between F and G, aince rays of lower and higher re. frangibility produce a com. paratively faiot impression on the aense of sight. In such a telescope of any considerable aperture the image of a bright atar at focus is surrounded by a halo of hluish or violetcaloured light,-a defect which is nnavoidable in an object-glass composed of a crown and flint lens on account of the irrationality of their apectra (Lioht, vol. xiv. p. 592). There aeems to be no doubt that differerit eyes are differently impressed by rays of different wave-length. 1 Thus two observers will often have different opinions as to the chromatic corrections of the saine object-glass: the observer whose eye is abnormally sensitive to violet light will pronounce the chromatic aberration over. corrected in an object-glass which another will consider perfect in this respect, and vice versa. Probably it is partly owing to this canse that the object-glasses of different makers ahow syatematic differences in their colour correction. An exccedingly aenaitive method of testing this correction devised by Professor Stokes is given nader Optics, vol. zvii. p. 804. Another method, due to Professor Harkness and first carried out by Dr Vogel, is the following. Place behind the eye-piece a direct vision prisin (cf. OpTics, p. 801). The imsge of a siar in the field will then be converted into a narrow spectrum, which, if there were no chromatic aberration, would when focased be represented by a fanat coloured atraight line, uniformly aharp asd narrow. But in on ordinary object-glass only two points in the spectrim can be perfectly focused aimultaneouely; therefore all its other parts are sprcad out, forming a coloured band of variable breadth. If we focus on the brightest part of the apectrum, both 2 8ee Abney and Feeting. Bakertan Lectura, Phil Trans., 1888; also Photooraphic Neurs; May 1886, p. 882.,
its extreme ends become spread out into a more or less trampetahaped form, enabling the observer to noto the range of the apectrum over which precise defipition can be expected. The amount of this extension will depend in some degree on the form of the object-glass, but much more (if the achromatism is fairly well corracted) on the irrationality of the apectra of the glass of which the lenses are composed. If wo then focus, for erample, on the C line, we shall have the band of light contracted at S and at auother point (probably between F and G), widening to a slighty trumpet-shaped form below C, and markedly ao above G. This second point of greatest contraction gives the wave-length of the ray which has the same focus as C. If the telescope has a focuaing scale, we can also measure directly in this way the change of focus for rays of different colours. The chromatic aberration will be best corrected for the raya of minimum focas, and this minimam focus should for an ordinary telescope correapond with the brighteat part of the spectrum, viz., with rays between D and $\mathrm{E}_{6} \quad A$ comparison of the chromatic correction of object-glasses by different makers is given by Dr Vogel (Monatsber. der Berliner Akad., April 1880), obtained in the manner just described. The tele. scopes compared are-

Maker.	Observatory to which lustrument beloags.	Apertura of Object-Glasa,	Focal Leogth.	No. of Apertwes in rocal Length.
Schröder	Potadam	${ }_{0}^{\mathrm{m}} \mathrm{m}$	m. ${ }^{\text {5 }}$	10.1
Grubb....		0.207	$8 \cdot 18$	15.8
Frsunhofer	Berlia	0.243	41931	27.8

Fig. 6, taken from the above-quoted paper, affords most interesting information as to the colour-correction of these three typlcal object-glasses. The curves of the diagram ahow the variation of the focal point for rays of different wave-lengtha in the case of each object-glass. It will be seen that Fraunhofer has united the rays about C with those of wave-length 525 millionths millimetres, Grubb with those about wave-length 494 , and Schröder aboust wave. length 463. The object glasses of Grubb and Schröder are com.

FIg. δ.
posed of modern glass, which is comparatively coloursess, whilst Fraunhofer'e glass is decidedly green in colour. The minimum focus in Franhofer'a teleacope is placed near D (rather at wave-lougth 585), because the absorption of the blae and violet rays of the spectrum by the fint lene readers the brighteat part of the apectrum less blue than in an objective composed of modern glass by Chance or Feil, which is nearly colourless. This circumatance enabled Fraunhofer to apply a very large over-correction for colour, - that is, to unite as perfectly as possible tbe red and central part of the apectrum, and to leave the outstanding violet rays to be in grest part absorbed by the colour of the glass. The colonr-correotions in the object-glasses of Grubb and Schröder are very different in character. In Grubb'a object-glass the minimum focus is for rays of wave-length about 545, that of Schröder's is sbout wave-length 533, which appears to prove that Grubb's eye is more eonalive to
red and Schröder's to blue light, - Alsc Grubb's object-glass unites the red rays very closoly with the brightest part of the spectrum, snd leaves the blue sud violet rays ontstanding. Schroder, on the other band, leaves the red rays outstanding in order to unite the rays between D and F more closely. The conclusion is that to Grubb'a eyo the red rays would be obtrusively prominent in Schröder'a telescope, and that he would pronounce the object-glass under-corrected; whilst Schröder'a eye would find the ontstanding violet rays too promineut in Grubbis telescope, and pronouoce it over-corrected. The absolute amount of light in the seccndary spectrum in viewing the same object depends, cateris paribus, upon the square of the aperture; therefore telescopes of large aperture have to bo made of gleater proportional focal length than those of small aperture, in order to diminish the secondary spectrum. Figs, a, β, γ, δ in the diagram give the form of the epcetrum of a star in Schröder's telescope for various adjustments of the focus; figs. a^{\prime} and γ^{\prime} give the corresponding forms for Fraunhofer's telescope. Fig. a represents the eye-piece focused for the brightest part of the spectrum; fig. β when the red rays and those near Ha aro simultaneously focusxd; fig. γ when the extremo red rays are in focus, the corresponding focus being a little below H γ; fig. δ when focused on $\mathrm{H} \gamma$.

When a telescope is to be constructed for photographic purposes the aim should be to unite, as perfectly as possible, the rays near that portion of the apectrum which act most powerfully on the photcgraphic plate to bo employed. This latter point has been dotermined for the various photographic processes by Captain Abney. ${ }^{3}$ The results are shows graphically in fig. 6 for the processes practi-
 cally employed at present in astronomical photography.

Visual spectrium.

Agt, acid or alkalize developer.
Do., short exposure.
AgBr acid or ferrous citro. oxalate developer:

Do., short exposure.
Orange, AgBr.
Do., ehort exposure
Grect, AgBr .
Do., short exposure.
Grey, AgCl .
Do., short exposura.
$\mathrm{AgI}+\mathrm{AgBr}+\mathrm{Ag}_{6} \mathrm{NO}_{6} ;$ wet plate.
Agl+AgBr, ferrous caxalate devcloper.

Flg. 6.
To unite the rays near G or H the angle of the flint prism mnst be diminished ; that is, the focal length of the flint lens must be lengtboed as compared with that of an object-glass of similar constraction saited for oye observations; and the rays of greatest photographie action can be united more perfectly than the visible rays.

If an object-glass is composed of three lenses of different kinds of glass it is thecretically possible to nnite three instead of two points of the apectrum, besides improving the correcticn for spherical aberration. The most important practical applications of such a system have been-(1) the tiple object-glass of John Dellond; (2) the application of a convex crewn glass in front of an ordinary object-glass io order to alter its chrematic correction from that best suited for eye observations to that best suited for photographic observation. John Dollond'a abject-glass is generally described as a concave flint lens between two crown lenses. If tho crown lenses are of similar glass, there is no gain as to the correction of the secondary enectrum ; it becomcs only possible to correct the epherical aberration more perfectly. "Very few telescopes with tripla object-glasses hsvo been mado since the days of John Dollond. But the great and detrimental obtrusiveness of the secondary spectrum in the large object-glasses of the present day can be diminished in no other way, unless very extreme focal lengths are adopted, or some Dew kinds of glass that can be prodnced in large disks are discovered, in which the irrationality of their spectra is less, and in which' also there is the necessary difference in the

1 Proc. BRoy. Soc., vol. 퍼니. Pp. 164-188.
relation batween refractive index and dispersive powel. The cost of a triple object-glass would of course be at least 50 per cent. greater than that of a doable object-glass; but, on the other hand, the extreme focal length necessury for large object-glssses might be considerably reduced. Thus the cost saved by a less heary mounting and a smaller observatory and domo might conuterbalance to aome extent, if not entirely, the additional cost of the triple objectglass. Dr Schröder has constructed for the present writer an exquisite triple.object-glass (three different kinds of glass) of 3 -inclies aperture and only 18 -inches focal length. Its performance with its highest eye-piece of $\frac{1}{\text { a }}$-inch focus (power 72) is most admirable. It would probably be impossible to construct iarge telescopes approaching such ehort focal length, but there is no donbt that a large triple object-glass of 10 or 12 apertures focrs would have an enormous advantage in colour correction, and proiably in aplerical aberraticn, over a double object-glass of the same aperture and much greater focal length. One peculiarity of sucis a triple object-glass is thet three points in the spectrum can bave the same focus, and therefore the point of minimum focus may for the best chromatic adjustment not quite correspond with the focal point for the brightest part of the spectrum ; but, obviously, the rays of the whole visible spectrum may thus be brought to intersect the axis much more uearly at the same point There will probalily be a far wider adoption of the triple object-glass in the future, especially as the greater intrinsic brilliancy of the image in shortfocus telescopes is a matter of high importance in tho spectroscopic and photographic processes of modern astronomy. On the subject of triple object-glasses the reader is referred to an admirable paper by Professor C. S. Hastings (Amer. Journal of Science and Arts for Decem ${ }^{2}$ er 1879, p. 429), which exhiblts the results to bo got, from combiuations of difforent existing kinds of glass.

The folloviog table exhibits the excess of the focus for any ray over the true focus, the unit being roveod of the focal length, in -I. the actual results of Dr Vogel's observations on three existing object-glasses already quoted, but each reduced to comparison with its tius or minimum focus; IL. the theoretically best possible results from a doublo object-glass consisting of Feil's crown 1218 and Feil'o flint 1237, as computed by Hastings; III. the theoretical results of fcur different triple object-glasses, capable of practical construction, of which details are given by Hastings

	Double Object-Glasses.				Triple Object-Glasses.			
	1.			II.	III.			
	Frann. bofer.	Grabb.	Schrider.	$\begin{aligned} & \text { Hast- } \\ & \text { Iugs } \end{aligned}$	$\begin{gathered} \text { Hastings } \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { Hastings' } \\ 2 \end{array}$	$\begin{gathered} \text { Hasting } \\ 3 \end{gathered}$	$\frac{4}{4}$
A	+ 47		$+106$	[+135 +66		$\pm{ }^{+}$	-22	-88
C	+	$+\quad 41$ +41	+	$+\quad 66$ $+\quad 41$	$+0$	+ 42	-22 +91	-880
D	+ 0	+ 8	+ 23	+ 0	0	+28	+41	+2
E	+ 27	+ 29		+ 13	+25	- 10	-67	- 10
F	+ 64	+ 56	+ 33	+ 73	0	-14	-60	- 4
G	+171	$+226$	$+243$	$+287$	0	+	+21	-8

Prof. Hastings's first condition in these compuitations is that the radius of curvature of none of the surfaces shall exceed one. f fteenth of the focal length. He also neglects the thickness and distance apart of the lenses, since these affect chiefly the focal length, but do not very materially affect the difference of the foci for different rays. The expression for the focal lagth F is then

$$
\phi=\left(\mu^{\prime}-1\right)\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\left(\mu^{\prime \prime}-1\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{4}}\right)+\left(\mu^{\prime \prime \prime}-1\right)\left(\frac{1}{r_{5}}+\frac{1}{r_{6}}\right),
$$

Where $\phi=\frac{1}{\mathbf{F}^{\prime}}, \mu^{\prime}, \mu^{\prime \prime}, \mu^{\prime \prime \prime}$ are the indexes of refraction for the three kinds of glass, and $r_{3} r_{23} \ldots r_{6}$ the radii of curvalure for the six enccessive surfaces. Writing this in the form

$$
\phi=\left(\mu^{\prime}-1\right) A+\left(\mu^{\prime \prime}-1\right) B+\left(\mu^{\prime \prime}-1\right) C
$$

We may call A, B, and C the curvature sums of the first, second, and third lenses respectively. The problem then is to find, for existing specimens of glass, valnes of A, B, and C no ono of which shall exceed 30 when $\phi=1$, and which shall make ϕ independent of the wave-length of the light transmitted. The resulting values of Δ, B , and C for the first combination (marked "Hastings 1 ") are

$$
\stackrel{A}{2} 47026 \quad 7.20827 \quad-8.35472
$$

the curvatures are therefore very moderate and perfectly practicable. The constants for the glass of the first and sccond lenses havo.been. determined by the author with great accuracy (see Amer. Jour., vol. xv. p. 273). The third glass is Fraonhofer's flint 13 [Hastings 4 misprinted y in his tablo, in Amer. Jour., vol. xviii p. 131), for which the canstants are given in Schumacher's Astron Abhandlung fur 182s. If this glass can bo rejroduced in large disks, as no doubt it could be, wo have the meaus of making an object-glass very superior to any in existence and equally available for eje and photographic observation. Such an object-glass could be mode of inach shorter proportional focus thsn is usual or possibls in donblo object-glasses, not only because of the absence of secondary spectrum but also from tha command afforded over the epherical aberration

Oy aix profacce, After satisfying the coaditione of focal length, the ársi power of the spherical aberration, and two conditious of achromatism, wa have still two available arbitrary couditions, which may be that $r_{2}=r_{8}$ aud $r_{4}=r_{5}$

If thess lead to coarabient forms, as seems likely in the case in point, the whole may constitute a cemented lens; thus tha loss of light at the interior surfaces may be eliminsted, and the final perfecting of the epharical aberration be left to the figuring of the surfaces.

In some recent larga double object-glasses, especially those of Alvan Clark, it has beeu usual to leave a apace betwaen the crown and the 日int lens sufficient to afford access, through apartures in the cell, for cleaning the inner crowa and fint surfaces, withoat risk of disturbing the lenses and their centring. ${ }^{1}$ If in fig. 3 we imagias the lenses to be considerably separated and through both lenars trace a ray entering the crown lens parallel to and at some distance from the axis, we shall find that the effect of the separation is to diminish the power of the flint lens, and therefore to change tha character of the chromatic aberration. Thus an objectglass over-corrected for colour can ba improved in this respect by increasing the distance between the lenses. It bas been angerested that a telescope cau be made suitable for both eys cbservation and photograpbic jurposes if means are provided for ilu-easing the distance between the lenses without risk of dersnging the ceatring When the telescops is to be employed for photography. Lut the great change that would be pecessary in such a case cannot bs brought about consistently with preservation of the perfection of the corrections for spherical aberration. ${ }^{3}$

Any account of the achromatic olject-glass woold be incomplete without reference to the labours of the Rev. W. Vernon Harcourt and Prof. Stokes. Experiments in the production of optical glass were instituted by the former in 1834 ; and specimeus, axhihited at the meating of the British Association at Cambridge io 1802, were plsced in the hands of Prof. Stokes, who determined the optical constants of the numerous specimens of glass which Harcourt produced, and indicated from thess results the direction in which fresh experiments should he undertaken. It was discovered that titanic acid exteuds the bloe end of the spectrum more than carreepoads to the dispersive power of the glass, whilat boracic acid has the opposite effect (licport Bril. Assoc., 1871, p. 38). At a meeting of the British Association at Belfast in 1874 a telescope was exhibited whose ohject-glass was constructed from Harcourt' glass by Sir Howard Grubb of Dublin The following is Prof. Stokes"a completa and concise sccount of it.
"The original lotentlon was to construct tha objective of a phosphatle glass contalning \& auitable percentage of titanic acld, achromstized by a glass of terborate of lead. (The percentage of titanic scid was so chosen that there shonld be no frationality of dispersion between the titanle glass and the terborate.) As the curvature of the coavez lens would be rather severe if tas whole coovex power wera thrown lato a slagle leus, it was intended to nse two lenses of thls glass, one In frunt and one behad, with the concave torborate of lead placed betweer them. It wes fonnd theit, provided not mara than abont one-third of the convex power wera thrown behind, tha adiaceot arfaces might be msde to fit, consisteotly with the condition of destroying the apherical as well as the chromstic aborratloa. Thie would reader it possible to cement the glasseg, and thereby protect the terborate, which was rather lishle to tarnish. At the tima of Mr Harcourt'e death two disks of the titanic glass had been prepared which it was hoped would bo good eaough for employmeot, as aleo two disks of terbarate. These were placed In Mr Grubb's badds. On polishlog, one of the titanle disks wes foued to be too badly etriated to be employed ; the other was pretty falr. As it would have required rather severe curvatare of the first surface sud su uusual convexity of the last to throw the whole convex power ioto the first lona, using a inere aball of glass to protect the terborate, Profeasor Stokes thought It more prudent to glass to protect the terborate, frofeasor stokes thought it more prudent to glass lens, though at the eacrifice of an absolute destractlon of becondary disglass lens, though at the sscritice of an absobute destraction of eccondary disjnst baraly perceptible. Of the terborato diske, the less atriated bsppened to be allghtly muddy, from some accident in the preparation; bot, as this elgulfed leas than the atrie, Mr Gruhb deemed It better to employ this dak. The tele-
 scope exhibited to the meetlog was of about 2 - -nchea apert urs and 23 -Inches focal leogth, snd was provided with an object-glass of the ordinary klud, by Which the other could be replaced, for contrasting the performance. When the teleacope was tarned on to \& chimney seea against the sky or other anits ble oblect, and half the oblect.glass covered by a screen Fith ita edga parallel to the edgas of the object, In the case of the ordinsry nbjective vivid green and porple were secn abuut tha two edges, wheresa with the Earconrt objective there was barely any perceptible colour, It was not of courae to be expected that the perforinence of the telescope aboold be good, on account of the diff culty of preparing glass free from strix, but it was quite sumclent to allow the possibility of destroyling the eecondary colour."
An experiment to determins whether the substitution of titania acid for a portion of the silica in ordinary crown glass would have as effect similar to that which had been ubserved in the phosphatic series of glasses (viz, whilst somewhat raising the dispersive power, to prodace a separation of the colours at the blue as compared with the red and of the spectrum, to en extent ordinarily belonging only to glass of much highet dispersive power) was carricd oat by Mr Hopkinson at the glass works of Messrs Chaace of Birmingbam; but it proved unfortuastely in this combination that, a hilst the

2 Thls arrangement siso helps to equalize the temperatures of the lepses with each other and with the outer elr
2 Qulte recently Pror. Stakea has engrested thist to adapt a telescope to elther photagraplic or teleacoplc purposes at plessure the crown lena should In reverslble as well as changeeble se to distance with reapect to the filnt In thla way doahtless the chromatic and apherical ciberration could be pro-
dispersive power weq increasea, as in the phosphatic glasses, the bloo end of the epectruxa, as compared with the red ead, was not spread out more than in ordinary glass of like dispersive power (leport Brit. Assoc., 1875 , p. 26). It is to be hoped, howerer, that makers of optical glass will not relas their efforts till astronomers ehall be able to obtain refracting telescopes in which the eecondary spectrum is mearly if not quite eliminated. Abbs's dew optical glass ${ }^{8}$ laarls ons to beliave tbat this hope will soon be realized.

The addition of a conves crown lens in frout of the ordinary object-glass, to diminish the colour-correction and change the minimum focus from that for rays betweea D and E to that for rays near G, was first made by Rutherford of New York. In this way he alterad bis telescope from one suited for eja ohservations to 000 in the best chromntic adjustmeot for photographic work The chromatic effect is the same as increasing the convexity of the crown lens, and by proper proportioning of the two radii of corvaturs it hecomes possible elso to couserve, and eren to further perfect, the destruction of epherical aberration The great objectglass of 36 -inches alverture, now (1887) uader construction for tho Lick ohservatory by Messrs Clarko of Boston (Mass.) is to be pres vided with an additional crown lens for this purposo."
The problcm of making a perfectly achromatio object-plass has Blairy been solved by Dr Blair (Edin. Trans, vol iií p. $5 S$) by employ-achroing fluid medis, and he actually constructed an object-gluss con-matic sisting of a plaoo-conver lens and a meniscus lens, both of crora faid ob glass with thoir convoxities turued towards each other, the space jectbatwsen the lenses being filled with hjdrochloric acid. Unfortu. glasses. nately aach combinations are practically useless, not only on accornt of uneroidable leekage, bot also because currente ara eet up in fuid leases by chenges of temperatare, which correspood in effect with want of homogeneity in the flint lews in an ordinary object-glass.

Eyo-Picces.

The îrst aubstitute for the eingle leas of the Galilean and Kepler Eye telescoper was the componad eye-piece iavented hy Rheita. Behind pieces. the convex ese-lens of the Kepler telescope ha applied a second short telescope, zotesisting of two convex lenses, their distance being the sam of ther focal lengths. The principal effect was to erect the inverted image, and thus to constitute the simplest form of the day eje-piece, or common terrestrial telescope. The neat improve. ment was the Hnygenian eye-piece, which consists of two conver lenser (ses fig. 7),-the "field-lens," thet next the object-glass, having its focal leggth to that of the "eje-lers"es 3 to 1 ; the distance between them is twice the focal length of the latter, the combination being so placed as to form the visibla imogo heli-way between the two. This eye-piece is achromatic in :he sense in Which an eye-piece is said to bo so: a colcurless imege seen through it does not appear bordered with coloured sringes, as is the case with a single lsns or Rheita'a eye-piece. This is not becanse, as in the achromatic object-glass, all the ceutral coloured rays aro collceted in one focus, which in the case of an eye-piece is a matter of comparatively small consequence, bot becanse it possesses the same magnifying porsar for rays of all colours on an object of sensible angular diameter, so as not to form overlapping coloured pictures of it on tho retina. This condition it is which furnishes the "equation of achromaticity" of an eje-piace. An expression for the maglifying power of a teleacope provided with a ccrtain byo-piece is formed in general terms which involvo the focal leogth of its lences, their distonces from each othar, and their refractivo indexes; and, this being mede to vary by the variation of the last-mentioned elementa only, the variation is equated to zcro. The algcbraic working, which eveo for a two-glass eya-piece is a little complex, is given in E. Lloyd's Treatise on Light and Vision (London, 1831), and in an elaborate paper by Littrow in the fourth volume of the Trans. Roy. Astron. Soc. (p. 590). From the former we extract the following proposition: An eye-gless of two lenses of the same medinm is achrometic when the interval hetween the lenses is an arithmetical mesn between their focal length, - a condition which the Muygenion construction evidently satisfies, The rationale of this is obvions, independently of algebraio anslysis, by inspection of the course of the raye io ing. 7, where AC, BD are the lensce, PQ the image Which would bs formsd by the object-glass alone, $p q$ thst really formed by tha action of the feld-glass. Tho object-glass boing aupposed achromatic, a ray of white light, as OC, going to form the image of a point Q, will be refrac ad by the feld-gless at O tomards the corresponding point q of the new imace, but not as a
\% Ses Nature, vol zxxiv. p. 622, 20th October 1856.

- For recent literatore on the secondary s pectrum in doable end triple oljectglasses, \&c., ses W. Schunldt, Die Brechung des Lichles in Giäarru, irsbcionien E achromat. und npanat. Objoctitlinse, Lelpsic, 1874: W. Harkness, "On tho Coluur Correction of Achromatlc Telescopes," in Δ mer. Jour. of Soiencs and Arts, September 1879, pp. 189.100 ; C. \& Hastinpe, "Triplo Cbjectives with Complets Colour Correotion." \&b. "Dacember 1879, Pp, $422-486$; Porty, Uaber dis Grensen de- - behzbares Schöpfung nach den jetzigen Lelsfungen der Mikrowkope und Fernrohre, Berlin, 1874: F. O. Vogel, Deber eine einfacho Blethode suf Busnmmung der Brennpurikte und der Abweichungshetse eines Fornrohr-Objectite fïr Strahten von terichledener Brechbarkett; C. A. Youog, "The Coloar-forrection of Certain Achromatic Object-Glasses, " in Amer. Jou!' Sch, June 1950, pp. (54450 ; slea a review of thess pspers hy A. Satarlk, i ierteljahrechrfis der astnotion nifichen Geselicchaft, 1882, pp. IS-99.
single white ray; it will be seperated jnto conoured rays, following different courses. The red rey Cr being less refrected will fall on * point r of the eje-glass more remote from its centre B than

Fio. 7.-Huggentan eye-piece.
the violet rey $C v$, and (the prismaticity of the lens increasing from the centre outwerds) will in proportion by the second transmission be more bent aside tlan the violet, and thns a compensstion is effected, and the two rays finslly emerge parallel, their exact parallelism boing secured by the proportion of their focal lengths. The Huygenian eje-piece possesses also other important adrantages. The total deflexion of the light, to prodace the magnifying power, is equally divided between the two glasses, - the most favourable condition for diminishing that distortion which is always perceived in looking obliquely through s lens; and the field of view is greatly enlarged in proportion to the size of the eye-lens, being such as would require, to prodnce the same magnifying porver, 8 single lens of the much greater semi-diameter $b d$, found by drawing $Q b$ parallel to $q B$ and erecting $b d$. The inconvenience of this oye-piece (whence it is improperly termed a negative eye-piece) is that the image, being formed between its lenses, undergoes a certsin amount of distortion by the field-glass, owing to which equal linear portions of it do not correspond precisely to equal angular measures of the distant object. Equal parts of a micrometer applied at the place of the image, so as to be seen at the same time through the eye-lens, will not correspond to precisely equal angular interCommor vals. The common astronomical or positive eye-piece, described or posi- by Ramsden (Phil. Trans., 1783), consists of two plano-convex tive eye lenses of eqnal lengths, having their convexities turned towards piece. each other and eeparated by two-thirds of the focal length of either, as in fig. 8. This combination is placed behind the image PQ

Yormed by the object-glass, st a distance $A P$ equal to one-fourth of the focal length of A. The first or field-glass, therefore, forms an enlarged image $\dot{p} q$, at a distance one-third of that focal length which places it in the focus of the eye-glass. This eye-piece is not properly achromatic, but its spherical sberration is much less than in any of the other constructions, and it has the advantage of giving a flat field of view, requiring no change of focus to ace the
turned towards each other. (3) For an erecting eje-piece of four lenses the first and fourth (reckoned from the object-glass towards the eye) shonld be crossed lenses of focal length 3 , the radii of their eurfaces 1:6, with their convex surfaces towards each.other. The second lens should be a meniscus of focal length 4, the radii of its surfaces $25: 11$, and its convexity towards the eye. The third lens ehould-be plano-convex, of focal length 4, its plane side towards the eje. The distance of the centre of the second lens from that of the first $=4$; that of the third from the second $=6$; snd that of the fourth from the third $=5 \cdot 13$. If a bright object appears jellicw or a dark one blae at the edge farthest from the centre of the felf, the third and fourth lenses most be together pushed inwards towirds the second lens.

In many telescopes constructed specially for star observation only the object-glass is over-corrected for colour and under-corected for spherical sberration ; both these errors may sometimes be nearly eliminated by a properly constructed Hoygenian eye-piece (see Miososcope, vol. xvi. pp. 266-267). But, rinen a telescope is to be used over a considerable range of figld fur micrometric measurements, it is obvions that the spherical sberretion should bo corrected by the object-glass slone. It is possible, howevrr, to improve the appearance of objects somewhet in a telescope in which the chromatic sberration is over-corrscted by employing an evo-pieco somembat nnder-corrected for colour, and vice versa; but the ouly sstisfactory plan is to have both object-glass and eye-piese as free as possible from both chromatic and spherical sberration.' In order to secure this, or a very large field of view, many forms of eye-piece Lave been devised. Achrumstic combinations have been enbetituted in some cases for the field-lens, in others for the eye-lens, in others for both simple lenses of the Ramsden eye-piece. The best of these combinations which the present writer has teated and Which practically fulfil all requireraents of the astronomer are due to Dr Hugo Schröder, to whom k.e is indebted for izformation as H. Schro to their construction. Fig. 10 represents Schröder's high power der's to ther construction. His

Fio. 10.-Schrörer's high power eye-pleca.
eye-piece, which is admirably suited for micrometer work, not only because there are only two reflecting surfaces in the triple lens of which it is composed, but also because there is a comparatively large distance between the lens and the micrometer web when the latter is in focus. This coudition is essentisl when it is desired to get the best bright illamination of the wires in a dark field (see Micrometer, vol. svi. p. 248). The triple lens is composed of s dense fluid plano-convez lens between two lenses of soft crown glass. The radii of curvature aro-

surfaces	$T_{1}=80.026$ convex	,
	$r_{2}=36.836$ convex $r_{3}=36.536$ concave	
cemented surfaces	$\mathrm{r}_{3}=\infty$ plane	,
cemented	$\mathrm{r}_{5}=\infty$ plane	lass.
	$\mathrm{r}_{6}=50.026$ convex	,

The corresponding foci for zones of different distance from the axis are-axis $=100.00$; zones $12 \cdot 5$ from axis, $99 \cdot 81$; 25 from axis, 99.32 ; 40 from axis, 93.35 ; 45 from 8xis, $100 \cdot 15 ; 50$ from axis, $101 \cdot 85$. This the aperture of the lens may be half its focal length without any sensible defect. Fig. 11 represents 0 . Schro

Fio. 9.-Erecting or terrestrisl eye-puece.

centre and borders of the field with equal distinctness. The erecting or terrestrial eye-piece was invented by Dollond. The principle of its construction will be understood from fig. 9. It is convenient for telescopes of ordinary use, becanse it presents a non-inverted image to the eje, although st some sacrifice of light and definition.

For an acconnt of the theory of the chromatic and spherical aberration of eye-pieces by Sir George B. Airy, see Trans. Phil. Soc. Camb., vol. ii p. 243 ind vol iii p. 61. The sathor's conclosions are the following. (1) To secure the greatest distinctness with an eye-piece of the Huygenian type, the field-lens should be s meniscus of focal length 3 , the radil of its surfaces $11: 4$, and its convexity towards the object-glass; the eye-lens should be a double convex of focal length 1 , the radii of its surfaces $1: 6$, and its more conver side towards the field-lens. The distance of the lenses shoold be 2. There should be a perforated diaphragm at distance 1 from the eye-lens. If a bright object appears yellow or a dark one blue ot the edge farthest from the centre of the field, the lenses must be brought a little nearer together. (2) For an eyepiece of Ramsden's type the two lenses shonld be plano-convex, of focal longth 8, placed st distance 2, their convex surfaces being

Dr O. Schröder's aplanatic efe-piece. The glass emplofed is der's Danget's crown (Cb$)_{1}$) snd liint $\left(\mathrm{Fb}_{1}\right)$. The refiactive power of crown splanatts is 1.5126 for $D_{\text {, }}$ that of flint 1.6405 ; the dispersive power of both eyekinds of glass is $9: 588$.

The radii of currature for a lens of 1 inch (27.07 mm .) focal length
are-

$F_{1}=$ focal point of combinstion $=-9.05 \mathrm{~mm}$. from vertex of π_{1};
$\mathrm{F}_{2}=$ position of observer's eje $=-14 \cdot 49 \mathrm{~mm}$. from vertex of $\boldsymbol{r}_{\mathrm{s}}$.
The thicknesses and distances aparr of the surfaces are-

1 st vertex to $2 \mathrm{~d}=0.70 \mathrm{~mm}$. fint glass,

The distance between the plane eurfaces is $22 \cdot 57 \mathrm{~mm}$. This form of eyo-piece has been employed by Schönfeld in his southern "Durchmusterung," and Dr Schröder has made one for the present writer which gives a perfect field 44° in diameter on the telescope of 18 inches focal length and 34 inches aperture already referred to.

Refiecting Telescope.

The following are the various forms of reflecting telescopes. The Gregorian telescope is represented in fig. 12. AA and BB are

concave mirrors having a common axis and their concaritiea facing each otber. The focue of A for parallel rays is at F, that of B for parallel raye at f-between B and F . Parallel rays falling on AA converge ot F, where an image is formed; the raye are then reflected from B and converge at P, where a second and more enlarged tmage is formed. Gregory himself showed that, if the large mirror were a segment of a paraboloid of revolution whose focus is F, and the small mirror an ellipsoid of revolution whose foci are F end P respectiruly, the resulting inage will be plane and undistorted. The irage formed at P is viewed through the eye-piece at E, which may be of the Huygenian or Rameden type. The focal adjustment is accomplished by the screw S , which acts on a slide carrying an arm to which the mirror B is attached. The practical difficulty of cbastructing Gregorian telescopes of good defining quality is very considerable, because if spherical mirrors are employed their aberrations tend to increase each other, and it is extremely difficult to give a true elliptio figure to the necessarily deep concarity of the emall speculam. Short appears to have systematically conquered this difficulty, and his Gregorian telescopes attained great celebrity. The use of the Gregorian form is, liowever, practically abandoned in the present day. The magnifying power of the relescope is $=\frac{\mathrm{F}+f}{e+x}$, where F and f are respectively the focsl lengthe of the large and the small mirror, o the focal length of the eye-piece, and x the distancel between the principal fooi of the two mirrore ($=$ F f in the diagram) when the instrument is in edjustment for viewing distant objects. The images are erect.
The Cassegrain telescope differs from the Gregorian only in the substitution of a conver hyperbolic mirror for a concave elliptical mirror as the small speculum. This form has two distinct advantages: (1) if spherical mirrors are employed their aberrations have a teidency to correct each othor; (2) the instrument is shorter than the Gregorian, ceteris paribus, by twice the focal length of the small mirror. Fewer telescopee have been made of this than perhaps of any other form of reflector; but in comparatively recent yeara the Cassegrain has acquired importance from the fact of its adoption for the great Melbourne teleecope. The magnifying power is compated by the same formula as in the case of the Gregorian teleecope.

The Newtonian telescope is represented in fig. 13. AA is a concave mirror whobe ezis is aca. Parallel rays falling on AA converge on the plane mirror $B B$, and are thence reflected at right angles to the axis, forming an
image in the focus of the eye-piece E.
The burface
 The magnifying power is $=F / \rho_{\text {. }}$. This form is omployed in the construction of moot modern reflecting telescopes. A glass prism of total reflexion is sometimes substituted for the plane mirror.

The Herschelian or front view reflector is represented in fig. 14. $\Lambda \Delta$ is a concave parabolic mirror, whose aris ac is inclined to the arie of the tube ab 50 that the image of an object in the focus of
the mirror may be viewed by an eye-piece at E, the angle bac being equal to the angle caE. This form was edopted by the elder

Herschel to avold the loss of light from reflexion in the small mirror of the Newtonian tclescope. It has sereral disadvantages. (1) The upper part of the obserrer's head must necessarily obstruct scme of the rays which would otherwise fall on the large mirror; but when a telescope of very large aperture is employed the loss of light thus occasioned is comparatively insignificant. Moreover, disturbance of the air in front of the telescope is created by heat from the observer's head and body, and this is fatal to the best definition. To avoid the latter drawback Sir John Herschel (Ency. Brit., 8th ed, art. "Telescope," vol. xxi. p. 128) suggested the employment of a emall right-angled prism of total reflexion placed close to the eyelens of the eye-piece, to permit the observer to view the inage by looking in a direction at right angles to the eye-piece, and therefore at right angles to tho tube. (2) In consequence of the tilting of the mirror aberration is created, and this increases rapidly with increasec tilting. The construction is thus limited to telescopes in which the proportion of aperture to focal length is not too great. In Herschel's 40 -feet tclescope the proportion was 1 to 10 , and the construction would hardly be applicable to modern telescopes, in which the proportion often rises to 1 to 5 or 6 . Yet, when exceed: ingly faint cbjects have to be observed, this form of telescope has great advantages. Herschel found that some objects which he discovered with such an instrument could not cven be seen when the same telescope was used in the Newtonian form. The front view telescope, however, has hardly beed at all employed except by the Hersclicls. But at the same time none but the Herschels bave swept the whole sky for the discovery of faint nebulx ; and probably no other astronomers have worked for 60 many hours on end for so many nights as they did, and they emphasize. the easy position of the observer in using this form of instrument.

Constraction of Object-Oln יess.

The first point is the selection of glass disks of suitable quality. Testro The-requisites are (1) general transparency and freedom from object mechanical defects, such es specks, air-bubbles, \&c.; (2) homogeneity; glassem (3) freedom from internal strain. The disk being roughly polished on the sides, faulte of the first class are easily detected by inspection. In order to secure the maximure of light grasp for aperture it is desirable that the glass should be as coloarless as possible; if the roughly polished disk is lais upon white paper the amount of discoloration can be readily estimated by comparing the colour of the sheet as seen directly with that eeen through the glass. Fraunhofer's glase was far from colourless, Dollond's more coloured still; and we have shown that, for purposes when extreme light grasp is not an object, the less transparency of such glass to the blue raye of the spectrum affords adrantages for a better correction of the chromatic aberration of rays in the brighter part of the apectrum. The emount of light excluded by specks, air-bubbles, or even ecratches is quite insignificant; but these blemishes create diffraction phenomena and ecattered light in the field, which are very injurious to the performance of the instrument, especially when faint objects are searched for in the neighbourhood of brighter ones. It is essential for a telescope lens that the glass should be perfectly homogeneous ; that is, the refractive index must be identical for every part of the disk. This can be teated with extreme delicacy by grinding the disk into the form of a lens and testing it by Töppler'e method, ${ }^{1}$ deccribed under Optice (vol. xvii. p. 805). If the disk is intended for a concave lens and is already so thin that It becomes undesirable to make it thinner at the edges by convert ing it, in the first place, into a conver lens, it may be tested by placing one of its surfaces in contact with and at right anglee to the axis of a crown lens of known perfection, and testing tins com. bination by Toppler's method. If a glass disk is not properly annealed-that is, if it has been too quickly cooled, so that the outer shell has hardened before the inner portion-the fioally solidified mass must be in a state of tension, like that of "Ropert's drops." Unless cooled very gradually an optical diak would fly to pieces, but a very mach smaller defect in the annealing process would be fatal for refined optical parposes. Changee of temperature would produce changee of curvature, and the lens would also change it Form when successive portions of the strained outer ghell were removed in the process of grinding and potishing. Fortunatoly
defects in aunealing are very easily detected by means of the polari. scope. The polished disk is placed in light reflected from a polarizing surface, such as a sheet of glass blackened at the back, and examined with a Nicol's prism as an analyser. If the bright riugs and black cross (see LiGHT, vol. xiv. p. 613) are visible the disk is unfit for use ; but, since few diska are so perfectly annealed as not to show a trace of the black cross, euch as show it in no marked degree may be safely employcd. Perfect annealing has now become the most difficult portion of the art of making optical glass, and arge disks (nore particularly of crown glass) are rejected by the ptician more frequently for defects in annealing than for any other ause.

The disks having been selected, their refractive and dispersive powers determined, and the radii of curvature computed, it remains to convert the disks into lenses with surfaces of the required curvature, and to complete the object-glass. The work consists of five distinct operations-(I) rough grinding by a revolving tool supplied with sand and water; (2) fine grinding with emery; (3) polishing with oxide of iron, rouge, or putty powder, the grinder being faced with fine cloth, eatio, paper, or-best of all-pitch; (4) centring ; (5) figuring and testing. These processes are essentially of a technical character, and can only be familiar to those who practise the grt. The details would bo out of place here, but are well described in a lecture delivered by Sir Howard Grubb at the Royal Institetion, 6th April 1886, and printed iu Nature, 27th May 1886.

Construction of Specula.

The composition of metallic specula in the present day differs of
lity alloys have been suggested, solee incliding silver, nickel, zinc, or arsenic; but that which has practically been found best is an alloy of four equivalents of copper to one of tin, or the following proportions by weight:-copper 252, tin 117.8 . Such speculum metal is exceedingly hard and brittle, takes a fine white polish, and when protected from damp has little liability to tarnish. The process of casting and annealing, in the case of the epecula of the great Melbourno telescope, was admirably descrihed by Dr Robinson in Phil. Trans, 1869 , vol. clix. p. 135. Shaping, polishing, and figuring of specula are accomplished by methods and tools preciscly similar to those employed in the construction of lenses. The reflecting surface is first ground to a spherical form, the parabolic figure being given in the final procesa by regulating the size of the pitch squares and the etroke of tho polishing machine. The process of testing is identical with that of an object-glass.
Soon after Liebig's discovery of a process for depositing a film of pure metallic silver upon glass from a salt of silver in solution, Stcinheil (Gaz. Univ. d'Augsburg, 24th March 1856), and later, independently, Foucault (Comptes Rendus, vol. xliv., February 1857), proposed to employ glass for the specula of telescopes, the reflect. ing surface of the glass speculum to be covered with silver by Liebig's process. These cilver-on-glass specula are now the rivals of the achromatic telescope, and it is not probable that many teleecopes with metal specula will be made in the future. The best speculum metal and the greatest care are no guarantee of freedom from tarnish, and, if such a wirror is much exposed, as it must be in the hands of an active observer, frequent repolishing will be necessary. This involves refiguring, which is the most delicate and costly process of all. Every time, thercfore, that a epeculum is repolished, the future quality of the instrument is at stake; its focal length will probably be altered, and thus the valne of the constants of the micrometer also have to be redetermined. Partly for these reasons the reflecting telescope with metallic mirror has never been a favourito with the professional astronomer, and has found little employment out of England. In England, in the hands of the Herschels, Rosse, Lassell, and De la Rue it has done splendid service, but in all these cases the astronomer and the instrument-maker were one. The silver-on-glass mirror has the enormous edvantage that it can be resilvered with little tronble, at amall expense, and without danger of changing the figure. Its chief work has been done in the hands of Draper and Common, who were the engineors, if not the actual constructors, of their own instruments. Glass is lighter, stiffer, less costly, and easier to work then speculun metal. The silvered mirrons have also some advantage in light grasp over those of epecnlure metal, though, a perture for aperture, the former are inferior to the modern object-glass. Comparisons of light grasp derived from small. fresi, carefully silvered surfaces are sometimes given which lead to illusory results, and from such experiments Foucaul claimed superiority for the silvered epeculum over the object-glass. But the prescat writer has found from experience and careful comparison that a bilvered mirror of 12 -inches aperture mounted as a Newtonian telescope (with a silvered plane for the small mirror), when the surfaces are in fair average condition, is equal in light grasp to a furst-rate refractor of 10 -inches apesture, or area for arca as 2:3. This ratio will become more eyual for larger sizes on account of the additional Hickness ut larger object-glasses and the consequeat additional ab-
morption of light in transuission.

Mounting of T'clescopes.

The proper mounting of a telescope is hardly of less importance Mount than ita optical perfection. Freedom from tremor, ease and deli-ing of cacy of movement, facility of directing the ingtrument to any teledesired point in the heavens, are the primary qualifications. Our scopes limits forbid an historical account of the earlier endeavonrs to fulfil these ends by means of motions in altitude and azimuth, nor can we do more than refcr to mountiags such as those employed by the Ilerschels, or those designed by Lord Rosse to overcome the engineering difficulties of mounting his huge telescope of 6 feet aperture. Both are abundantly illustrated in most popular works on astronomy, and it seems sufficicnt to refer the reader to the original degcriptions. ${ }^{1}$
We pass, therefore, directly to the equatorial telescope, the instrument par cxcellence of the modern extra-meridian astronomer, and relegate to the article Transir Circle ($q . v$.) a description of those mountings io which the telescope is simply a refined eubstitute for the sights or pinules of the old astronomers. The equatorial in its simplest form consista of an axis parallel to the earth's axis, called the "polar axis"; a second axis, at right angles to this, called the "declination axis"; and a telescope fixed at right angles to the latter. In fig. 15 AA is the nolar axis; the telescopo is attached to the end of the declination axis; the latter rotatce in bearings attached v to the polar axiz, and concealed by the telescope itself. The telescope is counter. poised by a weight attached to the oppasite end of the The lower pivot of the polar axis rests on a cup bearing at
 C , the upper pivot upon a strong metal casting MIM, attached to a 日toae pier S. A vertical plane passing through AA is therefore in the meridian, and, when the declination axis is horizontal, the telescope mores in the plane of the meridian by rotation on the declination axis only. Thus, if a graduated circle BB is attached to the declination axis, toget her with the necessary microscopes or verniers V,V for reading it (seo Transit Circle), so arranged that when the telescope is turned on the declination axis till it is parallel to $A A$ the vemier reads 0° or 90°, and when at right aagles to AA 90° or 0°, then we cen employ the readings of this circle to measure the polar distance or declination of sny star seen in the telcecope, and these readings will also be true (apart from the effects of atmospheric refraction) if we rotate the instrument through any angle on the axis AA. Thus one important attribute of an equatorially mounted telescope is that, if it is directed to any fixed star, it will follow the diurnal motion of that star from rising to setting by rotation of the polar axis only. If we further attach to the polar axis a graduated circle. DD, called the "hour circle", of which the microscone or vernier R reads 0^{h} when the declination axis is horizontal, WB can obvionsly read off the hour angle from the meridian of any star to which the telescope may be directed at the instant of observation. If the local sidereal time of the observation is kuown, the right ascension of the star becomes known by adding the observed hour angle to the sidereal time if the star is yest of the meridian, or subtracting it if east of the meridian. Sirce the equatorial is unsuitable for such observations when great tccuracy is required (see Transit Circle), the declination and hour circles of an equatorial are employed not for determination of the right ascensions and declinations of celestial objects, but for directing the telescope with ease aod certanty to any object situated in a known position, and which may or may not he visihle to the naaided eye, or to define approximately the position of an unknown object. Further, by cansing the hour circle, and with it the polar axia, to rotate by clockwork or some other mechanical contrivance at the same angular velocity as the earth on its axis. but in the opposite direction, the telescopo will antomatically follow a star from rising to setting.
Eyuatorial mountings may te divided into five types. (A) The pivots or bearings of the polar axis are placed at its extremities. The declination axis rests on bearings attached to opposite sides of the polar axis. The telescope is attached to one end of the declina* tion axis, and counterpoised by a weight at the other end, as in fig. 15. (B) The polar axis is supported as in type A; the telescope is placed between the bearings of the decliation axis and is mounted symmatrically with respent to the polar axis; zo counterpoise is therefore requisite. (C) The declination axis is mounted on the prolongation of tlee npper pivot of the polar axis; the telescope is placed at one end of the declination axis and counterpoised by a weight at the other and. (D) The declination axis

- Herschel, Phil. Trans, 1i95, vol. Lxxav. p. \$47; Rosse, Phil. Trans., 1840,
is mounted on a forked piece or other similar contrivance attached to a prolongation of the apper pirot of the polar axis; the telescope is mounted between the pivots of the declinstion nxis. (E) The eye-piece of the telescope is placed in the upper pivot of the polar axis; s portion or the whole of the axis of the teleacope tnbe coincides with the polar axis. Mountings of types A snd B -that is, with a long polar axis supported at both ends-are often salled the "English monating," sad types C and D , in which the leclination exis is placed on the extension of the upper pivot of the polsr axis, are called the "Germsn mountiug," from the first employment of type C by Frannhofer. A description of some of the best examples of each type will illustrate their relative adventages or peculiarities.
Fig. 15 may be taken as a practical exsmple of the earlier equs. torials as made by Troughton in England and afterwards by Gambey for various Continental observatories. In the Phil. Trans. for 1824 (part 3, pp. 1-412) will be foand s description by Sir John Herschel snd Sir James South of the equatorial telescope which they employed in their measurements of double stars. The polar axis was similar in shape to that of fig. 15 sad was composed of sheets of tinned iron. In Smyth's celebrated Bedford tolescope the polsr axis was of mahogany. Probably the best example of this ty'pe of mounting applicd to a refractor is that made by the elder Cooke of York for Mr Fletcher of Tarmbank; the polar axis is of cast iron sad the monating very satisfactory and convenient, but unfortunately no detailed description hss been published. In recent years no noteworthy refractors have been mounted on this plan; but type A has been chosen by Grubb for the great Melbourne reflector, with msrked ingenuity of
adaptation to the yeculiar requirements of the case. Tig. 16 shows the whole instrument on a small scale, sad fig. 17 represents part of it on a larger scale, the upper part of the tube and polar axis being omitted. The figures show the telescope directed to the pole, the hour circle being set 6^{b} from the meridian. The polar axis consists of a bollow
 cone C (fig. 17) of csst iron Fio. 16.-Melbourne refiector. bolted to s hollow csst-1ron cube H , to the lower side of which thetsched s short steel axis carrying the driving sector EF sud the hour circle R, snd terminating in the lower pivot of the polar exis. This pivot a is terminsted by a piece of chilled cast iron polished flat on its lower face, which face rerolves in contact with a piece of bell metal, fist on its apper snd partly spherical on its lower side, bearing in s correspondingly shaped snaulus, formed to receive it in the cast-iron block which is sttached to the pier. This srrangement enables the bell-metal coshion to take its own position when the direction of the polar sxis is slightly clanged in process of sdjustment. The pressure of the pirot on
its besrings, in the direction st right sngles to the polsr axis, is relieved by the sector A, which is forcod up by the acrew d acting through laminm of steel springs. The end pressure of a npon its

Fio. 17.-Section of Melbourne reflector.
bearings is relieved by s weight. The friction of the upper pivot is relieved by a sector pressed up against it by the sction of two weighta In this wsy, although the moving part of the telcscope weighs 18, 170 Ib , it can be turned with a pressure of $12 \frac{1}{3} \%$, scting ats radius of 20 feet. The driving sector EF is 5 feet in radius; its circulsr rim is sccurately toothed to fit a squara threaded endless screw E, which is turned by the driving clock. A toothed wheel attached to H and acted on by a pinion connected with a hand-wheel sfforda an easy mans of setting the instrument in lioar sugle, or moviag the telescope quickly in right ascension. The telescope is clsmped by iron bands to the strong cast-iron cradle, which is cast with sad forms one extremity of the declias.

tion sxis. The counterpoise U is attached to the other extremity. There is sa elegant arrangenient for diminishing the friction of the declinstion axis, which our limits do not permit us to deacribe, snd the means for clamping and giving slow motion in declinstion do not require specisl notice. The reader is referred for 8 fuller degcription to Phil. Trans., 1869, pp. 127-161. The telescope is of the Cassegrsin form, the mirror hsfing \& 4 -feet aperture snd $30 \frac{1}{2}$-feet focal length.

The best existing examples of type B are Airy's equatorial at Greenwich, the equatorial st Liverpool (slso designed by Airy), and the photogrsphic equatorisl recently erected at the Paris observatory. The polar axis of the Greenwich equstorial consists of six iron tubes arranged so as to form two triangular brsced beams coonected by very strong elliptical wheels of cast iron, which carry the upper and lower pivots of the polar axis. These tubes are ahown in section at the points T, fig. 18 , which represents s section through the declination axis in the plsae of the equator when the telescope is directed to a star at the equator (for the general srrangement of the mounting, see fig. 19). The driving circle is 6 feet in diameter, and turne freely on the lower pivot of the polar aris, under the action of the driving clock. The hour circle is graduated on the driving circle, and may be set to show sidereal time during

io. 18.-Greenwich equatorial. The whole of a night's work; thus the observer, in order to direct the instrument on s particnlar object, liss only to set an index connected rith the polar axis to the star's right ascension apon the hour circle, without the trouble of computing the hour angle at the instant of observation. This convenient arrangement was first introduced by Airy. The whole mounting is very massive, but very inconvenient to nse when a great many different objects have to be exsmined on the same aight; but on acconnt of its freedom from tremor and the excellence of its driving clock it should be very auitable for prolonged study of s single object or for long photographic exposures ${ }^{3}$ Quite recently Sir Howard Grubb has signed a contract to make a telescope of 28-inches sperture and s-feet focal length, ${ }^{2}$ which is to be substituted for the present tele18 seo by Merz \& Son of 12 -inches aperture and 18 -fect focus. Fig. 10 is engraved from a photograph of the model of the original polar aris. The model was prepared to illustrate the manner in which the new telescope is to be-mouated, sad we sre indebted for the picture 1 See the datailed acconnt in Greenwich Observations. 1868.

2 This ohject-gleas will have the ehortest proportional focal leneth of any yet constructed of sperture excceding in Inches. The following table gives the focal length in epertures of the largest existing refractors:-

Fienns telescope (Gruhb) 27 -ioches a perture, focal length 15.5 in pertures $\begin{array}{lllll}\text { Yienns } \\ \text { Tashington } & \text { " } & \text { (Clark) } & 20 & \text { " } \\ \text { Pulkowa } & \text { (Clark) } & 30 & \text { " } & \text { " } \\ & & 150 & 180 & \end{array}$
to the kindnees of Mr Christia, astronomer royal. The object-glass will be actually outside the dome when the telescope is pointed near the zenith or near the horizon. The dew-cap, not shown in the model, will be alwajs outside the dome. and it is not impossibla

that this arrangement may be favonrable to good definition, except in case of high wind. When the telescope is not in use the dewcap slides backwards on four rails parallel to the axis of the telescope, and the whole is housad in the pasition obown in fig. 19. The spectroscope is used at right angles to the telescope tube, a right-angled prism of total reflexion being interposed in the converging cone of rays near the focus. This prism can be turned 180° and sn eye-piece inserted on the opposite side from the spectroscope for observations near the zenith or horizon, otherwise the eye end would be too near the floor or northern pier. ${ }^{1}$

A'figure of the new photographic telescope erected at the Paris observatory may be seen in Nature, 13th May 1886. The objectgless is by MM. Paul and Prosper Henry, the mounting by M. Gautier. Here Airy's braced tubes are replaced by bollow metal beams of triangular shape (as for the Liverpool equatorial). The honr circle has two toothed circles cut upon it, one acted apon by a acrew attached to tho pier and driven by the clock, the other by a eecond screw attached to the polar sxis, which can be turned very slowly by a handle in the observer's band. Thus a very slow movement can be given to the telescope in right ascension, independertly of the clock. Slow motion in declination can be communicated by a screw acting on a long arm, which can be clamped at pleasure to the polar axis by a convenient bandle. An oblong metallic box, fitted with pivots, whose bearings are sttached to the triangular beams, forms the tube for two parallel telescopes; these are separated throughout their length by a metallic diaphragm. The chromatic aberration of the object-glass of oue of these telescopes is corrected for photographic rays, and the image formed bvit is received on a highly eensitive photographic plate. The oraer telescope is corrected for visual raye and its imege is formed on the plane of the spider lines of a filar micrometer. The peculiar form of the tube is eminently suited for rigid preservation of the relative parallelism of the axes of the two telescopes, so that, if a certala selected star is retained in bisection by two intersecting wires in the micrometer, by means of the driviug clock, added by emall corrections given by the observer in right ascension and declikation (required on account of irregularity in the clock movement, orror in astronomical adjustment of the polar axis, or changes in the atar's apparent place produced by refraction), the image of a star will continue on the same spot of the photographic plate during the whole time of exposure. Exquisite photographs of star elustars, double atars, the moon, and planets have been obtained by MM. Henry, and they are the most eloquent testimony to the optical perfection of the object-glass and the efficiency of the mounting. They show also that we ore entering upon a new era in practical astronomy, in which photography is destined to play a loading part. The Henry photogrophic object-glass is of $13 \cdot 4$-inches uparture and only 10 spertures in focal length. The "guiding talescope" is of $9 \frac{1}{2}$-inches sperture and nearly 12 -feet focus. The photepraphic object-glass, notwithstanding its amall proportional foeal leagth, covers field of $2 \frac{1}{2}^{\circ}$ in diameter with perfect precision.

Nany more telescopes heve been male of type C than of any

[^47]other, and it is now almost exclusively employed for the monnting of modern refractors. Its essential features are (1) a comparatively ohort polar axis and (2) a cross-head attached to the extension of the upper of the derefractor, first equavided with hour circle
vernier V. C^{\prime} vernier V. C'

endless screw ${ }^{\prime}$, circle B. D is pivot of the polar axis, to carry the bearings clination axis. Fig. 20 showe the Dorpat the chef d'euvre of Fraunhofer, and the torial of any importance that was proclockwork. AA is the polar axis, B the graduated on the face and read by the is the driving clock, which turns sn $\begin{array}{ll}\text { circle B. } \\ \text { extremities } & \text { is } \\ \text { the }\end{array}$ that gears in the tootbed edge of the The mooden telebearings of the declination axis. cradle FF of cast cradle FF of cast
flange on one end of
clination circle EE, cope tubo rests in a strong posite end, serves to
declination to the arm G. lever which presses in the figure) against the
axis in order to relieve the brass, wbich is ecrewed to a the declination axis; the dewhich is attached to its opclamp the instrument in H is a weight acting on a wheels k (one only eeen axis in order to relieve the friction of that pivot

on its bearing. The counterpoise W balances the tube about the polar axis. M, M are counterpoise weights which act on ievers $i n, m$, whose fulcra are universal joints at n attached to the cradle. These weights scrve to counterpoise the longer end of the tube and to check its flexure. $Q Q$ is the finder, a small telescope whose axis is parallel to the great telescope; having a low magnifying power and a largo field of view, it serves to direct the large telescopo to any object seen in the eky, which otherwise would be difficult to find in the comparatively limited field of the large telescope. The stand TTT is of oak. The instrument is described in detail by Struve (Beschrcibung des auf der Sternucarte zu Dorpas befindlichen grossen Refractors von Fraunhofer, Dorpat, 1825, fol.) The instrument was an enormous advance upon all previous telescopes for micrometric researcb. In the bands of Struve results were obtained by it khich in combined quality and quantity had never before been reached in micrometric research. Its success was such that the type of Frannhofer's telescope became etereotyped for many years not only by his successors but throughout Germany. When twelve years afterwards Struve ordered the 15 -inch refractor for the onew observatory at Pulkowa, the only important change made by Fraunhofer'e successors was, at Struve's suggeation, the eubstitution of a etone pier for the wooden stand in the original instrument.

Both the Dorpat and the Pulkowa refractor are defective in rigidity, especially in right ascension. The declination circle is most inconvenient of access, and slow motion in declinstion can only be effected when the instrument is clamped by a long and inconvenient handle, so that practically clamping in declinstion wes not employed. The slow motion in right ascension is defectiva being accomplished :- tise Dorpe: refractor by changing the rate
of the clock, and in the Pulkowa refractor by a handle which when used affects very iojuriously the rate of the clock for the time being. Struve's skill as an observer was such that he used to complete the bisection on the fixed wire of the micrometer by a pressure of the finger on the side of the tubs, - a method of proved efficiency in sucb hands, but plainly indicative of the want of rigidity in the instrument and of the deficiency of the slow motions (see Micrometer, vol. xvi. p. 245). The driving circle is also much too emall, so that a very slight mechanical freedom of the screw in the teeth involves a large angular frecdom of the telescope in right ascension, whilst its position at the lower end of a too weak polar axis tends to create instability in right ascension from torsion of that axis. Strange to say, the wooden tube has till very recently retained its place in German mountings.

About 1840 a great advance was made in the right direction by the Repsolds of Hamburg in the equatorial mounting of the Oxford heliometer. The driving circle was greatly increased in diameter, and placed at the upper end of the polar axis, and both the polar axis and the declination axis were made much atronger in propor :tion to the mass of the instrument they were destined to carry. (A figure of this instrument is given in the Oxford Observations for 1850.) About 1850 Thomas Cooke of York began his career as a maker of equa. German tescopes, and gavo a represents a typica equatorial of his design. A etrong cast-iron pillar is substituted for Fraunhofer's stand. On the semi-cylindrical top of the pillar rests the cast-iron box AA, which contains at its opper and lower extremities the bearings of the polar axis. Its mode of connexion with the pillar permits the inclination of the box to be changed for adjustment of the inclination of the polar axis. The strong cross-head C, supporting the bearings of tho keclination axis, is of cast iron, bolted to a flange on the upper pivot of the polar axis. Fraunhofer's cradle and wooden tubo are abolished, and in their place is a es cast-iron cylindri. aal tube D, flanged st both ends aud also at the point where it is bolted to a corresponding flange on the end of the declination axis, all three flanges being cast in one piece with the central tube; the rest of the tube consists of two slightly tapered brass cylinders bolted by strong flanges to the central tube D. The handle F clamps the arm. H to the cross-head C at pleasure, and slow motion in declination is commonicated by the handes st E and G. Two circles at K and M are atlached to the

Fig. 21.-Cooka's equatoris. urper part of the polar axis. To one of these motion is communicated by the tangent acrev at M (turned by the clock N) acting on teeth cut at the edge of the circle. The other is a graduated bour circle read by two opposite microscopes, one of which is seen at P. The endless cord hanging down and holding a sliding ring at Q is employed to give slow motion in right ascension, in some iustruments by moving the frame of the driving ecrew in the direction of the axis of the scren; in others by moving differential wheels which accelcrate or retard the velocity of rotatiou of the driving bcrew without affecting the rate of the clock. The declination circle RR is attached to the farther end of the declination axis and is inconvenient of access. Cooke's stand is admirable for its symmetry and simplicity of design, its just apportioning of strength, and a general rigidity with suitability of means to ends.
It is not a little curions that the obvious improvement of transferring the declination circle as well as the declination clamp to the telescone end of the declination axis was bo long delayed; we can ascribe the delay only to a desire to retain the declination circle as part of the counterpoise. We believe that the first important cquatorials in which the declination axis was read from the eje end were the 15 -inch by Grabb and the 6 -inch by Cooke, made for the observetory of Lord Crawford (then Lerd Liudsay) at Dun Echt (Aberleenshire) about 1873. The plan is now almost univereally dontad. Telescopes of sncls dimenvions can be convenioutly
directed to any object by the circles mithont the observer being under the necessity to climb a special ladder. But When mach larger instruments are required the hour circle becomes insccessible from the floor, and meane have to be devised for read. ing both circles from the eye end. This was first accomplished by Grubb in the great refractor of 27-inches aperture which he constracted for the Vienna observatory, represented in section in fig. 22. The observer's eye is applied to the emall telescopo E, which (by means of prisms numbered 1,2 , 3,4) views the vernier attached to the cross-head simultaneously with the hour circle attached to the upper end of the polar axis. Light to illuminate the vernier and circle is thrown from the lamp the prisms 6 and 5. Prism 1 is in the axis of the declination circle and always

Fio. 22.-Grubb's 2"-inch refractor (Vienna).
reflects rays along that axis, whatever the position of the telescope may bo, whilst the prisms $2,3,4,5$, snd 6 are attaclied to the crosshead and therefore preserve their relative positions to each other. Through the eye-piece of the bent ${ }^{1}$ telescope E^{\prime} another hour circle attached to the lower end of the polar axis can be seen; thus \&n assistant is able to direct the telescope by a handle at H to any desired hour angle. A sliglit rotatory motion of the telescopis \mathbf{E} on its axis euables the remier of the declination circle to be jead through prism 3. The leading features of this fine instrurnent represent those of all Grubb's large telescones. The mode of ro lieving the friction of the declina. tion axis is similar to that entployed in the Melbourno relescope and in the accomnt of the Vienna telescope publishod by Grubb. The end fric. tion of the polar axis is relieved by a ring

Tre must condense further degcription into critical remarks on a fow typical modern instruments.
(1) Telescopes of Moderale Size for Micrometrue Research only. -

In the bent telescope refracting prisma are employed st the cormars change the direction of the raye.

Fig. 23 showe the mounting of the 8 -inch refractor, of 9 .feet focal longth, at the private observatory of Dr Engelmann, Leipsic. The bbject-glass is by Messre Clark of Cambridge, Mass., the mounting by the Repsolds of Hamburg. The declination circle reads from the eje end, and four handles for clamping and alow motion in right ascension and declination are aituated near the observer'e hands. The tube is of sheet steel, light, stiff, and froe from tromor. The eyo end carries the micrometer with an illuminsting apparatus similar to that proviously described under Micrometer, vol. xvi. p. 246 sq ., figs. 16, 17, 20, and 21. The lamp near the eyo ond illuminates the field or the wires at plessure, as well as the position circle of the micrometcr and the declination circle; a eeparate lamp illuminates the hour circle. An excellont festure (see fig. 24) is the short distance between the eyo-piece and the declination axis, so that the observer has to follow the eye end in a comparatively small circle; another good point is
 the flattening of the cast-iron centre-piece of the tube so that the flange of the declination axis is attached as near to the axis of the telescope tube as is consistent with free passage of the cone of rays from the object-glass. For purposes of micrometric research with the ordinary micrometer this instrument is the mostelegant, eatisfactory, and useful that we know, as was shown by the exceedingly accurate observations of the minor planets Victoria and Sappho for eolar parsllax, by Galle's method (see Parallax, rol. xviii. p. 249), made by Dr Engelmann in 1882. The substitution of small incandesceat electric lamps for the oil lamps would be an improvement

Fio. 24.-Dr Engelmano's 8-Inch
(2) Telescopes of Moderate Size for General Purposes.-The modern equatorial ehould for general purposes bo capable of carrying spectroscopes of considerable weight, so that the strength of the axis and the rigidity of the instrument generally have to be considerably increased. Grubb has realized our ideas of what such an instrument ehould be in an equatorisl of 6 -inches sporture which he has recently made for the royal observatory at the Cape of Good Hope. The principal features are its great strength and rigidity, with special precautions to ensure preservation of the instrumental declination. The observations of Victoria and Sappho in 1882 revealed the great deficiency of most modern equatorials in this respect. That is to say, if a star uear the meridian is first made to run along the measuring web of the micrometer, the clockwork then set in action, and the star brought back to the centre of the field by the slow-motion handle in right ascension, it will be found that the perfection of the bisection is no longer preserved. Thus at most observatories the measures of difference of declination when the clockwork was employed were far inferior to those made with the telescope at rest. The reason seems to be that in most equatorials the lower pivot is cylindrical, and onters an ordinary cylindrical bearing which cannot be a perfect fit. Also the crosshead, telescope, counterpoise, \&c., generally together overbalapce the polar axis about the upper bearing, so that the lower pivot presses upwards in its bearing, and its rotation, under the action of the clock or slow motion coupled with the friction of the surfaces, gives rise to a emall rolling freedom which creates the orrors in question. In this telescope the lower pivat is of oteel, made slightly conical, and carefully ground to fit a long conical bearing, in which it would work very tightly, or even jam, but for arring pressure brought to bear on its lower hardened flat end, which relieves the greater part of the thrust ; and the polar axis is accurately balanced about its upper bearing by a weight at the lower end of the poler axis, so that the thrust ie exactly in the axis of the cone. The apper pivat (4 inches in diazeter) ia also of steel, finished with the same care as that of a transit circle, so that the telescope rotates with the precision of a meridian instrument: Unusual rigidity has also been given to the declination clamping arms, and the new slom motion in declination is by far the best yet contrived ; it is a recent invention of Grubli's, and is de-
scribed below in his own words. The eye ond, suitable for heary epectroecopes, \&cc., is fitted to the butt end of the telescops by bayonet joints and tightening ecrewo, eo that it can be exchanged for a micrometric eye end with almost as little trouble as the exchanging of an eye-piece. The illumination of the circles and the micrometer is by electric incandescent lamps. The instrument may be adjusted to any latitude and is probably the most practical and serviceable equatorial made. The subjoined description of the new slow motion in declination is takon from Proc. R. Dubl. Soc., 1886, p. 107.
"The elow motion arrangcments usually nsed in equatorials are of either of two forms, Viz., (c) an endlese acrew working into a bector or portion of a toothed circle of long radic a, or (b) a screw appiying or puahing directly aome other form of apring having a conaiderahla range of motion. The orst (g) possesses the disadvantage th t, however carefully made, it ie impossible it is quite fres from 'loss' or 'ha ik lash'; and consequently the position of the talaacope is not perfectly determinata in declination, which fault is incon. venlent when delfcato measur.s are required. The seoond (b) bea practically no 'back lash; as apring keeps the arm in perfect conthe disadvantare that, whatever rance of motion whatever range or motion is FB -
quared, the apring mnet ba quired, the spring minet be capehis of working throngh the asmarange; consequently stronger in action et one end of the rance than the other or thes it be mado very long indead in which rasaly long indeed, in which case its action is uncertain and unpleasant. To remedy these defects the author [Grubb] hes devised the following, tages of both :-ABCD (fig. 25) is a portion of the arms
 cradle, on which is planted the block (b), forming the bearing of the screw. The nut (n) is in tha form of a ball working in a bocket on the extremity of the clamp.arm EFG. A ahort stif apring (N) is attached to thla clamp-arm, bearing, not directly againat any part of othcr arm, but against end of a second and or sate pich as ene main acrew, the hut or wbich (ce) ja toothed on edge, and works into a whecl of equal siza ($p p$) on main berew. The point of thja aecond screw, therafore, advances as much in one direction as the frame $A B C D$ is carried in other, according as the milied head is turned ; and consequently the point of the gerew does not sensihly vary in ite position with respect to the clamp-arm EFG. A chort atil epring can therefore be need, and the disadvantage above mentioned disappears.'
This form of slow motion could be applied with advantage to the right ascension also, and probably to the separation of the segments of heliometers.
(3) Of large equatorials we name first the great refractor at Large Washington of 26 -inches aperture and $32 \frac{1}{2}$ feet focal length ${ }^{1}$ Tbe equamounting appears to be unworthy of the well-known excellence oi toriala, the object-glass. To illuminate the micrometer an assistant is Wash. required to hold a lamp in his hand. No convenient means are ington provided for illuminating the declination axis; and in order to telaacop point the telescope in declination the following elaborate process has to be performed:-
"The instrument is brought into the meridian and set by the obaerver within a degree by means of coarse divisions painted on the edge of the declination circle. These divisions ara rendered visible by lighting one or two of the gas burners or the dome, and viewed by the astronomer with an opera.glass. Then an assiatant mounts by a ladder to a high platiorm and bolds a gas lamp near the vernier, and the fne zetting is accomplished by the observer aested in th observing charr, the declination clamp and slow-motion serew being convenient to his hand " (TV ashington Observations, 1974, Appendix 1., p. 33).
The polar and declination axes are of steel, only 7 inches in diameter at tho thickest point, sad the driving arc, which is far too small, is placed at the lower ead of this slender axis. There must thus be considerable liability to tremor in right ascension. However well the instrument may act in specially practised hands with an excelleut Clark's micrometer (art. Micrometer, vol. xvi. p. 245), the instrument must be considered wanting in the rigidity and convenience which a modern equatorial should possess. In his official report on the inatrumenta of European observatories Nowcomb defends the want of solidity and convenience of this instrument as compared with the Vienaa telcscope, becauso its emaller axes (notwithstanding Grubb's anti-friction arrangements) permit it to turn more easily and the mounting to be of far eimpler design. But at the time of Newcamb'e visit the Vienna telescope had not been bronght into work, and cannot have been in proper working order if the motion in declination was so stiff as he describes it, at least when the preseat writer tested the instrument in Dublin that. motion was surprisingly essy.

The great Pulkowa refractor (Sg. 26) erected in 1885 is of 30 inches aperture and 45 -feet focal length. The object-glass is by Clark, the mounting by the Repsolds. The tube is cylindrical, of riveted ateel plate, graduated in thickness from the coatry to its extremities, and bolted by very powerful flanges to a strong short cast-iron central tube, in which, as in Dr Eagelmann'e telescope (fig. 23), the attachment to the flange of the declination axis is placed as close as it can be to the axis of the tube withont inter-

1 Described and flgured in the Washinaton Observetions, 1874. Apra. L
fering with raya converging from the object-glass to any point in the field of riaw. A now featurs in this iastrument is the plat form at the lower end of the polar axis, where an assistant can viow the hour circle by one cye-pieco and the declination circle by another (lookiag up the perforated polar axis), and where he cana also set the telescope to any hour angle by one whecl, or to any declination by a aecond, with the greatest ease. The observer at the oyo end can also read off the hour and declination circles and connunicate quick or alow motions to the
telescope both in right ascension and declina. telescope both in right ascension and declination by cosveuiently placed bandlea. The eye end freseots au appoarance too cornplicated to bo figured hera; it has a micrometer and its illumination for the position circle, a micrometer bead, and a briglit or dark field,' clamps in right asceasion and declination and quick and slow motion in the snme, a finder, nicicroscepes

time and driven by a galvanic current from the aidereal clock, and counter weights which can bo removed when a epectroecope or other heary applianco is added. All these, although making up an ap-
paraotly complicated apparatue, are conveniently arranged, and are paratly complicated apparatue, are conveniently arranged, and are all necessary for the quick and eaay working of ao large an instrument. We have the authority of Otto Struve
for stating that in practice they are all that can by for stating that in practice they are all that can bs desired. There is in this instrument a remarkably
elogant method of relieving the friction or the polar axis. Let AA (fig. 27) be a aection of the polar axis; it is then easy to adjust the weight P of the circlee, \&c., sttached to its lower ead so that the centrs of gravity X of the whole moving parts of the instrumeut shall be in the vertical (VV) of a liue passing through the apex of tho hollowed flange $p q$ at q, which flange forms part of the polar axis. If Iovva wheel W is forced up against q with a pressure equal to the weight of the moving part of
the
instrument the instrument, the whols weight
 of tha moving Fis. 27. part would rest upon W in unatable equilibrium ; or if a pressure R , less than W, is cmployed, we have the end friction on the lower bearing removed to an extent $=R$ sin ϕ, and the friction on the bearings of the upper pirot rezoroved to the extent of $F \cos \phi$, where ϕ is the latitude of the place. The wheel W is therefore mounted on a guided rod, which is forced upwards by auitable levers and weights, and this relief of pressurg is precisoly proportional to the pressure on the respective beariogs. The Repoelde find it unnecessary to reliave the friction of the declination axis.
Fig. 28 ahows ths equatorial mpunting which Grubb designed for the great object-glass of 36 -inches aperture that Messrs Clark lave corapleted for the Lick trustees, and which may be supposed to cxpress Grubb'a lateat ideas as to the znounting for a very large telescope. The Repsolds have a large driving circle at the upper end of the polar axis, thas avoiding torsion of the polar axis at the exponse of greatly increased length of the cross-head. Grubb

[^48]hy emploging a driving arc gets the tolescopa much closer to tho polar axis with an increased radius for driving, a, ha he makes the polar axis a very large hollow ateel or cast-iroo cylinder in which torsion is insansible. Both Grubb and the Repsolds neem to think that for tho tube of the telescopp all necesasyry rigididy caa
be attained with cylindrical tubee of be attained with cylindrical tubee of riveted eteel, the thickness of tha auccesaive sheots of which diminieh from the cen tre-piece outwards without making

Fio. 28.-Grabb'e mouating for the Lick object.glase.

arrangermants for giving access to the eye end and for following its diurnal motion have liitherto proved a source of difficulty. The tryeelling atages of the new Pulkewa telescope are the most manageabls and practical that have yet been contrived, but even they leave much to be desired. For energetic work the atandiag position is bast, provided that the eye-piece is situated at the precise height above tho stage which is most convenient for the obeerver, and that the altitude of the observed object is not greater than 60°. For alditudes abore 60° a mall chair with a back, the top of which is stuffed for the head to rest upon, is tha biet seat, provided that the observer's eye cen bs kept at the hight of the eya-piece. Accordingly Grubb has suggeeted the following plan for the observatery at Mount Hamilton, Califoroia, which is to cover the Lick telescope. The whole floor, 70 feet in dismeter, is to be raised or lowered ly water-power under control of the observer by means of electric keys, which act on a secondary piece of mechanism, that in turn worlse the valves and reversing gear of the water-engines. Other water-engines, aimilarly connected with keys at the observer's hands, rotate the dome and perform the quick motiona in right asceasion and declination. ${ }^{3}$ By this arrangement a large instrument can be worsed with perfect facility and comfort. There is only one other plan, that of suspending the observer's chair to the eye end, so that his eys is ncar the centre of motion of the chair. This is quite practicable for a 36 iach teleacope, and -one observer, with the nccessary guiding keja at hand, could easily work a telescope and dome of the largest dimeneions as quickly and with more ease than he could one of 1.0 or 12 inches a perture. Probably a nervoue astronomer would profer a solid floor to work upon, as in Grubb's proposal; in the latter case the quickest working can only be accomplislied by tro persons, one seated on the platform at the foot of the polar axis and doing the rough aettiag in right ascension and declination, the other meanwhilg adjusting the beight of the floor and the azirnuth of the dome opening.
In very larga equatorials there must ba in existing methods con. Proponed sidarabla inconvenience from the extended widlb of the epparatus facilities at the eyg end. Were wo called upon to design a great refractor for using wo ahould abolish all auch apparatus and provide the observer large with a fow conveniently placed small handles or keys for electrical teleconnaxions, and we ehould perform all motions of the telescops whatsoover by electromotors. Thers is no form of energy ao conrenient for the aatronomer. It provides by incandesceat lamps the most auitablo light for hie purpose, perfectly constant, giving off littlo heat, and unaffected by wind; and such a light can be placed whers required without tbe aid of reffectors or aay complicated apparatue, and ite intensity can be regulated with ease and pracision by changing the resistance of the conductors. Moreover the electromotora cain be as powerful or as delicate as wo please, and can be placed in the most convecient or suitable positions. The energy of a 5-herse-power ateam-engine working for tea hours can be atored in accumulators of no incoovenient dimensions ready for use as required during a whole weak or aven a month, and can be brought iato action in forco equiraleat to several horse. power to raise or lower the floor or turn the dome, or to perform, alow motiona. requiring no greater energy than that exercied by the finger and thumb, or to illuminato a lamp of zar or candlepower. There would be no limit to the rigidity which could be given to such a telescope, as great eass of motion would not bave

to be considered, and we should abolish all complicated antl-friction apparatus for the declination axis, retaining it only for the polar axis to save wear in tha teeth of the driving arc. Finally, instead of making the finder a ahert telescope attached to the eye end of the instrument, we should give it a focal length equal to that of the great object-glass, attaching the cell of its object-glass rigidly to the cell of the large object-glass and its eye end to the butt end of the main telescope, in order to aecure the utmost rigidity in the relations of the axes of the two tele. acopes. Such a finder would correapeud in efficiency to that of the Henry photographic telescope, and would be a railable as a guiding telescope in photographic worl, or for keeping a star exactly on the slit of a apectroscope.
The first important in. atruments of type D were Mr Lasseli's refiectors, the largest of which, and the last, is represented in fig. ${ }^{29 .}$ The polar ontly rigid, but

Fia. 29.-Lassell'e refiector.
forks which carry the pivots of the contral cracie are elements of instability, especially when the instrument is directed to an object of considerable hour angle. There is practical confession of this instability in the cross-bracing which connects the two forks, and which must be remeved if the telescope is pointed to an object between the zenith and the elovated pole.
The best exampla of type D is the reflecting telascope of 36 -inches aperture designed by Mr. A. A. Common, with which his exquisite photegraphs of nebulx, \&c., were made. The principal preliminary conditions which be laid down as necessary were the follomingl :(1) no tuhe properly zo called, to aroid air-currents in the tube; (2) no mass of motal either beloin or at the aide of the ling joining tho large aud emall mirrors, to avoid currents from pessible difference of tempera. ture between the mass of metal and the surroundin air; (3) an equatorial mounting capable of direction to any fart of the visible hea. vens and of continned observation past the moridian withont reversal; (4) an efficient means of aupporting the mirrer without flezure; (5) driving clock; circles to find or identifyan object, and motions taken to oye end; (6) a mounting whec will give the greatest amonnt of steadiness with the least amount of friction. Fig. 30 is a section of the instrument in the plane of the meridian. DD_{1} is a cast-iron bellow cylinder, accurately bored out, attached to a atrong basa block. D_{3} is a cover bolted on the bottom of this cylinder, in the centre of which is a tapering ateel pin D_{2}, which enters a correspending hole in the bottom of the polar axis E, and aervea as the lewer pivot of
the polar axis. The cylindrical part of the polar axis is accarately turned to a diameter ona eighth of an inch lesa than the outer cylinder, and the otherwise severe friction on the pin D_{3} ia relieved by filling in the space between D and E with merenry, so far as aufficient nearly to fleat the whele meving part of the telescope. The apper elbew-shaped part of the polar axis E_{2} is flanged and belted to the lewcr part. In the section at right angles to that eshibited in fig. 30 this elbow-shaped part is T-shaped, and tho cross of the T is bered to receive the declination axis; and, as the elbow puts the pelar axis considerably out of balance, the T-shaped head is carried forward of the axial line abont 11 inehes, so that the whole meight of the telescopa above just restores the balance. Two beavy weights X, X counterpoise the eye end F with the four braced tubes T, T which support it. B is the declination circle. It is impessible to describe this fine instrument adequately within our limits; we mention as specially worthy of study the methed of supporting the mirror aud the eminently ingenions and practical form of the observatery, and refer the reader to Common's illustrated account of the instrument in Ifem. R. A.S., vol. xlvi. pp. 173-182.

There is alse an admirable mounting of type D designed by Lord Rosse" Rosse for his 3 -foot reflector at Birr Castle, described by him in 3 -foot Phil. Trans., vol clxxi. p. 153. The instrument is planned on mountthe broad lines of Lassell'a telescope (fig. 29), but the badly planned img. and weak fork of the latter is replaced by a thoroughly rigid bent fork made of boiler plate a quarter of an inch thick, firmly riveted to angle iron of $2 \frac{1}{3} \times 2 \frac{1}{4} \times \frac{\pi}{18}$ inch scantling along each angle, the. whole, as we have proved by trial, being exceedingly rigid. It would be an impropement to adopt Mr Common's plan of putting the declination axis a little out of the line of prolongation of the polar axis, and thus dispense with the counter-meight; and wo should prefer hollow steel tubce with push and pull bracing rather than the angle iren reds and bracing which form the tube.

In the Proccedings of the Reyal Dublin Seciety (vol. ii. p. 362) Type E Grulb describes a "siderostatic telescope," which forms a good elementary example of type E . In fig. 31 TT is the tubs of a telo- Grabb's scope of 4 -inches apertore, which is mounted to rotate sideroabout its axis, the latter forming the polar axis. MM etatic is a plane mirror reflecting rays from a star S to the telescope objcct-glass, so that its image can be riewed from the cye-piece at E . The star is retained in the field by (1) T tho clock C . Stare of different declination can bo in different hour angles by rotating the tube npon ite axis. The instrument in European
latitudes cannot command a view of tho heavena batween the elevated pole and the zenith unless the distance $O G$ is made exccedingly great; cren then only a limited range beyond the zenith is possible. The instrument is pri-
 resulting advantage is that the obeerver may bo in complete darkness and
his cbservations aje not interrupted by tion.
In Comptes Loowy E Rendus for the equator. year 1883, vol inal coude
xcvi pp. 735-741, M. Loewy gives an account of an instrument Thich ho calls an "equatorial coudé," designed (1) to attain greater atability and ao to measure larger angles than is generally possible with the ordinary equatorial; (2) to enable a aingle astronomer to point the telescope and make observations in any part of the sky Withont changing his position ; (3) to abolish the naual expensive dome, and to aubstitute a corcred ahed on wheels (which can be ran back at pleasure), learing the telescope in the open air, the obaerver alone being abeltered. These conditions are fuffilled in the manner shown in fig. 32. EP is the polar axis, retatiog on bearings at E and P. The object-glass is at O, the eye-pieco at E . There is a plano mirror at M , which reflects raya converging from the object-glass to the eye-piece at E , A eecond mirror N , placed at 45° to the optical axis of the object-gless, reflects raye frem a star at the pole; but by retating the bux whi contains this mirrer on the axis of its supporting tube T a star of any declination can be observed, and by combining this motion with retation of the polar axis tho astronomer aeated at E is able to view any object whatever in the visible heavens, except those situated between 10^{h} and 12^{h} bour

2ngle. An hour circle attached to EP and a deolination circle attached to the hox containing the mirror N, both of which can be read or set from E, complete the essentials of the instrument. Its mechanical details present no great difficulty, and are most conveniently arranged. But we entertain - grave doubts as to the practical value of the

Fio. 32.-Loewy's coudé equatorial. rument, not on mechanical, but on opetical grounds. There mnst be a certain loss of light from two additional reflexions; but that could be tolerated for the sake of other advantages, provided that the mirrors conld be made sufficiently perfect optical planes. A few jears ago it was very difficult to obtain an optically perfect plane 6 inches in diameter, and having obtained it there remained the futher difficulty of mounting it so that in all positions it should be free from flexure. By making the mirrors of silvered glass, one-fourth of their diameter in thickness, MM. Henry have not only succeeded in mounting them with all neceseary rigidity free from flexure but have given them optically true plane surfaces, notrithstanding their large diameters, viz., II and $15 \cdot 7$ inches. The present-writer tested the equatorial coude on double stars at the Paris observatory in 1884, and his last doubts as to the practical value of the instrument were dispelled. He has never seen mora perfect optical definition in any of the many telescopes be has employed, and certainly never mocasnred a celestial object in such favourable conditions of physical comfort. The easy position of the observer, the convenient position of the handles far quick and slow motion, and the absoluta rigidity of the mountiug leave little to be desired. In future instruments the object-glass will be placed outside the mirror N , so that both the silvered mirrors will bs protected from exposure to the outer air, and probably will retain the brilliancy of their surfaces for a long period.

Adjustment of the Equatorial.

adjust

Let us take the usual casa, that of an equatorial of type C.
py means of an azimuth compass, or, better, by the shadow of a pumb line at apparent noon, lay down a meridian line on the upper aurface of the stone pier, or other fonndation, previausly built for the instrument. (2) Employ this meridian line to set up the instrument and with it the polar axis approximately in the azimuth of the meridian, which can bo tested by stretching a wire through the centres of the bearings of the polar axis, and dropping a plumb line from the extremities of the wire upon the meridian line. If this is carefully done when the azimuth adjustment is near the middle of its range all desirable accuracy in this preliminary desideratum will be sccured. (3) Place the polar axis approximately at the altitude of the pole. This is rery easily doue for an instrument in which the polar axis is cylindrical or is encased in a box with an upper side parallel to tlat axis \{as in Grubb's or Cooke's equatorials). Prepare a right-angled triangle of wood of which the acute angles represent the latitude and co-latitude of the placa. Lay the hypothenuse of this triangle upon the line of the instrument parallel to the polar axis (or the wire of operation 2) with the angle equal to the co-latitude next to the elevated pole, and change the inclination of the polar axis till a mason's level placed on the side of the triangle opposite to the angle of the latitude shors the side. in question to be horizontal. (4) Adjust the movable microneter web to coincidence with the axis of the position circle by bisecting the image of a distant object and reading the number of revolutions or fractions of a revolution at two different readings of the position circle 180° a part. The mean of these two readings is the reading for coincidence with the axis of the position circle. Set the micrometer to this mean. (5) Adjust the polar axis more caactly to the required altitude as follows. Point the telescope to a well-known star not far from the equator and ncar the meridian, ind turn the position circle so that the image of the star by the diurnal motion runs along the web. Read the declinstion circle. Now reverse the telescope to the other side of the polar axis and lisect the same star again, and again read the declination circle. The mean of the two readings is the star's instrumental apparent declination; the difference of the two readings is twice the index crror. To eliminata this latter it is only necessary to shift the vernier of the declination circle by the screws provided for the purpose, without unclamping in declination, till the circle reads the star's instrumental apparent declination. This being done, select another star near the meridian and compute its a pparent dechination (allowing for refraction). Set the telescope to this computed reading and clamp in declination; then cause an assistant to
change the altitude of the polar axis (hy the screw for the purpose) till the star is bisected by the micrometer wirc. (6) Sclect any convenient known ster about six hours from the meridian; comfuta its apparent declination (allowing for refraction) ; and set the telescope to this reading in declination. Cause the assistant to turn the slow motion in azimuth till the image of the star is bisected by the micrometer web. (7) Repeat operation 5 and mako final corrections if necessary: (8) Repeat operation 6 with stars both east and west of the meridian, and readjust azimuth if necassary. (9) Turn the position circle of the microneter 90°; place the declination axis nearly horizontal ; clamp the telescope in right ascension; and observe the time of transit of a known star acress the web of tha micrometer. Compute the true hour angle of tha star from the known error of the micrometer and the star's right ascension, and set the vernier so that the hour circle slall read the computed hour angle. By these means, with a previously prepared programme, the writer has frequently completely adjusted an equatorial in less than an hour, so far as operations 4 to 9 wera concerned.
There still remain two instrumental errors of the stand. (1) The line joining the optical centre of the lens with the axis of rotation of the position circle may not be at right angles to the declination axis, (2) The declination axis may not bo st right angles to the polar axis. In modern equatorials it is usual to leave these adjustments to the maker, as to leave thern to the astronomer would be incompatible with the greatest stability of the instrument. In a good instrument these errors will certainly be extremels small and hare no influence on its efficiency for practical purposes. The methods for determining their amount are given 24 most works on practical astronomy. ${ }^{1}$
There remain two important optical adjustments which must has very carefully atteaded to, viz., the centring of the lenses of this object-glass relatire to each otlier and the centring of the axis of the object-glass relative to that of the eye-piece. The former consisto in placing the lenses of the object-glass so that the centres of curvature of their surfaces shall lie in one straight line, which lina is the axis of tha object-glass. This operation is so delicate and requires such special experience and ckill that it should be left to the maker of the object-glass. An elegant method of testing this adjustment was given by Wollaston in Phil. Trans., $1822, \mathrm{p} .32$. If the object. glass itself is perfectly centred, the test of the centring of its axis with that of the eye-piece is very easy: are the diffraction rings
 which surround the image of
 a bright star shown as in fig. 33 , er is there flore, that is, are the rings extended on one side as in fig. 34! If the latter is the case, that side of the object-glass towards which the flare is directed is too far from the eje-piece, and should be brought owards it by the appropriata screws or cther sweans provided by the maker. In a good objectglass perfectly centred, on a night of ateady defimition, a bright star in focus should appear as in fig. 33.

A useful apparatus for the adjustment of centring is a small telescope (Gg. 35) whose axis is in the centre of and at right angles to a flat pieca of brass in the shape of an equilateral triangle fitted with screws at the three angles. To use this instrument, place the points of the ecrews on the object-glass as in fig. 36 , so that two angles of the triangle are in contact with the inner edge of the cell of the object-glass, and adjnat the ecrew a so that the cross-wires iu the common focus of the objectglass and eye-piece of the small telescope coincide with the image of tha cross-wires of the micro. meter of the telescopa which mark the axis of rotation of the position circle. Now, kceping the same angles of the brass triangle in con. tact with the cell, more tha small centring telescope round the cir. cumference of the object-glass and
 partura from coincidence. Correct Fios. 35, 36.-Apparatas for a.ljus. this departure half by the screw a ment of centring ia a small telescope of the small centring telescope and half by the centring screws of tha object-glass. The adjustment is perfect when tho ceutring telescope can bo moved round tha whole periphery of tha object-glass in the abovo manner whilst it cross-wires continue to bisect tho cross-wires of the micrometer o! 1 Chauvenet, Practical and Spheriral Astronomy, vol, ji. pp. S.9.3., : Brapnoy Spherical Astranamu, D. 45 ; snd Lowms, Praclical As'ronomy, rp, 28
the telescope. If after this adjustment has been perfected the diffraction rings are still not circular round the images of etars, the fault is in the centring of the lenses of the object-glass with respect to each other, and the object-glass should be scnt to the maker for rectification.

Driving Clock:

Tho means employed to cause an equatorial telescope to follow the diurnal motion of a etar obviously must not resemble the intermittent motion of an ordinary clock. Numerous devices have been contrived for producing uniform motion. But the limits of this article will only allow us to refer briefly to a few of those most cammanly in use. Fig. 37 represents Fraun. hofer's governor. On^{\prime} its axis C is a piniou driven by a train of wheels. The axis carries an arm BB, at the extremities of which, attached by aprings f, f^{\prime}, are the weights $\mathrm{D}, \mathrm{D}^{\prime}$. When theae weights ac\&nire a certain velocity of rotation the centrifugal force is sufficient

Fio. 37.-Fiaunhofer'a govermor. to cause the weighte to fly out and rub against the inside of the cylinder AA, aud their velocity is checked. Instead of a cylinder, The balls may rub against the inside of a hollow cone, and by raising or lomering the axis C the contact of the weights with the cone may bo mode to take placo whon tho balls have slightly greater or less

velocity, and thus the rate of the clock is regalated. A mach better arrangement is a modification of Watt's governor, employed by Grubb and Caoke. The governor balls g, g (fig. 38) repose on the points $h_{,} h$ of the arm KK till they reach their normal velocity, when they fly outwards and bring the point S (tipped with leather) into contact with the friction plate p. These clocks are simplo in construction and act very well. Newcomb in the Washington equatorial has employed a long suspended conical pendulum ; when this pendulum in the least exceeds its normal velocity (that is, its
normal departure from the vertical) it estallishes an electrical contact which brings friction to bear, and thus reduces the power applied to the pendulum. There is occasional tendency to elliptical motion, and the clack is otherwise troublesame. In the Ropsoldss driving clock of the 30 -inch Pulkowa refractor the conical pendulum is reversed, being a heavy weight at the top of a vertical steel rod, kept in conical rotation by a pin at its upper end, which enters a slot in a revolving arm. The rod is in fact a spring of such a form as to cause the revolutions to be nearly or perfectly isochronous whatever the angle of the cone of motion; the clock is therefore, within limits, independent of the power applied to it or the force to be overcome.
Many forms of air-fans have been suggested; probably the best is the modification of Foucault's proposed by Hilger (see Monthly Notices R. A.S., vol. zlvi. p. 155), which is ohown in fig. 39 . E is the axis of rotation; C and D are fans that are pulled towards the spindle E by chronometer springs in the bores A and B. The fans fly out symmetrically when the velocity exceeds 25 or 30 revolutions per eecond; the increased resiatance of the air thus produced checks the velocity of rotation. By means of the small weighis W, W attached to arms on the fans Hilger states that it is possible to adjust this governor so that it shall erca lose by an increase of the driving weight.

For the most refined worl none of these governoss cian ba said to be perfect; none would be eren tolerable as a clock for astronomical time-keeping purposes. It is possible that the elaborate Greenwich driving clock may give better results, but its construction is too complicated to be frequently repeated (see, for a description of it, the Greenwich Obscrvations for 1868). The only way in which aearly perfect uniform motion can be realized is to control it in some way from a swinging pendulum. This is done
 Foucault'a air-fan. in Bond's spring governor ${ }^{1}$ and by Grubb, the latter emploging the arm of a romontoir train connected with a dead-beat escapement to bring friction to bear on a revolving plate connceted with the axis of his governor (see fig. 38). The best existing driving clock is probably that at Lord Crarford's observatory at Dun Echt. ${ }^{2}$ An account of its performance is given by Mr Copeland in Viertsl. jahrsschr. astron. Gesellsch., 16 Jahrg., p. 305. In this clock gain of a hundredth of a second, or even less, introduces increased friction on the revolving disk during the next second, or uatil the gain has beca corrected. A still more perfect clock could probably be mado on a similar plan by abolishing the clock weight and making the origin of power an electromotor, the current being cut off in a Way similar to that io the Dun Echt clock if the clock of continuous mation gets in advance of the ordinary clock.

For information on clock work of equatoriala and telescope mountinga generally, see Konkoly's Practische Anlcitung wur Anstcllung astron. Beobachtungdn.
(D. GI.)

TELESPHORUS, bishop of Rame from about 128 till âbout 137, succeeded Sixtus I. and was followed by Hyginus. Eusebius in his History gives the date of the martyrdom of Telesphorus as the first year of Antoninus Pius (138) and in his Chronicle as the eightecnth year of Hadrian (135).

TELFORD, Thomas (1757-1834), civil engineer, was the son of a shepherd in Eskdale, Dumfriesshire, and was born in the valley of the Megget, 9 th August 1757. From early childhood he was employed as a herd, occasionally attending the parish school of Westerkirk, where his quickness and diligence helped to make up for his lack of opportunity. On being apprenticed, at the age of fifteen, to a stone mason at Langholm, he found leisure not only to gain an acquaintance with Latin, French, and German, but to gratify his literary tastes by a wide variety of reading. In his early manhood be was much given to
the writing of verse: a poem of some length on Eskdale appeared in 1784 in the Poetical Museum, published at Hawick ; under the signature of "Eskdale Taın" he coutributed verses to Ruddiman's Weekly Magazine; and he addressed an epistle in rhyme to Burns, which was published in Currie's Life of the poet. But these poetical effusions were of comparatively littlo value. In 1780 Telfora weut to Edinburgh, where he was employed in the erection of houses in the "new" town, and occupied much of his spare time in learning architectural drawing. Two years later he proceeded to London, finding employment in the erection of Somerset House. Having in 1784 supcrintended the erection of a honse for the commissioner at Portsmouth dockyard, he next repaired the castle of

[^49]Sir W. Pulteney, member for Sbrewsbury, who conceived such a high opinion of bis talents that he got him made surveyor of public works for the county of Salop. His earliest bridge was that across the Severn at Montford, finished in 1792. In the following year be was appointed engineer of the Ellesmere Canal, which led to his being employed for the chief canals subsequently constructed in Great Britain, including the Caledonian (1804), the Gloucester and Berkeley (1818), the Grand Trunk (1822), the Macclesfied (1824), and the Birmingham and Liverpool Junction (1825). He was consulted in 1806 by the king of Sweden regarding the construction of the Gotha Canal between Lake Wener and the Baltic, and, his plans having been adopted, he visited the country in 1810 to superintend some of the more important excavations. In 1803 be had been appointed engineer for the construction of 920 miles of roads in the Highlands of Scotland, a great part through very difficult country. Of the numerous bridges built in this line of roads mention may be specially mado of that across the Tay at Dunkeld. Subsequently he parfected the road communication between London and Srotland and the northern towns of England. An undertaking of equal magnitude and importance with that in the Highlands of Scotland was a system of roads through the more inaccessible parts of Wales, which involved the erection of the magnificent suspension bridge across the Menai Straits, begun in 1820, and the Conway bridge, besun in 1822. For the Austrian Gorernment Telford built the Polish road from Warsaw to Brest. While the fame of Telford rests chiefly on his road and canal engineering, and the erection of the numerous bridges and aqueducts which this involved, he also did good work in harbour construction. In 1790 he was employed by the British Fishery Society to inspect the harbours on the north-east coast of Scotland ; and, besides constructing the important fishing harbour at Pulteneytown, Wick, he greatly improved those at the other principal fishing stations. His important works of this kind were, however, his improvement of the barbours at Aberdeen and Dundee, and the construction of the St Katherine's docks at London. In 1828-30 he drained the north level of the eastern Fen district, an arca of 48,000 acres. The erection of the Dean Bridge, Edinburgb, and of the Broomielaw Bridge, Glasgow, and the improvement (1833-34) ; Dover harbour were the principal achievements of his later years. He died on 2d Stptember 1834, and was buried in Westminster Abbey.
Telford was nover married. For twenty-one years ho lived at the Salopian coffee house, afterwards the Ship Hotel, Charing Choss. He was a fellow of the Royal Sociaties of London and of Eltinhurgh, and was annually elected president of the Institution of Ciril Engineers from its commencement. He received the Swedish order of knighthood "of Gustavus Vasa."
isee Telford's Menairs, written by hlmself and edited by Join Rlckman (1\{38); also Emfles: s Lives of the Engineers.
TELL. The story of William Tell's skill in shooting at and striking the apple which had been placed on the head of his little son by order of Gessler, the tyrannical Austrian bailiff of Uri, is so closely bound up with the leg:ndary history of tirg origin of the Swiss Confederation that they must be considered together. Both appear first in the 15th century, probabiy as results of the war for tho Toggenburg inheritance (1436-50); for the intense ha' red of Austria, greatly increased by her support of the claims of Zurich, favoured the circulation of stories which assumed that Swiss freedom was of immemorial antiquity, while, as the war was largely a struggle between the civic and rural elements in the Confederation, the notion that the (rural) Schwyzers were of Scandinavian descent at once separated them from and raised them above the German inhabitants of the towns.

The Tell story is first found in a ballad the first nine stanzas of which (containine the story) were ccrtainly
vritten before 1474. There is no mention made of the names of the bailiff or of his master, or of the hat placed on a pole. Tell is called "the first Confederate," and his feat is treated as the real and only reason why the Confederation was formed and the tyrants driven out of the land. It is probably to this ballad that Melchior Russ of Lucerne (who began his Chronicle in 1482) refers when, in his account (from Justinger) of the evil deeds of the bailifis in the Forest districts, he excuses himself from giring the story. He goes on to narrate how Tell, irritatec by his treatment, stırred up his friends against the governo, who seized and bound him and was conveying him by boas to his castle on the Lake of Lucerne, when a storm arosa, and Tell, by reason of his great bodily strength, was, after being unbound, given charge of the redter on his promise to bring the boat safely to land. Hu suers it tuswards a shelf of rock, called in Russ's time Tell's Platte, sp.ings on shore, shoots the bailiff dead with his crossbow, and goes back to Uri, where he stirs up the great strife which ended in the battle of Morgarten. In these two accounta, which form the basis of the Uri rersion of the origin of the Confederation, it is Tell and Tell only who is the actor and the leader. We first hear of the cruelties of Austrian bailiffs in the Forest districts in the Bernese Chronicle of Conrad Justinger (1420). No names or details are given, and the dates are different in the two recensions of the Chronicle as "olden days before Bern was founded" (i.e., before 1191) and 1260. Several details, but only one name, are added in the De Nobilitate et Rusticitate Dialogus (clp. 33) of Felix Hemmerlin, a canon of Zurich, who wrote it after 1451 and before 1454 ; in this last year he was imprisoned by the Schwyzers, whom be had repeatediy insulted and attacked in his books. 'According to him, the men of Schwyz and of Unterwalden were the first to rise, those of Uri following suit much later. But neither Justinger nor Hemmerlin makes any allusion to Tell or his feat.

The Tell story and the "atrocities" story are first found combined in a M.S. known as the White Book of Sarnen. They are contained in a short chronicle written between 1467 and 1476 , probably about 1470 , and based on oral tradition. Many details are given of the oppressions of the bailiffs: we bear of Gessler, of the meeting of Stonpacher of Schwyz, Fürst of Uri, and a man of Nidwald at the Rütli,--in fact, the usual version of the legend. To give an instance of tyranny in Uri, the author tells us the story of the refusal of "der Thall" to do reverence to the hat placed on a pole, of his feat of skill, and of his shooting the bailift, Gessler, from behind a bush in the "hollow way " near Küssnacht. Tell is represented as being one of those who swore at the Rütli to drive out the oppressors; but the narrative of his doings is merely one incident in the geueral movement which began quite independently of him. The chronology is rery confused, but the events are placed after Rudolph's election to the empire in 1273. This is the only account in which Tell is called "der Thall," which name be bimself explains by saying, "If I were sharp (voitzig) I should be called something else and not der Tall," i.e., the simpleton or slow-witted man. The only other known instances of the Uri version of the legend relating to the origis of the Confederation are the Latin hexameters of Glareanus (1515), in which Tell is compared to Brutus as "assertor patrix, vindex ultorque tyrannam," and the Urnerspiel (composed in 1511-12), a play acted in Uri, in which Russ's version is followed, though the bailiff, wbo is unnamed, but announces that he has been sent by Albert of Austria, is slain in the "bollow way." Tell is the chief of the Rütli leaguers, and it is his deed which is the immediate occasion of the rising against the oppressors, which is datcd in 1296. Mutius
(1540) is the latest writer who, in his description of the origin of the Confederation, does not mention Tell and his act. The two storics are now firmly bound together; the version contained in the White Book is the accepted one, though small adilitions in names and dates are often made.

The task of filling up gaps, smoothing away inconsistencies, rounding of the tale, was accomplished by Giles Tschodi ($q . v$.), whose recension was adopted, with a few alterations, by Von Mïller in his Itistory of the Confederation (1780). In the final recension of T'schudi's Chronicle (1734-36), which, however, differs in many particulars from the original draft still prcserved at Zurich, we are told how Albert of Austria, with the view of depriving the Forest lands of their ancient freedom, sent bailiffs (among them Gessler) to Uri and Schwyz, who committed many tyrannical acts, so that finally on 8th November 1307, at the Riütli, Werner von Stauffacher of Schwyz, Walter Fürst of Uri, Arnold von Melchthal in Unterwalden, each with ten companions, among whom was William Tell, resolved on a rising to expel the oppressors, which was fixed for New Year's day 1308. A few days later (November 18) the Tell incident takes place (described according to the White Book version), and on the appointed date the general rising. Tschudi thus finally settled the date, which had before varied from 1260 to 1334 . He utterly distorts the real historical relations of the Three Lands, though he brings in many real historical names, their owners being made to perform historically impossible acts, and introduces many small additions and corrections into the story as he had received it In particular, while in his first deaft he speaks of the bailiff as Gryssler-the usual name up to his time, except in the White Book and in Stumpfi's Chronicle of 1548 -in his final recension te calls him Gessler, knowing that this was a real name. Later writers added a few more particulars,-that Tell lived at Bürglen and fought at Morgarten (1598), that be was the son-inlaw of Fürst and had two sons (early 18th century), \&c. Johannes von Müller gave a vivid description of the oath at the Riitli by the three (Tell not being counted in), and threw Tschudi's version into a literary form, adding one or two names and adopting that of Hermann for Gessler, calling him of "Bruneck." Schiller's play gave the tale a world-wide renown.

The story was, on the ground of want of evidence, regarded as suspicious by Guilliman in a private letter of 1607, and doubts were expressed by the brothers Iselin (1727 and 1754) and by Voltaire (1754) ; but it was not till 1760 that the legend was definitely attacked, on the ground of its similarity to the story of Tokko (see below), in an anonymous pamphlet by Freudenberger, a Bernese pastor. This caused great stir; it was publicly burnt by order of the Government of Uri, and many more or less forged proofs and documents were produced in favour of Tell. The researches of J. E. Kopp ${ }^{1}$ first cleared up the real early history of the league, and overthrew the legends of the White Book and Tschudi. Since then many writers have worked in the same direction. Vischer (1867) has carefully traced out the successive steps in the growth of the legend, and Rochholz (1877) has worked out the real history of Gessler as shown in authentic documents. The general result has been to show that a mythological marksman and an impossibie bailiff bearing the name of a real family lave been joined with confused and distorted reminiscences of the events of 1245-47, in which the names of many real persons have been inserted and many unputhenticated acts attributed to them.
The story of the skilful marksman who succeeds in striking some s:nall ofject placed on the head of a man or child is very widely

Toowments for the Distory of the Forleral Allinnaces. 1835 and

spread: we find it in Denmark (Tokko), Norway (two versions), Iceland, Holstein, on the Rhine, and in Englaud (William of Cloudesley). How it came to be localized in Uri we do not know; possibly, throngh the story of the Scandinavian colonization of Schwyz, the tale was fitted to some real local hero.

The alleged proofs of the existence of a real William Tell in Uri in the 14 th century break down hopelessly. (1) The entries in the parish registers are forged. (2) As to the Tell chapels-(a) that iu the "hollow way" near Kiissnacht was not known to Melchior Russ and is first mentioned by Tschudi (1570). (b) Tbat on Tell's Platte is alse first mentioned in Tschudi. The document which alleges that the chapel was built by order of a "landsgemeinde" held in 1388, at which 114 men were present who had been porsonally acquainted with Tell, was never hcard of till 1759. The procession in boats to the place where the chapel stands may be very old, but is not connected with Tell till about 1582. (c) The chapel at Buirglen is known to have been founded in 1582. Other documents and statements in support of the Tell story have even less claim to credit. It has been pointed out above that with two exceptions the bailiff is always called Gryssler or Grissler, and it was I'sclndi who popularized the name of Gessler, though Grissler occurs as late at 1765 . Now Gessler is the name of a real family, the history of which from 1250 to 1513 has been worked our by Rochholz, wbo shows in detail that no nember ever played the part attributed to the bailiff in the legend, or could have done so, aud that the Gesslers conld not have owned or dwelt at the castle of Küssnacht; nor could they have been called Von Bruneck.

In the Urnerspiel the name of the bailiff's servant who guarded the hat on the pole is given as Heintz Vögely, and we know that Friedrich Vogeli was the mame of one of the chief military officers of Peter von Hagenhach, who from 1469 to 1474 administered for Charles the Bold, duke of Burgundy, the lands (Alsace, \&c.) pledged to him by Sigismund of Hapsburg. Now Hagenbach is known to have committed many cruelties like those attributed to the bailiffs in the legend, and it has been plausibly conjectured that his case has really given rise to these stories, especially when we find that the Confederates had a hand in his capture and-execution, that in a document of 1358 Hagenbachs and Gesslers appear side by side as witnesses, and that the Hagenbachs had frequent trans actions with the Hapsburgs and their vassals.
Among the vast number of books and pamphlets on the Tell etory, the two most to be recommended are W. Vischer, Die Sage von der Befreiung der Wald. staitt, Leipsic, 1867, and E. L. Rochholz, Tell und Gessler, with a volume of dacuments 1250-1513, Heilbronn, 1877. Convenient summaries of the controversy will be found in any modern book on $\$$ wiss history, and mare particnlarly in Q. von Wyss, Ueber d. Gesch. d. drei Lànder-Uri, Schwyz, u. Unterwalden -in den Jahren 1\$12.1315, Zurich, 1858 ; Alf Huber, Die Wraldställe bis zur festen Begriundung ihrer Eidgenossenschaft, mit einem Anhange über die geschicht. liche Steliung des With. Tell, Innsbruck, 1861 ; Albert Rilliet, Les Origines de la Confederation Suisse, Histoire el Ligende, Gene va, 1869.
(W. A. B. C.)

TELLER, Wilhelm Abraham (1734-1804), was the son of the Leipsic clergyman, Romanus Teller, who edited the earlier volumes of the Englisches Bibelwert (in 19 vols., 1749-70), an adaptation for German readers of the exegetical works of Willet, Ainsworth, Patrick, Poole, Henry, and others. Teller was born at Leipsic on 9th January 1734, and studied philosophy and theolagy in the university there. Anongst the men whose influence mainly determined his theological position and line of work was J. A. Ernesti. 'His writings present rationalism in its course of development from Biblical supernaturalism to the borders of deistical naturalism. His first learned production was a Latin translation of Kennicott's Dissertation on the State of the Printed Hebrew Text of the Old Testament (1756), which was followed the next year by an essay in which he expounded lis own critical principles. In 1761 he was appointed pastor and professor of theolegy in the university of Helmstädt. Here he pursued his exegetical, theological, and historical researches, the results of which appeared in his Lehrbuch des christlichen Glaubens (1764). This work threw the entire theological world into commotion, as much by the novelty of its method as by the beterodoxy of its matter, end more by its omissions than by its positive teaching, though everywhere the author seeks to put theological doctrines in a decidedly modern form. In consequence of the storm of indignation the book provoked. Teller eagerly accepted an invitation from the Prussian cultus minister to the post of prebendary of Köln on the Spree, with a seat in the Berlin consistory (1767). Here he found himself in the company of the rationat:istic theologians of Prussia-Sack, Spalding, and
ethers-and became one of the leaders of the rationalistic party, and one of the chief contributors to Nicolai's Allgemeine Deutsele Bibliothek. Teller was not long in making use of his freer position in Berlin. In 1772 appeared the most popular of his books, Wörterbuch zum Neuen Testument (6 th ed., 1805). The object of this work is to recast the language aud ideas of the New Testament and give them the form of 18tb-century illuminism. This Heb. xiii. 8 signifies the permanence of Christ's teaching, and, as the New Testament has no word for Christianity, "Christ" may mean sometimes His person and at others His doctrine or the Christian religion ; Col. i. 15 signifies the priarity of Christ to all other Christians. By this lexicon Teller lad put himself amongst the most advanced rationalists, and his opponents charged him with the design of overthrowing positive Christianity altogether. The edict of Wöllner (1788), and Teller's manly action as consistorialrath in defiance of $i t$, led the Prussian Government to pass upon hin the sentence of suspensian for three months, with forfeiture of his stipend. He was not, however, to be moved by such means, and (1792) issued his work Die Religion der Yollkonmeneren, an exposition of his theological position, in which he advocated at length the idea, subsequently often urged, of "the perfectibility of Christianity,"-that is, of the ultimate transformation of Christianity into a schenue of simple morality, with a complete rejection of all specifica!ly Christian ideas and methods. This book represents the culminating point of German illuminism, and is seprrated by a long process of develapment from the anthor's Lehrluch. Teller died on 9 th December 1804. [n aldition to the above works bo wrote Anleitung zur Religion illerhaupt und zum Allgemeinen des Christenthums iusbesondere (1792) ; and; besides his contributions to the Allgemeine Deutsche Bibliothek, he edited a papular and practically useful Mrogazin für Prediger (1792-1801).
Seo Gass, Geschichte der protestantischen Dogmatik, iv. pr. 206. 222 ; Tholuck, art. "Teller,", in Herzog. Plitt' Deutsche Kanselrcdner des 1 Stcn und 19ten Jahrh., P. 506 sq.; Pusey, Causes of the Late Rationalistic Character of Gernan Theology (18:28), p. 150.
TELLeZ, Gabriel (c. 1570-I648), Spanish dran atist, better known as Tirso de Molina (bis nom de plune), was born about the year I570, and about 1613 entered the order of the Brothers of Charity at Toledo. In 1645 he became prier of the nonastery of the order at Soria, There he died in 1648.
Hise dramatic works are said to have numbered nearly 300 , but of these only a small proportion are now extant. A selectiou of the best of, them was edited by Hartzenbusch in 1839.42 (Madrid, 12 vols.). See Drasa, vol. vii. p. 421 , add Spanisn Litcrature, vol. xxii. p. 359.
TELLICHERRI, a seaport town of India, in Malabar district of Madras, situated in $11^{\circ} 44^{\circ} 53^{\prime \prime} \mathrm{N}$. lat. and $75^{\circ} 31^{\prime} 38^{\prime \prime}$ E. long. It is a healthy and picturesque town, built upon a group of wooded hills runing down to the sea, and is protected by a natural breakwater of rock. The town with its suburbs occupies about 5 square miles, and was at one time defended by a strong mid wall. Tho citadel or castle still stands to the north of the town. The East India Company established a factory hero in 1683 for the pepper and cardamom trado. For two years (1780-82) the town withstood a siege by Hyder's general Sardár Khín, and ir the subsequent wàrs with Mysore Tellicherri was the base of operations for the ascent of the Gbáts from the west coast. In 1881 the population was 26,410 .
tellurit'm. See Selenium and Tellurida.
telpherage. See Traction.
TEMESVAR, a royal frea city and capital of the county of Temes, is the chief town of soutb-eastern Ilungary It lies on the narigahle Bega, Canal and the river Tega, in $45^{\circ} 47^{\prime} \mathrm{N}$. lat and $21^{\circ} 14^{\prime} \mathrm{E}$. lans. The innes towa is
fortified and separated from the suburhs by a glacis, now partly converted into a park. Temesvár is the scat of the Roman Catholic bishop of Csanád and of a Greek bisholv as also of several Government departments of great ins partance, and of one of the fifteen army corps of the Austrian-Hungarian army. The majority of the inhalitants follow industrial and commercial pursuits, and carry on a brisk trade in grain, flour, spirits, fruits, flax, and Lemp with the neighbouring districts and with Roumania and Servia, by means of the Arad-Tenesvar and tho Austrian-Hungarian State Railvays, a_{0} well as by the Réga Canal and by road. The town possesses many charitable and educational establishments, and is a favourite place of residence on account of its neatness and cleanliness. It has been lighted by electricity since 1883. Among tho build ings specially worthy of notice are some fine old churches, a new theatre, and a synagogue in the Byzantine style. Temesvár played an important part in the Turkish wars and in that of 1848-49. The population was 37,500 in 1886.
temphinck, Konrad Jacob (1778-1857), kecper of the Leyden museum of natural history, was especially distinguished as an ornithologist, and was the author of many magnificently illistra+ed systematic' works. Sce Ornithology, vol. xviii. p. 1 I sq.

TEMPE. Seo Thessaly.
TEMPERA, or Distemper, ${ }^{1}$ is a method of painting in which solid pigments are employed, mixed with a water medium ${ }^{2}$ in which some kind of gum or gelatinous substance is dissolved to prevent the colours frem scaling off. Termpera is called in Italy "fresoo a scceo," as distinguished from "fresco buono," or true fresco, painted on freshly laid patches of stucco. The peculiarities of true fresco are described in vol. ix. p. 769 sq . The disadvantages of tempera painting are that it will not bear exposure to the weather; the pigments merely lie on the surface and do not sink into the stucco, as is the case with true fresco pigments; moreover, the medium used, being soluble in water, will not stand the rain. Its advantages are that the painter can work at leisure, and can also transier or sketch his whole design on the dry finished surface ; while in fresco work each portion of the design is hidden piece. meal as each nev patch of stucco is applied (see Raphafl, vol. xx. p. 279). Another important point is that a far greater variety of pigments can be used in tempera painting, as thev are not subjected to the caustic action of wet lime. Lasily, tempera painting can be applied to ary substance, such as dry plaster, wood, stone, terracot a a, velium, and paper. ${ }^{3}$ Various media have been used for tempera work, such as the glutinous sap of the fig and other trees, various gums which are soluble in water, and size made by boiling down fish-bones, parchment, and animals' hoofs. In more recent times a mixture of egg and vinegar has been found to make a good medium, especially when it is desirable to apply the colours in considerable body or impasto. Painting in tempera is probably the oldest method of all, and was used in ancient Egypt very largely, as can bo seen by au examination of the many existing examples on papyrus or wood and stona thinly coated with a skin of fine plaster (gesso). Other ancient examples have been found in Babylan and Ninerch, and for internal work it appears to have been much enployed by the Greeks. To some extent tempera was used by the Romans, though in most cases a combination of fresco and encaustic (hot wax) was employed for their inural decoration (see vol. xvii. p. 42).

F For some account of tempera painting in classicat and medixva" limes, seo Mirmal Decoration, vol. xvii. pp. 39.47
${ }^{9}$ Heace it ored to be called " water-work"; sce Shakespeare, H_{ε} 'e :1., part ii., act ii. sc. 1
${ }^{3}$ Miniatures and illumivated letters in medixval MSS. were paista 1 with vory tinely asound colours mincd with a templera nuedium.

In medirval times, from the 6th century in the Byzantium of Justinian down to the 14th century, most painting, whether on walls or panels, was executed in tempera, though in many ceses it appears to have been the custom to put in the coloured ground in true fresco, and, when that was dry, paint on it the complete picture with a tempera medium. This was the method used in the Byzantine wall-paintings in_the churches of Thessalonica, Mount Athos, and elsewhere. A similar practice exister in England and other northern countries, ${ }^{1}$ as in the very complete series of paintings on the walls and vault of the chancel of Kempley church, Gloucestershire, dating from about 1100. Most commonly, however, in England as in France and Germany the whole painting was done in tempera, the finished surface of the plaster being first covered with a wash of old slaked lime or whitening. As a rule every inch of stone, whether carved, moulded, or plain, in the cathedrals and other churches of medixval France, England, and other countries was covered with this thin coating of white, and then elaborately decorated with tempera painting. In those rare cases where want of money prevented the application of colour the stone-work of the interior received the coat of white, so that at any future time the colouring might be added, and also because the feeling of the Middle Ages evidently was that hare stone inside a building had an unfinished and uncomfortable look, ${ }^{2}$ and was quite as unsuitable in a richly decorated and furnished cathedral as it would now bo considered in a lady's drawing-room. The additional splendour gained by the use of minute patterns stamped in gesso, thinly laid over the surface of the stone, is descrileil in Mural Decoration, vol. xvii. p. 47 ; see also fig. 17.

Temperr in Italy.-For panel and canvas paintings tempera continued in use till nearly the end of the 15 th century, when the Flemish method of oil painting gradually took its place. In many cases with panel pictures of the latter part of the 15 th century it is now difficult, if not impossible, to be sure whether they were rainted in tempera or in oil, either because both methods were com-bined-the picture being begun in tempera and finished with oil glazings-or because an oil varnish has been laid over the tempera pictures, and so the pigments hare absorbed oil out of the varnish and have thus practically become associated with an oil medium. In some cases slight peculiarities of brush-work bear witness to one medium or the other; lut these appearances are often deceptive, and any real certainty on the point is unattainable. The round panel of the Madonna and St Joseph by Michelangelo may be mentioned as an exanple of these doubtful cases.

In the main the earlier tempera easel pictures were jainted on wood,-pear, joplar, or walnut being commonly used; but a fev painters preferred in some cases to use canvas. ${ }^{8}$ The National Gallery of London possesses a very beautiful example of this, 一the Entombment, attril,uted to Van der Weyden (see Schools of Painteng, vol. zxi. p. 438, fig. 29), which is most delicately and yet powerfully painted on linen without any priming. Usually Loth panels and canvas were prepared for tempera by being covered with a fine priming or coating of gesso (plaster). Some later painters used marble dust ; others unfortunately used white lead, which has since blackened through the absorytion of gases from the air.

[^50]In the case of wall paintings, loth ten rera and fresco ${ }^{4}$ were used together, -the proportion of fresco work being gradually increased. In the 13th and most of the 14 th. century little more than the groundwork of the picture was painted in fresco, though this varied according to this custom of each painter. In the 15th century increastd technical skill and rapidity of execntion allowed much more complete work to be done in fresco, till at last nothing but a few finishing touches were done in tempera. Fur this, exceptional certainty of touch and speed of executicn were required, and some weaker painters never attainel to a very complete mastery over the fresco 1 rocess. Tle brilliant series of wall paintings by Pinturicchio in the cathedral library at Siena contain a very large proportisn of tempera work, in spite of which they are still iu a wonderful state of preservation. Raphael's rapill advance in the mastery of fresco-work is clearly shown in his paintings in the Vatican stanze, each one of which is carried to a furthir stage in true fresco than the preceding. Thus the earliest painting of the series (the Disputa) is very largely executed in tempera, while some of the later ones ale nearly completed in fresco, and show the most perfect skill in that difficult process. Michelangelo was specially rimarkable for his great power in fresco, and carried his Sistine paintings to a very advanced stage before touching them with tempera. Sad to say, what tempera finishing touches he did apply have mostly been scraper off during the many cleanings and repairs that these works hare undergone; and the same misfortune has happened to a large number of other important pictures. Tempera was specially used for paintings on canvas which were intended to be hung like tapestry, as, for example, the fine 15th-century series at Rheims and Mantegna's Triumph of Julius Cæsar at Hampton Court. ${ }^{5}$ It was also much used for large cartoons, such as Raphael's tapestry designs, now in the South Kensington Museum. After the first half of the 16 th century the increasing use of oil painting, assisted by the artistic decadence of the age, caused the gradual disuse of both fresco and tempera.

A third process, often used during the earlier Middle Ages, was a sort of compromise between tempera and fresco. A finished stucco surface was prepared as for ordinary tempera, hut before each day's painting the plaster π as soaked with water, so that the pigments, laid on to the wet plaster, to some extent sank below the surface, though without penetrating as deeply as they would on nenly mixed stucco.
(3. ․ . і. .)
TEMPERANCE SOCIETIES. ${ }^{8}$ The modern temperance movement may be said to date from the publication at Philadelphia, iu 1785, of Dr Benjamin Rush's essay on "The Effects of Ardent Spirits on the Human Body and Mind," w hich was republished in the Gentleman's Magazine of 1786 , and had a wide circulation. The distinction which he draws between distilled and fermented liquors has, however, no foundation in fact, the difference being one of degree anil not of kind. In 1808 Dr Lyman Beecher and Dr B. J. Clark, both readers of Rush, took action, and the result of the nork of the latter was the formation of What is Leliered to be the first modern temperance society. It was formed in Greenfield, Saratoga county, New York, as an anti-spirits association, and still remains a teetotal society. This example was soon followed elsewhere, the early societies all restricting their scope io advocacy of moderation in the use of distilled liquors, and placing no inluibition upon fermented drinks. One society had a

[^51]byelaw requiring any member who became intoxicated to treat all the other members. The work made further progress when the American Temperance Society was founded in 1826. Three years later Prof. John Edgar of Belfast called attention to the need for similar work in Ireland; and John Dunlop nearly at the same time organized a temperance seciety in Glasgow. In 1830 the first English temperance society was founded at Bradford. The habitual use of fermented liquers in England was a prolific source of drunkenness, and the evil was greatly increased by the passing of the Beer Act in October 1830. Hence some of the reformers began to abstain from all forms of alcohol. This new departure found its leader in Joseph Livesey of Preston, a man of singular zeal and benevolence, who with six others signed a pledge of total abstinence on 1st September 1832. The reformers were soon divided over the fierce "battle of the pledges." Some were willing to pledge themselves to abstain, but not to refrain from previding alcoholic drink for their visitors. After the formation of the distinctive total abstinence organizations, the moderation societies died of inanition. It should be mentioned here that the Society of Bible Christians, founded at Salford in 1809, adopted the rule of abstinence from flesh meat and intoxicants, and that a number of the "radical reformers" were abstainers from a desine to diminish the public revenue, which they regarded as devoted to wrong purposes by the Government of the day. In Ireland Father Theobald Nathew became president of the Total Abstinence Society in Cork in 1838, and the "pledge" was taken from his hands by crowds; before he died in 1850 between three and four million persons are said to have received it from him in the course of his journeys. J. S. Buckingham secured the appointment of a committee of the House of Commons, which sat in June 1834, to inquire into drunkenness. The adjective "teetotal" was first used in September 1833 by Fichard Turner, a reformed drunkard, to express the theroughgoing principle of total abstinence, but whether he coined the word, or whether it was merely a stuttering pronunciation of "total," or an old dialect werd has been disputed; Prof. Skeat (Etym. Dict., s.v. "Teetotal") believes it is an emphasized form of "total," formed on the principle of reduplication. The early teetotallers were earnest missionarics. Iu consequence of their efforts societies and leagues multiplied, periodicals were established, and, notwithstanding many failures and apparent retrogressions, the temperance movement progressed. One of the chief forms of thrift amongst the artisan ciass was that of the friendly society, the meetings of which were usually held at thie public-house, large sums being spent (sometimes by rule) on liquor. In 1835 the Independent Order of Rechabites was formed at Salford, and has since had a prosperous career as a workingclass insurance company on temperance principles. The Sons of Temperance and the Total Abstinent Sons of the Phenix are similar organizations. The sickness and death-rate ariong members of these bodies is much below that of the ordinary friendly societies. The beneficial effect of abstincuce upon health and longevity is shown by the experience of the United Kingdom Temperance Provident Institution, the example of which has led several large insurance comparies to add a special section for teetotallers. The statistics of these offices show that the mortality of the ordinary insured is considerably heavier than that of the abstainers. A vehement controversy arose at an early period as to the uss of sacramental wine, and the nature of the mines mentioned in Scripture was discussed in innumerable pamphlets. The result has been that in a number of cases the wine now used for sacramental purposes is understood to ho wutet
mented. The cosmopolitan character of the movement was shown by the meeting of the World's Temperance Convention at London in 1846. The Scotch United Presbyterian Abstinence Society, originated in 1845, was one of the first of the church societies; and there are now few, if any, religious denominations either in England or America in which such organizations are wholly wanting. The Church of England Temperance Society has twe sections, one pledged to the temperate use of intoxicants and the other to total abstinence This method of organizing has found imitators. The enactment of the Maine Liquor Law in America in 1851 (see vol. xv. p. 299) led to the formation, in 1853, of the United Kingdom Alliance, which has for its object the suppression of the liquor trafic by legislation, and with a view to this suggests that a power of local vete should be placed in the hands of the ratepayers. This proposal took parliamentary form in the Permissive Bill of Sir Wilfrid Lawson, which was ultimately withdrawn and replaced by a "local option" resolution, which has been thrice affirwed by the House of Commons. Temperance hotels, temperance cafés, British workmen public-houses, cocoa houses, coffee palaces, tectotal clubs, have arisen in many places as social aids of the temperance movement.

In 1868 the Good Templar order was introduced into England from the United States, where it had come into existence several years earlier. In England it made rapic progress, until it was seriously checked by a dispute arising out of the Negre question; but the two sections have again reunited (1887). Good Templary is the freemasonry of temperance, with ritual, passwords, grips, icc., closely modelled on those of the old secret societies. It has had a remarkable extension in Great Britain, the United States, the British colonies, and in Scandinavia, its aggregate membership now reaching over 623,000 . One of its results has been the foundation of a temperance orphanage at Sunbury-on-Thames. Side by side with the general movement there has been a special movement against the use of alcohol as medicine, and the tendency of medical teaching now favours at least restriction of its use as a therapeutic agent. The London Temperance Hospital for the non-alcoholic treatment of disease was opened in October 1873. The impertance of training the young was early recognized by the leaders of temperance reformation, and the labours of Dr R. B. Grindrod of Manchester and Mrs Carlile of Dublin led to the formation of bands of hope, which are now found in connexion with many places of worship. The juvenile temples of the Good Templar order alsn work in the same direction. The Woman's Christian Temperance Union, founded in the United States in 1874, is one of the latest forms of terperance activity. A branch was organized in Great Britain in 1876; and in 1883 the World's Women's Temperance Union came inte existence.

The temperance morement has now, branched ont into a manlitude of organizations in the United Kíngdom, of which the Rail. way Temperance Union, the post-office temperance societies, and associations connected with the army and nary are types. Tho organizatious of a wore gencral character are tho United Eingdom Alliance, which is very active in the dissemination of teetotal doctrines generally, the National Temperance League, the Scottish Temperance League, tho British Tcmperance League, the Scottish Permissive Bill Association, the Irish Temperanco League, and tho Irish Association for the Prevention of Intemperance. There are also large district and county societies. Next to theso ceme tha secret orders, of which the Rechabites, Sons of Temperance, Sins of -the Phoenix are large bencfit societies. The Independent Ordir of Good Templars is non-beneficiary, and seaks in its "lodges" to provide social attractions, and at the same time to train the mem. bers in temperanco work; it is probably the largest voluntary association in the world. There are societics in connexion with the varions religious bodies, of which the Church of England Evuperanco Society, the Catholic League of the Cross, tho Daptist Thtal Abatinence Society, are promincat instanecs.

The oldest organization in America is the Sons of Temperance (1842), now numbering; about 80,000 members. The Indepeudent Order of Good 'Templars (1851) is the largest, its membership epproaching 100,000. Both these, as also the Royal Templars of Temperance (1877) and the Templars of Honour and Temperance (1845), are mutual benefit societies. The Woman'e Christian Temperance Union, the National T'emperance Socicty and Pub. Lication House (New York), and the National Prohibition Party gre octive in clucational work. The Woman'e Christian Temperence Union is the outgrowth of "the Women's Crusade" (1872), a femarkable uprising among the women of Olio and Pennsylvania against the liquor traffic. The organization was effected in 1874, and has since spread throughout the United States, its memberhip now (1887) uumbering 207,000. Its influence las been sidely felt in legislatures and in elections in which prohibitory lawe have been voted upon. With the exception of the Church Temperance Society of tho Protestant Episcopal Church, which bas the "double basis," all the temperance societies of the United States are based on the dactrine of total abstinence; and, with the additional exception of the Father Mather Total Abstinence Bocieties of the Roman Catholic Church, they all odvocate the principle of prohibition. Amendments embodying this idea have been inserted in the State constitutions (by popular vote) of Maine, Kansas, and Rhode Island. In Vermont and Iowa the legislature has enacted statutory prohibition, which is still in force. In other States local prohibition prevaila to a large extect, chiefly in Georgia, Mississippi, Massachusetts, Tennessee, Kcntucky, ond Arkansas.
Bibliography.-The literature of the subject is very extensive and' may most conveniently be classed under the following headd (1) Hisfory: P. T. Winskill, History of the Temperance Reformation; One Hundred Years of Tem. perance (Now York, 1880゙); Dorchester, Liquor Problem in all Ages (New York) ; Willard, woman and Temperanco (Hartford); Sbaw, Great Temperance Reforms (Toronto). (2) Theolony: Dawson Burna and F. R. Lees, Temperance Bible Commentary; J. Snith, The Church and the Temperance Reformation; bamson, Divino Laro as to Wincs (Philalel phia). (3) GENERal: A. Gustafaon, The Foundation of Death; R. B. Grindrod, Our Nation"s Vice; D. Burns, Basts of the T'emperance Reformation; Grindrod, Dacchus; B. Parsons, Anti-Bacchus; Powell, Bacchus Dethroned; Baker, The Curse of Britain ; J. Dunlop, Philosophy of Drinking Usagcs (1839): The Political Prohilitiontst (New York, 1887) ; Pitman, Alcohol and the State (New York). (4) Political Economit F. R. Lees, Argument for the Protibitiont of the Ltquor Traffc; W. Hoyle, Our National Resources; Hargreaves, Our IFasted Resources (Nivew York). (5) Science: J. Livesey, The Mlalt Liquor Lecture; P. Burne, Tetoteller's Companion; W. B. Carpenter, Physiology of Temperance cind Total Abstincuce; A. A. Reade, Study and Stimulanls; Miller, Alcohcl, its Place and Pover: Id., Nephalism; B. W. Richardson, Cantor Lectures on Alcohol; Hargreaves, Alcohol and Science (New York). (6) Fiotions : novels and tales embodying teetotal principles have been written by Mrs Henry Wood, Mrs H. B. Stowe, Mrs. C. L. Balfonr, Mr Jobn Zabberton, Mr Edward Jenkins, Mrs 8. C. Hall, Mrs Eilis, and many others. (7) Periodioals: the temperance periodicals isaued in Great Britain now number about fifty.

TEMPLAPS, Knights. Perhaps the most renowned of the three great military orders founded in the 12 th century for the defence of the Latin kingdom of Jerusalem is that of the Knights Templars (pauperes commilitones Christi templique Salomonici), though abolished long before its rivals. It differed from the Hospitallers and the Teutonic Knights in having been a military order from its very origin, inas much as its earliest menbers banded themselves together for the express purpose of giving armed protection to the numerous pilgrims who, after the first crusade, flocked to Jerusalem and the other sacred sites in the Hoiy Land. Walter Map has preserved the legendary story of their first arhievements, from which it would appear that their earliest efforts were confined to the immediate neighbourhood of Jerusalem; and the memory of their original aim may perhaps be traced from fifty to seventy years later, when they condncted Henry of Saxony from their own quarters on Jount Moriah to the banks of Jordan, or when on the fall of the Doly City (1187) they protected the vanguard of the Cbristians on its way from Jerusalem to Tripoli. The three orders were distinguished from each other wy their garb. The Hospitallers wore black mantles with white crosses, the Templars white mantles with a red cross, the Teutonic Knjghts white mantles with a black cross. ${ }^{1}$
'he Templars almost from their foundation had their quarters in the palace of the Latin kings, which had been the mosque of Nount Noriab. This palace was also known as Solomon's temple, and it was from this tentplum Salomonis that the Templars took their name.

About the year 1118 a Burgundian knight, Hngh de
? William of Tyre, xi. c. 7, viil. 3. xviii. 3-6: James de Vitry, IIist. Hieros. 60-67.

Paganis, bound himself and eight comrades by a vow to t_{136} patriarch of Jerusalem to guard the public roads, to live as regular canons, and to fight, for the King of Heaven in chastity, obedience, and self-denial. Baldwin [I. grantod them quarters on Mount Moriah and recommended their cause to St Bernard. Under his patronage the papal legat ${ }^{\text {a }}$ Matthew, bishop of St Albano, presided at the conncil of Troyes in Jannary 1128 for the purpose of drawing ul or confirming the statutes of the new order. The seventy-twa statutes then drawn up met with the approval of Pope Honorius II. and the patriarch of Jerusalem, and became the groundwork of the later and more elaborate "Regle" du Temple." Long before St Bernard's death (1153) the new order was established in almost every kingdom of Iatin Christendom. IIenry I. granted them lands in Normandy. They seem to have been settled in Castile by 1129 , in Bochelle by 1131, in Languedoc by 1136, at Rome by 1138 , in Brittany by 1141, and in Germany at perhars a still earlier date. Alphonso I. of Aragon and Navarre, if we may trust the Spanish historians, bequeatled them the third of his kingdom (Mariana, x. c. 9). Raymond Berengar, count of Barcelona, and Alphonso's successor in Aragon, whose father had been admitted to the order, granted them the strong castle of Monçon (1143), and established a new chivalry in imitation of theirs. Louis VII. in the latter years of his reign gave them a piece of marsh land outside Paris, which in later times became known as the Temple, and was the headquarters of the order in Europe. Stephen of England granted them the manors of Cressing and Witham in Essex, and his wife Matilda that of Cowley, near Oxford. Eugenius III., Louis VII., and 130 brethren were present at the Paris chapter (1147) when Bernard de Balliol granted the order 15 librates of land near Hitchin; and the list of English Lonefactors under Stephen and Henry II. includes the noble names of Ferrers, Harcourt, Hastings, Lacy, Clare, Pere, and Mówbray.

After the council of Troyes Hugh de Paganis came to England and induced a number of English knights to follow him to the Holy Land. Amongst these was Fulk, count of Anjou, who would thus secm to have been a Templar before assuming the crown of Jerusalem in 1131." Hugh Easly de Paganis died about the jear 1136 and was succeeded by Robert de Craon, who is said to have been Anselm's nephew. Everard de Barris, the third master, was conspicuous in the second crusade. In the disastrous march from Laodicea to Attalia his troops alone kept up even the show of discipline; and their success prompted Louis VII. to regulate his whole army after the model of the Templar knights. In the French king's distress for money the Templars lent him large sums, ranging from 2000 silver marks to 30,000 solidi. When Conrad III. of Germany reached Jerusalem he was entertainedat their palace (Easter 1148); and in the summer of the same year they took part in the unsuccessful siege of Damascus. The failure of this expedition was ascribed by a contemporary writer to their treachery, -a charge to which Conrad would not assent. This is the first note of the accusations which from this time were of constant recurrence. ${ }^{2}$

Henceforward for 140 years the bistory of the Tempfars is the history of the Crusades (q.v.). In 1149 the Templars were appointed to guard the fortress of Guza, the last Christian stronghold on the way towards Egypt. Four years later the new master, Bernard de Tremelai, and forty of his followers, bursting into Ascalon, wero surrounded by the Saracens and cut off to a single man. William of Tyre has preserved the scandal of the ding when he bints that they met a merited fate in their eage:ness to possess themselves of the city treasure. Next year
the rumour went avroad that they had sold a noble balf. converted Egyptian prince, whe had fallen into their hands, to chains and certain death for 60,000 aurei. In 1166 Amáric, the Latin king of Jerusalem, hanged twelve Templars on a charge of betraying a fortress beyond the fordan to an emir of Núr al-Dín of Damascus. The military power of Núr al-Din (1145-1173) was a standing menace to the Christian settlements in the East. Edessa kad fallen to the prowess of his father (1144-45); Damascus was conquered by the son (1153), who four years earlier had carried his depredations almost to the walls of Antioch, and in 1157 laid siege to the Christian town of Paneas near the sources of the Jordan. In the disastrons fight that followed for the safety of the fortress of the Hospitallers, Bertrand de Blanquefort, the master of the Templars, and Odo de St Amand, one of his successors, were taken prisoners. Bertrand was released later when Manuel was preparing to march against Núr al-Dín. The Templars do not seem to have opposed Amalric's early expeditions against Egypt. It was Geoffrey Fulcher, the Templar correspondent of Louis VII., who brought back (1167) to Jerusalem the glowing accounts of the splendour of the caliph's court ai Cairo with which Gibbon has enlivened his great work. Nor was the order less active at the northern limits of the Latin kingdom. Two English Templars, Gilbert de Lacy and Robert Mansel, "qui Galensibus præerat," starting from Antioch, surprised Núr alDin in the neighbourhood of Tripoli and put him barefooted to flight. But jealousy or honour led the Templars to oppose Amalric's Egyptian expedition of 1168; and the wisdom of their advice became apparent when the renewed discord on the Nile led to the conquest of Egypt by Asad al-Din Shirkúh, and thus indirectly to the accession of Saladin, in 1169. In 1170 they beat Saladin back from their frontier fortress of Gaza; and seven years later they shared in Baldwin IT.'s great victory at Ascalon.

Meanwhile Saladin had possessed himself of Emesa and Damascus (1174-75), and, as he was already lord of Egypt, his power hemmed in the Latin kingdom on every side. In July 1173 Amalric was succeeded by his son Baldwin IV., a boy of twelve. Raymond III., count of Tripoli, a man suspected of being in league with the Saracens, was appointed regent, although in 1176 the masters of the Templars and the Iospitallers united in offering this office to the nemly arrived Philip of Flanders. The construction of the Templar fortress at Jacob's ford on the upper Jordan led to a fresh Saracen invasion and the disastrous battle of Paneas (1179), from which the young king and the Holy Cross escaped with difficulty, while Odo de St Amand, the grand-master, was carried away captive and never returned.

During Odo's mastership the Old Man of the Mountains sent to Amalric offering to accept the Christian faith if released from the tribute he had paid to the Templars since (according to the reckoning of M. Defrémery) somewhere about 1149 . The Templars murdered the envoys on their return (c. 1172). Amalric demanded that the offenders should be given up for justice. Odo refused to yield the chief culprit, though he was well knom, and invoked the protection of the pope. Amalric had to vindicate his right by force of arms at Sidon, and died while preparing to take stronger measures. The connexion between the Templars and the Old Man was still vital eighty years later when the two grand-masters rebuked the insolence of the Assassin envoys in the presence of Louis IX. Odo de St Amand was succeeded hy Arnold de Torroge, who died at Verona on his way to implore European succour for the Holy Land. The power of Saladin was now (118t) increasing daily ; Baldwin IV. was a leper, and his realm was a prey to riral factions. There were two ciaimants
for the guardianship of the state,-Raymond "III. of Tripoli and Guy de Lusignan, who in 1180 had married Sibylla, sister of the young king. Baldwin inclined to the former, against the patriarch and Arnold de Torroge.

There is something Homeric in the story of the fall of the Latiu kingdom as related by the historians of the next century. A French knight, Gerard de Riderfort or Bideford, coming to the East in quest of fortune, attached himself to the service of Raymond of Tripoli, looking for the hand of some wealthy widow in reward. But on his claiming the hand of the lady of Botron he was met with arcfusal. Angered at this, Gerard enrolled himself among the Templars, biding his time for revenge, and was elected grand-master on the death of Arnold. Baldwin IV. died (1185), leaving the throne to his young nephew Baldwin V., the son of Sibylla, under the guardianship of Raymond, Whose office was not of long duration, as the little king died in September 1186. This was Gerard's opportunity. The Templars carried the body of their dead overeign to Jerusalem for burial ; and then, unknown to the barons of the realn, Gerard and the patriarch crowned Sibylla and her lusband Guy. The coronation of Guy was the triumph of Reginald of Clâtillon, once prince of Antioch, and Saladin's deadliest foe. It was at the same time the overthrow of Raymond's ambition ; and both Latin and Arabic writers are agreed that the Christian count and the Mohammedan sultan now entered into an alliance. To break this friendship and so save the kingdom, the two grand-masters were sent north to make terms with Raymond. But the rash valour of the Templars provoked a hopeless contest with 7000 Saracens. The grand-master of the Hospitallers was slain ; but Gerard made his escape with three knights to Nazareth (Ist May 1187). In this emergency Raymond became reconciled with Guy; and Gerard placed the temple treasures of Henry II, at his king's disposal. Once more it was the Templars' rashness that led to the disastrous battle of Hittin (4th July). Gerard and the king fell into the hands of Saladin, but were released about a year later; Raymond of Tripoli made his escape through treachery or fortune; and 230 Templars fell in or after the battle, for the fght was scarcely over before Saladin ordered all the Templars and Hospitallers to be murdered in cold blood. One after another the Christian fortresses of Palestine fell into the hands of Saladin. Jerusalem surrendered on 2d-3d Octo- Fall oll ber 1187 , and the treasures of the temple coffers wero Jero; used to purchase the redemption of the poorer Christians, part of whom the Templar warriors guarded on their sad march from the Holy City to Tripoli. Part of their wealth was expended by Conrad of Montferrat in the defence of Tyre; but, when this prince refused to admit Guy to his city, both the Templars and the Hospitallers from the neighbouring parts flocked to the banner of their released king and accompanied him to the siege of Acre (22d August 1189). In his company they bore their part in the two years' siege and the terrible famine of 1190-91; and their grand-master died in the great battie of 4 th October -1189, refusing to survive the slaughter of his brethren.

On the fall of Acre Philip Augustus established himself in the palace of the Templars, whe are, however, stated to have sympathized with Richard. This king sold them the island of Cyprus for 100,000 besants ; but, unable to pay the purchase money, they transferred the debt and the principality to Guy of Lusignan. The English king consulted them before deciding on any great military movement; and in June 1192 they advocated the bold plan of an advance on Egypt rather than on Jerusalem. In the disputes for the Latin kingdom of the East the Templars secm to hare supported Guy, inl, like Richard, were credited with haring bad 3 hand in the murder of Conrad
of Montferrat (April 1192). It was in the disguise of a Templar and in a Templar galley that Richard left the Holy Land. When Acre was recovered, the Templars, like the Hospitallers, received their own quarters in the town, which from this time became the centre of the order. On the death of Henry of Champagne (1197) they retoed the election of Raoul de Tabarie; after the death of his successor Amalric they refused to renew the truce with Saladin's brother, Saif al-Din, and led au expedition against the Saracens before the arrival of the new king, Joln de Brienne, at whose coronation in 1210 William de Chartres, the grand-master, was present. Seven years later, with the aid of Walter de Avennis and of the Tentonic Knights, they commenced the building of their fortress of Castle Pilgrim, near Acre, on a rocky promontory washed by the Mediterranean on every side except the east. This wonderful structure, whose ruins are still to loe seen, was fortified with a strong wall, founded on the substructure of a yet more extensive one running from sea to sea, and was flanked by lofty towers of hage squared stones. Within was a spring of pure water, besides fishןonds, salt-mines, woods, pastures, orchards, and all things fittel to furnislı an abode in which the Templars might await the day of their restoration to Jerusaleri.
It was from this castle that in May 1218 the fifth crusade started for the expedition against Egypt. The Templars were the heroes of the siege of Jamietta, at which William de Chartres was slain. "First to attack and last to retreat," they saved the Christian army front annihilation on 29th August 1219; and when the city surrendered (5th November) the only one of its treuty-eight towers that had begun to give way had been shaken by their engines. On the other hand, it was largely owing to their objections that John de Brienne refused the sultan's offer to restore Jerusalem and Palestine.
From the very first the Templars seem to lave been opposed to Frederick Π., and when he landed at Acre (7 th September 1228) they refused to march under the banuers of an excommunicated man, and would only accompany his host from Acre to Joppa in a separate body. They were accused of notifying Frederick's intended pilgrimage to the Jordan to the sultan, and they were certainly opposed to Frederick's ten Jears' peace with Al-Kámil, the snltan of Egypt, and refused to be present at his coronation in Jerusalem. Frederick was not slow to avenge himself: he left Jerusalem abruptly, publicly insulted the grand-master, demanded the surrender of their fortresses, and even laid siege to Castle Pilgrim. He left Acre on 3d May 1229, and on landing in Apulia gave orders to seize the estates of the order and chase all its members from the land.

Long before the expiration of Frederich's peace Europe was preparing for a fresh crusade against the now divided realm of the Ayyulids. Theobald of Navarre and his crusaders reached Palestine about August 1239. The Templars shared in the great defeat near Jafia, an engagement which their temerity bad done much to proroke (13 th November 1239). If the king ever accepted the overtures of Salih of Damasulus, he was supporting the policy of Hermann of Perigerd, 'the grand-master, who towards the summer of 1244 wrote a triumphant letter to England, telling how he had engaged this sultan and Nassir of Kerak to make an alliance against the sulton of Egypt and restore the whole of Palestine from the Jordan to the sea. Theobald, however, before leaving the Holy Land (27th September 1240), sigued a ten years' truce with Salib of Egypt. The Hospitallers seem to have been won over to his view, and when Richard of Cornwall arrived (11th Oclober) he had to decide between the two rival orders and their opposing policies. After soms hesi-
tation he concluded a treaty with the sultan of Egypt, much to the annoyance of the Templars, who openly mocked his efforts. On his departure the three orders came to open discord: the Templars laid siege to the Hospitallers in Acre and drove ont the Tentonic Knights "in contumeliam imperatoris." They were successful on all sides. The negotiations with Darrascus' and Kerak were reopened, and in 1244 Hermann of Perigord wrote to the princes of Europe that after a "silet ce of fifty-six years the divine mysteries wonld once more be celebrated in the Holy City."

It was in this momest of danger that the sultan of Babylon called in the harLarons Khárizmians, whom the Mongol invasions had driven from their native lands. These savages, entering from the north, flowed like a tide past the newly built and impregnable Templar fortress of Safcd, swept down on Jerusalem, and annihilated the Christian army near Gaza on St Luke's day (18th October) 1244. From this blow the Latin kingdom of the East never recovered ; 600 knights took part in the battle ; the whole army of the Templars, 300 in number, was present, but only 18 survived, and of 200 Hospitallers ouly 16. The masters of both orders were slain or taken prisoners. Despite the admirable valour of the Templars, their policy harl proved the ruin of the land. Jerusalem was lost to Christendom for ever; and, though the Kharizmians melted away in the course of the next three years, they left the country so weak that all the acquisitions of Theobald and Richard fell an easy prey to the sultan of Babylon.

Recognizing the fact that the true way to Jerusalem Louis lay through Egypt, Louis IX. led his host to the banks IX.'s of the Nile, being accompanied by the Templars. Their cruside master, William de Sonnac, attempted in vain to restrain the rash adrance of the connt of Artois at the battle of Mansúra (8th Fehruary 1250), which only three Templars survived. St Louis, when captured a few weeks later, oryed his speedy release to the generosity with which the order advanced his ransom-money. Shortly after his departure from Acre (April 1254) they consented to an eleven jears' truce with the sultans of Egjpt and Damascus.

A new enemy was now threatening Mohammedan and Christian alike. For a time the llongol advance may have been welcomed by tho Christian cities, as one after another tho Mohammedan principalities of the north fell before the new invaders. But this new danger stimulated the encrgies of Egjpt, which under the Nameluke Bes-Sucbars (see vol. vii. P. 755) encroached year after year on the cesses of scanty remains of the Latin kingdom. The great Frankislu Reybara lords, fearing that all was inst, made haste to sell their lands to the Templars and Mospitallers before quitting Palestine for ever. In 1260 the former purchased Sidon and Beaufort ; next year the Hospitallers purchased Arsuf. In 1267, by a skilful adaptation of the banners of both orders, Beybars nearly surprised Antioch. The Tcmplar fortress of Safed surrendered with its garrison of 600 knights, all of whom preferred death to apostasy (June 1266). Beaufort fell in April 1268, Antioch six weeks later; and, though the two orders still made occasional brilliant dashes from their Acre stronghold, such as that to Ascalon in 1261 and that with Prince Edward of England to destroy Kakun in 12T1, they became so enfecbled as to welcome the treaty which secured them the plain of Acre and a free road to Nazareth as the result of the English crusade of 1272.

But, though weak against external foes, the Templars were strong enough for internal warfare. In 1277 they espoused the guarrel of the bishop of Tripoli, formerly a member of the order, against his nephew Bohemond, prince of Antioch and Tripoli, and commenced a war which lasted three years. In 1276 their conduct drove Hugh TII., kiug
of Cyprus and Jerusalem, from Acre to Tyre. In the ensuing year, when Mary of Antioch had sold her claim to the crown to Charles of Anjou, they welcomed this prince's lieutenant to Acre and succeeded for the moment in forcing the knights of that city to do homage to the new king. Thirteen years later (26 th April 1290) Tripoli fell, and next year Acre, after a siege of six weeks, at the close of which (16th May) William de Beaujeu, the grand-master, was slain. The few surviving Templars elected a new master, and, forcing their way to the seashore, sailed for Cyprus, which now became the headquarters of the order. A futile attempt against Alexandria in 1300 and an unsuccessful effort to form a nevv settlement at Tortosa about the same time (1300-2) are the closing acts of their long career in the western parts of Asia.

For nore than a hundred years the Templars had been one of the wealthiest and most influential factors in European politics. If we confine our attention to the East, we realize but a small part of their enorinous power. Two Templars mere appointed guardians of the disputed castles on the betrothal of Prince Henry of England and the French princess in 1161. Other Teniplars were almoners of Henry III. of Eugland and of Philip IV. of France. One grand-master was godfather to a daughter of Louis IX. ; another, despite the prohibition of the order, is said to have been godfather to a child of Philip IV. They are reported to have reckoned a pope (Innocent III.) among their nembers and to bare refused admission to a king and his nepherr (Philip IV.). They wero summoned to the great councils of the church, such as the Lateran of 1215 and the J.fons council of 1274 . Frederick II.'s persecution of their order was one of the main causes of his exconmunication in 1239; and his last will enjoined the restoration of their estates. Their property was scattered over every country of Christendom, from Denmark to Spain, from Irelaud to Cyprus. Before the middle of the 13 th century Matthew Paris reckons their manors at 9000 , Alberic of Trois-Fontaines at 7050, whereas the rival order of St John had barely half the latter number. Some fifty years earlier their iucome from Armenia alone was 20,000 bosants. Both in Paris and in London their houses were used as strongholds for the royal treasure. In the London temple Hubert de Burgh and the Poitevin favourites of Henry III. stored their wealth; and the same building was used as a bank into which the dobtors of the foreign usurers paid their dues. From the English Templars Henry III. borrowed the purchase money of Oléron in 1235; from the French Templars Philip IV. exacted the dowry of his daughter Isabella on her marriage with Edward II. To Louis IX. they lent a great part of his ransom, and to Edward I. of England no less than 25,000 livres Tournois, of which they remitted four-fifths. James de Molai, the last grand-master, came to France in 1306 with 150,000 gold florins and ten horse-loads of silver. In the Spanish peninsula they occupied a peculiar position, and more than one ling of Aragou is said to have been brought up under their discipline.

Such were the power and mealth of the Templars at the time when Philip IV. of France accuserl them of heresy and worse offences, had them arrested (13th October 1307), and forced them to confess by tortures of the most excruciating kinds. Five years later (26th May 1312) the order was suppressed by decree of the council of Vienne and its goods transferred to the hospital of St John.

The order consisted of (1) knights, (2) chsplains, and (3) men-6tarms (armigeri, clientes, snd servientes). The knights were eithor bound for life or for a fized periorl, and were the only members entitled to weer the white mantle. Married brethren were admitted; but no woman might enter the order. Each knight might keep threa horses and one man-at-arms, who, like his master, might be bound for life or only for s time. Like Augustinisn canons,
they were to attend daily services; but the soldier outwearied mith his nightly duties might on certain conditions absent himself from matins with the master's consent. Two regular meals were allowed for each day; lut to these might he slded, at the master'e discretion, a light collation towards sunset. Meat might be eaten thrico a week; and on other days there was to be a choice of regetablo fare so as to suit tho tenderest stomach. Brethren were to eat by couples, each keeping an eye on hie fellow to see that he dill not practise an undue austerity. Wino was served at evcry meal, and at thase times silence was strictly enjoined that the words of Holy Writ might be heard with the closest attention. Special care was to be taken of aged and ailing members. Every brother owed tho most absolute obedienco to the master of the order, and was to go wherever his superior bade him without delay, "as if commanded by God." All undue display in arms or harncss was forbidden. Parti-coloured garmeuts were forbidden; black or dusky-brown (burellus) ras to be worn by all except the knights. All garments were to be made of rool; but from Easter to All Souls a linen shirt might be snbstituted for one of wool. The hair was to be worn short, and a rough beard became one of the distinguishing marks of the order. Hunting and hawking were nulawful; sud the very allusion to the follies or secular schievements of earlier life was forbidden. A lion, however, being the type of the evil one, was legitimate prey. Strict watch was kept on the iucomings aud outgoings of every brother, except when he went out by night to visit the Sepulchre of our Lord. No letter, eveu from the nearest relative, might be opened except in the master's presence; nor was any member to feel sanoyance if he saw his relative's gift trausicrred at the master'e bidding to aome other brother. The bretliron wore to sleep in separate beds in shirts and breeches, rith a light slways burning in the dormitory. Those who lacked a mattress might place a piece of carpet on the floor; bnt all luxury was discouraged. The order recognized two governing bodies, -tho first, a meetiug for ordinary lusiness, to which only the riser members were summoned ; the second, one for extraondinary affairs, such as the grantiug of lands or the reception of new members, on which occasions the master might summon the whole community. Even at these last assemblies the master seems to have decided on the final action (c. 59). A term of probation was assigned to each candidate before admission; snd a special clause discouraged the reception of boys before they were of su age to bear arms. Lastly, the bretluren of the Temple were exhorted to shun the kiss of every woman, whether maid or widow, mother, aunt, or bister.
The general spirit of the Templar statutes remained nasltered Admints to the ond, though the increasing wealth of the order gave rise to tration. a number of additional rules. The grand-master nas almaye head of the eociety; his instructions were biuding on every member, and the very lawe were at his discretion. . But he could not declare war, alienste the society's estates, or even admit a nember withont the consent of his chapter. He was elected by thirteen brothcrs, chosen by a peculiar method of co-optation, and all, if possible, belonging to different nations. Next to him in dignity came the seneschal, on whom the duties of the absent master devolved. The marshal had charge of the steeds ond accoutrements; he also commanded the knights and men-et-arms, the latter of whom scem in time of war to have been at the disposal of the turconolier. The commander of the kingdom guarded the treasure-housc, to which eren the grand-master might not havo a key; the comnander of the city of Jerusalem had charge of tho True Cross in timo of war. There were twolre or perhaps more commanders or preceptors of the difierent provinces and Eingdoms of Europe and Asia, Jerusalem (kingdom and city), Acre, Tripoli, Antioch, France, England, Poitou, Aragon, Portugal, Apulia, and Hungary. No European preceptor could cross the $6 e a$ without the grand-master's leave; but all ought to be present at the election to this office. The privileges and duties of every member were strictly prescribed, from the number of horses he might ride and the smount of food ha micht est to the colour of his clothes. The order eeems to have owned a fleet, part of which, if not all, Wes under the a uthority of the commander of the kingdom. Besides the knights sud men-atarms, the society reckoned chaplains in its ranks; and it was the babit of confossion to these priesto that seems to have atirred the Wrath of the Dominicans and the Franciscaue, who played a very conspicuous part in the overthrow of the order, especially in England. For grievous offences, auch as desertion to the Saracens, heresy; or losing the gonfalon, a Templar might be expelled (perdre la maison) for minor offences, such as disobedience or lowering the banner in battle, he suffered a temporary degradetion (perdre son abit). By a motash agreerment the Templars snd Hospitallers, despite their of the rival order ; and the Templar cot off in battle and defeat from all hope of rejoining his own rauks might rally to the cross Ef St John. As Acre was the besdquarters of the order in the East, en Peris was its centre in the West (Matt. Paris, 8.478). every member before admission must declare himself free of debt, bound of body, and aftimated to no other religious sociaty; he must also take \& row of obedience and chastity, at the same time re-
nouncing his privato property and dedicating his future life to the Holy Land. The order prided itself specially on the splendour of its religions cervices, the abundance of its alms, and its reckless valour for the Cliristian faith. At the time of its suppression it was calcnlated to number 15,000 members. Three ILSS. of its ancient statutes, written in Old French, are still extant at Dijon, at Paris, and at Rome. Of these the first was transcribed about 1200 , the last two from 1250 to 1300 . They have bcen published by DI. Maillard de Chambure (Paris, 1840).
A scheme for the union of the three great military orders into one had received the sanction of Gregory X. and Lonis IX., of Nicholas IV. and Boniface VIII. The recovery of the Holy Land was the dream of the last pope's highest ambition; and when he died a prisoner in the hands of Philip IV. of France this king coutinued to advocate the plan for his own purposes. llis gold or influence secured the election of Clement V. as pope(5th Jone 1305). According to a slightly later tradition, before consenting to the new pope's appointment he exacted from him an oath to assist in carrying out six propositions, one of which he wonld not disclose as yet. This sixth condition, if it ever existed, must have been the suppression of the Templars; and, whether false or true, Villani's story emplasizes a popular and almost contemporary pinion. It is known that Philip was urging Clement in this direction before the latter's coronation at Lyons on 14th November 1305, and all throngh the two succeeding years. On 6th June 1306 the pope summoned the grand-master from Cyprus to Fiance. James de Molai obeyed the call, and, heaning of tho charges against his order, demanded a prompt investigation. In this demand he was supported by thi leading Templars of the realm. Clement, who disbelieved the accusations, fenced with the question. But, though only a rery short time previously Philip had spoken of his special love for the order, and though it had sheltered him from the fury of the Paris mob in 1306, be was now determined on its destruction. Its wealth would fill the royal coffers, and the rumours of the day afforded a ready engine for its overthrow.

For perhans half a century there had been strange stories circulating as to the secret rites practised by the order at its midnight neetings. It was said that on his initiation each member had to disavow his belief in God and Christ, to spit upon the crucifix, to submit to indecent ceremonies, and to swear never to reveal tho secrets of the society or disobey the mandates of a grand-master, who claimed full power of absolntion. When the mass was celebrated the consecrating words "Hoc est corpus" were omitted; on Good Friday the holy cross was trampled under foot; and the Christian duty of almsgiving had ceased to be observed. Even the vaunted chastity of the order towards women had, it was said, been turned into a sanction for more horrible offences. These evil practices were part of the secret statute law of an order which in its nightly assemblies worshipped hidcous four-footed figures, - a cat or a calf. In England the rery children at their play bade one another beware of a Templar's kisses. Stranger storics yet were rife in this country and gravely reported before bishops and priests, -of children slain by their fathers because they chanced to witness the nightly orgies of the society; of one prior's being spinted away at every meeting of the general chapter ; of the great preceptor's declaring that a single hair of a Saracen's beard was worth more than the whole body of a Christian man. In France they were said to roast their illegitimate children and smear their idols with the burning fat.
For nearly two years Philip waited for Clement to fulfil his bargain. A certain Templar from the prisons of Toulouse now offered to put the king in possession of a secret that would be worth a realm. Acting on the evidence of this informer, Philip issued orders (14th September 1307) for the arrcst of all the Templars in France on the night of Fridity, 13th October. He seems to have written to the neighbouring princes urging them to act in the same way. James de Molai was seized with sixty of his brethien in Paris. On Saturday they were brought before the university of Paris to hear the enumeration of their crimes; and on Sunday the Paris mob was gathered in tho royal gardens, where preachers were inveighing against the iniquities of the order. The inquisitors began their work at once; and inhuman tortures forced the most horrible avowals from the lips of many. In Paris alone thirty-six Templars died under torture. ${ }^{1}$ Of -40 Templars examined at Paris between 19th October and 24th November 1307, the experience of some of whom extended over nearly half a century, there is hardly one who did not admit the dishonouring of the crucifix at his reception. Y cry many confessed to other charges, even of the morst description. Clement V., although he suspended the inquisitors' powers on 27 th October (Loiseleur, 159), before the end of the next month Mrote to Edward II. to arrest all the English Templars, who were accordingly seized on 10 th January 1308. About the same time they were arrested in Sicily (24th January) and in Cyprus (27th Mlay). As Clement did not move fast enough, Philip went to Poitiers with 700 armed men, and the pope was at his mercy. It was agreed that the prisoners, their lands, and their money should bo nominally placed in the hands of Clement's commissioners. The power of
the inquisitors was restored (5th July) ; and the property forfeited was to be deroted to the recovery of the Holy Land. Clement now gave orders for fresh diocesan inquiries into the guilt of the Templars. He liad already heard the confessions of seventy-two at Poitiers (29th June to 1st July). The grand-master and the three precepiors were re-examined at Chinon, and renewed their old confessions (20th August). Lastly, the hull Regnans in Colo summoned a great comncil at Vienne for 1st October 1310, when the question of the guilt of the order might be considered. The diocesan councils were only empowered to inquire in to the conduct of individuals.
The trial began on 11th April 1310. On 23d April Reginald de Pruino protested against the unfairness of the proceedings. On Tucsday, 12 th May, fifty-four Templars were burnt by order of the archbishop of Sens, and a few days later four more. Next day the terror spread (19th May). Forty-sin Templars withdrew their defence and the commissioners decided (30th May) to adjourn till November. Tho second examination lasted from 18th December 1310 to 5th June 1311. Neanwhile (c. April 1311) Clement and Plilip had come to terms. The pope condemned the Templars. The council of Vienne met in October 1311. A discussion arose as to whether the Templars shonld be heard in their own defence. Clement, it is said, broke up the session to avoid compliance; and When seven Templars offered themselves as deputies for the defence lee had them cast into prison. Towards the beginning of March Plilip came to Vienne, and he was seated at the pope's right hand Wlien that pontiff delivered his sermon against the Templars (3d April 1312), whose order had just been abolished, not at the gencral council, but in private consistory (22d March). On 2d May 1312 he pulbished the bull Ad Providam, transferring the goods of the society, except for the Kingloms of Castile, Aragon, Portugal, and Majorca, to the linights of St John. The order was never formally pronounced ginilty of the crimes laid to its charge; its aholition was distinctly, in the terms of Clement's bull Considerantes Dudum, "nou per modum definitive sententiæ, cum cam super hoc secundum inquisitiones et processus super his habitos nou possemus fcure de jure sed per vian provisionis et ordinationis apostolicæ" (6th Mlay 1312).

The individual members of the order seem to have been left io the judgment of provincial councils. They were divided into threo classes, - (1) those who confessed at once ; (2) those who persisted in denial of the charges; (3) those who, having confessed at first, withdrew their confessions later on the plea that they had been extracted by torture. The penalties for the three classes were respectively (1) penitence, (2) perpetual imprisonment, (3) death by fire. The cases of the grand-master, the visitor of Frauce, aud the masters of Aquitaine and Normandy were reserved for the pope's decision. Early in 1314 they were forced to make a public confession in Notre Dame, and had already been condemned to perpetual imprisonment when tlie grand-master and the preceptor of Normandy publicly proclaimed their entire innocence. The king, withont consulting the church, had them burnt "in the little island" of the Seine "betreen the Augustinians and the royal garden."

The opinion that the monstrous charges brought against the Questios Templars were false and tho confessions were only extracted'by of their torture is supported by the general results of the investigation (in guilt ur almost every country outside France), as we have them collected in irco. Raynouard, Labbe, and Du Puy. In Castile, where the king flungervea them into prison, they were acquittcd at the conncil of Salamanca. In $A r a g o n$, where they held out for a time in their fortresses against the royal power, the council of Tarragona proclaimed in their favour (4th Norember 1312). In Portugal the commissioners reportod that there were no grounds for accusation. At DIainz the council pronounced the order blameless. At Treves, at Dlcssina, and at Bologna, in Romagna and in Cyprus, they were either acquitted or no evidence was forthconing against them. At the council of Ravenna the question as to whether torture should be used was ansmered in the negatire except by two Dominicans; all the Templars were absolred,-even those who had confessed through fear of torture being pronounced innoeent (18th June 1310). Six Templars were examined at Floreuce, and their evidence is for its length the most remarkable of all that is still extant. Roughly speaking, they confoss with the most elaborate detail to every charge, - even the most loathsome ; and the perusal of their eridence induces a constant suspicion that their answers werc practically dictated to them in the process of the examination or invented by the witnesses themselves. ${ }^{2}$ In England, where perhal ${ }^{3}$ tortura was not used, out of eighty Templars examined only four confessed to the cliarge of denying Christ, and of these four tro were apostate knights. But some English Templars would only guarantee the purity of their omn country. That in England as elsewhere the charges were held to be not absolittely proved scems evident from the form of confession to be used before absolution, in which the Templars acknowledge themselves to be defamed ia the matter of certain articles that they cannot purge themselves. In Enspland nearly all the worst evidence comes at second or thind
hand or through the depositions of Franciscans and Dominicaus, Yet it can hardly be doubted that the "spuitio super crucem" did form a part of the initiation ceremony. Even the English Templars admitted that the statutes of the order were one and the same all the world over ; and there is no setting aside the consistent evidence of almost every French Templar as to his guilt in this matter. Of the other charges the most revolting may have originated in the abuse and misinterpretation of a licence primarily intended for military emergencies. Such at least is the form it aeems to take in the evidence of John Senand (ap. Mich., ii. p. 137). A debased mind might misiuterpret this concession and translato it into coarser words, till (this part of the initiatiou ceremony being probably conducted in private, as, most certainly, was the spitting on the cross) there might be two formularies current in the order, of which the second was plainly immoral, whereas the first was perfectly harmless unless coupled with a sous-entindre. So too with regard to the spuitio. One Templar says plainly that he took it for a joke,-pro trufa; Qthers regarded it as an imitation of St Peter'e denial ; a modern writer has suggested that the custom was intonded ss a symbol of sbsolute obedience (ap. Mich., ii. 260). There is little doubt that most menhers looked upon the ceremony with disgust. Somo salved their consciences by the excuse that they were denyiug Jesus and not Christ ; another when shown the crucifix denied his belief in the painted figure. Nearly all declared that they had spst near hut not upon tho cross, and denied Christ "yon corde sed ose." Den who could thus play with their own consciences at their initiation might well, when their lives were in peril, clothe a falsehood in the garb of truth by denying "spuitio super crucem" instead of confessing to "spuitio juxta crucem."

The other clarges stand upon в somewhat sineilar footing. The power of lay absolution might easily be developed out of the harmless words with which the master or preceptor dismissed his chspter. The cordnle which Templars were accused of wearing in honour of their idol take a very different appearance as the "zones of chastity" or "helt of Nazareth" worn in accordance with St Bernard's precent. With regard to the charge of idolatry the evidence is rery conflictiug. In France and at Florence a large proportion of the members confessed to indecent kissing (oscula inhonesta) at their initiation ; but hardly a single English Templar admitted the charge, and one French witness suggested an almost ludicrous explanation of the rumour. Here also a simple ceremony of respect or humiliation seems to have been expanded into one of shamelessness; but the evidence is too strong to admit of ita being explained away, at least in France.

Not a few witnesses confessed that they had been called upon to declare Christ a felse prophet, who suffered for His own sins and not for the race, and to belitre only in a superior God of the heavens (Deum coli superiorem). One Florence witness admits that the idol was worshipped as God and Saviour. It was this head, according to one of the witnesses, that could make the order rich and cause the earth to hud and the trees to blossom. A Carcassonne Templar spoke of the idol (Raynouard, 241) as a friend of God, who converses with God when be wishes. On such evidence M. Loiselour holds that the Templars were members of a secret religion, which combined the heretical teachings of the Bogomilians and the Luciferians. The former, "the friends of God," believed in a Supreme Deity, whose eldest son Satanael was the creator of our world after bis revolt against his father, and whose younger eon Jesus was made man to counteract the evil deeds of his brother. They did not venerate the cross, regarding it as the instrument of Christ's passion. The Luciferians, on the other hand, worshipped the eldest son, who had power over all the riches of this world. M. Loiseleur. has shown eome remerkable coincidences, verbal and otherwise, between the creed of these two sects and that of the Templars, who, according to him, borrowed from the former their belief in the Supreme Deity and from the latter their devotien to the God of this carth. It seems, however, doubtful whether he is justified in combining the several items of such scattered evidence into a complete doctrinal aystem. His argument might be turned against himself; for, if these heresies were so widely spread in mediæral Europe, are they not for that reason those most likely to be sscribed to an unpopular order?
On the wholo it may perhaps be sdmitted that the charges of "spuitio" and "osculatio inhonesta" were current, st least sporadically, for fifty years before the euppression of the order. ${ }^{1}$ They may have become more gencral in the time of Thomas Beraud, the grand-master (who died 1273), according to the evidence of the preceptor of Aquitaine. On the death of William de Beaujeu (1291) there were two rivals for the office of grand-master, - Hugh de Peraud, the visitor of France, हnd James de Molai. The latter in 1291, at a general chepter, had declared his intention of extirpating certain practices in the order of which he did not approve ${ }^{2}$; while, if we may trust the Freach witnesses, the most vigorous initiator according to the new method was Hugh de Persud. This exactly fits in with the sccount ${ }^{3}$ that the errors were introduced after

[^52]Willis.m de Beanjeu'e death. In other words, it is probable that the perty of Hugh de Pcraud between 1290 and 1307 made a desperate effort to enforce the new ceremonies and the new doctrines throughout France and England. The custom of "spuitio," at all.events, was very ancient, and Hugh de Peraud devoted his energies to the propagation of the "osculatio inhonesta." This would explain the omission of all allusion to the latter ceremony when the English Templars were absolved; for they wonld not confess to a practice of which they were innocent. This theory likewise goes a long way towards interpreting both the confession and the denial of James de Molal and the gencral acquittal of the Templars in aearly all the councils outside France.
(T. A. A.)

TEMPLE. The templo is an institution common to religions of natural growth which have reached a certain stage, and in most languages bears a name expressing that it is the bouse or palace erected by men as a habitation for their ${ }^{\text {god }}{ }^{4}$ (Greek, vaós; Hebrew, kēk kel, "place," or beth cilohim, "house of God"; Latin, xdes sacrax). In this conuexion the term "house of God" has quite a different sense from that which we connect with it when we apply. it to a Christian place of worship. A temple is not a meeting-place for worshippers; for many ancient temples were open only to priests, and as a general rule the altar, which was the true place of worship, stood not within the house but before the door. The temple is the dwelling-house of the deity to which it is consecrated, whose presence is marked by a statue or other sacred symbol; and in it his sacred treasures, the gifts and tribute of his worshippers, are kept, under the charge of his attendants or priests. Again, a temple implies a sanctuary; but a sanctuary or holy spot does not necessarily contain a temple. A piece of land may be reserved for the deity without a dwelling-house being erected to him upon it, and a sacred tree, stone, or altar, with the holy precinct surrounding it, may be_recognized as a place where the worshipper can meet his god and present his offerings, although no temple is attached. Indeed the conception of a holy place, separated from profane use, is older than the beginnings of architecture ; and natural objects of worship, such as trees and stones, which need no artificial protection or offcial keeper, are older than images enshrined under roofs and protected by walls and doors. All antique religion is essentially allar-worship (see Sacrifices), and for ritual purposes the altar always continued to be the true centre of the sanctuary. But the altar is only a modification of the sacred stona (comp. PrissT, vol. xix. p. 726), and it has already been obserred that, even in later times, the chief altac of a sanctuary stood outside the tempile. In the oldest and most primitive forms of religion the sacred stone is at once the place where gifts are offered and the material sign of the presence of the deity; thus the temple with its image belongs to a later development, in which the significance of the eacred stone is divided between the altar outside the door and the idol, or its equivalent, within. But in many very ancient sanctuaries the place of a temple is taken by a natural or artificial grotto (e.g, the Phenician Astarte grottoes, the grotto of Cynthus in Delos), or else the temple is built 'orer a subterranean opening (as at Delphi) ; and, while this may be in part explained as connected with the cult of telluric deities, or the worship of the dead, it seems not unreasonable, to think that in their origin care temples may date back to the time when cares were commonly used as human habitations; that the altar in front of the temple had its prototype in altars at the mouths of sacred cares, which wcre approached with holy fear and not entered by ordinary worshippers, and that thus some of the main features of the ancient temple were fixed from the first by the analogy

- Tomplum properly denotes a spot inangarated for the observation of anspices by the augurs. Bnt it Rome most edes sucra were also templa, and so the terms came to be used as bynonymous.
of more primitive sanctuaries. The influence of the cave temple seems at least to be undeniable in that wide pread type of eanctuary in which, besides the court for the worshippers and an outer chamber, there was a dark and mysterious inner room, an adytum or Holy of Holies. This type is-found in Egypt (see Architecture, vol. ii. p. 388 and plate VII.), among the Semites, as in the temple at Jerusalem and in that of Hierapolis (De Dea Syr., § 31), and also among the Greeks and Romans. In Greece the adytum was not a universal feature, though large temples usually had an antechamber as well as the cella or proper chamber of the god. Bnt, where an oracle was given, or mysteries were celebrated, an adytum was always found, and one of its names was μ^{\prime} ' $\gamma a \rho o v$, which seems to be a transcription of a Semitic word for a cave (meghara). Certain adyta in Greece were actually subterranean; and the association of oracles with caves is well known.

The architectural features and plan of temples in various parts of the world have beon illustrated at length in the article Architecture, and need not detain us here, but somo further notice of the successive temples at Jerusalem is cailed for by the unique interest of the subject, while a glance at the topographical problems connected with this holy site is necessary to supplement the article Jertsalem.

1. The Temple of Solomon.-There were temples among the Hebrews before the time of Solomon, whether private, !like that of Micah (Judges xvii. 5), or public, like that of Shiloh, where the ark was housed for a time (see Tabernacle). In this, as in other matters, the Israelites must have learned from the Canaanites, who had large temples in the time of the Judges. The "hold" (vault?) of the temple of El-Berith at Shechem was tile place of refuge for a thousand men (Judges ix. 46 sq.), and at Gaza there was a vast temple with a roof supported on two middle pillars (Judges xvi. 29). Solomon's enterprise was not therefore absolutely novel, and in point of size his temple can hardly have surpassed those just mentioned. But his subjects were much behind the Canaanites and Philistines in the constructive arts, and as Solomon had to call in the aid of Tyrian craftsnen it cannot be questioned that the design was derived from Tyrian architecture. The general plan, iudeed, of the house or " palace" (hēkal) of Jehovah, with an adytum (debir, E.V. "oracle"), an outer chamber, and an altar before the door, is, as we have seen, common to many countrics, especially in temples which had an oracle, as was the case with Solomon's temple, built to contain the ark. But all the distinctive features are Plœenician, or at least characteristic of the northern Semites, of whose art the Phoenicians were then the leading exponents. For the general arrangements the temple of Hierapolis (Mabbūg), described by Lucian, offers a complete parallel. Like that of Solomon, it faced the past, and had two celle and a pronaos. The interior was enriched with gold work. Before the door stood a brazen gltar within a walled court. Tho walled court is a constant feature in the Phœenician and Syrian temples, known to us from their remains or from coins, ${ }^{1}$ and the golden decorations, the portico, and the brazen altar appear in the ancient temple of Byblus and in other Phœenician shrines (C.I.S., Nos. 2, 143). The chief motives in the internal decoration of Sclomon's temple were tho palm tree and the cherub. The former is one of the commonest Phonician symbols, and the Phœnician associations of the latter are clear from Ezek. xxviii. The cherub, in fact, is ooly a variety of the sphine, and the way in which the palm and winged animal figures were combined in
[^53]Phoenician decoration is shown in a fragment of alabaster preserved in the Louvre and here figured (fig. 1) after Perrot (op. cit., iii. 131). Two cherubs with outstretched wings stood in the adytum to form a baldachin over the ark. Baldachins over the image or symbol of the deity existed in other temples of the northern Semites (Donaldson, op.cit., pp. 73, 76 sq., 99), and in many Phocnician works of art (e.g., on the stele of Byblus) the figure or symbol of adeity is overshadowed by the winged disk (an Assyrian symbol of godhead) arranged as a sort of
 canopy (Ménant, Glyptique Oriental, ii. 231, 233).
The adytum of the temple was a cube of 20 cubits each way; the outer chamber was of the same breadth, but 40 cubits long and 30 high. ${ }^{2}$ The portico was of the breadth of the main building and 10 cubits deep. That the two chambers were separated by a solid wall and not by a mere wooden partition may be taken as certain if, with Stade, we understand 1 Kings vi. 31 to say that the doorway of the adytum was pentagonal, i.e., that instead of a horizontal lintel a rude arch of two blocks was introduced to distribute the pressure of the superincumbent wall. In this case it is not likely that the exterior walls of the adytum were carried up to a height of 30 cubits, so as to allow of a continuous roof. The reduction of the dimensions to English feet is approximately determined by the Siloam inscription, which gives a round number of 1200 cubits for a measured length of 1760 feet. The Hebrew cubit, therefore, was the short cubit of antiquity, and for practical purposes may be taken as equal to the Greek cubit of 18 inches, used by Josephus for the measurements of Herod's temple. Thus the roof-beams of the temple had a span of 30 feet, a length sufficient to make it probable that the wooden pillars spoken of in 1 Kings x. 12 (comp. 2 Kings xviii. 16) were employed to support them. The roof of the temple at Gaza rested on pillars, as te have seen, and wooden pillars seem to have been used within the temple at Colgus (Cesnola, Cyprus, p. 139), which was smaller than that of Jerusalem. A peculiar feature in Solomen's temple was that all its sides except the front were surrounded by three stories (each 5 cubits high) of small chambers, 5 cubits wide on the ground floor, 6 on the first floor, and 7 on the second, the increasing breadth being evidently got by reducing the thickness of the walls by 1 cubit at each floor. ${ }^{3}$ Thus, allowing for tho walls, the external measurements of the house cannot have been much less than 45 cubits by 90 . The aspect of the façade can only be conjecturally determined. Several Phœenician temples, known from coims, show on their façade a highpitched gable (Byblus, Tripolis), and that of Tripolis has also a flat-roofed wing on each side of the gable and portico, which would answer to the ends of the side chambers in

[^54] text is not slways sound. Cp. Stade'e essay in Z. f. ATliche Wiss., 1883, p. 129 sy.
s In ouch ornañ chambers the winding stair (1 Kings vi. 8) can bardly have been more than a vertical post with footholis nailed to it (Prof. J. H. Middleton).
ear temple. But perhaps the closest analogy to the frontispiece of Solomon's temple is the often-citcd one of the temple at Paphos, of which a representation from a coin is annexed (ng. 2). Here the portico between the side wings is flanked by two slender towers, and in the end of the have above the door there are equare-topped windows. Solomon's iemple had "windows of beams" (or "with horizontal liniels") "framed in," which, as Professor J. H. Middleton observes, is
 naturally explained on the analogy of the windows betreer the beams in the wooden gables of Coptic churches. This is the obvious position of openings for light in buildings the type of which was derived from mooden constructions, and we know that the oldest Phœnician temples were, at least in great part, of wood (Utica; Pliny, H.N., svi. 79 ; comp. Jos., C. Ap., i. 17, 18, and Solomon's house of the forest of Lebanon). That Solomon's temple had towers cannot be proved, for the beight of the porch is not given in Kings, and the 120 eubits of 2 Chron. iii. 4 is obviously an excessive figure, due to a mistake of the writer or of a copyist. But the fact that in Ezekiel's ideal temple the door-posts of the porch are 5 cubits broad unakes the existcnce of slender turrets like those of Paphos un each side of the portal probable. Another feature of Solomon's temple is exactly reproduced at Paphos. On each side of the door the coin shows a fantastic pillar atandinf ${ }^{\text {freee. Solowon erected two such pillars of bronze, }}$ 18 cubits nigh (1 Kings vii. 15 sq .), with capitals of "lily work," i.e., adorned with lotus flowers, like the Phœnician capital from Cyprus figured by Perrot (op. cit., p. 116). Such twin pillars or twin etelæ in stone are of constant occurrence in Phænician sacred art, and are still familiar to us as the Pillars of Hercules. In Solomon's temple both the oracle and the outer cella had folding doors. In the second and third temples the innor door was replaced by a vail ($p \overline{\mathrm{a}}$ oolheth), and a vail also hung before the outer door (Mal. i. $10 ; 1$ Mac. i. 22 , iจ. $51 ; B . J .$, จ. $5, \S 4$ sq.). The Chronicler (2 Chron. iii. 14) introduces a vail in the first temple. This feature also seems to be common to the temple with other Semitic shrines (comp. C.I.S., No. 86, פכ, Assyt. parakku. Syriac prakke, "shrines," and the Kaaba at 1Iecca). ${ }^{\text {I }}$
The temple had an inner court of its own (1 Kings vi. 36), but the outer or great court (1 Kings vii, 12) was the court of the palace as well as of the eanctuary. Details as to the position of the courts and buildings must be reserved till we speak of the site, but it may be noticed that Jer. xxxvi. 10 speaks of the "higher court," to which the "nerr gate" of the temple belonged. This new gate io the higher court can hardly be different from the "higher gate" built by Jotham (2 Kiugs ET. 35), or from the "higher gate" of Benjamin, which, in Jer. xx. 2, is not the city gate of that name, but a gate "in" (not "by" as E.V.) "the house of the Lord." From jits name this gate must have been on the nerth side or at the aorth-east angle of the temple area, so that the ground rose to the aorth or north-east. The upper court may be merely the upper par" of the great coart ncar the "higher gate" leading to the palace (2 Chron exiii. 20), or may be the same as the "nnw court" of 2 Chron. Ex .5 . But ode capaot be sure that the Chronicler is not transferring to Jehoshaphat's time a nem court of the second temple. We know, however, that the kings of Jadah made from time to time considerablo changes in and about the temple.
2. The Temple of Zerubbabel.-After the captivity an altar of etone took the place of the brazen altar, or rather perhaps of the altar of Ahaz (2 Kings xvi. 10 sq .). The altar was erected immediately after the return (Ezra iii.

[^55]2); but the rcbuilding of the temple was long delayed, and the work was not completed till 520 b.c. (see Hagadi). It was much infcrior to the first temple in magnificence, though not perhaps in size (Haggai ii. 3). The proposed breadth of 60 cubits and height of 60 cubits spoken of in Ezra vi. 3 would indeed imply that it was larger than the first temple, but in vier of the testimony of Haggai (loc. cit.) it seems unlikely that these dimensions were realized by Zerubbabel.

The first temple resembled other temples of antiquity in being built to contain a visible symbol of the preseuce of the deity, namely, the ark, which stood in the inner chamber. In the second temple the adytum was empty, but the idea that the Godhead was locally present in it still found expression in the continuance of the altar service, in the table of showbread (a sort of continual lectisternium) that stood in the outer chamber, and above all in the annual ritual of the day of atonement, when the high priest entered the Holy of Holies to sprinkle the blood of the expiatory sacrifice on behalf of the people. Not only in this point but in all others the ritual of the second temple was dominated by the idea of priestly mediation, and the stated sacrifices of the priests on behalf of the people, which replaced the old stated oblations of the kings, became the main feature of the altar service. The first temple was primarily the royal chapel, and the lings did as they pleased in it ; the second temple was the sanctuary of the pricsts, whose chief now became the temporal as well.as the spiritual head of the people. In the time of Ezekiel not only laymen but uncircumcised foreigners entered the sanctuary and acted as servants in the sacred offices (Ezek zliv. 7); in the second temple the laity were anxiously kept at a distance from the holy things, and even part of the court around the altar was fenced off by a barrier, which only the priests were allowed to cross (Joseph., Ant., xiii. 13, §5). Being no longer hemmed in by the royal buildings, as the first templo had been (Ezek xliii. 8), its precincts could be expanded to suit the necessities of the enormous host of ministers of various ranks demanded by the growing complexity of the ritual, which, in matters of music and the like, was immensely developed as time went on (comp. Psalms). Herod's temple, rith the dependent buildings, was a little city enclosed in its own fortifications. But long bcíore his time the temple was a sort of priestly citadel, the fortress as well as the sanctuary of the hierocracy; and the sacred offerings which flowed to Jerusalcm from Jews in all parts of the world were lavishly cxpended on enlarging and strengthening it (Jos.; B.J., v. 5, § I). The name of Simon II. (c. 200 b.c.) is associated in Ecclus. 1. 1 §2. with important works of fortification on the circuit of the temple. Twice ruined in the wars with the Seleucids, these bulwarks were twice rebuilt, by Judas and Jonathan Maccabæus (1 Mac. vi. 7 ; Jos., Ant., xiii. 5, § 11). The works were further strengthened by Simon (1 Mac. ziii. 52), and at the time of Pompey's siege (63 b.c.) constitutci an almost impregnable fastness, strengthened on its weakest or northern side by great towers and a deep ditch (Ant., xiv. 4, §2). Twenty-six jears later the temple was again besieged by 'Herod, who, attackitg, like Pompey, from the north, had to force three lines of defence,-the city wall and the outer'and inner temple (Ant., xiv. 16, § 2).
Of tho temple as it was in the Greek or the Hasmonean period we have two descriptions by Hellenistic Jews, Pseudo-A ristrens (comp. Septvaant) and Pecudo-Hecatæus (Jos,., C. Ap, i. 22). 1n such a matter we may auspect even notorious literary fergers of carelessness and exaggeration rather than uf absolute ontrath. Preude Aristras describes the temple as aurrounded by a triple circuit of walls more than 70 cubits high, and as further protected by the adjoining Acra, which overlooked the place of sacrifice Comparing the account of Herod's siege, we may perhaps take the third circuit to be the wall of the town, which is rcpresented as lying below the
temple on the same hill. The upper city ou the western hill is Ignored, which seems to show that the account was written before the Hasmonean period (comp. Jerusalem, vol. xili. p. 641), as has bcen argued on other grounds in Septuagint. The Acra, which is often mentioned in the history of the Maccabee wars, seems to have been on the same site as the Baris or castle of the Hasponean priest-princes, where they put on their priestly robes beforo doing sacrifice (Ant., Xv. 11, 8). That the Baris was close to the temple appears both from this circumstance and from the fact that Antigonus wes charged with setting fire to tho porticoes of the temple during the siege by Herod (Ant., xiv. 16, § 2), -an accusation which woald have had no pleusibility unless the destruction of the porticrea had been useful to isolate the castle. Pseudo-Hecatwus gives the temple precincts a length of 500 feet end a breadth of 100 cubits. The explanation of these numbers will appeer in the sequel.
3. The Temple of Herod.-In the eighteenth year of his reign (20-19 B.c.) Herod the Great began to rebuild the temple and its precincts from the foundation, doubling the old area (Añt., xy. 11; Bell. Jud., i. 21). The works included the reconstruction, on the old site, of the Baris, which now received the name of Antouia, and is generally reckoned by Josephus as forming part of the templo precincts. Apart from the Antonia, the temple area formed a quadrangular plateau supported by retaining walls of great height and strength, and surrounded by porticoes. Three of the porticoes were double walks, 30 cubits broad, with monolith pillars 25 cubits high, and cedar roofs; the fourth or southern portico (the Stoa Basilica) had four rows of Corinthian pillars and three walks, respectively 30,45 , and 30 cubits in breadth. The middle walk was twice the height of the aisles, and the latter were 50 feet high. As regards the size of this enclosure, we sre told by Josephus that the Stoa Basilica was a stadium or 600 feet long (Ant., $5 \mathrm{x} .11, \S 5$); and in Ant., sx. $9, \S 7$, the same length is assigned to the castern colonnade, which was known as Solomon's Porch (comp. John x. 23; Acts iii. 11 and v .12), because it, and it alone, rested on an ancient snbstructure held to be the work of Solomon. The whole circuit of the porticoes was therefore 4 stadia, ${ }_{1}{ }^{1}$ or with the Antonia 6 stadia (B.J., マ. $\bar{b}, \S 2$). The Antonia lay on the north eide (Ant., xv. 11, § 4) and communicated ly stairs with the north and west porticoes at the north-west angle of the enclosure. Fergusson and others suppose that it touched the temple only at this angle, thence stretching porth and west. But in this case the Antonia, which, as wo shall seo below, lay just north of Wilson's arch, would pave been built over the hollow of the Tyropeen valley, a : 1 pposition absurd in itself and inconsistent with B.J., ∇. 5 § 8 , which says that it stood on ac cliff. Again, the tower 70 culits ligh that stood at tho south-east angle of the Antonia overlooked the whole temple, just as we know from Pseudo-Aristrus that the old Acra overlooked the altar. But, if the south-east anglo of the Antonia had been, as Fergusson supposes, at the north-west angle of the temple porticoes, the view from the tower would have been intercepted by the lofty porch in front of the Holy Place. The Antonia, thercfore, had its sonth face along part of the north face of the templo enclosure, and to gain a circuit of 6 stadia for temple and Antonia together we must assign to the latter the length of a stadium from north to south. This is not too mneh, for Josephus describes it as a little town in itself (B.J., v. 5, § 8).

The Antonia, the porticoes, and the space immediately within them (the outer court, or, as modern writers call it, the court of the Gentiles) were not holy ground. But in

[^56]the middle of the enclosure there was a platform rased 15 cubits above the court of the Gentiles and fenced off by a barrier, with inscriptions, one of which still exists (Palestine E. F. Quarterly Statement, 1871, p. 132), forbidding aliens to pass on pain of death. The platform was approached by steps on all sides but the rest (B.J., ∇. $1, \S 5$, and $5, \S 2$), and was surrounded by a wall, rising 25 cubits above the iuner level, and pierced by four gates on the north side and as many on the south. On the west there was no gate, but on the east-that is, in front of the fane-there mere two, one within the other, for the eastern end of the platform was walled off to form a separate court for the women, at a somewhat lower level. One of the northern and one of the southern gates belonged to the court of the women, hut it was also entered directly from the east by a very splendid gate of Corinthian brass, much more costly than the others, though they were overlaid with silver and gold. An enormons gate, 40 cubits wids and 50 high (gate Nicanor), connected the women's court with the higher part of the platform, or court of the men of Israel. The beautiful gate of Acts iii. 2 is variously identified with the first or second of these eastern portals. The walls of the platiorm were liued within with chambers, in front of which ran a splendid colonnado; and the gateways were connected with the colonnade by small lofty halls (exedra), which from without had a tower-like aspect. It is doubtful whether all the gates had exedra; but, on the other liand, there was such a hall also at the west end where no gate opened. In the court of the men-i.e., in the upper and western part of the platform just describedstood the fane or temple proper raised tweive steps above the court. For the ground plan of the Holy Place and the Holy of Holies the ancient dimensions of Solomon's temple were preserved, and the external size demanded by the scale of the surroundings was gained by increasing their height, placing a lofty second story above them, making their walls and those of the surrounding chambers (corresponding to the chambers in the first temple) enormously thick, and placing at the front or east end a porch 100 cubits wide and 100 cubits high. The open doorway of this porch was overlaid with gold, as was also the door oi the fane and the wall round it. To the ornament of the entrance belonged also a golden vine with clusters of grapes as lig as a man. In front of the fane beneath the steps was the great altar of stone, 50 (or, according to the Middoth, 32) cubits square and 15 high; it was ascended by a flight of steps from the south. The part of the court round the fane and the altar was fenced off for the use of the priests and other Israelites were admitted only when the sacrincial ititual required the presence of the sacrificc:
Besides the descriptions in Josephus, we have for Herod'e tomple a mass of details and measurements in the Mishnic treatise Middoth. Josephus was himself a priest, whilo the Mishuah nas not written till a century after the destruction of the temple, though it usee traditions that go back to Levites who had served in the temple. The two sources liffer in many measurements, ond the Middoth appears to be possessed of detailed traditions only for the inner temple. The state of the evidence is not such as to allow a plan of the temple to be formed with erchitectural precision. The above account rests alinost entirely on Josephus, who, apart from certain exaggerations in detail, gives a satisfsctory general account, such as could be written from memory without notes and drewings.

Herod's gigantic and costly structures were still in building, forty-six years after their commencement, when our Lord began His ministry (John ii. 20), and the works were not completed till the procuratorship of Albinus (6264 A.D.). In 66 the great revolt against Rome broke out, and in August 70 Jerusalem was taken by Titus and the temple perished in a great conflagration. ${ }^{3}$
${ }^{2}$ On 10 Ab ; but Jewish tradition celebrates $\theta \mathrm{Ab}$ as the day of the destruction of the temple.
4. Topography. - It is not disputed that the site of the temple lay within the great Haram platform (see Jerusalens), now a Moslem holy place, and it is generally agreed also that the south-west corner of that platform is the south-west corner of Herod's outer plateau, parts of the southern and western retaining walls being confidently ascribed by experts to his age. But if Herod's temple (excluding the Antonia) was only 600 feet square it can have occupied but a small part of the Haram area, which measures about 1500 feet from north to south and 922 feet along the south wall. Moreover, the highest part of the hill, where the Dome of the Rock now stands, must have been outside and north of the temple enclosure. But this affords no good reason to doubt the accuracy of Josephus's measurements in a matter in which his memory could hardly fail him, and where his tendency would be rather to exaggerate than to diminish. There is no evidence that the eastern wall of the Haram is as old os Herod, much less as old as Solomon; for the supposed Phœenician letters found on stones belonging to it are not letters at all, and may be of any date. ${ }^{1}$ Moreover, there are various evidences of later building about the east wall of the Haram ; the so-called Golden Gate is certainly a later construction, and Justinian's church rested on now substructures to the south and east (Procopius, De AEd., v. 6), which implies an extension eastward of the old platform. And this is contirmed by the fact that in the neighbourhood of the south-east angle the platform does not rest on sclid substructures such as Josephus speaks of, but on the vaults known as Solomon's stables. Again, though the temple of Solomon lay above the town, there is no evidence that it was on the very top of the hill; on the contrary, buildings of the dimensions given in 1 Kings might have been placed on the hill-top without the need for such great substructures as are spoken of in 1 Kings vii. 10 ; and we have seen in speaking of tho courts of the first temple that the ground appears to have risen to the north, the upper court being on that side. ${ }^{2}$
If we accept the measurements of Josephna we have to bresk mith medieval tradition, both Moslem and Christian, which associates the Sakhre or rock under the dome on the top of the hill with the sacred site of the Jewe. So much weight has been laid on this circlumstance by writers of eminence that it is necessary here to go into some particalars and show that earlier tradition goes quite the other way. It is a Talmudic legend that in the Holy of Holies the place of the logt ark was taken by a stone called the "foundetion stone." Further this stone fras identifed with Jacol's stone at Bethel (comp. Rashi on Gen. xxviii and Breithaupt's notes). Both Mohsmmedans and Christians transferred these legends to the Sakhra, which the former accordingly venerated as "a gate of heaven" (Ibn 'Abd Rabbih, 'Ǐkd, iii. 369). Mohemmeden eourecs enable us to trace back this identificatiou to the Moslem Jew Wahb ibn Monahbih, who enriched Iolam with so many Jowish fables aud died a. contury after Jerusalem was taken by the Arabs (Ts bari, i. 571 sq. ; Ibn al-Fakih, p. 97 sq.). Eutychius, on the other hand, Fho is the first Christian writer to apply the Jewish legend to the Moelom Sakhra, avers that the tradition was communicated to 'Omar by the Christian patriarch Sophronins on the taking of Jerusalem, and guided the caliph in the choics of a site for his mosque. Entychius wrote nearly three bundred years after this ovent ; and, thongh it is known from earlier authorities (Arculphus, Theophanes) that the first Moslem mosque was built on what was pointed out as the site of the temple, it is cqually certain, and was known to Kuty chins himself, that that mosque lay to the south of the Sakhrs (Eutyohius, ii. 289), which was not embraced in thie precincts of the Moslom sanctuary till the reign of "Abd al-Maliks. Who bilit the dome, es an inseription with the dato 691 still testifies (IVid., p. 3 . 355). This is confirmed by the excellent Arabian historian Ion Wadih (ii. 311). 'Abd al-Malik's motive was political, as both historians attest ; Mrecca being in the hands of a rival, he resolved to set op

[^57]another place of pilgrimage to eupplant the Kaiba, and recommended it to the faithful as the point from which the Prophet made his miraculous ascent from Jerusalcm to heaven (Ibn Wadib, ut supra). There is nothing of the Jewish legend here; that, as we have seen, Was suppled by Wahb in the neat generation, and on his foundation there grew up a mass of other fables for which it is enough to refer to lbu al-Fakih, p. 93 sq . From all this it may be taken as certain that at the time of "Omar it was towards the seuth.west angle of the Haram, on the site of the original mosque, that tradition eupposed the temple to have stood; indeed Eutychius is guilty of self-contradiction when be first says that Sophrovius indicated the Sakhra to 'Omar as the site on which to build his mosque, and then adds that it was not part of the Moslem sanctuary till a generation later. Finally, the extension of the Haram to the north 80 as to bring the Dome of the Rock in to the centre of the sacred area was the work of 'Abd sl-Malik's son Walid (Eutychius, ii. 373)
Thus far we have met with nothing but confrmation of Josephus's measurements and the site they imply; but there are other topographical indications which supply confirmation more decisive. And first let us compare what is related of the outer gates of Herod's temple with existing remains. On the north was the gate Tadi of the Mishnah, which Josephus mentions only incidentally. This, like the gate Shushan on the east, which he does not mention at all, must have been of minor importance; the chief accesses were necessarily from the lower city to the south and the upper city to the west beyond the Tyropeon valley. The south wall, says Josephus, had gates in the middle (Ant., xv. 11, 5). The Mishnah names them the two gates of Huldah, which may mean "tunnel (weaselhole) gates." There is a double gate in the substructure of the south wall, 350 feet from the south-west angle, and from it a double tunnel leads up to the platform. This double gate exactly fits Josephus's description. There is also a triple gate, 600 feet from the south-west angle, which those who suppose the wall to have been more than 600 feet long regard as the second Huldah gate. But this view does not give us two gates in the middle of the wall, especially as the old wall cannot have enclosed Solomon's stables. Iu the west side the Mishnah places one gate (Kiponus), while Josephus reeognizes four. But these accounts are at once reconciled if we accept Josephus's measurements. For of his four gates the most southerly is necessariiy the one which opened on a flight of steps descending and then reascending across the Tyropeon to the upper city opposite. Now at the south-west corner of the platform there are still remains of a great arch (Robinson's arch), which must have belonged to a bridge connecting the upper city with the south portico of the temple. Thus one of the four gates is fixed. The second gate led to Herod's palace (at the exireme north of the upper city) by means of an embankment crossing the Tyropœon (Ant., xv. 11, § 5). Comparing B. J., ii. 16, § 3, vi. $6, \S 2$, and $\nabla .4, \S 2$, we see that the embankment also carried the city wall (the so-called first wall). Of this approach there are remains at Wilson's arch, 600 feet north of Robinson's arch ${ }^{3}$; thus, if Josephus's measurements are correct, the two westeru accesses were at the extreme ends of the western portico. Josephus's other two gates led to the suburbs outside the first wall, and therefore lay north of Wilson's arch, and were not gates of the temple enclosure proper but of the Antonia, which Josephus habitually reckons as part of the outer temple. ${ }^{4}$ Of them the Mishnah would naturally take no account, and as naturally it would neglect the gate that led to the palace as being not a public entrance. But further,

[^58]according to Josephus's account of the whole circumference of the temple with Antonia, the latter extended a stadium north of the north-west angle of the temple portico, i.e., 600 feet north of Wilson's arch; and, if we measure off this distance on a plan of the rock contours and then draw a line at right angles to represent the north face of the Antonia, we find that this line runs across the narrowest part of the saddle from which the temple bill is assailable. The breadth of the Antonia from east to west cannot have been more than about 300 fcet if, as is to be presumed, the gate Tadi was opposite the twir gates of Huldah; but with this breadth it would entirely cover the dangerous saddle.

Every attempt to reconstruct the area and situation of the temple as it was before Herod must be more or less conjectural, and an analysis of the possibilities would take up so much space that it seems better simply to offer a plan which appears to satisfy the main conditions of the problem.

A. Temple. B, B, B. lnner court. C, C, C. Great court. D, E. Porches of the king's house. F. Palacs of Solomon. G. Great tower of prison court. H. House of the forest of Lelanon. J. Water gate. I. North court. L, L, L. Naw space taken in ly Herod. MNPQ. Herod's enclosure. NP. Solomon's portico. PQ. Stoa Basilica or royal portico. P. Triple gate. Q. Rolinson'e arch. R. Double gate (Huldah gates). M. Wilson's arch.
According to this plan the area of the temple enclosure was doubled by Herod, his additions leing in the parts where the work of leveling up was heaviest, and where neither the convenience of norshippers nor reasons of defence called on earlier builders to extend the plateau. It is certain that the substructures of the south-west angle, raised to a dizzy height above the Tyropeoon, are Herod's (Ant., xr. 11, § 5), and Josephus also speaks of an extension to the north (B.J., v. $5, \frac{8}{} 1$). But, on the other hand, the Baris already adjoined the temple, a condition which is satisfied ly giving the older north court K (corresponding to the new court of Chronicles, and perhaps also to the upper court of the frst temple) a length from east to west of 300 feet and a breadth from north to south of 150 . The old east face of the plateau is, as Josephus says, 600 feet long, but this length was gained after the time of Nehemiab by taking in the site of the armoury or house
of the forest of Lebanon (H) and the street in front of the water gate (J). For the proof that the water gate stood at a re-entrant angle between the retaining walls of the armoury aud the palace and faced east as shown in the plan reference must be made to an article in the Journal of Philology (vol. xvi.). The rocky boss between these two walls was in Nehemiah's time surrounded by an outwork, which to the north joined the wall of Ophel,--that is, of the swelling mass of hill which lies out to the northeast (f the palace. From the lower city (south of the Haram area) a stair near the wall led up to the plateau H (Neh. iii. 19 ; xii. 37). The armoury was 150 feet long and 75 broad ; the plan allows the same dimensions for the open space within the water gate. The great court C, C, C is arranged in accordance with 1 Kings vii. 12, in such a way that it is at once the court of the palace and that of the temple, enclosing the inner court B. The dimensions of the inner court are not giren in 1 Kings, but as the temple was twice the size of the tabernacle the court was probably also double the court of the tabernacle. This gives a length of 300 feet and a breadth of 150 , as in the plan. The part of the court in front of the temple is 150 feet squarc, which agrees with the dimensions given in Ezel. xl. 23, 27. The great court is a square of 300 feet. This gives room on the east face for two porches D and E leading to the palace and each 75 feet long. Both porches are described in 1 Kings vii. 6, 8, and the dimensions of one are given. It is also expressly stated that the porch was before (i.e., on the east side of) the pillars that decorated its front, and that it led into the inner court of the palace, so that the arrangement in the plan is fully justified. In the time of Jeremiah (xxxviii. 14) there were three entries from the palace to the temple; the third was probably into the north court, the palace having been extended northwards. It is evident that before the time of Herod the palace had disappeared. It was on a lower level than the temple, and when it was cleared away the great substructures on the line PE stood out as the boundary of Solomon's building. North of E the substructures were less considerable, the rock at the north.end of this porch leing but 20 feet under the present level of the plateau. In Herod's time, as can be seen at Robinson's arch, the level of the plateau was the same as at present (2420 feet), but in older times there was a fall between the upper and lower court, and K was probably 10 feet above C, C, C. In that case D was on the natural level of the ground, while (unless the great court was on two levels) E stood on a retaining wall 10 feet high at the north end of the porch and nearly twice as lofty at the south end. The plan shows the temple thrown out on very lofty substructures, so as to be practically inaccessible on all sides and ovcrhang the Tyropœon in the most striking way. ${ }^{1}$ The whole group of buildings formed a complete defence to the city of David on its northern or vulnerable side. It will be observed that in Herod's temple the Huldah gates at R led directly to the altar, the position of which seems never to have been changed, and also that the plan explains the statement of Hecatrus that the temple was 150 feet broad. His length of 500 feet from east to west is 50 feet too much unless he includes some remains of the old palace. The Baris is shown as standing on the south-west corner of the existing platform of the Dome of the Rock.

A word may be said in conclusion on the ancient line of wall to the west of the temple, which, as has been shown from Neh. iii. in the article Jerusalem, ran along the eastern side of the Tyropœon. A bridge connected the temple with the upper city in the time of the later Hasmoneans, and, as the palace (on the site of Herod's palace)

[^59]ard the Baris were the points which it was most important to connect, it no doubt corresponded to the northern bridge already spoken of, at Wilson's arch M. But at that date it must have led, not directly to the temple, but to a lower point on the slope south of the Baris. In Nehemiah's time there was no bridge, but the gate of Ephraim probably corresponded to the east end of the bridge near the southwest angle of the Baris. In that case the wall, as is natural, ran close under the western substructures of the temple and probably served as a buttress to them ia the part of its course south of the gate of Ephraim, which in Neh. xii. 38 is called "the broad wall." The throne of the Persian governor, beside the gate of Ephraim (sco JerusaLEM, vol. xiii. p. 640), stood so close to the Baris that we may conclude that there was alraady a castle on its site, held for the great king. The position assigned to the gate of Ephraim, which, according to 2 Kings xiv. 13, was 600 feet from the corner gate, where the north wall of the city joined the west wall, suits the fact that a line drawn east and west 600 feet north of Wilson's arch coincides with the line of scarped rock marked on the plan. Here, therefore, the old north wall ran, with the great fosse filled up by Pompey. T'his wall figures also in Herod's siege, but seems to have been destroyed by him.
Litcrature. - The Jiterature of the subject is immense. The results of modern surveys and diggings are given in the Palestine Exploration Fund volume on Jerusalem (London, 1884) and in the accompanying Allas. Of other books it may suffice to name D_{2} Vogué, Le Temple de Jerusalem (fol., Paris, 1864); Fergusson, Topography of Jerusalem (8vo, London, 1847); Id., The Temples of the Jewos (4to, London, 1878) ; Thrupp, Antient Jerusalern (8vo, Cambridge, 1855) ; Lewia, The Siege of Jerusalem by Titus (8vo, London, 1803); and Perrot and Chipiez, Histoire de l'Art (Paris, 1887).
(W. R. S.)

TEMPLE, Sir William (1628-1699), English statesman, diplomatist, and author, was born in London in 1628. He came of an old English family, but of the vounger branch of it, which had for some time been settled in Ireland. He was the eldest son of Sir John Temple, master of the rolls in that country. His mother was Mary Hammond, sister of a well-known Tory divine. Temple received a liberal education, calculated to produce that moderation of judgment for which he was afterwards remarkable. He was first a pupil of his uncle Dr Hammond, after which he went to the grammar-school at Bishop Stortford, and then to the Puritan college of Emmanuel at Cambridge, where he came under the influence of Cudworth. At the commencement of the civil troubles his father embraced the popular causo and was deprived of his office. Coming to England, ho sat in the Long larliaraent as member for Chichester, and was one of the recalcitrant members turned out by Colonel Pride. Before this event happened his son had left Cambridge, without taking a degree, and in 1647 started to travel abroad. In the Isle of Wight, while on his way to France, he fell in with Dorothy Osbornc, and won her affections. Her father, Sir Peter Osborne, was governor of Guernscy and a Royalist. Her family were naturally opposed to the match, and threw difficulties in the way, which hindered its consummation for seven years. During this period Temple travelled in France, Spain, Holikad, and other countries, gaining knowledge of the world and kecping up a constant correspondence with his betrothed. At length, apparently in 1654 , the difficulties were surmounted and the marriage took place. In 1655 Temple and his wife went to Ireland. The next five years were spent in the house of Sir John Temple, who had made his peace with Cromwell, and had resumed his official position. His son took no part in politics, but lived the lifo of a student and a country gentleman.

The accession of Charles II. rescued Temple, like many others, from obscurity. In 1600 he sat in the conventiou
parliament at Dublin as member for Carlow, and he represented the samo county along with his father in the regular parliament that followed. After a short visit to England in 1661, as commissioner from the Irish parlia ment, he finally removed thither in 1663 . There he attached himself to Arlington, secretary of state, and two years later received his first employment abroad. It was in March 1665 that the disastrous war with the United Netherlands began. Charles II. was anzious to obtain allies, especially as Louis XIV. was taking up a hostile attitude. At this juncture the bishop of Münster sent an envoy to England, offering to attack the Dutch if the English Government would supply the means. Temple was sent over to negotiate a treaty, and in this business gavo evidence not only of the diplomatic skill but of the peculiar candour and frankness for which he was afterwards so distinguished. He was successful in making the treaty, but it was rendered ineffectual by the declaration of war by France, the threats of Louis, and the doubledealing of the prelate, who, after recciving a great part of the subsidy, made a separate peace with the Netherlands. As a reward for his services Temple was created a baronet, and in October 1665 became the English representative at the viceregal court at Brussels. While the war continued, Temple's duties consisted chiefly in cultivating good relations with Spain, which was a neutral in the quarrel between England and the Dutch, but was threatened by the claims of Louis XIV. on the Spanish Netherlands. Louis's designs became apparent in the apring of 1667, when he marched an army into Flanders. This event was one of those which led to the peace of Breda, and to the subsequent negotiations, which are Temple's chief title to fame. The French conquests were made at the expense of Spain, but were almost equally dangerous to the United Netherlands, whose independence would have been forfeited had Louis succeeded in annexing Flanders. Whilo the French were taking town after town, Temple made a journey into Holland and visited De Witt. The friendship established and the community of views discovered during this interview facilitated the subsequent negotiations. Templo had for some time pressed on his Government the necessity of stopping the French advance, and had pointed out the way to do so, but it was not till Decomber 1667 that he received instructions to act as he had suggested. He at once set out for The Hague, and in January 1668 a treaty was made between England and the United Netherlands, which, being joined shortly afterwards by Sweden, became known as the Triple Alliance. It was a defensive treaty, made against the encroachments of France. Whether we regard the skill and celerity with which tho negotiations were conducted or the results of the treaty, the transaction reflects great credit on Temple. The French king was checked in midcareer, and, without a blow being struck, was obliged to surrender almost all his conquests. Pepys records puhlic opinion on the treaty by saying that it was "the only good public thing that hath been done since the kin's came into England."

Unfortunately the policy thus indicated was but shortlived. In taking up a hostile attitude towards France Charles's object had apparently been only to raise his price. Louis took the hint, increased his offers, and two years later the secret trcaty of Dover reversed the policy of the Triple Alliance. Meanwhile Temple had developed the good understanding with the Dutch by contracting a commercial treaty with them (February 1668), and had acted as English plenipotentiary at Aix la-Chapelle, where peace between France and Spain was made in May 1668. Shortly afterwards he was approinted arobassador at The Eague. Ifere the livel for two years on qood terms both with De

Witt and with the young, prince of Orange, afterwards William III. The treaty of Dover led to Temple's recall; but the plot was not jet ripe, and Temple nominally held his post for another year. He perceired, however, that his day was over and retired to his house at Sheen. In June 1671 he received his formal dismissal. The war with the Netherlands broke out next year, and was alrnost as discreditable to England as that of 1665. Want of success and the growing strength of the opposition in parliament forced Charles to make peace, and Temple was brought out of his retirement to carry through the change of front. After a negotiation of three days, carried on through the medium of the Spanish ambassador, the treaty of TWestminster was made (February 1674). As a recognition of his services Tenple was now offered the ennbassy to Spain. This he declined, as well as the offer of a far more important post, that of secretary of state, but accepted instead a renewal of his embasiy to The Hague, whither he went in July 1674. In the March following he was nominated ambassador to the congress at Nimeguen; but, owing to the tortuousness of Charles's dealings, it was not till July 1676 that he entered that town. The negotiations dragged on for two yeais longer, for Charles was still receiving money from France, and English mediation was no more than a ruse. In the summer of 1677 Temple was summoned to England and received a second offer of the secretaryship of state, which he again declined. In the autumn of the same year he had the satisfaction of removing the last difficulties which hindered the marriage of Willian and Mary, an event which seemed to complete the work of 1668 and 1674 . Louis still remaining obstinate in his demands, Teuple was comnissioned in July 1678 to make an alliance with the states, with the object of compelling France to come to terms. This treaty was instrumental in bringing about the general pacification which was concluded in January 1679.
This was Temple's last appearance in the field of diplomacy; but his public life was not yet over. A third offer of the secretaryship was made to him; but, unwilling as ever to mix himself up with faction and intrigue, he again declined. He did not, however, withdraw from politics ; on the contrary, he was for a short tine niore prominent than ever. The state was passing through a grave crisis. Political passion was embittered by religious fanaticism. Parliament was agitated by the popish plot, and was pressing on the Exclusion Bill. The root of all the mischief lay in the irresponsibility of the cabinet to parliament and its complete subservience to the crown. To remedy this, Temple brought forward his plan for a reform of the privy council. This bods was to consist of thirty members, half of whom were to be the chief officers of the crown, the other half being persons of importance, lords and commoners, chosen without reference to party, Special care was taken to selcct men of wealth, which Temple considered as the chief source of political influence. By the advice of this council the king promised to act. The parliament, it was supposed, would trust such a body, and would cease to dictate to the crown. The scheme was accepted by the king, but was a failure from the outset. Intended to combine the advantages of a parliament and a council, it created a board which nas neither the one nor the other. The conduct of affairs fell at once into the hands of a junta of four, of whom Temple was at first one, and the king violated his promise by dissolving parliament without asking the advice of the council. Temple retired in disgust to his villa at Sheen, and appeared only occasionally at the council, where he soon ceased to exercise any influence. In 1680 he was nominated ambassador to Spain, but stayed in England in order to take his seat in parlizment as member for the university of Cambridge.

He took no part in the dehates on the great question of the day, and acting on the king's advice declined to sit in the parliament of 1681. Early in that year his name was struck off the list of the council, and henceforward he disappeared from public life. He continued to live at Sheen till 1686, when he handed over his estate there to his son, the only survivor of seven children, and retired to Moor Park in Surrey. When William III. came to the throne Temple was pressed to take office, but refused. His son becamo secretary at war, but committed suicide immediately after"ards. Sir Willian, though occasionally consulted by the king, took no further part in public affairs, but occupied himself in literature, gardening, and other pursuits. It should not be omitted that Swift lived with him as secretary during the last ten years (with one short interval) of his life. Temple died at Moor Park on 27th January 1699.

Templo's literary works are mostly political, and are of considerable inportance. Among them may be mentioned An Essay ons the Present State and Seltlement of Sreland (1668); The Empirc, Siveden, \&ic., a survey of the different Governments of Europe and their relations to England (1671); Observations upon the Uniled Provinces (1672); Essay upon the Original and Nature of Government (16:2); Essay upon the Advancement of Trade in Ireland (1673). Some of these were published in the first part of his 3 liscellanea (1679). In the samo year apparently his Poems were privately printed. In 1683 he hegan to write his Menoirs. The first part, extending from 1665 to 1671, he destroyed unpublished; tho second, from 1672 to 10 ór9, was published without lisa authority in 1691 ; the third, from 1679 to 1681 , was published by Swift in 1709. In 1692 he published the second part of his Miscellanea, containing annong other subjects the essay Upon the Ancient and Afodern Leurning, which is remarkable only as having giren rise to the famous controversy on the "Letters of Phalaris." His Introduction to the Hislory of England, a short sketch of English history to 1087, was published in 1695. Several collections of his letters were published by Swift and others after his deatl.

His fame rests, however, far more on his diplomatic triumplis than on his literary work. His connexion with domestic affairs was slight and unsuccessful. He was debarred both by his virtues and his defects, -hy his impartiality, his honesty, and his want of ambition,-from taking an active part in the disgraceful politics of his time. But in the foreign relations of his country he was intimately concerned for a period of fourteen years, and in all that is praiservarthy in them ho had a principal hand. He cannot be called great, but he will be remembered as one of the ablest negotiators that England has produced, and as a public servant who, in an unprincipled age and in circumstances peculiarly ofeu to corruption, preserved a blamcless record.

See Live and Works of Sir Mrilliam Temple, 2 vols. fol., 1720; 2 d ed., with Lifo by Laly Giffard, 1731 ; a more completo edition, including the Lellers, was published in 4 vols. 8vo, 1814 : Burnet, History of his own Time; Courtenay, Memoirs of the Life, \&c., of Sir IFilliant Temple, 2 vols., $1 \$ 30$; Macsulay, Essay on Sic William Temple.
(G. W. P.)

TENAN'T. See Landlord and Tenant.

TENASSERIM, a division of the province of British Burmah, lying between $9^{\circ} 30^{\prime}$ and $19^{\circ} 30^{\prime}$ N. lat. and $95^{\circ} 50^{\prime}$ and $99^{\circ} 30^{\prime}$ E. long. It has an area of 46,730 square miles and comprises the seven districts of Moulmein town, Amherst, Tavoy, Mergui, Shwagyin, Toungoo, and Salvin, which formed the tract south of Pegu conquered from Burmah in 1826, and were for many years generally known as the Teuasserim provinces. The southern extremity of the division approaches the insular region of Malaysia, and it is fringed along its entire western coast by a number of islands, forming in the north the Moscos and in the south the Mergui Archipelago. The eastern frontier is formed by a mountain range 5000 feet high, which acts as a water-parting between the Tenasserim and the Siamese river systems.

The population of the dirision in 1881 was 825,741 (437,900 males and 387,841 females). By religion Hindus numbered 23,145, Mohanmedans 24,786, Christiana 28,315, Budhhists 698,304 , and Nat warshippers 51,160. The cultived area in 1885-86 waa returned at 729,251 acres. The gross revenue in the same year mas $£ 184, \geq 62$, of which the land-tax yielded $£ 107,631$.
TENBY, a municipal and parliamentary borough aisi watering-place of Pembrokeshire, South Wales, is fine! situated on a long and narrow promontory of limestone rock, wathud on three sides by the sea, on the west side of

Carmarthen Bay, and on a branch of the South Tales Railway, 10 miles east of Pembroke and 274 west of London (by rail). Its chief attractions as a watering-place are its picturesque appearance, its antiquarian remains, its equable and salubrious climate, and its wide stretch of firm sands." There are considerable remains of the old fortifications of the town, dating originally from the Norman Conquest, and repaired by Elizabeth, whose initials with the date 1588 are inscribed on a stone near the fine south-west gate, which with the south-west and north-west walls is in very good preservation. The remains of the castle on a lofty rock at the extremity of the promontory include the keep, a circular bastion overhanging the cliffs, and portions of the outer wall. Within the grounds, which are laid out in walks, there is a local museum; and on the summit of the hill is the Welsh memorial to the Prince Consort, a statue of Sicilian marble (1865). Opposite the castle, about 100 yards distant and accessible on foot at low water, is St Catherine's Island, on which is a strong fort begun in 1868 , forming one of the land defences of Pembroke dockyard. The parish church of St Mary is a large and beautiful building, showing every variety of style from the Norman of the 12 th to the Tudor of the late 16 th century; it has a massive tower with a spirerising to a height of 15,2 feet. In the north aisle are some medirval altar tombs and in the south aisle one of the early Tudor period. The fisheries of Tenby, for which the place was noted at a very early period, are still of importance. The trade of the port is inconsiderable. Steamers, however, ply to Bristol, Cardiff, Ilfracombe, and Weston-superMare. In the neighbourhood there are extensive limestone quarries. The population of the municipal and parliamentary borough (area 640 acres) in 1871 was 3810 , and in 1881 it was. 4750 . In summer it is augmented by more than a half.

Tenby has the same derivation as Denbigh in North Weles. Anciently it was called Dynbych-y-Pyocod, the "precipice of fishes." The importance of the town dates from the eettlement of the Flemings in the reiga of Henry I. In 1150 Cadell, eldest oon of Rhys ab Gryffith, was slain by the people of Tenby, in revenge for which the castle was taken and the town derastated by his two brothers Meredith and Rhys. During the Wars of the Roses the fortifications were restored and streugthened by Jaspar, earl of Pembroke. They were again greatly strengthened by Elizabeth in apprehension of the landing of the Spaniards. At the beginning of the Civil War the town and castle were garrisoned for the king, but in 1644 it surrendered to the Parliamentarians after a viege of three days. Its privileges were extended by Hanphrey, duke of Gloucester, who made the maygr on independent justice, and by Henry IV., Henry VI., Elizabeth, and Charles I. It is now governed by the Municipal Act, and the corporation are the sanitary euthority. Since the 27th of Henry VIII. it has formed part of the Pembroke district of boroughs for parliementary representation.

TENCH, the Tinca tinca of naturalists, is one of the commonest and most widely spread freshwater fishes of Europe. It is generally distributed in ail suitable localities throughout England, but is limited to a few lakes and ponds in the south of Scotland and in Ireland. As the tench is of comparatively uncommon occurrence in unenclosed waters, its place among the indigenous fishes of Great Britain has been denied, and it has been supposed to have been introduced from the Continent. In central Europe, however, where it is undoubtedly indigenous, it thrives best in enclosed, preserved waters, with a clayey or muddy bottom and with an abundant vegetation; it avoids clear waters with stony ground, and is altogether absent from rapid streams. The tench belongs to the family of carps (Cyprinidx), and is distinguished from the other members of that family by its very small scales, which are deeply embedded in a thick skin, whose surface is as slippery as that of an eel. All the fins hare a rounded outline; the short dorsal fin is without a spine, but the
males possess a rery thick and flattened outer ray in tne ventral fins. The mouth is rather narrow and provided at each corner with a very small barbel. Tench if kept in suitable waters are extremely prolific, and as they grow within a few years to a weight of 3 or 4 Bb , and are then fit for the table, they may be profitably introduced

Tench (Tinea linca).
into ponds which are already stocked with other fishes, such as carp and pike. They live on small animals or soft vegetable substances, which they root up from the ground. The albino variety especially, which is known as the "golden tench," can be recommended for ornamental waters, as its bright orange colours render it visible for some distance below the surface of the water. This variety, which seems to have been originally bred in Silesia, is not less wellflavoured than the normally coloured tench, and grows to the same size, viz., to 6 and even 8 焐.

TENDER. See Pafment.

TENERIFFE. See Canary Islands, vol. iv. p. 798.
TENIERS, David (1610-1690), the jounger, a Flemish painter, almost ranking in celebrity with Rubens and Van Dyck, was born in Antwerp on 15 th December 1610. His father, David Teniers the elder (1582-1649), whose style he followed with a vastly superior power of conception, had been a pupil of Elsheimer in Rome and of Rubens in Antwerp. Besides these influences, we can also distinctly trace that of Adrian Brouwer at the outset of his career. Although the young painter's general system of ten reminds us of Rubens, several of his works also betray a vivid recollection of Brouwer in type as well as general arrangement. There is no evidence, however, that either Rubens or Brouwer interfered in any way with Teniers's cducation, and Smith may be correct in supposing that the admiration which Brouwer's pictures at one time excited alone tempted the younger artist to imitate them. The only trace of personal relations having existed between Teniers and Rubens is the fact that the ward of the latter, Anne Breughel, the daughter of John (Velvet) Breughel, married Teniers in 1637. Admitted as a "master" in the guild of St Luke in 1632, Teniers had even before this made the public acquainted with his works. The Berlin museum possesses a group of ladies and gentlemen dated 1630. No special signature positively distinguishes these first productions from those of his father, and we do not think it correct to admit with some writers that he first painted religious subjects. Dr Bode, in a most remarkable study of Brouwer and his works, expresses the opinion that Teniers's earliest pictures are those found under the signature "Tenier" (with the omission of the final s). Tenier is in reality a. Flemish version of a thoroughly Walloon name, "Taisnier," which the painter's grandfather, a mercer, brought with him when he came from Ath in 1558, and Bode's supposition is greatly strengthened by the circumstance that not only David the elder but his brothor Abraham and his four sons were all inscribed as "Tenier" in the ledgers of the Antwerp guild of St Luke. Some really first-rate works-the Prodigal Son and a group of Topers in the Munich gallery, as well as a party of gentlemen and ladies at dinner, termed the Five Senses ia tha

Brussels museum - with the abore signature are remarkable instances of the perfection attained by the artist when be may be supposed to have been scarcely twenty. His touch is of the rarest delicacy, his colour st once gay and barmonious. Both Tragen and Smith express the opinion that the works painted from 1645 to 1650 speak most righly of the master's alilitics. We may venture to add that a considerable number of earlier productions would have been sufficient to immortalize his name. He was little over thirty when the Antwerp guild of St George enabled him to psint the marvellous pitture which ultimately found its way to the Hernitage Gallery in St Petersburg, -the Jubilee Meeting of the Civic Guards, in honour of their old commander, Godfrey Sneyders. Correct to the minutest detail, yet striking in effect, the scene, under the rays of a glorious sunshine, displays an astonishing amount of acquired knowledge and natural good taste. This painting, one of forty among many of the master's earlier and Later productions, ${ }^{1}$ leads us to mention another work of the same year (1643), now in the National Gallery, London (No. 952), an equally leautiful repetition of which, dated 1646, belongs to the duke of Bedford. A hundied and fifty figures are resting after a pilgrimage to some holy shrine or some miraculous well. The hungry travellers are waiting for the meal which is leing prepared for them in several hrage caldrons. Truth in physiognomy, distribution of groups, the beantifnl effect of light and shade, command our warmest admiration. A work like this, says Waagen, stamps its author as the greatest among painters of his class. That, however, a subject of the kind should have becn accepted as a "feast" (see the National Gallery Catalogue) may tend to prove how little, from the first, Teniers thought of dramatizing. Frankness in expression snd freedom in attitude certainly guided his preference in the choice of a model, and we may even suppose him to have occasionally exaggerated both. He seems anxious to have it known that, far from indulging in the coarse amusements of the boors he is fond of painting, he himself lives in good style, looks like a gentleman, and behaves as such. He never secms tired of showing the turrets of his chateau of Perck, and in the midst of rustic merry-makings we often see his family and himself received cap in hand by the joyous peasants. We may also observe that he has a certain number of farourite models, the constant recurrence of which is a special feature of his works. We even meet them in a series of life-size portrait-like figures in the Doria Pamphili Gallery in Rome, ${ }^{2}$ as well as in a picture belonging to Mr H. R. Hughes, and the man here represented as a fishmonger is unmistskably the painter's brother, Abraham Teniers, judging from the portrait Edelinck has left us of this artist.

Teniers was chosen ly the common council of Autwerp to preside over the guild of painters in 1644. 'The archduke Leopold Π illiam, who had assumed the government of the Spanish Netherlands, being a great lover of art, employed Teniers not ouly as a painter but as keeper of the collection of pictures he was then forming. With the rank and title of "syyuds de camara," Teniers took up his abode in Brussels shortly after 1647. Lmmense sums were spent in the scquisition of paintings for the archduke. A number of valuable works of the Italisn masters, now in the Belvedere in Vienna, came from Leopold's galle, y after Laving belonged to Charles I and the duke of Buckingham. De Bie (1661) states that Teniers was some time in London, collecting pictures for the duke of Fuensaldaña, then acting as Leopold's lieutenant in the Netherlaede. Psintings in

[^60]Madrid, Munich, Vienna, and Brussels have enabled art critics to form an opinion of what the imperial residence was at the time of Leopold, who is represented as conducted by Teniers and admiring some recent acquisition. No picture in the gallery is omitted, every one being inscribed with a number and the name of its author, so that the ensemble of these paintings might serve as an illustrated inventory of the collection. ${ }^{8}$ Still more interesting is a canras, now in the Munich gallery, where we see Teniers at work in a room of the palace, with an old peasant as a model and several gentlemen looking on. When Leopold returned to Vienna, Teniers's task ceased; in fact, the pictures also travelled to Austria, and a Flemish priest, himself a first-rate flower painter, Van der Baren, became keeper of the archducsl gallery. Teniers nevertheless remained in high favour with the new governorgeneral, Don Juan, a natural son of Philip IV. The prince was his pupil, and De Bie tells us he took the likeness of the paiuter's son. Honoured as one of the greatest painters in Europe, Teniers seens to have made himself extremely miserable through his aristocrstic leanings. Shortly after the death of his wife in 1656 he married Isabelia de Fren, daughter of the secretary of the council of Brabsnt, snd strove his utmost to prove his right to armorial bearings. In a petition to the king he reminded him that the honour of knighthood had been bestowed upon Rubens and Van Dyck. The king at last declared his readiness to grant the reqnest, but on the express condition that Teniers should give up selling his pictures. The condition was not complied with ; but it may perhaps account for the master's activity in fasour of the foundation in Antwerp of an academy of fine arts to which artists alone should be sdmitted, inhereas the venersble guild of. St Luke made no difference between art and handicraft : carvers, gilders, bookbinders, stood on an even footing with painters and sculptors, however great their talent. ${ }^{4}$ There were great rejoicings in Antwerp when, on 26th January 1663, Teniers came from Brussels with the royal charter of the scedemy, the existence of which was due entirely to his personal initiative.

Teniers died in Brussels on 25th April 1690.5 A picture in the Munich gallery (No. 906), dated 1680, represents him as an alchemist, oppressed with a burden of age bey ond his years. From this date we hear more of his doings as a picture-dealer than as a painter, which most probably gave birth to the legend of his having given himself out as deceased in order to get higher prices for his works. David, his eldest son, a painter of talent and reputation, died in 1685. One of this third Teniers's pictures-St Dominic Kneeling before the Blessed Virgin, dated 1666 - is still to be found in the church at Perck. As well as his father, he contriluted many patterns to the celobrsted Brussels tapestry looms. Cornelis, the painter's daughter, married John Ersamus Quellin, a well-known artist (1634-1715).
Smith's Catalogue Raisonne gives descriptions of over 700 paintings eccepted es original productions of Teniers. Few artists ever worked with greater ease, and eome of his emaller pictures-landgcapes with figures-have been termed "afternoons." not from their subjecta, but from the time spent in producing them. The museums in Madrid, St Petersburg, Tienna. Mnnich. Dresden. Paris, London, and Brusele have more than 200 pictures hy Teniera In the United Kingdom 150 masy be found in privare hands sud many of her examples are to be met with in private collectiono throughout Europe. Although the apirit of many of these works

[^61]is as a whole marrellous, their conscientiousness must be regarded as questionable. Especially in the later productions we often detect a lack of earnestness and of the calm and concentrated study of nature which alone prevent expression from degenerating into grimace in situations like those generally depicted by Teniers. His education, and still more his real and assumed position in society, to a great degree account for this. Brouwer knew moro of taverns; Oatade was more thoroughly at home in cottages and humble dwellings; Teniers throughout triumphs in broad daylight, and, though many of hia interiors may be justly termed masterpieces, they acldom equal his open-air acencs, where he has, without constraint, given full play to the bright resources of his luminous palettc. In this respect, as in many others, he almost invariably suggests comparisons with Watteau. Equally sparkling and equally joyous, both seem to live in an almost ideal world, where toil, disease, and poverty may exist, but to be acon forgotteu, and where sunshine seems everlasting. But his subjects taken from the Gospels or sacred legend are absurd. An admirable picture in the Lourre showa Peter Denying his Master, next to a table where soldiers sre smoking and having a game at cards, He likes going back to aubjects illustrated two centuries before by Jerome Basch-the Temptation of St Anthons, the Rich Man in Hell, incantations, and witches-for the simple purpose of assembling the most comic apparitions. His villagers drink, play bowle, dance, and sing; they seldam quarrel or fight, and, if they do, seen to be shamming. His powers certainly declined with adrancing age; the works of 1654 begin to look hasty. But this much may bo said of Teniers, thst no other painter ahows a more enviable ability to render a conception to his own and other people's satisfaction. His works Lave a technical freshness, a straightforwardness in means and intent, which make the study of therm most delightful; as Sir Joshua Reynolds says, they are worthy of the closest attention of any painter who desires to excel in the mechanical knowledge of his art.

As an etcher Teniers compares very unfavourably with Ostade, Cornelis, Bega, and Dusart. More than 500 platesavere made from his pictures; and, if it be true that Louis XIV. judged his "baboons" (magots) unworthy of a place in the royal collections, they found admirable engravers in France - Le Bas and his scholars-and passionate admirers. The duke of Bedford's admirable specimen was sold for 18,030 livres ($£ 1860$) in 1768. The Prodigal Son, now in the Louvre, fetched 30,000 livres ($£ 3095$) in 1776. Smith's highest estimates have long sinco been greatly exceeded. The Archers in St Petersburg he gives as warth £2000. The Belgian Government gave $£ 5000$ in 1867 for the Village Pastoral of 1652 , which is now in the Brussels museum; and a picture of the Prodigal Son, scarcely 16 by 28 inches, fetched $£ 5280$ in 1876.

Although Van Tilborgh, who was a scholar of Teniers in Brnssels, follorred his style with aome auccess, and later painters often excelled in figure-painting on a small scale, Tenicrs cannot be said to have formed a school. Properly speaking, he is the last representative of the great Flemish traditions of the 17th century.

See T. Snith, A Catalogue Ratsonne of the JForks of the most Eminent Dutch, Flemish, and French Paintcre; John Vermoelen, Notice historique sur David Teniers et a famille; L. Galesloot, Quelques rensignuements sur la famille de P. P. Rubens et le deces de David Tenters and Un procis de David Teniers et la corporalion des peintres a Bruxelles: Alph. Wauters, Histoire des entirons de Bruselles and Les fapisseries bruxelloises; F. T. Van der Brandern, Geschiedenis der Antwerpsche Schilderschool; Max Rooses, Geschichte der Malerschule Antwerpens; W. Bode, Adriacn Brouwer, ein Bild seins Lebens und eeincs Schafers.
(II. H.)

TEnimber. See Timor Ladt.
TENISON, Thomas (1636-1715), archbishop of Canterbury, was the son of Rev. John Tenison, rector of Mundsley, Norfolk, by Mary, daughter of Thomas Dowson of Cottenham, Cambridgeshire, where he was born on 29th September 1636. He was educated at the free school, Norwich, whence he entered Corpus Christi College, Camhridge, as a scholar on Archbishop Parker's foundation. He graduated B.A. in 1657, M.A. in 1660 , was chosen fellow in 1662, and became B.D. in 1667. For a short time be studied medicine, but in 1659 was privately ordained. In 1667 he was presented to the living of Holywell-cumNeedingworth, Huntingdonshire, by the earl of Manchester, to whose son he had been tutor, and in 1670 to that of St Peter's Mancroft, Norwich. In 1680 he received the degree of D.D., and was presented by Charles II. to the important cure of Sc Martin's-in-the-Fields. Tenison, according to Burnet, "endowed schools, set up a public library, and kept many curates to assist kim in his indefatigable labours." Being a strenuous opponent of the Church of Rome, and "Whitehall lying within that parish, be stood as in the front of the battle all King James's reign."

In 1678, in a Discourse of Idolatry, he had endeavoured to fasten the practices of heathenish idolatry on the Church of Rome, and in a sermon which be published in 1681 on Discretion in Giving Alins was attacked by Andrew Pulton, head of the Jesuits in the Savoy. Tenison's reputation as an enemy of Catholicism led the duke of Monmouth to send for him before bis cxecution in 1685, when Bishops Kcn and Turner refused to administer the Eucharist ; but, although Tenison spoke to him in ".a softer and less peremptory manner" than the two bishops, he was, like them, not satisfied with the sufficiency of Monmouth's penitence. Under William, Tenison was in 1689 named a member of the ecclesiastical commission appointed to prepare matters towards a reconciliation of the Dissenters, the revision of the liturgy being specially entrusted to him. A sermon which he preached on the commission was published the samo year. He appears to have been better satisfied with the religious sentiments of Nell Gwynn on the approach of death than with those of the duke of Monmouth, for in 1691 he preached her funeral sermon, in which he rcpresented her as truly penitent, - a charitable judgment which did not meet with universai approval. The general liberality of Tenison's religious views commended him to the favour of William, and, after being made bishop of Lincoln in 1691, he was promoted to the primacy in December 1694. He attended Mary during her last illness and preached her funeral sermon.in Westminster Abbey. When William in 1695 went to take command of the army in the Netherlands, Tevison was appointed one of the seven lords justices to whom his authority was delegated. Along with Burnet he attended Willian on his deathbed, and it was from their hands that he received the Eucharist. He crowned Queen Anne, but during her reign was not in much favour at court. He was a commissioner for the Union in 1706. A strong supporter of the Hanoverian succession, he was one of the three officers of state to whom on the death of Anne was entrusted the duty of appointing a regent till the arrival of George I., whom be crowned on 31st October 1714. Tenison died at London on 14 th December of the following year. Besides the sermons and tracts above mentioned, and various others on different points of the Popish controversy, Tenison was the author of The Creed of $M r$ Hobbes examined (1670) and Baconia, or Certain Genuine Remains of Lord Bacon (1679).
The Memoirs of the Life and Times of the Most Rev. Futher in God, Dr Thomas Tenison, late Archbishop of Canterbury, appeared without date not long after his death. See also Burnet's History of his own Time and Macaulay's History of England.

TENNANT, William (1784-1848), author of Anster Fair, was born in 1781 at Anstruther in Fifeshire, the birthplace of two other contemporary Scottish worthies, Thomas Chalmers and John Goodsir. He was lame from childhood, like his more famous contemporaries Byron and Scott, and this probably determined his father, who was a smali merchant and farmer, to educate him for a scto'arly career. But the paternal means failed before he had completed his curriculum at St Andrews, and he was obliged to return home and act for some eight years of his carly manhood as clerk to ono of his brothers, a corn-factor. The corn-factor's clerk, homever, under the impulse of a genius for language and a strong delight in literatur, besides Greek and Latin and Hebrew, mastered, during his leisure, Italian and German, and not only read, but set himself to imitate, Ariosto and Wieland. And, strange to say, this poor youth, in a remote country town, anticipated the fashion of mock-heroic verse, which was set for England by "the ingenious brothers Whistlecraft," and which gave Byron the hint for his Don Juan. Anster Fair, a fantastic poem in ollava rima, amazingly fluent, brimming over with
high spirits, rich almost to excess in diction and fanciful imagery, was written by Tennant in 1811, when his brother's business had failed and he did not know where to look for employment. Its publication in 1812 brought the poct into notice, and employment was found for him as schoolmaster of the parish of Dinino, near St Andrews. From this he was promoted (188 3) to the school of Lasswade, near Edinburgh; from that (1819) to a mastership in Dollar academy; from that (1831), by Lord Jeffrey, who had written an admiring review of Anster Fair, to the professorship of Oriental languages in St Andrews. Tencant never fulfilled the promise of his first poem, which reads as if it bad been dashed off in a fit of careless and happy inspiration, and never flags in its humorous glee from the first stanza to the last. The Thane of Fife (1822), in which he essayed the same vein, evidently cost him more pains, shows the same high reach of humorous imagination, and is indeed, as he claimed for it, "bold in its style and rare, fantastic, and sublime." But the subject was more remote from general interest; the mock-epic machinery, with all his wealth of grotesque description, was too far-fetched for the popular taste; and the poem fell flat. A third poem, in the Scatch dialect, Papistry Stormed (1827), though full of the most spirited description, was also in a vein of humour that found few sympathizers. He wrote also two historical dramas, Cardinal Beaton (1823) and John Baliol (1825). His last published work was a series of Hebrevo Dramas (1845), founded on incidents in Bible history. He died near Dollar, on 15th Tebriary 1848.
Δ Memoir of Tennant by M. F. Conolly was pablished in 1861.
TENNENT, Sir James Eyerson (1794-1869), English politician and traveller, the third son of William Emerson, a merchant of Belfast, was born there on 7th April 1794. He was educated at Trinity College, Dublin, of which he became LL.D. After travelling in Greece, where he made the acquaintanco of Lord Byron, whose sentiments in regard to the Greek cause he fully shared, he studied for the bar and was called at Lincoln's Inn in 1831. He published a. Picture of Greece (1826), Letters from the LIgean (1829), and a History of Modern Greece (1830). On his marriage to the daughter and heiress of Willia.m Tennent, a wealthy merchant at Belfast, he adopted by royal licence the name of his wife in addition to his own. He entered parliament in 1832 as member for Belfast. In 1841 he became secretary to the India Board, and in 1845 he was knighted and appointed colonial secretary of Ceylon, where he remained till 1850. The result of his residence there appeared in Christianity in ${ }^{\bullet}$ Ceylon (1850) and Ceylon, Physicai, Historical, and Topographical (2 vols., 1859). On his return he becamé member for Lisburn, and under Lord Derby was secretary to the Poor Law Board from February to November 1852. From then till 1867 he was permanent secretary to the Board of Trade, and on his retirement he received a baronetcy from Lord Palmerston. In his early years his political views had a Radical tinge θ_{2} and, although be subsequently joined the Tories, his Cunservatiom was of a mild type. He withdrew from the Whige elong with Lord Stanley and Sir James Graham, and afterwards adhered to Peel. He died in London on 6th August 1869.
Besides the books above mentioned, he wrote Belgium in 1840 (1841) and Wine, its Duties and Taxation (1855), and was a contributnr to magazines and a frequent correspondent of Notes and Queries.

TENNESSEE, one of the United States of North America, the third added (June 1796) to the original thirteen, its predecessors having been Vermont (1791) and Tontucky (1792). Tennessee is bounded on the E. by the Unaka Mountains, which divide it from North Carolina, to the S by the line of lat. $35^{\circ} \mathrm{N}$., dividing it from Gaorgia,

Alabama, and Mississippi; on the W. by the Misisisipp river, dividing it from Arkansas and Missouri ; and on the N. by a line which erroneous surveys have caused to vary greatly from the intended boundary,-the line of lat. 36° $30^{\prime} \mathrm{N}$.-the variations all being measured to the north of that parallel. The actual boundary commences at the north-east corner of the State 7 miles north of $36^{\circ} 30^{\prime}$, and continues at that distance as far as the frontier of Virginia and Kentucky, where it diminishes to 5 miles; thence to about its intersection with $86^{\circ} 30^{\prime}$ W. it increases to 11 miles; thence a deflexion southwards to a point about 2 miles from. the Cumberland reduces it to 10 miles; there it suddenly shoots north again to 12 miles, which distance is increased to $12 \frac{1}{2}$ by the time it strikes the Tennessee; on the other side of that river it becomes very nearly coincident with the normal $36^{\circ} 30^{\prime}$; and to that line it adheres with very slight aberrations until it strikes the Mississippi. The eastern boundary has one deviation from the stipulated line: it runs along the culminating ridge of the Unakas till within 26 miles of the Georgia frontier, when it turns due south, giving to Tennessee a triangular piece of territory which should belong to North Carolina. The area of the State was 41,750 square miles in 1880 . Its extreme length is 432 miles and its width 109.

Configuration and Geology.-Commencing at the eastern frontier, the State of Tennessee is divided into several districts, having distinct characteristics and separated by well-marked natural boundaries, whose general direction from north-east to south-west corresponds with the trend of the main valleys (see the geological sketoh map inserted on pl. II.).

1. The mountain region of East Tennessee is a long narrow belt of very irregular surface, comprised between the Unaka Range and a disjointed chain of lower mountains, the principal of which are called the Chilhowee Range, and the whole of which may be considered as constituting the secondary mountain system of the State. The intervening space is occupied by broken masses forming hills, mountains, and valleys, some ${ }^{-1}$ parallel to the principal ranges, some crossing the space at right angles to them. This region varies in width from 28 miles to about 7. All the rocks of this region and the next to it belong to what constitute in England the Silurian and Cambrian systems, the former being found in the western and the latter in the eastern part of the district. It has been contended that some metamorphic rocks near the crest of the mountains belong to the Archaic (Huronian and Laurentian) system ; but the preponderance of geological opinion now assigns them to the same formations ws the neighbouring rocks, the difference in structure being dne to metamorphic action. - The lowest of these, called in Tennessee the Ocoee group, is believed to be cooval with the Potsdam group of the Armerican system,-the Lower Silurian and perhaps the Upper Cambrian of the British Isles. It consists chiefly of slates and conglomerates, with the sandstones of the Chilhowee group above. Above these last are the Knox dolomite group, with its shales and limestone more separated from the other two groups and perhaps not exactly corresponding to any other recognized formations. The crystalline metamorphic rocks are mainly syenitic and micaceous gneiss, with micaceous, horablendic, and talcose schists. .Occasional small dykes of diorite, greenstone, and basalt traverse these rocks, sometimes interstratified, but oftener breaking through thim.
2. The rocks of the first division are tilted at very high angles; those of the second division, the eastern ralley of the Tennessee, are fractured and distorted at nearly every conceivable angle, and, in consequence, it is the edges of the uplifted strata which here form the surfar:. The strate invo been eatson awhy to form vallejer, il loft standing as.

ridges, giving the whole tract a deeply channelled character, the ridges consisting of sandstone and dolomite and the valleys of friable achists. These all trend in the prevalent direction of the Appalachian upheaval, from north-east to south-west. The rivers take the same directions, except when they break through transverse fissures in the ridges, or work round their terminations where they give way to the outcropping of other rocks; in these cases the current runs at right angles to their prevalent direction. All these formations belong to the Silurian period, the oldest cropping out to the eastward, the later members appearing to the westward. In some spots the Subcarboniferous rocks which once covered the entire valley have escaped the erosive action which swept the rest away. The whole disirict is a valley of denudation which has been excavated by the Tennessee and its-tributaries, -some breaking through the Unaka barrier, and others descending from Virginia along the longitudinal valleys above described.
3. Rising in a steep elevation at from 800 to 1200 feet above the average level of the eastern valley of the Tennessee is the plateau popularly called the Cumberland Mountain. This mass, superincumbent on the Silurian system, consists of four very distinctly marked formations, -(i.) the Devonian black shale, (ii.) the Subcarboniferons silicious beds, (iii.) the Mountain Limestone, (iv.) the Coalmeasures. These can easily be distinguished one above another on the face of the eastern escarpment; but on the western aide the first two extend in a wide plain far beyond the base of the plateau, constituting the fourth district. The Mountain Limestone is shaly at the bottom, and more solid at the top, where it abounds in silicious concretions. The Coal-measures consist of thick slabs of sandstone and conglomerate with the seams of coal interstratified between them. In its southern portion the plateau is divided longitudinally by the narrow valley of the Sequatchie river, which cuts deep into the subjacent Silurian beds. The portion east of this valley, known as Walden's Ridge, has its strata much disturbed and tilted, conformably with the Silurian rocks below; the western portion, on the contrary, has all its strata nearly horizontal. This formation, averaging about 40 miles in width, is divided by a stratum of conglomerate 80 feet thick into the upper and lower Coal-measures, the former of which are much the more productive, but cover a less area, large portions of it having been carried away by denudation. These coal-seams are believed to average an aggregate thickness of 8 feet and to cover an area of 5000 square miles.

4, 5, 6. The Subcarboniferous area, the central basin, and the western valley of the Tennessee can best be considered together. They conaist of the Subcarboniferous silicious beds, together with the basins formed by their erosion. On the western face of the Carboniferous belt the Mountain Limestone has been carried amay with the harder rocks of the Coal-measures above it, but the underlying silicious beds have resisted all erosive forces and are spread out over an extended area on both sides of the Mississippi. In Tennessee they form a margin round the central basin and are styled by local geologists the "highland rim." They consist of two strata, a lower one distinguished by the absence of lime and iron, and an upper one which contains both these materials in abundance. Both members consist mainly of a peculiar gravel, formed of silicious concretions embedded in a stiff retentive clay. The upper stratum has in addition considerable horizontal beds of limestone ; it contains abundant fossils of a large coral, Lithostrotion canadense, by which it is easily recognized, is very fertile, and possesses inexhaustible beds of limonite. The lower stratum is destitute of both fossils and minerals and is of but little account for agriculture. Excavated from this formation is the central valley of

Tennessee (No. 5), surrounded on all sides by an escarpment of about 200 feet in depth, by which descent is made from the "rim" into the valley. All the members of the Silurian period, except the three lowest, are represented in this valley, which has been formed by the erosive action of the rivers within its borders: its higher strata were carried off northwards by the Cumberland and its tributaries, westward by the Duck, and southward by the Elk, the last two being tributaries of the Tennessee. A channel of erosion along the lower portion of the Duck river connects this valley with another (No. 6) much narrower-the western valley of the Tennessee-where again the Silurian beds have been reached by the removal of the Subcarboniferous formations above them. Again, south of the main basin, the portion drained by the Elk is nearly separated from the rest by a number of detached hills of the Subcarboniferous formation, marking the watershed which divides the headwaters of the Elk from those of the Duck.

7, 8, 9, 10. A little west of the Tennessee river the Palæozoic rocks disappear under the Cretaceous formations (No. 7), and these in their turn are covered successively by the Tertiary, Quaternary, and recent formations (Nos. 8,9 , and 10). The tract of ground covered by these four formations constitutes the Mississippi slope of western Tennessee, all of whose rivers run westward and discharge into the Mississippi. The dip of the strata is very slight, and the surface inclines with a very gentle slope.

In general terms, the territory embraced in Tennessee may be described as a great mountain chain on the east, from the foot of which extends a gently inclined plane, interrupted by an elevation, the Cumberland or Carboniferous plateau, and a depression, the central valley.

Rivers. -The Cumberland and the Tennessee are the principal River channels of inland navigation, while the Mississippi, washing the whole western fronticr of the State, is its outlet to the Gulf of Mexico. The headwaters and embouchure of the Cumberlend are in Kentucky, but much the greater part of its navigable stream is in Tennessee. From its confluence. with the Ohio, at Smithland, Kentucky, to N sshville, a distance of 200 miles, it is generally navigable for eight months in the year, and during high water it is sometimes accessible to light-draft ateamboats more than 300 miles further. The Tennessee rises in Virginia, crosses east Tenneesee in a south-western direction, and enters Alabama a little above Bridgeport; in that State it assumes successively a westerly and a northerly direction, and then re-enters Tennessee and crosses the State northwards to its confluence with the Ohio et Paducah, Kentucky. Its navigsble waters are divided by obstructions into three portions, - (1) from the mouth to Florence, Alabama, 800 miles, where navigation is arrested by the Muscle ehosls; (2) thence through Alabama, shout 100 miles, when the river breake through the Cumberland Meuntain; and (3) from Chattanooga to Kingston. ahout 100 miles further.

Agriculture. - In 1880 the number of farms was 165,650 , embrac. ing $8,496,556$ acres of improved land, valued at $\$ 266,749,837$. The principal productions are Indian corn, wheat, oats, cotton, tobacce, potatoes, pea-nuts, and hsy, particulare of which for different years are shown in the following table:-

Product.	1860.	1870.	1880.	1834.
lndisa corn	52,089,928 bush.	41,848,014 bush.	82, 764, 429 busb.	86, 723,000 busb.
Whest	5,459,208 .	6,188,916	7,331,858 "	9,820,000 "
Osts	2,207,814 208,404 balies.	1,618,815 bäles.	4,722,190 balles.	, 315,807 hal'es.
Tobseco	43,448,097 th.	21,465,452 D.	29,385,052 tb.	31, $892,000 \mathrm{Ib}$.
Potatoes	8,786,677 bush.	2, 330,020 bush.	8,724,382 bnsh.	2,800,000 bush.
Hay	143,499 tons.	116,582 tons.	188,698 tons.	217,916 tons.

In $18841,250,000$ brehels of pes-nuts were prodnced, as against 800,000 in 1883. In recent years considerahle attention has been given to the cultivation of fruit and vegetables.

The live stock statistics in different jears are ohown in the table which follows next :-

Yesr.	Horses.	Cattie.	Sneep.	Pigs:	Mules and Asses.
1880	290,882	764,782	573, 317	2,547,321	128,845 102085
1870	247,254	${ }^{643,696}$	820,783	1,828,890	
1850	266,119	783,674	672,789	2,180,495	178,499
1885	288,604	S01,828	603,780	2,122,646	187,208

TXTII. - 23

Mincrals. - The chief minerals found in the State are coal, iron, copper, zinc, lesd, and manganese. Of coal the output was 494,491 tons in 1880 and $1,100,000$ tons in 188,5 ; in the latter year there were slso 268,400 tons of coke. In 1880 there were produced 89,933 tons of iron ore (326,040 tons in 1885), 153,880 th of copper ingots, and 792,621 cmhic feet of marble and limestone. Of zine 17,415 tons were produced in 1884. Besides the minarels slresdy mentioned, Tennessee fields millstone grit, hydranlic rock, barytes, fire-clay, gold, sod patroleum.

Manufactures. -Since 1875 the manofactarlng indnstries of the State have grown immensely. From 1880 to 1885 the number of establishmente increased from 4326 to 4425 , the capital invested from $\$ 20,002,845$ to $\$ 40,703,850$, and the vslue of the manofactured products from $\$ 37,074,886$ to $\$ 75,216,211$. In 1880 cotton was mannfactured in the Stste to the ralne of $\$ 934,014$ (in 1885 to $\$ 2,719,768$), carriages and waggons $\$ 1,253,721$, flour and gristmill products $\$ 10,784,804$, foundry and machine-shop products $\$ 1,191,531$, iron and steel $\$ 2,274,203$, leather $\$ 2,051,087$, lumber $\$ 4,015,310$, and cotton-eeed oil, cotton seed, and cake to the value of $\$ 1,235,000$.
Population, The popaistion of the State, which in 1860 wss $1,109,801$ and in $18701,258,520$, was in $18801,542,359$ (males 169,277, females 773,082). Of this last total 403,151 were Negroes. [n 1887 the total population was estimated to nomber about $1,800,000$, giving a density of 43 inhsbitanta to the sqnare mile, to against 36.9 in 1880. The growth of the orincipal cities is hown by the following table:-

	1870.	1880.		1970.	1880
Memphls.	40,220	03,592	Kn	8,882	
Castarooga ...	25,805	43,350 12,982	Jackson		6,377

The considerable declino in the popalation of Memphis is accoanted for by two epidemics of yellow fever in 1878 and 1878 (eee Memphis). Chsttanooga is still increasing at a very rapid rate in consequence of the vast development of the mineral resources of east Tennessee. Knoxville is also growing from the same cause, bat not eo rapidly as Chattanooga.

Education. - Provision for common school edncstion was made before the Cinil War, but was limited to white children. A State bank was established for the purpose of regulating the currency, and a portion of its capital was reserved as a school fund ; its profits were slso to be used for school parposes. The fund on which interest is now paid is $\$ 2,512,500$. A bill is now (1887) before the State legislature to increase the permanent State fand to $\$ 5,000,000$. Besides this, the proceeds of a tax of 15 per cent. on property and a poll tax of $\$ 1$ per annum are applied to the same parpose. Moreorer, each county has the power of imposing a school tax on its people, and msny incorporate cities and towns sdd etill farther to it by special taxes within their limits. All children between six and twenty. one (eighteen until 1885) are entitled to free edncation in the public ochools. In 1875 the school population numbered 426,612, of whom there were 199,058 pupils enrolled. In 1886 the corresponding figares were 609,028 and 373,877 , and in $1887.623,450$ and 383,537 . Besides the common schools numerous privste achools exist. Higher education is provided for in soreral institutions, such as Vanderbilt oniversity (Methodist) at Nashrille, the university of the South (Episcopalian) st Sewanee or Cumberland Mountain, the south-western Presbyterian university at Clarksville, and others; the university of Tennessee at Knoxville is supported by State grants, and is not under the direction of any one denominstion. Many smaller establishments entitled universities exist in rarions parts of the State.

Administration, de. -The legislative and execntive functions of government sre carried on by a governor, a State senste, and a honse. of representatives, whose respective duties and prerogatives correspond almost exactly to those of the president, senate, and fepresentatives of the United Ststes. Both the senators (33) and the fepresentatives (99) sre elected for two years. The president of the penste, who is elected by the senators, succeads as gorernor in case af the death of the elected governor during his term of office. The governor has the power of veto on the Acts of the legislature. In case of its exercise, the Act is returned to the legislature, when, if it passes by a constitutional majority in both houses, it becomes lsw in spite of the veto.

The judiciary administration is carried on by courts of four designations, -the county criminal courts, the circnit courts, the chancary courts, and the supreme court of the State. The county conrts consist of the magistrates, who assemble at the connty sest four times a year to transact county busiuess. They elect a chairman ont of their own body, who by virtue of such election becomes the financial agent of the county. In counties large enough to justify it, a county judge is elected, who exercises criminal jurisdiution. There are foarteen circuit courts, esch having jurisdiction a several oounties ; in these all common-law cases are adjudicated, excent in those counties where there is a criminal judge. There
are elaven chancery dirisions, for esch of which a chancellor 19 elected, who tries all rases in equity in his division. All these judges ara elected for eight years. The judges of the supreme court, five in nuinber, are elected by the people at large, but not more than two can be taken from any one of three divisions of the State viz, the eastern, middle, and western. Their jurisdiction is purelr appellate: they revise the decisions of the other courts. and their decisions are final, excapt where s question sriess as to the inter pretation of the United States constitution.
History. - At the time of its first settlement and occapation by Europesns Tennessee wss part of the territory granted to the colony of North Carolins by Charles II. It was then, however, a hypothetical claim, the boundaries of which were chiefly determined by $35^{\circ} 30^{\circ}$ and $35^{\circ} \mathrm{N}$. lat. The eastern boundory of North Carolina Wrs the Atlantic Ocean; on the other side the western territory extended according to one theory to the Mississippi, according to another theory to the Pacific Ocesn. When the Engliah settlers began to cross the Appalachisn chsin, they found the Freuch estab lished on the Mississippi and its tribataries,- the Ohio, the Ten nessee, and the Comberland. Thie Spanich clairo of an indefinite extension of their possessions in Florida was also a constant menace to the adrances of the earliest English colonists in the direction of South Carolins sad Georgia. The most important effort of transmontane colonization by the British prior to 1760 was the establishment of Fort Loudon on the Little Tennessee river in 1756 or 1757. But in 1760 this post was captured by the Cherokees and its garrison massacred; and the same fate befell a number of colonists who had eettled between Fort Chissel (on New River. Virginis) snd Fort Loudon. Early. in 1761 Colonel Grat completely routed the Cherokees and compelled their French and Spang ish allies to withdraw to Louisians and Georgis.

Eight years later the stream of emigration began to set westwards, mainly by two routeg, of which one led through Cumberland Gap to the palley of the Cumberland river, whilst ths other followed the course of the Tennessee round the soathern border of the Cumberland platean into the western Tennessee valley. A body of emigrants from Virginia aettled on the banks of the river Holston, in what is now Hawkins county, and formed the aucleus of s rapidly increasing colony, which was msinly recruited from Virgiria snd North Carolina. The chief settlements were on the Watsuga river, extending thence to the Nolichucky, both tribataries of the Tennessee. The colonists adopted a code of laws for themselves based apon those of Virginia, and entrusted their execu. tion to a bench of five magistrstes. Their first trouble related to the title to their lands. They aupposed themselves to be settling in Virginis ; but they were really in North Carolina, and therefore outside of the territory which had been ceded to the British crown by the eix uations of Indians. A further obstecle wss a roysl pra. clamation dated nine years before forbidding privsto persona to purchase titles from the Indians. Though the Cherokees had nc Ionger fired babitation in the country, they still claimed the whole valley for hnnting grounds. The dilemms was solved by a lesse negotisted for eight years. The next difficulty arose with the British Government in alliance with the hostile Indians. But out of these tronbles the colonies on the Watauga, Holston, and Nolichucky emerged as a populous and poweriul community.

When it π ss proposed to liquidate the debts incurred by both the States and the Federsl Government for war expenses by the sale of public lands, an Act of Cession wrs passed in 1,84 by the North Carolina legislature ceding their lands west of the mountains, inclnd ing those of the Watanga settlers, to the Federal Goverument. But in the following year the North Carolins legislature repealed the Act of Cession, and the whole matter was thus indefinitely poatponed. The Watanga community now declared itseff independent of North Carolina ; that State had relinquished its sovereignty over them and the Federal Corernment had not accepted it. At this time the transmontane territory consisted of Washington, Sullivsn, and Greene counties. It also embraced all the settlements on the Curnberlsnd, comprising the existing counties of Davidson, Sumner Montgomery, Robertson, and Williamson. Davidson county had been organized by the influenco of James Robertson (one of the eatliest arrivals from North Carolina, in 1769), who had moved to the site of the future city of Nashville. But Davidson county took no part in thesa proceedings. The Stata organized by the seceding counties in August 1784 T8s called the State of Franklin; its constituent counties returned to their allegiance to North Carolina on 1st March 1788. A second Act of Cession was passed in 1790, by which the defunct State of Franklin became part of the territory of the United States south of the Ohio, including what now constitutes Kentucky and Tennessee. The northern portion became a State, under the name of Kentucky, in 1722, and the southern portion took rank as the State of Tennessee in 1796, being received into the Union the,same year. The settlement of middle Tennessee wss mach retarded so long as the path of access to it from east Tennessee was throngh Cumberland Gap and down the Ohio. The broader route round the south of the Cumberland plateau by the Temnessee river tras too unsafe for general use on account of tho
powerful Indian tribes-the Creeks and the Cherokees. This obstacle was finally removed by General Jackson's crushing defeat of the Creeks in 1814, and a large cessiou of their territory.
The position of Tennessee during the Civil War was the eame as that of the other middle and southern States. While secession was in agitation, it refused to secede; but when actual hostilities commenced it joined the Southern confederacy. Even then, however, west and middle Tennessee eympathized with the South, whilst eastern Tennessee sided with the North. Each division sent very large contingents to the army which it faroured. A large portion of the State was, during the later yeare of the war, iu the occupation of the Northern army, and many great battles were fought on its soil, notably those of Fort Donelson, Murfreesborough (Stone River), Franklin, and Nashville. - Tenncssee suffered more from the exhaustion attendant on the close of the war, and from the rigorous government which accompanied the period of reconstruction, than any other State except Virginia.
See Geclogy of Tennessee, Nash ville, 1809 ; Elliott, "The Age of the Bouthern Appalachians," it Amer. Jour. of Sc., April 1883; Bradley, "On the Silurian Age of the Southern Appalachians, ib, April 1875; Haywood, The Civil and Political History of the State of Tennessee from its earliest Settlement up to the Year 1796, Enoxville, 1823 ; Ramsay, Annals of Tennesset to the End of the Eighteenth Century; Partoo, Life of Andree Jackson, New York, 1860; Kirke, The Rear Guard of the Revolution, Nem York, 1886 ; Reports of Tentessee Hist. Soc. and
of Burean of Agriculture, Bines, and lmmigration.
(D. F. W.)

IENNIS. This, the oldest, perhaps, of all existing ball-games, is at once the most difficult to learn, on account of the intricacy of its laws, and the most interesting when learnt; because of the great variety of its combinations, and the diffeulty of solving rapidly the problems which are constantly presented to the player. It derives an additional claim to attention from numberless historical asseciations. Of the origin of tennis it is not possible to speak with certainty; but it may be confidently assumed that it sprang frem some very simple spert. It first appeared in Europe in the Middle Ages, when we find it played in open courts, in the parks or ditches of the feudal castles of France and Italy. It was at first the pastime of kings and nobles, but afterwards became popular with all classes. The French seem to have berrowed it from the Italians, and to have contributed some of its refinements ; and the English took it from the French. Though mentioned in the Arthurian romances, the game was certainly not known in England in the time of Arthur. The name tennis is supposed to be derived from the exclamation "Tenez!"employed by early French players in serving the ball. In Italy the game is called "giuoco della palla"; in France, "jeu de paume," which also means the tennis court; in Germany it is called by the generic title of "Ballspiel"; in Spain, "juego al ble" or "jugar al ble." It is clear from the French name that the ball was originally struck with the palm of the hand. This was afterwards protected by a glove, as is still the practice in the

Plan of ternis court. A, D, walls on each side of dcdans; d, d, gallery walls ; h, grille wall: lan of ternis court. A, D_{1}, walls on each side of dcdans $; d, d$, gallery walls ; h, grille wall;
f, net post ; g, g, gallery post ; v, v, first galleries ; y, y, secoud galleries ; x, x, last galleries;
 z_{1}, z, doors; 0,0, balf-court line $; r, r$, openings under net for rentilation and warming ; $1,2,3$,
$4,5,6$, marl chaees.
which a sloping reof, called the penthouse, reaches to the outer wall. The surrounding passage thus enclosed (not shown in plan) is 7 feet wide. Opposite to the long penthouse is the main wall, in which there is at one point a projection called the tambour, E, which deflects the ball across the court. In the inner wall, below the penthouse, there are several openings, the one at the end, on the service side, being called the dedans, B, the others the galleries. At the further cnd of the court is the grille, a square opening adjacent to the main wall. Across the court, halfway between the two ends, is stretched a net n, 3 feet high in the middle and 5 feet at the sides. The game may be played by two, or by three, or by four players, one against one, one against twe, or two against two. At the commencement the playcrs toss or "spin" a racket, to decide which shall serve first, calling "rough " (for the knotted side) or "smooth." The party which wins the "spin" has the cheice of the service or the "first stroke," the latter term meaning the return of the scrvice. The server then begins at the "dedans" end of the court, technically called the "service side," pitches the ball in the air, and strikes it with his racket so that it shall drop on the side penthouse or on the wall above it, and then from the penthouse upon the floor on the other side of the net (called the "hazard side"), within the "service court" bounded by the "service line" x and the "pass line " p. If he fail to do this, a "fault" is called, or a "pass" if the ball has gone beyond the pass line. If he serves a second fault, his adversary scorcs a point, called a "stroke." A pass counts for nething, but annuls a previous fault. ${ }^{1}$ It now becomes the duty of the adversary, called the "striker-out," to return the ball by striking it with his racket in such a manner that it shall pass back over the net to the service side. The server must now strike it again and return it to the hazard side and the olaver Whe first returns the ball inte the net or "out of court" (i.e., to the roof, or above the play line on the malls) leses the stroke, which is scored to his antagonist. But, if a player fail or refuse to strike the ball in the air (a "volley") or on its first bound and before it touches the
floor floor a second time, then, except on the hazard side bcyond the service line, a "chase" is made or reckoncd on the floor, accerding to the lines on or between which the ball has dropped the second time. This chase is a stroke in abeyance. When onc has been made it is called by the marker, but does not affect the score until one of the players has scored 40, when they change sides, and the player who has allowed the chase to be made must then
endeavour to win it, i, e, , to place the $\frac{\text { In }}{\text { In }}$ Ine Nanchester Club this law (8) bas been wisely abolighed

Basque country. Upen the glove strings and cross-strings were next stretched, to give a faster impulse; and the addition of a short handle made an easy transition to the racket! In the time of Henry VII, the hand still sometimes met the racket, even in the royal court at Windsor.
One of the first improvements in the game censisted in the building of closcd courts, first with walls, then with walls and roof. It is still played in the open air in some places in France, and "pallone," a rude and violent variety of the game, is yet seen in Italy. There are twenty-seven courts in England and one in Dublin.

As now played, tennis in France is virtually the same as in England, though there are a few differences of detail. The court is rectangular (see the annesed plan). An inner vall rums round three sides, to the height of 7 feet, from
ball returned by him better, i.e., nearer to the end wall, than the point at which the chase was marked. As often as his adversary returns his stroke, he must again endeavour to do this, until he succeeds or fails. If he succeed, he scores the stroke; if not, it is scored to his adversary. If two chases have been made at any stage of the score, eren at the beginning of a game, then the players must change sides and play for the chases, as above described. A player who succeeds in sending the ball into the grille, the dedans, or the last division of the gallery-called the "winning gallery "—on the hazard side, scores at all times a stroke. The minutire of the game and the mode of scoring cannot be more succinctly described than in the annexed laws. ${ }^{\text {. }}$

Lawz.

Single-Handed Game.

1. The balls shall be not less than $2 \ddagger \mathrm{in}$. and not more than $2 \frac{1}{8}$ in. in diameter, and shall be not less than $2 \frac{1}{2} \mathrm{oz}$ and not more than $2 \frac{8}{8}$ oz. in weight.

Note.-There is no restriction as to the shape or alze of the racketa
2. (a) The choice of sides st the beginning of the first set ie determined by a spin.
(b) In subsequent sets of a eeries, the players shall begin each set on the side on which they finished the set before it.
3. The ball served must be etruck with tho racket, sad may be delivered from any part of the service side.
4. The ball served must touch the service penthouse before touching eny other part of tho court, ezcept the rest of the side penthouse snd the service wsll ; snd it must drop in the eervice conrt or on one of the lines which bound it.
5. The eervice is good,
(a) if the ball served touch in its descent any part of the service penthouse so as to rise sgain from it, or
(b) if the ball served strike the service wall snd afterwarde touch in its descent any part of the service penthouse, oven thongh it do not rise again from it, or
(c) if the ball served drop in the winaing gallery.
6. A faglt may not be returned.
7. A pass may not bo returned ; but a bsll sorved, which has not gone scross the pass line on the penthouss, may be volleyed, sithough if untouched it might have dropped in the pass court. If a pass touch the striker-out, or if a service before it has dropped touch him when standing with both feet in the pass court, and not having attempted to etrike the ball, it is still counted a pass
8. A pass annuls a previous fanit.
9. If the striker-ont declare himsolf not ready for a service, and have made no attempt to return it, that service is counted for nothing, thoogh it he s fault. It annals a previo is fsult. The striker-out, having beer asked if he is teady, and having declared himsolf ready, may not similarly refuse a second seivice.
10. The server continues to serve until two chases be made, or one chase when the score of either player is at forty or advantage (see law 25). The players then change sides, the server becoming striker-out and the striker-out becoming server.
11. The return is good if the ball in play be atruck with the racket so that it pass the net without tonching a gallery post or anything fized or lying in an opening on the side from which it is struck, and without going out of court.
12. The return is not good,
(a) if not in accordance with the terms of law 11, or
(b) if the ball be struck more than once, or be not definitely etruck, or
(c) if the ball in play, hsving passed the net, come back and drop on the side from which it was etruck, unless it should have touched a gallery post or anything fixed or lying in sn opening on that side of the court which is opposite to the etriker.
13. A boll which is no longer in plsy msy not be returned.

14 The server wins a stroke (escept as provided in law 9),
(a) if a good eervice enter the winning gallery or the grille, or
(b) if the etriker-out fail to return a good sertice (except When it makes a chase; see laws 17-19), or
(c) if the striker-out fail to return the ball in play (except When it makes a chase; cee laws 17-19), or
(d) if he himself return the ball in play oo that it enter the winning gar ry or grille, or fall on or beyond the service line, or
(b) if he serve or return the ball in play so thst it drop or fsll upon a ball or other object which is on or beyond the eervice line, or

[^62](f) if he win a chase (see lam 20), or
(g) if the striker-out lose a ctroke (bee lsw 16).
15. The etriker-out wins a stroke (except as provided in lsw 9),
(a) if the server serve two cobsecutive faults (except as provided in law 81 (b)), or
(b) if the server fail to return the ball in play (except whon it makes a chaee ; bee lawe 17-19), or
(c) if he himself return the bsll in play so that it enter the dedans, or
(d) if he win a chase, or
(e) if the server lose s stroke (see law 16).
16. Either player loses s atroke,
(a) if he lose a chase (see lsw 21),
(b) if the ball in plsy (except as provided in law 7) toach him or snything which he wears or carries, except his racket in the act of returning the ball, or
(e) if he touch or strike the ball in plsy with his racket more than once, or do not definitely strike it.
17. When a ball in play on either side of the net, not being that on which the striker is standing,
(a) falls on sny part of the floor, except on or heyond the service line, or
(b) enters say gallery, except the winning gallery, or
(c) touches s gallery post,
it is marked s chase
(a) at that line on the floor on which it fell, or
(β) better or worse than thst line on the floor which is nearest to the point at which it fell, or
(γ) at that gallery the post of which it touched,
except as provided in laws 18 and 19.
Note (a).-A ball in play which tonches thie net post and drops on the slde opposite to the striker is marked a chase at the line on the side on which it drops. Note (b). - A ball in play which enters a gallery is marked a chaee at that gallery which it enters, notwithstanding that it may have touched an adjacent gallery post without touching the floor in the interifo.
Note (c). The gallery lines on the floor correspond and are equivalent to the galleries of which they bear the names.
18. When a ball in play
(a) drops or falls in the net, on the side opposite to the striker, or
(b) drops on the floor, on the side opposite to the striker, and, hounding over the net, falle on that side of it from which it was struck, whether it touch the net in its bound or not,
it is marked a chase st the line on the side opposite to the striker.
19. When a ball in play drops or fells upon a ball or other object which is on the floor (except when it is on or beyond the service line ; see lsw 14 (e)), it is marked a chase at the point at which that ball or other object wss when the bsll in play dropped or foll apor it.
20. Either player wins a chase,
(a) if he cerve or return the ball so that it enter a winning opening, or
(b) if he serve or return the ball so that it fall better than the chase for which he played, or enter a gallery or tonch a gallery post hetter thsn the gallery or the gallery line at which the chase was for which he played, or
(c) if he serve or return the ball so that it drop or fsll apoo a ball or other object which is at a point on the floor botter than that at which, or at the gallory corresponding to which, the chase was for which he plsyed, or
(d) if his sntagonist fail to return the ball in play, except when it falls worse then the chase in queation.
21. Either player loses a chase,
(a) if he fail to return the ball in play, except when it falle Worse than the chase in question, or
(b) if he return the hall in play so that it fall worse then the chase, or enter a gallery or tonch a gallery post worse thsn the gallery or the gallery line at which the chase tras for which he played, or
(c) if he return the hall in play eo that it drop or fsll npon a ball or other object which is at a point on the floor worse than that at which the chase was for which he played.
22. Whens ball in play
(a) falls at a point on the floor neither better nor woree than that at which, or at the gallery correspondiag to which, the cbese was for which the striker plsyed, or
(b) enters that gallery or the gallery corresponding to that gallery line, or tonches the post of that gallery, or falls on the gallery line corresponding to that gallery, at which the chase was for which the striker played, or
(c) drops or falls upon a hall or other object which is at a point on the floor neither better nor worse than that at which, or at the gallery corresponding to which, the chase was for which the striker played,
it is marked chees-off: it is not scored as a stroke won by either player ; the chase is annalled, and the atriker has not to play for it again.
23. As soon as two chases are marked, or one chase when the score of either player is at ferty or advantage (see law 25), the players change sides. The player who made the first chase now defends it, while the other playe to min it ; and 80 with the second chase, except when only one has been marked.
24. If by an error three chases have been marked, or two chases when the acore of either player is at forty or edvantage (see law 25), the last chase in each case is annulled.
25. On either player winning his first etroke, the score is called fifteen for that player ; on either player winning his second stroke, the acore is called thirty for that player; on either player winning his third stroke, the score is called forty for that player; and the fourth stroke won by either player is ecored game for that player, except as below.

1. both players have won three strokes, the acore is called deuce, and the next stroke won by either player is scored advantage for that player. If the same player win the following stroke, he wins the gamo; if be lose the following stroke, the score is again called deuce; and so on, until either player win the two strokes immediately following the score of deuce when the game is scored for that player.
2. The player who first wins six games wins a set, except as below.

If both players win fire games, the score is called games all, and the next game won by either plajer is scored advantage game for that player. If tha same player win the following game, he wins tho set; if he lose the following game, the score is again called ganies all; and so on, until either player win the twn games immediately following the score of games all, when he wins the set.
Note.-Players often agreo not to play advantage sets, bnt to declda the aat by ona gatna after arriving at the acore of games all.
27. Every chase is marked, and every stroke scored, by the marker, who is entitled to consult the dedans when he is in doubt. A player who is dissatisfied with the marker's decision is entitled to appeal to the dedans. A majority of the dedans confirms or reverses the marker's decision. An appeal mnst be made before a recommencement of play.
Note.-The dedans shouid dot giva a dectsion unasked on a question of marking a chasa or atroke, but may, and abould, correct inaccurata scoring of chases, strokes, games, or sets.

Three-Handed and Four-Handed Games, sometimes called Doubie Games.

28. The partners serve and strike-out in alternate games, unless it shall have been previously agreed to the contrary.
Note.-It is unually, but not always, agreed that the atriker-out may leave to hia partner elach services as pass hun.
The former laws apply to these as well es to single games, the advantafes and disadvantages attaching to a single player under the former laws here attaching to a pair of players.
odds.
29. (a) A bisque or a half-bisque may not be taken after the oervice hay been delivered.
(b) T'ao server may not take a bisque after a fault; but the striker-out may do so.
Note.- A bisque is a stroke which may be claimed by the reciplent of odds et any tima during a set. aubject to the provisions of lawa 29 and 90.
30. A player who wishes to take a bisque or a half-bisque, there being a chase or two chases marked, may take it either before or after changing sides; but he may not, after changing sides, go back to take it.
31. (a) When the odds of round services are giren, the ball eerved by the giver of the adds must tonch the grille pent. house after touching the service penthonse and hefore dropping in the servic:3 court or on one of the lines which bound it.
(b) Neither faults nor failure in complying with the above condition are counted against the giver of the odds; but the recipient of the odds may dectine to return such services as do not touch hoth the pentheuses; it, however, he attempt and fail to return eny such service, it is counted against him.
32. Half-court: the players having agreed into which half-conrt on each side of the net the giver of the odds shall play, tho latter loses a stroke if "he ball returned by him drop in either of the other half-courts.

But a ball retirned by the giver of the odds which
(a) drope on the half-court line, or
(b) drop in his half-court and touches the dedans post before falling or
(c) drops in his half-court and falls in the dedans, even though on the other side of the dedans post, or
(d) tounhes the dedans post before dropping,
is counted \& r the giver of the odds.
And a retrim baasted against eny wall by the giver of the odds Which
ie) drops in his half-court, or
(f) drops on the half-court line, or
(g) touches the dedans post before dropping, or
(h) touches any penthouse, battery, or wall before drop. ping in his half-court, dropping on the half-court line, or touching the dedans post,
is also counted for the giver of the odds.
Nole.-It is, of course, evident thst the giver of thesa edds may make chase, or win a chasa or a stroke, with a bail wbich drups in hia half-court, or on the balf court Ine, but falla In tha other half-court.
33. When the odds of "touch no walls" or "touch no eide walls" are given, a ball returned by the giver of the odds which on falling makes a nick is counted for the atriker.

Directions to the Sfarker.

It is the duty of the marker
to call the faults, and the passes;
to call the strokes, when won, or when he is asked to do so ;
to call the games and sets at the end of each, or when asked to do eo ;
to mark the chases, when made ;
to call the chases when there are twe in the order in which they were made, or the chase when there is one with the score at forty or adrantage; and then
to direct the-players to change sides;
to call the chase or chases egain, in order as above, when the players have changed sides, and each chase as a player has to play for it ;
not to call play or noi play in doubtful cases before the conclusion of the rest, unless asked to do so ;
to decido all doubtful and disputed strokes, subject to an appeal to the dedans;
to warn the players of any balls lying on the floor in their way, or to their danger or disadvantage, and to remove all such balls;
to collect the balls into the ball-basket ; and
to keep the ball-troughs constantly replenished in the dedans and last gallery, and the latter especially in three-handed and four-handed games. (J, MA*.)
TENNIS, Lawn. Lawn-tennis is a modern adaptation of the first principle of tennis, in the simplest form, to a ball-game played on grass with rackets. The balls are of india-rubber, hollow, and covered with white cloth. The rackets are lighter and broader than those used at tennis. The court for the single-handed game, one player against one, is shown in fig. 1 , that for. the three or four-handed game in fig. 2. The dimensions of the courts, the size

Lawn-tennis courts. Fig. 1, for single game; fig. 之, for double gsme. and weight of the balls, the mode of scoring, and other details are giren in the laws of the game (see below). The only requisites for the game are the balls, rackets, net and posts, and a hard level surface of grass. It may be, and often is, played upon surfaces of wood, asphalt, cement, gravel, or other substance. The grass requires constant mowing, rolling, and in dry weather watering, to keep it
in order. In the winter months it should be sedulously weeded, sown where necessary, and swept and rolled whenever the weather permits.

The choice of sides depends upon a toss or spin of a racket, as in tennis. The winner chooses the service or the preferable side, as he pleases. The server begins the game by striking the ball with his racket so that it passes (without touching) over the net, which is hung across the court from the posts A, A. The ball served must drop in the space which is diagonally opposite to him ou the other side of the net, -a space bounded by the net, the side line, the half-court line, and the service line. His adversary, called the "striker-out," must return the ball before it touches the ground a second time; and the server must similarly return it again; and so on, until one or other player fails to return it over the net so that it shall drop on the ground anywhere on the side of the oct furthest from him, and within or upon any of the lines which bound that space, technically called his adversary's court. When one player thus fails, he loses a stroke, which the other is deemed to win, and it is added to the score of the latter. The score is kept as at tennis, but there are no chases.

Activity and condition have great value in lawn-tennis, though there is room for much skill in placing the ball in the corners with hard, low strokes, and in intercepting and returning the ball by the volley while in the air, before it reaches the ground. But in matches temper, enduranco, and quickness of movement count for very much.

Lavn-tennis, in one form or another, has been played for many centuries ont-of-doors. The present variety of the game ras first introdnced, in a form which was soon shown to be impracticable, about the year 1874. It was then taken up by the All England Club at Wimbledon, who in 1877 remodelled the eize and shape of the court, and the laws, and altered the system of scoring to that which obtains in the parent game. Therenpen, with the consent of the M.C.C. at Lord'e, whe lent the anthority of their name to the movement, the code of laws which now prevails, and has been occasionally amended only in a few dotails, was promulgated by the All England Club. The championship of the game, which is open to gentlemen amateurs only, was instituted at Wimbledon by the A.E.C. in 1877. A lady's championship snd a champienship for pairs (gentlemen) hàve also been instituted, and am annually competed for on the groands of the A. E.C. st Wimbledon. Lawntennis, in the short time which has elapsed since its introduction, has achieved immense popularity. Prize-meetings are held annually at Bath, Cheltenham, Dablin, Edinburgh, Manchester, Liverpool, and many other places in the United Kingdom ; the game is also played with as great enthusiasm in the United States, Canada, Australia, and India. In all those conntries prize-meetings ere held and championships aro institated.

Laws. 1
 Sirgle-Handed Game.

1. For the aingle-hsnded game the coart is 27 feet In width sud is feet in lensth. It is divided across the middie by a uat, the ends of which are attisched to the tops of two posts Δ and \mathbf{A} (see fig. 1), Which atand 8 feet outside the court on each side. Tha height of the net is 3 feet 8 Inches at the posts sud 3 feet et the centre. At each end of the court, parallel to tha net, and at a distanoce of 99 feet from it, are drawn the base lines CD and EF, the extremities of Fhich are convected by the side lines CE and DF. Half-way between the side linea, and parallel to tham, is drawn tha half-court line $O H$, dividing tha space on each side of the net lnto two eqnal parts, called the right and left courts. On each aide of the net, at \& distance of 21 feet from it, and parallel to 1 t , sre drawn the service lines XX and YY.
2. The halls shall be not less than of inches nor more than $2, \frac{1}{8}$ Inches in diameter, and net less than $1 \frac{7}{5} \mathrm{oz}$. nor mors than 2 ez . in weight.
3. In matches where umpires are appointed their decision shall be final: bot where a referee is appointed an appeal ahall lle to him froin the decision of ay umpire on a question of law.
4. The choics of sides and the right of serving daring the first game ahall be decided by toss, provided that, if the winner of the toss chooss the right to serve, the other player ehall have the chole日 of sides, and vice versa.
5. The players shall stand on opposite sides of the net. The player who Arst delivers the ball shall be called the server, the other the striker-out.
delivers the ball shall $\begin{gathered}\text {. At the end of the first game the striker-ont ahall become server and tha }\end{gathered}$ server shsll become atriker-out; snd ao on aiternately in the subseqnont games of the set.
6. The server shall stand trith one foot beyond (i.e., further from the net than) the base lne, and with the other foot upan tha base line, and shall de.
 degert.
7. The ball served must drop within the service line, half-court line, and side liue of the court vihish is diagenslly opposite to that from which it was side liue of the court vihish is
eerved, or npon any ench lina.

Frinied of nermiszor of the Dli Eaglatd La wn-Tranan Cill
9. It is a fanit if the eervice be delivered from the wroug coturt, or if the server do not atand as directed in law 7 , or if the ball aerved drop in the net or beyond the service lioe, or if it drop ont of court or in the wrong court; it is not a fault if the aerver's foet which ta heyond the base line do not touch the ground at the memant at which the bervice is dellvered.
10. A farlt may not ba takan.
11. After \& fault, the server shall airve again from the same conrt from which oe served that fanlt, nuless it was a fault becanse served from the wrong courth 12. A fanlt may not be claimed after the next bervice has been delivered.
18. The aervice may not be volleyed, i.e., taken before it toaches the ground. 14. The asryer shall not serye until the atriker-out is resdy. If the latter attempt to retarn the cervice, he ehall ba deemed to be ready.
15. A hall is in play from the moment at which it is delivered in service (unless a fault) until it has boen vollayed by the striker-cut in his first atroke, or bas dropped in the net or out of court, or has touched either of the players or anything that he wears or carriea, except his racket in the act of striking, or bas been etruck by either of the players with his racket more than once con secutively, or has been vollezed before it has passed over the net, or has failed to pass over the net before its first bound (except as provided in law 17), or has tonched the ground trice consecutivaly on either side of the net, though the second time may bave been ont of cosrt.
18. It is a let if the ball served touch the net, provided the service be otherwise good, or if a sarvice or falt be delivered when the atriker-out is not ready, or if either player be prevented by an accideri beynud his cootrol from serving or retarning the ball in play. In case of a let, the service or stroke counte for nothing, and the server ohall serve acain
17. It is a good retarn although the ball touch the net, or, having passed ontside either post, drop on or within any of the linea which bound the court into which it is returned
18. Tha server wins a stroke if the striker-ont volley the aervice, or fail to return the service or tha ball in play (except in the case of a let), or return the service or ball in play ae that it drop outside sny of the lines which bound his opponeat'a court, or otherwisa lose a stroke, as provided by lav 20.
19. The striker-out wios a stroke if the server aerve two consecntive fanlts, or fail to return tha ball io play (ercept in the case of a lat), or return the ball In play eo that it drop outside any of the linea which bound hia opponent's court, or otherwise lose a stroke, as provided by law 20.
20. Either player loses a stroke if the ball in play touch bito or anything that he wears or carries, except his racket in the act of striking, or if ho tonch or atrike the ball in play with his racket mors than once consecutively, or if he tonch the bet or any of its supperts while the ball is in play, or if he volley the ball before it has passed the pet.
21. On either player winning his first stroke, the score is called 15 for that player; on either player minning his eccond stroke, the score is called so for that player; on sither player winning bis third stroke, the scors is called 40 for that player; and the fourth stroke won by either player is acored gate for that piayer, except as below.

If both playere have won three strokes, tha score is called deace; and the next atroke won by either plajer is scored advantage for that plajer. If the same player win the next etroke, he wins the garne ; if he lase the nert atroke, the score is amin called deuce; and so on until either player win the two strekes immediately following the score of dence, when the pame is scored for that player.
22. The flayer who first wios six chmes wing a set, except as below.

If both players win five games, the acore is called games all; and the next game won by either player is ecored advantaga game for that player. If the aatoe player win tha next game, he wins the set; if he lose the next
game, the score is again called gsmes all ; anu so on until either player game, the score is again called gsmes all : anu so on ubtil either player win the two g
Note.- Playera may agree not to play advantege sets, but to decide the set by one game after arriving at the score of games all
22. The players shall change sides at the end of every set ; but the umpire, on appesi from aither party befors the toss for choice, may direct the players to change aides at the oad of every gane if in his opinion cither side have a distinct advantage, owing to the sua, Find, or any other sccidental cause; bot, If the appeal be mado after a match has bcen began, the umpire may only direct tha players to change aides at the end of every gatne of the odd and concluding set.
24. When a saries of sats is played, the player who was server in the last game of one aot shall be etriker-ont in the first game of the next.

Odds.

25. A bisqua fa ene atroke, which may be claimed by the receiver of the odd: at any time during a set, except as below.

A bisqua may not be taken after the service has been delivered.
The erver may not take a bisque after a favit; but the striker-ont may do ao.
26. One or more blaques may be givea in augrentation or diminntion of ther odds.
27. Half-ifteen is one stroke given st the beginning of the second and every subsequeat alternate gatne of a set,
28. Fifteen is one strake given at the beginning of every game of a set.
29. Half-thirty ia one stroke given at the beginning of the first game, two atrokes at the beginning of the eecond game ; and so on, alternately, in all the ubseqnent grzaes of 8 sat.
30. Thirty ia two strokes given at the beginning of every game of a set.
31. Half-forty is two strokes given at the beginning of the first game, three strokes at the beginning of the second game; and so on, alternately, in all the subseqnent games of a aet.
3. Forty is thres strokes given at the beginning of every game of a aet.
33. Half-court: the players having agreed into which conrt the giver of the odds shall play, the latter loses a stroke if the ball, returned by him, drop outside any of the lines which bound that court.

Three-Handed and Four-Handed Games.

34. The above lawe shall apply to the three-banded and forr-hauded gamee, except as below
idth. With three-handed and four-handed games the court is 38 leet in o them, Winin the side lines, at a distance of $4 \frac{1}{4}$ feet from them, sud parallel to them, are drawn the service side lines 1 K and LM. The service lines ard not drawn beyond the pointe $\mathrm{I}, \mathrm{K}, \mathrm{K}$, and M , towards the side lines. In othey
respects, the conrt is sirmilar to that which is described in law 1 . respects, the conrt is aimilar to that which is described in law 1.
S6. In the three-handed game the singla player shall serve in avery altanaty ${ }_{\text {gis. }}$ In the four-hauded game, the pair who have the right to acrve in the first game may decide which partner ahall do so, and the opposing pair msy decide aimilarly for the second gsme. The partaer of the player who eerved in the first game shall serve in the third; and the partner of the player who eerved in the eecood game shail serve in the fourth; and 80 on in the bame order in al; the subsequent kabies of a set.

3a. The players shall take the service alternately throughout esch game. No plujer shall receive or return a service delivered to his partace. The order of scrvice sad of striking-out ouce arranged ehall not be altered, ner suan.
S9. The ball served mast drop Within the eervice line, half-court line, sad aervice side line of the court which ls diagonslly opposite to thst from which it was served, or upon bay such line.
40. It is a fsult if the ball serred do not drep as provided in ?sw 39 , or if it tonch the e日rver's partner or anything that he weare er carriee.
41. If a player serve ont of his turn, the umplre, ss вoon as the mistake is discovered by himself or by one of the players, ahall direct the player to serve who ought to have eerved; but all strokes ecored and any fault berved befors Who onght to have served; but all strokes ecored and any fault aerved before
such discovery ehsll be reckoned. If a game shall have been completed before
 ouch discovery, then partner of the player who served out of his turn ; snd so on in regular by the pa
rotation.
(J. MA*.)

TENT. A tent is a portable habitation or place of shelter consisting in its simplest form of a covering of some textile substance stretched over a framework of cords and poles, or of wooden rods, and fastened tightly to the ground by pegs. Throughout the greater part of the interior of Asia the pastoral tribes have of necessity ever been dwellers in tents,--the scantiness of water, the consequent frequent failure of herbage, and the violent extremes of seasons compelling a wandering life. Tents have also been used in all ages by armies in campaign.. In ancient Assyrian sculptures discovered by Layard at Nineveh the forms of tent and tent-furnishings are, similar to those which still provail in the East, and it appears that then as now it was a custom to pitch tents within the walls of a city. The ordinary family tent of the Arab nomads of modern times is a comparatively spacious ridged structure, averaging from 20 to 25 feet in length, but sometimes reaching as much as 40 feet. Its covering consists of a thick felt of black goat hair (cp. Cant. i. 5), or sometimes of alternate stripes of black and white disposed horizostally. The ridge or roof is supported by nine poles (avamid) disposed in sets of three, the central set heing loftier than those at each end, whereby a slope outward is formed which belps to carry off rain. The average height inside at the centre is 7 feet and at the sides 5 feet, and the cloths at the side are so attached that they can easily be removed, the sheltered end being always kept open. Internally the tent is separated by a partition into two sections, that reserved for the women containing the cooking utensils and food. The jourt or tent of the Kirghiz of Central Asia is a very capacious and substantial structure, consisting of a wooden frame for sides, radiating ribs for roof, and a wooden door. The sides are made up of sections of laths, which expand and contract in lozenges, on the priaciple of lazy tongs, and to their upper extremities ribs are lashed at regular intervals. Over this framework a heavy covering of felt is thrown, which is either weighted down with stones or. when necessary, stitched together.

In Western countries tents are used chiefly in military encampments, by travellers and explorers, and for temporary ceremonial occasions and public gatherings. The material of which they are composed is commonly a light linen canvas or navy duck; but for tents of small size stout cotton canras is employed, being light, strong, elastic, and sufficiently waterproof. These tents vary in size from a low-pitched covering, under which a couple of men can with difficulty creep, ap to spacious marquees, in which herticultural and agricultural shows are held, and which can accommodate thousands of persons.
The marquee is distinguished from the tent by being a ridged struecture, devoted to show and social uses; but the humblest tent mqde-the tente d'abri or shelter tent of the French armyis also ridged in form. The texte d'abri affords sleeping accommodation for six men, and consists of a rope stretched over three low poles and fixed into the ground. Four separate squares of canras buttoned together are thromn over the rope and pegged to the ground on each side so as to form a low ridge. Two other squares are used for covering the ends, being thrown over the slanting rope ends by which the poles are pegged to the ground. Each of the six men nsing the fent carries ene of the squares of canvas hesidea his quota of the poles, rope, and peegs. The Gipsics and travelling tinkers of Englanc' have an equally unpre-
tentious tent, which consists of a framework of hazel rods bent so as to form a series of low ridges, the ends heing stuck iuto the ground, and over this frame blanketg or other coverings are thrown and pegged down. The siinplest, but at the same time the least convenient, of ordinary tents is the conical, consisting of a central pole with ropes and canvas radiating from it in an unbroken slopa to the greund. This form, however, covers much ground in propertion to the accommodation it affords, as the space round the circumference is of little value. A tent, thercfore, which has sides or a fall is a much more couvenient structure. The counterpart of the conical is the pyramidal tent, the forr equal eides sloping to the ground ; and this form with a fall or sides makes the square tent, which is both couvenient in shape and firm in structuro. Small tents are also made, modified from the Δ rab ferm, with a central pole and two lewer lateral poles. In the umbrella tent the roof is supported by a set of ribs which radiate from the pole, precisely as the ribs of an umbrella spread out from the stick. In the balloon expansion tent, invented in 1877 by Captain Newburgh Stevart, R.N., the use of tent pole, pegs, and ropes is entirely avoided, the canvas being eupported by light ribs of elastic mood resting on the ground, and the structure is kept taut by hauling ropes descending from the apes and secured by a holdfast driven into the groond. When from the nature of the sarface sucl fastening cannot he obtained, a heavy weight of any kind bung to the hauling rope is suffcient to moor the tent, and except in stormy weatber the weight may be hung high np, thus leaving the whole interior of the tent clear. As forther provision against stress of weather there are four iren holdfasts at the sides, which may he skecwered into the ground by long iron pins. Captain Stewart claims that his tent possesses much greater stahility and capacity than the ordinary army tent, that it is mnch more easily and expeditiously pitched and taken down, and that it is very mucb lighter. In the latter iraportant respect he calcnlates that by the adoption of his pattern a regiment at present carrying eighty tents of the Indian service pattern would save no less than twenty tons of transport.

TEPLITZ, or Töplitz, one of the most frequented watering-places in the north of Bohemia, is picturesquely situated about 30 miles south of Dresden, in the plain of the Biela, which separates the Erzgebirge from the Bohemian Mittelgebirge. The main interest of the little town centres in the bathing seasou, which reaches its height in August ; and the arrangements for the convenience end amusement of visitors are very complete. There is a large curhaus, and numerous handsome bathhouses are situated both in Teplitz and in the immediately adjoining village of Schönau. The environs are laid ont in pretty and shady gardens and promenades, the finest being in the park which surrounds the château of Prince Clary, the superior of the town. The other chief buildings are the Roman Catholic and Protestant churches, the Jewish synagogue with a conspicuous dome, and the theatre. The saline-alkaline springs of Teplitz, ten to twelve in number, ranging in temperature from 90° to 117° Falr., are classed among what are called "indifferent" waters. Used until lately almost exclusively for bathing, they are prescribed for gout, rheumatism, and some scrofulous affections, and their reputed efficacy in alleviating the effects of gun-shot wounds had gained for Teplitz the sobriquet of "the warriors' bath." Military laths are maintained in the town by the Governments of Austria, Trusia, and Saxony, and there are also bath-houses for the poor. Teplitz is much visited for the after-cure, after Carlshad and similar spas. The number of patients in 1883 was 6000 and the passing visituzs were almost as numerous. The presence of a bed of lignite in the neighbourhood has encouraged the industrial development of Tcplitz, which carries on manufactures of cotton and woollen goods, india-rubber, chomicals, hardware, \&cc. In 1880 the unitcd population of Teplitz and Schöuau wa 16,750.
The thermal eprings are fabled to havo been discovered as early as 762 , but the first autlientic mention of the baths occurs in the 36 th century. The town is mentioned in the 12 th century, the name heing derived from a Slavonic word meaning "warm bath ${ }^{\text {S }}$ Teplitz figures in the history of Wallenstein, and is also interest. ing as the spot where the ruonarclis of Austria, Russis, and Prussis first signed the triple alliance asainst Napoleon in 1513. It is a
curious fact that on the day if the earthquake at Lisbon (1st November 1775) the main spring at Teplitz ceased to flow for some minutes.
TERAMO, a town of Italy, capital of the province of Teramo (formerly Abruzzo Ulteriore I.) and an episcopal see, stands on the left bank of the Tordino where it is joined by the Vezzola, 12 miles from the coast and 876 feet above sea-level. It is connected by a branch line with Giulianova on the railway from Ancona to Brindisi. The picturesque valley of the Tordino is here dominated by the peaks of the Gran Sasso d'Italia (9522 feet). The town is traversed by one straight wide street with large houses, but for the most part it consists of narrow dirty lanes; the modern suburbs are good. The cathedral (1317-55) has been greatly modernized ; the church of San Agostino is in the later Gothlc style. The antiquities include remains of a gateway, a theatre, and baths, as well as numerous inscriptions There are manufactures of wool and silk, and of straw hats and pottery. The population of the town in 1881 was 8634 , with its suburbs 13,988 (commune, 20,309).
Teremo is the ancient Interamua Pretutiana, capital of the Pratutii. In the Middle Ages it was known as Aprutium (whence Abruzzo); the intermcdiate form of the present name was Teramne.
TERAPHIM (תרפים), a Hebrew word found only in the plural, which the Authorized Version sometimes simply transcribes (Judges xvii. 5, xviii. 14 sq.; Hosea iii. 4), but elsewhere translates by "images" (Gen. xxxi. 19 and often elsewhere), "image" (1 Sam. xix. 13), "idols" (Zech. x. 2), "idolatry" (1 Sam. xv. 23) The etymology of the word 'is quite obscure (see Gesenius, Thesaurus, p. 1519 sq.), but it appears that the teraphim were a kind of idols (Gen. xxxi. 30), with something of a human figure (1 Sam . xix. 13); and, though their use was condemned by the prophets (1 Sam. xv. 23 ; cp. 2 Kings ixiii. 24), they were long commonly used in popular worship, both domestic (1 Sam. xix. 13, in the house of David and Michal) and public (Judges xviii.). They are associated with the ephod, which in this connexion seenss to mean a plated image, and Hosea speaks of ephod and teraphim as essential elements in the religious usages of northern Israel. Like the ephod, they were specially associated with divination, and in particular with the sacred lot (Zech. x. 2; Ezek. xxi. 21 [26]) From the last passage it appears that teraphim were used by the Babylonians as well as by the Hebrews. These statements and references cover all that is known about the teraphim ; the fables of the rabbins are collected in Buxtorf, Lex. T'almud., 2660 sq .
terburg, Gerard ($1608-1681$), sulject painter, was born in 1608, at Zwolle, in the province of Overyssel, Holland. His father, also an artist, sent him to study in Rome, where he adopted a style distinguished by great finish and accuracy. He practised for a time in Paris with much success, visited England, it is said, and then returned to Holland. In 1648 he was at Münster during the meeting of the congress which ratified the treaty of peace between the Spaniards and the Dutch, and executed his celebrated little picture, painted upon copper, of the assembled plenipotentiaries,-a work which, along with the Guitar Lesson, now represents the master in the national collection in London. At this time Terburg was invited to visit Madrid, where he received employment and the honour of knighthood from Philip IV. It is said that, in consequence of an intrigue, he was obliged to return to Holland. He seems to have resided for a time in Hearlem ; but he finally settled in Deventer, where he became a member of the town council, as which he appears in the portrait now in the gallery of The Hague. संख died ar Deventer in 1681.
Terburg is exccllent as a portrais painter, bat still greater as a oauter or genre subjects. He depicts with admirable trutl, the
life of the wealthy and cultured classes of his time, and his work is free from any touch of the grossness which finds so large a place in Dutch art. His figures are well drawn and expressive in attitude; his colouring is clear and rich; but his best skill lies in his unequalled readering of texture io draperies, which is aeen to advantage in such pictures as the Letter in the Dutch royal collection, and in tbe Paternal Advice (known as the Satin Gown)engraved by Wille-which exists in various repetitions at Berlin and Amsterdam, and io the Bridgewater Gallery. Terburg's works are rare ; only about eighty have been catalogued.

TERCEIRA. See Azores, vol. iii. p. 171.
TEREDO, a genus of Lamellibranchiate Mollusea, of the order Isomya, sub-order Sinupallia, family Pholadacea (see Mollusca, vol. xvi. p. 685) The animals included in this genus are commonly' known as "ship-worms," and are notorious for the destruction which they cause in ships' timbers, the woodwork of harbours, and piles or other wood immersed for a long period in the sea. They inhabit long cylindrical holes, which they excavate in the wood, and usually occur in great numbers, crowded together so that often only a very thin film remains between the adjacent burrows. Each burrow is lined with a layer of calcareous substance secreted by the mollusc; this lining is not usually complete, but stops short a little distance from the inner end of the burrow, where the boring process continues to take place. In some burrows, however, the lining is complete, either because the animal has reached its full size or because some cause prevents it continuing its tunnel; in such cases the calcareous tube has a hemispherical termination. The burrows are usually driven in the direction of the grain of the wood, but not invariably so. When a knot or nail or the tube of a neighbour is reached, the course of the burrow is altered so as to bend round the obstruction. One burrow is never found to break into another.

The adult Teredo, when removed from its burrow and calcareous tube, is from a fetw inches to 3 feet in length, according to the species to which it belongs, and is cylindrical and worm-like in appearance. The anterior end, which lies at the bottom of the burrow, is somewhat enlarged and bears a pair of shells or valves, which are not connected by the usual ligament, bat are widely separated dorsally. The valves are triangular in shape and very concave on the side which is in contact with the animal. In front their edges are widely separated, and the mantle tube, which is elsewhere closed, has here a slight median aperture, through which the short sucker-like foot can be protruded. The next portion of the body behind the shell-bearing part is naked, except for the shelly lining of the burrow, which is secreted by this part. Anteriorly this portion contains part of the hody proper; posteriorly it forms a tube divided internally by a horizontal partition into two chambers. In the lower chamber are the elongated gill plates, which have the typical lamellibranchiate structure. In the upper chamber anteriorly is the rectum. A thick muscular ring terminates this region of the body, and bears two calcareous plates shaped like spades or battledores. The expanded parts of these plates are free and project backwards; the handle is fixed in a deep socket or pit lined by epidermis. These calcareous plates are called pallets (Fr. palmules). Behind the pallets the tubbular body bifurcates, forming two siphons similar to those of other Lamellibranchs; the siphons can be contracted or expanded within wide limits of length. The principal organs of the body-stomach, heart, generative organs, and nephridia-are situated in the anterior part of the body, forming a visceral mass, which extends some distance behind the valves. The heart is above the intestine and not perforated by it. The two valves are connected by an anterior adductor muscle.

From its resemblance to Pholas, Teredo is placed by conchologists in the family Pholadider, emeng the Isomya; but it is still unde-
cided which part of the body corresponds to the posterior adductor. According to Quatrefages, it is a muscular band passing transtersely between the handles of the pallets. His discussion of this point is connected with another, namely, the nature of the long tubular portion of the body behind the valres. Deshayes limits the axtent of the mantle to the part covered by the shell, snd considera all the rest of the animal as formed by the siphons; the branchix and part of the other viscers in this view are contained in the siphons. Quatrefages argues that the siphons commence at the point where their retractor muscles are inserted, namely, at the muscular ring corresponding to the pallets. This reasoning is plausible; but it is difficult to accept the view that the retractor muscles of the aiphons and the posterior adductor muscle are so closely connected as Quatrefages thinks; in other Isomya the retractors of the siphons and the posterior adductor are distinct and separate. Deshayes believes thes the single adductor between the valves results from the fusion of the two muscles usually separate. Jeffreys belisves that the posterior adductor is really present between the posterior parts of the valves; but the opinion of a conchologist on a question of morphology is not of very great weight. In other Isomya the visceral (paristo-splanchnic) ganglia are attached to the rentral surface of the posterior adductor. In Tercdo these ganglia are situated at the posterior end of the body proper, some distance behind the shells, and immediately behind the generative organ. It is hers probably that the rudiment of the posterior adductor, if it exists, is to be sought ; or, if it does not exist, it is here that it originally was placed.
It is evident that the anatomy of Teredo has not yet been in. vestigated from the point of view of modern morphology; bnt as far as can be judged at present the body proper oxtends back some distance behind the shells, to the posterior limit of the visceral mass. The part between this and the pallets is a tubular prolonga. tion of the mantle chamber containing the axtended gill laminæ, and beyond the pallets are the separate siphons. Besides ths visceral ganglia a cerebral and a pedal pair are present. The stomach is provided with a large crystalline style. Ths function of the pallets is to form an operculum to the calcsreous tube when the siphons are withdrawn into it. In soms species the external or narrowser and of the calcareous tube is provided with transverse laminæ projecting into the lumen; and in some the oxteraal aperture is divided by a horizontal partition into two, one for each siphon.

The Teredo, according to Quatrefages, is direcions, though Gwyn, Jeffreys believes it to be hermaphrodite. As in the case of the oyster, the ova ars retained in the branchial chamber during the early stages of their development. The segmentation of the ovum is unequal, and leads to the formation of a gastrula by apibole. By the growth of a preoral lobe provided with a ring of cilia, and by the formation of a mouth and an anus, the trochosphere stage is reached. A pair of thin shells then appear on the sides of the larve, connected by a hinge on the dorsal median line, and the foot grows out bstween mouth and anus. By the time the larra "swarm," or leave the branchial cavity of the parent to live for a time as frecswimming pelagic larve, the valves of the shell have grown so large as to cover the whols of the body when the velnm is retracted; the foot is also long, cylindrical, sad flexible, and can be protruded far beyond the shell. The valves of the ehell at this stage are hemiapherical in shape, so that the whole larva when its organs are retracted is contained in a globular case.
Concerning the later changes of the larva and the mothod by which it bores into wood nothing or little is known from direct observation. Much has been written about the boring of this and other marine animals, but even yet the matter cannot be eaid to be satisfactorily elncidated. Osler, in a paper in Phil. Trans., 1826, argued that the Teredo bores by means of itsshells, fixing itself by the surface of the foot, which it uses as a sucker, and then rasping the wood with the rough front edges of the shell-walves. This view was-founded on the similarity of the arrangement of the shells and mnscles in Teredo to those occurring in Pholas, in which the msthod of boring described was actually observed. W. Thompson, in a paper in the Edinb. New Phil. Journ., 1835, snpported the Fiew that the excavation is due to the action of a eolvent secreted from the eurface of the animal. Albany Hancock, sgain (Ann. and Mrag. Nat. Hist., vol. Iv.), thinks that the excavating power of Teredo is dus to silicions particles embedded in the anterior portion of the integument, in front of the valves. But the actual existence of either silicious particles or acid secretion has been denied by others. Jeffreys believes that the foot is the organ by which the animal burrows. In the larger number of Lamellibranchs the fort is doubtless a burrowing organ, and it is difficult to see how the limpet hollows out the rock to which it is attached if not by means of the snrfacs of its foot. At the sams time it is difficult to explain how the soft muscular foot can penstrate into hard wood. The process is of course slow, and Jeffreys supposes that particles are detached one by one from the moistened surface to which the foot is applied. In any case the valves are covered by an epidermis, which could scarcelv be there if they wers used in burrowing.

Teredo grows and burrows at an extremely rapid rate: spawning takes place in the spring sud summer, and before the end of the year the animals are adult and their burrows of large size. Quatrefages relates that at Guipuzcos (N. Spain) a ferry-boat was sunk accidentally in the spring, and was raised four months afterwards, When its timbers were slready rendered nseless by T. pedicellata, -How long the animals live is not accurately known, but Quatro. fages found that they nearly all perished in the winter. This cannot be generslly the cass, as the size of the tubes varies so greatly. In Holland their greatest rarages are mads in July and August. Iron ships have nothing to fear from their sttacks, and the copper sheathing now almost universally used protects wooden hulls. A great deal of loss is, however, cansed by Tercdo in harbour works and shipping stages, and ths embankments in Holland are continnally injured by it. The most effcisnt protection is afforded by large-headed nails driven in in close proximity. Soaking wood is creasots is not a certain eafeguard; Jeffreys. fonnd at Christiania in 1863 that a large number of harbour piles previously aoaked in creasots had beon completely destroysd by T. navalis. Cosl tar and the silicate of lims, used for coating stonework, have been soggested as protective coverings, but they do not seem to bavo been adequately tested.

Species of Toredo occur. in all seas. The animal was known to the ancients and is mentioned by Theophrastus, Pling, snd Ovid. In 1715 it is mentioned by Valisnieri, in 1720 by Deslandes. In 1733 great attention was drawn to it on account of the discovery that the wooden dykes of Holland were being rapidly destroyed by ship-worms, and that the country was in danger of inundation Thres treatises were published concerning the animal, by P. Massust, J. Rousset, and Godfrey Slllius. The work of the last-mamed, which was the best, described the anatomy of the creature and showed that its affinities were with bivalve molluses. Tho truth of Sellins's view was not grasped by Linnæus, who placed Tcredo together with Serpula in ths genus Dentalium; but its proper position was re-established by Cuvier and Lamarck. Adansor, unaware of the work of Sellins, in 1757 believed himself to bs the first to discover the molluscan affinities of Teredo. It will not be necessary to give here a definition of the genns taken from any gystematist; it will be sufficient to point out that the long cylindrical body with its two small anterior polygonal valves, the absence of a ligament and aceessory valves, the muscular ring into which are inserted the calcareous pallets, and the continnows calcareous tabe lining the hole bored by the animal are the diagnostic features.
Jeffrsys, in his British Conchology, gives the following species as British:-Teredo norvegica, Spengler; T. navalis, Linn.; T. pedicellata, Quatrefages; T. megotara, Hanley. T. norvegica occurs chiefly on the west coast of Great Britain. It was taken by Thompson at Portpatrick in Wigtownshire, and occurred in Jefreys's time in abnndance at Milford Haven. This species has been described by Gmelin and a nnmber of British authors ss T. navalis, Lina. It is distinguished by having the base of the pallets siroplo, not forked, and the tube semi-concsmereted at its narrower posterior and. The length does not usually dacceed a foot. It is the T. navium of Sellius. T. navalis has been identified from tha figures of Sellins, to which Linnaus referred; Sellius called it T. marina. It occurs on all the western snd southern coasts of Europe, from Christiania to the Black Sea, and is the species which canses so much damage to the Dutch embankments. The pallets of this speciea are omall and forked, and the stalk is cylindrical. The tubs is simpls and not chambered at its narrow end. T. pedicellata was originally discovered by Quatrefages in the Bay of Los Pasages on the north cosst of Spain; it has also been found in the Channel Islands, at Tonlon, in Provence, and in Algeria. In T. megotara the tube is simple and the pallets like those of T. norvegica; it occurs at Shetland and Wick, and also on the western shore of the Atlantic, where its rangs extends from Massachusetts to South Carolina. T. malleolus, Turton, and T. bipinnata, Turton, belong to the West Indies, but are often drifted in floating timber to the coasts of Europe. Other occasional pisitants to the British shores are T. excavata, bipartita, spatha, fusticulus, cucullata, and fimbriata. Thess were described by Gwyn Jeffrsys in Ann. and Mag. Nat. Hist., 1860. T. fimbriata is stated to be a nativo of Vancouper's Island. A kind of ship-worm, the Nausitora dunlopi of Perceval Wright, has been discorered in India, 70 miles from the sea, in a stream of perfectly fresh water, namely, the river Kumar, one of the branches of the Ganges. T. corniformis, Lam, is found burrewing in the busks of cocoa-nuts and other woody fruits floating in the tropical seas its tubes are estremely crooked and contorted for want of space. Fossil wood and palm.fruits of Sheppey and Brabant are pierced in the same way.

Twenty-four fossil species have been recognized in the Lias and succeeding beds of Europe and the United States. The sub-genus Teredina, Lam., is a fossil of the Eocene of Great Britain and France.

Liferalure. - See, besides the works already mentioned, Godirey Bellias, Hisforia Naiuralis Teredinit beu Xylophagi Marini, 1733; Adanaon, Fistoire Nafurelle du Stulgal, Paris, 1757; Quatrefages, Annales des Sch, Naf., 1818-50;

Forbes and Hisnley, Brit. Mollusca, 1858 ; B. Histschek, Enfurcklung v. Teredo: Arbetten aus dem Zool. Inst. Wien, 1880 ; Deghayes, Mollusques di Algeris ; Bir E. Arbetten aus dem 200. Inst. Wien, 1880 . Deahayes, Mollusques a Algerie; Bir E Home, Anstomy of cread, in Phi. Trans, VoL. 2cvi, Frey and Leuckarb, Beitrage sur K
(J. T. C.)

TEREK (Russ. Terskaya oblast), a Russian government of Caucasia, situated to the north of the main Caucasus chain. It is bounded by Starropol on the N., by the Caspian Sea and Daghestan on the E., by Tifis and Kutais on the S., and by Tchernomorsk and Kuban on the W. It has an area of 23,548 square miles. From Nt Elburz to Kazbek the southern boundary coincides with the main snow-covered range of the Caucasus and thus includes its highest peaks ; further east it follows a sinuous line so as to embrace the secondary chains and their ramifications. Nearly one-third of the area is occupied by hilly tracts, the remainder being undulating and flat land belonging to the depression of the Terek; one-half of this last, on the left bank of the river, is occupied by sandy deserts, salt clay steppes, and arid stretches unsuited for cultivation. Granites, syenites, diorites, and Palæozoic schists constitute the nucleus of the Caucasus mountains ; Jurassic and Cretaceous formations rise to great heights in the secondary chains; and a series of Tertiary formations, covered by Quaternary deposits, cover a wide area in the prairies and steppes. A group of mineral springs occura about PyatiGORSK ($q \cdot v$. .
The climate is continental. The mean annual temperatures are $49^{\circ} \cdot 8$ Fahr. at Pyatigorsk (1850 feet above the eea ; January 39°, Jaly 70°) and $47^{\circ} \cdot 7$ at Vtadikavkaz (2230 ft ; January 23°, July 69°), but frosts a few degrees below zero are not uncommon. The mountain slopes rececive an ahundance of rain (37 in.), but the steppes suffer much from drought (rainfall between 10 and 20 in.). Nearly the whole of the government belongs to the drainage area of the Terek, but the north-west corner is watared by the upper tributaries of the Kuma. The Terek rises at the height of obout 8000 feet in the glaciers of the Kazbek on the southern slope of the main chain of the Cancasus,* hich it pierces by the Darial gorge to the south of Vradikavkaz after having received several dons or etreams (Res, Guzel, Fiag, Ar). In 53 miles it descends neerly 6000 feet. A few miles above Vtadikavkaz it is 2068 feet above sea.level, at Mozdok 441 feet, and it is 29 feet below the Black Sea at Kizlyar. From Vładikavkaz it pursues a north-easterly direction before taking its eastward courso; it seems most proboble that at a recent cpoch (Post-Plicrene) it joined the Kuma and perhaps the Manytch instead of flowing into the Caspian. In the lower part of its course it fows a a a higher level than that of the neighbouring plains, and is kept in its bed by dams. Inundations are frequent and cause great destruction. The delta begios $2 \ddagger$ Duborka (50 miles from the Caspisn), and at this part the river frequently changes its bed. The Old̀ Terelk is no longer uavigahle, the chief current being directed northwards into the New Terek Several canals made by the Cossacks supply water for the irrigation of the neighbouring fields. Its chief tributaries are the Sunja on the right, and the Tcherekh, the Baksan, and the Malka, in its apper course, on the left. The population of the government in 1884 was 615,660 ; of 608,500 inhabitants returned in 1883, 238,230 were Little and Great Russians, 1230 Georgians, 18,500 Armenians 4300 Germans, 2570 Poles, 4780 Jers, 23,630 Ossets, 194,430 Tchetchens and Ingushis, 72, 160 Kabardians, 9130 mountaincers of the Avarín stem, 25,360 . Kumyks, $1 \pi i 0$ Tatass, 6270 Nogais, 2470 Kalmucks, and 1620 Persians. Out of these 239,500 were reckoned as belonging to the Greek Orthodox Church, 336,460 were Mussulmans, 17,730 Gregorian Anmenians, and tho remainder Protestants, Catholirs, and Jers. Owing to the great fertility of the soil in the well-watered districts, agriculture is the chief occupation. In 1882 the crops, slthoughi below the average, yielded 967,000 quarters of corn, 268,000 bushels of potatoes, $6,750,000$ gallons of wine, and tobacco to the value of \&18,000. Cattlo breeding is extensively carried on in the steppes, snd there were in the same year 118,630 horses, 582,800 cattle, and 1,220, 400 sheep ; murrains, however, are frequent, and cause great loss, Manufactures occupy only 3371 persons, and their yearly production hardiy reaches $£ 300,000$ in value. Petty, trades are rapidly spreading in the villages. Trade suffirs from want of good roads. Tho railway from Russia to the Caucasus has not yet (1887) got beyond Vtadikavkaz. The unilitary and other chief roads have an aggregate of only 1300 miles. The exports are limited to corn, wine, cattle, and some raw produce.

The government is divided into six districts, the chief towns of which, with their populations in 1883, were Vtadikavkaz (32,340), the capital, Georriersts (4250), Groznyi (6280), Eizlyar (8780), Mozdok (8380), and Pyatigorak (11.120).

TERENCE. P. Terentins Afer (185 ?-159 b.c.) holds a unique position among Roman writers. No writer in any literature has gained so great a reputation who has contented himself with so limited a function. He lays no claim to the position of an original artist painting from life or commenting on the results of his own observation. His art has no relation to his own time or to the country in which he lived. The chief source of interest in the fragmentary remains of Nævius, Ennius, Pacuvius, Accius, and Lucilius is their relation to the national and moral spirit of the age in which they were written. Plautus, though, like Terence, he takes the first sketch of his plots, scenes, and characters from the Attic stage, is yet a true representative of his time, a genuine Italian, writing before the genius of Italy had lcarnerl the restraints of Greek art. The whole aim of Terence was to present a faithful copy of the life, manners, modes of thought and expression which had been dramn from reality a century before his time by the writers of the Nexv Comedy of Athens. The nearest parallel to his literary position may be found in the aim which Virgil puts before himself in his Bucolics. He does not seek in that poem to draw Italian peasants from the life, but to bring back the shepherds of Theocritus on Italian scenes. Yet the result obtained by Virgil is different. - The charm of his pastorals is the Italian sentiment which pervades them. His shepherds are not the shepherds of Theocritus, nor are they in any sense true to life. The extraordinary result obtained by Terence is that, while he has left no trace in any of his comedies of one sketching from the life by which he was surrounded, there is perhaps no more truthful, natural. and delicate delineator of human nature, in its ordinary and more level moods, within the whole range of classical literature. His permanent position in literature is due, no doubt, to the art and genius of Menander, whose creations he has perpetuated, as a fine engraver may perpetuate the spirit of a great painter whose works have perished. But no mere copyist or verbal translator could have attained that result, Though without claims to creative originality; Terence must have had not only critical genius, to enable him fully to appreciate and identify himself with his originals, but artistic genius of a high and puio type. The importance of his position in Roman literature consists in this, that he was the first writer who set before himself a high ideal of artistic perfection, and was the first to realize that perfection in style, form, and consistency of conception and execution. Living in the interval between Ennius and Lucilius, whose original forco and genius survive only in rude and inartistic fragments, he produced six plays, which have not only reached our time in the form in which they were given to the world, but have been read in the most critical and exacting literary epochs, and still may be read without any feeling of the need of making allowance for the rudeness of a new and undeveloped art.

While his great gift to Roman literature is that he first. made it artistic, that he imparted to "rude Latium" the sense of elegance, consistency, and moderation, his gift to the world is that through him it possesses a living image of the Greek society in the 3d century B.c., presented in the purest Latin idiom. Yet Terence had no affnity by birth either with the Greek race or with the people of Latium. He was more distinctly a foreigner than any of the great classical writers of Rome. He lived at the meeting-point of three distinct civilizations,- the mature, or rather decaying, civilization of Greece, of which Athens was still the centre; that of Carthage, which was so soon to pass away and leave scarcely any vestige of itself; and the nascent civilization of Italy, in which all other modes were soon to be absorbed. Terence was by birth a Pbæenician.
and was thus perhaps a fitter medium of connexion between the genius of Greece and that of Italy than if he had been a pure Greek or a pure Italian; just as in modern times the Jewish type of genius is sometimes found more detached from national peculiarities, and thus more capable of reproducing a cosmopolitan type of character than the genius of men belonging to the other races of Europe.
Our knowledge of the life of Terence is derived chiefly from a fragmert of the lost work of Suetonius, De Viris Illustribus, preserved in the commentary of Donatus. Confirmation of some of the statements contained in the Life is obtained from later writers and speakers, and also from the prologues to the different plays, which at the same time throw light on the literary and personal relations of the poct. These prologues were among the original sources of Suetonius; but he quotes or refers to the works of various grammarians and antiquariansPorcius Licinus, Volcatius Sedigitus, Santra, Nepos, Fenestella, Q. Cosconius-as his authorities. The first two lived within a generation or two of the death of Terence, and the first of them shows a distinct animus against him and his patrons. But, notwithstanding the abundance of authorities, there is uncertainty as to both the date of his birth and the place and manner of his death. The doubt as to the former arises from the discrepancy of the MSS. His last play, the Adelphi, was exhibited in 160 b.c. Shortly after its production he went to Greece, being then, according to the best MSS., in his twenty-fifth ("nondum quintum atque vicesimum egressus ${ }^{1}$ annum"), according to inferior MSS., in his thirty-fifth year. This uncertainty is increased by a discrepancy between the authorities quoted by Suetonius. Cornelius Nepos is quoted for the statement that he was about the same age as Scipio (born 185 x.c.) and Lælius, while Fenestella, an antiquarian of the later Augustan period, represented him as older. As the authority of the MSS. ceincides with that of the older record, the year 185 b.c. may be taken as the most probable date of his birth. In the case of an author drawing originally from life, it might seem improbable that he should have written six comedies, во true in their apprehension and delineation of various phases of human nature, betwern the ages of nineteen and twenty-five. But the case of an imitative artist, reproducing impressions derived from literature, is different; and the circumstances of Terence's arigin and early life may well have developed in him a precocity of talent. His acknowledged intimacy with Scrpio and Lelius and the general belief that they assisted him in the composition of his plays are more in accordapee with the statement that he was about their own age than that he was ten years older. Terence, accordingly, more even than Catullus, Tibullus, or Lucan, is to be ranked among those poets who are the "inheritors of unfulfilled renown." He is said to have been born at "'arthage, brought to Rome as a slave, and carefully edurated in the house of M. Terentius Lucanus, by whor, he was soon emancipated. A difficulty was felt in arcient times as to how he originally became a slave, as t' 1 ere was no war between Rome and Carthage between "he Second and Third Punic Wars, and no commercial re'ations between Africa and Italy till after the destruction of Carthage. But there was no doubt as to his Phœeni an origin. He was admitted into the intimacy of yrung men of the best families, such as Scipio, Lælius, and Furius Philus, and he enjoyed the favour of older mer of literary distinction and official position, such as C. Sr-lpicius Gallus, Q. Fabius Labeo, and M. Popillius. He is said to have owed the favour of the great as much to his personal gifts.and graces as to his literary distinction;

[^63]and in one of his prologues he declares it to be his ambition, while not offending the many, to please the "boni."
Terence's earliest play was the Andria, exhibited in 166 B.c., when the poet could have been only about the age of ninetcen. A pretty, but probably apocryphal, story is told of ,his having read the play, before its exhibition, to Cæcilins (who, after the death of Plautus, ranked as the foremost comic poet), and of the generous admiration of it manifested by Cæcilius. A similar instance of the recognition of rising genius by a poet whose own day was past is found in the account given of the risit of Accius, on his journey to Asia, to the vetcran Pacuvius. The next play exhibited by Terence was the Hecyra, first produced in 165, but withdrawn in consequence of the bad reception which it met with, and afterwards reproduced in 160. The Heauton-timoroumenos appeared in 163, the Eunuchus and Phormio in 161, and the Adelphi in 160 at the funeral games of L. Æmilius Paulus.

After bringing out these plays Terence sailed for Greece, either to escape from the suspicion of publishing the works of others as his own, or from the desire to obtain a more intimate knowledge of that Greck life which had hitherto been known to him only in literature, and which it was his professed aim to reproduce in his comedies. The latter is the more probable motive, and we recognize in this the first instance of that impulse to visit the scencs familiar to them through literature which afterwards acted on many of the great writers of Rome. From this voyage to G reece Terence never returned. According to one account he was lost at sea, according to another he died at Stymphalus in Arcadia, and according to a third at Leucadia, from grief at the loss by shipwreck of his baggage, containing a number of new plays which he had translated from Menander. The old grammarian quoted by Suetonius states that he was ruined in fortune through his intimacy with his noble friends. Another account speaks of him as having left behind him property consisting of gardens, to the extent of twenty acres, close to the Appian Way. It is further stated that his daughter was so well provided for that she married a Roman knight.
The tone of the prologues to Terence's plays is for the most part apologetic, and indicates a great sensitiveness to criticism. He constantly speaks of the malevolence and detraction of an older poet, whose name is said to have been Luscius Lavinius or Lanuvinus. The chief charge which his detractor brings against him is that of contaminatio, the combining in. one play of scenes out of different Greek plays. Terence justifies his practice by that of the older poets, Nævius, Plautus, Ennius, whose careless freedom he follows in preference to the "obscura diligentia" of his detractor. He recriminates upon his adversary as one who, by his literal adherence to his original, had turned good Greek plays into bad Latin ones. He justifies himsclf from the charge of plagiarizing from Plautus and Nævius. In another prologue he contrasts his own treatment of his subjects with the sensational extravagance of others. He meets the charge of receiving assistance in the composition of his plays by claiming, as a great honour, the favour which he enjoyed with those whe were the favourites of the Roman people.

We learn from these prologues that the best Roman literature was ceasing to be popular, and had come to rely on the patronage of the great. A consequence of this change of circumstances was that comedy was no longer national in character and sentiment, but had become imi. tative and artistic. The life which Terence represents is that of a well-to-do-citizon class whose interests are commonplace, but whose modes of thought and speech are refined, humane, and intelligent. His characters are finely delineated and discriminated rather than boldlv conceived
as they are in Plautus. Delicate irony and pointed epigram take the place of broad humour. Love, in the form of pathetic sentiment rather than of irregular passion, is the chief motive of his pieces. His great characteristics are humanity and urbanity, and to this may be attributed the attraction which he had for the two chief representatives of these qualities in Roman literature, - Cicero and Horace. It was through the comedies of Terence that the finer influences of the Epicurean philosophy-the friendliness, the tolerance, the consideration for the feelings of others, inferiors as well as equals, inculcated by that philosophy-entered into Roman life and literature. The dissolving influence of that school on the severer personal morality of the older Roman republic also entered into Roman life through the same medium. But it was a great gain to the strong but rude Roman character to learn, as it could from every line of Terence, lessons not only of courtesy and social amenity but of genuine sympathy and consideration
Terence's pre-eminence in art was recognized by the critics of the Augustan age:

"Vincere Cæcilins gravitate, Terentius arte."

The art of bis comedies consists in the clearness and glmplicity with which the situation is presented and developed, and in the consistency and moderation with which his varions characters play their part. But bis great attraction to both ancient and modern writers has been the purity and charm of his style, whether employed in narrative or dialogue. This charm he derived from his familiarity with the purest Latin idiom, as it was habitually used in the intimate infercourse of the best Roman families, and also with the purest At!in? idiom, as, it had been written and spoken a century before his own time. The fine Attic flavour is more perceptible in his Latin than in the Greek of his contemporaries. He makes no claim to the creative exuberance of Plautus, but he is entirely free from his extravagance and mannerisms. The superiority of his atyle over that of Lucilius, who wrote his eatires a generation later, is almost immeasurable. The best judges and the greatest masters of atyle in the best period of Roman literature were his chief admirers in ancient times. Cicero frequently reproduces his expressions, applies passages in his playe to his orn circumstances, and refers to his personages as typical representations of character. ${ }^{1}$ Julius Cæsar characterizes him as "puri sermonis amator." Horace, so depreciatory in general of the older literature, ghows his appreciation of Terence by the frequent reproduction in his Satircs and is his Odes of his language and his pbilosophy of life. Quintilian applies to his writings the epithet "elegantissima," and in that comnexion refers to the belief that they were the work of Scipio Africanus. His works were studied and learned by heart by the great Latin writers of the Reuaissance, such as Erasmus and Molanchthon; and Casaubon, in his anxiety tbat his son should write a pure Latin atyle, inculcates on him the constant study of Terence. Montaigne applies to him the phrase of Horace:

"Liqułdus puroque simillimus amni."

He speaks of "his fine expression, elegancy, and quaintness," and adds, "bo does so possess the soul with his graces tbat wo forget those of his fable."3 It is among the French, the great masters of the prose of refined couversation, that his merits have been most appreciated in modern times. Sainte-Beuve, in his Nouveaux Lundis, devotes to him two papers of delicate and admiring criticism. He quotes Fénelon and Addison, "deux esprits polis ct doux, de la même famille littéraire," as expressing their admiration for the inimitable beauty and naturalness of ono of his scenes. Fénelon is said to have pleferred him even to Molière. Sainte-Beuve calls Terence the bond of union between Roman urbanity and the Atticism of the Greeks, and adds that it was in the 17 th century, wheu French literature was most truly Attic, that he was most appreciated. M. Joubert is quoted ${ }^{s}$ as applying to him the words" Le miel attiqno est sur ses lévres; on croîrait aisément qu'il naquit sur l_{0} mont Hymotte.
The most famous edition of Terence is that of Bentley, pnblished in 1726. More recent editions are those of Parry, in the Bibliotheca, Classica, and of W. Wagner. The text has been edited by A. Flickeisen in the Teubner series of clasaics. A number of editions of the seperate playe have been published recently both in England and in Germany.
(W. Y. S.)

TERESA, St. See Theresa, St.
TERLIZZI, a town of Italy, in the province of Bari, and 20 miles west from that town, stands in the midst of a fertile plain. It has a castle which at one time was

[^64]very strong and occasionally resorted to by the emperor Frederick II. and afterwards by the Aragonese sovereigns. The walls and towers of the town still remain, but the fosse has been turned into boulevards. Terlizzi has a considerable trade, chiefly in the wine and fruit of the district. The population of the towu in 1881 was 20,442 (commune, 20,592).
TERM (from the Latin terminus) in English law is used in two senses, the idea common to both being that of a limited and certain period of time.
(1) It denotes (or rather did denote) a fixed time during which the courts are open for legal proceedings. Terms in this sense affected only what used to bo called the superior courts, -that is, the Queen's Bench, Common Pleas, and Ezachequer. They were originally the leisure seasons of the year which were not occupied by great feasts or fasts of the church or by agriculture. Their origin is no doubt to be traced back to the legislation of the early Christian emperors, the principle being adopted in England through the influence of ecclesiastical judges, and still surviving in the universities and Inns of Court. Terms were regulated by many Acts of parliament, the effect of whieh was to confine to a comparatively short period the time during which the courts could sit in banco, -that is, for the decision of questions of law as distinguished from the decision of questions of fact. There were four terms, Hilary, Easter, Trinity, and Michaelmas, the average duration of each being about three weeks. All legislation on the subject previous to 1873 is now merely of historical interest, for by the Judicature Act of that jear the division of the year into terms was abolished so far as related to the administration of justice.
(2) It denotes the time during which an interest in an estate for life or for years is enjoyed, also the interest itself, because such an interest must determine at a definite time If the interest be for life, it is an estate of freehold; if for years, only a personal interest in real estate, and so personalty, even though the length of the term-for instance, 1000 years-may far exceed in duration any possible life estate. A term of years is of two kinds, -the first that created by an ordinary lease reserving a rent, as of a house or a building lease; the second that created by a settlement or a will, usually without rent reserved, for the purpose of securing payment of money, such as portions to younger children, by the owner of the land. Both kinds have been considerably affected by recent legislation. For instance, the Conveyancing Act, 1881, enables a mortgagor or mortgagee in possession to make certain leases. Before I845 provision was always made in conveyances for keeping on foot a term to attend the inheritance, as it was called,- that is, for assigning the remainder of a term to trustees for the protection of the owner of the property against rent-charges or other incumbrances created subsequently to the term, although the term had been satisfied,-that is, the purpose for which the term had been created had been fulfilled. By 8 and 9 Vict. c. 112 the assignment of satisfied terms was rendered unnecessary. The Conveyancing Acts, 1881 and 1882 , give power to enlarge the unexpired residue of a long term in certain cases into the fee simple.

In Scotland terms are the days at which rent or interest is payable. They are either legal or conventional : the legal are Whitsunday and Martinmas ; the conventional are fixed by agreement between the parties. A recent Act (44 and 45 Vict. c. 39) makes uniform the law as to removal terms in burghs. Terms as times of court sittings were defined by 6 Anne c. 53 , which fixed four termsMartinmas, Candlemas, Whitsuntide, and Lammas-for the now obsolete Court of Exchequer. By 19 and 20 Vict. c. 56, s. 26, the winter and summer sittings of the Court of Session are to be held to correspond with the Exchequer terms.

Termini, or Termini Imerese (Thermæ Himerenses), a town on the north coast of Sicily, at the mouth of a river of the same name, in the province of Palermo, and

23 miles east-south-east of that torm. None of its modern buildings are of any speciai interest; in the Piano de San Giovanni above the town the substructure of a Roman villa has been excavated, and there are also traces of an amphitheatre. Termini is one of the busiest provincial towns of Sicily; the surrounding district being exceedingly fertile and the harbour good, there is a considerable export trade in grain, fruit, tartar, and other products. The macaroni of Termini is in high repute. The tunny and sardine fisheries are extensive, and there is a school of narigation. The warm saline springs (110° Fahr.), sung by Pindar, are still largely resorted to, there being - well-appointed bath establishment, founded by Ferdinand. I. The population of the town in 1881 was 22,370 , with its suburbs 22,733 (commune, 23,148).
For the ancient history of Termini see Himera. The castle of Tornini, which Robert of Naples besieged in vain in 1338, was destroyed in 1860 .

TERMITES. See Ant, vol. ii. p. 99.

TERMONDE, See Dendermonde.

TERN (Norsk Tærne, Tenne, or Tende; Swedish Türna; Dutch Stern ${ }^{1}$), the name now applied generally to a group of sea-birds, the Sternince of modern ornithology, but, according to Selby, properly belonging, at least in the Farne Islands, to the species known by the book-name of Sandwich Tern, all the others being those called Sea-Swallows -a name still most commonly given to the whole group throaghout Britain from their long wings, forked tail, and marine habit. In Willughby's Ornithologia (1676), however, the word Tern is used for more than one species, and, though it does not appear in the older English dictionaries, it may well have been from early timcs as general a name as it is now.
Setting aside those which are but occasional risitors to the British [slands, six species of Terns may be regarded as indigenous, thiough of them one hss ceased from ordinarily breeding in the United Kiugdom, whils a second has become so rare and regularly appears in so few places thst mention of them must for prudence sake be svoided. This last is the heautiful Roseate Tern, Sterna dougalti; the other is the Black Tern, Hytrochelidon nigra, belonging to a genus in which the toes sre only half-webbed, of small size and dark leaden-grey plumage. It is without doubt the Sterna of Turner, and in former days was sbundant in mauy parts of the fen country, ${ }^{2}$ to say nothing of other districts. Though nearly all its ancient abodes have been drained, and for its purposes sterilized these many yesrs past, not a spring comes hut it shows itself in small companies in the eastern counties of England, evidently seeking a breedingplace. All around the coast the diminution in the numbers of the remsining species of Terns within the Iast 50 years is no less deplorable than demonstrable.

The Sandwich Tern, S. scondvicensis or S. cantiact-named from the placo of its discovery, though it has long since ceased to inhabit thst neighhourhood-is the largest of the British species, equalling in size the smaller Gulls and having a dark-coloured bill tipped with yellow, and dark legs. Through persecution it has been extorminsted in all its southern bannts, and is become much sesrcer in those to which it still resorts. It was, however, never so abundant as its sussller congeners, the so-called Common and the Aretic Tern, -two species that are so nearly alike as to bo leyond discrimination on the wing by an ordinary observer, and oven in the hand require a somewhat close exsmination. ${ }^{8}$ The former of these has
" "Starn" was used in Norfolk in the 19th century as a name for the bird commonly known as the Black Tern, thus confirming Turner, who, in 1544, describes whet seems to have been the same species an "nostrati lingus sterna sppollata." In st least one instance the word has been confounded with ons of the old forms of the modern Stahlino (vol. xxii. p. 457). To Turner'a name, repeatod by Gesner and other suthors, we owe the introduction by Linnzus of Stcrna into ecientific nomanclature. "Ikstern" is another Dutch form of the word.
${ }^{2}$ It was known there 8 Carr-Swallow, Carr-Crow (corrupted into "Scarecrow"), snd Blue Dar (qu. = Daw?).
${ }^{8}$ Linnæus's diagnosis of his Sterna hirundo points to his heving had BA "Arctic" Tern before him ; but it is certain that be did not suspect that epreific sppellstion (already used by other writera for the "Common" Tern) to cover \& second apecies. Some modern authorities disregard his name as being insufficiently definite, and much is to be *aid for thia viow of the csse. Undoubtedly "hirundo" has now been used co indiscrimisately for one species or the other as to causo consasion, whleh is perhsps best avoided by sdopting the epithets of Nau-
the more southern range, snd often affects inland situations, wirl the latter, though by no means limited to the Arctic circlo, is widely distributed over the north and mostly resorts to the sea. coast. Yet there are locslities where, as on the Farne Islands, both meot snd breed, without occupying stations spart. The minute diagnosis of these two species cannot be briefly given. It nins! suffice here to atate that the most certain difference, as it is the most easily recognizable, is to he found in the tarsus, which in the Arctic Tern is a quarter of sn inch shorter than in its kinsmen. The remaining nativo species is the Lesser Tern, S. minula, oue of the eraallest of the genus and readily to be distinguished by its permanently white forehead. All ths species already mentioned, excopt the Black Tern, have much the same general celorationthe adults in summer plumago wearing a black cap aud having the upper parts of the body and wings of a nore or less pale grey, while they are mostly lighter. benesth. They generally breed in association, often in the closest proximity-their nests, containing 3 eggs at most, being made on the shingle or among herbage. The joung are hatched clothed in variegated down, and remain in the rest for some time. At this season the parents are almost regardless of human presencerand expose themselves freely.

At lesst half-a-dozen other species have heen recorded as occurring in British waters, and among them the Caspian Tern, S. caspia, which is one of the largest of the genus and of wide listribution, though not breeding nearer to the shores of England than on Sy!t and its neighbouring islands, whieh still afford lodging for a few pairs. Another, the Gull-billed Tern, S. anglica, has also been not unfrequently shot in England. All theso species are now re. cognized, though the contrary was once maintained, as inhalitants of North America, and many go much further.
An excellent synopsis of the Sub-family Sterninze has been given by Mr Howard Saunders in the Zoological Proceedings (1876, pp. 638-672). He recognizes 5 genera, -Hydrochelidon (with 3 species), Sterna (with 38), Nenia, a very aberrant form consistiug of but one species, the Inca Tern, peculiar to the western coast of South America, and Gygis, composed of 2 species of purely white birds and restricted to the southern hemisphere; his fifth genus is Anous, to which belong the various species of NoDDy (vol. xvii. p. 531). Oten confounded with these last are the two species called in books Sooty Terns (S. fuliginosa and S. anxstheta), but by sailors "Egg-birds" or "Wide awakes" from their cry. These crowd at certain seasons in innumerable multitude to certain, islands within the tropics, where they breed, and the wonderful assemblage at present known as "Wide-awake fair" on the island of Ascension has been more or less fully described from very ancient times. Dampier in his royage to New Holland in 1699 particnlarly described and figured the Sooty Tern (Voyages, iii. p. 142), discriminating it from the Noddy, from which it had not before been distinguished. (A. N.)

TERNATE, a small island in the East Indian Archipelago, off the west coast of Jilolo ($q \cdot v$.), in $0^{\circ} 48^{\prime} \mathrm{N}$. lat. and $127^{\circ} 19^{\prime}$ E. long. It is mearly circular in form, with an area of about 25 square miles, and consists almost entirely of a very remarkable volcano (5600 fect) formed of three superimposed cones. Frequent and destructive eruptions lave taken place. Cocoa-nuts, sago, tobacco, cotton, sulphur, and saltpetre are the chief productions of the island. The clove, which had been extirpated by the early Dutch rulers to enhance its value by restricting its cultivation to the Banda Fslands, Araboyna, \&c., is beginning again to be grown, as also is the nutmeg. The inhabitants are nearly all Mohammedan Malays. The town of Ternate, with a population of about 9000 , is the seat of a native sultan and of a Dutch resident; the harbour is commanded by a fort. The residency, which includes a part of the eastern coast of Celebes (see Celebes), the grcater part of Jilolo, and numerous smaller islands, has an area of 26,900 square miles and a population estimated at about 290.000 .
mann (1 sis, $1819, \mathrm{pp} .184 \overline{7}, 1818$), who, acting on snd confirmugg the discovery of Nitzsch (who first detected the apecific difference), cslled the southern species S. fuviatilis and the northern S. macruma Temminck's nsme S. arctica spplied to the latter a year later hes bee most generally nsed for it, notwitlirtanding.

TERNI, a town of Italy, in the province of Perugia, is situated in the fertile valley of the Nera, between two branches of that river, about 5 miles below the point where it is joined by the Velino. It has a station, threequarters of a mile off. on the railway line between Rome and Ancona, 69 miles to the north of the former city and 19 sonth by west from Spoleto. Terni is an episcopal see, and the seat of a sub-prefecture and a chamber of commerce. Its public buildings include the cathedral (17th century), the church of S. Francesco (partly dating from the 13th century), a gymoasium, and a theatre. Terni manufactures leather and cloth, and has some trade in wine and silk. For the traveller its chief intarest lies in its antiquities (remains of an amphitheatre of the time of Tiberius, a temple, a theatre, baths. and numerons inscriptions) and in the proximity of the falls of Velino (Cascate delle Marmore). Alike in volume and in beauty these take a very high place among European waterfalls; the cataract has a total descent of about 650 feet, in three leaps of 65,330 , and 190 feet respectively. They owo their origin to M^{\prime}. Curius Dentatus, who in 272 b.o. first opened an artificial channel by which the greater part of the Lacus Velinus in the valley below Reate was drained. The population of the town in 1881 was 9415 , with its suburbs 10,371 (commune, 15,853).
Terni is the ancicnt Interamna ("inter amnes"), origivally belonging to Umbria and founded, sccording to a local tradition, in the year 672 a.o. It early became a flourishing mnnicipinm, and it did not permanently sufficr through being portioned out among his soldiers hy Snlla. Its inhabitants had frequent litizations and dispntes with their neighbours at Reate in connexion with the regulation of the Velinus, the waters of which ere so strongly impreguated with carbonate of lime that hy their deposits they tend to block up their own channel. The first interlerence with j ts natural course was that of M^{\prime}. Curius Dentatus already referred to. In 54 B.o. the people of Reate appealed to Cicero to plead their cause in an arbitration which had been appointed by the Roman senate to settle disputes about the river, and in comnexion with this he made a personal inspection of Lake Yelinus and its outlets. In the time of tiberius there was a project for regulating the river and its outlets from the lake, against which the citizens of Interamna and Reate energetically and encecssfully protested (Tac., Ain., i. 79). Similar questions arose as the river formed fresh deposits during the Middle Ages and during the 15 th and 16 th centuries. A branch of the Via Flaminia passed from Narnia to Fornm Flaminii, and is given instead of the direct line in the Antonine and Jermsalem itineraries. The emperor Tacitus and his brother Florianns were probably natives of Interamna, which also has been claimed as the birthplace of Tacitus the historian, but with less reason. Terni was the scene of the defeat of the Neapolitans by the French on 27 th November 1798.

TERPANDER, a Lesbiau poet and musician, settled in Sparta about the end of the Second Messenian Tar (668 в.c.). According to some accounts, he was invited thither by command of the Delphian oracle to compose the differences which had arisen between different classes in the state. His innovations in music were considered to have inaugurated a new cra of musical art in Greece; but we are very imp,erfectly informed as to their nature. On the strength of a fragment (No. 5 in Bergk), which may or may not be genuine, - "rejecting the four-toned song, we will sing to thee new hymns with the seyen-voiced lyre," Strabo says that he increased the number of strings in the lyre from foar to seven; others take the fragment to mean that he developed the citharedic nomos (sung to the accompaniment of the cithara or lyre) by making the divisions of the ode seven instead of four. We possess six short fragments of poetry in the Dorian dialect bearing the name of Terpander. They are from hymns to the gods Zeus, Apollo, Apollo and the Muses, the Dioscuri, \&c., and are written in a slow spondaic movement or in dactyls. They present no remarkable features and are probably spurious.
Bergk, Poeta Lyrici Greci, iii. (4th ed.) pp. 7.12, Leipsic, 1882.
TERRACINA, a town of Italy, in the province of Rome, and about 60 miles to the south-east of that city, at the
south-east extrenity of the Pontine marohes, where the Monti Lepini (see Italy, vol. xiii. p. 438, and Latium) descend into the sea. The ancient town (Volscian Ansur, Roman Tarracina) stood on the white hillside ("inpositun! eaxis late candentibus Anxur "), along the foot of which, by the seashore, ran the Via Appia. The modern town stands mainly on the level ground. The most conspicuors building is the cathedral, which is believed to occupy the site of a temple of Jupiter Anxurus; it is enriched both externally and internally with beautiful old columus and Roman mosaics. Above the town, on the summit of the cliff, are the remains of a palace of Theodoric (c. 500), afterwards a medieval castle. The ancient harbour, constructed by Antoninus Pius and once very important, is now silted up; a new mole affords shelter to coasting vessels. Fishing is carried on, and there is some trade in the produce of the district. The population of the town in 1881 was 6294 (commune, 8572).

Anxur finally became Roman in 400 b.c., and a colony was established there in 329. Its strategic position early gave it milijtary importance ; and its pleasent situation and its mincral waters Jed many Romans to build villas and seek seaside quarters there.

TERRA-COTTA. ${ }^{1}$ Strictly speaking this name is Mensapplicable to all objects made of baked clay, from the ing. rudest brick to the finest piece of pottery, but it usually has a more limited meaning, to denote fictile objects which do not come under the head of pottery, such as statnettes and busts; and in its architectural use it specially implies the finer sorts of decorative clay-work, to the exclusion of common building bricks. In ancient times, especially among the Greels and Romans, terracotta rwas employed for an immense variety of purposes, from the commonest objects of everyday use to the most elaborato and ambitious works of art, such as colossal statues and groups. Though the natural colour and surface of the burut clay are generally very pleasing in tone and texture, it seems to have been universally the custom in classical times to cover the terra-cotta completely with a thin white coating, which formed an absorbint ground for the further application of colour. For internal work, except in rare instances, these colours were mixed with a tempera medium, and applied after the clay had been fired. They were therefore not true ceramic colours; and pigments of great sariety and brilliance could be employed, as they had not to undergo the severe ordeal of the kiln. For external work, such as that shown in fig. 5, only earth pigments such as ochres aud lime wers used, and the colours were fired.
No branch of archreology has during the last dozen Greek years or so developed so rapidly as that of Greek terra- figures cotta figures; on this noost fascinating subject an aston- licfs. ishingly large mass of literature has been published in Germany and France. ${ }^{?}$. The discovery of this new world of Greek art began practically in 1873 , with the first excavations in the tombs of Tanagra, a Bceotian torn on the high road from Athens to the north, which brought to light a number of very beautiful terra-cotta statuettes. ${ }^{3}$ Subsequent excavations at Corinth, Smyrna, Cyme, Tarentum, the Cyrenaica, and many other places also yielded a vast number of terra-cotta figures of various dates and styles. By far the greater number belong to the second half of. the 4th century B.C.; but examples of an earlier

[^65]Sate are not wanting, not only of figures in the round, but also of reliefs, which appear to have been largely used for the decoration of the flat surfaces of walls and friezes. The earliest of all date from a quite prehistoric period, and are mostly small idol-like figures of the rudest possible form, having an almost shapeless trunk with stick-like projections for the limbs, and the breasts and eyes roughly indicated by round dots. They are usually decorated with coarse stripes or cheques in ochre colours. Examples of these have been found at Hissarlik (Troad), in Cyprus and other islands, and in the citadel of Tiryns in 1884-85 by Dr Schliemann and Dr Dörpfeld. Later but still very archaic figures, 2 or 3 inches high, have been exhumed in many parts of the Fgean Islands; some of these are stiff seated figures of deities, - links between Oriental and Hellenic art, like the statues of the Sacred Way at Branchidæ (south of Miletus). Comparatively few specimens exist of the best period of Greek art-the 5th century. ${ }^{1}$ A relicf in the Lourre (about 18 by 12 inches) with a pierced background, dating from the first half of the 5th century, represents two female mourners at a sepulchral stele,-one standing and the other seated; under the foot of the latter is inscribed AAEKTP. On the other side of the stele are two youths (the Dioscuri) standing by a horse. The whole design is simple, but very graceful, and the modelling is skilfully treated in very low relief. The colouring-blue, red, white, and dark brown-is well preserved. This relief was pressed in a mould, and was fontended to be attached to a wall, probably that of a tomb, as a rotive offering to the dead. ${ }^{2}$

In most cases the terra-cotta figures and reliefs occur In or close by tombs, but it is only in comparatively rare fnstances that the subjects represented have any reference to death. Another large class have been found in the vicinity of temples, and are probably votive offerings, such as the small statuettes of horses from the acropolis of-Athens, now in the Lourre. In other cases, as at Halicarnassus, great quantities of small figures were buried under a temple, probably to purify the site, as was done in Egspt under the later dynasties, when many hundred figures of bronze were sometimes buried under one building. Owing to the fact that the statuettes found scattered in and round sombs have frequently their heads broken off, Pottier and Reinach have suggested that they were brought as offerings to the dead and their heads were broken off by the mourners at the side of the tomb. Rayet believes that this practice was a sort of survival of the custom of sacrificing female and boy slaves at the tombs of the dead. In many cases, however, the figures are intact, and it is probable that many of the tombs were broken open and rifled long ago, which would explain the mutilated and scattered condition of the figures. The tombs of Tanagra have yielded by far the richest finds of these figures, the specimens being very remarkable for their beauty. These exquisite statuettes do not (in most cases) represent deities or heroic personages, but the homely every-day life of the Greeks, treated with great simplicity and evident realizm: they are in plastic art what in painting would be called genre, ${ }^{3}$ and in their strong human

[^66]interest and naturalistic pathos bring us in closer contact with the life and personalities of the past than any more' ambitious style of art could possibly do. Moreover, they prove more clearly even than the great plastic works in bronze and marble how deeply a feeling for beauty and a knowledge of art must have penetrated the whole mass of the people. Their immense number shows that they must have been far from costly, within the reach of every one, and certainly not the production of any famous eculptors. Nevertheless, sketchy as they are in treatment and often faulty in detail, they are in pose, in motive, and in general effect works of the highest beauty, full of the most inimitable grace, and evidently the production of men in whom the best qualities of the sculptor were innate by a sort of natural birthright. Several small figures from Myrina (Mysia) have the artist's name inscribed on them ; but signatures of this sort are rare. ${ }^{4}$

It is impossible to describe the many subjects treated. Only a fetw examples can be mentioned. Among single figures the most frequent are those of girls standing or seated in an immense rariety cí pose, and with plertiful drapery arranged in countless methods, showing the great taste with which a
 Greek lady could Fio. 1. - Statuette of a girl and infant Eras dispose the folds of from Tanagre (St Petershurg.) her ample pallium, whether it hung in graceful loops or was wound closely round the figure or formed a hood-like reil over the head. In some the lady holds a leaf-shaped

Fİ. 2.-Aphrodite and cupids. The pendant hung round the neck of Aphrodite is gilt. (South Kensington Museum.)
fan, or is looking in a circular mirror, or holds a ball ready for the game. Many have a strange broad hat, probably of straw, which does not fit on the head, but must hape
been fastened by a pin to the hair or veil. One very beautiful motive is that of a girl playing with an infant Eros, who flies to her for shelter, and is received with welcome half tinged with dread. Fig. 1 shows a very lovely statuette of this kind, now in the Hermitage Palace. A favourite subject is taken from a game in which one girl carries her playmate on her back,-a motive which, though difficult to treat in sculpture, is managed very gracefully in terra-cotta. Other very lovely groups are Aphrodite suckling the baby Eros, or with more than one cupid hovering round her. A very beautiful example (see fig. 2) occurs in the South Kensington Museum (from the Castellani sale). It represents a half-nude figure of Aphrodite reclining on a couch, with two cupids behind holding up a veil, which was colcured blue to form a background to the creamy white of Aphrodite's body.

The Tanagra and other figures are all formed of thin pieces of soft clay pressed into a mould, usually formed in two halves and then stuck together; and they are made hollow so as not to warp and crack in the firing; and have a hole at the back for the escape of moisture during that process. The head is solid and was formed in a separate mould, as were also any accessories, such as fans or mirrors, and arms if they extend away from the body. Replicas of the same figure are often varied by having different heads or accessories; three or four examples have been found from the same mould. After the whole was put together it was usually touched up and finished with modelling tools. The colour was applied after baking: a coating of creamy white lime or chalk all over served as the flesh tint and also as a good ground for the other colours. The hair of the females is always of a rich auburn red, such as the Venetians were so fond of painting in the 16 th century; blue was touched on the eyes and crimson on the lips. Drapery, if not white, was usually rose-colour or blue, often with a fringe or bands of gold on the border. Necklaces, earrings, and other ornaments were generally gilt, the gold leaf being applied over a slightly raised surface of slip, as on the Greek vases. Similar examples have been found in tombs at Thebes, at Thespix, and round Athens. Some of the Attica figures are covered, not with the usual non-ceramic colours, but with a real white enamel, the vitrified surface of which is very often slightly decomposed; further coloured decoration was in some cases added over this enamel.
A number of places in the west of Asia Minor have yielded large quantities of terra-cotta figures, very similar in size and technique to those of Tanagra, but belonging for the most part to quite a different school of sculpture. Unlike the Tanagra figures, which are rather pictorial in style and deal with genre subjects, those from Ṡmyrna, Cyme, Myrina, and other places in Asia Minor are thoroughly sculpturesque in design, and are frequently miniature reproductions of large statues or groups (see fig. 3). Many of them stand on moulded pedestals, while the Tanagra figures have only a thin slab of clay as a base. The average size of both classes is from 6 to 10 inches high. Very elaborate groups with three or four figures often occur. Dionysiac and Bacchanal subjects are frequently chosen, or scenes from sacred mythology, such as
the labours of Heracles. ${ }^{1}$ These also mostly date from the 4 th century b.c., and the statuettes often appear to be copies from sculpture of the school of Praxiteles or Scopas. One instance is the fine nude figure of Eros as a youth leaning against a cippus, holding a bronze arrow in his hand, in the collection of M. de Branteghem, now in Rome. ${ }^{2}$ The whole of it was gilt, r. hich was frequently the case with the Asia Minor statuettes, but rarely so in those of Tanagra. ${ }^{3}$ A very beautiful figure of a winged Victory in the same collection (from the Castellani sale) presents the same motive as the colossal Victory of Samothrace (in the Louvre) ; it supplies the missing right hand, which in the terra-cotta contains a bunch of roses. The drapery of this figure is blue, mottled, or shot with gold. Other figures, from their heights being arranged in even gradations, seem to be copies from some large pedimental sculpture. Unfortunately little is yet known of the various fabriques of these Asia Minor figures, as in most cases their provenance is very doubtful. ${ }^{4}$ The Lecuyer collection possessed some groups with several fignres forming important compositions. One of these shows two female mourners at a tomb, and a warrior clad in full armour with his horse. The most remarkable group (see fig. 4) is that of a soul led by Hermes Psycho-

Fra. 4. - A eoul about to enter Charon'e bark. (Prince Liechtenstein'e collection, Vienns; formarly in the Lecuyer collection.)
pompus to the bark of Charon, who is represented as a bent aged man. Hermes, a graceful nude figure, gently urges the shrinking soul-a draped female figure-to the boat, at the brink of the rush-grown Styx. The whole scene is imagined with much tender grace and real pathos, though not highly finished in its details. One of the most important terra-cotta figures yet discovered has recently been brought to England from Smyrna. It is a very beautiful copy of the Diadumenos of Polycletus, which in the details of its modelling reproduces some. characteristics of the later school of Praxiteles. The forearms and the legs below the knee are lost ; but in breadth

[^67]of modelling and grandeur of style this little figure, which was ondy about 14 inches bigh when perfect, has the effect of a much larger statue, and it is a real masterpiece of Cireek, plastic art. ${ }^{1}$ In the neighbourhoul of Smyrna aud Elhesus a large number of caricature figures have been exhumed, some of which are modelled with a wonderful feeling for humour. ${ }^{2}$ These strange figures have attenuated limbs, large heads, flapping ears, and google eyes. Some play on musical instruments; others reprezent actors ; and one in the De Branteghem collection is a caricature of a discoholus in almost the attitude of 1 syron's selebrated statue.
A sery different class of statuettes has recently come to light in the Cyrenaica, on the northern coast of Africa. Many of these are nude female dancers wearing an elaborate stephanos-like head-dress. They are realistic in modelling and rery ungraceful in pose, - a striking contrast to the exquisite taste of the Tanagra and most of the Asia Minor figures. Recent excavations in the tombs of Corinth Lave produced a large number of fine terracottas, ranging iu date over a very long period. Another and artistically very perfect class of figures is being ding up from anong the tombs of Tarentum. Some of these belong to the finest period of Greek art, prohably about 400 b.c., and others are even earlier. Many are not statuettes, but merely small busts of heroic style, and of the highest sculpturesque beanty. They are certainly not portraits, and do not.appear to represent deities. It has been suggested that they are idealized representations of ancestors, whose commemoration, in some places, formed an important cult ; but their real meaving must for the present remain uncertain. Many thousand votive figures and reliefs in clay lave been found within the temeni of the temples of the Clithonian deities at Tareutum and elsewhere. It seems to have been customary for the priests periodically to clear out of the temples the broken or too numerous offerings which were then buried withiu the enclosure ; whole series arranged chronologically in groups have been discovered buried in separate holes.
In.addition to statnettes and reliefs, terra-cotta was used by the Greeks for various minor ornamental purposes. Delicately moulded necklaces and pendants for ears were stamped out in clay and then thickly covered with gold leaf; this produced a very rich effect at a small cost; many fine examples are preserved in the Louvre. Children's toys, such as miniature horses and chariots, and dolls with movable limbs of terra-cotta fastened with wooden pegs, occur iu many tombs.
On a larger scale terra-cotta was adapted by the Greeks to important architectural ornamentation. Many fine examples have been found at Olympia and among the ruined temples of Selinus. In some cases the main cornices of the building were simply blocked out square in stone, and then covered with moulded plaques of terracotta, carefully formed to fit on and round the angles of the block. The large cymatium which forms the upper member of the cornice is curred upwards, so as to prevent the rain water from dripping all along the edge ; and at intervals it is pierced by ornamental clay pipes, which project like a mediæval gargoyle. In some examples from Selinus the cymatium is pierced with a beautiful open pattern of lotus leaf (see fig. 5). The greatest care was taken in fitting these applied mouldings where each plaque joined the next, and especially in making them fit closely on to the stone blocks, in which rebates were cut to receive each plaque. The whole surface of

[^68]the terra-cotta is covered, with elaborate painted orna ments of great beauty, in ochre colours applied on a white ground, as in the case of the statuettes. These beautiful temple decorations are well illustrated by Dörpfeld and

F10. 5.- Cornice enrichments of painted terra-cotta from Selinno. This section shows the careful wey in which the terre-cotta is fitced on to the stone; the colours are red and brown ochre and cream-white.
others in Die Temoendung von Terra-cotten, Berlin, 1881. Though no complete examples of terra-cotta statuary now exist, it is certain that the Greeks produced it on a large scale and of the highest class of workmanship. Pliny (H.N., xxxv. 36) mentions that certain statues of Hercules Dusagetes and the Nine Muses were "opera figlina," executed by the painter Zeuxis. These were brought from Athens by M. Fulvius Nobilior, and placed in the temple of Hercules Musagetes, which adjoined the Porticus Octaviæ in the Campus Martins of Rome. Other and earlier examples of clay statues are mentioned by Pausanias.

Among the Etruscans the use of clay for important sculp- Etresem. ture was very frequent,--painted terra-cotta or bronze almost excluding marble and stone. An important example was the clay quadriga on the pediment of the temple of Capitoline Jupiter, which, according to one legend, was brought from Veii by Tarquinius Superbus. This existed till the destruction of the temple by fire in 83 в.c., and was considered one of the seven precious relics on which the safety of the Roman state depended. The great statue of Jupiter in the central cella of this triple temple was also of terra-cotta, and was said to be the work of an Etruscan sculptor from Fregenæ. Vitruvius mentions "signa fictilia" as being specially Etruscan. Many other statues in the early temples of Rome were made of the same material. Among the existing specimens of Etruscan terra-cotta the chief are large sarcophagi, with recumbent portrait effigies of the deceased on the top, the whole being of clay, decorated with painting. Fine examples exist in the Louvre and the British Museum; a good specimen from the latter collection is figured in vol. viii., plate VIII, The Museo Gregoriano in the Vatican possesses some wery beautiful friezes of a later date-about the 4 th century B.c.- When native Etruscan art had been replaced by that of Greece. These friezes are very rich and elaborate, with heads and scroll foliage in very salient relief Some of them have at intervals cleverly moulded heads of satyrs, painted a brilliant crimson. ${ }^{3}$

Another very elaborato application of terra-cotta is shown in the numerous large asci, covered with statuettes, which are found in the tombs of Canosa (Canusium), Cales, and
${ }^{3}$ The use of this strongly glowing red is almost peculiar to Hellenio Italy; the other colours used there were much the same is those of Greece itself. The same magnificent crimson often occurs on cenochore, moulded into the form of satyra' heads, which are found in the tombs of Magna Grecia
many parts of Magna Grecia. The statuettes are 80 me . what similar in style and colouring to the Tanagra figures, and date from about the same period (4th century B.c.), but are not equal to them as works of art; they are also usually crowded together in a somewhat awkward manner. ${ }^{1}$ The British Museum is specially rich in these elaborate terra-cottas; few of the colours used appear to be true ceramic pigments.

As in other branches of art, the Romans closely copied the Greeks in their wide application of terra-cotta for etatues, reliefs, and architectural ornaments. A large number of beautiful Greco-Roman reliefs exist, many having designs evidently copied from earlier Greek sculpture. Berlin, the Louvre, the British Museum, and many places in Italy possess fine colleotions. Friezes with beautiful reliefs 12 to 18 inches deep often occur, little inferior in execution to the earlier Greek work. Many subjects of great interest are represented: a very fine plaque iu the Lourre has the scene of Orestes taking refuge at the sacred omphalos at Delphi, which is represented as a conical stone about 3 feet high, hung round with ornamental festoons made of gold. ${ }^{2}$ These terra-cottas belong to the early period of the empire; in the 2 d century A.D. thay became much coarser and less Greek in style, like all the sculpture of that time. A plaque in the Louvre, which represents a chariot-race in the circus, bears its maker's stamp, L.S.ER. At the end of the first and in the early part of the $2 d$ century A.D. the use of terri-cotta for architectual adornment was carried to a high point of perfection in Rome. Many buildings of this period have the most elaborato dccora: tion moulded in clay and fitted together with wonderful neatness. Not only enriched cornices and friezes were made of terra-cotta, but even Corinthian columus with their elaborate acanthus capjtals. In all cases the whole surface appears to bave been covered with a thin coating of "opus albariun" and then decorated with colours and even gold. The best existing ω examples in Ronio are theo Amphitheatrum Jastrense, many tombs on the Tia Latina, and the barracks of the VIIth colort of the guards (vigiles) in the Trastevere. But few examples exist of the large Roman terra-cotta sculpture ; the best are some seated femalo figures from' tombs, smail life-size, in the Capitoline museum, -works of great beauty and very akilfully fired without cracks or warping. The British Mu-i acum also contains fine speci- Fio. 6.-Terra-cotta statue of the mens of terra-cotta sculpture Muse Urania, 1st cenţury A.D. on a large scale, cspecially
 the torso of a nude male figure (Hercules), some terminal figures of Bacchus, and a beautiful statue of Urania (see fig. 6).

[^69]In the 14 th and more especially in the 15 th century terra-cotta was adapted in various parts of Europe to in most magnificent and elaborate architectural purposes. In Germany the mark of Brandenburg is specially rich in terra-cotta work ${ }^{3}$ The church of St Catherine in the town of Brandenburg is decorated in the most lavish way with delicate tracery and elaborate string-courses and cornices, enriched with foliage, all modelled in clay; the town-hall is another instance of the same use of terra-cotta. At Tangermuinde, the church of St Stephen and other build ings of the beginning of the 15 th century are wonderful ex. amples of this method of decoration ; the north door of St Stephen's especially is a masterpiece of rich and effective. moulding. In northern Italy this use of terra-cotta was carried to an equally high point of perfection. ${ }^{4}$. The western façade of the cathedral of Monza is a work of the most wonderful richness and minute elaboration, wholly executed in clay, in the latter part of the 14 th century. The cathedral of Crema, the communal buildings of Piacenza, and S. Maria delle Grazie in Milan are striking examples of the extreme splendour of effect that can bs obtained by terra-cotta mork. The Certosa near Pavi¢ has a most gorgeous specimen of the early part of the 16 th century; the two cloisters are especially magnificent. Pavia itself is very rich in terra-cotta decoration, especially the ducal palace and the churches of S. Francesco and S. Maria del Carmine. Some delicate work exists among the mediæral buildirgs of Rome, dating from the 14th and 16 th century, as, for example, the rich cornices on the south aisle of S. Maria in Ara Cceli, c. 1300; the front of S. Cosimato in Trastevere, built c. 1490 ; and a once very magnificent houso, near the Via di Tordinone, which dated from the 14 th century. The most important application of terra-cotta in medieval Italy was to statuary-reliefs, busts, and even groups of many life-sized figures-during the 15th and 16 th centuries, Mucb of the Elorentine terra-cotta sculpture of the 15 tb century is among the most beautiful plastic work the world has ever seen, especially that by Jacopo della Quercia, Donatello, and tbe sculptors of the nextgenerction. ${ }^{5}$ For life, spirit,
 and realistic truth, combined with sculpturesque breadth, these pieces are masterpieces of invention and manipulation. The portrait busts art perfect models of iconic sculpture (see fig. 7). In som respects the use of burat clay for sculpture has greal advantages over that of marble: the soft clay is easily and rapidly moulded into form while the sculptor's thought is fresh in his mind, and thus terra-cottad often possess a spirit and vigour which can hardly bi reproduced in the laboriously finished marble These

[^70]qualities are specially remarkable in the best works of the Della Robbia family (see Robbis). In the 16 th century a more realistic style was introduced, and this was heightened by the custom of painting the figures in oil colours. Many very clever groups of this class were produced by Ambrogio Eippa (Caradosso) for S. Satiro at Milan and by Guido Mazzoni and Begarelli (1479-1565) for churches in Modena. These terra-cotta sculptures are unpleasing in colour and far too pictorial in style; but those of Begarelli were enthusiastically admired by Michelangelo. ${ }^{1}$ Much fine terra-cotta work mas produced in France during the 16 th century, partly under Italian influence,-many sculptors from northern and central Italy having settled in France, especially under the patronage of Francis I. In the same century a similar Italian influence prevailed largely throughout Spain, and very ciever works mere produced there, remarkable for their vivid realism and deceptive pictorial style. In England the elaborate use of terra-cotta did not come into rogue till the early part of the 16 th century, and then only in certain counties. Essex possesses the finest examples, such as those of the manor house of Layer Marney, built in the reign of Heary VIII. The richly moulded windows and battlemente of this house are very un-English in style, and it seems probable that all the terra-cotta decorations were made in Holland or Flanders. A richly decorated terra-cotta tomb with recumbent effigy exists in the church of Layer Marney; and in the collegiate church of Wymondham in Norfolk there are very large and elaborate sedilia mith lofty canopied niches, all of clay, which appear to be of the same date and fabrique as the Essex examples. Most of the terracotta sculpture in England, such as that by Torrigiano, of which fragments exist in Westminster Abbey, the colossal heads of the Cesars at Hampton Court, and the recumbent effigy in the Chapel of the Rolls, ${ }^{2}$ were the work of Italian oculptors, mostly from Florence, who were invited to England in the reigns of Henry VII. and Henry VIII.

Of late years terra-cotta for architectural purposes has been employed for some very important buildings in London, such as the natural history museum at South Kensington, the Albert Hall, and the front of the other museum in the Exhibition Road. The durability of wellfired clay, its dense testure, pleasant colour, and smooth surface make it specially suitable to an atmosphere laden with acids and soot as is that of London. The surface resists decomposition, and affiords little hold to the minute particles of carbon. The great improvements which have been made in the manufacture of terra-cotta will probably lead to its more extensive use. The great difficulty is to retain the sharpness of impression given by the mould, and abore all to aroid the uneven shrinkage and warping which is so liable to take place when it is fired in large pieces. Any want of truth in the lines of a long cornice becomes painfully apparent, and each moulded llock of a door or windor-jamb must fit accurately on to the next one, or else the line of moulding becomes broken and irregular. Terracotta is now made of many different colours, a rich red and a warm ochre or cream colour being the most pleasant to the eye. In order to avoid defects it is necessary that the clay should contain a large proportion of powdered silica, and that the whole mass should be thoroughly homogeneous. The method by. which these ends are secured is much the same as that employed in the making of pottery (see vol, xix. p. 642 sq .).

The most important public collections are in the Lourre, the British Museum, the maseums of Berlin snd Athens, snd a fow fine specimens exist in the Sonth Kensington Mnseum. The oplendid Sabouroff collection is now in the Hermitage Pslace at St Peters-

[^71]barg. Many muscums in Italy-such as thoso st Florence, Perugia, Capua, Rome, and other places-contain many examples from Etruria and Magna Grecia. A large nomher of the finest of the Tanegra fgures and the like are in privste hands; some sre illustrated in the Forks mentioned in the following list; that of Prince Liechtenstein at Vienns is one of the finest.s
Literature.-Lbon Heozey, "Recherches anr les fgurines de femmea vollées," In Mritele,. . . en terre cuite," in Gaz. des B. Arts, September 1875 ; Id." "Rech. our lee terres curtes grecques," in Mon. csoc. des iiud. orcc., 1870; Id., Les our lee terres curtes grecques, 1882 . Id., Cataloge des fourines antiques du Lourre Paris, 188n.s3; IL, "Papposilàno ot lo dieu Bes," in Bull. Cor. Heम., 1884 101.167 : Frohner, Lesterres cuites d" Aste-Mineure, Parls, 1879.81; Id. Cat, de la, Coil. Lecuyer, Paris, 1883, atd Cat. de la Coll. Earre, Paris, 1878 : Geknle, Griechische Thanfipuren aus Tanagra, Berlin, 1878; Id., Griechische Terracotien vom Berliner Mruseum. Berlin, 1878; Id., Dio antiken Terrocotter ron Pompeif stattert 1880. Raset, Nomuments da Part antioue, Paris, 1884, rol. Pompeit, Etuttgart, 1880 ; Rayet, Montments de Iar antque, Raris, 18i. pp. II. pp. 74-90; 1d, "gur tne plaqua eatampee, in Buin cot. Heino 18 Ta, pp.
 (Lonvte)," in Ccs. des B.-Atw, 1875 ; Id, "Lart grec an Trocedero, in Gas. da* 8.-Arts, 1878 ; Furtwaengler, La Coll. Sabouror, Paris, 188285 , splendidso Idatrated in colnurs; Marths, Cat. des forrines du $⿰ 7$ usto d" Athenes, 1880 ; Id., "Figarines carinthlennes en terre cuite," in Bull. Cor. Hell., 1S79, pp. 29-42; Id., "Figurines de Trenagra," ibid., 1880, pp. 71-75; Pottier, "Terres cnitea Cbyprites," ibid., $1869, \mathrm{pp}$. $86-94$; Pottier and Rainach, "Fonllees de "yriua, ibid., varions articles in vols. for 1882 -83; Paul Oirard, "Nécropoles de la Gréce dn Nord," tbia., 1879, pp. 211-221: Max. Collgnon, "Plaqne estampete de Santorin," ibid., 1881, Pp. 436-438; Cesnola, Cyprus, London, 187%; Schlio mand, Troy, Myceras, and Tiryis: E. Curtius, Ciebelgruppen aus Tanagra, Berlin, 1878 ; Delanney, "Terrea cultes de Tanagra" in Revue de Firance, May and June 1S78. An acconnt of the Brst discovery of the Tanagra figurea is given by Otto Laders in Bull. Inst. Cor. Arch., 1874. I. 120; ses also Farlong articles in Caz. Archeol, Archäol. Zeitung, and Mon. Inst. Arch. Fom, (eapecislly Fol Fi). For the earller known terra-cottas, see Panofka, Terracolten des \mathcal{K}_{0} Afuseums zti Berlin, 1812; Combe, Terna-cottas in the British Kivseum, London, 1810; and Gerbard, Monumenti figulini di Sicilic, Berlin, 1835. Other works hspe been already referred to. Clerer but not quite satislactory coples of the finest Tansgra sud other figures are pow inade in Berlin and Vienna; they coot from twenty to thirty shillings each.
terranova, or Terrantota, \& seaport town of Sicily, on a hill at the mouth of the Terranora, in the prorince of Caltanisetta, and $41 \frac{1}{2}$ miles east-south-east from Girgenti. It contains a castle and several large churches, but has little to interest the traveller. Thourf the harbour is poor, there is a considerable trade in corn, wine, fruit, sulphur, and soda. Cloth is manufactured to a small extent. The population of the towin in 1881 was 16,440, that of the commune 17,173. In and near Terranova are the remains of the ancient Grit (q.v.). The modern town owes its origin to the emperor Frederick II.
terrapin. See Tortoise.
TERRE HAUTE, a city of the United States, in Harrison township, Vigo county (of which it is the county seat), in the western part of Indiana. It is situated in $39^{\circ} 27^{\circ}$ N. lat. and $87^{\circ} 54^{\prime}$ W. long., at a height of 492 feet above the sea, upon the east bank of the Wabash river, 186 miles nearly south of Chicago and 73 miles west-south-west of Indianapolis. The city stands apon level ground, about 60 feet abore the ordinary surface of the river. It is regularly laid out, with wide streets, lined with shade trees; its principal buildings are the State normal school and the Polytechnic -Institute. Six great railroad lines pass through Terre Haute, connecting it directly with the cities of the Mississippi ralley. This fact, together with its proximity to the coal-mines or Clay county, has greatly promoted its growth as a manufacturing centre. It had in 1880 a population of 26,042 , as against 16,103 in 1870 .
TERSTEEGEN, Gereard (169-1769), German religlous writer, was born at Mörs in Rhenish Prussia on 25th November 1697. After being cducated at the gymnasium of his native town, he pursued for some years the calling of a ribbon-maker. In 1728 le withdren from all secular pursuits and gare hiraself ontirely to religious work. His writings include a collection of hymns (Blumengärtlein, 1 1̌29; last edition, Stuttgart, 1868), a volume of Gebete, and another of Briefe. He died at Mühlheim in Rhenish Prussia on 3d April 1769." See Hyans, vol. xii. p. 588.
tertiaries. See Franciscans, vol. ix. p. 700.

[^72]TERTULLIAN, whose full name was Quintus Septinfus Florevs Tertuluanus, is the earliest and after Augustine the greatest of the ancient church writers of the West. Before him the whole Christian literature in the Latin language consisted of a translation of the Bible, the Octavius of Minucius Felix-an apologetic treatise written in the Ciceronian style for the higher circles of society, and with no evident effect for the church as a whole-and a list of the books recognized as canonical (the so-called Muratorian fragment). Whether Victor the Roman bishop and Apollonius the Roman senator ever really made an appearance as Latin authors is quite uncercain. Tertullian in fact created Christian Latin literatcre; one might almost say that that literature sprang from him full-grown, alike in form and substance, as Athene from the head of Zeus. Cypriau polished the language that Tertullian lad made, sifted the thoughts he had given out, rounded them off, and turned them into current coin, but he never ceased to be aware of his dependence on 'Tertullian, whom lie designated as $\kappa a \tau^{\prime}$ ' $\bar{\xi} \xi \circ \times \dot{\eta}^{v} v$ his master (Jer., De Vir. Ill., 53). Augustine, again, stood on the shoulders of Tertullian and Cyprian ; and thcse three North Africans are the fathers of the Western churches.

Tertullian's place in universal history is determined by (1) his intellectual and spiritual endowments, (2) his moral force and evangelical fervour, (3) the course of his personal developraent, (4) the circumstances of the time in the midst of which he worked.
(1) Tertullian was a man of great originality and genius, characterized by the deepest pathos, the liveliest fancy, and the most penetrating keennesś, and was endowed with ability to appropriate and make use of all the methods of observation and speculation, and with the readiest wit. His writings in tone and character are always alike "rich in thought and destitute of form, passionate and hairsplitting, eloquent and pithy in expression, energetic and condensed to the point of obscurity." His style has been characterized with jnstice as darl and resplendent like ebony. His eloquence was of the vehement order ; but it wins hearers and readers by the strength of its passion, the energy of its truth, the pregnancy and elegance of its expression, just as much as it repels them by its heat without light, its sophistical argumentations, and its elaborate hair-splittings. Though he is wanting in moderation and in luminous warmth, lis tones are by no means almays harsh; and as an author he ever aspired with longing after humility and love and patience, though his whole life was lived in the atmosphere of conflict. Tertullian both as a man and as a writer had much in common with the apostle Paul.
(2) In spite of all the contradictions in which he inralved himself as a thinker and as a teacher, Tertullian was a compact ethical personality. What he was he was with his whole being. Once a Christian, he was determined to be so with all his soul, and to shake himself Iree of all half ineasures and compromises with the world. It is not difficult to lay one's finger upon very many obliquities, self-deceptions, and sophisms in Tertullian in matters of detail, for he struggled for years to reconcile things that were in themselves irreconcilable; yet in each case the perversities and sophisms were rather the outcome of peculiarly difficult circumstances in which he stood. It is easy to convict him of having failed to control the glowing passion that was in him. He is often outrageously unjust in the substance of what he says, and in manner harsh to cynicism, scornful to gruesomeness; but in no battle that be fought was he ever actuated by selfish interests. What he did was really done for the Gospel, as he understood it, with all the faculties of his soul. "But he understood the Gospsi as being primarily an assured
hope and a holy law, at fear of the Judge who can cast into hell and as an inflexible rule of faith and of discipline. Of the glorious liberty of the children of God he had nothing but a mere presentiment; he looked for it only in the world beyond the grave, and under the power of the Gospel he counted as loss all the world could give. He well understood the meaning of Christ's saying that He came not into the world to bring peace, but, a sword: in a period when a lax spirit of conformity to the world had seized the churches he maintained the "vigor evangelicus" not merely against the Gnostics but_ against opportunists and a worldly-wise clergy. Among all the fathers of the first three centuries Tertullian has given the most powerful expression to the terrible earnestness of the Gospel.
(3) The course of Tertullian's personal development fitted him in an altogether remarkable degree to be a teacher of the church. Born at Carthage of good family -his father was a "centurio consularis"-he received a first-rate education both in Latin and in Greek. He was able to spcak and write Greek, and gives evidence of familiarity alike :zith dits prose and with its poetry; and his excellent memory-though he himself complains about it-enabled him always to bring in at the right place an appropriate, often brilliant, quotation or some historical allusion. The old historians, from Herodotus to Tacitus, were familiar to him, and the accuracy of his historical knowledge is astonishing. He studied with earnest zeal the Greek philosophers; Plato in particular, and the writings of the Stoics, he had fully at command, and his treatise De Anima shows that he himself was able to investigate and discuss philosophical problems. From the philosophers he had been led to the medical writers, whose treatises plainly had a place in his working library. But no portion of this rich store of miscellaneous knowledge has left its characteristic impress on his writings; this influence was reserved for his legal training. His father, whose military spirit reveals itself in the whole bearing of Tertullian, to whom Christianity was above everything a "militia," had intended him for the law. He studied in Carthage, probably also in Rome, where, according to Eusebius, he enjoyed the reputation of being one of the most eminent jurists. This statement derives confirmation from the Digest, where references are made to two works, De Cástrensi Peculio and Quæstionum Libri VIII., of a Roman jurist named Tertullian, who must have flourished about 180 A.D. In point of fact the quendam advocate never disappeared in the Christian presbyter. This was at once his strength and his weakness: his strength, for as a professional pleader he had learned how to deal with an adversary sccording to the rules of the art-to pull to pieces his theses, to reduce lim $a d$ absurdum, and to show the defects and contradictions of his statements,-and was specially qualified to expose the irregularities in the proceedings taken by the state against the Christians; but it was also his weakness, for it was responsible for his litigiousness, his often doubtful shifts and artifices, his sophisms and argumentationes ad hominem, his fallacies and surprises. At Rome in mature manhood Tertullian became a Christian, under what circumstances we do not know, and forthwith he bent himself with all his energy to tho study of Scripture and-of Christian literature. Not only was he master of the contents of the Bible: he also read carefully the works of Hermas, Justin, Tatian, Miltiades, Melito, Irenæus, Proculus, Clement, as well as many Gnostic treatises, the writings of Marcion in particular. In apologetics his principal master was Justin, and in theology proper and in the controversy with the Gnostics, Irenæus. As a thinker he was not original, and even as a theologian he has produced but few new schemes of doctrine, excent his doctrine of sin His snecial gift lay
in the pow to make what had been traditionally received impressive, wive to it its proper form, and to gain for it new currency. From Rome Tertullian visited Greece and perhaps aisu Asja Minor; at any rate 'we know that he had temporary relations with the chürches there. He was consequently placed in a position in which he could check the doctrine and practice of the Roman Church. Thus equipped with knowledge and experience, he returned to Carthage and there laid the foundation of Latin Christian iiterature. At first, after his conversion, he wrote Greek, but by and by Latin almost exclusively. The elements of this Christian Latin lang age may be enumerated as follows :-(i.) it had its origin, no in the literary language of Rome as developed by Cicero, but in the language of the people as we find it in Plautus and Terence; (ii.) it bas an African complesion; (iii.) it is strongly influenced by Greek, particularly through the Latin tra slation of the Septuagirit and of the New Testament, besides being sprinkled with a large number of Greek words derived from the Script- es or from the Greek liturgiss ; (iv.) it bears the stamp of the Gnostic style and contains also some military expressions; ($\stackrel{\text {.) }}{ }$ it ortes something to the original creative power of Tertullian. As for his theology, its leading factors were-(i.) the teachings of the apologists; (iii.) the philosophy of the Stoics ; (iii.) the rule of faith, interpreted in an anti-Gnostic sense, as he had received it from the Church of Rome ; (iv.) the Soteriological theology of Melito and Irenæus; (r.) the substance of the utterances of the Montanist prophets (in the closing decades of his life). This analysis does not disclose, nor indeed is it possible to discover, what was the determining element for Tertullian; in fact he was under the dominion of more than one ruling principle, and he felt himself bound by several mutually opposing authorities. It was his desire to anite the enthusiasm of primitive Christianity with intolligent thought, the original demands of the Gospel with every letter of the Scriptures and with the practice of the Roman Church, the sayings of the Paraclete with the authority of the bishops, the law of the churches with the freedom of the inspired, the rigid diseipline of the Montanist with all the utterances of the New Testament and with the arrangements of a church seeking to set itself up within the world. At this task he toiled for years, involved in contradictions which it took all the finished skill of the jurist to conceal from him for a time. At last he felt compelled to break off from the church for which he had lived and fought; but the breash could not clear him from the contradictions in which he found himself entangled. Not only did the great chasm between the old Christianity, to which his soul clung, and the Christianity of the Scriptures as juristically and philosophically interpreted remain unbridged; he also clung fast, in spite of his separation from the Catholic church, to his position that the church possesses the true doctrine, that the bishops per successionem are the repositories of the grace of the teaching office, and so forth. The growing violence of his latest works is to be accounted for, not only by his burning indignation against the everadvancing secularization of the Catholic church, but also by the incompatibility between the authoritics which he recognized and yet was not able to reconcile. After having done battle with heathens, Jews, Marcionites, Gnostics, Monarchians, and the Catholics, he died an old man, carrying with him to the grave the last remains of primitive Christianity in the West, but at the same time in conflict with himself.
(4) What has just been said brings out very clearly how important in their bearing on Tertullian's development were the circumstances of the age in which he laboured. Hie activity as a Christian falls between 190 and 220,
a period of very great noment in the history of the Catholic church; for within it the struggle with Gnosticism was brought to a victorious close, the New Testament established a firm footing within the churches, the "apostolic" rules which thenceforward regulated all the affairs of the church were called into existence, and the ecclesiastical priesthood came to be developed. Within this period also falls that evangelical and legal reaction against the political and secular tendencies of the church which is known as Montanism. The same Tertullian who had fortified the Catholic church against Gnosticism was none the less anxious to protect it from becoming a political organization. Being unable to reconcile incompatibles, he broke with the church and became the most powerful representative of Montanism in the West.

Although Tertullian's extant works are both pumerous and copious, our knowledge of his life is rery rague. He cannot have been born much later than about 150 . His activity as a jurist io Rome must fall within the period of Comnodus; for there is no indication in his writings that he was in Rome in the time of Marcus Aurelius, and many passages seem to preclude the supposition. The date of his conversion to Christianity is quite nncertain; there is much in farour of the years between 190 aod 195. How loog he remained in Rome after becoming a Christian, whether be had attained any office in the church before leaving Rome, what was the date of his risit to Greece, -on these points also we remain in ignorance. It is certaiu that he was settled in Carthage in the second half of 197, the date of his writing his Apologeticus and (shortly afterwards) his two books Ad Nationes; we also know that le becatoe a presbyter in Carthage and was married. His recognition of the Montanistic prophecy in Plirygia as a work of God took place in 202-203, at the time when a new persecution broke out. For the next five years it was his constant endeavour to secure the victory for Montanism within the church; but in this he became involved more and more deeply in controversy with the majority of the church in Carthage and especially with its clergy, which had the support of the clergy of Rome. As Jerome writes (De Vir. Ill., 53): "Usque ad mediarn ætatem presbyter fuit ecclesiæ Africanæ, invidia postea et contnmeliis clericorum Romanæ ecclesix ad Montani dogna delapsus." Ou his breach with the Catholic church, prohably in 207-208, he became the head of a amall Montanist community in Carthage. In this position he continued to labour, to write, and to assail the lax Catholics and their clergy ontil at least the time of Bishop Calixtus in the reign of Elagabalus. The year of his death is uncertain. Jerome (ut sup.) says: "Fertur vixisse usque ad decrepitam ætatem." That he returned at last to the bosom of the Catholic church is a mere legend, the motive of thich is obvious; his adherents after his death continued to maintain thernselves as a small community in Carthage. Although he had left the church, his earlier writings continued to be extensively read; sod in the 4th century his works, along with those of Cyprian, were the principal reading of Western Christians, until they mere superseded by those of Jerome, Ambrose, Augustine, and Gregory. Jerome has included him in his catalogue of 'Christiau "viri illustres," but only as a Catholic to whom reference should he made with caution. ${ }^{1}$
The works of Tertullian, on the chronology of which a great deal has been writteu, and which for the most part do not admit of being dated with perfect certainty, fall into three classes, -the apologetic, the polemical theological, and the ascetic. Aod in point of time also three periods can be readily diatinguished, the years 202-203 and 207-208 constituting the divisions. Some of the things he krote have unfortunately disappeared,-in particular the De Spcctaculis, De Baptismo, and De Virginibus Velandis in Greek; his rorks in Latin on the same subjects bave survived.
I. IV'orkis dating from before 202.203.-To this class helong the Apologeticus (197) and the two books Ad Nationcs, De Spectaculis, De Idololatria, De Cultu Feminarum Libri II., De Testimonio Anime (written soon after the Apologeticus), Ad Martyres (perhaps the earliest of all), De Baptismo Hareticorum (now lost), De Baptismo, De Fenitentia, De Oratione (the last three written for catechumens), De Patientia, Ad Uxorem Libri II., De Prescriptione Hareticorum, and Adv. Marcionem (in its first form). The Apologeticus, which in the 3d century was translated into Greek, is the weightiest work in defence of Christianity of the first two centuries. Respecting its relation to the Octavius of Minucius Felir much has been written; to the present writer it seems unquestionable that Tertullian'e work was the later. Of Ereat moment also is the De Prescriptione Herficorum, in which the jurist is more clearly heard than the Christian. The De Spectaculis and De Idololatria show that Tertullian was alresdy in a certain bense a Montanist

[^73] Comrronit, 24.
before he formally went over to that creod; on the other hand, his De Panitentia proves that his earlier views on church discipline were much more tolerant than his later. To learn something of his Christian temper we must read the De Oratione and the De Patientia. The De Baptismo is of special interest from the arehæological point of view.
II. Works voritten between 202-203 and 207-208.-De Virginibus Velandis, De Corona Militis, De Fuga in Persecutione, De Exhortalione Castitatis, Scorpiace adv. Gnosticos (?), Adversus. Hermogenem, De Censu Arime adv. Hermogenem (lost), Adv. Valentinianas, Adv. Apelleiacos (lost), De Paradiso (lost), De Fato (lost), De Anima, De Carne Christi, Dc Resurrectione Carnis, and De Spe Fidelium (lost), were all written after Tertullian had recognized the prophetic claims of the Montanists, but before he had left the church.
III. Works later than 207-208. - To this period belong the five books Adv. Marcionem, his main anti-Gnostic work (in the third form-the first of the five was written in 207-20s), Ad Scapulam (a memorial to the governor, written soon after 211), Die Pallio (possibly this ought to be classed among the earliest writings), Adv. Praxean (his principal work against the Monarchians), and Adv. Judxos. The latest extant morks of Tertullian (all after 217) are his controrersial mritings against the laxity of the Catholics, full of the bitterest attaclos, especially quon Caliztus, the bishop of Rome ; theso aro De Mfonogamia, De Jejunio, De Pudivitia, and De Eestasi Libri VII. (lost). The arguments against the genaincness of some of the above writings do not seem to the present rriter to have weight. It is uncertain whether Tertullian was the author of the Acta Perpetuse et Felicitatis.

Lileralure.-A thoroughly aleqnate edition of the works of Tertullian and a fnll acconnt of his fortunes as a writer are still desiderata; the best edition at present is thst of Oehler (8 vols, Leipsic, 1853). The editio princeps is by Pamelius (15i\%), De 1a Barro (1550), Rigaltius (103i), Semler (1770-i1), Oberthiur
 (1750), Leopold (1839 sq.), and Nigne (1811). The Vienns Academy is about to
publish an edition by Reiferscheid. There are Germsn translations by Besnard publisb an edition by Reinerschen English translation appeara in Clark's Ante(1837) and Kellner (1852), and an English franslation appears in Clarks ante-
Nicene Treological Library. Sepsrate treatises of Tertullian hava often been Nicene Theological lited, the Apologeticus by Havercamp (1718), Oehler (1si3), and Kayser (1So5); edited, -the Apologeticus by Havercamp (1718), Oehler (1sis), and kayser (15o5); the $A d$ Nationes by Godofredns (1635); the De Spectaculis by Klussmann (1877);
the De Testinon io Arimex by Lindner (1862); the De Pallio by Salmasius (1855); the De Testimonio Arimas Murter, \&c. Tbe testimoniea of the church fathers other minor writings by Hurter, ec. Cyprian, Eusebius, Jerome, aod Vinceut of (the most important being those of Cyprian, Eusebius
The older studies on Tertullina by Lo Nourry, Tillemont, Dupio, Allix, Cave, Ceillier, Mosheim, Ceutntr, Sermler, Noesselt, are to some extent reproduced In vol. iii. of Oehler'a edition. Among the more modern contributiona to the snbject may be mentioned those of Neaoder (Antignosticus: Geist des Tertul. lians, Berlin, 1525), Boh=inger (Dic Kirehe Chisti in Biographicn, vol. iii., od ed., 1875), Monler (Patrologie, vol, i., 1840, pp. 701-789), Kaye (Eocles. Hist. of the ed and $3 a$ Centurics, illustroted from the writiugs of Tertullian, 3d ed., 1845), Coenen (Comment. de Tertull., Utrecht, 1825), Hesselberg (Teriullian:'s Lehre, pt. i., Dorpat, 1848), Ebert (Gesch. d. Christh. Lit., 1874), Freppel (Tertullien, Paris, 1S64), Hanck (Tertullian's Leten u. Schrißer, 1si7), Alzog (Potrologie, 3d ed., 1sit) ; seo also the manuals of church history, history of dogme (e.g.,
 Eomao literature (Tenfel), of Christian philosophy (Ritter, Steckl, Erdmann, Deberweg). Compara also Deutinger, Ccist d. Christl. Ueberlieferung, vol. i.
On the chronology and genuineness of the works sttributed to Ter(ullian, sea Mosheim, Semler, Noesselt (De 1'era, Fetate et Doctrina Seriplorum Tertulliani, 1768; in Oebler's ed., vol, iii.), Uhihorn (Furdamenta Chronnlogiz Terizth., Gottingen, 1852), Bonwetsch (Die Schrifen Tertullian's n. d. Zeit inrer Abfass, Bonn, 18;9), Kellner ("'Zur Curon. Tert. 's,"' in Theol. Quartalschr., 1850-71), Grotenayer' (Ueber Tertullian's Leber u. Schriften, Kenpen, 1863-65), Harmack ("Zur Chronal. d. Schr. Tert. "ss" in "ischr. f. Firchengesch., 1878), Noldechen "* Tert."s Geburtsjahr," in Ztschr. f. wiss. Theol., 1856). On Tertullian as a man, a citizen, and an author, see Libert (as above), Engelhardt ("Tert.'s achriftstell. Character," in Z1schr.f. d. hist. Theol., IS52), Pitter (in Braun nnd Achterfeld a Bonner Zeilschrif. Hrt. 9), Mildebrand (in Jahn's johrb. z. Altirthtrmsucisscnsch, 1843), Dieringer (Docrino Ztsehr., $18 s 5$), Schmidt (De Latinitate Tert., Erlangen, $18 \pi 0$-iV), Klussnann (Gerarum Tertulh., pts. i., ii., 耳alle, 18s1), Hauschild (Dic Grundsaize u. 3ittel dor Wortbildung bei Tert., Leipsic, ISsi), and Lauzcn (De Usu Tert. Prepposidionum, Minster, 1869). On Tertullian as a jurist, sce Blumen bacli (De PresbyLero et Icto Tertulliano, Leipsic, 1i35), Wiesenhavern (De Icto Tertulliara, H1diesheim, 1743), Pagenstecber (De urtspr. Tert., Harderwijk, 1608), Rndorft (Rorm.
Rechispesch. j. p. 196 sq.). On Tertullian ns an apologete, see Hefele ("Tert. Rechrsgesch., i. p. 126 sq.). On Tertullian ns an apologete, see Hefele ("Tert. als Apologet," in Eeitr. Eur Kirchengeschichte, Fal. 1.), Jeep ("Tert. als Apolo. get," in Jchrbb. fo deulsche Thed., 1864), Felet (Essai sur Capolog. de Pert., Ouc, 1877), Werner (Gesch. d. apalog. u. polemisch. Lit., Fols. i., ii., 1861-62). On buc, 18tion trner (Gesch. d. apalog. u, polemisch. Lit., iols. i., interrs. z- olichrist.
 W. Feliz, Leipaic, is68), and a number of other, discassions by Kartel, kubn, W. Felix, Leipaic, ises), and a number of olations to Clement of Alexandria have been investigated by Munscber (in Menke'a Magarin, vol. ri., 1706), Noldechen (Jahrbb. f. prot. Theol., 1886; Theol. Stud. u. Krit., 1886); on his relations to Irenæus, HippoIntus, Helito, and the Gnostics, see Harnacir (Zur Quellenkritik der Gesch. d. Gnosticismus, Leipsic, 1873), Lipsius (Die Cuellen der ailesten Retzergesch., 1875), Harnack (De Apellis Gnasi Monarckica, Leipsic, 15nt, and Tezle u. Untersuch.,
vol. i.), Hilgenfeld (Ketzergesch., 1884), and Hagemann (Die rom. Kirche, 1864). Vol. i.), Hilgenfeld (Ketzergesch., 1884), and Hagemann (Die rom. Kirche, 1864).
His relations to the Greek element in geoeral are treated of by Caspari in vol. His relations to the Greek element in geveral are treated of by Caspari in rol.
iii. of his Quellen zur Gesch. d. Toufsymbols (18i5), and those to tha New Testaiii. of his Quellen zur Gesch. . T. Toufsymbols (1875), end thase to the New Testa-
ment and primitiva Christianity by Ronsch (Des N. T. Tert.'s, 18 II), Vollsmar ment and primitiva Christianity by Ronsch (Das N. T. Tert.s, 18तh, Volkmar (in Credner'a Gesch. d. NT7ichen Kanon, 1860), Westcott (Hist. of the Canon of
ihe N. I., 5th ed., 18.91), Charteris (Canonicity, 18s0), Overbeck (Die Auffossung the N. T., 5th ed., 18.81), Charteris (Canonicity, 18s0), Orerbeck (Die Auffassung
d. Streits noischon Petrus u. Parlus bei derb Rirchenvaltern, Basel, 181 T), Barth d. Streits roischon Petrus u. Paulus bei derb Kirchervaitern, Basel, 18iT), Barth aod Noldechen ("Eio gefiugeltes Wort bei Tert.," in Zischr. f. wiss. Theol., 1885).
 18es) aod tha accoants of Montanism by Schwegler, Baur, Ritschl, Boowetsch,

On his relation to the creed and ru of faith consolt Harnack (Patr. App. ipp, 1., 2d ed., it. Appendi.:, and Lehrb. d. Dogmengcsth., vol, i.). His doctrine (f the Eucharist bas been discussed ry Dieringar (in Der Kntholik for 1864), Leinıbach (Bettr. z. Abendmahls?ente Fert. 's, Goths, 1874), and in the standard woiks on the history of tbe doctrioa generally. For his dactrine of the resurrection, see Oehninger (Tert. h., seine A Aferstehungslehre, Augsburg, 1878): for his psychology, Bea Der Katholik for May, August, aod Sertember 1865, Murton (Essai sur rorigine de lame d"aprls Tert., Strasburg, 1866). Burckhardt (Die Seelentchre des Tert., Bautzen, 1857), Stockl (De Tett. Doctrina Psychol., MLustcr, 1803), and Hauschild (Tert.'s Psychologie, Frankfort-on-9Iain, 1880). Oo his doctrine of the original state of man, see Wendt (Die Lehre eon d. mens:hl. Vollkoramenheit, 1852) and Noidecken (Zischr. f. wiss. Theol., 1885); and on his doctrine of redemption, see Bordes (Expose crit. des opin. de Tert. sur lo reclamp. tion, Strasburg, 1860). The treatisa Adw. Proxcan and his anti-Monarchian polemic are discussed by Lipsius (Jahrbb. f. deutsch. Theol., 18Cis) and Hagemand (as above), and in the charch histories; his conception of the sacraments by Leimasheh (Theol. Stud. u. Krit., 18\%1). His ethical ideas are analysed by Musscher (Henke's Magazin, vol. vi., 1796) and Nielsen (Tert.'s fthik, Copenhsgen, 1879): the De Pallio by Kellner (Theol. Quartalsckr., 18\%0), the De Patientia by Noldechen (Ztschr. f. Kirchl. Wissensch. Uu kirch. Leben, 1885), the Adv. Judeoos by Semler, Bonwetsch (as above), sind Volkmar (in Creiner's Gesch. $d_{\text {. NTlichen Kanon), the spurious addition to the De Prascripl ione by }}$ the authorities alreadj cited for his relations to Qnosticism and by Lipsius (2ur Quellenkritik des Epiphonios, 1885). On the poem - Adtu. Marc, falscly
ascribed to Tertullian, see Huckstidt's monograph (Leipsic. 18i5), alsa the Ztschr. f wiss Theolo, 1876 ; on the poerm De Sodoma et de Jona see Muller
 are discussed by Leimbach in Zischr. fo die hist. Theol., 1sil, and by Nolvechen
 Christianc, \& volso, Brescia, 1S1C), Munter (Primordia Ecclesies Africance, Copeahagen, 18さ9), and Gorres ("Das Christeothum u. der Stast z. Zeit dics Kaisers hagen, 1829), and Gorres ("Das Christeothum u. der Stast z. Zeit dcs Kaisers vidual works of Tertullian, \&s well as philological investigations not mentioned in the foregoing list, will be found particularized in Major's Bibliographical io the foregoing list, will be found particularized in Major's Eibtiographica)
(A. HA to Latim Literatove, ISTs.

TERUDANT, or Tasudant. See Morocco. vol. ivi. p. 834.

TERUEL, a prorince of Spain, forming part of the ancient kingdom of Aragon, is bounded on the N. by Zaragoza, on the E. by Tarragona, on the S. by Castellon de la Plana and Valencia, on the S.TV. by Cuenca, and on the W. by Guadalajara, and has an area of 2363 square miles. It is intersected from east to west by the mountain chains of Albarracin and Gudar, from which sereral offsets diverge on either side. The loftiest summit is the Muela do San Juan (5280 feet), which is covered with snow for a great part of the year. These sierras gire rise to several large rivers, the principal being the Tagns, the Guadalaviar, the Jiloca, and the Guadalope. Notwithstanding the fertile character of the plains and an abundance of mineral wealth, the trade of the province is unimportant, and civilization in a backward state, owing to the lack of means of transport, the want of enterprise, and imperfect communication with the onter world. The chief products are corn, wine, oil, cheese, fruits, timber, flax, hemp, silk, wool, and saffron, together with cattle, shcep, and swine; while in the busier centres some slight manufacture of coarse cloth, paper, leather, soap, pottery, and esparto goods is carried on. The population of the prorince in 1877 was 249,000 .

TERUEL, the capital and most important town of the above prorince, is situated on the left bank of the Guadalariar, 142 miles east of Madrid, and on the high road from Calatayud to Valencia. It is an ancient walled city, fast falling into decay, with narrow gloomy streets and crumbling mediæval houses. Some of the numerous churches are worth seeing, with their paintiugs by the rarely known 17th-century artist Antonio Visquert, as is also the great aqueduct of 140 arches, raised $1555-60$ by Pierre Bedel, a French architect. In the cloisters of San Pedro lie the remains of the celebrated "lovers of Teruel," Juan de Marcilla and Isabella de Segura, whose pathetic story has formed the subject of numerous dramas and poems by Perez de Montalban, Yaque de Salas, Hartzenbusch, and others. The cathedral is Churrigueresque. Terucl was raised to the dignity of a see in 1577, the bishop being suffragan of Zaragoza. The popuiation of the city in 1877 was 9482.

TESCHEN (Polish Cieszyn), the chief town of a duchy in Austrian Silesıa, is situated on the Ulsa, a tributary of the Oder, 34 miles south-east of Troppa. It combines both Polish and German peculiarities ir the style of its buildings, and contains fire churches, the most interesting of which are the parish church, which formerly belonged
to a Dominican monastery, and the Gnadenkirche, one of the Protestant churches built in terms of the treaty of Altranstädt in 1706 . The only relic of the ancient castle is a square tower, dating from the 12 th century. The manufacturing industry of the town is slight, and, since the construction of the railway via Oderberg, Teschen has lost much of the trade formerly commanded by its position near the borders of Silesia, Hungary, Moravia, and Galicia. A flax dressing and spinning factory, a large brewery, and several furniture factories are the chief industrial establishments in the town. The population in 1880 was $13,004$.
It was at Tescben that Maria Theresa and Joseph II. aigaed the peace which put an end to the war of Bavarian auccession in 1779. The duchy of Teschen wes formerly a more or less dircet apanage of the Bohemian crown. For some time it bore the uame of SaxeTeschen (Sachsen-Teschen), owing to the fact that Prince Albort of Saxony, who married an archduchess of Austria, received it as part of his wife's dowry. Prince Albert bequeathed it in 1822 to the emperor of Austria, who bestowed it on the archduke Albert.

TESSLLN. See TraLvo.

TEST ACTS. The principle that none but persons professing the established religion were eligible for public em. ployment was adopted by the legislatures of both England and Scotland soon after the Reformation. In England the Acts of Supremacy and Uniformity and the sovere penalties denounced against recusants, whether Roman Catholic or Nonconformist, were affirmations of this principle. The Act of 7 Jac. I. c. 2 provided that all such as were naturalized or restored in blood should receive the sacrament of the Lord's Supper. It was not, however, until the reign of Charles II. that actual receiving of the communion of the Church of England was made a condition precedent to the holding of public offices. The earliest imposition of this test was by the Corporation Act of 1661 (13 Car. II. st. 2, c. 1), enacting that, besides taking the oath of allegiance and supremacy and subscribing a declaration against the Solemn League and Covenant, all members of corporations were within one year after election to receive the sacrament of tho Lord's Supper according to the rites of the Church of England. This Act was followed by the Test Act of 1672 (25 Car. II. c. 2). The immediate cause of the Test Act (the full title of which is "An Act for preventing dangers which may happen from popish recusants ") was the king's declaration of indulgence, dispensing with laws inflicting disabilities on Nonconformists. This Act enforced upon all persons filling any office, civil or military, the obligation of taking the oaths of supremacy and allegiance and subscribing a declaration against transubstantiation, and also of receiving the sacrament within three months after admittance to office. The Act did not extend to peers; but in 1078 30 Car. II. st. 2 enacted that all peers and mambers of the House of Commons should make a declaration against transubstantiation, invocation of saints, and the sacrifice of the mass, - a special exception being made in favour of the duke of York. The provisions of the Test Act were violated by both Charles IL. and James II. on the ground of the dispensing power claimed by the Stuart kings. In a well-known case of Godden \%. Hales (11 State Trials, 1166), an action for penalties under the 'Test Act brought against an officer in the army, the judges decided in favour of the dispensing power,-a power finally abolished by the Bill of Rights. After a considerable number of amendmente and partial repeals by the legislature of the Acts of 1661, 1672, and 1678, and of Acts of indeunity to protect persons unde: certain circumstances from penalties incurred under the Test Aci, the nccessity of receiving the sacrament as a qualification for office was abolished by 9 Geo. IV. c. 17, and all Acts requiring the taking of oaths and declarations against transubstantiation, \&c., were repealed by the Roman Catholic Relief Ace of 1820 (10 Ge .
IV. c. 7.). This general repeal has been followed by the special repeal of the Corporation Act by the Promissory Oaths Act, 1871 (34 and 35 Viet. c. 48), of the Test Act by the Statute Law Revision Act, 1863, and of the Act of 1678 by 29 and 30 Vict. c. 19. Religious tests remained in the English universities until 1871. To be a member of the Church of England was a necessary condition precedent for holding most university or college offices by the Act of Uniformity of 1662, and such offices were not affected by the Toleration Act of 1688 and the Roman Catholic Relief Act of 1829. In 1871 the University Tests Act abolished subscriptions to the articles of the Church of England, all declarations and oaths respecting religious belief, and all compulsory attendance at public worship in the nniversities of Oxford, Cambridge, and Durham. There is an excepticl. confining to persons in hely orders of the Church of Eagland degrees in divinity and positions restricted to persons in holy orders, such as the divinity and Hebrew professorships.

Scolland.-A religious test was imposed immediately after the Reformation. By 1667, c. 9, no oul was to be appointed to a public office or to be a notary who did not profess the Reforned religion. The Scotch Test Act was 1681, c. 0 , rescinded by 1690, c. 7 . Renunciation of popery was to be nade by persons emplosed in edncation (1700, c. 3). A motion to add, after the 18 th article of union, an exemption of Scotsmen from the sacramental test in the United Eingdom was uegatived by the Scottish parliament. A similar fato a waited a proposal that while a sacrarnental test was in force in England all persons in public ollice in Scotland should subscribo their adhesion to the Pre:byteriau Church gorcrameut. By 1707, c. 6 , all professors, principals, regents, masters, or others bearing office in any university, college, or school in Scotland rere to pro. fess and subscribe to the Confession of Faith. All persons were to be free of any oath or test contrary to or inconsistent with the Protestant religion and Presbyterian Church government. The reception of the communion was never a part of the test in Scotland as in England and Irelaud. The necessity for subscription to the Confession of Faith by persons holding a university office (other then that of principal or professor of theology) was removed by 16 and 17 Vict. c. 89 . The Act provides that in place of subscription every person appointed to a university ofice is to subscribe a declaration eccording to the form in the Act, promising not to teach any opinions opposed to the divine acthority of Scripture or to the Confession of Faith, and to do nothing to the prejudice of the Church of Scotland or its doctrines and privileges.
Ireland. - An oath of allegiance was required by the Irish Act of Supremacy (2 Eliz. c. 1). The English Aet of 8 Will. and M. c. 2 substituted other oaths and enforced in addition from peers, mom. bers of the Hoase of Commons, bishops, barristcr3, attorneys, and othere a declaration against transubstantiatiou, invocation of the Virgin Mary and the saints, and the sacrifice of the mass. By the Irish Act of 2 Anne c. 6 overy person admitted to any office, civil or military, was to take and oubscribe the oaths of allegiance, supremacy, and abjuration, to subscribe the declaration against transulstantiation, \&cc., and to receive the Lord's Supper according to the usage of the Church of Ireland. English legislation on the subject of oaths and declarations was adopted in Ireland by Yelverton's Act, 21 and 22 Geo. III. c. 48, §3 (Ir.). These provisions were all repealed by the Promissory Oaths Act, 1871. The Roman Catholic Relief Act of 1793 (33 Geo . III. c. 21, Ir.) excepted Trinity Colloge, Dublin, from its provisions, and tests existed in Dublin university until 1873. They wero abolished as far as regarded certain scientific professurships in 1867 by 30 Vict. c. 9 , and were finally abolished for the whole university by the Uni versity of Dublio Tests Act, 1873 , except as to professors of and lecturers in divinity.

United Slates.-By art. 6 of the constitution, "no religious test aluall ever be required as a qualification to any office or public trust under the United States." A similar provision is generally included in the State constitutions.

TESTAMENT. See WILL.
 TESTIMONY. See Evidence.

TETANUS (frum Gr. TEive, I stretch), a disorder of the nervous system, consisting in an increased reflex excitability of the spinal cord and manifesting itself by painful tonic spasm of the voluntary musnles throughont the body. Tho disease shows itself under various conditions. It occasionally occurs, particularly in tropical countries, without apparent cause, and has thus been known to affect numbers of persons simultancously (idiopathic letarius).

It is sometimes observed in new-born children (trismus neonatorum) and in parturient women (puerperal tetanus). But by far the greater number of cases occur in connexion with a wound or other injury, more especially in the extremities, probably implicating some of the peripheral nerves. Certain forms of injury, as punctured, lacerated, and gunshot wounds, are more liable to be followed by tetanus than others. In many cases the liability bears no proportion to the extent of the wound. Exposure to cold after injury is an important exciting cause. The symptoms of tetanus in its most usual forms generally appear during the healing process of a wound, but occasionally they arise after cicatrization is completed. Sometimes they are preceded by appearances of irritation in the wound or its neighbourhood, but this is exceptional. The earliest indications of the disease usually show themselves, no matter where the wound is sitnated, by stiffness about the muscles of the jaw, causing difficulty in opening the mouth, which soon increases to lockjaw or trismus. This is accompanied by spasm in neighbouring muscles, and the drawn features and exposed teeth give to the countenance the peculiar expression known as risus sardonicus. The rigidity extends to the muscles of the neck, back, chest, abdomen, and extremities, and the body frequently assumes a bent attitude, either backward (opisthotonos), forward (emprusthotonos), or laterally (pleurosthotonos). This general muscular rigidity, which at first is not constant but occasionally undergoes relaxation, is accompanied by frequently recurring convulsive seizures, which are readily excited by the slightest irritation, such as from a draught of cool air, a bright light, the closing of a door, \&c. In such attacks there is great suffering and the expression of the face is indicative of agony; and the function of respiration may be seriously involved and asphyxia threaten or actually take place. The temperature of the body sometimes rises to a high degree. The attack is usually acute and after a few days either passes off or, as is more frequent, terminates fatally, either by asphyxia from tonic spasm of the respiratory muscles or from exhaustion consequent on the violence of the symptoms together with the absence of sleep. Throughout the whole course of the disease the mind is clear. In idiopathic tetanus the symptoms are less severe, the course more chronic, and recoveries more common than in those which depend upon a wound or injury. The puerperal form, with symptoms which differ in no way from those described, is rare and occurs either after parturition or after abortion. Tetanus in new-born children, also a rare form, usuallv chows itself a day or two after birth by obvious difficulty in the acts of sucking and swallowing; by the supervention of trismus, together with tonic contraction of the muscles of the limbs and body, sometimes accompanied by convulsive seizures; and by a peculiar low whining cry, seldom absent and very caracteristic. Various opinions have been held as to the cause of this form of tetanus, some referring it to the wound produced by severance of the umbilies. cord, others to pressure upon the bones of the head in parturition, dc. It has not yet been satisfactorily explained. Although sometimes recovered from, it is usually fatal.

The symptoms of poisoning by strychnine bear a strong resemblance to those of tetanus. They are, however, more acute and develop in connexion with something which has been taken; further, the absence of a wound and the fact that the spasm affects the muscles of the extremities first, and not those of the jaws, as in tetanus, serve to establish the diagnosis. In Hidrophobia (q.v.), which in certain of its symptoms resembles tetanus, the absence of trismus, the dread of water, and the violent spasms on attempting to drink, together with the history of the case, readily caable a distinction to be made. Various other forms of
nervous disease accompanied by tetanic symptoms, such as cerebro-spinal meningitis, hysteria in some forms, \&c., may be still more clearly distinguished from true tetanus.

The pathology of tetanus is referred to in the article Pathology (vol. xyiii. p. 391). No constant changes are observed in the body after death from tetanus. The most common are great dilatation of the blood-vessels of the spinal cord and sometimes evidence of inflammatory action, but these are probably the effects of the symptoms rather than their causo.

For the treatment of tetanus many remedies have been employed. Where a source of irritation in or about a wound can be made out, it ought to be dealt with by the surgeon. Of medicinal agents those which diminish the reflex excitability of the spinal cord and relax the spasm are to be recommended. But it is not safe to employ all substances which produce these effects. Thus tobacco and its active principle nicotine act powerfully in this way, but they are attended with danger from theil poisonous properties, and the same may be said of curari, conium, calabar bean, \&c., all of which have been used in tetanus. Opium carefully administercd sumetimes produces a markedly beneficial effect, as does also Indian hemp. Chloroform or ether inkalation greatly mitigates the severity of the spasm. Chloral hydrate and bromide of potassium or ammonium are among the most useful agents which can be employed, and they may be given separately or, still better, in combination. As adjuvants, the warm bath, the absence of all noise and excitement, and the maintenance of the strength by appropriate nutriment should not be neglected.

TETRARCH ($\tau \epsilon \tau \rho a ́ \rho \chi \eta$), the ruler of \approx tetrarchy ($\tau \in \tau \rho a \rho \chi i a$), that is, in the original sense of the word. of one quarter of a region. The title of tetrarch is familiar from the New Testament as borne by certain princes of the petty dynasties which the Romans allowed to exercise a dependent sovereignty within the province of Syria. In this application it has lost its original precise sense, and means only the ruler of part of a divided kingdom, or of a region too narrow to support a higher title. After the death of Herod the Great (4 B.C.) his realm was shared among his thrce sons: the chief part, including Judæa, Samaria, and Idumea, fell to Archelaus (Matt. ii. 22), with the title of ethnarch; Philip received the north-east of the reaim, and was called tetrarch; and Galilee was given to Herod Antipas, who bore the same title (Luke iii. I). These three sovereignties were reunited under Herod Agrippa from 41 to 44 A.D. Another tetrarchy is mentioned in Luke iii. 1, viz., that of Lysanias in the little district of Abilene, near Damascus, in the Falley of the Barada. An inscription of this Lysanias is given in C. I. Gr., 4521 .

See Reцan, Jím do 厄Acad., xxvi. 2 (1870), p. 49 sq.
TETUAN (Tettúwin), a town of Morocco, about 23 miles south-south-west from Ceuta and 44 south-east from Tangiers, is picturesquely situated about 9 miles inland on the steep slope of a hill, behind which rise the bold Rif Mountains. It is surrounded by walls flanked with towers, and has on the summit of the hill a castle whick is the residence of the governor. The streets are narrow, unpaved, and dirty, and with fer exceptions the houses are poor. Scme of the numerous mosques, bowever, are bandsome. The principal manufactures are gun-barrels, coarse woolien cloths, and woollen and silk sashes. The harbour of Tetuan, at the mouth of the Martil, allows only small vessels to cross the bar, and the roadstead is much exposed to the east. There is some export trade in cattle, grain, fruit, leather, and wool, principally to Gibraltar The population of Tetuan is estimated ar about 20,000 (5000 Jems).

Tetuen is said to have been founded in 1492 by refugees from Grinada. Is was taken by storm on 4th Fehruary 1860 by the Spaniards under O'Donnell, but restored to Morocco when veace ras coocluded.

TEUTONES, or Teuton, a powerful German tribe, first appearing in history along with the Cimbri (q.v.). They are again mentioned at a later period by Pliny (H.N., xxxvii. 11) and others as inhabiting a district in the northwest of Germany to the north of the Elbe. The name of Teutones was never employed either by the Germans themselves or by the Romans as a general name for the whole German nation.

- teutonic languages. See Germany (vol. x. p. 514 sq.) ; also. English Language, Goths (rol. x. p. 852 sq.), Scandinavian Languages, Frisians. and Holland (vol. xii. p. 84 sq.).
teutonic Order, The, or Teutonig Kinights of St Mary's Hospital at Jerusalem (Deutscher Orden, Duntane Ritter, Orden der Ritter des Hospitales St Marien zu Jerusalem), is one of the three great military and religious orders to which the crusades gave birth. Its name is derived from. a German hospital founded at Jerusalem in 1128, which disappeared on the capiure of the Holy City by the Saracens in 1187. The pity excited in the minds of some German merchants by the sufferings of the Christian soldiers at the siege of Acre in 1190 induced them to revive the work of this society under a somewhat different form ; and eight or nine years later the society, as thus resuscitated, was converted into a military order. Like the two other military orders, the Teutenic orde - adopted the Augustine rule of life; and, in addition to the ordinary monastic vows, the members laid upon themselves the special obligations of tending sick and wounded pilgrims and of fighting the pagans. Frederick, duke of Swabia, took the young order under his protection, and it soon received charters from the pope and emperor, entitling it to the same privileges as the Templars and Knights of St John. Whatever was the case at first, the members of the order were ultimately required to be Germans of honourable birth. Priest brothers were introduced about 1220, and afterwards half-brothers, like the freres servants d'armes of the other orders, who did not require to be of noble birth, and might, to some extent, continue their ordinary secular occupations. The distinguishing garb of the order consisted of a white mantie with a black cross.

Almost at once a rich strean of benefactions of all kinds began to flow into the coffers of the order, which gradually acquired extensive territories in Palestine and also in Germany and other parts of Europe. Its first seat was at Acre, and the first grand-master was a Rhenish knight named Herman Walpot of Bassenheim. The order rose to great power and influence under Herman von Salza (q.v.), who held the office of grand-master from about 1210 to 1239 , and enjoyed the fullest confidence of both emperor and pope. He was also keen enough to see the hopelessness of the attempt to expel the Mohammedans from the Holy Land, and eagerly hailed the opportunity of transferring the activity of the order to another sphere which was afforded by the invitation to undertake a crusade against the heathen Prussians. The successful progress of this crusade, the aggrandizement thereby accruing to the order, and its subsequent decline have already been narrated in the article Prussia (vol. xx. pp. 5.6). Soon after the beginnag of the struggle, in 1237, the Teutonic order absorbed the order of the Brothers of the Sword, a union which brought Courland, Semgallen, and Livonia to swell its territories. In 1291, when Acre, the last stronghold of the Franks in Palestine, fell the order removed its beadquarters to Venice - but, when its centre of gravity
became so obviously shifted to the extensive territories won from the Prussians, the seat of government was transferred (1309) to Mariesporg (q.v.) on the Vistula, where a splendid castle was erected for the grand-masters. The grand-mastership of Weinrich von Kniprode (1351-82) is the most prosperous period in the history of the order. Its territorial possessions far exceeded those attained by .either of the rival orders, stretching from the Oder. on the west to the Gulf of Finland on the east, and containing a population of two to three million souls. .Its government at first was excellent, and for a time it may be said to have played the leading rôle in the political history of northern'Europe. Wherever the order spread, Christianity and German national life were introduced. Its revenues were very large, and its ranks were kept full by hosts of aspirants to a share in its pious and lucrative crusades.

So long as the order maintained its own high standard all went well with it. But its internal decay was synchronous with external events that wruld alone have been extremely perilous. The union of Poland and Lithuania in 1386 raised up a jealous neighbour, whose power it was wellnigh impossible in the long run to resist, while the nominal conversion of the latter to Christianity struck at the root of the order's prosperity by depriviog it of its missiou. When there were no more heathens within reach to convert and despoil, the chief attraction to outsiders to join its ranks disappeared. After the conversion of Prussig into a secular duchy the Teutonic order still continued to exist as an ecclesiastical organization, possessing eleven bailiwicks in different parts of Europe, with a total area of 850 square miles and 88,000 inhabitants. The headquarters were fixed at Mergentheim in Swabia. Its political importance was of. course now a thing of the past, and the scattered position of the bailiwicks only emphasized its weakness. In 1801 the bailiwicks to the west of the Rhine were absorbed by France, and in 1809 the order was entirely suppressed by Napoleon, its lands going to the secular principalities within which they lay. In 1840 the order was resuscitated in Austria, where it now exists as a semi-religious knighthood, presided over by a royal archduke. Of late it has been doing something towards justifying its existence and connecting itself with its past history by engaging in the ambulance service in time of war. The bailiwick of Utrecht, which survived the decree of Napoleon, also still exists, but the Dutch representatives of the order have become Protestants. The jewel of the order consists of a black and white cross, surmounted by a helmet with three feathers.
The complete organizetion of the Teutoric order included a grand-master (hochmeister), provincial masters (landmeister) for the greater providces, and commanders (komturren) for the smaller dis-, tricts and costles. The power of these officers was not, however, absolute The grand-master co-opcrated with a chapter consisting of the provincial masters and five other important functionaries, winie the provincial masters in turn lad to consult with the council formed by the knight commanders. The privilegee enjoyed by the order in its palmp daye were of the most extensive nature, and its relations to both church and etato were often of a most exceptional nature.
See Voigt, Gesch. d. Deutschen Ritterordiens (1857-59): E.ohmeyer, Gesch. v. Osi* u. West-Preussen (vol. 1., Gotha, 1831); and E. Strehlise, Tabulas Ordinis Thestonicí (Berlin, 1869).
TEWKESBURT, an ancient borough and market-town of Gloucestershire, England, is situated in a fine pastoral valley at the junction of the Severn and the Upper Avon, and on the Midland and Great Western Railways, 15 miles south of Worccster and 126 north-west of London. It has three principal streets, which era regularly built and well paved. The Sevcrn is cressed by an iron bridge with a flattened arch of 170 feet span, erecte? - Tisors in 1824. Of the great Benedictine abbey, one of the richea foundations in England, refounded and enlarged by Sir XXIII. - 26

Robert Fitz-Hanoon in the 12th century on the site of the ancient hermitage and Saxon monastery, there only remain the gate and part of the cloisters. The abbey church, consecrated in 1125, is a magnificent specimen of Early Norman. This elaborate cruciform building consists of nave and side aisles, with transepts united by a grand central tower richly arcaded. The choir terminates in an apse and is surrounded by an ambulatory. One of the most remarkable features of the buiiding is the unique western front, the central part of which is accupied by one Fast arch extending from the ground to the roof. Originally it was filled in with Norman windows, but these were remeved in the 14th century, when the whole building underwent restoration in tho Middle Decorated style, of which it is one of the finest existing examples. The nare was refilled by tracery windows, and stone groining was substituted for the carved wooden ceiling, a like transformation taking place in the transepts. The old Norman columns in the choir still exist; but above them rises a grand superstructure of Decorated work. The elegant clerestory windows are of the 14 th century, with stained glass of the same date. The ambuiatery was rebuilt some distance farther out, and from it projected a beautiful series of chapels. The elaborate tombs include those of Sir Robert Fitz-Hamon, the De Spensers, Alan prior of Canterbury, Sir Guy de Brien, and the vault of George duke of Clarence (murdered in the Tomer) and his wife Isabella. Edward, prince of. Wales, slain after the battle of Terkesbury (1471) by the Yorkists, is also buried in the church, which las undergone an extensive process of restoration under the direction of Sir Gilbert Scott. In the High Street there are several anciont timbered and gabled houses. Remains of an ancient wall have been discovered adjoining the town. The principal modern buildings are the town-hall, the philharmonic laall, and the corn exchange. There is a free grammar-school and a number of charities, including the dispensary, the rural hospital, and Queen Mary's, Barnes's, Richardson's, and Russell's almshouses. Formerly Temkesbury had a woollea trade and an important mustard manufacture, but it is now chiefly dependent on its agricultural trade. The population of the municipal berough (area, 2619 acres) in 1871 was 5409 , and in 18815100.
The tomn is supposed to derive its name from Theoc, a Saxon monk, who founded a hermitage bero in the end of the 7 th century, which was changed into a monastery by tho duke of Mercia in 715, and rebuilt by Sir Robert Fitz-Hamon in 1302. On the death of Fitz-Hamon in 1147 the manor passed to the De Clares, who became merged in the D_{\ominus} Spensers, they in turn in tho Beanchanps, and the Beanchamps in the Nerides. At Towlesbury took place, 4th May 1471, the battle between the Yorkista and Lancastrians which placed the crown on the head of Edward IV. During the Civil War the town was occupied by the Parliamentarians, who were driven out by the Royaliste ; but it was surprised and captured by the former in 1644 , after which it remained in their possession. Towkesbury was first incorporated by Elizabeth in 1574, and when James I. sold the manor to the corporation in 1609 he grantod it a new charter with extended privileges. This being lost during the Civil War, a new charter was granted by Charles II. Between 1692 and 1698 the town was without a corporation, but a new cbaiter was granted by William 1II., Tlich remained the govern. ing charter until the passing of tho Mun:cipal Act. Until 1s67. Tewkesbury returned two members to the Honse of Commons; from 1867 to 1885 it returned ono; and in 1885 it became merged in the north or Terkesbury division of cilouacestershire.
 caited by H. R. Luard, 189.1 .

TEXAS, the largest in area and tho elerenth in populaion of the United States of America, is bounded by the Gulf of Mexico on tho S.E., by Louisiana and Arkansas on the E., by Arkansas and the lindian Territory on the N., the latter extending north of its northern prolongation (the Panhandlo), by Now Mcxico on the TV. and N. of its westers prolongation (tho trans-Pcoos region), and by diecaco on the S.W. Its area in 1850 was 262,290 squarə
miles, or one-eleventh (ncarly 9 per cent.) of the entire area of the United States. The extreme length is 740 miles, the breadth 825 , and the coast line 400 miles. The boundaries, as recognized by the United States Government, ${ }^{1}$ are--the Gulf of Mexico from the Rio Grande to the Sabine river, the Sabine river to $32^{\circ} \mathrm{N}$. lat., thence the meridian of $94^{\circ} 10^{\prime}$ to the Red river of Lovisiana, thence following that river west to its intersection with the 100 th meridian, thence north to lat. $36^{\circ} 30^{\prime}$; thence west to 103° W. long., thence south to lat. 32°, thence west to its intersection with the Rio Grande, which river constitutes the soutli-western border of the State to the Gulf of Mexico.

The surface featurcs are exceedingly varicd, the prevailing eloments being steppes or treeless plains in the north-mest, mountains west of the Pecos river, forests in the east, marshes adjacent to the coast, low prairies in the south-east, and a combination of prairies and broken hills, interspersed with forest growth and thickets of tall shrubs (chaparral), in the centre. These regions are classified as follows (seo map below). (1) The coast plain is the direct geographical and geological continuation of the otleer States which border ou the Gulf of Mexico. It includes all the country cast of a line concentric with the coast, dramn from Texarkana in the north-east corner of the State to near Larcdo on the Rio Grande. The general direction of its slope, in common with that of the rest of the State, is from north-west to south-cast. Its altitude rangea up to 500 feet. The immediate coast strip is newly made marshland; west of this and north of the Colorado rirer are forests ; and to tha south of it the country is mostly a plain. (2) The black prairie region succecds the coast plain on the rest. Its western border is sharply defined frorn the Red river to the Rio Grande, beginning at Denison, passing through or near the citics of Sherman, Dallas, TVaco, Austio, and San Antonio, and then deflected west. Ward to Eacle Pass. It is a gently undu. lating prairie, corcred with a rich black soil, and raries in altitude from 300 to 700 feet.
 (3) The central region extends from the black prairie region on the cast to the eastern escarpment of the great plains on the north-mest and the trans. Pecos mountains ou the south-west. This is tho only region of Texas rhich is not the direct continuation of the physical features of some ad. joining political division. A great rariety of conditions is embraced within its bounds. In its north-eastern part are two long belts of stunted forest (the Cross Timbers), extending from the Red river to the Brazos, and separated by a prairie 50 miles in width. This is the most fertile partion of the entire region. West of this sub-region and north of the Colorado is a broken, arid country (the Coal-measures), having a sandy, pebbly soil, covered with a seattered growth of vegetation. West of this, between the 100 th meridian and the escarpment of the plains, is the gypsum conntry, consisting of the so-called "red beds" of the western United Stateg, accompanied by massive deposits of gypsum and other salts. This country is nuch sculptured by erosion, and in places resembles the "bad lands" of the upper Missouri country. There are also extensive intervals of prairie here. Near the centre, in the countice of San Saba, Mason, and Liano, is a rough, semi-mountainous area of older formations. The soutbern half of tho central region is a broken country of white limestone formation, semi-tropical in climate, and covered with scraggy vegetation, its pbysical features graduatind into those of northcrin Mesico. Ting south-western part is a rolling plain, entircly destitnte of streams. Throughout the region, at intervals of many miles, low, truacated hills (buttes) occur, represcating the remains of limestone formations now being rapidly croded. The region, as a whole, is poorly watered. It is best adapted for cattle and sheep raising, and is tho chicf locality of those indnstries in Tcxas. 'Jhe altitude varies fion 700 to 2500 fect. (4) The plains region is the portion of tho Stato west ef the 101st meridian and morth of tho thisty-sccond parallel,

The State does not recognizo tho South Fork oi the led river as the northero boundary, but iosists upon tha North Fork; it also elaims tho 100 th meridino ns laid down npon Mellish'a map (100 miles cast of the true meridian) as the castern bonter of tho l'anhaude.
commonly known es the "Staked Plain" (Llano Estacado). It is the direct oouthern continuation and termination of the great plains of the North American continent which extend along the eastern slope of the Rocky Mountains from British America to the Rio Pecas. The eastern edge is well rarked by a steep escarpment, which, in consequence of destructive erosion, is constantly receding to the westward. The surface is smooth, and utterly devoid of forest growth or atreams of water. But there are many small ponds or lakes, and in the southern part these are saline. The soil is light, rich, and prous, and is covered with a good growth of grass. Until a few years ago this region was totally unperpled, but many portions of it are now (1887) used for grazing purposes, water being secured by means of wells or artificially constructed reservoirs. The altitude ranges from 2500 to 4000 feet. (5) The trans-Pecos or mountainous region west of the Pecos river is composed of numerous mountain peaks and ranges, with interrening valleys of many miles in width. It is poorly watered, and the population outside the immediate Rio Grande valley is very sparse. The general level of the country is from 3000 to 5000 feet.

The rivera are separable intocseleral sub-systerns. The Rio Grande snd the Arkansas, constituting the north and south limits of the Texas drainage system, with their respective tributaries, the Pccos and the Canadian, originate in a limited district of northern New Mexico and Colerado, and ultimately reach the sea at pointa a thousand miles apart. The Canadian and the Pecos have cut deep cañons throuch the Llano Estacado. The former continues eastward through Indian Territory, aud the latter southward, joining the Rio Grande between 101° and $102^{\circ} \mathrm{W}$. long. on the southern border of the State. The Rio Grande aud the Pecos receive no tributaries of importance in Texas, but ore constant in their flow. The next and most important group cowprises the Red, the Brazos, and the Colorado, all of which originate aloug the cestern border of the Llano. They traverse similar regiona, and have a general resemblance in character of sediment, irregularity of flow, velocity, and topography of drainage basins. Their brackish water is principally derived from the sudden precipitation of rainfall along the gypsiferous escarpments of the Llano. Its volume is ordinarily small, the flow often ceasing entirely west of the black prairie region. There are periodic freshets, however, which suldenly swell the volume to enormous proportions. These freahets, ladeu with the rich red loam of the plains, usually reach the lower inhabited sections of the State in periods of drought, and are termed "red rises." Much of this sediment is deposited upon the food plana of the lower valleys, and by this process the wost valuable sngar and cotton lands of the coast plain here been built up. Ancther important group consists of the Sabine, the Trinity, the San Jíqrcos, the Guadalupe, and the Nuecea, most of which have their origin near the western border of the black prairie ragion. These atreams have a greater volume and are more constant in flow than any others, and are usually without deep cañons or wide bottoms. Many of them, especially those south of Austin, have their origin from large springas situated along the foot of the escarpment line extending from Austin southwestward. Another oubsidiary system of streams originatea in the narrow Quaternary region along the coast, within the district of the greatest rainfall. These streams bre tidai, and sometimes navigable towards their mouths. Most of them are locally known as bayous. In general, the rivers of Texas are not adapted for irrigation or navigation. Neither do they afford much available water power porth of Austin.
The entire geologic series, with q ferw exceptions, is represented in Texss. The earlier Palæozoic rocks, including the pre-Cambrian (Kemeenawian; A in accompanying geological map), the Yotsdam (oc), snd the Ordovician (oc), up to the Trenton, underlie the State, but are only exposed in two limited districts. The first of these is in the counties of Mason, Llano, Burnet, and San Saba in the central region; the other is in the disturbed mountainous portion of the trana-Pecos region. The Cambriau was deposited horizontally upon the upturned Feweenamian, and the Ordorician appeara to rest conformably upon the Cambrian (Potsdaur) ; but there was a continentsl elevation of the whole region, probably commencing at the close of the Trenton epoch, which continued until the beginning of the Coal-messure epoch, for the Upper Silurian, Deronisn, and sub-Carboniferous are absent, and the earlier rocks are disturbed. These earlier Palæozoic sedimenta present no marked stratigraphical or palæontological differences from the same formations throughert the continent, and thus show the widely distributed uniformity of conditions which then existed. At the commencement of the Carboniferous period, however, thet marked difference oi faunal, lithological, and stratigraphical features began which distinguishes the eynehronoue deposits of the later formations of the western and eastern portions of the United States. The Texas region has been the transition ground, and hence all the geologic deposits, beginning with the Carboniferous, have two faces, dependent upon their geographical position east of west of $100^{\circ} \mathrm{W}$. long, and representing the sediments either of interior continental basing or of the, waters of the Atlantie duriug alternating periods of submergence and emergence.

The Carboniferous rocks, and most of the sacceeding formations, aro exposed in two widely geparated portions of the Siate, with entirely different lithological and faunal aspects. The mutual relations of these series have never been traced The first occurs in the central region hetween 97° and $100^{\circ} \mathrm{W}$. long., north of the Colorado river, and consists of clays, sandstones, conglomerates,
limestones, and coal seams of prorkable thickness. It is the south. limestones, and coal seams of roorkable thickness. It is the southWestern prolongation and termination of the Coal-measures of the

eastern United Statea. These rocks, although in general similar to them, differ in some respects from those of the same fermation further east, ond also exhilit a few resemblances to the strictly marine Carboniferous of the Rocky Mountain region ($\left(\mathrm{K}^{2}\right)$. To the other series belonga the traus-Pecos Carboniferons (κ^{1}). Altl ough this is of the same gcologic age as the eastern Coal-mean:ures, it is a purely marine deposit of limestones and sandstones, and is barren of vagetable remains. It is exposed along the Guadalupe and other mountains of the trana-Pecos region, forming the most eastern outcrops of the non-ceal-bearing Carboniferous of the west. The study of the areal clistribution aud relation of the strata interrening between the Carboniferous and the fully-identifed Cretaccous in Texas has not heen begun. The Permian, Triassic, and Jurassic, if they exist, liave not been clearly diagnosed, although these names have been applied to the series of rocks west of the contral Carboniferous region. The thickness of the sedimenta belonging to theso undetermined atrata is very great. They are mostly unfossiliferous, and the presence of stratified gypsum and other salts indicates that they were laid down in sn interior basin cut off from oceanic waters and were too bighly concentrated for the existence of molluscan life. Certain of these deposits, known as "red beds" or "Jura-Tnes" (JT), cxtend beneath the Lleno Estacado, across New Mexico, and into Arizona. The Cretacenus is by far the most conspiccous and exteasire of the geologic formations of the State. It once cuvered the entire territory, but has beer eroded awsy in many pleces west of the black prairio region, exposing the older formations, and is covered to the east of that region by mere recent deposita. From the fact that the lowest member of the series is found resting direct? ? upon the pre-Cambrian in Llano county, the Carboniferous in Lampssas and the counties northward, the Silurian in the traus-Pecos region, and the Jura-Trias beds in the plains region, it is evident that ila beginning marked a period of contimental submergeace, and that this submergence, from the great thickness of pelagic sedimente in it, was long continued. The lowest member of the serica, the oldest known of the Amcrican Cretaceous, is unknown elsemhere in the United States, and its peculiar features give individuality to the central remion. This member (cx), which may be called the Texas group, is the equiralent of tho Neocomian of Europe, aud msny of its iossils are conmon to Europe and America It is not exposed east of the cintral region, except (probably) in the salines of Louisiana. There was a great elevation of this deep-sea formation at ita close, as is attested by the shallow water sediments of later groups deposited unconformably upon it. The Jiddle (cc, cs ${ }^{1}$) and the Upper Cretareous (cs^{2} and cs^{2}) are also well exposed. The black prairie reginn is nnder* lain by the middle and upper groups of the marino Cretaceous characteristic of the other Gulf States and known ss the Rotten Limestone (cs ${ }^{1}$) and Ripley (cs ${ }^{1}$) groups. The Cretaccous groups of the Racky Mountain region extend into Texas, and are exposer isi the trans-Pecos region and along the lower Rio Grande. The

Tertiary formations，so far as recognized，are parely marine，and， like the marine Upper Cretaceoue of the black prairie region，are the direct geographical continnation of the formations of the other Gulf States．They occupy the coast plain，in bands approximately concentric with the ehore of the Gulf of Moxico，and represent the sediments of its reccding waters．Tho alleged occurrence of the fresh－water Miocene，the Loup river group（ M ），upon the Llano Estacado has not been demonstrated．Quaternary（Q）and．other recent allnvial deposits occur along the coast and the upper terraces of the three oldcr river eystems as far west as the eastem border of the central region．This is attested by the character of the de－ posits，accompanied by well－authenticated remains of the elephant and mastodon．These Quateruary soils are mostly the redenosited detritus of the strata of the eastcra escarpment of tre Llano Estacado，which is carried down by the＂red rises．＂The surface festures of the central region are the result of sub－aerial denudation． The black prairio is protected from this destructive erosive process by the tenacious character of its eoil；and the coast plain is covered by a luxnriant forcst growth，and is constantly extending eastward by the recession of the shore line．The final cmergence of the State began in Middle Cretaceoue time，and was connected with the same movements that bronght op the Rocky Mountain eystem．The strata of Texas，excopt the Palæozoic groups，are soft，and yield readily to disintegration．A fow cruptive sheets are found in the trans－Pecos region and along the lower Rio Grande，being remnants of the eastem edge of the great eruptive area of the Rocky Moun－ tain region．Granitic masses occur，as extrusions from the pre： Cambrian，in the central and trans－Pecos Palæozoic deposits．
The eastern ranges of the Rocky Mountain system are deflected towards the Gulf of Mexico after passing south of $33^{\circ} \mathrm{N}$ ．lat．，and take a south－easterly course through Texas into Mexico，the trend of their axes being generally parallel to the direction of the Rio Grande and its principal tributaries．The only true mountains in Texas are situated weet of the Pecos，with the exception of a ferr foot－hills（lomitas）which re－cnter the State from Mexico near Eagle Pass and follow the river to an undetermined point below Laredo．The principal ranges are the Guadalupe，Limpia，Chinali， Los Chisos，Organ，and Franklin Mountains．They are composed of older rocks，in most placcs；the later formations have been washed a may，except whare protected by eruptive flows．The most eastern and northern of these mountaios are usually the highest． Gnadalupe Teak is 9000 feet；Limpia Peak and the crest of the Chinalis，from 3500 to 8000 feet；Eagle Mountains， 7000 ；and the intervening valleys from 3500 to 5000 feet．The low buttes of the central region are miscalled mountaina upon most maps． There are seversl well－defined escarpments extending for long distances，approximately north and south The step of the first of these，from Austin to Eagle Pass，is from 200 to 500 feet high，and is the result of an clevation at the close of the early Cretaceous period．Near the 100th meridian another eacarpment occurb，and along the eastern and sonthern borders of the Staked Plain still another．The western part of the coast plain has a few low hills． The rest of the State has no motable prominences．

The mineral rcsources of Texas have not been mapped or studied， and hence the State ranks last in mineral products．The trans－ Pecos region is rich in silver and lead ores；but the State owne the mineral rights of ncarly all the land，ano has hitherto declined to open them to development．Only one miue is worked here．Silver and gold have also bcen discovcred and mined in Llano aud Mason connties，but without ouccessful results．Gold occurs throughout the marine limestones of the lowest（Texas）group of the Cretaceons， but not in eufficient quantity for profitable extraction．Rich but not abundant copper ores occur in the drift of the gypsum country． Iron ore is found in the Tertiary of eastcrm Texas，and is profitably reduced in a few charcoal furnaces by tho aid of convict labour． At present these are remote from coal and suitable means of trans． portation．Magnetic iron ore occurs iu the pre－Cambrian rocks of Mason county，and recent analysce show it to be equal in quality to the best Swedish ores．It is in great abundance，but remote from means of transportation and fuel．Ores of iron（sphæro－siderite） occur in the central Carboniferous formation，but their commercial value is unknown．The non－metals occur in great abundance in different portions of the State，lncluding salt，gypsum，magncsium eulphate，natural cements，kaolin，and other clays．The unutilized beds of massive gypsum are，with the exception of those of the Sahara and the Andes，the purcst and most extensive in the world． Salt is gathered from lacustral deposits or mined at El Paso， Colorado City，and along the lower Gulf coast for local use．The coals of the central Carboniferous area have been rorked to some extent，but are generally of inferior quality，having from 50 to 70 per cent．of ash．Very recent discoveries of better quality have been reported．Tertiary fibrous lignite，of light epecific gravity，is found in great abundance all along the junction of the coast piain and black prairie regions．It is worked to a omall extent，but has no commercial value．The most important coal area is the eemi－bituminous lignite belt of the trans－Pecos and lower Rio Grande regions，rhich is the dircct geographical continuation of
the late Cretaceous coals of New Mexico and Colorado．It is worked at Eagle Pass and Santa Toma，near Laredo．The beanti－ ful marbles and other oraamental stones of the State are untouched， with the exception of the Llano county granite．

The amount and regularity of the rainfall decreases inland，the mean annual varying from 52.3 inches at Galveston to 13 at El Paso in the extreme west and 23 at Mobcetie in the extreme north． The subjoined table gives the mean temperature and rainfall of certain representative localities ：－

Btation．			Mean Precipitation In Iochea．						
				嵌	䕀 品	品	覀		
Coast Plain． Gilmer ．．．．．．．．．．．．．．．． ．． ．． $13 \cdot 36$ 9.93 11.57 10.93 4578									
Galveston	．	70.02		．	．	．	52.80 88.72		
${ }_{\text {Indianola }}$ Paleation	\cdots	70.01	\cdots	\cdots		\because	38.72 47.00		
Blaoti Prairia Regior．	．	65°		\cdots		．	47.00		
Denison ．．．	800	64.03					$40 \cdot 50$		
Austin	650	67.84	8.61	794	10＊74	6.23	23.52		
San Antoolo	600	63.09	6.77	8.91	$9 \cdot 30$	6．32	$31 \cdot 30$		
Central Region．									
Fort Belknap	1600	．．	6.41	$9 \cdot 44$	$8 \cdot 34$	$3 \cdot 86$	28.50		
，Chadbnine	2020	．．	5.77	6.53	706	$8 \cdot 52$	22.88		
，Griffin		\because	4.95	6.25	$6 \cdot 14$	4.17	21.51		
＂Clark	1000	．．	4.14	7.57	6．55	$4 \cdot 35$	22.61		
＂，Dunca	845	\ldots	3.56 6.35	8.60 0.67	6.54 6.88	2.63 3.53	21.83 $25 \cdot 48$		
＂，Magon	1200	．	6．39 6.36	10－4 4	6.88 8.22	3.53 3.96	25＊48		
＂Makavot	2060	．．	$5 \cdot 40$	$6 \% 1$	$7 \cdot 16$	$4 \cdot 22$	28.51		
Plains＂Region．		64.6							
Fort Elliott	\cdots	64.6	．．	．．	．	．	23.90		
1，Coache	．．	$63 \cdot 6$	\cdots	\cdots		．．	$30 \cdot 90$		
Trans－Pcoos Region．									
El Paso ．．．．	3350	63.2	\cdots	\cdots	\cdots	\cdots	13.00		
Fort Dtockis ．．	4.00	$62 \cdot 8$ 50.8		\because		\because	20.00 90.38		

The coast plain and the black prairie regions have abundant rain－ fall for agricultural purposes．It decreases，however，to the west， and varics greatly in different ycars，sometimes being ample；but in 1885.86 it did not average 10 inches．The precipitation is also rery sudden，seldoni lasting more than a ferv minutce at a time． Only 52 per cent．of the 20 inches of rainfall in the central region and west of it falls in the agricultural scason，one－half being in summer and the remainder in autumn，so that it is equivalent to only 15 inches in regions where the rainfall，occurs in more pro－ pitious seasons．This condition is，howercr，especially favourable for grazing．There are few statistics of the plains region ；but the rainfall along its castern escarpment is slichtly greater and nore regular than that of the central region．The temperature varics greatly thronghont the State，both in extremes and means．Fort Ringgold on the lower Rio Grande is the hottest point in the United Statea，except Key West，Fla．Its mean tcmpcrature is 73.4° Fahr．； that of El I＇aso is 63° ，and of Mobectio 546° ．The prevalent winds are southerly and south－easterly，and blow constantly across the State，without which its summere would be unendurable．The Rio Grande valléy is not subject to frosts．Snow seldom falle south of Galveston aud Austin．In the Panhandle the winters are severe．

The arborcal flora of Lonisiana and Arkansas extends into north－ eastern Texas，conformable with the coast plain，where，immediately south of the Colorado river tho great pine belt of the Atlantic and Gulf coasts terminates．The Hora of the great plains regiorr， principally consisting of nutritious grasses，enters the north－western portion of the Statc and extends south to the 32 d parallel and east to the lolst meridian．The peculiar plants of the Rocky Moun－ tain plateaus renetrate into the trans－Pecos region，while the north Dlexican dora is found along the Rio Grande．The central region is a transition ground whero these floras find representation gencrally in detcriorated and dwarfed species．In the coast plain occur the long and short lcaf pine，with many speciea of oak and lickory．The black mairie revion is dostitute of trees，except scattercd individuals of lire oak and the mesquite bush（Prosopis glandulosa）．The broad river valleys of this region，however，are well－timbered with pecan，cypress，cottonwood，and several speciea of oak，and lave a vigorous growth of smeller shrubs．West of the black prairie region the dwarfed，stunted trecs are of little value except for fuel．The river valleys have the same character of trecs as further cast，but the rocky highlands are covcred with scraggy bushes（chaparral）of oak，juniper，and cedar．The summits of the Guadslnpe ond Limpia rangea，in the trans－Pecos region，are clothed with forests of the yellow（Pinus ponderosa），flexible（ P ． fexilis），and nut pine（ P ．cdulis），all of which attain great size． Many smaller trees grow on these mountains．The volleys and several of the ranges in tlie last－named region，however，are desti－ tute of trees．The entire Rio Grande valley，from El Pase to Brownsville，grows many epecies of cactus and other prickly，cori－ aceous shrubs．The grassea of the State are especially numerous in species，and are found most luxuriantly on the praries of the lowe

cosst the central, sel the plane regions. The lunber supply of the Siate comes entirely from the east Texas pins forests. The cedar, juniper, and mesquite are only utilized for fuel and fencing. Tho black bear (Ursus americanus), panther (Felis concolor), and lynx (Felis rufa) are common to all parts of the State. The bison, wild horse, prongbuck (Antilocapra americana), cojote (Canis latrans), grey wolf (C. lupus), eastern prairie dog (Cynomys ludovicianus), snd the lesser Mammalia of the great Rocky Moun. tain plains constituta the fauna of the north-western part of the Elate, reaching iuto the western part of the central region. Their sonthern limit is approximately the 31at parallel. The highest ranges of the trans-Pecos region possess the unique avian and mammalian fauna of the Rocky Mountaine, including the blacktailed or mule deer (Cariacus macrotis) and Rocky Mountain sheep, with a few Mexican species. The lower valleys have a mingling of the Mexican, Rocky Mountain, and great plain faunas. Along the ralley of the Rio Granda, and extending northward in places, the subtropical fauna is Mexican, including the peccary (Dicotyles corquatus), armsdillo (Dasypus peba), jaguar (Felis onca), and ocelot (Felis pardalis). Among the birds are the scissor-tail (Milvulus forficatus), Mexican eagle (Polyborus cherivay), chaparral cock (Geococcyx viaticas), and numerous other unique forme. The fanna of the humid wooded coast plain is tho couth-western continuation and termination of that of the South Atlantic and Gulf States, with slight rariations, and includes the Virginia deer (Crriacus leucurus), raccoon (Procyon lotor), opossum (Didelphys aurginiana), alligator, \&c. The black prainie region limits the last naned fanna en the west, except in its wooded river bottoms. The ceutral region possesses representatives of the great plsins, Rocky Mountain, Mexican, and Louisiana §aunas, but none of them cross it into other regions. It is a true transitional ground of most of the fsunas of all temperate North America, east of the Pacific slope.
The totsl population in 1880 was 1,591,749 (837,840 males and 753,909 females), and in 1887 it was estimated to have risen to 2,415,000, giving 9.2 inhabitants to the square mile. Of the population in 1880 I, 477,133 were natives of the United States and 114,616 foreign born. There tere 393,384 Negroes, 136 Chinese, 992 Indians, and 43,000 civilized aborigines (Mexicans). Of the entire population 522,133 parsous mere engaged in occupations as follows :-in agriculturs (including stock-raising), 359,317 (68.8 per cent.) ; in law, medicine, and other professions, 97,651 (18.7 per cent.) ; in trade and transportation, 34,909 (6.7 per cent.) ; in manufacturing and mining, 30,346 (6.8 per cent.). At the same dato there rere 3153 prisoners, 2276 idiots, 1564 insane, 533 paupers, 1375 blind, and 771 deaf. 13.9 per cent. of the native whites, 24.7 of the foreigners, and $75 \cdot 4$ of the Negroes-or 29.7 per cent. of the entire populstion-wero unsble to read or write. The population of Texas has iucreased more rapidly than that of any State in the Union except Kansas. The following table shows the increase for the past ferw decades:-

镸	Anglo- American.	$\begin{gathered} \text { IVegro } \\ \text { neeceut. } \end{gathered}$	Mexican Aborig'a nescent	$\underbrace{\text { İRna }}_{\text {In- }}$	Euro-	Aalf atic.	$\begin{aligned} & \text { Total } \\ & \text { Popula- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { cent.la. } \\ \text { creaee. } \end{gathered}$
1850							- 212,582	
18	864,700	25s,475		870	$\because 2,411$	25	818,578	35
1880	1,197,237	393,484	43,000	092	124,116	130	1,591,749	94-4
${ }^{1887}$,				200,000	300	2,415,000	$04 \cdot 4$

The population of the principal cities, according to the U.S. census of 1880 and trustworthy estimates in 1886, was as follows:-

Galveston Ban ADtonlo Dallas Horston	1880.	1886.	AnstlnFort Worth Waco Denibon	1880.	1886.
	22.218	30,000		11,013	23,000
	20,550	85,000		8,663	25,000
	20,388	32,000		${ }^{7} .295$	20,000
	26,518	23,000		3,975	12,000

84 per cent. of the total population of the State is found east of tha central region-the black prairie region (northern half) being the most densely populated, and tha coast plain nest. Betmeen 1880 and 1887 thera was a large flow of population into the trans-Pecos and plains regions, and during the last two years mentioned a decrease in the central region. The population consists priacipally of whita natives of the southern United States, except in the counties of Brazog; Fort Bend, Harrison, Marion, Moore, and Washington, where it is of Negro raca; in the counties of Fayatte, Colorado, Guadalupe, Comal, and Gillespie, where it is German ; and along the Rio Grande, where it is Mexican.
Of the United States Texas now ranks first in the production of cotton and cattle, second in sugar, sheep, mules, and horses, eighth in rica and pigs. The esstern third of tha State, containing 80 per cent. of the entire population, is agricultural ; tha remainder is pastoral. The chief crops are cotton and Indian corn; wheat is grown in the northern part of tha black prairie and eastern part of the central regions, sugar in the lower bottom lands of the Brazos and tha Colorado, rice on tha coast. The chief vegatable products for 1880 were-cotton, 805,284 bales; Indian corn, $29,065,172$ bushels :
wheat, $2,567,737$; oats, $4,893,359$; sweet potatoes, $1,460,079$; Irish potatoes, 228,832 ; barlay, 72,786 ; Iye, 25,399 ; sugar, 4951 hogsheads; molasses, 810,605 gallons; hay, 59,699 tons; tobscco, 221,283 pounds; rice, 62,152 pounds; orchard products, to the value of $\$ 876,844$. The total value of thes producta was $\$ 63,076,311$. Since 1882 the quantity of cotton produced annually has exceeded $2,000,000$ bales, of 500 pounds each. In 1880 there were 174,184 farms in the State, with an aggregate of $12,650,314$ acres of im . proved land. The farms are usually of large eize, and garden, orchard, and dairy products are entirely eecondary to plantation crops. The southern part of the coast plain and the rest of tha State west of the black prairie region are peculiarly adapted to pastoral purauits, which are entirely separated from agricultural the cattle and sheep being allowed to rosm at large, or enclosed in enormons pastures, where they subsist without other food or shelter than nature affords. In 1880 there were in the State$4,084,605$ cattle, $2,411,633$ oheep, $1,950,371$. pigs, 805,606 horses, and 132,447 mules and asses. The sheep walks are more particu larly confined to the southern half of the central region, includin: the lower Rio Grande valley.
The exports are cottou, wool, sad hides, most of which sre Com. shipped from Galveston or sent overland hy rail. The chief im- mero ports are manufactured articles used in the State, also coal and railway material. Apart from a small retail trade along the border, thera are no exports to the adjoining States. The principal sesport and commercial city is Galveston. Tlee mileage in railways has increased from 1048 in 1872 to 5974 in 1882, and to 7034 in 1886.
The founders of the State made liberal provision, by grauts of Educe land and revenue, for public education, but their intentions have tioa not been carried out by subsequent legislation. Texas occupies the anomalous position of having the best school fund and the poorest school system in the Tinited States. The public free school system proper consists of two normal schools for the preparation of teachers and numerous district schools, open for four months in the year. In most of the cities the State fund is supplemented by local taxation, and excelleut schools are maintained. In 1886 there were 489,795 children within school age, and the cost of the mainteuance of the whole syatem was $\$ 2,362,226$. There are no echools for secondary education, escept the high schools of a few cities. Tho State university is at Austin ; it is abundantly endowed with lands, but does not receive the full benefit of ita revennes. There is also a State agricultural aud mechsnical college, but technical training is made secondary.

The State government differs samerlat fiom those of the rest of Admus the Union, orving to the fact that it has had to sdapt itself to the tration administration of the great public demain, by which most of the public institutious are supported and worke of interual improvement accomplished, and hecause much of the attention of the Govern10ent has been pecessarily diverted to the protection of its extensive frontier. The executire gorernment consists of a gorernor, comptroller, treasurer, conımissioner of the general land office, and superintendent of education, elected biennislly, with an attorney. general and a secretary of state, sypointed by the gorernor. The judiciary consists of two courls of final appeal, one for criminal, the other for civil business ; forty itinersnt higher courta for the trial of pensl offences and rivil suite; couris for misdemeanours and minor ciril cases in each county; sud iunumerable justices courts for first hesrings. The legislsture consists of 32 serfators elected for four years, and 115 inelubers of the house of representatives elected for tro yearb. It is resiricled by the constitution to biensial sessious of ninety days each. The State is divided into thirtern congressional snd forty judicial election districts. It is also divided iuto 232 counties, 75 of which have no population, or insufficient population to be organized. Each county is divided into four commissioners' preciucts and a rariging number of achool, election, and justices' precincts. The State las always maintained a corps of troops, formerly for protection against Indisns, but now for preserving order in the unorganized counties. It has institutions for the hlind, deaf and dumb, and insane. The prison system is far euperior to that of the other southern States, bat still very imperfect. The bonded debt of the State on 1st January 1887 was $\$ 4,237,730$, and its taxable wealth $\$ 600,000,000$. The aggregate debt of all the counties and cities was $\$ 7,000,000$. The homestead and exemption laws are unusually liberal to the deltor.

The upper Rio Grande valley was visited in 1580.83 by the Spaniards, who ostablished missions among the bettled Indians dear El Paso aud Santa Fé. The first white settlement was mado by La Salle at Lavaca, on the coast, in 1685 . The country was inhabited by Indians of various tribes, both eavage and agricultural, most of whom ara now extinct, except tha so-called "Mexican" population of the Rio Grands. From 1583 to 1794 many missions wera established by Roman Catholic missionaries among the Indians, wha were completely alienated from their original language, relis gion, domestic habits, and tribal relations. After the purchase of Louisiana from the French in 1803 Anglo-American adventurere began to cross into Tezas from the United States. In 1821, when Maxico threw off tha Spanish yoke, Texas and Coaluila constituted
a state of the republic. It was shortly 3 fter this that the first American colonists were permitted to enter the territory under Government patronage. Within ten years over 20,000 had setfled between the Sabine and the Colorado. In 1830 the Mexican Government placed them under military rule, from which, with accompanying impositions, originated the war of Texsu Independenco. The Anglo-Americans were assisted by voluntecrs from the United States, and the war was terminated by the defeat of the Mexicans under General Sauta Anna at San Jacinto, 21st A pril 1836. From 1837 to 1845 Texas was an independent republic. It was admitted to the United States on 29th December 1845, in spite of the protests of Mexico, and a war with that country immediately ensued. The new State sold to the United States Government for $\$ 10,000,000$ all the territory west and north of the present boundaries between the headwaters of the Rio Grande and the Arkansas. But it reserved the control and disposal of the puhlic lands within its borders, which have proved a magnificent source of revenue, and also the right to divide into fire states, should future growth and development justify it. By a small majority the State seceded from the Union in 1861. In 1868 a new constitution mas adopted, and the State readmitted into the Union. In 1874 the Kiowa and Comanche Indians, who had prevented the settlement of the central and plains regions from the earliest times, were subjugated.
See Hill, Geolog. Knowledge of Texas (1887)-Bull. 44, U. S. Geolog. Survey; Geological Map of the United States, by C. H. Mitchcock; Report on cotton production, Tenth U. S. Census, by Dr. R. H. Loughridge ; forestry Reporte, Fenth U. S. Ceneus; Mcxican Bourdary Survey, vol. i.; Proceedings of Boundary Commission, Austin, 1886 ; Trans. of Academy of Sciences, St Louis, vols, i. and li. (Dr Shumard); Thrall, History of Texas; Kendall, Sania. Fe Expedition; 3paight, Resources, \&c., of Texas, Austin, 1882; Roemer, Kreidebildurgen vor Texas, 1852; Wàlcott, Cambrian Fcunas of N. America-Bull 30, U. S. Geolog. Survey; Hill, "Topogr. and Geol. of Cross Timbers of Texss," in A mer. Journ. Sch, April 1887 ; Cahe, Zoolog. Posilion of Texas; Marcy, Exploration of Red River; Refurt of the U. S. Mexican Boundary Survey; Havard, Report on the flora of west and eonth Tezas ; snd U. S. explorations for a route for a Pacióo Risilway.
(R. T. H.)

TEXTILES. ${ }^{1}$ This word is applied to all fabrics which are woven in a loom, of whatever material they may be made, and whether the woven stuff be plain or figured. The simplest and earliest process of wearing was managed thus. The ground of the future stuff was formed by a number of parallel strings called the warp, having their npper ends attached to a horizontal beam and drawn taut by weights hung from their lower ends. In the early Greek loom each warp thread had a separate weight (see fig. 1). On the number of the warp strings the fineness and width of the stuff depended. The strings of the veeft were interlaced at right angles to those of the warp, and the combination of the two formed the woven stuff or web. The weft was so called from its being "wafted" in and out of the waro; it is also often called the woof, though more correctly trie woof is the same as the web or finished stuff. The threads of the weit were wound round a sort of bobbin on a pirot which was made to revolve inside a hollow boat-shaped piece of wood pointed at both ends so as to pass easily between the threads of the warp. This is called the shuttle. The thread passed out through a hole in the side of the shuttle, the inner pirot revolving as the thread was delivered between the strings of the warp. In order to make the weft interlace in the warp some of the upright strings were pulled forward out of the general plane in which the warp hung; this was done in the simplest way by a reed, which divided the threads into two sets called leaves and thus formed an opening called the shred, through which the shuttle could pass, as shown in fig. 1. Another way, applicable to more complicated ornamental weaving, was to have a series of threads, attached to the warp at right angles, so that the weaver could pull any of the warp threads a way from the rest, thus allowing the shuttle to pass in front of or behind any special warp strings. By a very simple mechanical contrivance these threads were worked by a foot treadle, thus leaving the weaver's hands free to manage the shuttle. ${ }^{2}$ In the

[^74]simplest sort of weaving first one and then the other halt of the warp threads were pulled forward, and so a plain regularly interlaced stuff was woven. The next stage was to make a cloth with coloured stripes, by using successively two shuttles containing different-coloured threads In a chequered cloth the warp was mado of two-coloured threads stretched in successive bands, and the cruss stripes of the weft were woven in by the two shuttles. To form a more complicated pattern the weft must not cross the warp alternately: the design is formed by either the warp or the weft predominating on the surface in certain places. In all cases each thread of the weft must be driven home to its place after each stroke of the shuttle. In the carliest times this was done by beating the weft with a wooden sword-shaped implement ${ }^{3}$ introduced between the strings of the warp; but later a heavy comb-shaped tool was used, ${ }^{4}$ the teeth of which passed between the warp and drove home at one blow a longer length of the weft. An upright loom such as has been described is shown clearly in some of the wall paintings from Thebes, dating about 1600 b.c. and in other earlier ones from Beni-Hasan. A rery similar loom is represented on a Greek vaso of the 5 th century b.c., with a picture of Penelope and the never-finishod piece of stuff (see fig. 1). In this interesting

Fio. 1. - Penelope's 100 m , from a Greek rase of the 5th century b.c. The standing figure is that of Telemachus. ${ }^{5}$
painting the upper band has simple geometrical ornaments, such as occur on archaic Greek vases; the next has figures of winged men and gryphons. This sort of loom is still used in Scandinavian countries for tapestry. ${ }^{6}$ Another form has the warp threads stretched, not upright, but horizentally, -an arrangement which is more convenient for working treadles. These two forms are called in French "la haute lisse" and "la basse lisse,"-the high and the low loom. The general principle is the same in both. Fig. 2 shows a simple form of the "basse lisse," such as was used throughout the Middle Ages, except in Iceland and in Scandinavia. ${ }^{7}$ The clay whorls, or pierced cones, decorated with simplo painting, which hare been found in countless numbers on the sites of Troy, Mycenæ. and other prehistoric cities, were probably used to strair the thread as it mas being spun on the distaff. ${ }^{8}$ Other

[^75]hearier ones were employed to streten the strings of the warp; this method must have been rery inconvenient, as the whole warp could swing to and fro, A very obvious improvement, introduced in some countries at an early date, was to have a second beam, round which the lower ends of the warp could be wound.
In Scandinavian countries the use of weights continued till modern times. Ir the fateloom of the sagas these weights are heroes'skulls, while the shuttle is a sword.

Some simple form of wearing zeems to have been practised by prehistoric man at a very early stage of development. Fig. 3 shows an example of coarse flaxen stuff from the lake-dwellings of Switzerland, dating from the
 Fic. 2.-Nediæval low-warp loom, from a cut by Jost Amman; middle of the 16 th century. Stone Age. Wool appears to have been the first substance used, as no skill is required to prepare it for spinning. Weaving was specially the duty of women, ond even in the Middle Ages in Europe it ras, in some countries, considered a specially feminine employment. ${ }^{1}$ An early Christian sarcophagus in the Lateran has a symbolical relief representing God condemning the futare world to labour, -tillage for the man and wearing for the woman:-He gives ears of corn to Adam and a sheep to Eve.

The Egyptians were

Fia. 3. - Frehistoric (Stons Age) fazen stuff, from a lake-dwalljag in Switzerland. famed for the beauty of their woven stuffs, and almost incredible stories are related of the fineness of their linen, such as a pallium sent by King Amasis to the Spartans, which, Herodotus (iii. 47) says, was mado of yarn containing no less than 360 thrcads; the figures woven on this were partly of cutton and partly of gold thread. Herodotus also mentions a wonderful pallium sent by the same king to the shrine of Athene at Lindus. Ferv examples of the fine and richly ornamented sorts of Egyptian stuffs now exist, though we hare immense quantities of the coarse linen in which mummies were wrapped. This, though coarse, is closely woven, and usually has in every inch many more threads to the warp than to the weft. ${ }^{2}$ A few fragments of Egyptian cloth of the XVIIIth Dynasty have been found with a border of coloured bands, the blue of which is indigo and the red cxtract of Kermes

[^76](q.v.). In Egypt linen was specially employed for religious purposes, such as pricstly and royal restments, because it barbours dirt less than wool or cotton, which were also worn by the Egyptians, and it was used to bandage mummies, because it was thought not to engender worms. Though priests were allowed to wear outer garments of wool, they were obliged to put them off before entering a sacred place.

The Phcenicians were celebrated for their weaving, as for their skill in other aris. Their purple linen, dyed with the murex, was spectally ralued; Tyre and Sidon were the chief places where this was made. Babylou Carthage, Sardis, Miletus, and Alexandria were all famo seats of textile manufacture in the time of Herodotus.

Though no specimens of Assyrian textiles remain, some notion of their richness of ornament and the styles of their patterns may be gained from the minute representations of rich dresses worn by kings and other important personages in the sculptured wall-reliefs from Nineveh which are now in the British Museum. ${ }^{\text {S }}$ The stuffs worn by Asur-banipal are most elaborate in design, being covered with delicate geometrical patterns and diapers, with borders of lotus and other flowers treated with great decorative skill. A large marble slab from the same palace is covered with an elaborate textile pattern in low relief, and is evidently a faithful copy of an Assyrian carpet. Still more magnificent stuffs are represented as being worn by Assyrian captives on the enamelled wall-tiles from Rameses II.'s palace (14 th century в.c.) at Tel al-Ýhhúdiya (see Pottery, vol. xix. p. 603); the woven patterns are most minutely reproduced in their different colours, and the design, special to Assyria, of the sacred tree between two guardian beasts, is clearly represented, though on the most minute scale.

Uur knowledge of Greek textiles, in the almost com-Greas plete absence of any existing specimens, ${ }^{4}$ is chiefly derived from the descriptions of various classical authors. One indication of the patterns commonly used at au early period is giren by the desigus on much of the archaic Greek pottery, which clearly has ornament derived from textile sources. Vol. xix. p. 607, fig. 16, shows examples of these; simple bands, chequers, and zigzags rould naturally be the first steps towards more elaborate patterns, Again, recent excarations at Orchomenus and Tiryns bave brought to light examples of ceiling and wall decoration the motives of which are obriously derived from textile patterns. A stone ceiling at Orchomenus has in relief a carpet-like pattern, and the painted wall-stucco of the Tiryns palace has many varieties of coarse but effective textile ornament. The poems of Homer are full of descriptions of woren stuffs of the inost magnificent materials and design, used both for dresses ${ }^{5}$ and for tapestry hang. ings. ${ }^{6}$ In later times the most important examples of rich woven work of which wo havo any record were certain peploi made to corer or shade the statues of the deities

[^77]at Athens, Olympia, Delphi, and other famous shrines. ${ }^{1}$ Euripides (Ion, 1141-1162) gives a glowing description of a peplos which belonged to the temple of Apollo at Delphi, on which was depicted the firmament of heaven, with Apollo Helios in his chariot, surrounded by the, chief stars and constellations. At Athens a new peplos, ornamented with the battle of the gods and the giants, was woven for the gold and ivory statue of Athene in the Parthenon every fifth year, and was solemnly carried in procession at the greater Panathenæa. Similarly at Olympia a new peplos was woven by sixteen women, and displayed every fifth year at the Olympian games in honour of Hera. It appears probable that these magnificent peploi were not used as garments, which would have partly concealed the splendour of Phidias's gold and ivory statues, out were suspended over them like a mediæval baldacchino. "ery possibly, however, most of the elaborate work on them ras embroidery done by the needle, and not loom or textile work.
The Romans under the late republic and the empire possessed immense stores of the most magnificent textiles of every description, such as the splendid collection of tapestry which Rome inherited along with the other art treasures of Attalus II. of Pergamum ($2 d$ cent. B.c.). A very costly cloth of gold was called by the Romans "attalica," after Attalus. The C. Cestius who died about the middle of the 1st century B.c., and who is buried in the existing pyramid in Rome, left orders in his will that his body was to be wrapped in certain attalica; but, as this was forbidden by a sumptuary law, his heirs sold the gold stuff and with the proceeds had two colossal bronze statues made, which were set outside the tomb. The feet of one of these have been found with an inscribed pedestal recording the above-mentioned facts. The size of the statue shows that the attalica must have been worth a very great sum. Examples of large prices given by Romans for woven stuff's are recorded by Pliny (H.N., viii. 48): Metellus Scipio bought some bangings from Babylon for 800,000 sesterces, and other similar stuffs were bought by Nero for four millions of sesterces (about £3360). Costly tapestry from Babylon is mentioned by Plautus (Stich., II., ii. 54), Silius Italicus (xiv. 658), and Martial (xiv. 150). Virgil (Geor., iii. 25) mentions woven tapestries with figures of Britons being used at theatrical shows: "Purpurea intexti tollant aulæa Britanni.". Other tapestries with scenes from the story of Theseus and Ariadne are inentioned by Catullus (Argon., xlvi. 267). ${ }^{2}$ On a very remarkable example of late Roman stuff found at Sitten (Sion) in Switzerland is woven a graceful figure of a nymph seated on a sea-monster, among scroll-work of foliated ornament, purely classical in design. ${ }^{3}$ A large quantity of very remarkable woven stuffs has recently been found in tombs at Ekhmin (Panopolis) in Middle Egypt. More than 300 pieces have been hought for the South Kensington Museum. They are of various dates, apparently ranging from the 4th to the 6 th or 7 th century A.D. The earliest are of purely classical style: some have badly designed but very decorative figures of pagan deities, with their names in Greek -e.g. Hermes and Apollo; others have figures driving chariots drawn by two centaurs, or marine gods, or long bands of animals-bears, lions, stags, ducks, and many others. Chese are used to decorate linen tunics or pieces of stuff about 2 feet square The later examples appear to be Coptio vestments of various shapes, and are decor-

[^78]ated with rude figures of St George and other Orienial saints, each with a nimbus. These ornaments are done by true tapestry weaving, the weft pattern being in brilliantly coloured wools on a flaxen warp. In some cases the colours, especially the magnificent reds and blues, are as bright as if they were new. Though in all cases the figure drawing is rude, the decorative value is very great.

From the 6th to the 13th century Byzantium became the capital of all the industrial arts, and in none is its influence more obvious than in that of weaving There the arts of ancient Greece and of old Rome met and were fused with the artistic notions of ancient Egypt, Assyria, Persia, and Asia Minor, and this combination produced a fresh and very active art spirit, which for many centuries dominated the whole civilized world. As regards weaving, this new development was strengthened by the introduction of silk into Europe in the reign of Justinian, and many specimens of early silk fabrics have lasted down to the present time, partly through their being safe against moths. The silken stuffs found in the tombs of Charlemagne and other kings, though perhaps not themselves as early as the 6th century, show one class of design used in Byzantium in the time of Justinian. Some of these combine the figure-subjects of ancient Rome with the stronger decorative beauty of the East. Chariot races in the circus, consuls and emperors enthroned in state, gladiatorial fights with lions, and other classical subjects occur, arranged in medallions or wreaths, set in close rows, so as to fill up the ground. Again, mixed with these classical scenes are designs of purely Assyrian origin, such as the sacred tree between two guardian beasts, closely resembling the designs of 2000 в.c. The manufacture of these rich fabrics was carried on, not only in Byzantium, but also in many towns of Greece proper, such as Athens, Thebes, and Corinth, all of hat which were spetheir silk textiles. During the same time, the 6th to the 12th century, Baghdad, Damascus, Ispahan, and many other towns in Persia and Syria were producing woven stuffs of the richest materials and designs; names of reigning caliphs are sometimes mingled with Arabicsentences from the Koran and other sacred books, which are introduced freelyamong the intricate pat-
 terns with the most

Fla. 4.-Persian damask in silk and gold, (Souih Kensington Museum.) richly decorative effect. By this means some existing specimens of the 8 th to the 10 th century can be dated. Fig. 4 shows a 16 th-century example of the finest Persian damask in silk and gold,-a masterpiece of textile design.

According to the usual story, Roger of Sicily, who in 1147 made a successful raid on the shores of Attica and took Athens, Thebes, and Corinth, carried off as prisoners a number of Greek weavers, whom he settled at Palermo and made the founders of the royal factory for silk wear. ing. This story is doubtful, for the Saracenic inhabitants of Sicily had apparently been producing fine silken stuf's
long before the 12 th century. In part, however, the story may be true; certainly an impetus was given to the weaving industry of Palermo in the 12 th century, and for about two centuries Sicily became the chief seat in Europe for the production of the finest woven stuffs. A large number of examples of these beautiful fabrics still exist, showing an immense variety of designs, all of which are imagined with the highest decorative skill, - perfect masterpieces of textile art, combining freedom of invention and grace of drawing with that olight amount of mechanical stiffness which is specially suited to the requirements of the 160 m . One of the earliest existing specimens, which shows the existence of the fabrique before the time of Roger I., is a piece of silk stuff in which the body of St Cuthbert at Durham was wrapped when his relics wero translated in 1104 ; this mas found at the opening of his grave in 1827, and is now preserved in Durham catliedral library. The figures woven on it show an interesting combination of Western and Oriental art. Birds and conventional arnaments of purely Eastern style are mingled with designs taken from late Toman mosaics, -the whole being blended with great skill into a highly decorative pattern. ${ }^{1}$ The Sicilian silks of the 12th to the 1 th century were mostly used for ecclesiastical restments, altar frontals, and the like; and the fact that examples have survived in almost all countries of Europe shows how important and far-reaching a trade in them must once have been carried on. The favourite designs were the sun breaking through a cloud from whence rays of light are issuing, or conventionally treated ships, fountains, islands, castles, and an immense variety of birds and beasts, such as swans, mallards, eagles, lions, cheetahs, hounds, giraffes, antelopes, and others. Some specimons have siren-like female forms, with floating hair, casting nets, leaning down from palm trees, or issuing from shells. Others, rather later in style, have winged angel-like figures. In many cases the Assyrian sacred tree and its guardian beasts occur, and very frequently borders with sham Arabic letters are intro duced,-a surviva! of the time when real sentences were woven into the fabrics of Persia and Egypt, probably intended as a visible sign that tho stuff was the genuine product of Saracenic looms. All these are perfect masterpieces of tex. Fig. F.-Sicilian silk हtafi of the 13 th century, tile art, and have
 never since been rivalled either in beauty of design or in skilful use of gold and colours. Fig. 5 shows a characteristic example; another copied from a painting is given under Moral Decoration, vol. xvii. p. 46, fig. 15.

In the 14 th century the chief centre of fine silk weaving was transferred from Palermo to Lucca, Florence, Milan, Venice, and other towns in northern Italy, and a different class of design, less rich in fancy, but scarcely less beautiful in effect, came into vogue. The designs of these 14 th and

[^79]15 th century textiles were chiefly conventional adaptation of natural foliage and flowers, arranged with great beauty of line and wealth of decorative effect; among the most beautiful is scroll-work of vines with graceful curving lines of leaf and tendril. An cytremely rich design, largely employed throughout the 15 th century, was made from the artichoke plant, ${ }^{2}$ and was especially used for the rich "cut" velvets of Genca, Florence, and Venice, in which the pattern is formed in relief by pilo raised above pile, mixed with gold ${ }^{5}$ (see fig. 6 and vol. xvii. p. 46, fig. 14). At this time Venice contained a large number of Ori

ental craftsinen in all the industrial arts, and very beautiful stuffs were woven there with designe of mingled Oriental and Italian style, probably the work of Mohammedan weavers (see fig. 7).

F1a. 7.-Silk stuff of Oriental desiga, woren et Veaice in the 15 th century. (South Keasington Museum.)
In all these Oriental, Sicilian, and early litalian stuffs gold thread is used in a very lavish and effectivo way. It was made very skilfully, the richest effect being produced with little metal by thickly gilding fine rellum skins with gold leaf; the rellum was then cut into very thin strips

[^80]and wound round a thread of silk or hemp so closely as to look like a solid gold wire. In and since the 15 th century gold thread has been made by twisting a thin ribbon of gilt silver round a silken core. In this way much less gold is required, as the silver ribbon is gilded before being drawn out to its Gnal thinness, and it is thus liable to tarnish, owing to the partial exposure of the silver surface. In classical times attalica and other gold stuffs were made of solid gold wire beaten out with the hammer. ${ }^{1}$ Masses of this fine gold wire ${ }^{2}$ have been found in the tombs of Egypt, Greece, and Etruria, the metal having lasted long after all the rest of the stuff had crumbled into dust. In 1544 the grave of the wife of Honorius was opened and 36 \# of gold thread taken out of it and melted.

Throughout the Middle Ages cloth of gold was largely cmployed for ecclesiastical and royal purposes. In some cases the whole of the visible surface was formed of gold thread, producing the utmost splendour of effect. Westminster Abbey still possesses a magnificent gold cope of the 15 th century, in almost perfect brilliauce of preservation. In the 13 th and 14 th centuries Cyprus and Lucca were specially famed for their gold stuffs, and the royal inventories of France and England show that the kings possessed stores of this to an immense value. The enormous sum of $£ 11$ a yard ${ }^{3}$ is recorded to have been riven for a "cloth of estate" in the prirate accounts of Heary VII. This was a cloth to hang orer the royal ihrone, and must have been unusually mide, as other cloth if gold at the same time was bought for 38 s . the yard. †arious names were at different times giren to textiles which were whally or in pait woren in gold, such as -iclatoun (a word of obscure origin), bundelin (from Baliak or Baghdad), nak, and tissue. ${ }^{4}$ Samile or examite ($\ddagger \xi$ нítot) was so called because the weft threads were only jaught and looped at every sixtb tbreat of the warp, lying loosely over the intermediate part. Mediaral samite was sometimes made of gold; if of silk it was a rariety of satin: called satin of si3: Modern satin usually bas its weft looped in less closely-suin of eight or ten.

Although throughout tise Middlo Ages ile finer stuffs used in England were to a great extent the product of foreign looms, there was no lack of native textiles, many of which were of great beanty. In the use of the needle the women of England were especially skilful, and rich English embroideries were much exported, eren into Italy, from the 12 th to 1 lie 144 h century, ${ }^{5}$ and were esteemed more bighly tlan the productions of any other country. Two fine examples of early English silk and gold needle-work-a stole and maniple with the inscription Aclffed fieri precepit: pio episcopo Fridestuno-are preserred in the Durham Jibrary. Fridestan became bishop of Winchester in 905 . Other examples of native textiles have been found in the coffins of many ecclesiastics in England. Some interesting fragments are preserved in the chapterhouse of Worcester cathedral ; the ground is of silk, and the pattern, of conrentional scroll foliage, is a characteristic example of 13 th-century design. Pictures in English MSS. show that the low loom was mainly used,-this being the most convenient for ordinary weaving. ${ }^{6}$ England

1 The process of making wire by drawing it through conical apertures iu a steel plate is snid to have been first invented at Nuremberg in the 14 th century.
\& The Museo Gregoriano (Vatican) contains examples from Etruscan tombs. ${ }^{3}$ Equal to quite $£ 50$ of modern money.

4 Hence thin paper laid between the folds of these rich stuffs to protect theia was called tissue paper.
${ }_{5}$ The celebrated cope in Pienza cathedral. which once belonged to Pius TI. (Piccolowini). is a magnificent example of English needlework of the 15 th century.
"Among Chaucer's pilsrims are included "A webbe. a dyer, and a Lapisser." "the first a low-loom wearer, "the hast a weaver of tapestry on the high loom.
was specially celebrated for its wool and woollen stuffs, and even at the present day English wool is used for the Govelin tapestries ; in the 15 th and 16 th centuries it was largely imported into Flanders. In the 14 th century Bath produced the finest woollen cloth, and that of Worcester was equally celebrated; in the 15 th century the production of woollen stuff was a great source of wealth to Norwich and other tomns in the eastern counties. A special sort of woollen yarn took its name from Worstead in Norfolk, where it was made ; it had a closer and harder twist than most woollen thread, and thus could be mado up into cloth of special fineness, which was used for chasubles and other vestments, as is recorded in the inventories of York, Exeter, and other cathedrals.

Old English Names for Textiles.-A large number of uames for Old different sorts of textiles occur in old English writings, many of Englisi them derived from the name of the place where the stulf was nade names or exported. Bucleram was a woven cloth of much richness, highly prized, probably quite unlike what we now mean by the word. Damask or damas got its name from Damascus. Fustian, from Fostat (Old Cairo), was a cheaper stuff made of linen and cotton mixed. Muslin, from Mosul, was a fine cotton stuff. Cloth of Tars (Tarsus) is often mentioned, usually meaning a purple cloth. Camoca or comak (Arah. kankha, frorn Chinese kimkha, "brocade") was another richly decorated Oriental stuff. Cendal or sandal and syndonus were fine silk stuffs. Taifeta was made of silk or linen of very thin substanco. Satin (from Low Lat. seta) was a glossy silk stuff made like samite. Fclect (from It. velluto, "shaggy") had a silk weft woven so as to form a raised pile, the encts of which were cut or shaved off to one even level; hence it is also called in Italy raso. Diaper, "jasper-like" (Ital. diaspro), was not only used to denote a regular geometrical pattern, but in some cases means also a special sort of linen or silk. Phrases such as "silk of brydges" (Bruges), "silk dornex," from Dorneck in Flanders, and "slseets of raynes" (Rheims) eften occur. A large number of other similar names are to be met with in mediæval writings. ${ }^{7}$.

Space will not allow a description of the textile work in Other each separate country. That of Italy and the East was mediar by far the most important throughout the Middle Ages. and Even Chinese textiles of gold and silk were imported into the west of Europe, and were sometimes used for ecclesiastical purposes. Mediæval vestments of Chinese stuff still exist, the shape and added borders of which show that they date from as early. as the 14 th century. These fabrics exactly rescmble in design and workmanship some which are woven in China at the present day. A very interesting survival of the medirval style of weaving exists in Swedez and other Scandinavian countries. Articles of dress, counterpanes, table-covers, and the like are woven by the peasantry in a simple, highly decorative way, with

Fio. 8.-Invian hill loom, as still used.
patterns which hare altered little during the last three or four centuries. Theugh coarse in texture, many of these are of great artistic beauty; nothing but an occasional use

7 The most extraordinary speliing often occurs in lists of textiles in medirval documents, especially in the case of foreign names. Thus we find in the Bury Wills (printed by the Camden Socicty) "fuschar in Appules;" meaning Naples fastlan, and many similar blunders.
of harsh colours shows any sign of decadence of style. Strong marks of Oriental influence are visible in these fine patterns, but the method of weaving is purely native, "probably very like what the edicts of Lonis IX. eall "tapisserie nostrez." Very beautiful fabrics are still produced in India, old designs being followed, and woven in the simplest form of loom. Fig. 8 shows an example of a modern Indian loom used by the hill weavers. In sueh looms the richest materials, such as gold and silk, and the most elaborate patterns are woven, often by travelling weavers who can set op their whole apparatus in a very short time.

Cakpets.

Carpet weaving was essentially an Oriental art, and was the natural product of a dry mudless country, where little furniture was used and the shoes were removed on entering a building. Till the 16 th century carpets were almost unknown in France and England, except for royal personages and for the sanctuaries of cathedrals and important churches. In the latter case they were usually laid in front of the high altar, and thus carried on to the floor the richness of colour which ornamented the walls and vault. Jriental carpets frequently occur in cathedral inventories among the other rich treasures of fureign or native make which adorned the building. They were first employed in England for domestic purposes by Queen Eleanor of Castile and her suite, in the latter part of the 13th century. In the palaces of Spain they were introduced much earlier, owing to the presence of the Moors iu southern Spain. In many cases they were used for wall bangings, and the smaller ones to cover tables and other furniture, as is represented in many 15 th-century Italian pictures. Though few examples of Oriental carpets exist sarlier in date than the 15 th century, yet the manufacture nas carried on in the highest state of perfection centuries bofore. An example of the 14 th century is preserved in a private collection at Vienna; it was originally made as Q hanging for the Kaaba at ${ }^{\text {' Mecca. }}{ }^{1}$ These beautiful Criental pile carpets are among the most perfect producdions of the weaver's art, and till the 16 th century were masterpieces of design and splendour of colour. Usually they were woven of wool or of camels' or goats' hair, with a separate warp and weft of flax; but many magnificent carpets were also made of silk mixed with gold thread. This extravaganee of luxury produced an effect, at least as regards the use of silk, but little superior to that of fine wool or camel's hair, as the special beauty of the silken gloss is seen on the sides, not on the ends of the silk thread. Pile carpets are woven in a very different way from ordinary textiles: short tufts of wool or sillk are knotteif on the warp so that the ends of the threads which form the pattern project, and these are cut down by shears to a uniform surface, thus forming a sort of textile mosaic. Each row is firmly fixed by a shoot of linen weft-thread thrown across the web, and then carefully beaten down with the batten.
Various classes of ornament occur in these magnificent Oriental carpets; one variety has stiff geometrical patterns, the motives of which appear to be taken from mosaics or tiles. Another and still more beautiful sort, manufactured especially at Ispahan (see fig. 9), has elaborate flowing designs of flower forms, sometimes mixed with figures of cheetahs, lions, antelopes, and birds, in a few cases combined with human figures. Mr W. Morris, in his valuable lecture on textils fabries (London, 1884), traces three stages of design, 一first, a pure flowing style, closely resembling the early stucco mural reliefs of Cairo; secondly, a similar style blended with animal forms ; and thirdly, a parely
${ }^{1}$ See Karabacek, Die persische vadelmalerei Susandschird aud veutr. Monatseh. f. d. Orient, 1884, p. 48. with cut.
foral style, flowing in its lincs and very fautastic and ingenious in its patterns; this last he thinks belongs 4

about the time of Shah Abbas, and lasted from about 1550 to 1650 ,-the culminating period of Oriental art. ${ }^{2}$ Since then there has been a distinct degradation of style, though in many cases older patterns have been worked from and very perfect work produced. At the present day the influence of European taste is rapidly destroying this survival of the best class of design, and especially is introducing the most harsh and discordant colouring in place of the glorious rich hues of the earlier Oriental wieavers.

Though no existing specimens can be pointed out, it appears probable that the "tapisseric Saracenois" of Louis IX.'s edicts (1226-12i0) refers to pilo earpets, made by French weavers after the Oriental fashion. ${ }^{3}$ The same edicts for the regulation of the textile industry mention two other classes of manufacture, "tapisserie à la haute lisse," i.e., what we call tapestry, and "tapisscrie nostrez," "native stuff," prohably resembling the coarse but effective patterned fabrics for aprons and dresses which are still woven by the peasantry near liome, in the Abruzzi monmtains, and elsewhere in Italy, and in Scandinavia.

Tapestry.

The making of tapestry (Gk. тánrs), like the weaving of pile carpets, differs from ordinary fabric iu that no risible weft is thrown completely across the loom, but the

[^81]design is formed by short stitches knotted across the warp with a wooden needle called a broach. It is a sort of link between textile work and embroidery, from which it differs in having its stitches applied, not to a finished web, but to the stretched strings of a warp. ${ }^{2}$ It is made on a high loom, and the whole process, though requiring much skill, is mechanically of the simplest kind. It is very probable that many of the noven hangings used in ancient Egypt, Greece, and other countries were true tapestry; but little is known on this point. Till after the 12 th century, in porthern Europe', embroidery seems to have served the place of tapestry, as, for exauple, in the wrongly named Bayeux tapestry (see vol. viii. p. 162) ; while in the south of Europe and in Oriental countries its place was supplied by the rich silken textiles and pile carpets mentioned above.
In the 14th century tapestry began to be largely made, especially in Flanders, where the craft of weaving became yery important at an early time. The designs on the very few existing samples of 14 th-century tapestry closely resemble these of contemporary wall painting. A characteristic early specimen in the Louvre has rows of medallions, each containing a scene from the life of St Martin, with two or three figures treated in a very simply decorative way. The spaces between the circles are filled up with a stiff geometrical ornament. To the end of the 14 th century belongs the magnificent tapestry in Angers cathedral, on which are represented scenes from the Apocalypse ; these were made at Arras, the chief seat of the tapestry manufacture, both for quantity and quality. Hence the name arras. (Italian arazzi) came to mean any sort of tapestry, wherever it was mado. Another magnificent series of arras work is preserved in Rheims cathedral, with designs from the history of Clovis ; these date from the middle of the 15 th century. In the 14 th century Flanders produced enormous quantities of woven stuffs. At that time twentyseven streets were occupied by the weavers of Ghent ; in 1382 there were 50,000 weavers in Louvain ; and at Ypres there is said to have been a still larger number. From about 1450 to 1500 was the golden age for tapestry, especially in Bruges and Arras, where large quantities of the most magnificent historical pieces were woven from designs supplied by painters of the Van Eyck school. The Flemish tapestries of that time are perfect models of textile art, rich in celour, strong in decorative effect, graceful in drawing and composition, and arranged with consummate skill to suit the exigencies of the loom and the æsthetic requirements of wall decoration. A very beautiful example of this class exists at Hampten Court, hung in the dark under the gallery in the great hall,-a striking contrast to the clever but artistically degraded tapestries of half a century later, which hang round the main walls of the hall. Other fine examples exist in the Cluny, Bern, and other museums, and especially in Madrid ${ }^{2}$-in the royal collection and in that of the duke of Alva-and elsemhere in Spain. Though very' rich and varied in effect, the tapestry of the best period usually is woven with not more thand twenty different tints of wool, -half tints and gradations being got hy hatching one colour into another. In the 16 th century about sixty colours were principally employed in the still fine but rapidly deteriorating tapestry

[^82]of that period; and in the laborious but artistically worth. less productions of the Gobelin factory more than 14,000 differently tinted wools are now used.

In the 16th century the art began to decline; very slight symptoms of decadence are visible in the beautiful tapestries with Petrarch's Triumphs in the South Kensington Museum, -most gorgeous pieces of textile art, of the richest decorative effect. These were worked very soon after 1500 (see fig. 10). The influence of Raphael and his school succeeded

Fig. 10.-Figure of Lucretia from the Triumph of Chastity, woven at Brussels about 1507. Her dress is an Italian velvet, eimilar in style to that shown in fig. 6.
that of the 15 th-century Flemish painters, and was utterly destructive of true art value in tapestry. Raphael's cartoons, fine as they are in composition, are designed without the least reference to textile requirements, and are merely large pictures, which the weavers had to copy as best they might. This new style, which reduced the art to a fceble copyism of painting, gave the death-blow to the production of really fine tapestry. Brussels became the chief place for the manufacture after the taking of Arras by Louis XI. in 1477, and its wearers with wonderful skili imitated any sort of painting that was put before them. Cartoons were drawn by several of Raphael's pupils, such as Giulio Romano and Giovami da Udine, and by Mabuse, Michiel Coxcie, Bernard van Orley, and other Italianized Flemish painters.
In 1539 Francis I. founded a factory for tapestry at Fontainebleau, and soon after other high looms were set up, in Paris, examples from which still exist and show a rapid degradation of style. In 1603 a new factory was started in Paris under royal patronage, in the workshop of a family of dyers named Gobelin, after whom the new factory was named (see Gobelin). The Gobelin lonms were first workch by weavers from Flanders. whic soon_ taught the
mysteries of the craft to a number of French workmen． Cartoons were supplied by Simon Vouet and other distin－ guished French painters．In the reign of Louis XIV．a great impulse was given to the factory，and from 1667 the whole establishment became the property of the crown． Louis XIV．＇s minister，Colbert，did much to encourage this and other industries．Charles Le Brun the painter was made director of the works，and a number of artists prepared the cartoons under his supervision．In the 18 th century Coypel，Jouvenet，Boucher，Watteau，and many other popular painters made designs，often of great size and elaboration，for the Gobelin looms，but all in the very worst possible taste ；these include large series of sacred， mythological，and historical subjects，landscapes，sea－pieces， and even portraits，－the last being perhaps the most ridicu－ loas misuse of the textile art that could possibly be in－ vented．Other tapestry looms were worked in the 18th century at Aubusson，Felletin，and other places in France．

High－warp looms appear to have been worked in England in the 15 th century，though by far the greater part of the rich stores of tapestry in this country came from Flanders． One very beautiful example of English work of this time exists in St Mary＇s Hall at Coventry；it represents the marriage of Henry VI．Part of another series with the marriage of Heary VII．is preserved in a house in Cornwall． In the latter part of the 15 th and the first half of the 16 th century enormous sums were spent by the rich in England on Flemish tapestry Cardinal Wolsey＇s private accounts and inventories，which still exist，${ }^{1}$ give an astonishing picture of the wealth which he lavished on the adornment of his palace at Hampton Court．In 1522 he bought 132 large pieces of Brussels tapestry，woven with Scriptural eubjects，and mostly made to order，so as to fit exactly the tarious wall spaces He also bought large quantities of costly Oriental carpets．In the inventories are enumerated ＂foot carpets，＂＂table carpets，＂and＂window carpets，＂ ＂hanging peces，＂．＂borders with arms，＂and＂window peces，＂the last being strips of tapestry woven in narroviv lengths to fit the sills and jambs of windows．Among the ＂wall peces，＂in addition to the numerous sacred subjects， are mentioned mythological scenes，romances，historical pieces，and＂langings of verdures，＂the last being decor－ ative work in which trees and foliage formed the main design，with accessory figures of hunting，hawking，and the like．The catalogue of Wolsey＇s linen napery is no less sumptuous and abundant；bo possessed an immense quantity of finest linen for sheets and＂board－cloths＂ （table－cloths），mostly patterned with＂damaske diaper＂or ＂paned losinge－wise．＂This example of the wealth of textile work possessed by one rich prelate will give some notion of what England and other countries possessed in the 16 th century．

In the reign of James I，tapestry looms were sct up at Mortlake，and the industry was carried on during the fol－ Iowing reign under the direction of the painter Francis Crane．Charles I．introduced skilled weavers from Ouden－ arde in Belgium，and the whole existing series of cartoons by Raphael were copied on the Mortlake looms．${ }^{2}$ Most of the Mortlake tapestry has distinct marks，such as the shield of St George with F．C．（F．Crane）Some pieces are inscribed＂Car．Re．Reg．Mortl．＂（Carolus rex regnans）． Though closcd during the Commonwealth，the Mortlake fabrique was again worked after the Restoration until the death of Crane in 1703 ．In the 18 th century tapestry was woven on a small scale in Soho and at Fulham，and kithin recent years a new royal fabrique has been estab－ listed at Windsor，where very costly and skilful weaving in the pictorial Gobelin style is carried on．The only ${ }^{1}$ See Law，Hampton Court Palace，London， 1885.
＊See Rapasel，vol．xx．p． 280.
modern tapestry which has any of the merits of the best old productions is that made on a small scale by Mr Willian Morris at Merton Abbey（Surrey），where work of the higb－ est beauty has been produced．Unfortunately，however， the inodern taste for feeble imitations of oil paintings has as yet shown little appreciation of this revival of the true textile art．
As in England，by far the greater part of the tapestry used in Italy was a Flemish import．But in the 16th century，under the patronage of the dukes of Fcrrara， tapestry loons were set up in Ferrara；these were，how－ ever，worked by Flernish weavers，and closely resemble contemporary tapestry woven at Brussels．Othcr fabriques were established in Florence by the Medici princes，and continued to be worked till the end of the 17 th century． Factories for tapestry existcd also at Venice，Turin，and other northern cities，but the industry was purely an exotic， and never attained to any great importance．Since the pontificate of Clenent XI．，in 1702，${ }^{3}$ a papal factory for tapestry has existed in Rome，and is still carried on in the Vatican．The papal looms have produced a large number of most costly and elaborato copies of celcbrated paintings， executed with wonderful skill，but utterlv worthless as works of art．
The South Kensington Museum possesses the best and most Collec illustrative collection of woven fabrics of various dates．The church tions of St Mary at Dantzic has a magnificent collection of early textilcs， mostly used for vestments ；these are well illustrated by Hinz，Dis Schatzkammer der Marien－Kïrche zu Dantziq，1870．Fine examples of carly tapestry exist in the cathedrals of Rheims，Bruges，Tournay， Angers，Beaurais，Air，Sens，and in the church of St leieny at Rheims．Other fine collections aro preserved in the Louvre，the Cluny Museun，at Chartres，Amiens，Dijon，Orleans，Auxcrre， Nancy，Bern，Brusccls，Munich，Bcrin，Dresden，Vienna，and Nuremberg．＇In Italy tho richicst colleetions（nustly of later tapestry）aro those of tho Vatican，the Pitti，the Bargello，Palazzo del Tè at Mantua，Turin（royal palace），Milas：\｛royal palace），Como （eathedral），and the museum of Naples．Tha Spanish collections have been already mentioned．In England，besiles the South Kensington Museum，fine tapestries exist in the palaces of Windsor and Hampton Court．Those formerly in the House of Lords were destruyed in the firc of 1834 ．St Mary＇s Hall at Coventry contains the finest examples of the 15th century．
Literofure．－Ey far the best work for its well－chosen coloured illustrations is that of Fisclilhacl，Tex：ile Frabries，English ed．，18S3；sec alsoDupont－Auberville， Liornemert tles tissus，Raris，1S75．77；Michel，Recherches sur la fubrication des étofes，Faria， 1852 （a very valuable work）；Jubioal，Anciennes topisseries，l＇aris， 1855－53：Do Roochaud，Le pepplos d＇Athené，Paris， 1872 ；Id．，Ia topisserie，Paris， 1855；Muntz，Loz taziscerie dans i＇ontignith，Paris，187s：＇Lessing，Arodeles do topis Orientaux，Paris， 1579 ；Id．，Ancient Oriental Carpels，London， $1 \mathrm{s79}$ ；Vin． ceut Robinson，Driental Corpets，London， 1882 （the illustrations are better than the text）；Lady Alford，Needlework ns Art，London， 1886 （deals partly with textiles）Though few works treat of the gencral history of texthles，a very lange nunber exist about tapestry wcaving．Tbe chiel are－Depping，Risleo ments sur les nrts．．．au XIIIme sidcle，Paris，1837；De Montault，Topisserio de lo cath．© Angers，Paris， 18 G3；De Farcy on the ealhic subject， 1875 ；Barraud， Top．de las cult．de Beouvais，Beauvais， 1853 ：Ruck，Tcstite Febrics，S．K．M． London， 18 io ：Bock，Cal．des lissus，\＆c．，au Musce Germar．，Nurumberg， 1800 Givelet，Toiles brodees de Reims，Rheinıs， 1883 ；Louis Paris，Tap．de la ville dé Reines，Rheims，1813；Loriquet，Tap．He Notre Dame de Reims，Rheims，LNi心； Reins，Rheims，18s3；Loriquet，Tap．He Nore Dame de Reims，Rheims， Tap．d＂Arccs evant le XVme sidcle，Paris， 1879 ；Proyart，Recherches sur les top
 Drival，Tap．it Arras，Arras， 1564 ：Gorse，Tap，du chatcau de Tutu，Paris，1881； De la Fons－stelicon，Hautlisseurs des XIV mo ant XVIme siccles，Faris， 1 sio；San－ terre，Tap．de Beavuais，Clermont，1842；Deville，Statuts，\＆c．，relali／s a la corp． des tap．de 1353 a 1275．Paria， 1875 ；Darcel，Goz．d．ठ．arts，xiv．pp． 145 ，273，and A14：Van de Graft，De Tapijt－Fizbrieken de X＇Fl．en XIJJ．Eeur，Middelburg， 1569．On Italian tapestry，see De Mootault，Tap．de haute lisse a Riome，Array， 1879：Cooti，L＇arte degli orazzi in Firenze，Florence， 1875 ：Campori，L＇orazserio Estence，MLodena， 1876 ：Braghirolli，Arazzi in Martona，Mantue， $185^{9} 9$ ：Farabu－ Iini，L＇arte degli anazzi，Rome，1854；Qentili，Loort des tapis，Rome，1878；sad Mnotz，Tep．Laliennes，Paris，18s0．On French and ather late tapeatry，sce Darcel and Guichard，fise kap．dfeorutives，l＇aris，1881：Iacordaire，Uist，de lap－ isserie，Paris，1555；Ouillaumot，L＇oriqine ．．．des Gobelins，l＇sris，1sco；Perathon， Tap．d＇Aubusson，de Felletin，et de Ľullegas de，Faria，1857；Roy．Fierrentio．Jas hap．de Feile！in，Limoges， 1855 ；Durieux， 7 up．de Cambrei，Canbrai，1859；A bout and Bauer，Tep．apres les cartons de Raphuvl，Paris， $1 \$$ i5；Moudoy，Tap，de de filbricatian Lilloisc，Lille， 1871 ；Vergnavd－Jomagnesi，Tap，пи Jusce d＇Orliens， Orleans， 1859 ；De St Gennis，Tup，uTOudenarde，Paris，1804：Talcot，Fokric． des tissus，Paris，1852；Ouiffrey，Hist．de la tapisserit，Tours， 1850, ；I＇ine， ．K．M．bandbook，London，Lsi8；Asbenhurst，「rcatise on Wcapina，Londoo， 1886.

TEZA，or Tizi．See Morocco，vol．zvi．p． 834.

[^83]thackeray, William Marepeace (1811-1863), one of the greatest of English authors and novelists, son of Richmond Thackeray (Mrs Richmond Thackeray was born Miss Becher), and grandson of W. R. Thackeray of Hadley, Middlesex, was born at Calcutta on July 18, 1811. Both his father and grandfather had been Indian civil servants. His mother, who was only nineteen at the date of his birth, was left a widow in 1816, and afterwards married Major Henry Carmichael Smyth. Thackeray himself was sent home to England from India as a child, and went to Charterhouse, since his time removed to Godalming from its ancient sito near Smithfield. Anthony Trollope, in his book on Thackeray in the English Men of Letters series, quotes a letter mritten to him about Thackeray's school-days by Mr G. S. Venables. "He came to school young," Mr Venables wrote, "a pretty, gentle, and rather timid boy." This accords with the fact that all through Thackeray's writings the student may find traces of the sensitiveness which often belongs to the creative mind, and which, in the boy who does not understand its méaning and its possible power is apt to assume the guise of a shy disposition. To this very matter Mr Venables tersely refers in a later passage of the letter quoted by Trollope: "When I lnew him better, in later years, I thought I could recognize the sensitive nature which he had as a boy." Another illustration is found in the statement, which will be recognized as oxact by all readers of Thackeray, that "his change of retrospective feeling about his school-days was very characteristic. Iu his earlier books he always spoke of the Charterhouse as Slaughter House and Smithfield. As he becanie famous and prosperous his memory softened, and Slaughter House was changed into Grey Friars, where Colone「 Newcome eaded his life." Even in the earlier references the bitterness which has often been so falsely read into Thackeray is rot to be found. In " Mr and Mrs Frank Berry" (Men's Wires) there is a description of a Slaughter-House fight, following on an incideut almost identical with that used in F'anity Foir for the fight between Dobbin and Cuff. In both cases the brutality of school life, as it then was, is very fully recognized and described, but not to the exclusion of the chivalry which goes alongside with it. In the first chapter of "Mr and Mrs Frank Berry, "Berry himself and Old Hawkins both have a touch of the heroic. In the story which forms part of Men's Wives the bully whom Berry gallantly challenges is beaten, and one hears no more of him. In Fanity Fair Cuff the swaggerer is beaten in a similar way, but regains his pepularity by one well-timed stroke of magnanimity, and afterwards shows the truest kindness to his conqueror.

In Februarv 1829 Thackeray went to Trinity College, Cambridge, aud in that year contributed some engaging lines on Timbuctoo, the subject for the prize poem, to a little university paper called The Snob, the title of which he afterwards ntilized in the famous Snob Papers. The first stanza has become tolerably well known, but is worth quoting as an early instance of the direct comic force afterwards employed by the author in verse and prose burlesques :-

> In Africa-a quarter of the world-
> Ments skins aro thack; their hair is crisp and curled; And somewhere thero, unk iom to public view, A mighty city lies. called Timbuctoo.

One other passage at least in The Snob, in the form of a skit on a paragraph of fashionable intelligence, seems to bear traces of Thackeray's handiwork. At Cambridge James Spedding, Monckton Milnes (Lord Houghton), Edward Fitzgerald, W. H. Thompson (afterwards master of Trinity), and other distinguished persons were among his friends. In 1830 he leit Canbridge without taking a degree, and went to Weimar and to Paris. His risit to Weimar bore fruit in the sketches of life at a small

German court which appear in Fitz-Boodle's Confessions and in Vanity Fair. In 1832 be came of age, and inherited a sum which Trollope's book describes as amounting to about five hundred a year. The money was soon lost,-some in an Indian bank, some in two newspapers which in Lovel the Widower are referred to under one name as The Museum, in connexion with which our friends Honeyman and Sherrick of The Nevcomes are brisfy brought in. His first regular literary employment after the loss of his patrimony was on Fraser's 3 Magazine, in which in 1837-38 appeared The History of Mr Samuel Titmarsh and the Great Hoggariy Diamond, a work filled with instances of the wit, lumour, satire, pathos, which found a more ordered if not a fresher expression in his later and longer works. For freshness, indeed, and for a fine perception which enables the author to perform among other feats that of keeping up throughout the story the curious simplicity of its supposed narrator's character, the Greett Hoggarty Diamond can scarce be surpassed. The characters, from Lady Drum, Lady. Fauny, Lady Jane, : and Edmund Preston down to Brough, his daughter, Mrs Roundhand, Gus Hoskins, and, by no means least, Sarmuel Titmarsh's pious aunt with her store of "Rosolio," are living; the book is crammed with honest fun; and, for pure pathos, the death of the child, and the meeting of the husband and wife orer the empty cradle (a scene illustrated by the author himself with that suggestion of truth which no shortcoming in drawing could spoil), stands, if not alone in its own line, at least in the company of very few such scenes in English fiction. The Great Hoggarty Diamond, oddly enough, met with the fate that afterwards befell one of Lever's best stories which appeared in a periodical week by week, -it had to be cut short at the bidding of the editor. In the same year in which it appeared Thackeray married Isabella, daughter of Colonel Matthew Shawe. Of the daughters born of the marriage, one, Mrs Richmond Ritchie, has earned distiuction as a novelist. Mrs Thackeray, to quote Trollope, "became ill and trer mind failed her," and Thackeray thereupon "became as it were a widower till the end of his days." In 1840 came out The Paris Sketch Book. Much of it had been written and published at an earlier date, and in the earlier writings there are some very curious divagations in criticism. The book contains also a striking story of card-sharping, afterwards worked up and put into Altamont's mouth in Pendennis, and a very 'powerful sketch of a gambler's death and obsequies. Three years before, in 1837, Thackeray had begun, in Fraser, the Yellowplush Papers, with their strange touches of humour, satire, tragedy (in one scene, the closing one of the history of Mr Deuceace), and their sublimation of fantastic bad spelling (M'Arony for macaroni is one of the typical touches of this) ; and this was followed by Catherine, a strong story, and too disagreeable perhaps for its purpose, founded closely on the actual career of a criminal named Catherine Hayes, and intended to counteract the then growing practice of making ruffians and barlots prominent characters in fiction. There soon followed Fitz-Boodle's Confessions and Professions, including the series Jeen's Wives, already referred to ; and, slightly before these, The Shabby Genteel Story, a work interrupted by Thackeray's domestic affiction and afterwards republished as an introduction to The $A d$ ventures of Plitip, which took up the course of the original story many years after the supposed date of its catastrophe. In 18.43, and for some ten years onwards according to Trollope, Thackeray was writing for Punch, and the list of his contributions included among many others the celebrated Snob Papers and the Ballads of Policeman .X. In 1843 also came out the Srish Sketch Book, and in 1844 the account of the journey From Cornhill ta Grand Criro.
in which was published the exeelient poem of The White Squall. In 1844 there began in Fiviser the Memoirs of Burry Lyndon, called in the magazine The Luck of Borry Lyndon, a Romance of the Last Century. Barry Lyndon has, with a very great difference in treatment, some resemblance to Smollett's Count Fathom:- the bero, that is to say, is or becomes a most intolerable scoundrel, who is magnificently uriconscions of his own inequity. The age and pressure of the time depicted are canthe with amazing verisimilitude, and in the boyish carecr of l3arry Lyndon there are fine touches of a wild clivalry, simplicity, and generosity, which iningle naturally with the worse qualities that, under the influence of abontinable training, afterwards corrupt his wholo mind and eareer. The man is so infatnated with and so blind to his own roguery, he has so mueh dash and daring, and is on occasions so infamously treated, that it is not easy to look upon him as an entireiy retestable villain until, towards the end of his course, he becomes wholly lost in brutish debauchery and cruelty. IIis latter career is founded on that of Andrew Robinson Stoney Bowes, who inarried the widow of Joha, ninth earl of Strathmore. There is also no doubt a touch of Casanova in Barry Lyndon's claracter. Besides the contributions to /'unch specially referred to, there should bo noticed I'moll's I'rize Sovelists, containing some brilliant parodies of Edward Lytton Bulwer, Lever, Mr D'Israeli (in Corlingsly, perhap's the most perfect of the scries), and others. Among minor but admirable works of the same period are lound A Legend of the Thine (a burlesque of the great Dumas's Othon listcher), brought out in a periodical of George Cruikshank's, Cox's Diary (on which las been founded a well-known Duteh comedy, Janus Tulp), and the Futal Rools. This is the mest fitting moment for mentioning also Rebecca and Rowence which towers, not only over Thackeray's other ber'esques. excelient as they are, but over every other buriesque of the kind ever written. Its taste, its wit, its pathos, its humour, are exmatchable; and it contains some of the hest songs of a partucuiar kind aver written-songs worthy indeed to rank with Pearock's best. In 1846 was published, by Messrs Bradbury and Evans, the first of twenty-four numbers of Panily Futr, the work which first placed Thackeray in his proper position before the public as a novelist and writer of the Grst rank, It was completed in 1848 , theu Thackeray was thirty-seven years old; and in the same jear Abrabam Hayward paid a tribute to the author's powers in the Edinburgh Revino. It is probable that on $I^{\text {ranity }}$ Fair lise been largely based the foolish cry, now heard less and less frequently, about Thackeray's cyoicism, a cry which he himself, with his keen knowledge of men, foresaw and provided agaiost, amply enough as one might have thonght, at the end of the eighth chapter, in a passage whict is perbaps the best commentary cever written on the autbor's method. He las explained how he wishes to describo mon and womoll as they actually are, goud, bad, and indifferent, and to clain a privilege -

[^84]too thick, in the sense that the villains were too villainous, the good people too goody-croody, tho best and completest answer to that can be found by any oue who chooses to read the work with care. Ostorne is, and is meant to be, a poor enough creature, but be is an eminently human being, and one whose poorness of claracter is developed as ho allows bad influences to tell upoo his ranity and folly. The good in him is fully rccognized, and comes out in tho beantiful passage describing lis larewell to Amelic on the ove of Waterino, in which' passage may be also found a Eufficient enongh answer to the statement that Amelia is ebsolutely insipid and uninteresting. So with the companinn picture of Rawdon Crawley's farewell to Becky: who that reads it can resist sympathy, in spite of Rawdon's vices and shady shifts for a living, with his siouple bravery and devotion to his wife? As for Becky, a character that has since been imitated a host of times, there is certainly not much to be said in hor defence. We know of her, to be sure, that slie thorght she mould have found it easy to be good if she had beea rich, and wo know also what happered when Rawdon, released without her koowledge froin a spunging-house, surprised ber alone with and singing to Lord Steyne in the house in May Fair. After a gross insult trom Steyne, "Rawdon Crawley, springing out, scized him by the neckeloth, until Steyne, almost strangicd, writhed and bent under bis arm. "You lie, you dog,' sand Rawdon ; 'you lie, you coward and villain!' And be struck the peer twice over the face with his open hand, and tlung him bleeding to the ground. It was all done before Rehecca could interpose. She stood there trembling before him. She admired her busband, strong, brave, and victorious." This admiration is, as Thackeray himse!f thought it, the capital tonch in a sceno which is as powerfnl as any Thackeray over wrote-as powerful, indeed, as any in English fiction. Its \{all merit, it may be noted in passing, has been curiousiy secented by an imitation of it in M. Daudet's Fromont Jeune et Risler Aíné. As 'to the extent of the miserable Beczy's guilt in the Steyne matter, on that Thackeray leares it practieally open to the reader to form what conelusion he will. Tbere is, it should be added, a distinet touch of good in Beeky's conduct to Amelia at Ostend in tho lnst clapter of the book, and those who think that too little punishment is meted out to the brilliant adventuress in the end may remember this to her "redit. It is supreme art in the treatment of her character that makes the reader understand and feel ber attractiveness, though he knows her extraordinarily evil qualities; and in this no writer subsequent to Thackeray who has tried to depict one of the genus Beeky Sharp has even faintly succeeded. Among the minor characters there is not one-and this is not almays tho case even with Thackeray's chief figures-who is incompletely or inconsistently depicted; end no one who wishes to fully understand and appreciate the book can afford to miss a word of it.

Vanity Fair was followed by Pendennis, Esmond, and The Nevcomes, which appeared respectively in 1850,1852 , and 1854. It night be moro easy to pick holes critically in Pendennis than in Vanity Fair. Pendeonis himself, alter his boyish passion and university eseaprades, has disagreeable touches of flabbiness and worldliness; and the important episode of his relations with Fanny Rolton, which Thackeray could never have treated otherwise than delicately, is so lightly and tersely handled that it is a little vagua even to those who read between the lines; the fial aanouncement that those relations have been innocent can senreely be said to bo led up to, and one can hardly see why it should havo been so long delayed. This does not of course affeet the value of the book as a pieture of middle and upper class life of the time, the time when Vauxhall still existed, and the haunt for suppers and songe
which Thackeray in this book called the Back Kitchen, and it is a picture filled with striking figures. In some of these, motably in that of Foker, Thackeray went, it is supposed, very close to actual life for his material, and in that particular case with a most agreeable result. As for the two umbre of the marquis of Steyne, it is difficult to believe that they were intended as caricatures from two well-known persons. If they were, for once Thackeray's hand forgot its cunning. Here, as in Vanity Fair, the heroism has been found a little insipid; and there may be good ground for finding Laura Pendennis dull, though she has a spirit of her own. In later books she becomes, what Thackeray's people very seldom are, a tiresome as well as an uninviting person. Costigan is unique, and so is Major Pendennis, a type which, allowing for differences of period and manners, will exist as long as society does, and which has been seized and depicted by Thackeray as by no other novelist. His two encounters, from both of which he comes out victorious, one with Costigan in the tirst, the other with Morgan in the second volume, are admirable touches of genius. In opposition to the worldliness of the major, with which Pendennis does not escape being tainted, we have Warrington, whose nobility of nature has come unscathed through a severe trial, and whe, a thorough gentleman if a rough one, is really the guardiau of Pendennis's career. There is, it should be noted, a characteristic and acknowledged confusion in the plot of Pendennis, which will not spoil any intelligent reader's pleasure.
Probably most readers of The Newcomes (1854) to whom the book is mentioned think first of the grand, chivalrous, and simple figure of Colonel Newcome, who stands out in the relief of ahmost ideal beauty of character against the crowd of more or less imperfect and more or less base personages who move through the novel. At the sane time, to say, as has been said, that this book "is full of satire from the first to the last page" is to convey an impression which is by no ineans just. There is plenty of kindliness in the treatment of the young men who, like Clive Newcome himself and Lord Kew, possess no very shining virtue beyond that of being honourable gentlemen ; in the character of J. J. Ridley there is much tenderness and pathos; and no one can help liking the Bohemian F. B., and looking tolerantly on his failings. It may be that both the fiendish temper of Mrs Mackenzie and the sufferings she inflicts on the Colonel are too closely insisted on; but it must be remembered that this heightens the singular pathos of the closing scenes of the Colonel's life. It has seemed convenient to take The Nerucomes after Pendennis, because Pendennis and his wife reappear in this book as in the Adventures of Philip; but Esmond (1852) was written and published before The Nexcomes. To sore studerts Esmond seams and will seem Thackeray's capital work. It las not been rivalled, and only a few times approached by Mr Besant, as a romance reproducing with unfailing intercst and accuracy the figures, manners, and phrases of a past time, and it is full of beautiful toucles of character. But Beatrix, upon whom so much hinges, is an unpleasing character, although one understands fully why men were captivated by her insolent beauty and ,srilliancy; and there is some truth in Thackcray's own :a ing, that "Esmond was a prig." Apart from this, the atory is, like the illusion of a past time in the narrative, so complete in all its details, so harmoniously worked out, that there is little room for criticism. As to Esmond's marriage with the lady whom he has served and loved as a boy, that is a matter for individual judgment Beatrix, it has been indicated above, is wonderfully drawn; and not the least wouderful thing about her is her reappearance as the jaded, battered, worldly, not altogether unkindly, Baroness in The Virginians. It was just what Beatrix
must have come $t \mathrm{n}$, and the degradation is handled witla the lightest and finest tonch.
In 1851 Thackeray had written The English Humourists of the Eighteenth Century, delifered as a series of lectures at Willis's Rooms in the same year, and re-delivered in the United States in 1852 and I853, as was afterwards the series called The Four Georges. Both sets were written for the purposes of lecturing. In 1857 Thackeray stood unsuccessfully as a parliamentary candidate for Oxford against Mr Cardwell, and in the same year appeared the first number of The Tirginians, a sequel to Esmond. This is a most unequal work,-inferior, as sequels are apt to be, to Esmond as an historical romance, less compact and coherent, prone to divagation and desultoriness, yet charming enougls in its lifelikeness, in the wit and wisdom of its reflexions, and, as has been said, in its portrait of Beatrix grown old. The last number of The Virginians came out in 1859, and in the same year Thackeray undertook the editorship of the Cornhill Magazine. This was a task which, as readers of his Roundabout paper "Thorns in the Cushion" will remember, the kindliness and seusitiveness of his disposition made irksome. to him, and he resigned the editorship in April 1862, though he contnnued to write for the magazino until he died. In the Cornhall appeared from his pen LoveI the Widover, previously written, with different names for some of the personages, in dramatic form; The Adventures of Philip; the Rorndabout Papers; and the story, unhappily never finished, called Denis Ducul. Lovel the Widower?, changed from the dramatic to the narrative form, remains a piece of high comedy in whicl the characters are indicated rather than fully worked out, with a bold and practised touch. It contains some refereuces to Thackeray's early and unfortunate newspaper speculations, and it was provided by the author with illustrations which as in others of his books have a value which is entirely their own in furnishing, as it were, a far completer commentary on the letterpress than could have been given by any dranghtsman, however perspicacious and finished, who approached the pictorial representation of the characters from the outside. To the general statement thus indicated an exception should be made in the case of Doyle's illustrations to The Vercomes and to Relreced and Rovena. On the other laud, not even Doyle could have matched the fun and spirit of Thackeray's own illustrations to another burlesque story, one of his best, The Rose and the Ring. The Ronndabout l'apers, a small storehouse of some of Thackeray's best qualities as an essayist, came out in the Cormhill Mragazine simultaneously with Lovel the IFidozer and with The Adventures of Philip. Among them is one differing in form from the rest, called The ATotch one the Axe-a Story ì la Mode. It is an almost perfect specimen of the author's genius for burlesque story-telling; but it contains an odd instance, which a careful reader will not fail to discover, of the odd habit of inaccuracy of which Thackeray limself was conscious. The Adrentures of Philip is, as has been before said, in the nature of a sequel to or a completion of A Shabby Genteel Story. As with the other direct sequel, it is a sork of great inequality. It contains scenes of humnur, pathos, satire, which rank with Thackeray's best work; some old friends fronu others of the novels make brief but pleasant reappearances in its pages; there are fine sketches of journalistic, artistic, and diplomatic life, and the scene from the lastnamed in Paris is inimitable. The Little Sister is altogether delightful; the Twysden family are terribly true and vastly diverting; the minor characters, among whom old Ridley, J. J.'s father, should be mentioned, are wonderfully hit off; nor did Thackeray ever write a better scene than that of the quarrel between Bunch, Baynes, and 31 'Whirter in the Paris dension. Philip himself is impos-
sible：one cannot say that the character is ill－drawn－it is not drawn at all．It is an entirely different personage in different chapters；and it has here and there a very un－ ［leasant tonch which must have come of rapid writing． let so adınirable are many parts of the book that it can－ not be left out of the list of Thackeray＇s most considerable works．Denis Duval，which reached only three numbers， promised to be a first－rate work，more or less in the Esmond manner．The anthor died while it was in progress，on the day before Christmas day 1863．He was buried in Kensal Green，and a bust by Marochetti was put up to his memory in Westminster Abbey．

Little Las vet Leen said of Thackeray＇s performances in poetry．They formed a small but not the least significant part of his life＇s work．The grace and the apparent spou－ taneity of his versification are beyond question．Sonte of the more serious efforts，such as The Chronicle of the Drum （1841），are full of power，and instinct with trne poetic feeling．Both the balt－humorous half－pathetic ballads and the wholly extravagant ones must be classed with the best work in that kind；and the translations from Béranger are as good as verse iranslations can be．He had the true poetic instinct，and proved it by writing poetry which equalled his prose in grace and feeling．

It is not pecessary to discuss the precise place which Thackeray will in fnture hold，in respect to his immediate contemporaries．What seems absolutely certain is that the force and variety of his genius and art will always hold for him a place as one of the greatest of English novelists and essayists，and，it should be added，as by no means the least of English critics．
（W．H．P．）
THALBERG，Siorsmoxd（1812－1871），a celebrated pianist and composer for his instrument，was born at Geneva in 1812 （May 5 or January 7）．In 1822 he was taken to Vienna，where，under the watchful care of Count Dietrichstein，his education was completed．There is some doubt as to the masters under whom he studied；but it is certain that he received instruction from Hommel，and perhaps also from Czerny，and that be took lessons in com－ position from Sechter．He made his first appearance as a pianist at Prince Metternich＇s in 1826，and published his first composition－a Funtasia on Airs from＂Euryanthe＂ －in 1829，but it was not until 1830 that he mas first fairly introduced to the public，with such brilliant success that from that time formard his only rival was Liszz．In 1834 he was appointed＂kammervirtuos＂to the emperor of Austria． He first appeared in Paris in 1837；and in 1838 he came to England，astonishing his hearers with the novel effects prodnced in his Variations on Goul Save the Queen，while he charmed them with bis delicate tonch and the purity of his expression．Thenceiormard his career was a succession of trinmphs．In order to disprove the popular idea that he conld execute no music but his own，he played Beet－ hoven＇s Concerto in C minor（op．37）at the London Wednesday Concerts，held in 1846－47 at Exeter Hall， with a keen intelligence which proved his power of inter． preting the works of the groat masters to be at least on a level with his wonderful Lechnique．Besides his pianoforte compositions，which are almost innumerable，Thalberg pro－ duced two operas，－Cristina，which proved a complete failure，and Florinda，which fared but little better at Her Majesty＇s Theatre in 1851．He played in London for the tast time in 1863 ，and afterwards retired to his estate near Naples．He died at Naples，April 27， 1811.

THALES of Niletos（640－546 B．c．），son of Examyus and Cleobuline，is universally recognized as the founder of Greek geometry，astronomy，and philosophy． He is said by Herodotus and others to have been of Phœnisian oxtraction，but the more common acconnt（see Diogenes Laertius）is that he was a native Milesian of
nolle birth．Zeller thinks that his auccstors belouged to the Caunean tribe in Biwotia，who wero intermingled with the Ioniaus of Asia Minor，and thas recouciles the con－ flicting statements．The nationality of Thales is certainly Greek and not Phonician．The high estimation in which he was held by his coutemporaries is shown by the place he occupied as clief of the seven＂wise men＂of Greece； and in later times amongst the ancients his fame was quite remarkable．It is well known that this uame（oo申ós）was given on account of practical ability；and in accordance with this we find that Thales had been occupied with civil affairs，and indeed several instances of his political sagacity have been handed down．Of these the inost remarkalle is the adrice，prased by Herodotus，which he gave to his fellow－conntrymen＂before Ionia was ruined，＇－＂that the Ionians should constitute one general council in Teos，as the most central of the twelve cities，and that the remaining cities should nevertheless be governed as independent states＂（Herod．，i．170）．It is probable， however，that in the case of Thales the aprellation＂wise man，＂which was given to him and to the other six in the archonship of Daınasius（ 586 b．c．），${ }^{1}$ was conferred on him not only on account of his political sagacity，but also for his scientific eminence（Plut．，Solon，c．3）．To about the same time must be referred his celebrated prediction of the eclipse of the sun，which took place on May 28， 585 в．c． This erent，which was of the highest importance，has given rise to much discussion．The account of it as given by Herodotus（i．74）contains two statements：－（1）the fact that the eclipse did actually take place during a battle between the Medes and the Lydians，that it was a total eclipse（Herodotus calls it a＂night battle＂），that it cansed a cessation of hostilities and led to a lasting peace between the contending nations；（2）that Thales had foretold the celipse to the Ionians，and fixed the year in which it actually did take place．Various dates－ranging from 625 B．C．to 583．B．C．－have been assigned by different chrono－ logists to this eclipse；but，since the inrestigations of Airy，${ }^{2}$ Hind，${ }^{3}$ and Zech，${ }^{4}$ the date determined by them （May 28,585 B．c．）has been generally accepted．This date agrees nearly with that given by Pliny（H．N．，ii． 12）．The second part of the statement of Herodotus－the reality of the prediction by Thales－has been frequently called in question，chiefly on the ground that，in order to predict a solar eclipse with any chance of success，one should have the command of certain astronomical facts which were not known until the $3 d$ century B．c．，and then merely approximately，and only employed with that object in the following century by Hipparchus．The question， however，is not whether Thales could predict the eclipse of the sun with any chance of success－much less whether he could state beforehand at what places the eclipsc mould be visible，as some hare erroneously supposed，and which of course would have been quite impossible for him to do， but simply whether he foretold that there would be a solar eclipse in that year，as stated by Herodotus．Now as to this there is quite a remarkable unanimity in the testi－ mony of the ancients，and the evidence is of the strongest Find，ascending to Herodotus，and，according to the account of Diogenes Laertins，cven to Xenophanes，who was an Ionian，and not much later than Thales．Further，

[^85]we know that in the 8th censury B.0. there were obser. vatories in most of the large cities in the valley of the Euphrates, and that professional astronomers regulanly took observations of the heavons, copies of which were sent to the king of Assyria; and from a cunciforia inscription found in the palace of Scunaciacrib at Nineveh, the text of which is given by George Smiti, ${ }^{1}$ we learn that at that time the epachs of eclipses of both sun and moon were predicted as possible-probably by means of the cycle of 223 lunations or Chaldæan Saros ~and that observations were made accoraingly.

The wonderful fame of Thales amongst the ancients must have been in great part due to this achievement, which seems, moreover, to bave been one of the chief causes that excited emongst the Hellenes the love of science which ever afterwards characterized them. Thales seems not to have left any writings behiad him, though as to this there appears to be some doubt (see Diog. Laer., i. 23). Many anecdotes, emusing rather than instructive, are related of him, which have been handed down by Diogenes Laertius and other writers. From some of them it would appear that be was engaged in trade, which is indeed expressly stated by Plutarch (Solon, c. 2). It is probable that in the pursuit of commerce he was led to visit Egypt. Of the fact that Thales visited Egypt, and there became acquainted with geometry, there is aburdant evidence. Hieronymus of Rhodes (ap. Diog. Laer., i. 27) says, "he never had any teacher except during the time when he went to Egypt and associated with the priests." "

But the characteristic feature of the work of Thales was that to the knowledge thus acquired he added the capital creation of the geametry of lines, which was essentielly abstract in its character. The only geometry known to the Egyptian priests was that of surfaces, together with a sketch of that of solids, $\theta_{\text {s }}$ geometry consisting of some simple quadratures and elementary cubatures, which tbey had obtained empirically. Thales, on the other hand, introduced abstract geometry, the object of which is to establisin precise relations between the different parts of a figure, so that some of them could be found by means of others in \& manner strictly rigorous. This was a phenomenon quite new in the world, and due, in fact, to the abstract spirit of the Greeks.

The following discoveries in geometry are attributed to Thales :(1) the circle is bigected by its diameter (Procl., op. cit., p. 157) ; (2) the angles at the bass of an isosceles triangie are equal (1d., p. 250), (3) when two strsight lines cut each ather the vertically opposito ar.mes are equal (1d., p. 299); (4) the angle in a semicircle is a right angle; ${ }^{3}$ (5) the theorem Euclid i. 26 is referred to Thales by Eudemus (Procl., op. cit., p. 352). Two a pplicetinns of geometry tn the solution of practical problems are also attributed to him :(1) the determination of the distance of a ship at sea, for which he made use of the last theorem; (2) the determination of the height of a pyramid by means of the length of its shadow: according to Hieronymus of Rhodes (Diog. Laert., i. 27) and Pliny ($N . H_{0}$, xxxyi. 12), the shedow was meesured at the hour of the day when a man's shadots is the same length as himself. Plutarch, however, states the method in a form requiring the knowledge of Euclid vi. 4, but without the restriction as to the hour of the day (Sept. Sap. Conviv., 2). Further, we learn from Diogenes Laertius (i. 25) that he perfected the things relating to the scalene triangle and the theory of lines. Proclus, too, in his summary of the bistory of geometry before Euclid, which he probably derived from Eudemns of Phodes, saye that Thales, haring visited Egypt, first brought the knowledge of geometry into Greece, that he discovered many

[^86]things himself, and comannicated tio eeginrings of meny to his auccessors, zome of whul ha atternpted in n more abstract mannes (ka0orusútepor) and some in a mo:3 intuitional or sensible manner

From thess indications it is no doubt dificult to determine what Thales brought from Egypt and what was due to his own invention. This diđicuity has, however, been lessened since the translationend publication of the papyrus Rhind by Eisenlohr; ${ }^{8}$ and it is now generally admitted that, in the distinction mado in the last pessage quoted above from Procius, reference is made to the tro
 Egypt or arrived at in an Egeptian nıanner, while käodıcútepov indicates the discorories which he medo in accordance with the Greek spirit. To the former belong the theorems (1), (2), and (3), and to the latter especially the theorem (4), and also, probably, his solution of the two prectical problems. We infer, then, [1] that Thalee must have known the theorem that the sum of the three angles of a triangle are equal to two right angles. This inference is made from (4) taken elong with (12). No doubt we are informed by Proclus, on the authority of Eudemus, that the theorem Euclid i. 32 was first proved in a general way by the Pytha goresns (see Pytuagosa3, vol. $\mathrm{zx} . \mathrm{p} .140$) ; but, on the other hand, we learid from Geminus that the ancient geometere observed the equality to two right angics in each kind of triangle-in the equilatoral first, then in the isosceles, and lastly in the scalene (Ápoll, Conica, ed. Halleius, p. 9), and it is plain that the geometers older than the Pythagorcans can be no other than Thales and his achool. The theorem, then, seems to have been arrived at by induction, end may have been suggested by the contemplation of floors or walls covered with tiles of the form of equilateral triauglea, or squares, or hexagons. [2] We sce also in the theorem (4) the hirst trace of the important conception of geometrical loci, which we, therefore, attribute to Thales. It is worth noticing that it was in this manner that thio remarkable property of the circle, with which, in fact, abstract geometry Tas inaugurated, presented itself to the imeginatioz of Dante :-

"O Eo del mezzo cerchfo far si pooto Triangol st, ch'uu retio
 Triangol st, ch'uu retto non avesse."-Par, c. xy. 101.

[3] Thales discovered the theorem that the sides of equisngular triangles are proportional. 'The knowledge of this theorem is dis. tinctly attributed to Thales by Plutarch, and it wes probably made use of also in his determination of the dratasca of a ship at sea.
Lct us now consider the importance of the wark of Thales. I. In a scientific point of view: (a) we see, in the first place, that by his treo theorems he founded the geometry of lines, which has ever since remained the principal part of geometry ; (b) he may, in the second place, be fairly considered to have laid the foundation of algebra, for his first theorem establishes an equation in the true sense of the mord, while the second institutes a proportion. ${ }^{8}$ II. In a philosophic point of viem: we see that in these tro theorems of Thales the first type of a natural law, i.e., the expression of a fixed dependence between differtnt quantities, or, in enother form, the disentanglement of constancy in the midst of variety-has decisively arisen. ${ }^{6}$ III. Lastly, in a practical point of viere: Thales furnished the first example of an opplication of theoretical geometry to practice, ${ }^{7}$ and laid the foundation of an important branch of the same-the measurement of heights and distances. For the further progress of geometry see PyTracoras.

As to the astronomical knowledge of Thales we have the following notices:-(1) besides the prediction of the solar eclipse, Eudemus attributes to him the discorery that the circuit of the sun between the solstices is not always uniform $;_{;}^{8}$ (2) he called the last dify of the month the thirtieth (Diog. Laert., i. 24); (3) he divided the year into 365 days (Id., i. 27); (1) he detormined the diameter of the sun to be the 720 th part of the zodiac ;9 (5) he appears to have pointed out the constellation of the Lesser Bear to his countrymen, and instructed them to steer by it [as nearer the pole] instead of tho Great Bear (Callimachue ap. Diog. Laert., i. 23 ;. cf. Aratus, Phenomena, $\nabla .30$ sq.). Other discoverics in astronomy are attributed to Thales, but on authoritics which are not trustWorthy. He did not know, for exannle, that " the earth is spherical," as is erroneously stated by Plutarch (Placita, iii. 10); on tho contrary, he conceired it to be a flat disk, and in this supposition he was followed by most of his successors in the Ionian schools, including Anaxagoras. The doctrine of the sphericity of the earth,

4 En mathematisches Handbuch der alten Aegypter, Leipsic, 1877. ${ }^{5}$ Anguste Comte, Systeme de Politique Positive, iii. pp. 297, 300,

- P Laffitec, Les Grandes Types de l'Humanité. vol. îi. p. 292.
$1 b u d$, p. 294.
${ }^{\text {a }}$ Theonis Smeyrnei Piatonici Liber de Astronomia, ed. Th. H. Man tin, p. 324, Paris, 1849. Cf. Diog. Laert., i. 24.

Ths is thio received interpretation of the. passage in Diogenes Lsertius, i. 24 (see Wolf, Cesch. der Astron., p. 169), where $\sigma \in \lambda \eta$ palou
 who attribates to Thales, then old, the discorery: "quictiens sol mag. citudice eus circulum quem pemseat metiatir."
for which the researches of Anazimander had propared the way, ${ }^{2}$ was io fact ono of the great discoveries of Pythagoras, was taught by Parmenides, wha was connected with the Pythagoreans, and remained for a long time the exclusive property of tha Italian schools. ${ }^{2}$

Whilst in virtue of his political sagecity and intellectual ominenca Thales held a place in the traditional list of the wise men, on the atrength of the disintcrested love of knowledge which appeared in his physical epeculations he ras accounted a "philosopher" ($\phi c \lambda \delta-$ gaфns). His "philosophy" is usually ammmed up in tha dogma "xater is the principle, or the clement, of things"; but, as the technical terms" principle" (apxý) and "olement" (σ тoıxєiov) had not jat come into use, it may ba conjectured that the phrase " all things are water" ($\pi \alpha \nu \tau a$ " $\delta \omega \rho \rho$ '̇ $\sigma \tau \ell$) more cxactly represents his teaching. Writings which bora his name wara axtant in sntiquity; but, as Aristotle, when ha spazks of Thales's dactrine, always dependa upon tradition, there can be little doubt that they ware forgerics.

From Aristotle we learn (1) that Thales found in water the origin of things; (2) that he conceived the earth to flost npon a sea of the elomental.fluid; (3) that he supposed all things to be full of gods; (4) that in virtas of the attraction exercised by the magnet he attributed to it a aoul. Hare our information ends. Aristotie's auggestion that Thales was led to his fundamontal dogma by observation of the part which moisture plays in the production and the maintenance of life, and Simplicius's, that the impressibility and the biuding power of weter' were perhsps also in his thoughts, ara by admission purely conjectural. Simplicius'a further buggestion that Thales, conceived the element to be modified by thinning and thickening is plainly inconsistent with the atatement of Theopbrastus that the bypothesis in question was peculiar to Anaximenes. Tha assertioo preserved by Stohwns that Tinales racognized, together with the matarial element "water," "mind," which penotrates it and sets it in motion, is refuted by the precise testimony of Aristotla, who declares that the early physicists did not distingryish the moving, cause from the material cause, and that before Inermotimus and' Anaxagoras no ona postulated a creative intelligence.

It wonld seem, then, that Thales sought amid the varicty of things a single materisl causa; that he found such a cause in one of tha forms of matter most familiar to him, Damely, water, and accordingly regarded eartll and all that it coabhns as water variously metamorphosed; and that, asking himaelf no questions about the manner of its transformstion, he was content "to aee in the furces of natura present deities" (Zeller).
The doctrine of Thales was interpreted and developed in the conrse of three succeeding generations. First, Anaximander choso for what he called his "principle" ($\dot{a} \rho \mathfrak{\eta}$), not water, but a corporeal alement intermediate between fre and air on the one hand and water and earth on the other. Next, Anaximenes, preferring air, resolved-its transformations into proceases of thinning and thickening. Lastly, Heraclitus asserted tho claima of fire, which ha conceived to modify itself, not occasionally, but perpetually. Thus Thales recognized change, but wes not careful to explain it; Anaximander attribnted to chango two directions; Anaximenes coneeived the two sorts of changa as rarefaction and condeasation; Heraclitus, perceiving that, if, as his predecessors had tacitly assumed, change was oceasional, the interference of a moving causo was necessary, made change perpetual. But all four agreed in tracing the varicty of things to a singla material eause, corporeal, cadowed with qualities, and capablo of self-transformation. A now departure was taken by the Eleatic Parmenides (oce vol. xriii. p. 315), who, expressly noting that, when Thales and his successora attributad to the supposed element changing qualities, they were untrue to the priaciple of monism, required that the superficial plurality of nature shonid be strictly distinguished from its fundsmental woity. Hence, whereas Thales and his auceessors had confoundeif the Ooe, the element, and the Many, its modifications, the One and the Not-One or Many became with Parmonides matters for aeparate investigation. In this way two lines of ioquiry originated. On the one haorl Empedocles and Anaxagoras, abandoniof the pursuit of the One, gava themsclves to tha scientific study of the Maay; on the other ZeDo, abandowiag the pursuit of the Many, gave himself to the dialcetical study of the Oue. Both successions were doomed to failuro; and the result
 until Plato, returning to Parmacnides, declared the study of the Oue and tha Many, jointly regarded, to ba the truo affico of philoaophy. Thus, meagre and futile as the doctrine of Thales was, all the Greek schools, with the aolitary exception of that of Pythagoras, took their origin from it. Not in aame ouly, but also in faet, Thalea, the first of the Ionian physicists, was tho fouader of the philosophy of Greece.
${ }^{2}$ In likening the earth to a cylinder Aoaximander recogoized its eircular figure in one direction.
${ }^{2}$ See G. V. Schiaparelli, 1 Precurcori di Copernico nell' Antichild, p. 2. Jitaa, 1873.

Biblfography. - (A) GRohetrical and Astronomedz-C. A. Bretachnelder. Die Geometrie u. die Gcometer vor Eullides, Leipslc, 1870: H. Hankel, Zar Geschichse der Mathematik, Leipstc, 1874: O.J. Altman, "Greek Geomerry from Thales to Euclid," Hermathena, No. v., Dublin, 1877; M. Cantor, Vorlesungen uber Geschichue der Mruehematit;-Leipsac, 1850; P. Tennery, "Thales de Lilet co qa:11 a emprante Δ l'Égypte," Revue Philosophique, March 1880; "La Tradition touchant Yythagore, Enoplde, et Thales," Bull. des Se, Alath., May 1886 ; R . Wolf, Geschichte der Astronomic, Munich. 1877. (B) Philosopnical.-E, Zeller, D:e Philoscphie d. Griechen, 1. 168-183, Letpsic, 1876 (Presocratic Philosophy, i.
 1871 (IIist, of Philosophy, Lond., 18s0) ; T. Decker, De Thatef Sfilesio, Halle. 18fis: A. B. Krkche, Forschungen, pp. 34-42, Güttingen, 1s40, (O. J. A.-L., JA.)

THALLIUM, one of the rarer clements of chemistry. Its discovery is one of the outcomes of Bunsen and Kirchhof's method of spectruns analysis. When Crookes, in 1861, applied this method to the flue-duse produced in the roasting of a certain kind of pyrites he observed in its spectrum a green line foreign to all then known spectra, and concluded that his substance must contain a new element, to which be gave the name of thallium, from oa $\lambda \lambda$ ós, a green twig. Crookes presumed that his thallium was something of the order of sulphur, selenium, or tellurium ; but Lamy, who anticipated him in isolating the nerr element, found it to be a metal Our present knowledge of the chemistry of thallium is based chiefly upon the labours of Crookes.

The chemical character of thallium presents striking peculiaritics. Dumas once called it the "ornithorkynchus paradoxus of metals." As an elementary substance, it is very similar in its mechanical and physical propertics to lead; like lead it forms an almost insoluble chloride and an insoluble iodide. But the hydroxide of thallium, in most of its properties, comes very close to those of the alikali metals; it is strongly basirous, forms an insoluble cliloroplatinate, and an alum strikingly similar to the corresponding potassium compounds. Yet, unlike potassium or lead, it forms a feebly basic sesquioxide similar to manganic oxide, $\mathrm{Mn}_{2} \mathrm{O}_{3}$.

Traces of thallium exist in many kinds of pyrites, as used for vitriol-making. The only known mineral of which it forms an essential component is the "crookesits" of Skrikerum, Smâland, Sweden, which, according to Nordenskiold, contains 33.3 of selenium, $45 \cdot 8$ of copper, 3.7 of silver, and $17 \cdot 2$ of thallium in 100 parts. Crookesite, however, is scarce. The best raw materials for the preparation of thallium are the flue-dusts produced industrially in the roasting of thalliferous pyrites and the "chamber muds" accumulating in vitriol-chambers wrought with suclb pyrites; in botb it is frequently associated with Selenture (q.v.). The flue-dust from the pyrites of Theux, Dear Spa (Belgium), according to Böttcher, contains 0.5 to 0.75 per cent. of thallium; that of the pyrites of Meggen, according to Carstanjen, as much as 3.5° per cent.; while that of the pyrites of Ruhrort yielded 1 per cent. of the pure chloride to Gunning.

For the extraction of the metal from charmher mud, the latter is boiled with water, which extracts the thallium as $\mathrm{Tl}_{2} \mathrm{SO}_{4}$. From the filtered solution the thallium is precipitated by addition of hydrochioric acid, as TlCl , along, io general, with more or less of chloride of lead. The mixed chlorides are boiled down to dryness with oil of vitriol to convert them into sulplates, which are thea separated by boiling water, which dissolvas only the thallium salt. From the filtered solution the thallium ie recovered, as anch. by means of pure metallic zinc, or by electrolysis. Tha (s]proxiroateiy pure) metallic sponge obtained is washed, made compact hy compression, fused is a porcelain crucibla in an atmosphere of hydro. gea, and cast into sticks. Methods for the fieal puritication of tho metal will casily ha dednced from whai followa.

The metal is bluish white; it is extremely enft but almoat deroid of tanacity and clasticity. Its specifie gravity is 11.80 . It fuses at $290^{\circ} \mathrm{C}$; at a white heat it boils and ean be distilled in hydrogen gas. When heated io air it is readily oxidized. with formation of a reddish or violet rapour. When exposed to the air it resdily draws a film of oxide; the tarnished metal when plunged into water reassumos its metallic lastre he oxide film being quickly dissolved. When kept in contzet with mater and air it is gradually converted into hydroxide, $\mathrm{T}_{2} \mathrm{OH}_{2} \mathrm{O}$ or TlOll.

This hydrate, T1OH, most eonveniently prepared by decompos"ng the solution of tha sulphata with baryta water, crystallizes from its
solution in long yellow needles, TlOF or $\mathrm{TlOH}+\mathrm{H}_{2} \mathrm{O}$, which dissolve readily in water, forming an inteusely alkaline solution, which acts as a caustic, like, for instance, potash.loy, and like it grecdily absorbs carbonic acid from the atmosphere. But, unlike the alkalics, it readily loses its water at $100^{\circ} \mathrm{C}$. and even at the ordinary temperature, to pass into the state of anhydrous $\mathrm{Tl}_{2} \mathrm{O}$, which is hlack or black-violet.

The chloride, TlCl , is readily obtained from the solution of any thallous salt (c.g., the sulphate), by addition of hydrochloric acid, as a white precipitate similar in apmearance to chloride of silver, like which it turns violet in the light and fuses below redoess into a (yellow) liquid which freczes into a llorn-like flexible mass. The specific gravity of this "horn" thallium, as one might call it, is 7.02 . One part of the precipitated chloride dissolves at $0^{\circ} \mathrm{C}$. in 500 parts of water, and in 70 parta at $100^{\circ} \mathrm{C}$. It is less soluble is lilute hydrochloric acid. Carhonate of soda solution dissolves jt pretty freely.
Tho iodinc, TlI, is a yellow precipitate, which requires 16,000 parts of cold water and still more of solution of iodide of potassium for its solution.
The chloroplatinute, $\mathrm{PtCl}_{6} \mathrm{Tl}_{5}$, readily obtainable from thalloussalt solutions by addition of chloride of platinum $\left(\mathrm{PtCl}_{6} \mathrm{H}_{2}\right)$, is a yellow precipitate soluble in no less than 15,600 parts of cold water.

The carbonate, $\mathrm{Tl}_{2} \mathrm{CO}_{3}$, comes closer to the litbium compound than to any other ordinary carbonate. It formas resplendent monoclinic. prisms, soluble at $18^{\circ} \mathrm{C}$. in $19 \cdot 1$ and at 100° in 4.46 parta of water. A stable bicarbouate, $\mathrm{T} 1 \mathrm{HCO}_{3}$, does exist.
The sulphate, $\mathrm{T}_{2} \mathrm{SO}_{4}$, forms rhombic prisms isomorphous with $\mathrm{K}_{2} \mathrm{SO}_{4}$. It dissolves at $18^{\circ} \mathrm{C}$. in $20^{\circ} 8$ and at 101° in $5^{\circ} 2$ parts of water. It unites with vitriol into an acid salt, $\mathrm{TlHSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$, and witlı sulphate of alumina into an "alum," $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \mathrm{Tl}_{2} \mathrm{SO}_{4}+$ $24 \mathrm{H}_{2} \mathrm{O}$.

Thallic salts are related to thallous pretty much as manganic are to manganous. Tho chloride, TlCl_{3}, is obtained as a solution by passing chlorine into a suspension of thallous chloride in water. The solution, when craporated in racuo, deposits colourless crystals, $\mathrm{TlCl}_{3}+\mathrm{HL}_{2} \mathrm{O}$. For the oxide, if chlorine be passed into a solution of thallous chloride in carbonate of soda a brown precipitate is produced, which, after drying, has the composition $\mathrm{Tl}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$. When heated with strong hydrochloric acid it evolves chlorine and yields WCl; when heated with oil of vitriol it yields oxygen gas and thallous sulphate. Thallic sul phate, however, does exist, -in crystals, $\mathrm{Tl}_{2}\left(\mathrm{SO}_{4}\right)_{3}+7 \mathrm{II}_{2} \mathrm{O}$, soluble in dilute sulpluric acid, but decomposeri by water, with precipitition of hydrated $\mathrm{T}_{2} \mathrm{O}_{3}$.

Inalysis. - All thallium compounds volatile or liable to dissociation at the teinperature of the flame of a Bunsen lamp impart to such flame an intense green colour.' The spectrum consists of only one line, which, of coursc, has a definite position in the spectrum, and consequently is easily identified, -a most delicate test.

From solutions containing it as thallous salt thometal is casily precipitated as chloride, iodide, or chloroplatinate by the corresponding reagents (see supra). Sulphuretted hydrogen, in the presence of free mineral acid, givea no preciuitate; sulphide of ammonitan, from neutral solutions, precipitates $\mathrm{TI}_{2} \mathrm{~S}$ as a dark brown or black precipitate, insoluble in cxcess of reagent. Thallic aalts are easily reduced to thallous by meana of solution of sulphurous acid, and thus rendered amenable to the above reactions.

The atomic weight of thallinm was determined very carefully by Crookes. H_{0} found it $\mathrm{Tl}=204 \cdot 2,-\mathrm{O}$ being 16.
(W. D.)

THAMES, the most important river in Great Britain, has its source in severai streams on, the Gloucestershire border, the main one having its rise in the parish of Coates, 3 miles south-west of Cirencester. The upper part of the river, until the junction with the Thame near Dorchester, is generally called the Isis, a usage to which Camden perhaps gave currency, who derives the word Tamesis or Chames from the junction of the names of the two rivers, the Thame and Isis. The total length of the river from Thames Head to London Bridge is 170 miles, and to Sheerness 228 miles. It drains an area of 6100 miles. It becomes navigable 24 niles from its source, near Lechlade, its waters having been greatly augmented by the junction of the Colne, Leach, and Churn; here also is the junction with the Thames and Severn Canal. The height of its source above sea-level is 370 feet, and that of the stream at Lechlade 250 feet, the average fall between Lechlade and London Bridge (146 miles) being 21 inches per mile. The course is remarkably equable throughout. Above Teddington, 19 miles from London Bridge, the tidal wave may be said to cease, and thence up to Lechlade navigation is carried on by the aid of locks. A small steamer
plies as high as Oxford. While at Lechlade the daily flow of the ordinary summer level is about 100 million gallons, the flow at Teddington is about 380 million gallons. There are seven hours of ebb tide and five hours of flow tide. From the Nore to London Bridge, a distance of 40 miles, the tidal wave travels in two hours, and in other two hours it reaches Teddington. The width of the river at Teddington is 250 feet, and at London Bridge the width at high tide is 800 feet, the deptl being 30 feet, while at low tide the width is 650 feet and the depth 12 feet Large barges can ascend the river 150 miles above London Bridge, vessels of 200 tons as high as the bridge, and of 400 tons to the Pool, below which, at Irongate and St Katherine's wharf, deep-sea steamer navigation commences, while vessels of any tonnage can come as high as Deptford.

The Tinames leaves the Gloucestershire and Wiltshire border near Buscot, after which it separates successively Berks and Oxford, Berks and Bucks, Middlesex and Surrey, and, finally, at its estuary, Essex and Kent. Below Lechlade it has a winding course, passing near Farringdon and Bampton. After receiving the Windrush, it passes near the grounda of Blenbeim, whence it receives from the left the Evenlode, and at Oxford it receives from the left the Cherwell. It then floms in a sontherly direction to Abingulon, where it receives on the right the Ock from the valley of the White Horse, and has a junction with the Wilts and Berks Canal. Turning in an easterly direction it is joined, abont a mile after passing Dorchester, by its principal afluent the Thame. Thence, through an opening of the Chiltern Hills, it passes Bensington, and turns southwards by Wallingford and Reading, where it receives the Kennet from the right. It then benda northward to Henley, eastward to Great Marlow, and southward to Maidenhead, where it reccives from the right the Loddon. Winding in a south-easterly direction it passes Eton, Windsor, Datchet. Staines, and Chertsey, recciving at Staines the Colne from the left. Flowing through the gronnds of Hampton Conrt it reaches Kingston and Teddington, where its bulk is iocreased by the tidal ware. From Richmond, where it receives the Mole, it begina to pass the villas and suburbs of London. At Gravesend, 27 miles below London, it has a width of half a mile, and at the Nore lighthouse, 50 milea below London Bridge, the estuary widens to nearly 10 miles. In the tidal reaches the principal affluents of the Thames are the Mole at Richmond, the Brent at Brentford, the Wandle at Wandsworth, the Lea at Blackwal1, the Roding at Barking Creek, the Ingre bourne at Rainham, and the Medray at Sheerness. The land adjoining the river is greatly subject to floods, and from above London there were in ancient times wide stretches of marsh land covered by shallow lagoons. The embankments below London Bridge date possibly from the time of the Romana, but their origin is the aubject of much dispute (see Losidon, vol. xiv. p. 840). Between London Bridge and Chelsea the bed of the river has been altered artificially, and flooding is prevented by a marine wall (see LoNDon, vol. xiv. p. 823). The Thames occupies the bel of a nuch larger prehistoric river, the gravcls of which adjoin its hanks at a considerable distance.

The scenery, thoush scarcely to be called picturesque, and in a certain sease monotonous, has a pcculiar charm from the richness of its sylvan beauty and its pleasant alteruation of hill and dale. The number of islands that occur in the course of the river add to its interest, and afford convenient seclusion for the erection of boathouses and tents. . The Thamea vies with the Tyne as the pribcipal river for boat-racing in England, and of course greatly surpasses the latter river as regards amateur boat-racing, the principal fixtures in which are the Oxford and Cambridge boat race and the Henley, regatta. The river affords about one balf of tbe water supply of London, and is the principal outlet for its sewage. It is uuder the sovernment of conservators, originally constituted in 1857, but their duties have becn extended by several subsequent Acts.
Sce The River Thames from O.vyord to the Sea, 1859; Cassell'a Royal River
(rlehly illustrated), 18S5; Huxley's Physiography 1877: and Dickens's Dictionary (rlechly illustrated), 18S5; Huxley's Physiogrodhe 1877: and Dickens's Dictionary
of the Thames. of the Thames.
THANA; or Tannah, a district in Bombay presidency, India, with an area of 4243 square miles, lying between $18^{\circ} 42^{\prime}$ and $20^{\circ} 20^{\prime} \mathrm{N}$. lat. and $72^{\circ} 45^{\prime}$ and $73^{\circ} 48^{\prime}$ E. long. It extends along the coast for 105 miles, with a breadth or 50 miles, and is confined between the Sahyádri Gháts on the E. and the sea on the W., while on tle N. it is bounded by the Portuguese territory of Daman and by Surat district, and on the S. by Kolaba and Poona districts. The district is well watered and wooded, and, except in the north-east, is a low-lying rice tract broken by hills. The spurs of the Gháts form health resorts: the two mosk
conspicuous bills are Mátheran and Tungar. Most of the hills wera once fortified, but the forts built on them are now dilapidated and useless. The only rivers of any imporlance are the Vaitarna and the Ulhas, the former oeing navigahle to a distance of about 20 miles from its mouth ; the latter is also navigable in parts for small craft. There are no lakes; but the Vehár and the Tulsi, formed artificially, supply Bombay city with water. The forests, lying chiefly in the northern half of the district, occupy i664 square miles, or about 40 per cent. of the total area. The average annual rainfall exceeds 90 inches.
In 1881 tha population of Thána was returned at 908,548 (males 468,236 , females 440,312) ; Hindus numbered 806,805 , Mohsm. medans 42,391 , and Christians 39,545 . The district has seven towns with pepulations exceeding 10, 000, namely, Bandra (14,987), Thana (sea below), Bhiwandi (13,837), Falyan (12,910), Bassein (10,357), Panvel (10,351), Uran (10,149). The area under cultivation in 1885-86 was 1,002, 448 acres, and 768,057 ramained uncultivated. The total area of crops was 522,810 actes, including 5835 twica cropped. Rice is by far the most important prodact, and occupied 324,680 acres; it is also the chief article of export. Sugar-cansand plantains are cultivated largely, as wall as mangoas and cocos-nuts. In 1885-86 the gross revenus of the district was $£ 245,182$, the land yiclding $£ 130,409$. The territory comprised in tha district of Thána formed part of the dominions of the peshwá, and was annexed by the British in 1818 on tho ovarthrow of Baji ráo. Since then the operations to put down the Koli robhers, which extended over aaveral years, hava been tho only cause of aerious trouble, and lately, in 1874 and 1877, therawera a number of gang robberies which wera suppressed, but not without difficulty.
THÁNA, chief town of the above district and a station on the Great Indian Peninsula Railway, lies 20 miles northeast of Bombay city, in $19^{\circ} 11^{\prime} 30^{\prime \prime} \mathrm{N}$. lat. and $73^{\circ} 1^{\prime} 30^{\prime \prime}$ E. long., and in 1881 had a population of 14,456 (males 7856, females 6600). It is a manicipal town and a port, and contains a civil hospital and post-office.
thane, or Thegn. See England, vol. viii. p. 274 ; and Noblitity, vol. xvii. p. 529.
THAPSACUS. See Mesopotamia, vel. xvi. p. 49.
thar and Párkar, or Thur and Pareer, a district in the east of Sind, Bombay presidency, India, with an area of 12,729 square miles. It lies between $24^{\circ} 13$ and $26^{\circ} 15^{\prime} \mathrm{N}$. lat. and between $68^{\circ} 51^{\prime}$ and $71^{\circ} 8^{\prime}$ E. long., and is bounded on the N. by Khaipur state, on the E. by the states of Jaisalmir, Malani, and Jodhpur, on the W. by Hyderabad district, and on the S. by the Runn of Cutch. The district is divided into two portions. The western part, called the "Pat," is watered by the Eastern Nara and the Mithrau canals, which constitute the sole water-system of the district, and the presence of water has created a quantity of jungle and marsh; the other part, called the "Thar," is a desert tract of relling sand-hills, runring north-east and south-west, composed of a fine but slightly coherent sand. To the south-east of Thar is Parkar, where there are ranges of rocky hills, rising to 350 feet above the surrounding level, and open plains of stiff clay. The Parkar portion of the district contains the ruins of several old temples; one of these is a Jain temple, which contained an idol of great sanctity and repute, known under the name of Gorcha. The climate is subject to considerable extremes in temperature, being excessively hot in the summer and very cold in winter, the cold increasing as the sand-hills are approached.
The census of 1881 returned tho population at 203,344 (males 112,400, females 90,944); Hindus numbered 43,755 , Mohammedans 102,924 , and Christions only 14 . Umarkot, the birth. place of Akbar, is the chief tomn, with a pepratation of 2828. The chief prodacts of tha district are rice, joir, bajri, cotton, and oil aceds. It is estimated that only 45 per cent. of the arabla area is under cultivation. The exports are chiefly rice, wheat, oil-seeds, cattle, goats, and sheep; tha imports consist of cotton, metals, dried fruits, plece goods, sugar, and tobacco. The manufacturea are chiefly blankets, camel sadules, and coarse cetton cloth. The imperial revenus in 1885-80 amounted to $£ 44,313$, of which tho land supplicd $£ 32,927$.

Vasy little is known of the aarly history of tho district. The

Soda Rajputs, said to be descendants of Parmar Soda, are supposed to have coms into this part of Sind about 1226, when they qqickly displaced the rulers of the country, though, according to other authorities, they did not conquer the country from the Sumras the dominant race, before tha beginning of the 16 th century. The local dynasty of the Sodes succumbed to the Kalhoras about 1750 , eincs which period the district has been subject more or less to Sind. The Talpur mirs succeeded the Kalhoras, and built a number of forts to overame tha people, who were lawless and addicted to robbery. On the British conquest of Sind in 1843 the greater part of the district was mads over to Cutch; and in 1856 it was wholly incorporated in the province of Sind. In 1859 a roballion broke out, which was quickly sappressed.

THARRAWADDY, a district in the Pegu division of Burmah, with an area of 2014 square miles. It lies between $17^{\circ} 30^{\prime}$ and $18^{\circ} 40^{\prime} \mathrm{N}$. lat. and between $95^{\circ} 20^{\circ}$ and $96^{\circ} 10^{\prime}$ E. long., and is bounded on the N. by Prome, on the E. by the Pegu Yoma range, on the S. by Hanthawaddy, and on the W. by Henzada. The Pegu Yoma range separates Tharrawaddy from Toungú district, and forms the water-parting between the rivers Irrawaddy and Sittang; there are also many small elevations. The Irrawaddy, which traverses the district for 46 miles, is the principal navigable.river. Another important river is the Hlaing, which runs through the district from north to south, receiving from the east, through numerous channels, the drainage of the Pegu Yoma Mountains, which fertilizes the plain on its eastern bank. There are twenty-three teak forests and four fuel reserves in the district, covering an area of 817 square miles. Among the wild animals generally found in the mountains are the alephant, rhinoceros, bison, and various kinds of feathered game.
In 1881 the popolation was returned at 278,155 (males 143,413, femkles 134,742), of whom 1985 were Hindus, 1110 were Mobam. medans, 270,552 were Buddhists, whilst Christians and ahorigines nambered 2363 and 2135 respectively. The aran ander cultivation in 1885-86 comprised 323,542 acres, and that available for cultivation 186,002 acres; forests occupied 364,524 acres. Tha chief products of the district ara rice, sesamurn, tobacco, engar-cana, cotton, and fruits. The gross revenus of Tharrawaddy in 1885-86 was $£ 85,254$, of which the land yielded $£ 51,523$. The history of the district is identical with that of Henzada (q.v.). Tharramaddy was formed in 1878 out of that portion of Henzada lying east of tha Irrawaddy. Its headquarters are at Thoon-tshay, on tha atream of the same name.

THASOS, an island in the north of the Egean Sea, off the coast of Thrace, $3+$ miles distant from the plain of the river Nestus (now the Kara-Su). The island was colonized at an early date by Phœnicians, attracted probably by its gold mines; they founded a temple of Hercules, which still existed in the time of Herodotus. Thasus, son of Phcenix, is said to have been the loader of the Phenicians, and to have giver his name to the island. In 720 or 708 b.c. Thasos received a Greek•colony from Paros. In a war which the Parian colonists waged with the Saians, a Thracian tribe, the poet Archilochus threw away his shield. The Greeks extended their power to the mainland, where they owned gold mines which were even more waluable than those on the island. From these sources the Thasians drew great wealth, their annual revenues amounting to 200 or even 300 talents. Herodotus, who visited Thasos, says that the best mines on the island were those which had been opened by the Phcenicians on the east side of the island, facing Samothrace. After the capture of Miletus (49.4 b.c.) Histiæus laid siege to Thasos. The attack failed, but, warned by the danger, the Thasians employed their revenues to build war ships and strengthen their fortifications. This excited the suspicions of the Persians, and Darius compelled thera to surrender their ships and pull down their walls. After the defeat of Xerses the Thasians joined the Greek confederacy ; but afterwards (in 467,465 , or 464 , according to different calculations), on account of a difference abcut the mines and marts on the mainland, they revolted. The Athenians defeaterl
them by sea, and, after a siego that lasted more than two yerrs, took the capital, Thasos, and compelled the Thasiane to destroy their walls, surrender their ships, pay an indemnity and an annual contribution, and resign their possessions on the mainland. In 411 B.c., at the time of the oligarchical revolution at Athens, Thasos again revolted from Athens and received a Lacedmmonian governor ; but in 407 the partisans of Lacedrmon were expelled, and the Atbenians under Thrasybulus were admitted. After the battle of Aegospotami ($\ddagger 05$ B.C.): Thasos again fell into the hands of the Lacedemonians ; but the Athenians mnst have recorered it, for it formed one of the subjects of dispute between them and Philip of Macedouia. In the embroilment between Philip III. of Macedonia and the Romans, Thasos subinitted to Philip, but received its freedom at the hands of the Romans after the battle of Cynoscephalx (197 B.c.), and it was still a "free "state in the time of Pliny. Thasos, the capital, stood on the north side of the island, and had two harbours, one of which was closed. Archilochus described Thasos as "an ass's backbone crowned with wild wood," and the description still suits the mountainous island with its forests of fir. The highest mountain, Ipsario, is 3428 feet high. Besides its gold mines, the wine, nuts, snd marble of Thasos were well known in antiquity. The mines and marble quarries are no longer worked ; and tho chief exports are now fir timber for shipbuilding, olive oil, boney, and wax. The imports consist of mannfactured goods, beasts of burden, and corn, for the island is too mountainous to grow enough corn for the inhabitants.

In 1858 the population, distributed in ten villages, was estimated at 10,000. The people are Greek Christians, and do not differ in appearance from the inhabitants of the other Greek islands. The villages are mostly situated at aome distence from the sea; for the island suffored from pirates up to a time within living memory. In the early part of this century sentinels stood on duty night end day, and at a signel of alarm the whole population, including the Turkish aga himsolf, used to hido in the woods. For a description of the island and its remains of antiquity, seo A. Conze, Rcise auf den Inseln des thrakischen Mecres, Hanover, 1860.

THAYETMYO, a district in the Irrawaddy division of Burmah, having an area of 2397 squsre miles, and lying between $18^{\circ} 50^{\circ}$ and $19^{\circ} 30^{\prime} \mathrm{N}$. lat. and between $94^{\circ} 30^{\circ}$ and $95^{\circ} 50^{\circ} \mathrm{E}$. long. It is bounded on the N . by the newly acquired territory of Burmah, on the E. by Toungu district, on the S. by Prome, and on the W. by Sandoway. On the west is the Arakan Yoma range, and on the east the Pegu Yoma; and the face of the country, where it does not rise into mountains, is everywhere broken by low ranges of hills, many of which are barren and destitute of all vegetation. The greater part of the district is wooded, and the Yomas east and west are covered with forests now mostly preserved. The chief river is the Irrawaddy, which traverses Thayetnyo from north to south. The country is well drained; the drainage finds its way to the Irra. waddy by three inain streams (the Pwon, Ma-htún, and Ma.dc) on the west, and by two (the Kye-nee and Bhwotlay) on the east. Several salt and hot springs occur in many localities of the district; petroleum is also found, and extensive lime quarries exist a few miles south of Thajetmyo. The principal wild animals are leopards, vild cats, barking decr, elephants, rhinoceroses, tigers, black besrs, and wild hogs. Silrer phessants and partridges are found in large numbers, especially in the mountains.

In 1881 the number of inlabitants in the district was 169,560 (males $87,30 \mathrm{~S}$, femoles 82,252); Hindus numbered 2620 , Mohammedans 1861, Christians 2349, and Buddhists 148,629 . The chief town is Thayetmyo, with a population (1881) of 16,097 ; it is situated in $19^{\circ} 18^{\prime} 43^{\prime \prime} \mathrm{N}$. lat. and $95^{\circ} 15^{\prime} 40^{\prime \prime} \mathrm{E}$. long., on the right bauk of tho Irrawaddy. Of the total arca of $1,534,080$ acres, only 108,167 werc unter cultivation in $1885-8 G ; 547,631$ were avail. able for cultuation: and forests occupied 256,256 acres. Tho chief yroducts are rice, cotton, oil seculs. and :obacco; cutch is also very
whondant, and the manuracture of the dye-stuff is carried on extenoively. Coal has recently been found in the district, and earth oilwells exist, but neither coal nor oil has yet been extracted in any quantity. Tbe revenue of the district in 1885-86 mas returned at $\dot{£} 6,702$, of which the land contributed $£ 10,482$. On the aunexation of Pegu by the British in 1852-53, Thayetmyo was formed into a subdirision of Promo district; and in 1870 it was erceted into a separato jurisdiction and placed undor a depnty-commissioner.
 The iuvention of a building specially devised for dramatic representations was due to the Athemians (sce Drama). At first representations at the Dionysiac festivals were held on temporary wooden platforms ; an accident, however, which occurred in 500 B.C. induced the Athenians to begin the construction of a permanent building. This first theatre was not completed till 340 B.c., and during the interval a large umber of theatres, designed on the same model, had been erected iu many towns of Greece and Asia Minor, though in some cases, as at Sparta, they were used for assemblies of the people and dances rather than for drsmatic performances. The great Dionysiac theatre at Athens was placed in the Lenxum, an enclosure sacred to Dionysus, and its auditorium is scooped out of the rock at the base of the Acropolis on its south-est side. A similar position on the slope of a hill was always chosen by the Greeks, and it was not till the lst century B.c. that theatres were built by the Romans on a level site.

Fio. 1.-Plan of tha Theatre at Myra,
Fig. I shows the plan of the existing theatre at Myra, in the south-enst of Lycia, which, though late in date, is built after the old Greek model. ${ }^{1}$ The seats for the audience are arranged in concentric ticrs, rising like steps one above the other (seo fig. 2) ; theso mainly rest on a cavity excavated in the hill-side, and the whole space occupied by the spectators was called the кoìdov (Lat.cavea). About half-way up the slope is an encirc-
 ling passage (δ cáYou α, prxcirctio). Flights of steps divide the seats into wedge-shaped blochs (кєркiঠぇs, cunci). At the highest level behind the top row of seats ran a colounade, forming a covered passage with a gallery at the top. Rows of niches were formacd in the back wall of this, and also sometimes in the low wall encircling the δ óasw μa; in these niches a series of large bronzo jars (ineia) were set: they werc intended to catch and repent the reverberation of the voices from the stage. Virruvius (iii. 5) gives
${ }^{3}$ See Texier and Pullan, Asia Minor, Londou, 1805.
olaborato directions for the construction of these rases, which were to be tuned in a chromatic scale; ${ }^{1}$ he mentions their use by the Gireelss, but says he knows of no Roman theatre which possessed these vases, the real utility of which is very problematical. ${ }^{2}$ The segmental fioor space in a Greek theatre was called the ópxígт ρa (orchestra), and was occupied by the chorus; in the centre of this was the Dupéd η, a platforn slightly raised on steps, in the middle of which was an altar to Dionysus. The stage ($\pi \rho \rho \sigma$ кípiov, proscenium was a narrow platform, raised 3 to 5 feet above the orchestra, with which it communicated by stairs, so that the chorus could move from one place to the other; tie central part of the stage, where the principal actors usually stood, was the doyciov (pulpitum). The stage was also connected with a chamber under it (imorкiviou) by a dight of stairs called χ apóvot клípakes, by which ghosts ascended." At the back of the stage was a lofty wall, which usually reached to the level of the colonaade behind
 which were three doors leading into the stage from the actors dressing-rooms behind it. ${ }^{3}$ This wall was usually decorated with three orders of columns and entablatures, forming an architectural façade, which represented a palace or temple, before which the action of the play was supposed to take place. Other morable wooden ecenery was in some cases added in front of the permanent scena; or curtains with woven or embroidered figures were hung against it to form a background to the actors (π apa\#ย่тaбнa or aủ̉aia, aulsa or siparium). More elaborate painted scenes were also used, but, according to Aristotle (Poet., iv. 16), not before the time of Sophocles. Various kiods of machinery mere used, such as the $\mu \eta \chi$ वarn, to suspend in the air an actor who was playing the part of a god descending from heaven; ${ }^{4}$ and the β pootetor, an apparatus to imitate thunder by stones roiled in metal jars, prolably in the ghost-chamber under the atage. Women were not excluded from the Greek tragic drama, but appear to have sat by themselves in the upper roms of seats (Athenæus, zii. 534). ${ }^{5}$ At least in late times the chiof priestesses of Athens occupied marble thrones in the $\pi \rho o \varepsilon \delta \rho i \alpha$ or front row.

The ramains of the Dionysiac theatre at Athens, the prototype of all later theatres, were excavated in 1862, When the proscenium, orchestra, and lower rows of seats were found in a fair state of preservation. It must have held 30,000 people: the cavea reaches from the foot of the Acropolis hill to close under the upper circuit wall. The rock-cut cavern, which was faced with the choragic monument to Tlurasyllus (320 b.c.), seems to have opened behind the highest row of soats; the face of the rock is here scarped to a curve concentric with the lines of seats. The most interesting discovery was that of a row of 67 marble thrones in the front row, each inscribed with the name of one of the chief Athenian priests or with that of a secular official. ${ }^{6}$ The cavea was divided into 13 cunei;

[^87]a law wall separated the auditorium from the orchestra. The front or "riser" of the stage is decorated with fine rclicis of deitics on largo marble slabs. These existing features are mostly restorations of the time of Hadrian, but the reliefs themselves are of much carlier date. The floor of the orchestra is very late, formed of roughly laid slabs of stonc, with a large central lozenge in marble, which may mark the limits of tho thymele, and is apparently part of an earlicr pavement.

The position of the monysiac theatre, with many of the chief temples of Athens in sight, and with its glorious view of Mount Hymettus, the blue waters of the Egean Sca, and the islands of Salamis and Egrina, should not bo forgotten in reading the dramas of the great tragedians, with their impassioned appeals to the glories of nature and their allusions to the protective uresence of the divine patrons of Attica

Outside Athens the largest Greek theatres wero those at Magalopolis (Paus., viii. 32), Cnidus, Syracuse, Argos, and Epidaurus. By the end of the 4 th century B.c. every important Hellenic city possessed its theatre, and new ones were built or old ones restored throughont the wholo period of homan docaiuation. The most perfect existing example is that at Aspendus in Pamphylia, ${ }^{7}$ a building of the 2d cuntury of our era, in which the early Greek model has been closely followed. Aspendus is the only place where the whole scena with its three orders of columns is still standing, and every row of seats exists in almost perfect condition. In this theatre the whole interior appears to have been covered by an awning, ${ }^{8}$ supported along the top, of the scena by wooden poles set in rows of perforated corbels like those on the Colosseum in Rome. The earlier Greek theatres were probably unsheltered from the sum. Next to Aspendus, tho theatre of Tauromenium, in Sicily (see Taormina), is tho best preserved, at least as far as regards the scena and the upper gallery round the carea. That at Myra, in Lycia (fig. 1). is also in good preservation.

The Roman Theutre.-In t_{1} a main the theatres of the Romans were copied closely frc a those of the Greeks, but in the Greek theatre the orchestra occupied more than a semicircle, while the Romans raado it exactly half a circlo. The accompanyiag diagrams (see fig. 3) show the principlo on which the plan of each was set out. ${ }^{9}$ The Romans also introduced another important change, in many cases constructing theatres on a level site, not scooped out of a hillside as iu the caso of Hellenic theatrcs.
 This necessitated an Fic. 3-Disgram to show the Principle oo which claborato arrange- the Plans of the Greek and Roman Theatre were ment of substrac-
tures, with raking ranlts to carry the seats of the carea, and also an additional risible façade with tiers of arches following the semicirclo of the auditorium. The design universally adopted for this appears to have been tiers, usually three in number, of open arches, with intermediate

[^88]engaged columns, each tier being of a different order, as is still to be seen in the remains of the theatre of Marcellus in Rome. 1 The development of the use of the stone arch, and still more the use of concrete for forming vaults, enabled the Romans to erect their theatres on any site. Those in Rome were placed in the level plain of the Campus Martius.
During the Republican period the erection of permanent theatres with seats for the spectators was thought to savour of Greek luxury and to be unworthy of the stern simplicity of the Roman citizens. Thus in 154 b.c. Scipio Nasica induced the senate to demolish the first stone theatre which bad been begun by C. Cassius Longinus ("tanquam inutile et nociturum publicis moribus," Liv., Epit., 48). Even in 55 r.c., when Pompey began the theatre of which remains still exist in Rome, he thought it wise to place a sbrine to Venus Victrix at the top of the carea, as a sort of excuse for having stone seats below itthe seats theoretically serving as steps to reach the temple. This theatre, which was completed in 52 b.c., is spoken of by Vitruvius as "the stone theatre"par excellence: it is said in the Regionary catalogues to have held 10,000 people. It was also used as an amphitheatre for the bloody shows in which the Romans took greater pleasure than in the purer intellectual enjoyment of the drama. At its inauguration 500 lions and 20 elephants vere killed by gladiators. Near it two other theatres were erected, one begun by Julius Cæsar and finished by Augustus in 13 b.C., under the name of his nepherw Marcellus, ${ }^{2}$ and anotier built about the same date by Cornelius Balbus \{Suet., Aug., 29; Pliny, H. N., xxxvi. 16). Scanty re: mains exist of this last theatre, but the ruins of the theatre of Marcellus are among the most imposing of the buildings of ancient Rome.

A long account is given by Pliny ($H . N_{\text {., xxxvi. } 2}$ and 24) of a most magnificent temporary theatre built by the medile M. Emilius Scaurus in 58 b.c. It is said to have beld the incredible number of 80,000 people, and was a work of the most costly splendour. Still less credible is the account which Pliny gives ($H . N .$, xxxvi. 24) of two mooden theatres built by C. Curio in 50 r.o., which were made to revolve on pivots, so that the two together could form an amphitheatre in the afternoon, after baving been used as two separate theatres in the morning.

In some cases the Romans built two theatres close together, one for the Greek and the other for the Latin drama, as is the case at Hadrian's magnificent villa near Tivoli. The two theatres at Pompeii are still mell preserved, and all Roman provincial tomns of any importance seegn to bave possessed at least one theatre, designed with the semicircular orchestra after the Roman fashion (see fig. 3). The theatres built under the Roman rule in Hellenic cities seem, on the other hand, to bave been usually constructed on the old Greek model, probably because they were designed by Greek architects. This is the case at Tauromenium, Aspendus, and Myra see (fig. 1). An important exception to this rule is the still wellpreserved theatre of Herodes Atticus, at the south-rest angle of the Athenian Acropolis, which has a semicircular rrchestra. It was built in the reigu of Hadrian by Herodes Atticus, ${ }^{3}$ a very wealthy Greek, who spent enormous sums in beautifying the city of Athens; ho called it the Regillum, after his wife Regilla. Its cavea,

[^89]which is excavated in the rock, held about 6000 people it was connected with the great Dionysiac theatre by a long and lofty porticus or stoa, of which considerable remains still exist, probably a late restoration of the stoa built by Eumenes II. of Pergamum. In the Roman theatre the "orchestra." was occupied, not by the chorus, but by senators and other persons of rank (Vitr., iii. 6). ${ }^{4}$ The Romans used scenery and stage effects of more elaboration thau was the custom in Greece. Vitruvius (iii. 7) mentions three sorts of movable scenery:-(1) for the tragic drama, façades with columns represent ing public buildings ; (2) for comic plays, private houses with practicable windows and balconies; ${ }^{5}$ and (3) for the satyric drama, rustic scenes, with mountains, caverns, and trees.

The Modern Theatre.-During the Middle Ages mıracle plays with sacred scenes were the favourite kind of drama; no special buildings were erected for these, as they were represented either in churches or in temporary booths. In the l6th century the revival of the seculaip drama, which, in the reign of Elizabeth, formed so im . portant a part of the literature of England, was carried on. in tents, wooden sheds, or courtyards of inns, mostly by strolling actors of a very low class. It was not till towards the close of the century that a permanent building was constructed and licensed for dramatic representations, under the management of Shakespeare and Burbage. ${ }^{\circ}$ In

[^90] position.
${ }^{5}$ These are ahown on Greco-Roman vaaes of the latest type, witb paintings of burlesque parodies of mythological stories.
6 The first building specially erected in London for dramatic purposes was built in $1576-77$ by the actor James Burbage, who was originally a carpenter by trade. It was constructed of timber, and stood in Holywell Lade, Shoreditch, till 1598, Fhen it was pulled down; it was known as "The Theatre" par excellence. Of almost equally early date was the "Curtain" theatre, also in Shoreditch; many explanations of its name have been given, but the real one appears to be that it was so called from the plot of ground, known as "The Curten," on which it stood. It probably continued in use till the general closing of theatres by order of the parliament in 1642.
The "Glabe" theatre, famous for its assacistion. with Shakespeare, was luilt by James Burbage, who nsed the materials of "The Theatre," in the year 1598. Its site was in Southwark, in a district called "The Baokside," near the old "Bear Gardens." It was an octagooal structure of wood, with lath and plaster between the main framework. It was burot in 1613 , rebuilt, and finally pulled down and its site bnilt over in 1644. Its name was derived from its siga of Atlas aupparting the glabe. Near it were two less important theatres, "The Rose," opened in 1592 by Henslowe, and "The Swan," opened in I 598 and probably owncd also by Heoslowe; like the Globe, it was an actaronal woad-and-plaster building.

The "Blackfriars" theatre, another of the Burbages ventures, was built in 1596 (not 1576, as stated by Collier, Hist. of Dramatic Potry and Annals of the Stage, new ed., 1879, vol. i. p. 287), near the old Dominican friary. :The "Fortune" theatre was built by Edward Alleyn, the great rival of the Burbages, in 1599-1600, at a total cost, including the site, of $£ 1320$. It stoad between Whitecroas Streat and Golding Lane. It existed as lato as 1819, when a drawing of it was giveo by Wilkinson (Londina illustrata, 1819). The "Real Bull ${ }^{\circ}$ theatre was prabably originally the galleried court of an inn. which was adapted for dramatic purposes towards the close of Elizabeth"s reigo. Other early theatres were the "Hope" or "Paris Garden" theatre, the "Whitefriars" and "Salisbury Caurt" theatrcs, and the "Newington" theatre. A curious panoramic view of London, ergraved by Visscher in I616, showa the Globe, the Hope, and the Swan theatres.
The play of the first English theatres appears to have had no cannexion with those of classical times, as was the case in Itsly: it was evidently produced in an almost accidental way by the early custom ci erecting a temporary platform or stage in the middle of the open court yard of ay inn, in which the galleries all round the court formed boxes for the chief spectators, while the poorer part of the audience stool is the count on a_{1}] sides of the central stage. Something similar to this arrangement, nnsuitable though it now seems, was reproduce oven in buildings, such as the Globe, the Fortune, and the Swan, which were specially designed for the drama. In these and other early theatres there was i central platforin for the stage, furroundal ${ }^{3}$ y seats except sa oye aide, where there was a "green-room" or
the 16 th and 17 th centuries a favourite kiud of theatrical. representation was in the form of "masques," with" processions of grotesquely attired actors and temporary scenic effects of great splendour and mechanical ingenuity. In the reigns of James I. and Charles I. Ben Jonson and the architect Inigo Jones worked tagether in the production of these "masques," Jonson writing the words and Inigo Jones devising the scenic effects, the latter being very costly and complicated, with gorgeous buildings, landscapes, and clouds or mountains, which opened to display mimic deities, thrown into relief by coloured lights. These masques were a form of opera, in which Ben Jonson's words were set to music. Ben Jonson received no more for his libretto than Inigo Jones did for his scenic devices, and was not unnaturally anuoyed at the secondary place which he was made to occupy: he therefore revenged himselt by writing severe satires on Inigo Jones and the system which placed the literary and mechanical parts of the opera on the same footing. In an autograph MS. which still exists this satirical line occurs-" Painting and carpentry are the soul of masque" (see Cunningham, Life of Inigo Jones, London, 1848).
In Italy, during the 16th century, the drama occupied a more important position, and several theatres were erected, professedly on the model of the classic theatre of Vitruvius. One of these, the Teatro Olimpico at Vicenza, still exists; it was designed by Palladio, but was not completed till 1584 , four years after his death. It has an architectural scena, with various orders of columns, rows of statues in miches, and the three doors of the classic theatre, but the whole is painted with strong perspective effects which are very unclassical in spirit. Scamozzi, Palladio's pupil, who completed the Teatro Olimpico, built another pseudo-classical theatre in 1588 at Sabbionetta for the duke Vespasiano Gonzaga, but this does not now exist.
In France the miracle play developed into the secular drama rather earlier than in England. In the reign of Louis XI., about 1467, the "Brothers of the Passion" had a theatre which was partly religious and partly satirical. In the 16 th century Catherine de' Medici is said to have spent incredible sums on the dresses and scenery for the representation of the Italian ballet; and in the middle of the 17 tha century the regular opera-was introduced at Paris.

At the end of the 18th century the theatres of San Carlo at Naples, La Scala at Milan, and La Fenice at Venice were the finest in Europe; all these have been rebuilt in the present century, but have been eclipsed by the theatres of Paris, St Petersburg, and other capitals, both in size and architectural splendour.

[^91]- In the modern theatre the auditorium has changed comparatively little, except that the stalls have gradually encroached upou 3nd almost absorbed the pit. The arrangement of the boxes, stalls, balcony, and gallery are teo well known to need description. Few people, have, however, any notion of the immease size and extreme complication of the space and machinery behind the proaceninm, of which the visible stage occupies but a very small propertion. The stage-floor slopes upwards a way frem the audience, so that it may appear deeper than it really is by diminishing the foreshertening. ${ }^{1}$ Its extent behind the most distant plane of scenery is naually quite as great as that which the audience sees. In addition to this extensien of the visible stage there are thrce other enermous epaces filled with the machinery to werk the acenery.
(1) Of these the first consists of the "wings" (Fr. coulisses), a series of chambers or platforms on each side of the stage, arranged many steries high, and reaching to more than deuble the height of the prescenium.
(2) The "dock" or under-space (Fr. dessous), extending under the whole area of the stage floor, and about equal in height to the proscenium, is divided into three or four stories by successive fleors, and contains long rows of immense windlasses (Fr. gril) for raising and lewering scenery, and also an elaberate arrangement of lifts by which acters can suddenly appear or venish threugh the stage floor. A very ingenious device called the "star trap," invented by an English mecharician (Fr. trappe Anglaise), allows an actor to vanish through the floor without eny opening in it being visible. This is dene by making the trap door of thin boards (semething like a venetian blind) fixed on to flexible bands of steel ; the weight of the actor makes these open in the middle and let him through, while the steel springs close the opening as soon as they are released. The whole movement is so rapid that the actor seems to sink through the solid floor. ${ }^{2}$ In all mechanical appliances for theatrical purposes England is far abead of other countries, many of which have adopted English methods.
(3) The third space, and the largest of all, is that ahove the proscenium-the "fies" (Fr. dessus or cintre), extending over the whole of the stage, and reaching sometimes to nearly double the leight of the prosceninm. This also is divided into many floors, and contains rows of great windlasses, by which sceuery can be hoisted up out of sight, withont folding or bending it. All these three parts of the building are filled with a complicated but most orderly scries of ropes, lifts, and machinery of every sort, of whicly it is impossible here to give a detailed description.
The old method of fixing scenery was to slide it in tro halves from the wings in grooves formed in the stage floor: these are no longer used, as much more realistic cffects can be gained by supporting scencry from the top; or by building it un with supports of its own, so that, iastead of a series of painted planes set parallel to the stage front, castles, cathedrals, or even wholo streets are actually built upon the stage, and give striking effects of real perspective.
A rapidly gromiog teadency now exists to increase the mechanical perfection of the theatre. The cxtended use of iron instead of wood for the stage floor and the various nachiucs haa been a great gain in space and rapidity of working. It is polv considered a great object to drop the curtain as seldom as possible, and even the Grand Opera House of Paris is now left far behind in the modera competition for mechanical perfection, though from an architectural point of view it is the most magnificont and costly of all cxisting boild. ings of its kiod. Sea fig. 4.
The latest improvement to prevent delay between the F10. 4.-Plan of the Grand Opera Mouse In scenes has been introduced in
 the Madison Square theatre A, Audtiory. B, Stage. C, Grand S:aircase. in New York city, which has H, Greai Saloou. E, Royal Eur two elages, one above the Green-room.
other. During the performance of a sceze the second stage floor in

[^92]bsing prepared in the under-space, with all its scenery fixed, and When the curtain falls the first stage rises into the upper regions and the second floor goes up to take its placc. Thesu floors are accurately balanced by heary counterpoise weights, so that the whole of these enormous masses aro moved with comparatively little force.

On the whole, for magnificence of effect and mechanical ingenuity the great London pantomimes are unrivalled. Their transforma. tion-scenes are marvels of the mechanist's skill, and are often devised with very high artistic talent. Unhappily much danger and suffering have often to be nndergone by the women who act the part of fairies and the like, suspended ligh in the air by almast invisible surporty, and by the young children who have to squeeze themselves in to pasteboard shells representing insects or reptiles.
In addition to the above-mentioned parts of the theatre, which are reserved for the mechanical working of the performance, much space is occupied by the "green-room" for the actors, and rows of dressing-rooms. An imniense deal of storage room is also required, and some of the Parisian theatres have large magazines for this purpose in the suburbs. In many cases also the atelier for the scene painters is far removed from the theatre, and thos far better space and lighting for the work con be provided. Fig. 5 show the plan of the Drury Lane theatre, in many respects the best arranged in London.

The painting of theatrical scenery has frequently been the work of artists of very bigh talent, such as laphael in Rome, Watteau, Bouicher, and Servandoni in France, and Stanfiold in England. Paintings of very high artistic merit and wonderfully decoratiro effect are now produced for theatrical purposes, especially in France, Germany, and England. ${ }^{1}$ In England especially great historical and antiquarian knowledge are brought to the aid of this branch of art. The landscapes in particular are sometimes works of great beanty, and very beantiful effects of lako scenery with trees and mountains rellected in the water are got by setting great sheets of plate glass over Fig. 5.-Pian of Drury Lane Theotre: the stage floor, slightly inclined, so
 that a real reffexion is thrown by the A. Stage. B, Saloon between the landscape painted on the scene be. Chief Staircases. C, Entrance Hall. hind. Another ingenious device, used by Wagner at Baircuth and Also in Englaud for magical scenes, was to form a thin and semitransparent curtain of vapour, which was seut up by a perforated steam-pipe concealed in a groove in the stage.

The various methods of lighting used are an important item 1u the production of striking effects. The old system of a row of "foot-lights," with their unfleasant upward shadow, is now almost obsolete. Dip candles were used till 1720, when moulded candles were introduced into French theatres. The next improvement was the lamp of MI. Argand, with its circular wick. In 1822 gas was first used in a Parisian theatre, next came the oxyhydrogen lime light, used for special effects, and now electric lighting is rapidly superseding all other kinds.

The old way of producing lightning was to blow lycopodium or powdered resin with bellows through a flame, and this is still used in realistic effects of conflagrations. Moro effective lightning is now made by flashing the electric light behind a scene painted with clouds, in which a zigzag aperture has been cut out and filled with a transparent substance. Thunder is made by shaking large sheets of iron, by rolling cannon balls above the ceiling of the anditorium, and by clapping together a series of planks strung together on tro ropes. Wind is imitated by a machine with a cogged cylinder, which revolves against coarse cloth tightly stretched. The sound of rain is produced by shaking parched peas in a metal cylinder.

The orchestra is now usually arranged either below or above the proscenium, so that the musicians aro not visible. The prompter is placed at one side, in the wings, so as to avoid the disfigurement of the hood-like hox which formerly used to cut the front line of the stage into two halves. This is, however, less convenient for the actors.

Till the middle of the present century little trouble or expense was laid out on dresses and aocessories. Certain conventional costumes, made of cheap stuff, were used for each part, with but little regard to historical correctncss. Armour and weapons were

[^93]made of pasteboard covered with metal foil, and stage jewellery was made of small cup-like jrieces of tin formed with many facets. Now, however, no tromble or expense is spared to get the costumes ond various properties archæologically correct : real jewels and the richest stuffs are often used for the dresses, as well as real furniture of tho most costly sort for the furnishing of the scenic rooms. Λ s much as $£ 20,000$ is sometimes spent before the play can be presented. All this splendour and realism is very hostile to the true interests of the drama ; maguificent scenery and costly accessories are expected by the audience, rather than good acting. In some scenes, such as the ball in the first act of Romeo and Julict, as recently represented at the Lyceum, the words and acting of the chief performers were almost lost in the general bustle and splendour of the scene. Frequently, too, the noise of setting up some elaborate scene behind alnost drowns the voices of the actors iu front of the drop scene.

Another serious cause of the present low state of acting in England is the fact that a popular play sometimes runs for several hundred nights without a break, thus reducing the performers to the condition of machines. The modern system of expending large sums on dresses and decoration maturally prevents that frequent change of subject which is so desirable, and which in France is provided for by the rules of the Théatro Français, whero acting of a very high order of merit still survives.

The present system, aided by the cnormous size to which Londor. has unhappily grown, has completely changed the character of the audience. Instead of an audieuce largely composed of habilués, who by their constint attendance at tlie theatre had gained some knowledge of what acting onght to bc , and were prepared to show their disgust at clap-trap or ranting, we have now practically a fresh and ignorant audience every night, who, by their applause of what is worst and their coldness to real refiuement of acting, do much to lower the dramatic standard and demoralize the actors.
For further information the render is referved to Donnet, Theidres de Paris, 1821 ; Salomons, Constizution des Théitres, Paris, 1571 ; Garnier, Le Nouved Moynet, LEnvers du Theialre, Pails, 1874: Peugin, Dictionaaire du Theatre, Moynet, LEnvers du Theatre, Palis, 18it: Pougin, Dictionaaire du Theatre
Paris, 1885.
(J. H. BL)

Law Relating to Theatres,

The regulation of the theatre by legislation can be traced back to the time of the lower empire, in which it depended almost wholly upon constitutions of Theodosins and Valentinian, incorporated in the 'Theodosian Code (tit. xv. 5, 6, 7), and a century later to a large extent adopted by Justinian. In the whole of this law there is an evident attempt at a compromise between the doc. trines of Christianity and the old Roman love of public.spectacles of all kinds. It deals less with theatrical representations proper than with gladiatorial contests and chariot races. ${ }^{2}$ Tho Theodosiau Code provided that the sacraments were not to be administered to actors save where death was imminent,' and only on condition that the calling should be renounced in case of recovery. Daugliters of actors were not to be forced to go on the stage, provided that they lived an honest life. An actress was to be allowed to quit the stage in order to become a nun. There were also numerous sumptuary regulations as to the dress of actors. None of the law which has been mentioned so far was adopted by Justinian, but what follows was incorporated in Cod. xi. 40 ("De Spectaculis et Scenicis"), which consists entirely of extracts from the Theodosian Code of a very miscellaneous nature. Provision was made for the oxhibition of public games and theatrical spectacles by magistrates, practically confining them to exhibiting in their own cities. Statues of actors were not to be placed in the public streets, but only in the proscenium of a theatre. A governor of a province was entitled to take the money raised for public gaines for the purpose of 1rpairing the city walls, provided that he gave eecurity for afterwards celebrating the games as usual. In Cod. iii. 12, 1 I ("De Feriis") is a constitution of Leo and Anthemius forbidding dramatic representations on Sunday. The Digest (iii. 2) classed all who acted for hire ("omnes propter pecuniam in scenam prodeuntes ") as infamous persons, and as such debarred them from filling public oftices. A mere contract to perform, not fulfilled, did not, however, carry infamy with it. By the 51st of the Novclle actresses could retire from the stage withont incurring a penalty, even if they had given sureties or taken an oath.

In England, as in other countries of western Europe, theatrlcal legislation was of comparatively recent introduction. Such legislation was unnecessary as long as the theatre was under the control of the church and actors under its protection (see Drama). The earliest regulations were therefore, as might be expected, made by the church rather than by the state. The ccclesiastical ordinances were directed chiefly against the desecration of churches, thongh they sometimes extended to forbidding attendance of the faithful as spectators at plays of a harmless kind. ${ }^{3}$ Sacrawents and Christian ${ }^{9}$ The word ludi seems sometimes to inclade, sometiraes to exclude, dramatle performances. Its meaning in a particular instance depends on the context. 8 A large number of such ordinauces will be found cited in Prynne, Listrio. mastix: Bossuet, Jfoximes et Replexions sur la Comedic; Majana, De Spectaculis
Smith, Dictionary of Christian Antizuilues, arts. "Actors" and "Thearte.:-
burial were denied by the canou law to actors, whose gaing, said St Thornas, were aequired cex turpi causa. ${ }^{2}$ The same law forbade plays to be scted by the clergy, even under the plea of custom, as (n Christmas week, and follorred the Code of Justinian in enjoining the clergy not to consert with actors or be present at plays (seo the Decretals of Gregory, iii. 1, 12, and 15, "De Yita ot Honestate Clericorum "). As lately as 1603 canon lexxviii. of the tanons of the Church of Englavd cnacted that churchwardens were not to suffer plays in churches, chapels, or churchyards.

The Reformation marks the period of transition from the ecclesiastical to the non-ecclesiastical authority over the drama. Precautions began to be taken by the crown and the lepislature against the acting of uvauthorized plays, by unautherized persons, and in anauthorized places, and the acting of plays objectionable to the Government on political or other grounds. The protection of the church being withdramb, persons not enrolled in a fixed company or in possession of a licence from the croma or justices were liable to screre penalties as vagrants. The history of the legisiation on this subject is very curious. An Act of the year 1572 (14 Eliz. c. 5) cascted that "all fencers, bearrards, common players of interludes, and minstrels (not belongiog to any barou of this realm, or to any other honourable person of greater degree)," wandering ahroad without the licence of two justices at the least, were subjccet "to be grievously whipped and burned through the gristle of the right ear with a hot iron of the compass of an inch about." This statute was superseded by 39 Eliz. c. 4, nuder which the panish. ment of the strolling player is less severe, and thero is mo mention of justices. The jurisdiction of justices over the theatre disappears from legislation from that time until 1788 . In 39 Eliz. c. 4 there is a remarkable exception in favour of persons licensed by Dutton of Dutton in Cheshire, in accordance with his clsim to liberty and jurisdiction in Cheshire and Chester, established in favour of his sncestor by proceedings in quo warranto in 1499 . The stricter werding of this Act as to the licence seems to show that the licence had been abused, perhaps that in some cases privileges had been assumed without authority. In 14 Eliz.c. 5 the privileges of a plaver attached by service of a voble or licencc from justices, in the later Act only by service of a noble, and this was to be attested utder his hand and arms. The spirit of the Acts of Elizabeth frequently appears in later legislation, and the unanthorized player was a ragabond as lately as the lagrant Act of 1744, which was 1sw till 1824. He is not named in the Vagrant Act of 1824 The Theatre Act of 1737 口arrowed the defiuition of a player of ioterludes, for the purposes of punishment as a ragabond, to niean a person acting interludes, \&c., in a place where be had no legal settlement.

Before the Restoration there were privileged places as well as privileged persons, e.g., the court, the universities, and the inos of court. With the Restoration privilege became practically con. fned to the theatres in the possession of those companies (or their representatives) established by the letters patent of Charles II. in 1662 (see Drasa). In spite of the patents other and nuprivileged theatres gradually arose. In 1735 Sir John Barnard introduced a bill "to restrain the number of playhouses for playing of interludes, and for the better regulation of common playcrs." On Walpole's rishing to add a clause giring parliamentary sanction to the juris. diction of the lord chamberlain, the mover withdrew the bill. In 1737 Walpole introduced a bill of his own for the same purpose, thero being then six theatres io London. The immediate conse of the bill is said to have been the production of a politieal cxtravaganza of Fielding's, The Golden Rump. The bill passed, and the Act of 10 Geo. 1I. c. 28 regulated the theatre for more than a century. Its effect was to make it impossible to establish any theatre except in the city of Westminster, and in places where tho king should in person reside, avd during such residence only. The Act did not confine the prerogative within the city of Westminster, but as a matter of policy it was not exereised in farour of the non; privileged theatres, except those where the "legitimate drama" was not performed. The legitimate drama was thus confinell to Corent Garden, Drury Lane, and the Haymarket from 1737 to 1543. In the prorioces patent theatres were established at Bath b." 8 Geo. III. c. 10, at Liverpool by 11 Geo. III. c. 16, and at Bristol by 18 Geo . III. c. 8 , the Act of 1737 being in each caso repealcd pro tanto. The acting of plays at the universities was forbidden by 10 Geo. II. c. 19. It is not a little remarkable that the universitics, once possessing nousual dramatic privileges, should not only have lost those privileges, but have io addition become suhject to epecial disabilities. The restrictions upon the crama were found very inconvenient in the large towns, especially in these which did not possess patent theatres, In one direction tho diffeulty was met by the lord chamberlain granting annual licences for performances of operas, pantomimes, and other spectacles not regarded as legitimate drama. In another direction relief was giren by the Act of
1788 (28 Geo. III. e. 30), under which licences for occasional per. 1788 (28 Geo. 11I. e. 30), under which licences for occasional per-

- For this reason it appears to hare been the custom in France for actors to be married onder ths name of musicians. See Hist Parlementare de la Revolu

forraances cight be granted ia general or quarter sessions for a poriod of not more thao sixty days. The rights of patent theatres were preserved by the prohibition to grant such a liceuce to auy theatre within 8 miles of a patent theatre. During this period (1737-1843) there were several decisions of the courts which confirmed the operation of the Act of 1737 as creating a monopoly. The exclusire rights of the patcot theatres wero also recogaized in the Music Hall Act of 1752 , and io private Acts dealing with Covent Garden and Drury lane, end regulating the rights of Tarties, the application of charitsble funds, \&c. (sce $16 \mathrm{Geo}$. . III. cc. 13,31 ; 50 Geo. III. c. cexiv; 52 Geo. Ill. c. xix; 1 Geo. IV. c. 1x.). The results of theatrical monopoly were beocficisl neither to the puilic dor to the momolists themselves. In 1832 a sulect committee of the House of Commons recommended the legal recognition of "stage-right" and the abolition of theatrical monopoly. The recommendations of the report as to stage-right were carried ont immediately by Bulwer Lytton's Act, 3 and 4 Will. IV. c. 15 (see Copyriglit). But it was not till 1843 that the present Theatre Act, 6 and 7 Yicl. c. 68 , was passed, a previous hill on the samo lines larving been rejected by the House of Lords. The Act of 1843 insugurated a more liberal policy, and there is now complete "free trade" in thestres, subject to the conditions imposed by the Act. The grewth of theatres since that time lias been enormous. In 1885 there were forty six licensed under the Act in London, Liverpool coming next with ten. Nor does the extension seem to have been attended with the social dangers anticipated by some of the witnesses before the commuttee of 1832.

The suppression of objectionable plays was the ground of many early statutes and proclamations. While the religious drania was dying out, the theatre was used as a vchicle for enforcing religions and political viers not always as orthodos es those of a miracle play. Thus the Act of 34 and 35 II en. V111. c. 1 made it crininal to play in an interlade contrary to the orthodox faith declared, or to be declared, by that monarch. Profanity in theatres seems to have been a cryiog cvil of the time. The first business of the Goverument of Elward VI. was to pass an Act reciting that the most holy and blessed sacranuent was named in plays by such rite and unsecmly mords as Christian ears alid abhor to hear rehcursed, and inflictiog fine and imprisonment upod any person adrisedly contemning, despising, or reviling the said most blessed sacrament (1 Eds. V1. c. 1). A proclanation of the same king in 1540 forbade the aeting of iuterlurles in English on account of their dealing with sacred subjects. In 1556 tho council called attention to certain lewd persons in the livcry of Sir F. Leke representing plays and interludes reffecting unon the queen and ber consort aid the formalities of the mass. The same queen forbade the recurrence of such a representation as the mask riven ly Sir Thomas Pope in honour of tho princess Elizabeth at Hatfield, for she "misliked these follies." By the Act of Uniformity, 1 Eliz. c. 2, it was made an offence punishable by a fioe of a bundred marks to speak anything in the derogation, depraving, or despising of the Book of Common Prayer in any interlades or plays. In 1605 "An Act to restrain the Abuscs of Players" made it an ofence punishable by a five of $£ 10$ to jestingly or profanely speals or use certaio sacred names in any stage play, interlude, slow, may-game, or pageant (3 Jac .1 . c. 21). In consequence of the appearance of players in the characters of the king of Spain and Goddomar, an ordinance of James I. forbade the representation on the stage of any living Christiau king The star chamber in 1614 fincd Sir John Yorka for representing a Catholic drama in lis house. The first Act of the reign of Charles I. forbade acting on Sunday (sce Susiday). Puritan opposition to the theatre culminated in the ordinance of the Long Parliament (seo vol, vii. p. 43.1). After the RestoraLion there are few royal proclamations or ordinances, the necessary jurisdiction being exercised almost entirely by parlizment and the lord chamberlain. One of the few post-Restoration royal procla. mations is that of February 25, 1665, restraining any but the company of the Duke of I'ork's theatre from entering at the attiriDg house of the theatre.
Preventive censorship of the rama by an officer of state dates from the reigo of Elizabeth, and is perliaps the only ciample of censorship of the press still existing io the United lingdom (see Press Laws). Such a censorship is not unkDorrn in other countries, and it seems to havo existed cren in renublican Rome, if ode may judge from Horace's line,-

Quad neque lo ede soneot certanta Judtec Tarpa."
The master of the revels appears to hare been the dramatic censor from 1545 to 1624 , when he was auperseded by the lord chamber. lain. In some cases the superrision was put into comraission. Thus with Til口ey, the master of the revils in 1531, were associated by order of the priry council a divine and a statesman. In other cases it was delegated, as to Daniel the poct by warrant in 1603. The proposal to give statatory anthority to the jurisdiction of the lord chamberlain led, as has been already stated, to the mithuraval of Sir Jolo Barnard's bill is 1735, snd to considerable debate before the bill of 1737 becanue law. Lord Chesterfield's objection to the bill in the House of Lords was Dot unreasonable. "If the ployers,"
said he, "are to be punished, letit be by the lawe of their country, sad not by the will of an irresponsible despot." The discretion reposed by the Acts of 1737 and 1843 in the lord chanberlaia has been, according to the report of a select committee of the House of Commons in 1866, on the whole wisely exercised. On the other hand, there have been instancee where perhaps both he and his subordinate officer, the examiner of stage playe, have been somewhat nice in their objections. Thus, during the illness of George III., King Lear was inhibited. George Colman, when examiner, showed an extraordinsry antipathy to such words as "heavon" or "angel." The lord chamberlain's powers are still occasionally exerte. in the interests of public decency, less frequently for political ressons. Before 1866 the lord chamberlain appears to have taken into consideration the wants of the neighbourhood before granting a licence, but since thet year such a course bas beco abandoned.

I'he existing law of theatres is mainly statutory. It will be convenient to trest it as it regards the building, the performsnce, and the liccasing of the building and of the performance. A theatre may be defined with sufficient accuracy for the present parpose as a building in which a stage play is performed for hire. It will be seen from the following sketch of the law that there are a considerable number of different persons, corporate and unincorporate, with jurisdiction over theatres. A consolldation of the fsw eeems urgently required, and the placing of jurisdiction in the hands of a central eutherity for the United Kingdom. The committee of 1866 recommended the transfer to the lord chamber lain of the regulation of all plisces of amusement, snd ap appeal from him to the home secretary in certain cases, as also the exten. sion of his authority to preventive ceasorship in all public entertainments; but no legislation resulted. Several bills for the amendment of the law have been recently introduced, but hitherto without success in the face of more burning political questions.

Building.-A theatre (st any rate to make it such a building as can be liconsed) must be a permanent building, not a mere tent or bootb, unless when licensed by justicos st a lawful fair by $\S 23$ of the Act of 1843. It must, if in the metropolis, conform to the regulations ss to structure contained io the Metropolitan Building Acts and the Metropelis Msnagement Acts, espocislly the Act of 1878 (4I and 42 Vict. c. 32). This Act makes a certificate of structural fitness from the Board of Works necessary as a condition precedent for licence in the case of all theatres of a superficial sreas of not less than 500 square feet licensed after the passing of the Act, gives power to the bosrd in certain cases to call upon proprietore of existing theatres to remedy structural defects, and enables it to make regulations for protection from fire. Such regulations were issued by the board on May 2, 1879. As to theatres in provincial towns, the Towns Improvernent Act, 1847, and the Public Health Act, 1875, confer certain limited powers over the building on municipal cofporations and orban sanitary authorities. In nany towns, however, the structural qualifications of buildings used as theatre depend upon local Acts and the by laws made under the powers of such Acts. To a more limited extent the rules inade by junstices may enforce certain structural requirements.
Performance.-To constitute a building where a performance takes place a thestre, the performance must be (a) of a stage play, and (b) for hire. (a) By $\$ 23$ of the Act of 1843 the word "stageplay" includes tragedy, comedy, farce, opera, burletta, interlude, melodrama, pantomime, or other entertaioment of the stage, or any part thereof. The two tests of a stage play appear to be the excitement of emotion and the representation of action. The question whether a performance is a stage play or not seems to be one of degree, sad one rather of fact than of lav. A ballet d"action weuld usually be a stage play, but it weuld be otherwise with a ballet divertissement. \& 14 empowers the lord chamberlain to forbid the acting of any stage play in Great Eritain whenever he may be of opinion that it is fitting for the prescrration of good manners, decorum, or the public peace to do so. § I5 imposes a penalty of e50 on any one scting or presenting a play or part of a play after such inhibition, and ayoids the licence of tha thedtre where it appears. Regulations of po.ice respecting tho performance are contanised in 2 and 3 Viet. c. 47, and io many local Acts. A performance may also be proceeded against as a nuisance at common law, if, for instance, it be contra bonos mores or draw together a great concourse of vehicles, or if so much noise be heard in the neiglbburhood as to interfere with tho ordinary occupations of life. Vely curious instances of proccedings at common law are recorded. In 1700 the grand jury of Midulesex presentcl the tro playhouses and also the bear-girden on Bankside (the "Paris garden" of Henry VIII., 8"t v. sc. 3) as riotous and disorderly nuisances. In 1819 certain players Fere prosccuted and convicted before the court of great sessions of Wales for acting indecent open-air interludes at Berriew in Montgomeryshire. Performances on Sunday, Good Friday, and Cluristmas day are illegal (see Sunday). Regulations as to the salo of intozicating liquors during the performance are made Ly tha Licensing Acts and other public general Acts, as well as by local Acts and rulcs made by justices. It is frequently a con-
dition of the licence granted to provincial theatres that no excleeable liquors shall be zold or consumed on the premises. The Children's Dangerous Performances Act, 1879 (42 and 43 Vict. c. 34), foroids under a peaalty of $£ 10$ say public exhibition or par. formance whereby the life or limbs of a child under the age of fourtecn shall be endangered. It also makes the employer of any such child indictable for assault where an accident causing actual bodily harm has happened to the child, and enables the court of conviction of the employer to order him to pay the child conpensa. tion not excceling $£ 20$. (b) The perfermsnce must be for hire. § 16 of the Act of 1843 makes a building one in which scting for hire takes place, not only where money is taken directly or in. directly, but also where the purchsse of any article is a condition of admission, and where a play is performed in a place in which exciseahle lifuor is sold. In a recent case of Shelley v. Bethell (Law Reports, 12 Queen'e Beach Division, 11) it was held that the proprietor of a private theatre was lisble to penalties under the Act, though he lent the theatre gratuitously, becsuse tickete of admission were sold in aid of a charity.

Licensing of Building.-By $\$ 2$ of the Act of 1843 all theatres (other than patent theatres) must be licensed. By $\S 7$ no licence is to be granted except to tho actual and responsible manager, who is to be bound by himself sad two aureties for due observance of rules and for securing payment of any penalties incuried. The metropolitan theatres other than the patent theatres (es for at least as they are included in the boroughe named in the Act of 1843) are ricensed by the lord chamberlain. By $\$ 4$ his fee on grant of a license is not to exceed 10s. for each month for which the theatre is licensed. The lord chamberlain appears to have no power to make suitable rules for enforcing order and decency. Ho can, however, by $\S 8$, suspend a liceace or close a patent theatre where any riot or misbehsviour bas taken place.
Provincial theatres fall under three different licensing anthorities. The lord chamberlain licenses thestres in Windsor and Brighton, and theatres situated in the places where the queen occasionally resides, but only during the time of such occasional residence (§ 3). Theatres at Oxford and Cambridge, of within 14 miles thereof, are licensed by the justices having jurisdiction therein, but b-fcee any such licence can come into force the consent of the chancellor or vice-chancellor must be given. The rules made by the justices for the management of the thestre are subject to the spproval of the chancellor or vico chancellor, who may also impose such conditions upoa the licence ss he thinks fit. In case of any bresch of the rules or conditions, he may anuul the licence (§ 10). All other - proyincial theatres are licensed by four or more justices at a special session held within twanty-one days after application for a licence shall have been made to them (§5). The fee is not to exceed 5 s . for each month for which the theatre is licensed (§ 6). The justices, like the lord chamberlsin, sppear to have no discretion as to grant. ing a licenco. Their act is purely ministerial and confined to ascertaining that the applicant is the actual snd responsille manager, add that he and his sureties are of sufficient substance to provide the requisite bonds. § 9 gives the justices authority to make at the special session suitable rules for enforcing order and decency at the theatres licensed by them, and of rescinding or altering such rules at \& subsequcut special session. It also gives a secretary of state power to rescind or alter such rules, sud to make other rules. In case of riot or breach of the rules, the justices may order the theatre to be closed, and it thereupon becones an unlicensed house. Penalties are imposed by the Act for keeping or acting in an unlicensed theatre, and for producing or acting in ca unlicensed play.
Licensing Performance, - A stage play must be duly licensed before performance. § P2 of the Act of 1843 prescribes that a copy of every new play and of every addition to an old play, and of evers vaw prologue or epilogue or addition thereto (such cony to bi signed by the master or manager), shall be sent to the lord cham. berlaiu, and, if the lord chamberlain does not forbid it within seven. days, it may be represented. § 13 empowers the lord chamberlain to fix a scale of fees for examination; the fee is now two guinea. for a play of threc or more acts, one guinea for a play of less thar three acts. All plays represented previously to the Act are held to be licensed. A play once liceased is licensed once for all, unless the licence be revoked under § 14. Tha examination is the duty of a special officer of the lord chamberlsin's department, the examiner of stage plays.

Music Halls.-Music was at nu time the object of restrictione as severe as those imposed upon the drama. The present Music Hall Act (25 Geo. II. c. 36) was passed in 1752, probably in consequence of the publication in 1750 of Fielding's Inquiry into the Causes of the late Increase of Robbers. It is remarkalle that two works of the sams writer should from opposite causes have led to looth theatre anll music hall legislation of lasting importance. The Act was originally. passed for a term of three years, but was inade perpetual by 28 Geo. II. c. 19. It applies ouly to masic halls within 20 miles of London and Westminster. Every such music hall must be licensed at the Michaelmas quarter sessions, the licence to be signified undes the
hands and seals of four or more jnstices. The licence may be granted for music or dancing or both. Public notice of the licence is to be given by affizing over the door the inscription "Licensed pursuant to Act of Parliament if the twenty-fifth of King George the Second." The penalty for keeping an unlicensed music hall is f100. Music balls beyond the radius of 20 miles from London and Westmiuster aro usually governed by local legislation, which in most cases follows, mutatis mutandis, the lines of the Act of 1752. The music hall, like the theatre, must generally fulfil certain structural requirements. In one important respect the law is more lenient to the music hall than to the theatre?. A licence is necessary for a single performance of a stage play, but it is only babitual music or dancing that requires a misic hall licence.

Scolland. - In Scotland the theatre has always exercised a smaller amount of influence than in England, and there bas been little exclusively Scotch legislation on the subject. An Act of 1555 , c . 40, disconntenanced certain amusements of a semi-theatrical kind by enacting that no one was to be chosen Robert Hudo (sic), Little John, abbot of Unreason, or queen of May. A proclamation of James VI. in 1574, and an Act of 1579, c. 12, followed the lines of English legislation by making persons using nulawful plays, such as jugglery or fast and loose, punishable as vagabonds. In 1574 the General Assembly claimed to lieense plays, and forbade representations on Sunday. As in England, tho licensing power seems then to hare passed from the church to the crown, for in 1599 James VI. licensed a theatre at Edinburgh. The Act 1672, c. 21, exempted comedians while upon the stago from the sumptuary prorisions of the Act respecting apparel. The chamberlain of Scotland, while such an office existed, appears to have exercised a certain police jurisdiction over theatres. The Theatro Act of 1843 extends to Scotland, as did also the previous Act of 1737.

Ireland.-Theatrical legislation, as far as it went, was based upon English models. Thus ridicule of the liturgy was forbidden by 2 Eliz. c. 2 (lr.); common players of interludes and trandering minstrels were deemed vagabonds, 10 and 11 Car. I. c. 4 (lr.). In 1786 an Act was passed to enable the cromn to grant letters patent for one or more theatres in Dublin city and county, 26 Geo . III. c. 57 (1r.). The preamble alleges that the establishing of a well-regulated theatre at the seat of government will be productive of public advantage and tend to improve the morals of the people. Exceptions from the restrictions of the Act were made in favour of entertainments for the benefit of the Dublin lying-in hospital and exhibitions of horsemanship or puppet-shors.

United States.-Public entertainments, dramatic or otherwiso, are usually under the control of the minicipal authorities. In some States, such as Nen York and Massachnsetts, there is State legislation, requfring places of public entertainnuent to bo licensed by the proper authority. In many States it is a condition of the licence that intoxicating liquors shall not be sold in such places. Other conditions, more or less usual, are that there shall be no Sunday or dangerous performances, that acrobats shall be properly protected, and that female waiters shall not be employed. Structural qualifications are in some cases made necessary. Thus in 1885 the New York legislature passed an Act containing many minute provisions for ensuring the safety of theatres against fire. A characteristic piece of legislation is the New York Act of 1873 , c. 186 , enacting that no citizen is to be excluded from a theatre by reason of race, culour, or previous condition of servitude. This Act of course merely carries ont the important principle affirmed in art. xiv. of the amendments to the constitution of the United States. See Privileoe,
The most recent If not the only work on the law relating to theatres is Geary's Law of Theatres and Music Halls, 1885.
(J. W†.)

THEBES. See Egypt, rol. vii. p. 776 sq.
THEBES (anciently Ô̄ßah Thebæ; or in puetry sometimes $\Theta_{\eta} \beta a$, in modern Greek Phiva, or, according to the corrected pronunciation, Thivx), one of the most interesting towns in Greece, is situated on low hilly ground of gentle slope a little north of the range of Cithæron, which divides Boeotia from Attica, and on the edge of the Boootian plain, about 44 miles from Athens, whence it is now reached by two carriage-roads. It has about 3500 inhabitants, and is the seat of a bishop. The present town occupies the site of the ancient citadel, the Cadmea; two fragments of ancient wall are visible on the north, and another, belonging either to the citadel or the outer wall, on the south. Two streams, rising a little south of the town, and separated by an average distance of about half a mile, flow on the two sides, and are lost in the plain. These are the ancient Ismenus on the east and Dirce ($\Delta^{\prime} \rho \times \eta$) on the west, which gave to the town its name S.rórauos. The Dirce, now Platziótissa, has several
spring. From the west side of the Cadmea another copious fountain (Paraporti) falls to the Dirce. In a suburb to the east is another (Fountain of St Theodore), and north-west are two more. The Cadmea itself is supplied with water brought from an unknown source to the south by works supposed of prehistoric antiquity. It now enters the town by an arueduct of twenty arches of Frankish construction. The "waters" of Thebes are celebrated both by Pindar ana by the Athenian poets, and the site is still, as described by Diczarchus (3d century
 pasha of Negroponte (Euboea) is said to have supplied his table, is still called "the spring of the cadi." Some of the marble basins, seats, \&c., remain, and, with the fragments of wall above mentioned, are the only relics of the classic time. The most curious of later briildings is the church of St Luke, south-east of the Cadmea, believed to contain the tomb of the evangelist. From the abundance of water the place is favourable to gardens, and the neighbouring plain is extremely fertile. But the population is scanty, and the town at present of no inportance.
In prehistoric times the Cadmea, with the enlarged city of Thebes into which it developed, was a power of the first rank, as is shown by its unrivalled legends. More particularly the mythical wars with Argos (see below) point to a time when the "Hellenes" of North Greece were still contending unequally against the "Achæans" of the Peloponnesus. In the legend as given by Eschylus these names are accurately preserved. At the beginning of continuous history (6th century. B.c.) Thebes had long been possessed by immigrants from Thessaly, who knew the previous inhabitants as Cadmeans ($\kappa \mathbf{\alpha} \delta \mu \epsilon i \mathrm{o} t$).

The history of the town to the end of the 4th century is part of the general history of the nation (see Greece). It had an aristocratic constitution, and claimed a contested sovereignty over the other towns of Beotia. Down to 371 B.C. this status was not essentially changed. The battle of Coronea (394) showed the increasing military strength of the Thebans, and in 371 the genius of Epaminondas raised them by the victory of Leuctra for a brief period to the leading position in Hellas. Philip of Macedon spent part of his youth as a hostage at Thebes, and probably learnt there important lessons in mar. By him and his successor the state was destroyed. In 338 the Thebans shared with the Athenians the defeat of Chæronea, and received a Macedonian garrison; the lion-monument erected by them on the field of battle, and still existing there, though in fragments, is a more impressive memorial of their greatness than anything now visible at the town itself. In 335, after the death of Philip, they revolted, and were punished by Alexander with a fearful rengeance. It is said that 6000 Thebans were slain at the capture and 30,000 taken prisoners. The population was dispersed, and the town entirely razed (except, according to tradition, the house of the poet Pindar); and, though it was soon restored by the Macedonian Cassander (315), it never again played a leading part in history. In 86 b.c., having sided against the Romans in the Mithradatic war, it was plundered by Sulla, and fell into such decay that Strabo describes it as little better than a village. In the $2 d$ century the traveller Pausanias, who gives a full account of it (ix. 5 sq.), found only the citadel inhabited. In 395 A.d., however, it had some strength, for Alaric, on his way to the capture of Athens, did not think fit to attack it. In the later times of the Eastern empire (10th to 12 th century) it again became wealthy and important, being specially celebrated for the manufacture of silk and cloth. In 1143 it was plundered by the Normans of Sicily (who transferred thither the chief artisans of the silk trade). and, after the capture of Constantinople by
the crusaders (1204), became with Athens a fief of the feudal empire. In 1311 it was again plundered by the Catalan Gtrand Company, a body of Spanish mercenaries, and appears to have had no return of prosyerity.
of more lasting effect than the politics of Thebes have been ita legends. Beootia, or rather the Cadmeis (Thucyd., i. 12), was a land of poetry from extremely ancieut times, and the stories of Thebes are in Greek literaturn as inportant as those of Troy. The legends of the five chicf groups will be found under the names indicated in the fellowing division:-(1) the foundation of the Cadinea by Cadmus; (2) the foundation by Amphion, -to this belong originally the "seven-gated" wall, the name of intrduv入os Өispn, and the legends of Zethus, Antiope, and Dirco; (8) war of the "Seven" (under Adrastus of Argos); war of the Epigoni, or "descendants" of the Seven ; the story of Cdipus ; (1) legends of Bacchus,-at Thebes as elsewhere this religion was conpraratively late, but becanne characteristic of the town ; (5) legends of Heracles (commonly found with those of Bacclus; Theles was repnted the birthplace of both). Fron the eric poems, of which littlo but titles remain, these tales descended to the Attic tragediens ; upon them are fonnded the Scven agaiust Thcbes of Esclyylus, the CEtipus Tyrannus, Cdipus Coloncus, and Autigone of Sophocles, the Phanisse, Supplics, and Bacche of Euripidas, \&cc., with innumerable nlaye not extant. Apart fron direct imitation of theso works, the stories themselves, throngh Statius, Boccaccio, and others, have exercised a great influence on nodern literature. In historical times the Thebans were not conspicuous for intellectual accomplishments, but their reputation is sufficiently sustained by Finder, perhlps the most distinctively Hellenic of all the national poets.

The most famous monument of encient Thebes was the outer wall with its seven gates, which even as late as the 6th contrify B. © was probably the largest of x Ertificial Greek fortresses. The names of the gates vary, but fur are constant, - the Preetides, Electre, Ncistaz or Noite, and Hemoloides; Paussnias gives the others as Ogygia, IIjpsiste, Crenax. There is evidence that the gato Electray was on the sonth, and near it was the tomb of the Thebans whe fell at the capture by Alexander. The gates shown to Parsanias as Niciste and Proetides led respectively north-west and north-east. Two of the springs have been identified with some jrobatility, 一that of St Theodore with the Edipncles, in which ©edirus is ssid to have purged himsolf from the pollu'tion of homicide, and the Parapntti with the dragen-guarded fountain of Ares (sce Cadmus). Dicmarchus, referring to tho town of Cassander, gives two measurements for the circuit, equal to about 9 miles an 151 miles, but even the smaller is impossible for the wall, and they probzbly $1 e$ fer to the terxitory proper of the town, or $\gamma \hat{n}$ enßals. Beyond this the topography is wholly uncertain. From the interest of the site in history and still more in literature, as the scene of so many dramas, the temptation to fix details has been specially strong. Conjectural plans or descriptions, diflering widely, are given by Leake, Forchhammer, Ulrichs, Bursian, and others (references below). All are based on the assumption that the description of Pausanias and the allusions of the Attic tragedians may be read together and combined, and that the result will give the plan as it existed in the 5 th and 4th centuries b.c. Bat to this two objections must be taken. (1) The account of Pausanias, even when clear in itself, is very nucertain eridence for anything earlier than tho destruction by Alexander. It is said indeed that the restored town occupied the amree area, but this is consistent with great disturbance of tradition ; and wo have further to allow for inaccurato transmission through 450 years of decadence, and finally for the quality of Pansanias's information, given apparently by casual guides to a travelier extremely uncritical. (2) It may be doubted whether the tragedians had accurate know. ledge of Theban tepography, and they had certainly no reason for introdncing it in their plays. Their ylota are laid in a remote pest ; and it is difficult to suppese them on the ono hand so careful as to fit their scenes to the actual Thebes, and on the other hand so careless as to presume tliat it had suffered no great changs between the times of Cadmus or of ©Edipus and their own days. . Indeed they did not make this mistake. The plays which contain most references to topograpby are the Scven against Yhcbes and the Phenissa. In the Seven the name of "Thebes" does not occur at all (the title is a misnomer, probably net given "by the author); the town is called by its ancient name "The Cadmea" (Kaঠцelá $\pi \delta \dot{\lambda}(5)$, and the whole play assumes that the "city of Cadmms" was much emaller than the Thebes contemporary with Æ.schylns can bave been. In the Phomissa the circnit of the walls is said to be so small that a porson within must neeesearily know all that had taken place in a general attack (v. 1356). None of the conjectural plans wonld ap proximately aatisfy this" nor can it have been true for the time of. Euripides. After this, it is not surprising so find that the attempt to use the plays as evidence is involved in nnanower:ad difficulties, \& few of which are given below.

In itsalf, however, and as relating to the rnins of the restorea town merely, tha description of Pausanius is carions und interestingThe princinsl buildings were at that tims (2d century) the temple of Apollo Ismenius, which must have stood somewhere ebont the present church of St Luke, tho theatre, neax the gate Proetides, the Heracleum, with a gymnasium and face-course, and the temples of Artemis Eucleia, of Ammon, and of Fortune (Túxŋ). Besides these Pousanias was shown all the gatos, all the legendary sites, the house of Pindar (north-west beyond the Dirce), statues, \&c., dedicated by him, several statnes of immeuse antiquity, others attributed to the greatest artists, aud in fact much more than it is easy to believe.

1. Apollo Ismenits and Apollo Spodius. - Sophocles (E. T., 21) mentions, as one of the Theban sanctuaries, "the oracular ashes of Ismenns," 'I $\sigma \mu \eta \nu 0 \bar{\vartheta} \mu \alpha \nu \tau \in\{\alpha, \sigma \pi \delta \delta o s$. Pausanias, who calls the river' not Ismenus but Ismenius, deseribes (1) a temple of lsmenius or Apollo Ismenius (ix. 10, 2), and (2) an altar of Apollo Spodins, made of ashes and used in a peculiar manner as an oracle (iz. 11, 7). Wo should suppose from Sophocles that hoth observations related to the same sanctuary; and Sophocles clearly identified the two. But in Pausanias they ara in different plsces and have uo connexion at all. Either therefore the topography and ritual of tho one peried differed from those of the ether, or, which is equally prohable, the poet used Theban names withont regard to accuracy.
2. The Fountain of Ares.- Euripides, in the Supplices (v. 650 sq.), describes an army adrancing on Thebes from the south as having its right at the Ismenian hill, its left at the fountain of Ares, and "the chariots below the momument of Amphien." Pausanias also places the Ismenian hill on the right of the southern gate. But the fountain of Ares he places on the samo side, a description quite inconsistent with this and other allusions. Ulrichs, While insisting ou the agreement about the hill, nerely observes on this that Pausanias is unintelligible, Of a still greater difficulty he saye nothing. The tomb of Amphion is placed by Eschylus north of the town, and there or in thet direction was show18 to Pausanias. The tnjegraphers accerdingly suppose that the "chariots" of Euripides were in the plain to the north. But there is no suggestion in the passage that any part of the advancing army was separated from thio rest, and the observer expressly says that he was at the prace where the chariots forght and had a particularty good vicw of this part of the battle (r. 681). Now be stood on the gate Electre, i.c., as far as possible from the tomb of Amphion, as placed by Rschylus and Pausanias. It is impossible to make a consistent account of this, and it seems plain that Euripides took up the name "tomb of Amphion" at hazard, an!! ignored or forgot that the real toun could not be brought into his picture.
3. The Altar of (Athena) Onca.-This was shewn to Pausanias (ix. 12, 1), who was teld that it marked the place where the lying down of a cow indicated to Cadmus the sito destined for his city
 acropolis there was formerly the house of Cadmus (Káspou oikio)." No other indication is given as to the place of the altar, and the natural inferonce is that it was shown in the Csdmea. But ISchylus (Septemb, 501) places it outside the walls. Accordingly it is suggested that the oracular sign only indicated the newich hourhood of the destined site, and that the altar shown to Pausanins wasnear that of Apello Spodius, which is mentioned lost before it, and may lhase been outside the mall. But this juxtaposition provee nothing about the place of Onca, for Pausanias himself shows that mention of Onca here is suggested by a reference to "oxen" irs connexion with the altar of Slodius. which breught to his mind the "cow" of the other legend.

The Tontb of Amphion and Zcthrss.-Apart from the confusion of Euripides already noticed, there is a difficulty abont the mention of this moumment in Pansanias and Eschylus. Parsanias, after describing several buildings near the gato Prcetides, concluding with somo in the inarket-place, mentions next (without further indication of flace) the tomb of Amphion and Zethus, and continucs thus, - " the way from Thebes to Chalcis (northeeast) is by this gate Proctiles, \&c.". Fschylus places the tomb of Amplhien outside the wall opposite the north gate (Scptem, 527), and the Preetides elsewhere. Ulrichs coueludes .llat Pausanias "evidently" went out by the north gate to view the monument and then returned to the Proetides. Of conrse this is possible, but it is useless to draw exact inferences from documents which require such an hypothesis. It is equally probable that Pausanias ideutified the tomb with a monnment called the Amphcion, which secms (Ulrichs, p. 17) to have been somewhere near the market-place. Indeed, there is no proof that they wers not identical, for the. only evidence that the tomb Was outside the wall (and therefore diferent from the Ampheion) is that of Eschylus and Euripides, whose imaginary cities were not much larger than the Cadmean hill, and must have excluded the Ampheion itself.
On the history, see references under GaEecz; on the topagraphy and legende Dirkchs, Reisen $\mathbf{1}$ ad Forschungen in Griechenland, ii 1 sq, Leake, Travels ir
Northern Grece, ii. Tiv. Burginn Northern Greece, ii. xiv.; Bursian, Geographie Don Griechenland, i. 225 sq. ian
the "Seven againat Thebes." ed, by A. W.V Vall, "Introducton." (A. W. V.)

THECLA, ST, virgin, is commemorated by the Latin Church on September 23. The Breviary relates that sho was boru of illustrious pareatage at Iconium, and came under the personal teaching of the apostle Paul. In her eighteentli jear, having broken ber engagement with Thamyris, to whom she had been betrothed, she was accused by lher relations of being a Christian, and sentenced to be burned. Armed with the sign of the cross, she threw herself upon the prre, but, the flames thaving been extinguished by a sudden rain, slac came to Antioch, where she was exposed to the wild beasts, then fastened to bulls that she might be torn asunder, then thrown into a pit full of serpents, but from all these perils she mas delivered by the grace of Christ. Her ardent faith ead her boly life mere the means of converting many. Returning once more to her native place, she withdrew into a mountain solitude, and becaroo distinguished by many virtues and miracles, dying at the age of rincty. She was buried at Seleucia.
The substance of the foregoing narrative, with many other curions incidents, occurs in the sery ancient apocryphal book entited the π epobsoc of Paul snd Thecla (Acta Pauli et Thecles). Tertullian tells us that this work wes written by a presbyter in Asia, "out of love to Paub," but that his condoct was not aprrored, and led to his deposition. What caused special offence was its recombition of the right of romen to preach and baptize. There is no doubt that the rresent differs rery considerably from the original form of the Acla, but even now its Gnostic origin is betrayed in several features wh:ch it atill retaius-for example, the rejection of marrisgc. For tho text, see the Acta Apos?', Apoor. of Tischendorf, who in the Prolegomeca gives a large body of exidence for its great antiquity a translation is given in the Ante-Nienc Christian Libram.
THEFI is, in modern legal systems, unirersuly treated as a crime, but the conception of theft as a crime is not no belonging to the earliest stage of lam. To its latest period Roman law regarded theit (jurtum) as a delict prima fucie pursued by a civil remedy,- the actio furte for a penalty, the vindicatio or condictio for tho stolen property itself or its value. In later times, wo doubt, a criminal remedy to mett tla graver crimes eradually grew up by the side oî the civil, and in the timo of Justinian the criminal renieds, where it existed, took precedence of the civil (Cod., iii. 8, 4). But to the last criminal proceedings could only bo taken in serious casce, c.g., against stealers of cattle (atigui) or the clothes of bathers (balncarii). The punishment was death, banishment, or labour in the mines or on public norls. In the main the Roman law of theft coincides with the English law. The definition as given in the Instizutes (iv. 1, 1) is "furtum est coatrectatio rei frandulosa, rel ipsius rei, vel etiam ejus usus possessionisve," to which the Digest ($\mathbf{x} 1 \mathrm{vii} .2,1,3$) adds "lucri faciendi grotia." The earliest English definition, that of Bracton (150l), runs thus: "furtum est secundunt leges contrectatio rei aliens fraudulenta cum animo furandi inrito illo domino cujus res illa fuerit." Bracton omits the "lucri faciendi gratia " of the Roman defit tinn, becausu in English law the motive is immaterial, ${ }^{1}$ and the "usus ejus possessionisre," because the definition includes au intent to deprive the owner of his property permanently. The "animo furandi" and "invito domino" of Bracton's defnition are expansions for the sake of greater clearness. They scem to have been implied in Roman law. Furtum is 0:2 tho rhole a more comprebensive term than theft. This diffurence no daubt arises from the tendency to extend the bounds of a delict and to limit the bounds of a crime. Thus it was furtum (but it would not be theft at English coinmon law) to use a deposit of pledge contrary to the wishes of the owner, to retain goods found, or to steal a human being, such as a slave or filius familias (a special

[^94]form of furtum called plagium). The latter would be in English law an abduction under certain circumstances, but not a theft. On the other hand, ono of tro married persons could not commit furtum as against the other, but theft may be so committed in Englaud since recent legislation. As a furtum was merely a delict, the obligatio ex delicto cauld be extinguished by agrecment between the parties ; it will be seen that this cannot be done in England. In another direction Enclish law is nore considerate of the rights of third parties than was Roman. As will appear hercafter, the thief can give a good title to stolen goods, in Foman law ho could not dn so, except in the single case of a hereditas acquirer by usucapio. The derelopmeat of the law of furtum at Rome is historically interesting, for even in its latest period is found a relic of one of the most primitive theories of law adopted by courts of justice: "They took as their guide the measure of reageance likely to be exacted by an agserieved person under the circumstances of the caso" (Maine, Ancient Laun, ch. x.). This explaias the reason of the division of furlum iuto manifestum and nec manifestum. The manifest thief was one taken red-handed, - "taken with the manner," in the language of old Englioh lar. The Twelve Tables denounced the punishment of death against the manifest thief, for that mould be the penalty demanded by the indignant owner in whose place the judge stood. Tho severity of this penalty nas aftermards mitigated by the pretor, who substituted for it the payment of quadruple the value of the thing stolen. The sane penaliy was also given by the prator in case of theft from a fre or a wrech, or of prevention of search. No doubt the object of this large penalty mas to induce injured persors to refrain from taking the law into their own luands. The Twelve Tables mulcted the non-manifest thief in double the value of the thing stolen. The actions for penaltics were in addition to the action for the stolen goods themselves or their value. The quadruple and double penalties still remain in the legislation of Justinian. Tho search for stolen goods, as it existed in the time of Gaius, ras a survival of a period when the injured person mas, as in the case of summons (in jus rocatio), his orn executive officer. Such a search, by the Twelre Tables, might bo conducted in the house of the supposed thief by the owner in person, naked except for a cincture, and carrying a platter in his band, safeguards apparently against a violation of decency and against any pessibility of his making a false charge ly depositing some of his own property on his neighbour's premises. This mode of search became obsolete before the time of Justinian. Roubery (bona vi rapta) was piolence added to furtum. By the actio in lonorum raptomum quadruple the value could be recovered if tho action mere bronght within a year, only the raluo if brought after the expiration of a year. The quadruple value, it is to be noted, included the stolen thing itself, so that the penalty was in offect ouly a triplo one. It was inclusive, and nct cumulatiro, as in furtum.

In England theft apyears to have been rery early regarded by legislators as a matter calling for special attention. The pre-Conquest compilations of laws are full of prorisions on the subject. It is noticeable that the earlier ones appear to regard theft as a delict which may be compounded for by payment. Considerable distinctions of person are made, both in regard to the owner and the thief. Thus, by the laws of Ethelbert, if a freeman stole from the king he was to restore ninefold, if from a freeman or from a dwelling threefold. If a ineow stole, bo bad only to make a twofold reparation. In the lams of Alfred ordinary theft Tas still only civil, but he who stole in a church was punished by the loss of his hand. The lawe of Ina named as the penalty death or redemption accord
ing to the wer-gild of the thief. By the same laws the thief might be slain if he fled or resisted. Gradually the severity of the punishment increased. By the laws of Athelstan death in a very cruel form was inflicted. At a later date the Leges Henrici Primi placed a thief in the kiag's mercy, and his lands were forfeited. Putting out the eyes and other kinds of mutilation were sometimes the puaishment. The principle of severity continued down to the present ceutury, and until 1827 theft of certain kinds remained capital. Both before and after the Conquest local jurisdiction over thieves was a common franchise of lords of manors, attended with sume of the advantages of modern summary jurisdiction. It might be exercised either over thieres who committed a theft or were apprehended within the lordship (infangthef), or over those inhabitants of the lordship who were apprehended elsewhere (outfangthef). Either or both franchises might be enjoged by grant or prescription. As lately as 1 Pb . and M. c. 15 infangthef and outfangthef were confirmed to the lords marchers of Wales. An analogous franchise was theam, or the right of calling upon the holder of stolon goods to vouch to warranty, i.e., to name from whom he received them. In the old law of theft there were to be found tro interesting survivals of the primitive legal notions which were found in Roman law. Up to a com paratively recent date a distinction analogous to that between furtum manifestunc and nee manifestum was of importance in English criminal practice. The thief "taken with the manner" was by the Statute of Westminster the First not to be admitted to bail (see Letters of Junius, 1xviii.). In modern procedure the probable guilt or innocence of the accused is not so much to be considered in a question of bail as the probability of bis appearance at the trial. The other matter worthy of notice is the old pursuit (secta) by bue and cry. In the pre-Conquest zodes the owner was generally allowed to take the law into his own band, as in early Roman law, and get back his goods by force if he could, no doubt with the assistance of his neighbours where possible. From this arose the later development of the hue and cry, as the recognized means of pursuing a thief. The Statutes of Westminster the First and of De officio coronatoris enacted that all men $^{\text {a }}$ should be ready to pursue and arrest felons, and ten years later the Statute of Winchester (1285) enforced upon all the duty of keeping arms for the parpose of following the hue and cry. It also made the hundred liable for thefts with riolence committed in it, an adoption no doubt in feudal lar of the old pre-Conquest liability of the frithborg. As justice became more settled, the hue and cry was regulated more and more by law, and lost much of its old natural simplicity This led to its gradually becoming obsolete, though the Statutes of Westminster the First and De officio coronatoris are still nominally law as far as they relate to the hue and cry. The Statute of Winchester as to the liability of the hundred was repealed in 1827.
The term theft in modern English law is sometimes used as a synonym of larceny, sometimes in a more comprehensive sense. In the latter sense it is used by Mr Justice Stephen, who defines it as "the act of dealing from any motive whatever, unlawfully and without claim of right, with anything capable of heing stolen, in any of the ways in which theft can be committed" (for which see $\S 296-300$), "with the intention of permanently convertiag that thing to the use of any person other than the general or opecial owner thereof" (Digest of the Criminal Lazo, § 295). In this broader sense the term applies to all cases of depriving another of his property, whether by removing or withholding it. It thus includes larceny, robbery, cheating, embezzlement, and breach of trust. Embezzlemeni is a statutory crime created as a separate form of
offence in the last century (see vol. viii. p. 159). The difference between larceny and embezzlement turns mainly on the fact of the master's being in actual or constructive possession of the stolen property (see Possession). Fraudulent breach of trust was not made a specific offence until 1857 (see Trust).

Larceny (a corruption of latrocinium), or theft proper, was felony at common lavr. The common law of larceny bas been affected by numerous statutes, the main object of legislation beiag to lring within the lav of larceay offencea which were not larcenies at common law, either becanse they were thefts of things of which there could be no larceny at cemmon law, e.g., beasts fere nature, title deeda, or choses in action, or because the coommon law regarded tham merely as delicts for which the remedy was by civil action, e.g., frandulent breaches of trust. The earliest Act in the atstutes of the resIm dcaliog with larceny appears to be the Carta Forestem of 1225 , by which fine or imprisonment was isflicted for atealing the king's deer. The next Act appears to be the Statute of Westminstcr the First (1275), dealing again with stcaling deer. From this it seems as though the beginnieg of legislation on the onbject was for the purpose of protecting the chases and parks of the king and the nobility. An immense mass of the old Acts will be fonnd named in the repealing Act of 1827,7 and 8 Geo. IV. c. 27. An Act of the same date, 7 and 8 Geo . IV. c. 29 , remored the old distinction between grand and petit larceny. ${ }^{1}$ The former was theft of goods above the value of twelve peoce, in the house of tho 2wner, det from the person, er by night, and was a capital crime. It was petit larcent where the value was twelve pence or ueder, the pnnishment being imprisonmeat or whipping. The gradual depreciation in the valno of moncy afforded good ground for Sir Henry Spclman's sarcasm that, while everything else becamo dearer, the lifo of man became continually cheaper. The distinction between grand and potit larcesy first appears in atatute law in the Statuto of Westrainster the First, c. 15, but it was not created for the first timo by that statute. It ia found in some of the preConquest codes, as that of Athelstan, and it is recognized io the Leges Henrici Primi. A distiaction between simple and compound larceny is still found in the booka. The latter is larceny accompanied by circumstances of aggravation, os that, it is io a dwellinghouse or from the person. Tho law of larceny is now contained chiefly in tho Larceny Act, 1861, 24 and 25 Vict. c. 96 (which oxtends to England and Jrelasd), a comprehensize enactreet including larceny, embezzlement, fraud by bailees, agents, bankers, factors, and trustecs, sacrilege, burglary, housebreaking, robbery, obtaining money by threats or by falso preteoces, and receiving stolen goods, and prescribing procedure, bath civil and criminal There are still, however, somo earlier Acts in force dealing with special cases of larceny, such as 33 Hcn. VIII. c. 12, as to atealing the goods of the king, and the Game, Post-Office, and. Merchant Shippigg Acts. Later Acts provido for larceny by a partner of partnership property (31 and 32 Vict. c. 116), and by a husband or wife of the property of the other (45 and 46 Vict. c. 75). Proceedings against persons aubject to naval or military law depend upen the Naval Discipline Act, 1866, and the Army Act, 1881. Thero are several Acts, both before and after 1861, directing how the property is to be laid is indictments for stealing the goods of connties, friendly societies, trades unions, \&c. The principsl conditions which mast exist in order to constitute larceny are these:(1) there must be an actual taking into the posscssien of the thief, though the emallest removal is sufficient; (2) there must be an intent to deprive the owner of his preperty for an indefinite period, and to assume tha cntire dominion over it, an intent eften described in Bractea's words as animus furandi; (3) this intent must exist at the time of taking; (4) the thing taken nust be ono capable of larcens either at common law or by statute. One or two cases falling under the law of larceny are of special interest. It was held more than once that a servant taking corn for the purpose of feeding his master's horses, but without any intention of applying it for his own benefit, wes guilty of larceng. To remedy this hardahip, 26 and 27 Yict. c. 103 was passed to declare such an oct not to be felony. The case of appropriation of goeds which bave been fouad bas led to sone difficulty. It now seems to ba the law that in order to coustitute a larceny of lost goods there must lo a felonieus intent at the time of finding, that is, an iutent to deprize the owne of them, coupled with reasonable meass at the same time of knowing the owner. The mere retentioe of the goods when tho owner bas become knowa to the finder does not maka the retention criminal Larceny of money may be committed whee the money is paid by mistake, if the prisoner took it animo furandi. In two recent cases the question mas argued before a very full Court for Crown Cases Reserved, and in each caso thera was a atrikiog diference of opinion. In Reg. v. Middleton, Lavc Rep., 2 Crown
${ }^{1}$ This provision was most uneceessarily ropeated in the larceny Act of 1861.

Coses Reservel. 38, the prisoner, a depositar in a post-office sariugs bank, received hy the mistake of tha clerk a lerger sum than was emitled to. The jury fonnd that he hed the animus furandi at the time of taking the moncy, and that he know it to be tho money of the postomaster-gencral The majosity of the court held it to he larceny. In a case ia 1885 (Reg. v. Ashwell, Law Rep.; 10 Uneen's Beach Division, 190), whero the prosccuter gave the prisoner s sovereign believag it to be a alnlling, and the prisoner took it noder that belief, but afterwards discovered its valuo and retained it, the rourt way equally divided as to whether the prisoner was guilty of larceny at common law, but held that he was not guilty of larceuy as a bailec. Tho procelare in prosecutions for larcony has been consilcrably affected hy recent legialation. The inconvenienres of the common-law rules of iaterprotation of indictments leal to certain smeadments of the law, now cootaned ia the Larceny Act, for the purpose of aroiding the frequent follures of justice owine ta the strietness with which indictmenta were construed. Three larcenies of property of the same person within six months may now be charged in one indictment. On an indictment for larceny the prisoner mey be found guilty of embezzlement, sad vice ecrsa; and if the prisoner be indicted for obtsiniog goods by false pretences, and the offence thru out to be larceny, he is not entitled to be ucyritterl of tho misdemeanour. A count for receiving may bo joined with the comnt for stealiug. In many cases it is unnecessary to allege or prove ownerslip of the property the subject of the indictment. The Act also coataina numerous provisione as to venue and the apprehengion of offonders. In another direction the powers of courts of Scommary Jerisdiction (q.v.) have been exteaded, in the case of charges of larceoy, embezzlement, and receiving stolen goods, agaiost childreu sad young persons and agaiust adults plealing gnilty or waiving their right to trial by jury. The maximun punishusent for larceny is fourtecn years peual servitude, hut this can only be inflicted in certain exceptional cases, such as horso or cattle stealing cad larceny by a servant or a person in the ecrvice of the crown or the police. The extreme punishment for aimple larceny after a previous conviction for felony is ten years penal servitudo. Whipping may be part of the eentence on boys under sixteed.

Robbery is larceny accompanied hy violence or threatened violence. Whother ohtaining money by threata to accuse of crime was robbery at common law mas open to some doubt. It is now a specific offence under the Larceny Act, punishable by penal eervitude for life. Whipping may be added as part of the scatence for robbery by 26 and 27 Vict. c. 44.

Cheating is either a common-law or statutory offence. An indictment for cheating at common law is now of comparatively rare occurrence. The etatutory crime of obtaining money by false pretenees is the form in which tho offence generally presents itself. Like embezzlensent, this offence dates as a statntory crime from the last century. It now depends upon the Lareeny Act. A falso pretenco is defined by Mr Justice Stephen as "a false represeata. tion marle eithor by words, by mriting, or by conduct that some fact or facts existed" (Digcst of the Criminnl Law, § 330). Tho principal points to notice are that the false pretence must be of an existing fact (e.g., it was held not to be a faise pretence to promise to pay for goods on delivery), and that property must have been actually obtained by the false pretence. The broad diatinction between this offence and larceny is that in the former the owner intends to part with his property, in the latter he does not. By 22 and 23 lict. c. 17 , no indictment for obtaining money bv false pretences is to be piesented or found by the grand jury unless the dufendant has been committed for trial or the indictment is anthorized in one of the ways mentioncd in the Act. The maximum punishment for the common-law offence is five or imprisomment at discretion, for the statutory five years' penal servitudo.
Slolen Goods. - The omber of the goods stolen has an action egainat the thief for the goods or their value. How far he is entitled to pursme his civil rioght to the exclusion of criminal prosecution does not seem very clear apon the authorities. Ouo of the latest statements of the Jam was that of Mr Justice Watkin Williams:-" It has been said that the true pridciple of the common law is that there is neither a merger of the civil right, nor is it a atrict condition precedent to such right that there ohall have been a prosecution of the felon, but that there is a duty imposed apon the injured person not to resort to the prosecution of his private suit to the neglect and exclusion of the vindication of the public las ; in my cpinion this view is the correct one" (Midland lnsorance Company v. Smith, Lavo Rep., 6 Queen'a Bench Division, 568). Dealing with stolen goods hy persons other than the thief may affect the rights of such persoas either criminally or civilly. Two varieties of crime arise from such dealings. (1) Receiving atolen goods knowing them to have been atolen, a misdemeanour at common Paw, is by the Larceny Act a felony punishable by penal aervitude for fourteen years where the theft anounts to felony, a misdemeanour [unishable by pens] eervitude for sevec years where the theft is a misdemeanour, as in obtaining goods by fe!se pretences. Recent possession of stnlen property may, according to circurastances
euppert the presumption that the prisones is a thief or that be is a reccirer. The Prevention of Crime Act, 1871, made important changes in the law of evidence in cherges of receiving. It allows, under proper safeguards, evidence to be giren in the course of the trial of the finding of other siolen property in the possession of the accused, and of a provions conviction for any offence incolrin.? fraud and dishonesty. (2) Componading theft, or theftbote, tha: is, taking back stolen goods or receiving compensation on coudition of not prosecuting, is a misdemeanour at common law. It need not necessarily be committed by the owner of the goods. Under the Larceny Act it is a felony punishable hy seveo ycars' peoal servitude to corruptly take money or remard for helping to recore: stolen goods without nsing all due diligence to bring the offender to trial. By the ame Act, to advertise or print or publish anv aidvertisement offering a reward for the return of stolen goods, and using any words purportiog that no questions will be asked, \&c., rende:s the offender liabln to e penalty of $£ 50$. This penalty mos: by 33 and 34 Vict. c. 65 , he sued for within eix months, eod the asscnt of the attorney-gencral is necessary. Various Acto provide for the liabilities of parmbrokers, publicans, marine-store dealers, and others ioto whose possession stolen goods come. Search for stolen foods can only be andertaken by a polica officer under the protection of a search marrant. The law as to stolen goods, 89 far es it affects the civil rights and lisbilitics of the owner and third parties, is shortly as follows. As a geucral rule a purchaser takes goods enbject to any infirmities of title. The property in money, bank-notes, and negotisble instruments passes by delivery, and a person taking sny of these bona fide and for valne is entitled to retain it as against \& former owner from whom it may have been stoled. In the case of other goods, a bona fide purcbaser of atolen goods in market orert (see SALE) obtaios a good title (except sa against the crown), provided that the thief has not been convictel. After conviction of the thief the property revests in the owner, aad the court before which the thief was couvicted may order reatitution, except in the cases specially mentioned in the Larceny Act, i.e., the bona fide discharge or transfer of a security for value with. out notice snd the fraudulent dealing by a trostee, banker, \&c., with goods and locuments of titlo to goods entrusted to him. After conviction of the thief the goods must be recovered from the person in whose hands they are at the time of the conviction, for any sales and resalea, if the frist sale was in market overt, bre good until conviction of the thief. If the goods were obtained by false protences and not by larceny, the question then is whether the property in the goods has passed or not, and the answer to this question depends upon the nature of the false pretences employed. If the vendee obtains possession of goods with the intention by the reador to transfer both the property and the possession, the property vests in tice vendee uatil the veador bas done some act to dis. affirns the transaction. But if there was never any such intention, - -if, for instance, the vendor delivers the goads to A. B. nader the belief that he is C. D.,-the property does not rest in the transferce, and the orvier may recover the goods cved from a bona finde purchaser. ${ }^{1}$

Scolland.-There is a vast quantity of Acta of the Scottish parliament dealing with theft. The general policy of the Acta was :o make thefts what were not thefts at common las, e.g., stealing fruit, dogg, hafks, or deor, and to extend the remedies, e.g., by giving the justiciar authority throughout the kinedom, by making the master in the case of theft by the eervant liable to give the latter up to justice, or by allowine the uso of firearma against thieres. The general result of legislation in England and Scotland has been to assimilate the law of theft in both kingdoms. As a rule, what would be theft in one would be theft in tbo other. There can be theft of children in Scots as in Roman isw, ander the name of plaginm. The crime of stonthrief is robbery accompanied by exceptional violence. The English receiving stolen foods and obtaining monoy under falso pratences are rapresented by the reset and fraud of Gcoits law. Theftbate or redemptio furti appears in legislation as early as the assizes of King William, c. ". The offender was there subjected to the ordeal of water if convicted? on the oath of three mitnessea, to be immediately hanged if the oath of three seniores were added. The offence was mate punishable by $1430, c .1,1515, c .2$, and appears etill to be a crime. Blacknailing, noder that name, was forbidden by 1567, c. 27. There is no consolidation Act for Scotland like the Larceny Act for England and Ireland, but various Acta are io force dealing with epecific offences or with procedure. Thus 7 Anne c. 21, § 7, makes theft by landed mea no longer treason, as it had previously been. 4 Geo. II. c. 32 deals with theft of lead, \&c., fixcel to houscs, 21 Geo. II. c. 34 with the admissibility of an accomplice en witness in a cherge of cattlo stealing, 51 Gco. 111. c. 41 with theft of linen, \&c. The most important Act relating to procedure is 31 and 32 Vict c. $95, \S 12$, by which s previous conviction for theft may be libelled and prored as aggravation at robbery, and a

1 For the Foman and English law, bes, besldes the anthoritles clied, Hoater, Roman Law: Moirhead, Komar, Law; \& Stephen,
i Stephen, Hisf. of the Crimual Lat, chiap. xxpli.
previuns couviction tor robbery as aggravation of theft. Stolen goods are always taken subject to the inherent vitium reale of their acquisition, and the true owner may recover tham from any one in whose possession they are. The protection given hy market overt is unknown in Scotland. See Macdonald, Criminal Law, p. 18.
unknown in Scothand. See Macdonald, Criminal Law, p. 18.
Unuted States. The law depends almost entirely npon Stato
legislation, and is in general accordanco with tbat of England The only Acts of Congress bearing on the subject deal mith theft in the army and nary, and with theft and ruceiving on the high scas or in any $p^{3 l a c e}$ under the exclusive juristiction of tho United Statcs. The loctrine of market overt is not acknewledged by any
(J. W+.)

THEISM

THE term thensm has three significations. In its wilest acceptation its object is the Divine, whether regarded as personal or impersonal, as one being or as a number of beings. In this sonse theism is coextensive with religion and worship, includes all forms of polytheism and of pantheism, as well as all varieties of mouotheism, and so may bo said to denote the genus of which polytheism, pantheism, and monotbeism are species. The conception of the Divine, in its utmost abstractness and generality, is, however, so rague that it may reasonably be donbted if the forms of fleism, thus understood, can be distributed into strictly logical and natural species, with definitions at once perfectly distinct in themselres and exactly accordant with phenomena. It may seem as if polytheism and monothoism mușt, by arithmotical necessity, be exclusive of each other and exhaustive of theism; but this is not so. Pantheism may clearly partake of the uature of both, and has been sometimes extravagantly polytheistic, sometimes only doubtfully distinguisbable from fully developed monotheism. Probably fer, if any, polytheistic religions aro purely polytheistic, or, in other words, do not imply in some mode and measure the unity es well as the plurality of the Divine. Christian monotheism answers to a formal definition of monotheism only inasmuch as it holds to the unity of the Godhcad, but contravenes it inasmuch es it holls that in the one Godhead there are three Divine persons, each God.

The complete negation of theism in its generie sense is atheism-the denial of the existence or of the knowability of tho Dirine. It is only in modern times that the word atheism has acg ired this meaning, only in recent times that it has come to be exclusively employed with this meaning. The Greeks meant by it simply disoelief in the Greek gods. The early Christians were called atheists because they refused to acknowledge the pagan de:ties, Protestants have been charged by Roman Catholics and Roman Catholics by Protestants witn atheism. Throughout even the 18th century the word was used in an extremely loose manner, and often affixed to systcms by which the existence and agency of God were uncquivecally recognized. Atheism, in the sense now generally admitted to be alene appropriate, may be of three specics,-namcly, denial of the existence of the Divine, denial that the Divine has been shown to exist, and denial that it can be knoirn that the Divine exists. The first species has been called dogmatic atheism, the second critical atheism; ;and the third has been designated, and may conveniently be designated, religious agnosticism. Agnosticism per se should not be identified with atheism or with any of its forms. The term antithcism has been used by some theologians, e.g., Clalmers and Foster. as equivalent to dogmatic atheism ; but it may with much more practical adrantage be employed to denote all systems of belief opposed to theism, either in the generic sense already indicated, or in the specific sense of monotheism. Understood in this latter mode, it is mach more comprehensive than the term atheism. Polytheism and pantheism are alike antitheistic theories, although on different grounds; while only those theorics which deny that there is evidence for beliof even in the existence of any god, any divine being, are atheistic.

It is somershat remarkable that the term theism by itself never occurs in its etymological and generic sense, never means as a separate word what it means in the compourds atheism, polytheism, pantheism, and monotheism. Ordinarily it is identified with monotheism, and consequently opposed to polytheism and to pantheism, as well as to o.theism. Whereas polytheism acknowledges a plurality of finite gods, theism as monotheism acknowledges only one absolute infinite God. Thereas pantheism regards all finite things as merely aspects, modifications, or parts of on eternal self-existent being-all material oojects and all particular minds as necossarily derised from a single infinite substance,-and thus combines, iu its conception of the Divine, monisin and determinism, theism as monotheism, while accepting rmonism, rcjects determinism, and attributes to the Divino all that is essentially implied in free personal existence and agency. Pantheism is, bow. orer, wonderfully protcan, and rarely conforms to its ideal ; hence tho systems called pantheistic are seldom purcly pantheistic, and aro often more monotheistic than pantheistic.

Sometimes the term theism is emplayeur in a still mere Thelsio special sense, namely, to denote one of two kinds of a monotheism, the other kind being deism. Although deus delam. and theos are equivalent, deism has come to be distinguished from theism. The former word first appeared in the 16th century; when it was used to designate antitrinitarian opinions. In the 17 th century it came to be applied to the riew that the light of nature is the only light in which man can know God, no special revelation having been given to the human race. Dr Samuel Clarke, in the Boyle Lectures preached in 1705, distributed deists into four classes. The first class " pretend to believe the existence of an eternal, infinite, independent, intelligent being, and, to aroid the name of Epicurcan atheists, teach also that this supreme being made the world; though at the same time they agree with the Epicureans in this, that they fancy God does not at all concern Himself in the gosernment of the world, nor bas any regard to, or care of, what is done therein." The secend class acknow ledge not only that God made all things, but that He sustains and governs them, jet deny that He has any ragard in His government to moral distinctions, these being merely the products of human will and law. The third class believe in the being. natural attributes, pro vidence, and to some extent in the moral attributes and government of God, but deny the immortality of the soul and a future state of rewards and punishments. The fourth class acknowledge the being, natural and moral perfections, and proridence of God, as also the immortality of the soul and a future state of rewards and punishments, yet profess to believe only what is discover nble by the light of rature, without believing any divise revelation (Clarke, On the Attrilutes, pp. 140-153, ed. 1S23). This division is not an exact classification, nor does it rest on any precise definition of deism, but it, with substantial accuracy, discriminates and grades the varieties of English deism. Clarke did not contrast deism with theism, or even employ the latter word. His contemporary, Lord Shaftesbury, on the other hand, generally used the term theism, yet only as synongmeus with deism.
and with a protest against either being opposed to revelation (Characteristics, vel. ii. p. 209, ed. 1727). Kant, in his Kiritik der reinen Fernunft, explicitly distinguished and opposed deism and theism, but in a very peculiar manner. "The person who belieres in a transcendental theology alone is termed a deist; he who acknowledges the possibility of a natural theology also, a theist. The fermer admits that wo can cognize by pure reason alone the existence of a supreme being, but at the same time maintains that our conception of this being is purely trauscendental, and that all that we can say of it is that it pessesses all reality, without being able to define it more closely. The second asserts that reason is capable of presenting us, from dhe analogy of nature, with a more definite conception of this being, and that its opcrations, as the cause of all things, are the results of intelligence and free will. The former regards the supreme being as the cause of the world-whether by the necessity of his nature, or as a free agent, is left undetermined; the latter considers this boiog as the author of the world" (Werke, ii. 491, edited by Rosenkranz, Meiklejohn's tro, 387-8). The account here given of deism seems neither self-consistent nor intelligible, and applies, equally well or equally ill, to every system-atheistic, agnostic, pantheistic, idealistic, or materialistic-which admits the existence but not the intelligence or personality of an Crvesen, eternal being, or first cause; and the account of thoism excludes all reference to revelation, and applies to every form of what has been regarded as deism. In receent theology deism has generally come to be regarded as, in common with theism, bolding in opposition to atheism that there is a God, and in opposition to pantheism that God is distinct from the world, but as difering from theism in maintaining that God is separate from the world, having endowed it with self-sustaining and self-acting. powers, and then abandoned it to itself. This distinction is real, and perhaps the best attainable. At the same time many called deists must be admitted not to have taught deism thus understood: for example, most of the "English deists" did not deny that God was present and active in the laws of nature, but merely denied that He worked otherwise than through patural laws. If by deism be meant belief in a personal God who acts only through natural laws, and by theism belief in a personal Cod who acts both through natural laws and by special interrentions, this distinction also is real, and may be useful. The chief objection to it is that deism when so contrasted with theism does not denote, or eren iaclude, what theologians have generally agreed to call by the name.

The present article will treat specially of theism in the sense of menotheism, but not to the exclusion of the relations between theism thus uaderstoon and theism in other acceptations.

Monotheism has been very generally assumed to havo been the primitive religion. Lord Herbert, Cudworth, and others bave elaborately defended this opinion in the pazt, and it still fiods learned advocates. On the other hand, the rast majority of recent anthropelogists held that :eligion originated in some rude phase of pelytheism, and that monotheism has been everywhere preceded by polytheism. Schelling, Max Müller, and Hartmann have maintained that the starting-point of relizion was henotheism, an imperfeet kind of monotheism, in which God was thought of as one, only because others had not yet presented thems.lves to the mind,-a menotheism of which pelytheism was not the contradiction, but tho natural development. Pantheism has also been frequently represented to bo the earlicei phase of religion. All theso representations, homever, will Le found on examination to be very conjectural. The present state of our knowledge does not warrant our
holding any view regarding the nature of primerai retıgion as established. The data which carry us farthest in our search for the historical origin of religion are undoubtedly the names expressive of the Divine which have been pres served in the most ancient languages. They show us how men conceired of the Divinity leng before the erection of the oldest monuments or the inscription of the oldest records. Language is much older than any of the state; meuts in language. But language by no means carries us back to primitive man, or even to the historical origin of the idea of deity. The Egyptian word nutar and th' names of the Egsptian geds found in the oldest Egyptian inscriptions prove that at a date long before the Egyptians wrote history, or are known to have worshipped animala or ancestors, they conceired of Divinity as power, and their deitics as great cesmic forces; but, as that word and these names cannot be shomn to havo belonged to man's primitive speech, they cannot show what was man's primitive religious belief, and do not disprere that the forefathers of the people shio first used them may have had some lower and ruder conception of the Divine than that which they convey ' There are, according to Dr Legge, ue werds in the Chinese language knowa to by older than ti, t'ien, shang-ti, and these words are good Listorical evidence that the Chinese conceived of the Divine, thousands of years befors the Christian era, as: universal ruling power, comprehending the visible heavens, and an invisible, iafinite, omnipresent force, manifested in the azuro of the firmament, possessed so far of intellectua' and moral qualities, and werking towards ethical ends. There is no evidence that when the Clinese first used these words they worshipped fetiches, but neither is there evidence to the contrary, and even if there were it would not disprove that the aucestors of the Chinese had passed through an era of fetichism. All members of the Semitic family of languages have the werd $E l$, or some nodification of it, to denote deity, and herice we may conclude that the Semites had the werd in this sense before they separated and became distinct peoples, but not that the idea of God originated when the word was first thus employed. All members of the Teutonic group of languages have the word God, or some slightly modified form thereof, and all members of the Slavic group of languages have the word Bog, or some modification thereof, to express the same conception: it does not follow that either Teutons or Slavs had no idea of deily until the former so applied the word God, and the latter so arplied the word Bog. Beth Teutens and Slavs are Aryaus, and there is an older Argan term for deity than either God or Bog. The Sanscrit deva, the Latin deus, and the nortbern ti, tivaz, are forms of a word which must have been used by the Aryans to express their idea of the Divine mhen, in a prehistorie age, they lived together in their orizinn? heme ; but wo are not entitled to infer that eren that prehistoric Aryan term is the oldest word for deity. It may not be older than the primitive Semitic word or the primitive Turanian werd, or the nutar of the Egsptians, or the t tien of the Chinese, or the carliest desiguations for the Divine in the earliest African and Anerican languages And there may bave been Divine names older than auy of these. The scieuce of language has been able to recoo struct in part a prehistoric Aryan language, and mi.y similarly be able to reconstruct a prehistoric Semitic language, a prehistoric Turaniau, and perhaps a prehistoric Hamitic lauguage. Should it proceed thus far it will probably perceive that all these prebistoric languages arose out of a still carlier prehistoric language in which also were words expressing ideas of the Dirine. There may be many strata of language buried too deep for human excaration io the abysses of unrecerded time. Bv no pos-
sibility, therefore, can the analysis of existung languages disclose to us the oldest name for deity or the historical origin of the idea of deity. Geology shows the vast antiquity of man, and nothing proves that he may not have been awed or comforted by thoughts of the Divine ages before the invention of the oldest Aryan or Semitic words. It is merest conjecture to assign the formation of the conception of deity to the dawn of historic time. Between primitive speech, primitive religion, the primitive condition of man, and the little streak of light called human history there stretches an immeasurable expanse of darkness.

The belief in primitive monotheism is generally rested on the authority of the opening chapters of Genesis. It is, however, doubtful if the appeal to them be legitimate, because doubtful if their strict historicity can be proved to those who insist on judging them merely by critical and historical criteria, or even if it can be fairly inferred from the view that they form part of a revelation. Then, although these chapters plainly teach monotheism, and represent the God whose words and acts are recorded in the Bible as no mere national Cod but the only true God, they do not teach, what is alone in question, that there was a primitive monotheiem,-a monotheism revealed and known from the beginning. They give no warrant to the common assumption that God revealed monotheiem to Adam, Noab, and others before the flood, and that the traces of monotheistic beliefs and tendencies in heathendom are derivable from the tradition of this primitive ard antediluvian monotheism. The one triue God is represented in Genesis as making himself known by particular words and in particular ways to Adam, but is nowhere said to have taught him that He only was God. Adam knew, of course, only one God, as there was only one God to know; but that he knew there was only one God we are not told, nor are any grounds given us even for conjecturing that he knew it. We are told that God created the heavens and earth, but not that Adam was told it, and we know too littlo about Adam to be able to conceive how he could have understood the statement. We are informed that he knew God-the God who manifested himself to him in particular acts, but not what general idea he formed of God-whether henotheistic, pantheistic, or monotheistic, whether definitely exclusive of polytheism or not, or in what measure anthropomorphic. It is not otherwise as regards what is reported of Ncah. In fact, primitive monotheism is read into the records in Genesis only because they are read in an inaccurate and uncritical manner. If read aright, it would be seen that, while they speak much of how God acted towards man, they epeak so extremely little as to what early man knew of God that the appeal to them on behalf of the hspothesis of primitive monotheism must be futile, even on the traditional view of their authorship and historicity. ${ }^{1}$

It is impossible to prove historically that monotheism was the primitive religion. Were, then, the oldest known historical forms of religion monotheistic? Many maintain they were, but adequate evidence has never been adduced for the opinion. The oldest known religion is probably the Egyptian, and for at least three thousand years its

[^95]history can be traced by the aid of authentic records con- Esyptrac temporary with the facts to which they relate. Its religion. origin, however, is not disclosed by Egyptian history, and was unknown to the Egyptians themselves. When it first appears in the light of history it has already a defnite form, a character not rude and simple, but of considerable elevation and subtility, and is complex in contents, having certain great gods, but not so many as in later times, ancestor-worship, but not so developed as in later timcs, and animal worship, but very little of it as compared with later times. For the opinion that its lower elements were older than the higher there is not a particle of properly historical evidence,-not a trace in the inscriptions of mere propitiation of ancestors, or of belief in the absolute divinity of kings or animals; on the contrary, ancestors are always found propitiated through prayer to some of the great gods, kinge worshipped as emanations and images of the sun-god, and the divine animals adored as divine symbols and incarnations. The greater gods mentioaed on the oldest tombes and in the oldest writing: are comparatively few, and their mere names-Osiris, Horus, Thoth, Seb, Nut, Anubis, Apheru, Ra, Isis, Neith, Apis-conclusively prove that they were not ancient kinge or deceased ancestors, but chiefly powers of nature, and especially, although not exclusively, of the heavens; yet from the earliest historical time they were regarded as not merely elemental, but as also ethical powers, working indeed visibly and physically in the aspects and agents of nature, yet in conformity to law and with intelligence and moral purpose. Wherever the powers of nature are thus worshipped as gods, the feeling that the separate powere are not all power, that the particular deities are not the whole of divinity, must be entertained and will find expression. The Egyptians had undoubtedly such a sense of the unity of the Divine from the dawn of their history, and they espressed it so strongly in various ways from \& very early period that they have been pronounced monotheists not merely by theologians attached to a traditional dogma but by most eminent Egyptologists-De Rouge, Mariette, Brugsch, and Renouf. As these scholars, however, truthfully present the facts, they satisfactorily refute themselves. À religion with about a dozen great godsdistinct as regards their names, characteristics, histories, relationships, symbols, and worship-is not monotheism in the ordinary or proper sense of the term. A religion in which the Divine is viewed as merely immanent in natura, and the deities deemed physical as well as moral, elemental as well as ethical powers, is rather pantheistic than monotheistic. Further, all assertions to the effect that the unity of the Divine is most emphatically expressed in the earliest historical stages of the religion are contrary to the evidence adduced even by those who make them. To quote Patah-Hotep as a proof of the monotheiem of the Egyptian religion in its oldest historical phase is as uncritical as it would bo to draw Homeric theology from the dialogues of Plato. The Egyptian religion was a polytheism which implied monism; it was not monotheism, which is exclusive of polytheism. Hence, notwithstanding frequent approximations to monotheism, the general result of the development of its monistic principles was pantheism, not monotheism. As to the ancient Chinese religion, Dr Legge easily shows that Prof. Tiele's description of it as "a purified and organized worship of spirits, with a predominant fetichist tendency," has no historical warrant, but he fails complete! y to substantiate his own view, namely, that it was a strict and proper monotheism. The names T'ien and Ti afford no evidence that the early Chinese fathers regarded deity as truly and properly spiritual and personal. It is not in the mest ancient Chinese writings that sdirituality and personality
are ascribed to T 'ien, and such ascriptions are exceptional in Chinese writings of any date. The great development of ancestor worship in China has been largely due to the impersonal character of T"ien. The arguments which have been adduced in support of the hypothesis of a primitive Semitic monotheism are also insufficient. M. Renan's belief in a monotheistic instinct peculiar to the Semitic race has been so often and so convincingly ehown to be contradicted both by history and psychology that another refutation of it might well be regarded as a mere slaying of the slain. Divine names like El, Baal, Adon, and Mclech, being the oldest terms in the Semitic languages expressive of the Divinity, and baving been retained through all the changes and perversions of Semitic religien, have often been maintained to imply that primitive Semitic belief was monotheistic. But in reality Baal, Melech, and Adon were not names originally, or indeed at any time, given to the one Supreme God, or exclusively to any particular god ; on the contrary, they were titles applicable to many different gods. The oldest historical form of Aryan religion-the form in which the Yedas present it-is designated by Max Müller henotheism, in opposition to the organized anthropomorphic polytheism to which he restricts the term polytheism, but henotheism thus understood includes polytheism in its wider and more ordinary acceptation, while it excludes monotheism properly so called. The oldest known form of Aryan religion was indubitably polytheistic in the seuse of being the worship of various nature-deities ; and everything approximating to monotheism in India, Persia, Greece, and other Aryan-peopled lands was the product of later and more advanced thought. The assertion that history everywhere or even anywhere shows religions belief to have commenced with monotheism is not only unsupported by evidence, but contrary to evidence. ${ }^{1}$

While the oldest known religions of the world were thus not forms of monotheism, neither were they mere polytheisms, wholly devoid of monistic and monotheistic germs and tendencies. The Chinese religion, indeed, can hardly be said to have been at any period a polytheism, the Chinese people no more regarding spirits and deceased ancestors as gods than Roman Catholics so regard angels and saints. They bave throughout their whole known history explicitly and clearly acknowledged the unity of the Divine-the uniqueness of Tien (Ti, Shang-Ti). Had they in like manner acknowledged the spirituality, personality, transcendence of the Divine, their monotheism would have been indubitable. Then, even in those ancient religions, where a plarality of deities is apparent, a sense of the unity of the Divine is notwithstanding implied, and in the course of their development comes to expression in various ways. It could not be otherwise, for in these religions the divine powers (deities) are also powers of nature, and bence sprung from and participant in a mysterions common nature, an ultimate and universal agency which is at once the source of physical and divine existences and forces. Neither nature-deities nor powers of nature are ever conceived of, or indeed can be conceived of, as entirely distinct and independent. The lowest forms of polytheism, such as fetichism and animism, have no more marked characteristic than the indefiniteness of their

[^96]idea of the Divine and the imperfect individualization of their deities. In the highest formis of nature-worship, e.g., the Vedic, Egyptian, and Babylonian-Assyrian, the same trait is perceptible. This implicit menism of natureworship may, through the action of rarious causes, come to explicit utterance in diverse modes, and has in fact done so, with the result that even in the oldest known polytheisms are to be found remarkable approximations to monotheisn. One form of approximation was benotheism. When worship is ardent and earnest the particular god worshipped is apt to have ascribed to him the attribute日, as it were, of all the gods-an almost absolute and exclusive godhead. Max Müller has shown how prominent a phenomenon henotheism is in the Vedas, Page Renouf has shown that it is very conspicuous also in the ancient inscriptions and hymns of Egypt. Horus, Ra, Osiris, Amun, Knum, were severally spoken of as if each were absolnte God, invested not only with distinctive divine attributes but with all divine attributes. In the religious records of Babylon and Assyris monotheistic approximations of the same kind are likewise sommon. Now, in theaselves such monotheistic modes of expression may truly be held to be the products of passing moods of mind, not reflexions of permanent conviction. But every mood of mind tends to perpetuate itself, and the enthusiasm of piety which utters itself in henotheistic praises and prayers may take abiding possession of the soul of a powerful ruler or even of the hearts of a whule class of seciety or of a whole people, and may seem to them to find the strongest possible confirmation in experience. We may illustrate from Assyrian religious history. Tiglath-Pileser showed a marked preference for the worship of Asshur, to him "king of all the gods," "he who rules supreme over the gods." Nebuchadnezzar, again, showed a great partiality-for the god Merodach, and applied exclusively to him such magnificent titles as "the lord of all beings," "the lord of the house of the gods," " the lord of lords," "the lord of the gods," "the king of heaven and earth." Nabonidus, on the other hand, specially revered Sin, the moon-god, and represented him as "the great divinity,"" "the king of gods upon gods," "the chiei and king of the gods of heaven and earth." A preference of this kind might arise from some merely accidental or personal cause, and be confirmed by experiences mainly individual, and yet have a vast historical influence. The devotional choice of a people must tend, howerer, still more than that of any monarch to the elevation of one god towards absolute godhead It was accordingly what raised Asshur, the special national god of the Assyrians, to the head of the BabylonianAssyrian pantheon during the Assyrian period. In a struggle of deities for supremacy the national god has an immense advantage in that he lias both the piety and the patriotism of the people on his side. His rule is identified with providence ; he is credited with all the victories and successes of the nation; and his power and godhead seem certified by fact and experience. The logic of events in every adrancing nation combines with the essential tendencies of piety and with the growth of conscience and reason to promote belief in the unity and perfection of the Divine. The general course of providence is no more polytheistic than it is a thcistic. The best exemplification of the operation of tho picty of an influential class in transcending polytheism is Brahmanism. But for the impulse given by Brahnanical piety Brahnranical speculatiou would never have reduced the Vedic gods to manifestations of Brahma. Honotheistic forms of approximation to monotheisin are not, however, the only ones. Particular gods -all of them-may be dropped out of vier, and the generic thought of God alone retained. The mind and
heart of the devout may be directed exclusively to the power of the powers, the God in the gods, God simply, the Divinity. The formation of names expressing Divinity in the abstract is an evidence of the existence of such a process, and names of the lind are to be found even among very rude peoples. But there are more obvious and conclusive indications. In one of the most ancient of books, for example, and probably the oldest manuscript in the world, the maxims of Patal-Hotep, a wise Egyptian prince of the fifth dynasty, God simply (nutar) is often spoken of without a name or any mythological characteristic, and in a way which is in itself quite monotheistic. "If any one beareth himself proudly he will be humbled by God, who maketh his strength." "If thou art a wise man, bring up thy son in the love of God." "God loveth the obedient, and hateth the disobedient." Sentences like these standing alone would be prononnced by every one monotheistic ; and even when standing alongside of references to "gods" and "powers" they show that said gods and powers were not deemed by the Egyptian sage inconsistent with oneness of power and godhead or exhaustive of their fulness. In Babylonian-Assyrian religious history there are also distinct traces of the rise of the spirits of worshippers above particular deities, simply to deity. Sometimes they appear with special clearness in connexions which tell of awakened and afflicted conscience, of the pressure of a sense of \sin and guilt forcing on the heart, as it were, a conviction of One with whom it has to deal, of its need of the forgiveness and favour, not of this god or of that, but of God. The following passage may be cited as an instance. "O my Lord, my sins are many, my trespasses are great, and the wrath of the gods has plagued me with disease, and with sickuess and sorrow. I fainted, but no one stretched forth his hand! I groaned, but no one heard! O Lord, do not abandon Thy servant ; in the waters of the great stream do Thou take his hand; the sins which he has committed do Thou turn to righteousness." Many parallel passages might be drawn from Hindu, Greek, and other sources. Clearness of moral perception is decidedly favourable to monotheistic belief. The practical reason contributes as well as the speculative reason, and precisely in the measure of its healthiness and vigour, to the formation of a true idea of the Divine. It was due more to their moral earnestuess and insight than to their intellectual superiority that the Persians came nearer to monotheism than any other people of heathen antiquity. Abriman was entirely evil, aud therefore only to be hated and combated; While Ahuramazd was absolutely divine, perfectly good, and therefore to be supremely worshipped and obeyed. This moral dualism approached more closely to true monotheism than the later speculative monism, which placed above both Ahuramazd and Abriman Zervanakarene, boundless time, indeterminate being, an ethically indifferent destiny. Finally, reason in striving to understand and explain the world tends towards monotheism. The mind cannot be expected to recognize the uuity of God until it recognizes the unity of nature; when it sees vature to be a whole, a universe or cosmos, it cannot but form a conception of it which will be pantheistic, if the unity of substance, law; and evolution be aloue acknowledged, and monotheistic if a unity of causality, rational plan, and ethical purpose be also apprehended. In the measure in which reason advances either on the path of scientific inrestigation or of philosophical speculation, polytheism must retreat and disappear ; in the measure in which it discerns unity, order, sygtem, moral government, indications of spiritual character and design in the world, monotheism must rise and spread. Now, in the chief progressive heathen nations reason, it can be proved, has gradually gained on imagination. Hence the
polytheisms which they built up in their youth have bee: undermined and broken down by them in their maturity. ${ }^{1}$

A monotheistic movement can be clearly traced in ancient Greece. The popular religion of Greece, as it appeared in the Homeric poems, was as distinctly poly theistic and as little monotleistic as any known religion. Its gods were all finite, begotten, and thoroughly indi, vidualized beings. The need of unity was responded to only by tho supremacy of Zeus, and Zeus was subject to destiny, surrounded by an aristocracy far from orderly or obedient, and participant in weakness, folly, and vice. To its eternal honour the Greek spirit, however, was not content with so inadequate a conception of the Divine, but laboured to amend, enlarge, and elevate it. The poets and dramatists of Greece purified and ennobled the popular myths, and, iu particular, so idealized the character and agency of Zeus as to render them accordant with a true conception of the Godhead. The Zeus of Eschylus and of Sophocles was not only not the Zeis of Honier, but was a god belief in whom was inconsistent with belief iu any of the Honeric gods. The dramatists of Greece did not assail the popular conception of Diviuity, but they substituted for it one which implied that it was without warrant or excuse. They developed the germs of monotheism in the Greek religion, while leaving untonched its polytheistic assumptions and afirmations. These, however; were not only persistently undermined, but often directly attacked by the plilosophers, some of whom eventually reached a reasolled knowledge of the one absolute Nind. Xenophanes, Limpedocles, and Anaxagoras were among the pre-Socratic philosophers who, on grounds of reason, rejected the polytheism and anthropomorphism of the current mythology, and advocated belief in one allperfect divine nature. Socrates, although avoiding all attacks on the popular religion calculated to weaken the popular reverence for divine thiugs, had real faith only in the one supreme Reason, the source aud end of all things; and the best representatives of later Greek philosophy were in this respect his followers. Plato attained by his dialectic a conception of God which will always deeply interest thoughtful men. God he deemed the lighest object of knowlelge and love, the source of all being, cognoscibility, truth, excellence, and beauty,-the One, the Good. The controversy as to whether his conception may he more correctly designated theistic or pantheistic will, perhaps, never be brought to a decisive conclusion, but in its general truth and graudeur it must be admitted far to transcend either the monotheism of the vulgar or any popular form of pautheism. Aristotle's characteristic cautiousness of judgment showed itself in the very meagreness of his theology. The representation which he gives of God hardly meets at all the demands of affection and of practical life, jet so far as it goes will be generally regarded as thoroughly reasonable. It is more unequivocally theistic than that of Plato. It sets forth God as without plurality and without parts; free from matter, contingency, change, and development; the eternal unmoved mover, whose essence is pure energy; absolute

[^97]spirit，self－thinking reason，the voń⿱宀八工 vońrews；the one perfect being：whose life is completely blessed，and whose likeness is the goal towards which the whole universe tends．Stoicism was originally and predominảntly a materialistic or bylozoic form of pantheism ；but some of its greatest representatives conceived of God in a decid－ edly theistic manner as the supreme moral reason．The beautiful hymn of Cleanthes to Zeus is full of the purest devotional feeling，springing from a clear sense of personal relationship to the one all－ruling personal Spirit．Greek philosophy proceeded throughout its whole course in entire independence of the popular polytheism，and was a con－ tinuous demonstration of its futility；and it largely con－ tributed to that reasoned natural knowledge of God which must underlie all rational belicf in revelation．It discerned in some measure all tho chief arguments which have since－ been employed as theistic proofs．It failed，ho rever，to conceive of God as truly creative，or of the universe as in its very substance the result of divine action；it failed also to make evident，even to cultured minds，the superiority of monotheism to pantheism and scepticism ；and it failed especially to convert the common people to faith in one sole Deity．${ }^{1}$
Israel presents us with the first example of a mono－ to cadistic nation．Tho controversies as to how Israel ac－ quired this pre－eminenco cau only be decided by critical and historical investigations into which we cannot here enter（see Israfl）．
The science oi Old Testament theology，giving due beed ．o the results of critical，historical，and exegetical research regarding the documents with which it deals，has to trace by what means and through what stages Hebrew mono－ theism was developed and established；and to the treatises on this science our readers must be referred．The mono－ theistic movement in Israel was one of continuous progress through incessant conflict until a result was reached of incalculable value to humanity．That result was a faith in God singularly comprehensive，sublime，and practical，－ a faith which rested，not on speculation and reasoning，but on a conviction of God having directly revealed Himself to the spirits of men，and which，while ignoring meta－ physical theorizing，ascribed to God all metaphysical as well as moral perfections；a faith which，in spite of its simplicity＇，so apprehended the relationship of God to nature 2s neither to confound them like pantheism nor to separate them like deism，but to assert both the immaneace and the transcendence of the divine ；a faith in a living and per－ sonal God，the almighty and sole creator，preserver，and ruler of the world ；a faith，especially，in a God holy is all His ways and righteous in all His works，who was directing and guiding human affairs to a destination worthy of His own character ；and，therefore，an csscatially ethical， elevating，and hopeful faith．The existonce of utterances in the Hebrew Scriptures which show that Hebrew faith was not always thus enlightened，and sometimes conceived of God as partial and cruel，is no reason for not acknow－ edging the gencral justice and grandeur of its representa－ tion of the Supreme．${ }^{2}$

The God of the Old Testament is also the God of the New．Christ and the aposties accepted what Moses and he prophets had taught concerning God ；they assigaed to

[^98]Him no other attributes than had already becn assigned to Him．Like Moses and the prophets also they mado ac attempt formally to prove the existence or logically to define the nature of God，but spole of Him either as from vision or inspiration．And yet their doctrine of God has original and peculiar features．Thus，first，the fatherhood of Clod was taught with incomparable distinctness and fulness by Jesus Christ，－a fatherhood not merely of natural creation or national clection，but of spiritual relationship of love，sympathy，mercy，and grace for individual souls．Such fatherhood，if acknowledged at all，was only very rarely and vaguely aeknowledged in heathendom，and，although not wholly absent from the Old Testament，is far from clearly and prominently there， and，indeed，is present chiefly by implication in passages which refer directly only to God＇s connexion with the people of Israel，as an elect and covenant people；it is conspicuous and central，however，in the conception of God introduced by Christianity．Secondly，Divine father－ hood had its correlate in Divine sonship．God is repre－ sented in the New Testament as revealing His fatherhood through His Son，Jesus Christ．In Old＇Testament repre－ sentations of Israel，the Messiah，and Wisdom，and in the Logos doctrine of Judæo－Alexandrian philosophy，some approximations to this conception of the Divine may be traced，but they fell far short of it．According to the New Testament，God is not merely infinitely exalted above the world and definitcly distinguished therefrom，nor merely immanent and everywhere operative in nature，but also incarnate in Christ ；and Christ is not merely＂the Son of man，＂essentially shariag in humauity and truly representing it before God，but also＂the Son of God，＂ essentially sharing in Divinity，and giving the fullest disclosuro of it to man．The foundation of the Christian faith as laid down in the New Testament is that Christ through His uniquo relation as Son to the Father perfectly declared aod expressed the nature and will of God in relation to human salvation．Thirdly，God is exhibited in the New Testament as the Spirit，the Holy Ghost，who dwells in the spirits of men，to work in them the will of the Father，and to conform them to the image of the Son． Only when thus exhibited can the revelation of the Divine name be regarded from the New Testament point of view as other than manifestly incompletc．Even the manifesta－ tion of God in Christ，being objective and single，must be supplemented by a manifestation which is subjective and multiple，before the one God，the one Christ，can find a place in the manifoldness of souls，the multitude of sep－ arate hearts and lives．The manifestation of the Spirit is such a manifsstation，and completes in principlo tho revelation of．the Christian idca of God，the revelation of Iis threefold nature and name．This revelation completed God can be thought of as absolute spirit，absolute love， absolute good，and was，to some extcnt explicitly，and throughout implicitly，so represented in the New Testa－ ment．It is preciscly in virtue of the threefold represen－ tation of God characteristic of the New Testament that Christianity is still held by so many of the world＇s pro－ foundest thinkers as the alisolute and perfect religion，the croma and consummation of religion，－speculatively con－ sidered，an absolute revelation of God，and practically considered，a perfeet salration，－within which thero may be infinite evolution and progress，but beyond which there can be no true light or real growth．${ }^{3}$

The threefold representation of God in the Ner Tresta－ ment was an eatirely religious and practical representa－ tion，inseparably connected with the historical facts of

[^99]Christ's life and the spiritual experiences of the early Cluristians. It was not an ontological or even theological doctrine, and will be identified by no competent exegete with the dogma of the Divine Trinity set forth in the cecumenical creeds. The propositions constitutive of the dogma of the Trinity-the propositions in the symbols of Nice, Constantinople, and Toledo relative to the immanent distinctions and relations in the Godhead-were not drawn directly from the New Testament, and could not be expressed in New Testament terms. They were the products of reason speculating on a revelation to faith-the Nerr Testameres representation of God as a father, a redeener, and a sanctifier-with a view to conserve and vindicate, explain and comprehend it. They were only formed through centuries of effort, only elaborated by the aid of the conceptions and formulated in the terms of Greek and Foman metaphysics. The evolution of the doctrine of the Trinity was far the most important fact in the doctrinal history of the church during the first five centuries of its post-apostolic existence. To trace and describe it fully would be almost to exhibit the history of Christian thought during these centuries. It had necessurily an immense influence on the development of theism. The acceptance of the catholic doctrine of the Trinity implied the rejection of pantheism, of abstract monotheism, of all forms of monarchianism or unitarianism. It decided that theistic, development was not to be on these lines or in these directions. At the same time the dogma itself was a seed for new growths of theistic thought, and demanded a development consistent mith its own nature. It is a doctrine, not as to the manifestations and revelations of Godhead, but as to their gromnd and explanation, the constitution of Godhead, a doctrine as to a trinity of essence, which accounts for the Trinity of the gospel dispensation. It affirms the unity of God, but requires us to conceive of His unitr, not as an abstract or indeterminate self-identity, not as "sterile, monotonous simplicity," but as a unity rich in distinctions and perfections,the unity of an infinito fuluess of life and love, the unity of a Godhead in which there are Father, Son, and Holy Spirit, a trinity of persons, a diversity of properties, a variety of oficees, a multiplicity of operations, yet sameness of nature, equality of power and glory, oneness in purpose and affection, harmony of will and work. It finds its dogmatic expression as to what is ultimate in it in the formula-One substance in three persons, of which the first eternaliy generates the second, and the third eternally: proceeds from the first and second. Now, manifestly, however much such a doctrine as this may have satisfied thought on a revelation as to the Godhead, it cannot have exhausted or completed it. If it answered certain questions it raised others, and these more speculative and profound than thoso which had been answered. What is meant by affirming God to be "substance" or "in three persons"? What is meant by divine "generation" or "procession"? How are the substance and persons related? How are the persons distinguished and interrelated? These and many kindred and connected questions reason became bound to discuss by its adoption of the doctrine of the Trinity. This obligation could only be temporarily and partially cvaded or concealed by representing the doctrine as "a mystery" to be accepted simply on authority or with blind faith. Data of the doctrine may have been given to faith, but the doctrino itself was the rork of reason, and on no ground not plainly absurd could that work be held to have terminated in 589 A.D. As soon as an inspired record is left at all, as soon as any speculation is allowed on its contents, as sonn as the process of forming doctrine is permitted to begin, all conceirable right to stop the movement anywhere is lost. Br the
blending, howerer, of trinitarianism with theism the whole claracter of the latter was, of necessity, profoundly changed. A trinitarian theism must be vastly different from a unitarian as regards practice. It must be equally so as regards theory. It must he far more speculative. Dy its very nature it is bound to undertake speculative labours in which a simply unitarian theism will feel no call to engage. ${ }^{1}$

It was the general conviction of the early Christian writers that formal proofs of the Divine existence were neither necessary nor useful. In their view the idea of God was native to the soul, the knowledge of God intuitive, the mind of man a mirror in which, if not rusted by sin, God conld not fail to be reflected. The design argument, however, came early into use and was frequently employed. More speculative modes of reasoning were resorted to by Dionysius of Tarsus, Angustine, and Boetius. The unity of God had to be incessantly affirmed against polytheists, Gnostics, and Mlanichæans. The incomprehensibility of God and His cognoscibility were both maintained, although each was sometimes so empbasized as to seem to obscure the other. That the knowledge of God may be reached by the three ways of cousality, negation, and eminence was implied by the pseudo-Dionysius, although only explicitly announced by Scotus. Neither any systematic treatment of the Divine attributes nor any elaborate discussion of single attributes was attempted. The hypothesis of eternal creation fonnd a vigorous defender in Origen, but met with the eame fate as the dualist hypothesis of uncreated matter and the pantheistic hypothesis of cmanation. Of all the patristic theolngians Augustine was undoubtedly the most philosophical apologist and exponent of theism. He alone atteinpted to refute agnosticism, and to find a basis for the knowledge of God in a doctrine of cognition in gencral. On the large, difficult, and as jet far from adequately investigated subject, the influence of Platonic and Aristotelian, Stoic and Academic, Neopythagorean and Neoplatonic speculation on the formation of the Christian doctrina de Deo, it is, of course, impossible here to enter. ${ }^{2}$

Mohammed (570-632) founded a monotheistic religion which spread with amazing rapidity through Arabia, Syria, Persia, North Africa, and Spain, and gave, almost wherever it spread, a mighty impulse to the minds and wills of men. It was received as the gifl of special inspiration and revelation, although its creed contained little of moment on which reason would seem to be incompetent to decide. It had obvious merits, and must be admitted to have rendered real and important services to culture, religion, and humanity, but had also conspicuous faults, which have done much injury to individual, domestic, and national life. If the latest were always the best, it would be the most perfect of the three great theistic religions of the world; but it is, in fact, the least developed and most defective. Instead of evolving and extending, it marred and mutilated the theistic idea which it borrowed. Instead of reprosenting God as possessed of all spiritual fulness and perfections, it exhibited Him as deroid of the divinest spiritual attributes. It recognized His transcendent exaltation above His creatures, but not His sympathetic presence with His creatures; apprehended vividly His almighty power, His cternity, His ommipresence and omniscience, but only vaguely and dimly His moral glory, His love and goodness, His rightonusness

[^100]and holiness. The Allah of Mohammed was essentially C.aspotic will, and so fell far below the Jahveh of Moses, essentially righteousness, and the Heavenly Father of Christ, essentially boly love. Mohammedanism is almost as contrary to C'bristianity as one form of theism can be to another. It is as unitarian as Christianity is trinitarian. Its cardinal tenet is as distinctly anti-trinitarian as anti-polytheistic. It has often been represented as having had the providential task assigned it of preparing the way for Christianity by destroying polytheism ; in reality, it has hitherto offered a far more stubbora resistance to Christianity than any polytheistic religion has done. ${ }^{1}$

The mediæral world was so complex, so full of contrasts and contradictions, that it cannot be "summed up in a formula." Most general statements current regarding it will be found on examination only partially true. It is often described as the age in which external religious authority ruled, and all religious thought ran in narrow, strictly prescribed paths, whereas, in fact, the medixval theologians were far freer to speculate on almost all points of religious doctrine than Protestant divines have been. Because traditionalism abounded, it is forgotten that rationalism also abounded; because scholasticism flourished, that mysticism was prevalent ; because theism wae common, that pantheism, speculative and practical, was not uncommon. The Middle Age was, however, par excellence, the age of theology. Theology never before or since so interested ard dominated the human intellect. Nearly every eminent mediæval thinker was a theologian. The chief streams of theistic belief and speculation which traversed the Middle Age were three, - the Christian, Jewish, and Mohammedan. The first was much the broadest and fullest. Few points of theistic doctrine were left unhandled by the Christian divines of the Middle Age. The conclusions came to on the chief points were various and divergent. As to the maner in which God is known, for instance, some laid stress on faith or authoritative revelation ; others on immediate consciousness, the direct vision of the pure in heart, the illumination of the Spirit of God in the minds and hearts of the true children of God; others on reason and proof; and some attempted mediation and synthesis. Anselm gave logical form to an a priori argument for the Divine existence based on the idea of God as a being than whom a greater cannot be conceived. His most ingenious attempt to demonstrate the absurdity of supposing the perfect, the iafinite, to be a mere subjective fiction prepared the way for the multitude of attempts, identical or similar in aim, which have since been made. Thomas Aquinas was the best representative of those who held that the invisible God was only to be known through His visible works. He argued from motion to a mover, from effect to cause, from the contingent to the necessary, from lower kinds of good to a supreme good, and from order and purpose in the world to a goveraing intelligence. Raymond of Sebonde added to the ontological and physico-teleological arguments a moral argument. William of Occam criticized keenly and unfavourably both the a priari and a posteriori proofs, and beld that the existence of God was not a known truth but merely an article of faith. There was not less diversity of view as to how far God may be known. Erigena held that even God Himself could not comprehend His own nature, and Eckhart that the nature of God is necessarily unknowable, as beiog a nature without nature, without predicates, without opposites, pure oneness. That man cannot know God's real nature, cannot know Him per essentiam, canoot have a quidditiva cognitio Dei, and that

[^101]the so-called attributes of God are only descriptive of the effects of His operations as they appear to the buman mind, or even are merely symbols or metaphors, was maintained by many of the scholastic doctors. Aquinas, for example, with all his confidence as a dogmatic eystembuilder, so denied the cognoscibility of God. That the buman mind may have a true, although it cannot have a periect knowledge of God, -an apprehensive but not a comprehensive knowledge of Him, -was, however, in the Middle Age, as it has been ever since, the prsition most commonly taken up. The scholastic divines discussed a multitude of foolish questions regarding liod, but that was not due to extravagant faith in the power of the human mind to know or comprehend God. Prof. Sheldon very justly says, " on the whole, tho scholastic theology, notwithstanding some strong negative statements, assumes in reality a minimum of acquaintanceship with the essential nature of God." The negative statements are, for the most part, those of the mystics with respect to the beatific vision. Mediæral discussions as to the nature of God turned chiefly on two points, - the relation of the Divine essence to the Divine attributes and of the one Divine substance to the three Divine persons. The conclusion come to by the vast majority of scholastic theologians on the first point was that the attributes were not really or objectively in God, but merely human repro seatations rellected, as it were, on the idea of God, becanse the mental constitution of man is whe t it is, and because God wished to be thought of in certain divers manners. To hold them objectively real in God, and therefore intrinsically distinct either from the essence of God or from one another, was considered to be incompatible both with the incomprehensibility and with the absolute simplicity of the Divine nature. Duns Scotus, in maintaining that the attributes were fornalitates realiter distincte, took up an exceptional position. On the other point the conclusion as generally reached was one secmingly quite inconsisteat with the foregoing, namely, that the persons were obiectively and eternally real and distinct. The discrepancy is especially apparent in those theologians (e.g., Anselm, Abelard, Hugo and Richard of St Victor, Alcxander of Hales, and Aquinas) who represented the persons of the Trinity as corresponding to distinctions among the very attributes which they in another reference denied to be distinct. The mediaral schoolnen, with very few and doubtful exceptions, conjoined with their theisin the doctrine of the Trinity as defined by the ancient church. Roscelin of Compiègne and Gillert de la Porrée laid themselres open to the charge of tritheism ; and obviously nominalism, by allowing nothing but a nominal existence to the essenco or general nature of which the individual is a specinen, tended towards tritheism, -towards resolv. ing the Trinity into a triad of Divine individuals or selfsubsistent beings, connected only ly a common suecific character. While the schoolmen accopted the doctrine of the Trinity on authority, they did not conceive themselves precluded from endearouring to illustrate it and to make it appear as consonant to reason as possible. They sought to show its consisteacy with the unity of God, and its general reasonableness by various sjeculative considerations, but especially by the aid of analogies drawa from the constitution of the mind and even from particular physical phenomena. They did not suppose that they were thereby demonstrating the doctrine of the Trinity: they fully recognized that doctrine to be the indication of a mystery, "dark with excess of light," and the truth of which could only be directly apprehended in the beatifio vision conferred by the highest and most special grace; but they proceeded on the belief that, inasmuch as it was a central truth of revelation, the whole creation, add
XXIII. - 3 I
anove all, the nature and essence of man's spirit, must bear witness to it. At least one good result followed. Those who exercised their minds on the doctrine of the Trinity were necessarily led in some measure to furm another idea of God than that of either an indeterminate unity or a confused synthesis of attributes,-to think of Him, with some clearness and steadiness, in an organic and harmonious manner, as absolute being, absolute life, absolute spirit, absolute intelligence, absolute love. Such thought as this distinctly appeared in Anselm, the St Victors, Aquinas, Bonaventura, Dante, \&c. The omnipresence, omnipotence, and omniscience of God, and, generally, what are called His metaphysical and intellectual attributes, were discussed with excessive elaborateness and subtlety, while His moral attributes were left in the background, or considered without sufficient earnestuess or insight. The problems regarding the rclationship of the Divine attributes to human agency, and, in particular, as to the compatibulity of Divine prescience and predestination with kuman freedom and responsibility, were even too laboriously and minutely debated between the mediæval Augustinians and their opponents. What the disputants on both sides lacked was intellectual humility. They strode along "dim and perilous ways" as if they were in plain and safo paths, or as if their own faculties were superhuman. As to the general relation of God to the universe, few, if any, of the schoolmen can be charged with deism. While assigning to God a being and life transcending the universe, they also affirmed that He was everywhere in the universe, everywhere wholly present, everywhere essentially and activcly present. Pantheism was prevalent all through the Middle Ages, but only two of its representatives, perhaps-Erigena and Eckhart,showed much speculative capacity. ${ }^{1}$

Mohammedan theism drew chiefly from faith and fanaticism the force which carried it onwards with such rapidity in its early career of conquest. At the same time it powerfully stimulated reason, as soon appeared in remark. able intellectual achievements. Of course, reason could not fail to reflect on the contents of the faith by which it had been awakened. The result was the formation of many schools of religious opiaion. So far as our subject is concerned, however, all mediæval Mohammedan thinkers may be ranked as philosophers, theologians, or mystics. The philosophers derived little of their doctrine from Mohammed. Even in what they taught regarding God they followed mainly Aristotle, and in some measure the Neoplatonists. They maintained the unity of God, but conceived of it in a way unknown to Mohammed, namely, as a unity allowing of the reality of no distinctions, qualities, or attribates in God. Then, althongh they affirmed the unity of God in the strictest abstract manner, they were not monists but dualists, inasmuch as they denied creation ex nihilo, and asserted the eternity of matter. The mode in which they supposed the multiplicity of finite

[^102]things to have been produced from God was by a series of emanations originating in Divine intelligence, nst in Divino will. Their proofs of the Divine exstence were, for the most part, founded on the principle of causality. Tho philosophers did not openly oppose the theism of the Koran, but they ignored it or set it aside, and representec. it as only a useful popular faith, not a response to the demands of cultured reason. The "theologians," on the other hand, took their stand upon the Koran, sought to defend and derelop into doctrine its representations of God, and to show the inconclusiveness and inconsistencies of the teaching of the philosophers regarding God. Even those of them, however, who exalted faith and revelation most-the orthodox Motakallemin or Asharites-by no means dispensed with philosophy and reason. It was chiefly on the metaphysical hypothesis of the atomic constitution of matter that they rested their proofs of the Divine existence. It was by subtle reasonings that they sought to establish the non-eternity of matter and the unity and immateriality of God. It was on speculative grounds that they contended God had eternally possessed all the attributes ascribed to Him in the Koran. Tbeir predestinationism was as logically elaborated as that of the Augustinian scholastics. There flourished for a short period a school of liberal Mohammedan theologians, the Motazilites, who, while accepting the two fundamental doctrines of Islam-the unity of God and the divine mission of Mohammed,-refused to regard the Koran as an absolute religious authority, and sought to transform Mohammedanism into a reasonable and ethical monotheism. They insisted on the rightful conformity of faith to reason, on human freedom, and on the righteousness as well as the unity of God. They endeavoured, in fact, to substitute for a God whose essence was absolute or arbitrary will a God whose essence was justice. This meant, however, not to develop or even reform, but to subvert and displace the Johammedan idea of God, and the wouder is, not that they failed in so arduous a task, but that they had the courage to undertake it. Mohammedan mysticism (Sufism) was a reaction, chictly of the Persian mind, against the narrowness and harshness of the monotheism of the Arabian prophet. Unlike philosophy, it was not a mere exotic, but an indigenous growth within the Mohammedan area, and hence orthodoxy has never been able to eradicate it. It has been the chief support of spiritual feeling and the chief source of poetry iu Mohammedan laads. It still flourishes, has branches innumerable, and through its poets has shed seed widely even over Christendom. The mystics refuse to think of God as an arbitrary unlimited Will, separate and apart from everything; as one who reveals Himself clearly only tbrough the words of a prophet ; as a being before whom man is mere dust and ashes, and who demands no higher service than fear, unquestioning faith, and outward obedience. In their view God is immanent in all things, expresses Himself through all things, and is the essence of every human soul. There is not only no God but God, but no being, life, or spirit except the being, life, and spirit of God; and every man may be God's prophet, and more even than His prophet. For a man to know God is to see that God is immanent in himself, and that he is one with God, the universal life which breathes through all things. Such knowledge or vision must glorify all nature, and must dilate and rejoice the heart of him who possesses it. Joy and ecstacy must characterize tho worship of the Suf. A religious scepticism based on philosophical scepticism-disbelief in the existence of God grounded on disbelief in any truth not guaranteod by sense or mathematical demonstration - was not unknown among the Saracens, although no work in defence of it has come down to us, and perhaps none may have been written.

In Algazel philosophical scepticism was combined with religious dogmatism and mysticism. He subjected the doctrinés of the philosophers to a keen and hostile criticism, and maintained that reason was incompetent to reach the knowledge of God, yet cherished an ardent and exalted faith in God, based partly on the Koran and partly on mystic contemplation and devout experience. ${ }^{1}$

Jewish and Mohammedan religious thought were intimately connected in the Middle Age, and ran a nearly parallel course. The Rabbanites and the Karaites of Judaism corresponded to the orthodox and the Motazilites of Mohammedanism. In their theism there was no new feature or peculiar significance. Jewish thcosophic mysticism found expression in the Kabbalah. The idea of God there presented was at once excessively abstract and excessively fanciful. It must be studied, however, in the original source or in special works. The Jewish philosophers differed little from the Arabian philosophers in their teaching regarding the evidences of the Divine existence, the nature and consequences of the Divine unity, and the meaning of the Divine attributes. At the same time, they, with a few exceptions, affirmed the non-eternity of matter, and did not, like the Arabian Aristotelianz, represent providence as merely general. They maintained strongly the transcendence of God and the impossibility of the human mind forming any positive conception of His essential being. They held that He was known as necessarily existent, but also as in Himself necessarily unknowable. Their view of the unity of God led them to an idea of God which may not, nujustly be designated agnostic, and which prevented their regarding either nature or Scripture as a revelation of what God really is. Almost alone among eminent Jewish writere of the Middle Age, Jehuda Halevi contended that the representation of God given in the revelation to Iarael was self-evidencing, independent of the support of philosophy, and unattainable in any speculative way. The function of reason was, in his view, not to sit in judgment on what had been delivered regarding God to the Jews, but to repel the objections which philosophy had brought against $i t$, and to show the inadequacy of the results reached by unaided human inteligence. Maimonides andertook to establish that reason and faith, science and revelation, were at one in what they affirmed regarding God, but in order to make out his thesis he sacrificed the literal sense of Scripture whenever it did not accord with the tenets of his philosophy, and substituted for the representation of God given through Moses and the prophets one rery different in character. His idea of Cod is highly abstract and metaphysical, -the idea of a being so unlike every other being that no name or predicate whatever when applied to Him can bear its ordinary, or indeed any intelligible meaning. Existenco, eternity, anity, power, wisdom, justice, and other attributes, are not in Him what they are in auy other being or even analogous in Him to what they are in any other being. ${ }^{2}$

[^103]In Christian Europe the human mind took a fresn start at the epoch of the Renaissance. It revolted against the authorities to which it bad long been submissive, and exercised private judgment with a confidence nocorrected and unmoderated by experience. It turned with ardour to the free discussion of the greatest theme of thought, and probably at no period of history has there been more individual diversity of opinion on that theme. God and His relation to the universe were treated of from a multitude of points of view. Scepticism, naturalism, and pantheisnı appeared in various forms ; all ancient systems of thought as to the Supreme Being found advocates; all modern theories as to the nature of the Divine were in some measure anticipated. Did our limits permit it rould not be uninteresting to expound the specalations concerning Deity of several of the writers of the Renaissance, and especially, perhaps, of these three-Nicolaus of Cuss, Giordano Bruno, and Thomas Campanella. The theosophic mysticism of the period was a preparation for the Reformation. ${ }^{3}$
The fusion of theology and philosophy was the distinctive feature of mediæval Christendom; their separation has been a marked characteristic of inodern Christeodom. Even when both have been occupicd with religious inquiries and thoughts of God they have kept apart; they have often co-operated, but seldom commingled. Theology has been on the whole cleric, and comparatively conservative ; philosophy has been on the whole laic, and comparatively progressive. But for theology holding fast to what had been handed down as truth regarding God there must have been little continnity or consistency in the development of religious convictions; but for philosophy restlessly seeking ever more light there would have been little growth or increase of knowledge of the Divine.

The Reformers held that there was a knowledge of God naturally planted in the human mind, and also derivable from observation of the constitntion and government of the world, but that this knowledge was so marred and corrupted by ignorance and sin as to require to be confirmed and supplemented by the far clearer and fuller light of the special revelation in the Scriptures. They were deeply sensible of the evils which had arisen from the over-speculation of the scholastic divines on the nature of God, and were under the impression that it would have been well if men had been content to accept the statemente of Scripture on the subject with simple and unhesitating faith. Luther wished theology to begin at once with Jesus Christ. Melanchthon said, "There is no reason why we should devote ourselves much to these most lofty subjects, the doctrine of God, of the unity of God, of the Trinity of God"; and in the early editions of his Loci Communes he entered into no discnssiod of these themes. Zwingli in his De Vera et Falsa Religione and even Calvin in his Institutio Religionis Chresianz delineated tho doctrina de Deo only in outline and general features. In the confessions of the churches of the Reformation nothing which the ancient charch had cecumenically determined os regards that doctrine was rejectcd, and nothing new was added thereto. It soon became apparent, however, that the mind wonld by no means confioe its thoughts of God within the limits which the Reformers belioved to be alone legitimate and safe. The ioca of Cod is so central in religion that it must nffect and be affected by overy change of thought on
1870, 1876 ; Joel, Beiträge z. Gesch. d. Philasophie, 1876. On'tbr Kabbalah, see Franck and Ginshurg. Kanfmazn, Geschechic der Aitri buteniehre in der judischen Religionsphilosophic der Mitlelatters 1878; Friedlander, Gude of the Pervisaed of AGaimonides, 3 yols. 1885.
${ }^{3}$ M. Carmérv's Philosophiscine Weltarsehauang der Reformation'te : 1887; Punjer's Religumsphilosophie, L 51-50, 89-75, 76-80; B. . $\therefore 1$ Conuscenza do Dio, iti 1-80.
any religious theme. The many and violent controversies within Protestantism all reacted on the doctrine relative to Deity, causing it to be studied with intense energy, but in a manner and spirit very unfavourable, on the whole, to truth and piety. Every new dispute elicited more abstruse conclusions and more subtle definitions. In the disputations of orthodox divines of the 17 th and 18th centuries as to the nature, the attributes, the decrees, and the operations of God, we see scholasticism with all its peculiarities reintroduced and often exaggerated Yet Protestant theism was in various respects an adpance on that of the doctors of medioval scholasticism. The protest of the Reformers against the faults of the scholastic treatment regarding God did not lose its pertinency or value because their own followers fell into these very faults. If the subsequent history plainly showed that the doctrine could not have been so fixedly and exhaustively deterinined by the ancient church as the Reformers supposed, it also showed that the scholastic treatment of the doctrine had been justly condemned by them, and that speculation regarding God when not rooted in spiritual experience must necessarily be unfruitful. "The scholasticism of Protestantism was in essential contradiction to the genius and aim of Protestantism. Then, in the Protestant doctrine of God more prominence was given than had previously been done to His manifestation in redemption, to the relation of His character towards sin, and, in particular, to the attribute of justice. The strong emphasis laid on the rightcousness of God marked a distinct ethical advance. At the same time the idea of God in the older Protestant theology was far from ethically complete. His fatherhood was strangely ignored or most defectively apprehended. Absolute sovereignty had assigned to it the place which should have teen given to boly love, and was often conceived of in an risethical manner. Further, whereas nmong mediæval elcologians it was the rule and not the exception, among Protestant divines it was the rare exception and not the sule, to affirm God to be unknowable. They asserted merely His incomprehensibility and man's limited knowledge of His perfections. They did not in general, however, abandon, at least explicitly, the premiss from which mediæval theologians inferred the Divine incognoscibility, namely, that the absolute simplicity of the Divine essence was incompatible with the existence of distinctions therein. ${ }^{1}$

Difference of opinion as to the relation of reason to Scripture was in the Protestant world one of the chief causes of difference of belief as to God. Assaults on trinitarianism were contemporary with the Reformation, and they proceeded more on the conviction that the doctrine of the Trinity was unreasonable than that it was unscriptural. The founder of Socinianism, indeed, not only fully accepted the authority of Scripture, but went so far as to represent it as the source of all religious truth, even of the primary truths of natural religion; yet, while be thus apparently and in theory attributed the knowledge of God more to Scripture and less to reason than did Luther or Calvin, really and in practice be did just the reverse, because he conceived quite otherwise of the connexion between Scripture and reason. While he beld Scripture to be the source of religious truth, he also held reason to be so the organ of religious truth that nothing contrary to reason could be accepted on the authority of Scripture, aud that only those declarations of Scripture could be deemed to beinterpreted aright which were interproted in accordance with the axioms of reason. Luther, on the other hand, proclaimed aloud, Strangle reason like

[^104]a dangerous beast if it dare to question Scripture; and Calvin, although he did not speak so barshly, demanded the unqualified submission of reason to the authority ol Scripture. Antitrinitarianism has maintained its ground throughout the Protestant area, has assumed a variety of forms, and has exerted a poweriul influence. It has been unable, it is often said, to do more than revive the doctrines which distracted the ancient church and were condemned by it as heresies. And this must be so far admitted. The doctrine of the Trinity comprehends only a few propositions, and every departure from it must involve a rejection of one or more of these, and must, consequently, belong to some one of a very few possible types or classes of belief. But essentially the statement is superficial and unjust. For the ways in which, and the grounds on which, both the affirmations of which the doctrine consists and the vegations of these lave been maintained have not been the same. Alike the defences and the attacks have in the later era implied a deeper consciousness of the nature of the problems in dispute than those of carlier times. As of history in general, so of the history of the doctrine of God, it holds good that no present has been the mere reproduction of any past. The rationalistic process Deism was carried farther in English deism and its Continental developments. Deism sought to found religion on reason alone. It represents "nature" as the sole and sufficient revelation of God. There is no warrant for the view that the deists held nature to be independent of God, selfcoaservative and self-operative,-or, in other words, God to be withdrawn from nature, merely looking on and "seeing it go." They believed that God acted through natural laws, and that it was doubtful if He ever acted otherwise than through these. Whatever was taught about God in Christianity and other positive religions beyond what reason could infer from nature ought, in their opinion, to be rejected as fiction and superstition. All their zeal was negative,-against "superstition." What was positive in their own doctrine had but a feeble hold on them. God was little more to them than a logical inference from the general constitution of the world. They lacked perception of the presence of God, not only in the Bible, but in all human life and history. ${ }^{2}$

Modern philosophy, from its rise to the close of the 18 th Moden century, showed a double development, the one ideal and rhilothe ather empirical, the Cartesian and the Baconian. The sophy. former was the more essentially religious. Descartes endeavoured to found philosophy on an indubitable refutation of absolute scepticism. Such a refutation he believed himself to have effected when he had argued that thought, eren in the form of doubt, necessarily implies the exist ence of him who thinks; that the implication yields a universal criterion of certainty; and that the presence of the idea of God in a man's mind, the consciousness of the mind's imperfection, and especially the character of the mind's concept of God as that of the most real being containing every perfection, demonstratively establish that God is and is what $H e$ is thought to be. God is and is true; therefore man has not been made to err, and whatever he clearly and distinctly sees as true must be true. In the opinion of Descartes, the idea of God is inherent in reason, is the seal of all certainty, and the corner-stone of all true philosophy. To the whole Cartesian school theology was the foundation of all science. To Spinoza,

[^105]who most fully developed some of the distinctive principles of Descartes, it was identical with all science, for to him God was the only substance, and all things elso were ouly His attributes or modes. Besides the pantheism of Spinoza, the occasionalism of Guelinx, Malebranche's vision of things in God, Leibnitz's pre-established harmony and optimism, and Wolf's rationalism were natural, if not necessary, outgrowths from the same root,-Cartesian theism. Perhaps, of all the many services to the cause of theism with which Cartesianism must be credited the greatest was that it constantly gave promiaence to the absolute perfection of God. ${ }^{1}$ Baconian or empirical philosophy was content if, by the ways of causality and design, it could rise to an apprehension of a First Cause and Supreme Intelligence. It tended of itself to a phenomenalism, sensationism, associationism, unfavourable to theism. It was, however, counteracted, restrained, and modified by Cartesianism and Platonism, and it naturally allied itself with positive science. The massive defence of theism erected by the Cambridge school of philosophy against atheism, fatalism, and the denial of moral distinctions was avowedly built on a Platonic foundation. The popularity during the 18 th ceatury of the design argument, and what was called physico-theology, was largely due to the impression made on the general mind by the brilliant discoveries of the founders of modern astronomy, chemistry, and other physical sciences. Bishop Berkeley showed how an em. pirical philosophy might be logically evolved into a theistic immaterialism, Hume how it might be logically dissolved into an agnostic nihilism.

In the 16 th, 17 th, and 18 th centuries mysticism had many representatives, several of whom, as, e.y., Weigel, Ottingen, Swedenborg, and especially Jacob Boehme, are entitled to a considerable place in any detailed history of theism. To the ejes of Boehme God rerealed Himself from without and within in the most real and intimete manner. In the powers, antagonisms, and conjunctions of creation he saw the energies, struggles, and victories of the creative Spirit itself; in the constitution and operations of physical and human nature, the essential constitution and necessary processes of the Divino nature. His thoughts of God were in striking contrast to those of the deists and natural theologians of the 17 th and 18th centuries, and strikingly anticipated those of a Schelling, Hegel, and Baader in the 19 th century. Could Swedenborg's doctrine of correspondences be verified, our means of insight into the character of God would be largely extended.

The 19th century is aufficiently far advanced to allow us to see that a new epoch even in the history of theism began near its commencement. The revolntion in philosophy initiated by Kant has profoundly affected theistic thought. It has introduced that type of agnosticism which is what is most original and distinctive in the antitheism of the present age, and at the same time atimulated reason to undertake bolder inquiries as to the Divine than those which Kant prohibited. The enlarged and deepened views of the universe attained through the discoveries of recent physical science have rendered incredible the idea of a God remote from the world, irresistible the

[^106]conviction that the eternal source of things must be immanent in their constitution, changes, and laws. The rapid growth of biology and the spread of the doctrioe of evolution have not only tended in the same direction, but given a new and nobler conception of the teleology of the universe, and, consequently, of God as the supreme intelligence. History-which the natural theologians of the 18th century so strangely ignored, which the solitary Italian thinker Vico alone recognized with clearness and comprehensiveness of vision to be necessarily the chief scene of the relf-revelation of God-began with Lessing and Herder to be generally seen in its true religious light. The comparative or historical method of study has created two disciplines or sciences, comparative theology and Biblical theology, - which are both largely occupied with tracing the development of the idea of God. The ethical apirit of the age has so told on its religious teaching that to no generation save that to which the gospel was originally given has the Divine fatherhood been 80 distinctly set forth as to the present. Dogmatic theology, especially in Germany, has been earoestly active; and its chief representatires have laboured so to amend and advance the doctrine concerning God that it may satisfy the new requirements which have arisen.

It is now necessary briefly to indicate the present etate of thought Presant on the chief points and problems of theism.
As to the origin, then, of our sctual idea of Gor, thet, it is eeen, thought can only be the whole religions history of man which precedes it, Origio of and the whole religious nature of man which underlies that history. ides of It is absurd to refer exclusively to any faculty, intuition, or feeling, Gol any- revelation or iastruction, say person or event, what can be traced in growth and formation through thousauds of years, and can be ohown by facts and documents to have been infuenced by all the chief causes which have made history what it is. The history of the idea of God is the centre of all history, both explained by and explsining it; and our ninetesath-ceatury idea of God is the result of the entire historico-psychological process which has produced the culture and religion of the 19th century. The idea of God is what it now is because God's whole guidance of man and man'e whole search for God, the whole economy and evolation of things and the whole constitution and development of thonght and feeling, have been what they have bern from the beginning of history to the present time. Anthropology, comparative paychology, the scicace of langusge, comparative theolog7, Biblical theo. logy, the history sf philosophy, and the history of Christian doctrine, have cill been eagarged in attemptiag to discover the factors and etages of the vast and complex prosess which has rasulted in the accepted ides of God; and, by their separate and conjunct endeavours, they have succeeded in casting great light on all parts of the process.

As to the absolute historical origin of theism-8s to where, when, and how the theistic conception of the Divine first obteined recog. nition among meu-s definitive answer has not jet been reached. But the labour expended on the problem has not been wasted. It hes made clearer the nature of the inquiry, rendered aprarent the nosatisfactoriness of previons solations, opeocd up glimpses of divers ways by which men have been led to belief in the nnity of God, and accumulated means and materials for future and probsbly more onccessful work.

The question ss to the psychological origin of theism cannot be Wholly separated from that as to its historical origin. Unlesa theism can be shown to be the primitive form of religion, it cannot be held to have had an entirely pecaliar and distinct psychological origio, but must be viewed as rimply a phase or develonment of religion. It eannot be said that thero is as yet agreement as to the psychological origin, or as to the psychological constitution even, of religion. The liypothesis of a aimple impartation of the knowledge of God and spiritual things through primitire rovelation, or through instruction aud tradition which go back to the first appearance of man oo earth, atill retains a hold on certain conser. vative minds, but has received no confirmation from modern scionco and discovery, aud is plainly of its very nature inadequate. A revelation relative to God io words or aigns conld here no meaning to a miad devoid of thoughts of God; spiritual instruction is ouly possible where there are spirital powers to nnderstand and proft by it; tradition will carry nothiog far to which intelligencs is iodifferent. There have been many attempts mado dnring the present century to refer the origin of belief in God to somse emotional source, somo element or state of sensitivity. Thus Strenss has reaffirmed the hypothesis of Epicurus, Lacretins, and Horme, thet fear ruade the gods; Feuerbach has resolved religion into desira,

God being conceived to be what man would wish himself to be; Schloiermacher has argued that a feeling of absolute dependence, of pure and complete passiveness, is our evidence for the presence of an infinite onergy, an infinite being; Mansel has represented the feeling of dependence and the conviction of moral obligation as the eourcea of the religious coneciousness ; Pfleiderer represents religion as a response to the sense of conflict and contradiction between man'e feelings of dependence and of freedom; Rauwenhoff traces its origin to respect (Achtung), the ront also of moral conduct and of family life; others have referred it to specific ethical feelings; and many have represented it to be essentially love. The number of these attempts and the diversity of these results are explained by the complexity of religious feeling. In religion all the feelings which raise man above the merely animal condition are involved. Man is not religious by any one feeling or by a few feelings, but by the whele constitution of his emotional nature. His heart, with all its wealth of feelings, has been made for God. Hence all the theories referred to have easily been shown to be one-sided, and to have exaggerated the significance and influence in religion of particular emotional elements, but heace also they all contain more or less important portions of the truth, and have all contributed towards a knowledge of the full truth. Man is not only, howerer, disposed by all his chief sentiments for religion, but all these sentiments, when mormally and healthfully developed, tend toward's theism. It is only in a theistic form of religion that they can find true rest and satisfaction. One God can alone be the object of the highest devotional fear, can alone be regarded as ideally perfect, or as a being on whom the worshipper is absolutely dependent, can alone be loved with the whole heart and esteemed with madivided revcrence, can alone be recognized es the solo author of the raoral law, the alone good. The theories which trace the origin of religion to feeling have the merit of recognizing that religion is not an affair of mere intellect; that the Divine could sot even be known by men if they had not feelings and affections as well as intellectual powers; that, if God be love, for oxample, He can only be known by love; that, if He have moral ettribntes, we must have moral feelings in order to be able to recognize them. On the other hand, in oo far as those theorios represent religion as reducih] to mere feeling or as independent of intellect, they have the fault of overlooking that ell the feelings includer in religion presuppose apprehensions and judgmento, and are ralid only in so far as they have the warrant of intelligence. It is ae much an orror, however, to account for religion by any one intellectual principle as by ally one emotional eloment. Religion has no one special seat, such as "the central point of unity behind eoneciousneas," imagined by Schleiermacher; no "special organ," such as "conscienco" was supposed to be by Schenkel; and no one special principle of cognition, such as the law of causality has been repreocnted to be by several philosophers and theologians. All the ultimate principles of cognition ore involved in. religion, and all lead, if consistently followed far enough, to theism. The whole head as well as the whole heart has been made for religion, and for the perfect form of religion. Max Müller, in his Hibbert Lectures, traces the idea of God to a special faculty of religion-" a eubjective faculty for the apprehension of the infinite," "a mental faculty, which, independent of, nay, in opite of, sense and reason, enables man to apprehend the infinite under different names and under varying disguises." This view will not bear, perhaps, a closa scrotiny. The infinite, as an implicil condition of thought, is not more involved in religions than in other thought. We cannot think anything as finite without implying the infinite. Space cannot be thonght of except as extensively, nor time except as proecnsively, infinite. As a condition of thought, tho infinite is involved in religious knowledge only so far as it is involved in all knowledge. On the other hand, as an explicit object of thought, it is not present in the lower forms of rcligion at all, which exiat only because tha thought of infinity is not associated in the religious consciousness with that of Deity, except where reflexion is someWhat highly developed; and, even in the highest stages of religion, it is only apprehended as one aspect of Deity. Infinity is not God, but merely an attribute of the attributes of God, and not even an exclusively Divine attributc. The hypothesis that the idea of God is gained by intuition or vision is proved to be erroneous by the fact that the idea of God, and the process by which it is reached, are capable of being analysed, and therefore not sirmple, and likewiso by the variety and discordance of tha ideas of God which have been actnally formed. The apprehension of God seems to be only. possible throngh a process which involves all that is essential in the human constitution-will, affection, intelligence, conscience, reason,-and the ideas which they supply-cansa, design, goodness, infinity, \&c. These are oo connected that they may all be embraced in a single act and coalesce in ono grand issue. During the last thirty years there has been more psychologicel investigation as to the origin and nature of religion than during all previous history; and tha whole tendency of it has been to set aside all solutions which represent man as religions only in virtne of particular eenti. ments or prisciples, and to make manifest that the paychology of
religion is that of the entire hnman nature in a special relationenip. The best of the later investigations are much more therough and comprekensive than any of earlier dato. ${ }^{1}$

The agnosticism originated by Kant has been one of the distinctive and prominent phenomena in the history of religion and theism during the 19 th century. It oprang out of an earlier agnosticism. Hume and his predecessors admitted that tho conditions of thought - otherwise, the categories of experience or ideas of reason-wera in appearance necessary and objectively valid, but in reality only arbitrary and suljective, their sceming necessity and objectivity being illusory, and consequent on mere repetitions end accidental associations of sensations and feelings. Kant showed that they were not only seemingly but really necessary to thought, and irresol vable into the particular in experience. He denied, however, that we are entitled to consider them as of more than subjective applicability,-that what we necessarily think must necessarily be, or be as we think it. He aftirmed all knowledge to be confined to experience, the phenomenal, the conditioned. It was quite in accordance with this view of the limits of knowledge that he should have denied that we can know Ged, even while he affirmed that we cannot but think of God. It was by no means in obvious harmeny with it that he ehould have affirmed that we must, on moral grounds, retain a certain belief in God. Sir W. Hamilton and Dean Mansel followed Kant in holding that we can have no knowledge of Ged in Himsclf, as knowledge is only of the relative and phenomenal. They otreve to show that the notions of the unconditioned, the infinite, the absolute, are mere uegations of thought, which destroy themselves by their mutual contradictions and by the absurdities which they involve. Yet both of these philosophers held that there is a revelation of God in Scripture and conscience, and that we are bound to believe it, not indeed as teaching us what God really is, hat what Ho wishes us to believe concerning Him. Herbert Spencer, adopting Kant'a theory of the limits of knowledge, and regarding as decisive Ilamilton and Mansel'e polemic against the philosophies of the Absolute, has concluded that the only truth underlying professed revelatione, positive religions, and so-called theological sciences is the existence of an unknowable and unthinkable cause of all things. In tha vier of the Positivist the unknowable itsclf is a metaphyeical fiction. The Kantian doctrine has had a otill more extensive influence in Germany than in Britain, and German philosophers and theologians have displayed great ingenuity in their endeavours to combine with it some sort of recognition of God and of religion. Fries, De Wette, and othere have relegated religion to the sphere of faith, Schleiermacher and his followers to that of fceling, Ritsch] and his echool to that of ethical wants, F. A. Lange to that of imagination, \&c. Their common aim has been to find for piety towards God a special place which they can fonce off from the rest of human nature, so as to beable to claim for religion independence of reason, speculation, and ecience, a right to existence even although necessarily ignorant of the object of its faith, feeling, moral sense, or phantasy. ${ }^{2}$

The movement indicated has led to no direct conclnsion which has obtained, or is likely to ohtain, general assent. It has had, however, a very important indirect result. It has shown how interested in, and dependent on, a true criticism or science of cognition are theism and theology. It has made increasingly manifest the immense significance to religion of the problem as to the powers and limits of thonght which Kant stated and discussed with so much vigour and originality. Hence research into what the Germans call "die erkenntnisstheoretischen Grundsïtze"-the philosophical bases-of theism has been greatly otimulated and adranced by the movement. This is an enormous gain, which mors than compensates for sundry incidental losses. Kant's eolution of the problem which he placed in the foreground of philosophy has not been found to bo one in which the mind can rest. From his agnosticism down to the very ompiricism which it was his aim to relute descent is logically inevitable. The agnosticism of piety has in no form been abla to discover a halting place,-a epot on

[^107]which to raise theism or any solid religions construction. In no form has it been-able to prove its legitimacy, to maintain ita selfconsistency, or to defend itself oucceasfully againat the agnosticism of anbelief. It is, therefore, not surprising that it should have been very enerally regarded as dangerous to theism in reality, gen when friendly to it in iateation. Yet there is much in the theory of cognition on which it proceeda which the theist can atilize. Indeed, no theory of cognition can afford a eatisfactory basis to theism which does not largely adopt and assimilato that of Kant. He has conclusively ohown that all our knowledge is a synthesis of contingent impressions and necessary conditions; that without the latter there can be neither sense, understanding, nor reason; that they conatitute intelligence, and are the light of mind; that they also pervade the whole world of experience and illuminate it; that there is neither thing nor thought in the uni verse which does not exhivit them in some of their aspects; that apart from them there can be no reality, no truth, no science. The agnostic corollariea appended to this theory by Kant and others, instead of being necessary consequeaces from it, are inconeiatent with it. Kant and the agnostica say that we know only the conditioned; but what they prove is that we know also the conditions of thought, and that these conditions are thernselvea anconditionerl, otherwise they would not be neceasary. They affirm that we can know only the phenomenal and relative, but what they establish is that it is as impossible to know only the relative and phenomenal as to know only the absoluto and noumenal, and that in so far as wo know at all wo know through ideas which are and important, sense. They maintain, what is very true, if reat a truiam, that the categories are only valid for experience, end they imply that thia is because experience limits and defines the categories, whereas, according to their own theory, it ia the categorica which condition experience and enter as constituents into all experience, so that to say that the categories are only valid for experieace means very little, experience merely existing 80 far as the categeries enable us to have it, and being valid 80 far aa the categories are legitimately applied, although not farther, which against eenaiblo experience. They have denied the objectivevalidity of the categories or necessary conditions of thought. This denial is the distinctive feature of all modern agnoaticism; and the theist who would vindicate the reality of his knowledge of God, the legitimacy of his belief in God, the worth of his religious experience, hat conse the reasoninga by which it has been supported; show category being unthinkable and inconcoivable; and indicate how its admission mast subvert not only the fondation of theology but of all other eciences, and resolve them all into castles in the air, or into such stuff as dreams are made of. In the accomplishment of this tesk es much guidance and aid may be found, perhaps, in the theoriea of cognition of Ferrier and Reamini as from those of any of the Germans; hut Hegel and his followers, not a fow of the Herbartists, Ulrici, Harms, and many other German thinkers, bave contributed to show the falaity of the critical theory at this point. Amended here, it ia a theory admirably fitted to be the corner-stone of a philosophical theism.
More may be attempted to be done in the region of the necessary and unconditioned. The conditions of thought, the categorien of experience, the ideas of reason are all linked together, $\theta 0$ that each has its own place and is part of a whole. Aad of what whole? The idea of God, All the metaphysical categories are included thereia, for God is the Absolute Being; all the physical categorieg, Her io Ahso Δ bsoluta Force and Life; all the mental categories, for Absolutely iaclusive, the most comprehensive, of all ideas. It is the idea of ideas, for it takes up all other ideas into itself and gives them unity, so that they comstitute a system. The whole system issues ioto, and is rendered organic by, the idea of Gorl, which, indeed, contains within itself all the ideas which are the conditions of human renson and the ground of known exiatence. All aciences, and even all phases and varieties of human experience, are only developments of some of the ideas included in itis supreme and all-comprehenaive idea, and the developments hare in no instance exhausted the ideas. Heace in the idea of God must be the whela truth of the universe as well as of the mind. These sentences are an attempt to express in the briefest intelligible form what it was the aim of the so-called philosophy of the Absolute to prove to be not only true, but the truth. Hegel and Schelling, Krause and Barder, and their associates, all felt themselves to have the one mission in life of making manifest that God was thus the truth, the light of all knowlodge, eolf-revealing ite all ocience, the ools object of all philosoplay. The Absolute with which they occupied themselves so earnestly was no abstraction, no fiction, such as Hanilton and Dlansel supposed it to be, -not the wholly indetermything, not the Unknowable, - but the ground of all relationship,
the foundation alike of exiatence and of thought, that which it is not only not impossible to know, but which it is impossible not to know, the knowledge of it being implied in all knowledge. Hegel expressed not only his own conviction, but the central and vital thougnt of the whole anti-agoostic movement which culminated in him when be wrote, "The object of religion is, like that of philosophy, the oterval truth itself in its objective existence: it is God, and nothiag but God, and the explanation of Gou. Philosophy is not a wisdom of the world, but a knowledge of the unworldly; not a knowledge of outward matter, of empirical leing and life, buy knowledge of that which is eternal, of that which is God and which flows from His nature, as that must manifest and develop itselfHeace philosophy in explainiag religion explains itself, and in, explaining itself explains religion. Philosophy and religion thus coincide in that they have one and the same object." The adherents of the philosophy of the Absolute muat be edmitted to have fallen, in their revolsion from agaegticiem, into many extrad vagances of gnosticism ; but a theist who does not aympataize with their main aim, and oron accepts most of the results as to which they are agreed, canoot be credited with having-mach philosophical insight into what a thorough and consistent theism impliea. A God who is not the Absolute as they understood the term, not the Unconditioned revealed in all that is conditionet, and the esaential content of all knowledge at ita highest, cannof be the God aither of a profound philosophy or a fully-developed religion. The philosophy of the Ahsolute ras, on the whole, a great advance towards a philesophical theism. ${ }^{1}$

And yet it was largely pantheistic, and tended atrongly towarde pantheism. This was not surprising. Aoy philosophy which is in thorough earnest to show that God is the gound of all existence and the condition of all knowledge must fiad it difficult to retain a. firm grasp of the personality and trauscendence of the Divine and to set them forth with due prominence. Certainly some of the most influential representativea of the philosophy of the Absolute ignored or misrepresented them. The consequence was, however, that a band of thinkera soon appeared who were animated with the most zealous desire to do justice to these aspects of the Absolute, and to make evident the one-sidedness and inadequacy of every pantheistic conception of the Divinc. This was the commen aim of those who gathered aroand the younger Fichte, and whose literary organ was the Zeitschrift fur Philosophio. Chalybäus, K. Ph. Fiacher, Sengler, Weisse, Wirth, and Ulrici may be aamed as among the ablest and most active. . The Roman Catholic Guinther and his followers worked in much the same spirit. Lotze has effectively co-operated by his ingenious defence of the thesis that "perfect personality is to be found only in God, while in all finite spirits there exists only a weak imitation of personality; the finiteness of the finite is not a productive condition of personality, but rather a limiting barrier to its perfect development." This movement algo, then, has tended to develop and contributed to earich the theory of theism. Its apecial mission has been to prove that theism is wider than pantheism, and can include all the truth in pantheism, while pantheism must necessarily exclude truth in theism essential to the vitality and vigonr both of religion and of morality. ${ }^{2}$,

The philosophy of the Absolute, judgen of from a distinctly theistic point of view, was defective on nnother side. It regarded too exclosively the necessary and formal in thought, trusted almost entirely to its insight into the significance of the categories a a its porrers of rational deduction. Hence the idea of the Divise which it attained, if vast and comprehensive, was also vagre and abstract, sbadowy and naimpressive. Correction was needed on thia eide also, and it came through Schlejermacher and that large company of theologians, among whom Lipsius and Ritschl are at present the most prominent, who have dwelt on the importance of proceeding from immediate personal experience, from the direct testimony of pious feeling, from the practical necds of the moral life, \&c. From these theologians may be learned that God is to be known, not through mere intellectual cognition, but threugh opiritual experience, and that no dicta as to the Divine not verifiable in experience, not efficacious to sustain picty and to promote virtue, to elevate and purify the beart, to invigorate the will, to ennoble
I On the doctrine of God propounded by the phllosuphers of the Absoluto may be consulted the histories of philcsophy by Chalybsius, Michelet, Erdmann, Ueberweg, K. Fischer, Harma, Zcller, ©c., Nel, Neo-Schellincianlsm, ond Neochapters in Pfelderer on Hegellanlsm; Dorner's Hist. of Prot. Th. A1. 257, 395; ILchrcmberser's Hist. des riees Religieluse en Allmagne, \&c. phstom: Bhie; Opzoomer's Leer tan God, bù \&e.: Franz on Schelling B Fostaderistit der Thcosophie Baaders: \&c.
Krause; K. Ph. Flscher's Charaderishis der
s Soe srt. "Theismus," by Ulricl, in 1lerzog's Rcal-Fineyklopadie, xv. An representlog this phaso of theism the followlng works may be named:-C. HI. Welsso's Idee der Gortheit, 184t, and Phulosnthocke Degmati, 185s: Fiche'

 The school is well represented in America by Pros. Bnwne. Candllsh on "the Theism, enpecislly, ch. $7-9$. Seo slso art. of Prof. © S. Gardiner mu "Lotzo" Per:onally of Goci," in Princetion Reo., Oct. 1885.

THELSM

the character, to sanctify both individuals and communities, are likely to be true. Experience of the Divine can be the richest and anrest experience only if it not merely implies all that is absolute and necessary in consciousness and existencc, but is also confirmed and guaranteed by all that is relative and contingent therein.
What are known as "the proofs" for the Divine existenca hava from tha time of Kant to the present beer, often represented as sophistical or useless. This view is, however, less prevalent than it was. During the last twenty years the proofs have been in much greater repute, and have had far more labour expended on them, than dnring the previous part of the century. They have, of course, been considerably modified, in conformity with the general growth of thought and knowledge. For instance, they are no longer gresented elaborately analysed into series or groups of syllogisms. It is recognized that the fetters which wonld assuredly arrest the progress of physical and mental science cannot ba favourable to that of theology. It is recognized that the validity of the proofs must be entiraly dependent on the truthfulness with which they indicate the modes is which God reveals Himself, the facts through which mau apprehends the presence and attributes of God, and that, therefore, the more eimply they are statcd tha better. Man knows God somewhat as ha knows the minde of his fellow-men-namely, inferen-tially,-yet through an experience at once so simple and so manifold that all attempts at a syllogistic representation of the process must necessarily do it injustice. The closeness and character of the connexiod of the proofs have also come to be more clearly seen. They are perceived to constitute an organic whole of argument, each of which establishes its separate element, and thus contributes to tha general result-confirmatory evideuce that God is, and complemeotary evidence as to what God is. The explanation of this doubtless is that the apprehension of God is itself an organic whole, a complex and harmonious process, involving all that is essential in the human mind, yet all the constituents of which are so connected that they map be embraced in a singlo act and coalesca into one grand issue.
The cosmological argument coucludes from the existeuce of tha world as temporal and contingent, conditioned and phooomensl, to the existence of God as its one eternal, unconditioned, self. existent cause. It is an argument which has beeu in no respect discredited by recent research and discussion, which is in aubstance accepted not only by theists but by pantheists, and which forms the basisaven of the philosophy of Herbert Spencer. The principle on which it proceeds-the principle of causality-has only come to je mors clearly seen to ba ultinate, universal, and necessary. The hgpothesis of an infinite series of causes and effects has not had its burden of irrationality in the least diminished. Tha progress of acience has not tended to show that the world itself may be reasonably regarded as eternal and self-existent; in the view of theists it has only tended to reader more probable tha doctrina that all physical things must have their origin in a single mon-physical cause. The necessity of determining eright the bearings of the now views reached or suggested by science as to the ultimate constitution of matter, the conservation of energy, cosmic evolution, the age aud duration of the present physical system, \&c., has been tha chief factor in the latest developments of the argument a contingentia mundi. The teleological argument, which concludes from the regularities and adjustments, preconformities and harnonies, in nature that its first causo must be an intelligence, has heen both corrected and extended owing to recent advauces of ecienca and capecially of biological science. Tha theory of evolution has not shaken the principle or lessened the force of the argument, while it has widened its scopo and opeued up ristas of grander design, but it has so changad its mode of presentation that already tha Bridgevcater Treatises and eimilar works are to some extent antiqusted. Perhaps the most promising of the later applications of the argument is that which rests on the results obtained by a philosophical study of history, and which seeks to show that the goal of the evolution of life, so far as it has yet proceeded, is the perfecting of human nature, and the eternal eourca of things a power which makes for truth and righteousness. The ethical argument-the proof from conscience and the moral orderheld a very subordinate place in the estimation of witers on natural theology until Kant rested on it slmost the whole weight of theism. It has ever eince been prominent, and has been tha argument most ralied on to produce practical conviction. Much importance is now rarely attached to those forms of the metaphysical argument which ara deductions from a particular conception, as, e.g., of a perfect being. Ignorance alone, however, can account for the assertion often met with that the argument is generally abandoned. It has only been transformed. It has passed from a stage in which it was presented in particular ontological forms into one in which it is set forth in a geveral epistemological form. As at present maintained it is to the effect that God is the idea of ideas, the ultimate in human thought, without whom all thought is confusion and selfcontradiction. In this form, by what theologians and religious philosophers possessed of much epeculative insight is it not heid? ${ }^{1}$

See the present whiter's Theism, end the ludications of the Utareture given in tian zotes.

The changes adopted in the methods of theistuc proof have all tended in one direction, namely, to remeve or correct extreme and exaggerated conceptions of the Divine transcendence and to produce a true appreciation of the Divine immanence, -to set aside deism and to enrich theism with what is geod in pantheiom. The general movement of religious speculation within the theistic aroa has beed towards medistion between the extremes of pantheism and of deism, torrards barmozious combination of the personal self-equality and the universal agency of the Divizo: Positive science has power. fully co-operated with speculation in giving support and impulse to this movement. While the modern acientific view of the world does not result in pantheism, it affords it a partial and relative justification, and requires a theism which, while maintaining the personality of God, recognizes God to be in all things and all things to ba of God, through God, and to God. It may be said that thoism has always thus recognized the Divine immanence. Tha vague recognition of it, however, which precedes scientific insight and the conquest and absorptiou of pantheism is not tc be identified with the realizing comprehension of it which is their result. ${ }^{2}$
As to the further treatment of the idea of God in recent or con. teroporary theology, the following may be mentioned as, perhaps, the chief distinctive features:-first, tha general endeavour to present the idea as a harmonious reflex of the Divine nature and life, instead of as a mere aggregate of attributes; secondly, and consequedtlj, the greater cars shown in the classification and correlation of the attributes, so as to refer them to their appropriate places in the one great organic thought; and, thirdly, the morc truly cthical and spiritual representation given of the Divinr chsractor. To realize the nature and import of tha first of thess features it is only necessary to compare the expositions given of the idea of God in the works of such theologians as Nitzsch, Thomasiu, Dorner, Philippi, Kahnis, and even more in those of the represen. tatives of German speculativa theism, with sucla as are to be forind in the treatises of Hill, Watson, Wardlaw, and Hodge, which, although published in the present century, express only the views of an earlier age. As to tha second point, there has of lats been a vast amount of thought expended in endeavouring so to classify and co-ordinate the attributes, aud so to refer them to the various moments of the Diviua existence and life, as that God may ba abla to be apprehended both in His unity and completeness, self-identity and epiritual richness, as one whole harenonious and perfect personality. Of the work attempted in this direction our limits will mot allow us to treat. In regard to the third feature, any one who will peruse an essay like Weber's Vom Zorne Gottes, or Ritschl'e De Ira Dei, and compares the way in which the Biblical conception of the wrath of God is there presented with the moda of exhibiting it prevalent for so mady ages, is likely to be convinced that considerabla progress has been made oven in recent times in the study of the moral aspects of God's character. That the Divine glory must centre in moral perfection, in holy love, is a thought which is undoubtedly being realized by all theists with ever-increasing clearness and fuluess. ${ }^{3}$
It follows from the above that theistic thought has been moving in a direction which could not fail to snggest to thosa influenced by it that a rigidly unitarian conception of God must ba inadequate, and that the trinitarian conception might be the only one in whieh reason cad rest as self-consistent. So long as the simplicity of the Divina nature was conceived of as an abstract eelf-identity, intelligence could not venture to attempt to pass from the unity to the trinity of the Godhead, or hope for any glimpse of the possibility of harmoniously combining them. But, this view of the simplicity of the Divine nature having been abandoned, and an idee of God attained which assigns to Him all the distinctions con-patible with, and demanded by, completeness and perfection of personality, the doctrine of the Trinity necessarily entered on a new etage of its history. The free movement of thought in this century, far from expelling it from its place in the mind of Christendom, has caused it to strike deeper root and grow with fresh vigour. Neper aince the Nicene age has theological speculation been so actively occupied with tha constitution of tha Godhead, and with tha trinitarian representation thereof, as from the commencement of tha present century. It is, of course, impossible here to describe any of the attempts which, during this period, bava been mada to show that the absolute Divine self-consciousness implies a trinitarian form of existence, and that intelligently to think the essential Trinity is to think those moments in tha Divine existence without which personality and self-consciousness are unthinkable; or that a worthy conception of Divine love demands a trinitarian moda of life; or that a world distinct from God presupposes that God as triune is in and for Himself a perfect and infinite world, oo that

See the extramely interesting papers by Peabody, Montgomery, Howison, and [Harris In the Journal of Speculatice Philosophy for Oct. 1885 , on the questlon, "1s Panthelsm the Legitimate Ontcome of Modern Scionce? " Also F. E. Abbot'e Scientific Theism, 1885; 日nd J. Fiske's Jlea of God as affected by dfodern Abows screntific
Knowledge, 18 R.
Bruch, Lehre con den Oölf. Eigenschaften, 1842; Moll, De Juto Auributorum Det Discrimine, 18 kJ . Both are, however, already inadeoliato.

His attributes and activities already fully realized in the trinitarian life can procecd outwards, not of necessity cut of absolute freedom; or that the whole noiverse is a manifestation of His triune nature, and all finito spiritual life a reflexion of the archetypal life, selfsustained and self-fulfilled therein. All the more thonghtful trioitarian divines of the present endeavonr to make it apparent that the doctrine of the Trinity is not one which has been merely imposed upon faith by external authority, but one which satisfies reason, gives expression to the self-evideacing substance of reveIation, and explains and supports religious expericace. If it be thought that their surcess has not been great, it has to be remem. bered that they have been labouring near the commencement of a movement, and so at a stage when all individual efforts can have unly a very limited worth. To one general conclusion they all seem to have came, namely, that the idea of God as aubstanco is not the only idea with which wo can conoect, or in which we may find implied, tri-personality. The.category of sabstance is, in some respects, one very inapplicsble to God, as the philosophy of Spinoza has indirectly shown. If the theologians referred to be correct, the dectrine of the Trinity is not specially dependent upon it. In their view Ged cannot be thought of consistently as, c.g., Absolute Life, Abselute Intelligence, or Absolute Love, unless He be thought of in a trinitarian manner.

While trinitarian theism has thus doring tho present century shown abundant vitality aad vigour, it cannot bo said to have gained any decided victery over unitarisn theism. The latter bss also within the same period spread more widely and shown more practical activity, more spiritual life, than in any former age. The onitarianism represented by a Slartineau is a manifest advance on that which was represented by a Priestley. Theism in its unitanan form is the creed of very many of the most cultured and most religions minds of our time, alike in Europe and America. In this form it has also signally shown its power in conternporary India. Brabmoism is, perhaps, the most remarkable example of a unitarian theism which exbibits all the characteristics of a positive faith and a charchly organization. The onitarian theism of the present age is distinguished by the great variety of its kinds or types. None of these, it must be added, are very definite or stable. Hence unitarisn theism is often seen to spproximsto to, or become absorbed into, agnosticism or pantheism, cosmism or humanitarianism. This may be due, however, less to its own character than to the charactet of the age. ${ }^{1}$

The mind of man has clearly not yot cessed to be intensely interested in thoughts of God. There are no grounds apparent. for supposiag that it will ever cease to seek after Him or to strive to enlarge its knowledge of His ways. And, if the idea of God be What has been suggested in the foregoing pages, the search for God cannot fail to meet with an ever-growing response. If the idea of God be the most comprehensive of ideas, inclusive of all the categories of thought and implicative of their harmonions synthesis and perfect realization, all thought and experience mest of its very nature tend to lead onwards to a fuller knowledge of God. For the knowledge of God, on this vient, consists in no mere inference reached through a process of theological argumentation, but in an arer-growing apprehension of an ever-advancing self-revelation of God; and all philosophy, science, experionce, and history must necessarily work together to promote it.

All speculative thonght, whether professedly metaphysical or professedly theological, is concersant with ideas included in the idea of God. It deala with what is necessary in and to thonght; and within that sphera, notwithstanding many aberrations, it has made slow but sure progress. The history of philosophical apeculation is not only, like the whole history of man, essentially rational, but it is, in substance, the history of reason itself in its purest form, - not the record of an accidental succession of opinions, but of the progressive apprehension by reason of God"s revelation of Himself in its own constitution. "There is nuch in the bistory of speculative thought, just as in the outward life of man, that belongs to the accidental and irrational-errors, vagaries, paradoxes, whimsicalities, assuming in all ages the name and the guise of philosophy. But, just as the studeat of the constitutional history of England can trace, amidst all the complexity and contingeacy of ontward and passing events, through successive times and dynasties, underocath the waywardness of individual passion and the straggle for ascendency of classes and orders, the silent, steady development of that system of ordered freedom which we namo the constitution of England, so, looking back on the course which human thought has travelled, we shall be at no loss to discern benesth the aurface change of opinions, unaffected by the abnormal displays of individal folly a ad noreason, the traces of a continnous onward movemont of mind." And this continuous onward movement is towards the clearer and wider apprehension of the whole eystem of ultimate traths which is comprehended in the idea of the Absolute Truth. The thoughts of men as to God are necossarily

[^108]enlarged by increase of insight into the conditions of their own thinking. The disquisitions of merely professional theologians on the nasture and attributes of Cod hava dooe far less to elucidate the idea of God than the plilosophica' piers of great specusative thinkers, and would have done less than they have actually accomplished wera it not for the guidance and suggestion found in these views.

The sciences co-operate with speculative philosophy and with one snother in aiding thought to grow in the knowledge of God. The greatness, the power, the wisdom, the goodness, of the God of creation and providence must be increasingly apprehended in the measure that nsture and its course, humanity and its history, are apprehended; and that measure is given us in the stage of development attained by tne sciences. "God's glory in the hearens," for example, is in some degree visible to tho naked eye and nuinstructed iotellect, bot it becomes more perceptible and more impressive with every discovery of astronomy. Not othcrwise is it as regards all the sciences. Each of them has its distinctive and appropriate contribation to bring towards the completion of the revelation of God, sad caunot withhold it.

But the idea of God is not one which can be rightly apprehended merely through intellect apeculatively excrcised or operating cn the findings of science. It requires to be also apprehended throngh moral experience and the discipline of life. Neither individuals Dor communities can know more of God as a moral being than their moral condition and character permit them to know. The apprehension of God and the sense of moral distinctions and moral obli. gations condition each other and correspond to each other. History shora ns that sincere and pious men may receive as a eupernaturally revealed truth the declaration that God is love, and yet hold that His love is very linited, being real only to a faroured class, and that He has foreordained, for His mere good pleasure, millions of the haman race to eternal misery. How was such inconsistency possible? Largely because these men, notwithstanding their sincerity and piety, were lacking in that love to man through experience of which alone God's love can he truiy apprehended. In like manner, it is not only the acience of law which cannot advance more rapidly than the sense of justice, but also theology ao far as it treats of the righteousness of God. Thns the knowledge of God is conditioned and influenced by tha course of man"a moral expericace.

The same may be aaid of the distinctively religions experience. In it also there has been a continuous discovery and a continuous disclosure of God. It is uot long aince the ethnic religions were Fery generally regarded as merely stages of human folly, so many monu. ments of aversion to God and of departure from the truth as to God. It was supposed that they were adequately described wben thej were called "idolatrics" and "superstitions." This riew rested on a strangely unworthy conception both of human oature and of Divine providence, and is fast passing away. In its place has come the conviction that the history of religion has been essentially a process of aearch for God on the part of man, and a process of self-revelation on the part of God to rasn, resulting in a continuous widening and deepening of human spprehension of the Divine. All, indeed, has not been progress in the history of religion either in the othaic or Christian period; much has been the roverse; but all stages of religion testify that man has been sceking and findion: God, and God making Himself known anto man.

But, while knowledge of God may reasonably be expected unceasiogly to grow, in all the ways which have been indicated, from more to more, it is not to be supposed that doubt or deaial of Gol's cxistence must, therefore, speedily disappear. Keligious agnos. ticism candot fail to remain long prevalcot. The very wealth of contents in the idea of God inevitably exposes the idea to the assaults of agnosticism. ' All kinds of agnosticism merge into agnosticism as to God, from the very fact that all knowlelge impliea and may coatribute to the knowledga of God. The more comprehensive an ides is from the more points can it be assailed, and the idea of God, being comprehensive of all ultimate ideas, may be Rssailed through them all, $3 s$, for example, though the idea of being, or of infinity, or of cansality, or of personality, or of rectitude. Then, in snother way, the uniguo fulness of tho idea of God explains the prevalence of agnosticisin in regard to it. The ideas are not precisely in God what they are in man or nature. God is being as man or nature is not ; for Ho is independent, and necessary being, and in that bense tho one true Being. God is not limited by time and space as creatures are; for, whereas xuretion sod extension merely are predicates of creatures, the correspon ding attributes of God are eterDity and immensity. God ss first cause is a canse in a higher and moro real sense than any scond caune. So as to personality, intelligence, holiness, love. Just because tho ides of God is thus elerated in all respects, thero aro many mio ls which fail or refuse to rise up to it, and which because of its rery truth reject it as not true at all. They will not hear of thas Absolute Truth which ia simply the ides of God; but that they reject it is their misfortune, not any argumcot against tho truth itself.
(R. F.)

THEMIS, the Greek mythological personification of castom. In Homer the word occurs both in the singular and in the plural (themistes), with the sense of "custom," "nowritten lam." But even in Homer Themis is also spoken of as a goddess who, at the command of Zeus, calls the gods to an assembly and summons or disperses the assemblies of men. But after all she is a thin abstraction, a faint shadow, by the side of the full-blooded gods of Olympus. Hesiod furaished her with a pedigree (making her the daughter of Sky and Earth), and married her to Zeus, by whom she became the mother of a brood of wellbred abstractions,-Legality, Justice, Peace, the Hours, and the Fates. Pindar, no doubt with a full sense of her abstract nature, speaks of her as the assessor of Zeus. In one passage (Pron., 209) Eschylus seems to regard her as identical with Earth, snd "Earth-Themis" had a worship and priestess at Athens, whero Athene also sppears with the surname Themis. There was a tradition that the oracle at Delphi had first been in the hands of Earth, who transferred it afterwards to Themis, who in turn gave it up to Apollo. Themis had temples at Athens, Thebes, Tanagra, and Epidaurus. At Olympia she had an altar, and at Troezen there was an altar of the Themides (plural of Themis). In modern writers Themis sometimes stands as a personification of law and justice, -an idea much more abstract and advanced than the original sense of "traditional custom."

THEMISTIUS, aamed єúфpaôns, or "the well-languaged," was a rhetorician and philosopher of the latter half of the 4 th century. Of Paphlagonian descent, he settled sad taught at Constantinople. Thence ho was called to Rome, but, after a short stay in the West, returned to the Eastern capital, where be resided during the rest of his life. Though a pagan, he mas admitted to the senate by Constantius in 355 . He was prefect of Constantinople in $38 t$ on the nomination of Theodosius. Themistius's paraphrases of Aristotle's Posterior Analytics, Physics, and De Anima are deservedly esteemed; but weariness and disgust are the sentiments stirred by the servile orations in which he panegyrizes successive emperors, comparing Evt one and then another to Plato's "true philosopher," anc, when all other compliments have been exhausted, to the "idea" itself. (See Reisks, quoted with spproval by Dindorf in the preface to his edition: "Fuit aulicus adulator et versipellis, vanus jactator philosophiæ suæ, specie magis quam re cultæ, ineptus et ridiculus verator et applicator Homeri et veteris historix, tautologus of sophista; in omaibus orationibus pæne eadem, et ubique argutiæ longe petitr.") Themistius's paraphrases of the De Colo and of book Λ of the Metaphysics have reached us only through Hebrew versions.
The first edition of Themistius'e works (Venice, 1534) incloded the paraphrases and eight of the orations. Nineteen orations were known to Petarins, whose editions appeared in 1613 and 1618. Harduin (Paris, 1684) gives. thirty-three. Another orstion was discovered by Angelo Mai, and published at Milan in 1816. The most recent editions are W. Dindorfs of the orations (Leipsic, 1832) and L. Spengel's of the paraphrases (Leipsic, 1866). The Latin trenslations of the Hebrew versions of the parephrases of the De Coclo and book 1 of the Metaphysics were published at Venice in 1574 and 1558 respectively. See Fabricius, Bibliotheca Graca, vi. 798 sq .

THEMISTOCLES was born in the latter part of the 6th century B.o., some time during the rule of the Pisistratidx at Athens, the son of an Athenien father, Neocles, by a foreign women from Thrace or Caria. A wayward, ambitious, aspiring boy, out of sympathy alike with ordinary boyish amusements and with the learning and culture of the age, be was told, it is said, by his schoolmaster "that he would certainly be something great, whether good or bad.".ar. The victory of Marathon in 490 stirred the young man's soul, and he seems to have foreseen that it was but
the beginning of a yet greater cunfict. Ho resolved from that time to make his country great, that he might be great and famous himself. As he mas rising to political distinc tion, be had for his rival the Greek "Cato," the incorruptiblo Aristides, a purer patriot, a better citizen, but a less sagacious and far-seeing statesman. The two men were in sharp antagonism as to what their country's policy should be, and it ended in a vote of ostracism which sent Aristides into temporary banishment in 483 . The main question between them probably was whether Athens should seek greatness by sea or by land (see vol. xi. p. 99), and the victory of the policy of Themistocles led on to the most brilliant era in Greek history, the maritime supremacy of Athens. Persia, he felt sure, was meditating a great revenge, and Athens must make herself a naval porrer to avert the blow. Already. s small war with the Eginetan islanders, close to her prra shores, had roused her energies, sad at the prompting of Themistocles she had built 200 ships and trained a number of seamen. In 480 the storm which Themistocles had clearly foreseen burst; the great king, as he was called, was covering the land with his troops and the sea with his ships. Greece was divided and panicstricken; Thessaly and all to the north of Bootia had joined the enemy, and the despair of the remainder of the Creek world was echoed by the oracle of Delphi. There was, however, a word of hope in the memorable phrase of the " wooden wall," which, it was generally felt, must point to the flect, more, however, with a view to flight than to resistance. Salamis, too, was named in the oracle, coupled with the epithet "divine," which Themistocles cleverly argued portended disaster to the enemies of the Greeks rather than to the Greeks themselves. It was a great achievement when he finally prevailed on his fellowcitizens to quit their city and their homes-it seemed for ever-and to trust themselves to their ships. There had been some sea-fights off the northern shores of Eubca; the Spartans had fallen at Thermopyla, and Xerxes and his host were now laying waste Attica, not, however, before its inhabitants had convejed their families to the adjacent island of Salamis, where also the Greek fleet had taken up its station, the Persian armada of 1200 vessels being in harbour at Phalerum. The Athenians from their ships saw the flames in which their city, its acropolis and its temples, were perishing, but tbeir spirits rose with calamity, and with one heart, at the bidding of Themistocles, they called back all of their brethren who were in temporary banishment, Aristides among them. Nearly twothirds of the entire fleet was theirs, but for the sake of unity among the allies, who would follow only the lead of Sparta, they acquiesced in its being under the command of a Spartan admiral. It was clear, however, that the fate of Greece now depended on the action of the Atheniane and on the prudonce and ability of Themistocles, by whom they were guided. The Greeks of the Peloponnese, more particularly the Corinthians, were for moving the flect from Salamis to the istbmus, ss the enemy's land forces were already in possession of the neighbouring shores of Attica. Seeing the danger of yet further disunion, with the probable result of the breaking up and dispersion of the fleet, and haring in vain protested against quitting their present station, Themistocles went straight to the Spartan admiral, Eurybiades, and induced him to call another council. There was much angry debating, till at last the Spartan felt he must yield to the threat of Themistocles that the Athenians would either fight at Salamis or sail away as they were to Italy. But the Peloponnesian Greeks were still dissatisfed, and insisted that they ought to be at the isthmus for the defence of what yet remained

[^109] and your children:"
oi Greece ; a third council was Leld, and Themistocles felt that its decision would be against him, when, by a sudden happy thought, he contrived to have a secret message conveyed to the commanders of the Persian fleet through his slave, an Ionian Greek from Asia, a mau of intelligence and education, and well acquainted with the Persian language. The communication came in the name of Themistocles, who professed that he wished well to the king, and that now was a good .opportunity for attacking and crushing the Greeks, as they were divided among themselves and wcre bent on flight. The stratagem was successful, and the euemy's great armada adranced along the coast of Attica that same night, and took up a position which effectually confined the Greek fleet within the Darrow ${ }^{1}$ strait between Salamis and the southern shore of Attice. The Greek captains, not knowing the state of the case, were still wraugling through the night, when just before daybreak the banished Aristides came from L.Egina with the news that the Persian fleet was close at hand and thet retreat was impossible. "Let us still be rivals," he said to Themistocles, "but let our strife be which can best save our country."

The great victory of Salamis (see vol. xi. p. 100) left Greece mistress of the sea, and was followed by the retreat of Xerxes. Themistocles, it is said, frightened the king back to Asia by another secret message, to the effect that the victorious Greeks were bent on following him up to the Hellespont and burning his bridge of boats, but that he was doing his best to check their ardour, though in reality he had himself advised immediate pursuit of the enemy. We cannot but admire the man's sagacity and farsightedness in thus laying the king under an obligation which be might some day turn to his own proft, though we cannot but feel that he bad some of the worst as well as some of the most splendid characteristics of the Greek. After the victory Themistocles sailed with the Athenian squadron through the e. gean, and from some of the islanders who had sided with the enemy he exacted hears fines, out of which, it appears, he filled his own purse. When the Greeks met at the isthmus to decide according to custons the prizes of merit for the glorious day of Salamis, he received only the second prize, the first being a warded to the Spartan admiral, but by way of compensation he was soon afterwards heartily welcomed at Sparta, and loaded with honours so extraordinary as to imply that even the Spartans themselves recognized him as the first man in Greece. It was not long, however, before he gave them deadly offence. After the victories of Platea and Mycale in 479 the Athenians went back to their desolate city and began to rebuild and fortify it. Jealous fears of the growing power of Athens were a wakened, and the Spartans, as representatives of the Greeks generally, formally protested against the fertification of a Greek city outside the Peloponnese, on the ground that some future Persian invader might make it a base of operations. Themistocles saw the dangers of Spartan opposition, and got the Athenians to commission him to arrange matters along with two other envoys, who, however, were purposely not allowed to arrive at Sparta at the same time as himself. He told the Spartan magistrates that before he could transact business with them he must wait for his colleagues; meanwhile Athens was being fortified, every man, woman, and child putting a hand to the work, and as soon as Themistocles understood that it was sufficiently adranced he declared openly that Athens would brook no sort of interference. The Spartans felt they bad been tricked, but they could do nothing. And now Themistocles proceeded to fortify Pireus, and to enlarge the harbour, thus providing Athens with an excellent naval dockyard, and holding out an inducement to foreigners to settle in the

[^110]city for the purposes of trade. Twenty war ships, too, were at his suggestion to be built every year, and nothing left undone to make Athens prosperoue and powerful.

A few years afterwards (in 471 probably) we find his political career terminated by a vote of ostracism, due perhaps in part to Spartan influence at Athens, and also to an offensive boastfulness and ostentation which disgusted the sensitive Athenian democracy. He was even charged with corrupt practices and with receiving bribes from Persia. From Argos, whither he had retired as an exile, he was forced to flee by a threat of the Spartans, who alleged that they bad proofs of his treasonable complicity in the schemes of their countryman Pausanias, and to take refuge in the island of Corcyra ; but here again he was pursued by Spartan and Athenian commissioners, and driven to seek the protection of Admetus, king of the Molossians, the chief people of Epirus. In the court of this half-Greek balf-barbarian prince he found a hospitsble reception, and he was furnished with the means of crossing the Ægean to Ephesus. Shortly after his arrival in Asia, the son of Xerxcs, Artaxerxes, succeeded to the throne of Persia, and to him Themistocles contrived to make himself known as a fugitive from ungrateful Greece, which he had saved, and now ready and willing to advise and assist the king in avenging his father's defeat. He was treated, it is said, with marked respect, and was liberally pensioned with the revenues of three wealthy towns-Magnesia, Myus, and Lampsacus. It was at the first of these, which was near the coast, and whence he might be supposed to have opportunities for watching the affairs of Greece, that be passed the last year of his life, dying a natural death at the age of 65. The year of his death is not accurately ascertainable ; opinions vary between 460 and 447.

Herodotus, Thucydides, and Plutarch are our chief original sources for the life of Themistocles. The subject is fully treated iv the histories of Grote and Thirlwall.
(W. J. B.)

THÉNARD, Louis JacQues (1777-1857), was born ou the 4th of May 1777, at Louptière, near Nogent-sur-Seine, in Champagne. His father, though a poor man, sent him to the academy of Sens, where he received a liberal education. At the age of sixteen he went to Paris to study pharmacy. He attended the lectures of Fourcroy and Vauquelin, aud saw that the only way to dearn chemistry was to work at it. Vauquelin, himself a poor man, admitted a few students to his laboratory on payment of a fee of 20 francs a month. But this fee was prohibitory to the peasant's son ; the utmost that his father could send him just kept him alive in Paris. Thenard went to Vauquelin and asked to be allowed to do any menial work for him, if only be would let him assist in his laboratory. One of Vauquelin's sisters had slipped into the room and heard part of the conversation; she said to her brother, "He is a good lad ; you should keep him ; he will help you in the laboratory, and look after our pot au feu; your dandy assistants always let it boil." Thénard was engaged on these terms. Long afterwards he said that he looked upon the chemistry of the pot au $j e u$ and the process of simmering as of very great importance: they had been the turning-point of his life. Thénard assisted Vauquelin in the laboratory and at his lectures, and, when by starving for a day or two be accumulated sous enough to pay for a seat in the gallery, used to go to the theatre to improve his pronunciation and rub off his rustic accent.

By and by Vauquelin gave him an opportunity of testing his powers as a lecturer. Having to go for some days to the country, he asked Thénard to take his place. For the first two or three lectures his attention was fixed on his work, and his eyes did not wander from the lecture table. On the fifth day he sentured to look round the room, when to his consternation he saw Fourcroy and

Vauquenn among the audience. They were so satisfied with what they had heard that they obtained for Thenard in 1797 an appointment as teacher of chemistry in a school, and in 1798 the post of repétiteur at the Ecole Polytechnique.

In 1804 Vruquelin resigned the professorship of chemistry at the Collége de France, and successfully used his influence to have Thenard appointed. In 1810 he succeeded Fourcroy both as professor of chemistry at the Ecole Polytechnique and as member of the Academy. He was also appointed professor of chemistry in the faculty of the sciences. He was made a chevalier of the Legion of Honour in 1814, commander in 1837, and grand officer in 1842. In 1825 Charles X. gave him the title of baron; from 1827 to 1830 he represented the department of Yonne in the chamber of deputies. In 1832 Louis Philippe made bim a peer of France. As vice-president of the conseil supérieure de l'instruction publique, he exercised a great influence on scientific education in France. He died 21st June 1857, and was buried at La Ferte, near Châlon-surSaône. In 1861 a statue was erected to him at Sens, and in 1865 the name of his native village was changed to La Louptière-Thénard. Thénard was tall and strongly built, his hair was thick and black, his eyes bright, and his manner active and prompt. He married, in 1810 , Mlle. Humblot, granddaughter of Conté. His wife and several of his children predeceased him. He was survived by his son Paul, who had assisted him in some of his later researches.

Thénard was above all things a teacher : as he himself said, the professor, the assistants, the laboratory, everything, must be sacrificed to the students. The history of his discovery of the peroxide of hydrogen well illustrates the predominance of the teacher in his character. Ho was lecturing on the formation of salts, and had told his students that a metal must be oxidized to a certain extent in order that it may combine with an acid to form a salt; if the metal be combined with more than the proper quantity of oxygen, the excess of oxygen will be given off when the oxide is treated with an acid, and, as an illustration, be mentioned the action of acids on peroxide of barium. As he spoke his conscience smote him, for the experiment had not been made. Immediately after lecture ho mized perozide of barium and nitric acid, keeping the temperature low by means of ice. He was surprised to see the peroxide dissolve without any evolution of gas. He left the mixture standing, and next day, before lecture, noticed small bubbles of gas rising from it. Pouring some of the liquid into a test-tube and warming it, he saw a largo amount of gas escape, which be easily recognized as pure oxygen. At first he thought the acid had been oxidized, but he soon saw the true explanation of the phenomena, and discovered the peroxide of hydrogen. His lecture experiments were few, well-chosen, and accurately performed. If any failure occurred he would roundly scold his assistant, often apologizing for his vehemence when the short fit of anger was over. His lecture room, seated for 1000 , was alnust always crowded by eager and attentive students and visitors.

Like most great teachers, Thénard published a test.book, and perhaps we may say that by his Traité de Chinie Elementaire, Theorique et Pratique (4 vols., Par1s, 1813-16; 6th ed., 5 vols., 1833-36) he did even more to further the progress of the science than by his mumerous and mpportaut original discoveries. His first original paper (1799) was on the compounds of arsenic and antimony-with oxygen and sulphur. Careful analyses let him to couclusions as to the composition of the metallic oxides contra dictory of some of Berthollet's theorotical views; he also showed (1802) that Berthollet's "zoonic acid" was impure acetic acid. Berthollet, far from resenting these corrections from a younger man, took this opporturity of introducing kimself, and invited Thenard to become a member of the "Société d'Arcucil," to the proceedings of which Théuard contributed important papers. Soon after his appointment as revétiteur at the Ecole Polytechnique

Thénard mả̉s thee acquaintance of Gay-Lussuc, and formed with him a lifeleng fiendslip. Thcir joilt work, and its relation to the discoveries of Davy, have been fully rccorded in the anticle Gar. Lussac. Uf his sepatate investigations perlaprs the nost important is that on the compound ethers, beguri in 1807. He showed that each acid gives its own ether, and that the acill and alcohol can be rccovered by decomposíng the cthes by n.eans of caustic alkali. His discovery of peroxide of hydrogen (1818) has already boer. described. His researches on scbacic acid (1802) and on bile (1807) also deserve special notice. The blue sulstance knowu as Thénard's blue (essentially aluminate of cobalt) was prenared ly him in response to a demand by Cliaptal for a chear blue, as bright as ultranarine, and capalle of ctanding the tempernture of the porcelain furnace
Thenard's rescarches were chiefly pohlished in the Annales de Chinie ef do Physigue, in the Mémoires de la Societe d dreuell. and io the Comptes Rendus and the Memoires of the Acedeny of Sciences.
(A. C. B.)

THEOBALD, LEWIS (1688-1744), will survive as the prime butt of the original Dunciad when as a playwright, a littérateur, a translator, and even as a Shakespearean commentator, he will be cntirely forgotten. The son of an attorney, Theobald was horn at Sittingbourne, in Kent, in 1688 , and, after a inoderate education at Isleworth, studied for the profession of law, - a profession, however, which he never practised. He was a man with literary impulses, but without genius, even of a superficial kind; as a student, as a commentator, hemight have led a happy and enviable life, had not the vanity of the literary idea led him into a false position. His Persian Princess (1711) and his Electra (1714) gained no distinction. In 1726 The Double Falsehood had a certain vogue, partly from Theobald's pretence that the greater part of the play was by Shakespeare. In 1717 he commenced a series of papers (not to "The Censor," as has sometimes been stated, hut under that title) which appeared in Nist's TFeekly Journal; these do not seem to have been highly thought of by his contemporaries, but they were successful in gaining for Theobald not a few enemies, among whom Denn.w may be named. Seren or eight years later Theobald's censorious tendencies had intensified rather than moderated, and in 1726 be ventured to attack the most eminent literary man of the day in his Shakespear Restored, or a Specimen of the many Errors as well committed as unamended by Mr Pope in his edition of this Poet. Two years later the censor was himself castigated severely, and, as the dedicatee of The Dunciad, he had long an unenviable notoriety; as readers of the famous satire will remember, he occupicd the μ lace of chief victim until replaced by Colley Cibber in 1743. In the matter of Shakespeare editing, however, he had the advantage of his powerful rival. When in 1733 Theobald published his edition of Shakespeare in seven volumes, that of Pope had to go to the wall. Lewis Theobald wrote other dramas besides those already mentioned, and translated plays from Sophocles and Aristophanes, besides a rendering of Plato's $P h æ d o$ and a part translation of the Odyssey ; but for none of these things is he now remembered. The student of English history might fiud it worth while to glance through Theobald's Life of Ruleiyh (1719). He died in 1744.

For plays, \&c., see the Biogruphia Dramatica, vol. i

THEOCRITUS, of Syracuse, the foremost Greek pas toral poet, lived a lifo of which nothing is known except from allusions in his owa works. The epigram appended to his poems makes hin say, "I ann a Syracusan, a man of the people, a son of Praxagoras and Philinna." He must have been born early in the 3d century, among a Dorian people, whose Doriau speech survives in his rural idyls. These " little pictures" chiefly represent the life of shepherds, neat-herds, and fisbermen in the woods and on the shores of Sicily. They aro doubtless inspired by the popular poetry of his time, and have much in common with the Romaic chants of the modern Grcek shepherds. The first idyl is a song ou Dabhnis. the ideal
herdsman, suog by the shepherd Thyrsis to a goatherd. The second is the magical chant which Simæths pours forth to the magic moon, in the hopo of recovcring ber lover. In the third a gostherd sings to bis love, Amaryllis. The fourth is an interchange of rude banter between two country fellows; and the fifth is of the asme kind. The scenes are in southera Italy. The sixth is a Sicilian singing match between two ideal herdsmen, -not contemporary rustics, but poets of nobler themes. The scene of the seventh is in Cos, where the poet introduces himself at a singing match. He may have been attached to the Asclepian medical school in Cos; his friend Nicias was a physician. Sicily and rival minstrels occupy the ninth idyl. The teath contains probably some real popular ditties, chanted by the reapers. The eleventh, addressed to Nicias, is a piece of artificial mythological genre, "The Cyclops in Love." The twelfth is a lyric, almost of passionate affection. The thirteenth is another idyl on a mythical topic, the adventures of Hercules and Hylas. The fourteenth and fifteeath are sketches of military and arban life, the mercenary soldier in love, and the gathering at the Adonis feast in Alexandria. Theocritus bad wandered to the court of Ptolemy, and joined the literary society of his court. The sisteenth is a patriotic piece: the poet urges Hiero to assail the Carthaginians in Sicily. The seventeenth is a conventional hymn to Ptolemy Philadelphus on bis marriage with his sister. The eighteenth is an epithalamium ; the nineteenth a tiny picture of Eros stung by a bee; the twentieth is the complaint of a herdsman rejected by a girl of the town; the twenty-first an idyl of fisher life: two poor old fishermen recount their dreams. The twenty-second idyl is a piece of heroic myth, the' adventures of Castor and Polydeuces ; and the twenty-fourth ie a tioy epic on the infancy of Hercules. The twenty-third is an amorous complaint. The twenty-fifth describes the slaughter by Hercules of the Nemean lion. The twentysixth justifies, in the interests of the ritual of Dionysus, the murder of the curious Pentheus. The twenty-seventh is the "Wocing of Daphnis," or "Oaristys," an amorous disconrse between a girl aod a 6 wain. The twenty-eighth is a graceful piece of vers de sociéte, sent to a lady with the gift of an ivory distaff. The twenty-ninth is amorous; and there remain an imperfect and a spurious piece, and a set of twenty-three epigrams.

On a general view, Theocritus's survining poems turn out to be-(1) rural idyls, the patterns of Virgil's eclogues, and of all later pastoral poetry ; (2) minute epics, or cabinet pictures from mythology; (3) sketches of contemporary life in verse ; (4) courtly compositions; and (5) expressions of personal kindliness and attachment. The first category and the third are those on which the fame of Theocritus depends. His verse has a wonderful Doric melody; his shepherds are natural Southern people: it is not his fault that what he wrote truly of them bas become a false commonplace in the pastoral poetry of the North.

Of Theocritus's own life we only know what bas been .ecorded, that he lived in Syracuse, Cos, and Alerandria, and that he was acquainted with Nicias, with Aratus, the aztronomical writer, and with Philinus, head of a school or eect of physicians. The rest is silence or conjecture. Suidas says that, in addition to the surviving poems, the Pratidx, tho Hopes, Hymns, the Heroines, Dirges, Elegies, and Iankics were attributed to him.
The charm of Theocritus can only be tasted in his original Doric, but the best English vetsion is by Mr C. S. Calverley. M. Coust'e book on the Alexandrine school of poetry may he recommended. J. Hauler, De Thooc. Vita et Carminibus (Freiburg, 1855), Herapel. Quæst. Theoc. (Kiel, 1881), and Rannow, Studid Theocritca (Berlin, 1886), may also be found wseful. The best English edition of tho poems is that of Bishop Wordsworth. (A. L.)

THEODOLITE. Seo Surveyino.
THEODORA, tho mife of the emperor Josinian (q.v.), Was born probably in Constantinople, though according to some in Cyprus, in the early years of the 6th century, and died in 547. We shail first give the usually received account of her life and character, end then proceed to inquire how far this accoant deserves to be accepted. According to Procopius, our chief, but by no means a trustworthy authority for her life, slee was the daughter of Acacius, a bear-feeder of the amphitheatre ot Constautinople to the Green Faction, and while still a child was eent on to the stage to earn her living in the performanccs called mimes. She had no gift for either music or dancing, but made herself notorious by the spirit and impudence of her acting in thêrough farces, as one may call them, which delighted the crowd of the capital. Becoming a noted courtesan, she accompanied a certain Hecebolus to Pentapolis (in North Africa), of which he had been appointed governor, and, having quarrelled with him, betook herself first to Alexandria, and then back to Constantinople through the cities of Asia. Minor. In Constantinople (where, according to a late but apparently not quite groundless story, she now endeavoured to support herself by spinning, and may therefore have been trying to reform her life) she attracted the notice of Justinian, then patrician, aod, as the all-powerful nephew of the emperor Justin, practically ruler of the empire. He desired to marry her, but could not overcome the cpposition of his aunt, the empress Euphemia. After her death (usually assigned to the jear 523) the emperor yielded, and, as a law, dating from the time of Constantine, forbade the marriage of women who had followed the stage with senators, this law was repealed. Thereupon Justinian married Theodora, whom he had already caused to be raised to the patriciate. They were some time after (527) admitted by Justin to a share in the sovereignty; and, on his death four months later, Justinian and Theodora became sole rulers of the Roman world. He was then about forty-foury jare of age, and she some twenty jears younger. Procopius relates in his unpublished history (Avéкסoтa) many repulsive tales regarding Theodora's earlier life, but his evident hatred of her, though she had been more than ten years dead when the Anecdota were written, aud the extravagances which the book containa, oblige us to regard him as a very doubtful witness. Some confirmation of the reported upposition of the imperial family to the marriage has been found in the story regarding the conduct of Justinian'e own mother Vigilantia, which Nicholas Alemanni, the first editor of the Anecdota, in his notes to that book, quotes from a certain "Life of Justinian," by Theophilus, to which be frequently refers, without saying where be found ito Since the article Justinian (q.v.) was published, tha present writer has discovered in Rome what is believed to be the only MS. of this so-called life of Justinian; and his examination of its contents, which he has lately published, makes him think it worthless as an authority. See article Taeorbilus.

Theodora speedily ecquircd unbounded influence over her busband. Ho consulted her in overything, and allowed her to interfere directly, as and when she pleascd, in the goverament of the empire. She hád a right to interfere, for she was not merely his consort, but empress regnant, and as such entitled equally with himself to the exercise of all prerogatives. In the most terrible crisis of Justinian's reign, the great Nika insurrection of 532 , her courage and firmness in refusing to fly when the rebels wcre attack ing the palace sared her husband's cromn, and no doubt strengthened her command orer his mind. Officials took an oath of allegiance to her as vell as to the cmperor (Nov. viii.). She even corresponded with forcigo nmbassador and instructed Belisarius how to deal rith the popes. I
copius describes her as acting with harshness, seizing on trivial pretexts persons who had offended her, stripping some of their property, throwing others into dungeons, where they were cruelly tortured or kept for years without the knowledge of their friends. The city was full of her spies, who reported to her everything said against herself or the administration. She surrounded herself with ceremonious pomp, and required all who approached to abase themselves in a manner new even to that half-Oriental court. She ras an incessant and tyrannical match-maker, forcing men to accept wives and women to accept husbands at her caprice. She constituted herself the protectress of faithless wives against outraged husbands, yet professed great zeal for the moral reformation of the city, enforcing severely the laws against vice, and immuring in a " bouse of repentance" on the Asiatic side of the Cosphorus five hundred courtesans whom she had swept out of the streets of the capital. How much of all this is true we have no means of determining, for it rests on the sole word of Procopius. But there are slight indications in other writers that she had a reputation for severity.

In the religious strife which distracted toe empire Theodora took part with the Monophysites, and her coterie usually contained several leading prelates and monks of that party. As Justinian was a warm upholder of the decrees of Chalcedon, this difference of the royal pair excited much remark and indeed much suspicion. Many saw in it a design to penetrate the secrets of both ecelesiastical factions, and so to rule more securely. In other matters also the wife spoke and acted very differently from the husband; but their differences do not seem to have disturbed either his affection or his confidence. The maxim in Constantinople was that the empress was a stronger and a safer friend than the emperor; for, while he abandoned his favourites to her wrath, sho stood by her protégés, and never failed to punish any one whose heedless tongue had assailed her character.

Theodora bore to Justinian no son, but one daughter,at least it would seem that her grandson, who is twice mentioned, was the offspring of a legitimate daughter, whose name, however, is not given. According to Procopius, she had before her marriage become the mother of a son. who wheu grown up returned from Arabia, revealed himself to her, and forthwith disappeared for ever; but this is a story to be received with distrust. That her behaviour as a wife was irreproachable may be gathered from the fact that Procopius mentions only one scandal affecting it, the case of Areobindus. Even he does not seem to believe this case, for, while referring to it as a mere rumour, the only proof he gives is that, suspecting Areobindus of some offence, she had torture applied to this supposed paramour. Her health was delicate, and, though she took all possible care of it, frequently quitting the capital for the seclusion of her villas on the Asiatic shore, she died comparatively young. 'Theodora was smal' in stature and rather pale, but with a graceful figure, beautiful features, and a piercing glance. There remains in the apse of the famous church of St Vitale at Ravenna a contemporaneous mosaic portrait of her, to which the artist, notwithstanding tho stiffness of the material, has succeeded in giving some character.

The above account is in substance that which historians of the leat two centuries and a half have accepted and repeated regarding this famons empress. But it must Leadmitted to bs open to serieus doubts. Everything relating to the early carcer of Theodora, the faulta of her girlhood, the charges of cruclty and iusolence in her gevernment. of tho cmpire, rest on the sele authority of the Arecdoter of Procopius, - a buek whese credit is shaken by its bitterness and extravagance. If we reject it, little in lcft against her, except of course that action in ecclesiastical affairs which excited the wrath of Baro* nius, who had deneunced her before the Anecdota were published.
In favour of tho pinture which Procopius gives of the emrress it may be argued (1) that abe certainif did interfere constantly and
a bitrarily in the administration of public affairs, and showed hereelf therein the kind of persou who wonld be crnel and unscrupal. ous in her choice of means, and (2) that we gather from other Writers an inpression that she was barsh and tyrannical, os, for instance, from the references te her in the lives of the popes in the Liber Pontifictlis (which used to pass under the name of Anastasiua, the papal librarian). Her threat to the person whom she commanded to bring Vigilius telier was "nisi hoc fecoris, per Viventem in sxccula excoriari to faciam." Much of what we find in these lives is legendary, but they are seme evidence of Theodori's reputa. tion. Again (3) the statute (Cod., v. 4, 23) wbiclı repeala the older law so far as relates to scenica mulicres is now generally attributed to Justin, and agrees with the statement of Procopins that an alteration of the law was made te legalice her marriage. There ie therefore reason for holding that she was an actress, and, considering what the Byzantine stage was (as appears cren by the statute in question), ber life cannot have been irreproachable.
Against the evidence of Procopins, with such confirmations as have been indicated, there is te be set the silence of other writers, contemperaries like Agathias and Evagrius, as well as such later historians as Theophanes, none of whon repeat the charges as te Theodora's life before her marriage. To this consideration no great weight need be attached. It is difficult to establish any View of the coutreversy without a long and minute examination of the autherities, and in particular of the Anecdota. But the niest probable conclusions seent to be-(1) that the odious details which Procopiue gives, aur which Gibbon did not blush to ceny, deserve no more weight than would bo given nowadays to tie malignaut scanclal of disappointed courtiers nuder a despotic gevernment, where scandal is all the blacker because it is propragated in secret (see Prooopros); (2) that apparently she was an actress and"a courteas, and not improbably conspicuous in both those charae tera; and (3) that it is impessible to determine how far the specific chargea of cruelty and oppression brought againat her by Procepius deserve credence. We are not bound to accept them, for they are uncerroborated; yet the accounts of Justinian'a gevernmeut given in the Anecdote agree in toe many respects with what we know aliunde to enable us to reject them altegether; and it must bo admitted that there is a certain internal consistency in the wholo picture which the Anecdotry rresent of the empress. About the beauty, the intellectnal gifts, and the imperious will of Theedera there can be no donbt, for as to these all our authoritiea agree. She was evidently an extraordinary persen, bern to shine in any station of life.

Her fortunes have employed many pens. Among the latest serious worke dealing with them may be mentioned M. Antonin Dóbidour's L'Imperairice Theodora: Etude Critique, Paris, 1885, which endeavours to vindicate her from the aspersions of Procopiua; and ameng wore imaginative writinga are Sir Hemry Pottinger's interesting romance Blue and Green (London, Hurst and Blackett, 1879), M. Rhangabé's tragedy Өєobwpa (Leipaic, 1884), and M.. Sardou'a play Theodora, preduced in Paris in 1884. Ses also Dr F. Dahn's Prokopios von C'asarea, 1865.
(J. BR.)

THEODORE of Mopsuestia, the most eminent representative of the so-called school of Antioch, the beginnings of which date from about the middle of the 3 d century (see Lucian and Paul of Samosata). He was born at Antioch about the middle of the 4th century, and was a friend of Chrysostom; in rhetoric the celebrated Libanins was his teacher. Soon, however, he attached himself to the school of the great exegete and asce ${ }^{\circ}$; Diodorus, a presbyter in Antioch, and, with only a transitory period of vacillation, he ever afterwards remained faithful to the theology and ascetic discipline of this master. Under Diodorus he lecame a skilful exegete, and ultimately the pupil outstripped the master in Biblical learning. About 353 Theodore became a presbyter in Antioch, and began to write against Eunomius the Arian and against the christology of Apollinaris. Soon after 392 he became bishop of Mopsuestia in Cilicia (the modern Missis near Adana). As such he was held in great respect, and tonk part in several synods, with a reputation for orthodoxy that was never questioned. It was greatly to his advantage that in the Eastern Church the period between the years 390 and 428 was one of comparative repose. He was on friendly terms even with Cyril of Alexandria. He died in 428 or 429 , towards the beginning of the Nestorian controversy.

Theodore was a very prolific writer, but, before all, an exegote. He wrete commentaries ou alnost every book of the Old and Now Testaments, of which, hewever, only a amall proportion is now.
extant, as st a later period he lost credit in the charch. We atill possess in Greek his commentary on the Minor Prophets, and in Latin translatious commentaries on the mioor Pauline epistles, besides very many fragments, especially of that on the epistle. to the Romans. Theodore's importance as an exegete lies in two char-acteristics:-(1) in opposition to the allegorical method he insists on getting at the literal meaning, and adheres to it when found; (2) in his interpretation of the Scriptures he takes into account the histerical circumstances in which they were prodnced, and substitates the historical-typological for the pneumatico-christological interpretation of prophecy; in other words, he interpicts all Old Testament passages historically in the first iustance, and aecs the fulfilment of old Testarnent prephecy in the history of Christ and His church only in so far as the entire Old Testament is a "shadow of things to come." Following his master Diodoras, who bad
 Theodore also was the author of a special dissertation against the allegorists, i.e., against Origen and his followers, which, however, has uniortunately perished. The comparative freedom of Theodore's view of inspiration is also notoworthy, He discriminates between historical, prophetical, and didactic writings, and io accordance with this distinction assumes varying degrees of inspiration. Finally, he entertained very bold opinions about the canon and several of the books incladed in it. He esteemed very lightly the Solemonic writings and the book of Job; Canticles he explained as a nuptial poem of Solomon's; the book of Job appeared to him in many places hardly worthy of its subject, and he censares the writer sharply; Chronicles, Ezra, and Nehemiah he entirely rejected; he denied the accuracy of the titles of the Psalms, and referred the so-called Messianic element almost invariably to the kings of Israel; he even criticized the catbolic epistles and rejected the epistle of James. His commentaries contain a great deal of learned matter, and his grammatico-historical observations are still to some extent aseful. Bat, on the other hand, his learning must not be overestimated. It falle behind that of Origen, Eusebius, and Jerome, notrithstanding the auperiority of his method. It is specially noticeable that Theodore troubled himself little shont textual criticism. He simply accepts the text of the LXX. as that of revelation, and never manifests the slightest effort to control it by the original or by the Syrisc.
But in addition to his commentaries Theodore also wrote extessive dogmatico-polemical works, which were destined to operate long after his death disastrously for his fame. As a disciple of Diodorus, Theodore accepted the Nicene teaching on the doctrine of the Trinity, bat at the same time in christology took np a position rery clesely approaching that of Paul of Samosata. The violence of his opposition to his fellow countryman, Apollinaris of Laodicea, perhaps the mest acnte and far-seeing theologian of the ccatury, made it necessary for Theodore to formulate his christology mith precision (in fifteen books on the Incarmation-all lost except a few
fragments-and in special treatises against Apollinaris) the Logos to bave assumed a complete manhood, He held throagh the stages of ethical development just as in the case of any other human being. In this the Logos only supported toe man Christ Jesus, bnt was not essentially connccted with him; the Logos
 and could not exist, because the finite is not "capax infiniti," and because any ívwots rould have destroyed the reality of the human nature. The same sober and thoughtful way of looking at things, and the same tendency to give prominence to the moral element, which characterize the commentaries of Theodore appear also in his dogmatic. When, accordingly, the Nestorian controversy broke out, his works also were dragged into the discussion. At Ephesus, indeed, the memory of Theodore does not appear to have been attacked, ${ }^{1}$ but soon afterwards the assault began. Marius Mercator, Rabulas of Edessa, Cyril, and other monophysites brought the charge of heresy against his writings, and bought to counteract their inflaence. But it was not antil more than a century afterwards that hie fagatical adversaries succeeded-in spite of the strong oprosition of the best theologians of the West-in obtaining from Justinian the condempation of his works in the controversy of the Tria Capitula, as it is called ; this act of the emperor was confirmed by the fifth ceumenical council, and Theodore's name was accordingly deleted from the list of orthodex writers. From that dsy Theodnee's works ceased to be read within the Byzantine Chureh, and beace have bean lost. The Syrizns, on tho other hand, have always held in high esteem the memory of the great tcacher, and have even carried back their liturgy to his aame. The Nestorians possess, or possessed, a very large number of writings by him in Syriac translations. ${ }^{\text {a }}$

Theodore took parl also in the Pelagian controversy at the time when it raged in Palcstine. In the treatise, only partially pre-

[^111]See Photing, Bıoliolh., c. 177 ; Sercator, p. 339 sg., ed. Belos.
devpárous, he sharply controverts the doctrine of original sin and Jerome ita advecate. In his view the theory of Augustine is "a new heresy," "a malady"; he regarded it as a doctrine which necessarily led to dualism and Manichæism. The attitude thus taken by Theodore is not surprising; he more ncarly takes up the ground of the old church doctrine as set forth in the apologists and in the great Greck fathers of the 3 d and 4 th centuries. The Pelagians driven from the East were received by him in Cilicia

A brother of Theodore, Polychronius by name, bishop of A pamea, also achieved fame as an exegete, and expounded the theology of the school of Antioch. ${ }^{4}$

Literature.-Migne, Potro!., ber. Gr.. Ixy. The Grcek fragmente of Theodore Now Teatameut commentarie bave been collected by Fritzsche (Thcod. Jfops, is W. T. Comnh. Turin, 1847). The commentaries on the l'aullos eplstles (Plith Spic. Solesm., 3. 43 gq .) have beea recognized by Jacobl (Zischr. f. ehrist. missensch," and edited by Jacobi (Hallo Uaiverstly Programm, $18 s 0-60$). They have also beea edited very admirably by Swete (theod. Mops. in epp. Fid the fragments of the Cambridie, 1880-82), along with the Greek fragments sind tho fragments of tha dogmatical writifes, on this edition, ece Schürer, Theol. Jif. Ztg. 1880-82. Tha commentary on the Minor Propbeta will be found in Mura Nov. Patr. Sibrinh., vii. 1854 (Wespern, Berlid, 1834 ; Mal, Scripl. Vet. Voo. Coll. Wi., 1832). See nwo Sachao, Theod. Mops. Fragm. Syriaca, Lelpsic, 1869 , and Baithgen, "Der Paimencommentar des Theod. ∇. Mopa. In Syr. Bearbeitung, in 2tschr. f. AThiche Wisseasch. $\nabla .53 \mathrm{sg}$. Exiracts from the writiogs of theodore occur al councite in of Marius Mercator, ia the Aca of the third and art cecumenical councis, Facondus, Liberatus, and Theodore"a chef adversary, Leontius Ibyzantinas.
The pridelpal monograph on Theosore, spart fram the excellent prolegomena of Swete, is that of Kihn (Th. r. Mops, u. Juntius Afric. afs Exegetm, Frefbug, 1880). On bls Importance for the history of dogina, see the great worka of par and Dorner. Upan the Aatioeh school in general, compara यrunscher, Commen. do Schola Antioch., Copenhagen, 1811: Hergenrother, Dis antioch senue, $1866 ;$ and Kibn, Die Bedeutung der antioch. Schule, Eichstảd, 1868. Literary and hiographlcal details will be found in Dopin, THllemont, Cave, Fabriclus, Naris, Garmicr, Schröckh, Alzog, oee also Fritzsclie, De Theod. Mops. Fita ef Soriptis, 1898; Sieffert, Theod. Mops. Vel. Test. Sobrie Interpr. Find., Ratisbon, 1827; Klener, Symbol. Lut. ad. Theod M. pertin., Gottingen, 1836; Specht, Theod. 5 . Mops. w. Theodores, Mnnleh, 1871 ; Kibn 10 tha Tub. Quartalschr, 1879 ; Nestle In Theol. Stud. aus Wurtemb., Ii. 210 sg ; and Batiffoh," Sar ane Tradnction Latine de Th. de Mops," in Ann, de Philos. Chret, 1885.
(A. HA.)

THEODORE, the name of two popes. Theodore I., pope from November 642 till May 649, succeeded John IV. He was the son of a bishop, and was born in Jernsalem. A zealous opponent of monothelitism, in the course of the protracted controversy he in a Roman synod excommunicated Pyrrhus, patriarch of Constantinople, and signed the document with ink mingled with consecrated wine. Theodore II. had a pontificate of only twenty days (Nor.-Dec. 897).

THEODORET, bishop of Cyrus, and an important writer in the domains of exegesis, dogmatic theology, church history, and ascetic theology, was born in Antioch, Syria, about 390. At an early age he entered the cloister; and in 423 he became bishop of Cyrus, or Cyrrhus, a small city hetreen Antioch and the Euphrates, where, except for a short period of exile, he spent all the rest of his lifa The date of his death is uncertain, but it must have been at least six or seven years later than the council of Chalcedon (451). Although thoroughly devoted to the ideals of monasticism, he discharged his cpiscopal duties with remarbable zeal and fidelity. He was diligent in the cure of souls, labouring hard and successfully for the conversion of the numerous Gpostic communities and other herctical sects which still maintained a footing within the diocese. He himself claims to have brought more than a thousand Marcioaites within the pale of the church, ard to have destroyed many copies of the Diatessaron of Tatian, which were still in ecclesiastical use; and he also exerted himself to improve the diocese, which was at once large and poor, by building bridges and aqueducts, beautifying the town, and similar works.

As an exegete Theodonet belongs to the Antiochcae school, of which Diodorus of Tarsus and Theodore of Mopsuestia were the heads. He was not actually the personal disciple of either, but he adopted their methods, though without the consistency snd boldness of the first-named. His extant commentaries (those on Canticles, on tho Prophets, on the book of Psalms, and on the Panline epistles-the last the most raluable) are among the best performances of the fathers of the church. They are bricf, yet net wanting in that element of practical edification on which Chrysostom lays special weight as characteristic of the Antiochenes. In addition to these completo commentarics, we have fragments of some othera (of that on lsaiah, for exatnple), principally met witl in caters. There are also special elucidations of some diffcult Scripture texts.

Theodoret's chief importance is as a dogratic theologian, it having fallen to his lot to take part in the great monophysiteNestorian controversy and to be the most considerable opponent of the views of Cyril and Diosenrus of Alexandria. For more than twenty years he maintained the strugglo against the Aloxandrian

 person of Christ we must strictly distinguish two natures (hyposlases), which are united indeed in one person (prosopon), but are not amalgamated in essence. For these years his history coincides with that of the Eastern Church from 430 to 451 , and for this very reason it is impossible to sketch it even briefly here (see Hefele, Conc.gesch., vol. ii.). The issue was not nnfavouratle to Theodoret'e canse, but melancholy enough for Theodoret himself: the council of Chalcedon condemned monophysitism indeed, but he unhappily Fielded to pressure so far as also to take part in pronouncing "anathoma upon Nestorius, and upon all who call not tho Holy Virgin Mother of God, and who divide the one Son into two." As Theodoret had proviously been a constant defender of Nestorins, it was impossible for him to concur in this sentence upon his anfortunate friend with a clear conscience, and in point of fact he did not change his ntru dogmatic position. It is distressing, therefore, to find him in his subsequent. Epitome classing Nestorius as a heretic, and speaking of him with the ntmost hostility. Some of Theodoret's dogmatic works are no longer extant: of his five books $\Pi \in \rho l$ évavo $\rho \omega \pi \dot{\eta} \sigma \in \omega \rho$, for example, directed against Cyril after the council of Ephesus, we now possess fragments merely. A good deal of what passes under his name has been mrongly attriboted to him. Certainly genuine are the refutation ('Avatporit) of Cyril's twelvo
 (written about 446), consisting of three dialogues, ontitled respect-
 itism of Cyril is opposed, and its Apollinarian cherecter insisted on. Among the apologetico-dogmatic works of Theodoret must be reckoned his ten discourses $\Pi_{\epsilon} \rho \mathrm{l}$ троvolas.

Theodoret gives a valuable exposition of his own dogmatio in the fifth book of his Aipєтiкทิs какодиOlas inisout, already referred to. ${ }^{1}$ This, the latest of his works in the domain of church history (it wes written after 451), is a source of great though not of primary importance for the history of the old heresies. - In spite of the investigations of Volkmar and Hilgenfeld, we are still someWhat in the dark as to the authorities he used. The chief uncertainty is as to whether ho know Justin's Syntagma, and also as to whether he had access to the Philosophumena of Hippolytus in their complete form. Besides this work Theodoret has also left us a charch history in five books, from 324 to 429 , which wes pablished shortly before the conncil of Chalcedon. The style is better than that of Socrates and Sozomen, as Photius has remarked, but as a contribution to history the work is inferior in importance. It is probable that its author was acquainted with the labours of Socrates; he appears also to havo used those of Philostorgius the Arian, but not those of Sozomen. Something indeed still remains to be cleared up as to the sources he employed; spart, however, from some documents he has preserved, relating to the Arian controversy, he does not contribute much that is not to be met with in Socrates. He made a thorough study of the writings of Athanasius for the work. As regards chronology he is not very trustworthy; on the other hand, his moderation towards opponents, not except-

 438-is of en historical and opologetic character, very largely indebted to Clement of Alezandria and Eusebius; it aims at showing the advantages of Christianity, as compared with Hellenism, and deals with the assaults of pagan adversaries. The superiority of the Christian faith both philosophically and ethically is set forth, the chief stress being laid on monachism, with which heathen philosophy has nothing to compare. Much prominence is also given to tha cult of saints and martyrs.

On this side of his character, howerer, Theodorel can best be studied in the thirty ascetic biographies of his \$i入 $60 \in 0$ ioropic. This collection, which has been widely read, is a pendant to the Historia Lausiaca of Palladius and the monkish tales of Sozomen. For the East it has had the same importance as the similar writings of Jerome, Sulpicius, Severus, and Cassianus for the West. It shows that the "sobriety" of the Antiochene 6cholars can be predicated only of their exegesis; their style of piety was as exaggerated in its devotion to the ideals of monasticisin as was that of their monophysite opponents. Indeed, one of the oldest leaders of the school, Diodorus of Tarsus, was himself among the strictest ascetics.

Nearly 200 letters of Theodoret have come down to us, partly in e soparate collection, parily in the Acta of the councils, and partly in the Latin of Marius Mercator; they are of great value not only

[^112]for the biography of the writer but also for the history of his diocese end of the church in genemal.
Tha edidion of Slrmond (Parlis, 1692) was afterwarda completed by Garnier (1684), wbo has also written dissertations on the author'a works. Schulze and Nösselt, publibhed a new edition (B vols., Halla, 1769-74) based on that of thelr predecessors; a glossary was afterwards added by Baner. Tbe repint will bo found in vols. lxex.-lxxiv. of Migne, and conslderabla portions occur in Mansl. Besldes the eartler labours of Tillemont, Celller. Oudin, Du Pin, and Fabrlctus and Harless, sea Schröckh, Kirchengesch., vol. xvliL; Hefele, Conc.-gesch., vol. II.; Rlcbter, De Theodoreto Epp. Paul. Inserprete, Leipslc, 1822; Binder, Etudes sur Theodoret, Geneva, 1844; Staludin, Gesch. u. Lit der Kirchengesch., Hanover, 1827; Kihn, Die Bedcutung der"antioch. Schule, 1865; Dlestel, Das A. T. in der christl. Kirche, Jene, 1869; Specht, Theodor v. Bopsrestia u. Theodoret v. Cyrus, Munteb, 1871: Roos, De Theodoreto Clementis el Eusebii Compilatore, Halle, 1883; Jeep, Quellenuntersuch. \&. d. oriech. Eirchenhistorkern, Lelpsic, 1884; and Möller, art.
Theodoret," in Herzog.Plitt's Realencykh, vol. x
THEODORIC, king of the Ostrogoths (c. 454-526). Referring to the article Goths for a general statement of the position of this, the greatest ruler that the Gothic nation produced, we add here some details of a more personal kind. Theodoric was born about the year 454, and was the son of Theudemir, one of three brothers who reigned over the East Goths, at that time settled in Pangonia. The day of his birth coincided with the arrival of the news of a victory of his uncle Walamin over the sons of Attila. The name of Theodoric's mother was Erelieva, and she is called the concubine of Theudemir. The Byzantine historians generally call him son of Walamir, apparently because the latter was the best known member of the royal fraternity. At the age of seven he was sent as a hostage to the court of Constantinople, and there spent ten years of his life, which doubtless exercised a most important influence on his after career. Shortly after his return to his fathef (about 471) he secretly, with a comitatus of 10,000 men, attacked the king of the Sarmatians, and wrested from him the important city of Singidunum (Belgrade). In 473 Theudemir, now chief king of the Ostrogoths, invaded Mresia and Macedonia, and obtained a permanent settlement for his people near Thessalonica. Theodoric took the chief part in this expedition, the result of which was to remove the Ostrogoths from the now barbarous Pannonia, and to settle them as "foederati" in the heart of the empire. About 474 Theudemir died, and for the fourteen following years Theodoric was chiefly engaged in a series of profitless wars, or rather plundering expeditions, partly against the emperor Zeno, but partly against a rival Gothic chieftain, another Theodoric, son of Triarius. ${ }^{2}$ In 488 be set out at the head of his people to win Italy from Odoacer. There is no doubt that he had for this enterprise the sanction of the emperor, only too anxious to be rid of so troublesome a guest. But the precise nature of the relation which was to unite the two powers in the event of Theodoric's success was, perhaps purposely, left vague. Theodoric's complete practical independence, combined with a great show of deference for the empire, reminds us somewhat of the relation of the old East India Company to the Mogul dynasty at Delhi, but the Ostrogoth mas sometimes actually at war with his imperial friend. The invasion and conquest of Italy occupied more than four years (488-493). Theodoric, who marched round the head of the Venetian Gulf, had to fight a fierce battle with the Gepidæ, probably in the valley of the Save. At the Sontius (Isonzo) he found his passage barred by Odoacer, over whom he gained a complete victory (28th August 489). A yet more decisive victory followed on the 30th September at Verona. Odoacer fled to Kavenna, and it seemed as if the conquest of Italy was complete. It was delayed, however, for three years by the treachery of Tufa, an officer who had deserted from the service of Odoacer, and of Frederic the Rugian, one of the companions of Theodoric, as well as by the intervention of the Burgundians on behalf of Odoacer. A sally was made

[^113] Theodoric was made innster of the houschold troope and in 484 consul
from Ravenna by the besieged king, who was defeated in a bloody battle in the Pine Wood. At length (26th February 493) the long and severe blockade of Ravenna was ended by a capitulation, the terms of which Theodoric disgracefully violated by slaying Odoacer with his own hand (15th March 493). See Odoacer.
The thirty-three jears' reign of Theodoric was a time of unexampled happiness for Italy. Unbroken peace reigned within her borders (with the exception of a trifing raid made by Byzantine corsairs on the coast of Apulia in 508). The venality of the Roman officials and the turbulence of the Gothic nobles were sternly repressed. Marshes were drained, harbours formed, the burden of the taxes lightened, and the state of agriculture 80 much improved that Italy, from a corn-importing, became a corn-exporting country. Moreover Theodoric, though adhering to the Arian creed of his forefathers, was during the greater part of his reign so conspicuously impartial in religious matters that a legend which afterwards became current represented him as actually putting to death a catholic deacon who had turned Arian in order to win his favour. At the time of the contested papal election between Symmachus and Laurentius (496-502), Theodoric's mediation was welcomed by both contending parties. Unfortunately, at the very close of his reign (524), the emperor Justin's persecution of the Arians led him into a policy of reprisals. He forced Pope John to undertake a mission to Constantinople to plead for toleration, and on his return threw him into prison, where he died. Above all, he sullied his fame by the execution of Boetius and Symmachus (see Boertios). It should be observed, however, that the motive for these acts of violence was probably political rather than religious,- -jealousy of intrigues with the imperial court rather than zeal on behalf of the Arian confession. Theodoric's death, which is said to have been hastened by remorse for the ozecution of Symmachus, occurred on 30 th August 526. He was buried in the mausoleum which is still one of the marvels of Ravenna (q.v.), and his grandson Athalaric, a boy of ten years, succeeded him, under the regency of his mother Amalasuntha.

> Genealogy of Theodotic.
> Tघerpemis $=$ Erelleva
> d. 474 .

Authorilies. - The authorities for the life of Theodoric are very imperfect. Jordanes, Procopius, and the curious fragment known as Anonymus Velesii (printed at the end of Ammianus Marcellinus) are the chief direct eources of narrativo, but far the most important indiract source is the Varis (state-papers) of Cassiodorus, chief minister of Theodoric. Malchus furnishes some interesting particulars as to his early life, and it is possible to extract a littlo information from the turgid panegyric of Ennodins. Among German acholars Dahn (Konige der Germanen, ii., iii., and iv.), 2aobo (Geschichte des Ostgothischen Reichs in Italien), and Sartorius (Versuch über die Regierung der Ostgothen, \&c.) have done most to illustrate Theodoric's principles of government. The English reader may consult Gibbon's Decline and Fall, chap. xxxix., and Hodgkin's Italy and her Invaders, vol, iii., and Lellers of Cussiodorus. (T. II.)

THEODOSIA, or Kaffa, a seaport and district town of Russia, situated on the east coast of Crimea, 69 miles to the east-north-east of Simpheropol. Its roadstead,
which has a width of 18 miles and is never frozen, is well protected from east and west winds, and partiy also from the south, but its depth is small, ranging from 11 to 14 feet and reaching 35 feet only in the middle. The want of railway communication with the interior prevents it from gaining the commercial importance it might otherwise have possessed, so that its population was only 10,800 in 1881.-a low figure when compared with the 20,000 it had in 1672 and still more with the figure returned in last century. Many remains of its former importance exist in the city and neighbourhood, the chief being a beautiful mosque-formerly a Genoese cathedral-synagogues several centuries old, old towers with inscriptions, baths, and a palace of Shah-Ghirei in the suburbs. Gardening is one of the leading industries ; fishing, a few manufactures, agriculture, and trade are also carried on. The foreign trade, which in 1830-40 reached an average of $£ 90,000$ for exports and $£ 66,500$ for imports, afterwards fell off, but it has experienced a revival in the course of the last 15 years, the exports of corn, linseed, and wool having reached $£ 167,853$ in 1884 . The imports are insignificant.
Theodosia, a Milesian colony, was in Strabo's day a flourishing seat of trade (especially in grain), with a harbour capable of accommodatiug a hundred ships; but before Arrisu'a tima (c. 125 A.D., it appears to have been destroyed. More than a thousand yea. B later (1263 to 1267) the Genoese established here their colony Kaf.. or Eefa, which grew rapidly up notrithstanding the rivalry of the Venetians. It was fortifed, and became the see of a bishop, as well es the chief centre for the Genoese colonies on the Black-Sea coasts. It remained nearly iadependent uatil 1475 , when it was taken by the Turks, but it continued to prosper uader their rule, under the name of Kutchuk-Stambul, or Kryon-Stambul (Stambul of Crimea). The Russiang took it in 1771, and annexed it in 1774. From that date it began to decay, and had only 3200 iohabitants in 1829, the emigration of the Crimean Tartars and the competition of Odessa being obstacles to its further gromth.
THEODOSIUS I, emperor of Rome, surnamed the Great, was the son of Theodosius, Valentinian's great general, who in 368-69 drove back the Picts and Scots from the Roman territories in Britain, and, after other successes on the Continent, was at last despatched to sup. press the revolt of Firmus in Mauretania (372). Shortly after (376), the elder Theodosius, despite his great services, was put to death by order of Valens, próbably through fear lest he should be the Theodosius or Theodore whom the prophetic tripod indicated as the future emperor.

The younger Theodosius was born about the year 345 . He was a native of Spain, but the exact place of his birth 15 uncertain (Cauca in Galicia acoording to Idatius and Zosimus, Italica accordligg to Marcellinus). Pacatus and Claudian seem to claim for him at least a relationship: to Trajan, of which, bowever, there is no satisfactory proof. He accompanied his father into Britain (308), and a little later distinguished himself by defeating the Sarmatians who had invaded Meesia (374). On his father's death be retired to his native place, where he lived quietly till after the great battle of Adrianople (August 9, 378), when Gratian summoned him to share the empire. Theodosius was made Augustus at Sirmium, January 19, 379, and was assigned all the Eastern provinces, including Illyricum. It was a time of great peril for the Roman state. The Huns had just made their appearance on the western shores of the Black Sea, and, after overthrowing the great nation of the Ostrogoths, had driven the more southern Visigoths to take shelter within the empire. Valens had consented to rcceive them (3i6) on condition that they should deliver up their arms and surrender their children as bostages to be distributed throughout the cities of the East. The latter half of the compact was enforced, but not the former ; and the barbarians, left without any sustenance, began to plunder the open country. After their great victory at Adrianople they rcached the walls
of Coustantinople, whence they were driven back by the valour of a band of Saracens. Meanwhile the Ostrogoths, the Taifali, the Huns, and the Alans had all crossed the Danube to share the spoils of the empire; and it was against this motley host- that Theodosius had to contend. He appears to have gained some successes even before his elevation to the empire (Theodoret, v. 5, 6), and shortly after this retired to Thessalonica to organize his forces. He breathed courage into what remained of the Roman army, and summoned the very miners to his standard. But his chief reliance was placed in certain bodies of the Goths whom he had enrolled in his service. These, under their royal leader Modares, gained at least one decisive victory, probably in the course of 379 . From the unchronological account of a later writer, Zosimus, to whom we owe almost all the details of Theodosius's early campaigns, we may infer that in the course of this year or the next Fritigern and his Visigoths were gradually driven across the Danube, where they seem to have met with the Ostrogoths who had shared their fate. For a time the united nations turned their energy against the Western empire, till they forced Gratian to grant them leave to settle in Pannonia and Mœsia. Before setting out on their new journey they perhaps combined their forces to attack Athanaric, who had retreated with his section of the Visigothe into the wilds beyoud the Danube at the time of the Hunnish invasion. Unable to withstand their onset, Athanaric offered his services to Theodosius, and was recesved into Constantinople with every mark of favour, 1lth January 381. Fifteen days later he died, and was honoured by the emperor with a splendid funeral, while his followors faithfully discharged the duty of guarding the Danube.

In the two preceding years Thessaly and Macedonia had been swept by the barbarians. On one occasion the omperor himself barely escaped from their hands in a midnight attack which they had been induced to make by the sight of his blazing watchfires; on another the united forces of the Ostrogoths and Visigoths crossed the Danube with the design of pillaging Greece. In his efforts against the invaders Theodosius was ably seconded by his colleague Gratian, who despatched his Frankish officers Baudo and Arbogastes to drive the enemy out of Macedonia and Thessaly (380), and, while Theodosius lay sick at Thesealonica, mado such terms with them as the latter emperor was glad to accept on his recovery. A little later, presumably towards the middle of 381, Promotus, Theodosins'a Lieutenant, inflicted a terrible defeat on a motley host that was attemptiog to cross the Danube. This was perhaps the decisive battle in the war ; and we read that on October 3,382 , all the remaining Goths in the empire submitted to Theodosius. Many of them appear to have entered the Roman army as "fœederati"; and indeed, from the very commencement of his reign, Theodosius seems to have pursued a consistent policy of eprolling the Gothic warriors. At times they accepted his gifts while meditating treachery in their hearts; and Eunapius has preserved the story of how Fravitta, the leader of the faithful party, slew with his own hands his disºvnest colleague Eriulf at a banquet in the emperor's owu tent. Zosimus has charged Theodosius with burdening the provinces with excessive duties for the purpose of maintainiug a host of useless barberian offeers, while the common soldiers were left unpaid. These barbarian troops, according to ine same writer, often treated the Roman citizens with the utmose indignity, and on more than one occasion provoked a retaliation ju: which the emperor refused to see any excuse. They were nut, bowever, all quartered in one place, but received into the legions; while others were sent to Egypt. On the whole, it may be said that his policy of attaching the invaders to binself was the saluation of the empire; it was they
who bore tne orunt of the battle of the Frigidns; and the knowledge of the emperor's good faith towards the Teutonic auxiliaries in his service must have contributed largely to the defection of Eugenius's army on the same occasion.

In 383 Theodosius created his eldest son Arcadius Augustus. The same year saw the revolt of Maximus in Britain and the murder of Gratian (August 25, 383). For five years Theodosius consented to accept tho usurper as his colleague; but, when Maximus, flushed with success, attempted a few years later to make himself master of Italy, which, siace the sudden death of Valentinian I. (17th November 375), had been governed under the name of his young son Valeutinian II., Theodosius advanced against the invader and overthrew him near Aquileia (28th July 388). This rictory was followed by the murder of Maximus and his son Victor, after whose death Theodosius conferred upon Valentivian II. all that part of the empire which his father had held. Theodosius is said to have been induced to take this camyaign by his love for Valentinian's sister Galla, whom ha now married. Meanwhile there had been fresh dangers from the Goths. In 386 another band of the Grœthingi or Ostrogoths, attempting to cross the Danube, was cut off by Promotus The same general, in the course of the next two years, punished the barbariaus who had deserted Theodosius at the beginning of the campaign against Maximus. Such aignal ervices as these, though coupled with the fact that he had saved the emperor's life, did not prevent Promotus from falling a victim to the intrigues of the favourite Rufinus, who is charged by Zosimus with compassing the death of other noble men. If we may trust the evidence of the last-mentioned historian, from the end of the jear 388 Theodosius resigned himself to gluttony and voluptuous living, from which he was only roused by the news that, in the Western empire, Arbogastes the Frank had slain the foung emperor Valentinian and set up the grammarian Eugenius in his stead (15th May 392).

Into the curious history of the short-lived pagan revival in the Western empire there is no need to enter here. Zosimus assures us that the tears of Galla threw the whole court into confusion; but there can be little doubt that to 2 religious, if not superstitious, mind like that of Theodosius it might well have seemed that he was fighting the battles of God, as he led his army of the cross against an enemy on whose standard shone the image of Hercules (Theodoret, v. 24). His host consisted partly of Romans and partly of barbarians. Timasius was leader of the former, but under him was ranged the more renowned Stilicho ; the latter were led by Gainas the Goth and Saul the Alan. The engagement was fought near the river Frigidns, some thirty-six miles distant from Aquileia. On the first day Theodosius's barbarians, engaging with those of the hostile army, were almost destroyed, and the victory seemed to be with Eugenius. After a night of prayer, towards cock-crow the emperor was cheered by a vision of St Philip and St John, who, mounted on white steeds, promised him success. With the morning he received and accepted the offer of service on behalf of the enemy's ambusb, and once more advanced to the conflict. But eren so, the issue of the day was doubtful till, if we may trust the concurrent testimony of all the great contemporary church historians, a sudden gust of wind blew back the eneny's arrows on themselves. This was the turningpoint of the battle: Eugenius was slain by the soldiers; and two days later Arbogastes committed suicide (September $5-9,394$). From the north-eastern parts of Italy Theodosius passed to Rome, where he had his son Honorins proclaimed emperor under the guardianship of Stilichor Thence he retired to Milan, where he died of dropss (17th

January 395), leaving the empire to be divided between his two sons Honorius and Arcadius, -Honorius becoming emperor of Rome and the West, Arcadius of Constantinople and the East.
Important, howerer, as the reign of Theodosius was from the political poiut of vicw, it is perhaps still more important from the theological. According to Sozomen, his pareuts were tsth crthodor Caristians, according to the creed sauctioned by tho council of Nicera. It was not, however, till his illness at Thessalonica that the emperor received baptism at the hands of Bishop Ascholius, whercupon, bays the same historian, he issucd a decree (February 380) in favour of the faith of St Peter and Pope Damasus of Rome. This was to he the true catholic faith; the adherents of other creeds were to be reckoned as heratics and punished. The great council of Constantinople, consisting of 150 orthodox and 36 Macedonian bishops, met in the following year, confirmed the Nicene faith, ordered the affairs of tho various sees, and declared the hishop of Constantinople to rank next to the bishop of Rome. The emperor cannot be acquitted of the intolerance which marks edicts such as that depriving apostatizing Christians of the right of hequest. It was not till 389 or 390 that he issned orders for the destruction of the great idol of Scrapis at Alezandria. Other edicts of an earlier or later date forbade the unorthodox to hold assemblies in tho towns, enjoined the surrender of all churches to the catbolic bislops, and overthraw the heathen temples "throughout the whole world." During the reign of Theolosius Gregory of Nazianzus was made bishop of Coustantinoplesn appointment which he did not long retaiu. Iu 383 Thoodosius malled a new council for the discussion of the true faith. Tha srthodox, the Arians, the Eunomians, aud the Macedonians all aent champions to maintain their special tenets before the emperor, who finaily decided in favour of the orthodox party. He seems to have onfered the Novatians to hold assemblies in the cify. Perhaps the most remarkable incident in the life of Theodosins from a personal print of view is the incideut of his submission to the reprimands of Ambrose, who dared to rehuke him and refuse to admit him to the Lord'a Supper till he had done public penance for auffering his Gothic anxilianies to murder the townsmen of Thessalonica (390). Equally praiseworthy ia the generous pardon that the emperor, after muck intercession, granted to the seditious people of Antioch, who, out of anger at the growiug imposts, had heaten down the impcrial statues of their city (387). When the Christians in the eastern part of the eupire destroyed a Jervish aynagogue and a church belonging to the Talentiniays, Theodosius gave orders for the oflenders to make reparation. Such impartial condvet drew forth a remonstrance from Anabrose, who, where the interests of his creed was concerned, could forget the common principles of justice. In a sermon preached hefore Theodosins he introduced the Deity Him. self holding an argument against Theodosins on the eubject of his remissness, and the imperial penitent yielded to the eloquent bishop. So plient a disposition rendered him very dear to the saint, who availed himself of his infuence to counteract the efforts of Symmachus aud tho Romen senste for the restoration of tho pagan rites at the altar of victory. "I loved the man," aays St Ambrose, "who, patting off his kingly robea, mourned puhlicly in the church a sin to which the guilo of others had exposed bim, -an enperor who thought it no shame to do an act of public penance that even private people would have hlushed to perform." The inspired vision of the saint ε saw the deceased emperor received into heaven hy his old colleague Gratian; while Maximns and Eugenina down in bell wers already experiencing how grievous a ain it is to take up arms against lawful princes (Ambrose, De Obitu Theod.).
Theodosins was twice married-(1) to Elia Flacilla, the mother of Arcadias (377-408) and Honorins (384-423); (2) to Ga山a (d. 394), the daughter of Valentinian I.

The chief authoritios for the age of Theodoalas are Ammianns Marcellinus, Zosimus, Eunapius, and the ecclesiastical historlana (Socrates, Sozomen, Theodoret). Atuch information may also be gleaned from the writings of St Ambrose, St Gregory of Nazlanzus, Isidora of Seville, and tha orators Pacatns, Libanlus, Themlstius. Of modern authorities Thilemont cupplles en unrivalled collection of facts drily cellected from all contemporary or gearly contemporary sonrces: he ls specially asefnl for his synopses of the Theodostan laws. Clinton's Fast gre the best guida for the chronulogy of tha perlod. It is hardly necessary to contlon tha brillant account given by Glbbon, or, in later years, fom tha standoolat of Itallan history by 31r Hedgkin.
(T. A. A.)

THEODOSIUS II. (401-450) succeeded his father Arcadlus as emperor of the East in 408. During his minority the empire was ruled by the prætorian prefcct Anthemius and Pulcheria, who became her brother's guardian in 414. Under his sister's care the young emperor was brought uo rather as a virtuoso than a prince. The chief events of Theodosius's reign are the wars with Persia in 421 and 441, the council of Ephesus (434), ard the invasion of the Huns under Attila (441-448). In 450 Theodosius was thrown from his horse while huntiag, and re-
ceived injuries from whieh he died. He married Athenais, who on being baptized took the name of Eudocian It was during his reign that the Codex Theodosianus, or collection of the constitutions of the Roman emperors, was formed. The idea took birth as early as 425, but was only put into execution between 435 and 438 ; in the latter year the Code was published.

THEODOSIUS III. was the last of three emperore whose short reigns filled the interval between the death of Justinian II and the accession of Leo the Isaurian. The emperor Anastasius had scnt a fleet to frustrate the intended expedition of the Saracens from Alexandria against Constantinople. On reaching Rhodes the troops rose against their leader, John the Deacon, slew Lim, and, starting for Constantinople, landed at Adranyttium, where they made a collector of the tases emperor by the title of Theodosius III. The new emperor besieged Constantinople for siz months before he took it; Anastasius resigned, and retired to a monastery, leaving his place to be filled by Theodosius III., who likewise resigned next year (717) in favour of Leo III. The closing years of Theodosius's life were speut in a monastery.

THEODOSIUS, of Tripolis, a Greek geometer and astronomer, three of whose works were contained in the collection of lesser writings named "O μ tкрòs áarporoμ оú $\mu \mathrm{evos}$ (sc. то́тоs), or 'O μ ккро̀s ảotpóvo μ os. ${ }^{1}$ Pappus of Alezandria, at the commencement of the sixth book of his Surayurn, speaks of this collection, the study of which is indispensable to any one who would master the science of
 which were highly esteemed in the school of Alexandria, were intermediate between the Elements of Euclid and the Almagest of Ptolemy, for the understanding of which, indeed, they formed an indispensable introduction. Of the life of Theodosius nothing is known. As to the time when he lived different opinions have been held, he being placed by some in the first century before and by others in the second century after the Christian era. The latter opinion is founded on an error of Suidas (s.v.), who on the one hand identifies the author of the three works referred to aboze with a seeptical philosopher of the same name who lived at the time of Trajan or later, and on the other hand distinguishes him from a native of Tripolle who wrote a poem on spring. It is now génerally admitted that the subject of this article is the same as Theodosius the mathematician, who is mentioned by Strabo amongst the natives of Bithynia distinguished for their learning, and whose sons were also mathematicians, the same, too, as the iaventor of a universal sun-dial (horologium π тpos $\pi \hat{a} v$ к $\lambda^{\lambda i \mu a) ~ o f ~ t h a t ~ n a m e ~ w h o ~ i s ~}$ praised by Vitruvius (De Architectura, ix. 9). His date, therefore, could not have been later than the 1st century b.c.; he may, however, have lived in the preceding century, ipasmuch as the names mentioned by Strabo in the passage referred to above are, as far as we know, arranged chronologically, and Theodosius immediately follows Hipparchus, who made astronomical observations betreen 161 and 126 e.c., and preeedes Asclepiades the physician, who lived at Rome at the beginning of the Ist century B.C.
The statement that be was " of Tripolis" is made, not on the authority of Suidas, as has been erroneously said, but because he is so described in the title of his principal work It is probable, therefore, that he was a native of

[^114]Bitbynia, and resided at Tripolis, where he wrote his work. Pripolis is generally taken to be the city of that name on the Phœnician coast, but it may have been a town of the same name in Lydia, on the Meander.
His chief work- $£ \varnothing$ atpikd, in three books-treats of the properties of the sphere and its fections, with the olject of establishing the geometrical principles of spherical astronomy. This work, which is classical, is distinguished for the order and clearness of the exposition as well as for the rigeur of its proofs, and bas ever since formed the basis on which the subject of spherical geometry bas been treated. It does not contain any trace of spherical trigonometry, which, on the other hand, wss the special subject of the work having the same title, and included in the same collection, of Monelaus of Alezandris, who lived at the end of the 1st century.
Montucla suspected that a great part of the three books of Theodosius must have been known beforo his time, and that he merely did with respect to this branch of geometry what Euclid had done with the elemeats, namely, he collected and incorporated in his wark the different propositions found before his time by astronomers and geometers. This conjecture of Montucla has been coafirmed by A. Nokk (Uebcr dic Spharik des Theodosins, Karlsruhe, 1847), by Heiberg (Litterargeschichtliche Studien über Euklid, pp. 43 sq., Leipsic, 1882), and by Hultsch, from whose researches, and especially owing to the publicstion by the last of the cditio princeps of Autolycus, it is now quite certain that as early as the middle of the 4 th century b.c. there existed a Greek text-book on Spherics which, in its essential contents, scarcely devisted from the three books of Theodosius. He must therefore be regarded as merely the editor, or at most the elaborator and expounder, of a doctrine which existed some centuries before him.
The Spherics of Theodoslus was translated into Arabic at the beglaning of the 10th century, ond from the Arable Into Latlu in tho 12 th ceatury by Plato of Tivell (Tiburtinas). Thls trazslatlon was publislied in 1518 at Venkee, but was found so faulty by J. Yoegelinas tbat he published a now Latin versioa, together with addtions from-the Arabisn comraeatators, Vlenns, 1599 , 4 to ; other Latla translations were publiahed by F. Maurolycus, Messina, 1558 , [ol.; by C. Clavjas, Rome, 1586,4 to ; and by Berrow under the title, Theodosil Sphserica, Methodo Nova Illustrala et Succircte Demonstrata, London, 1675,4 to. The Greek text was Arst publlshed, snd with It s Latin transicilon, by J. Pena, Paris, 1558,4 to ; It has been edited since by Joseph Hurt, Oxford, 1707 , and by E. Nizze, Berlin, 1832, bat theso two editions sre founded on that of Puna. There is also a German trans!ation by Nizze, Strslsund, 1826. His two editions are accompanied with valuable notes and an appendlx contaialng additions from Voegelinus and others.
The two other works of Theodoslus which have come down to us have not aa yet been published in the original. The propositions, without demnnatrations, in the work repi $\dot{\eta} \mu$ ep $\hat{\nu} \nu$ каi $\nu v к т \tilde{\omega} v$ (On Days and Nighis), in two books, were given by Dasypodius, Ia Greek and Latin, In his Sphzricse Doctrinse Proposiliones, Strasburg, 1572, 8vo. A Latín version of the coroplete work, with ancient scholia and figures, was given by Joseph Aaria, Rome, 1591, 4to. Pappus has given a pretty full coramentary en the first book of this work of Theodosius. Hie work дерwíanjaewv (On Habilations) also was published by Auria, Rome, 1588, It gives an acconnt of how, for every lnhabitant of the earth from the equator. to the pole, tho starry firmament preaents teself in the course of a year. The propositlons la it were also given by Dasypodius in his work mentloned above.

THEOGNIS of Megara was one of the early Greek elegiac poets; be probably flourished about the middle of the 6 th century b.c. We derive our knowledge of his life from the poems that bear his name. After the fall of Theagenes, who had made himself tyrant of Megara about 625 , the usual struggles between oligarchy and demociacy ensued. Theognis was a violent partisan of the oligarchical faction in his native town, and wrote elegies in which he gave expression to the emotions roused in him by the varying phases of the struggle. He appears on one occasion to have lost his property (verse 345) and been driven into exile: perhaps it was then that be visited

Sicily, Eubcea, and Sparta (783 sq.). In the end-if we may trust 1123 sq. - Le returned to Megara, and lived, at least for a time, in something like prosperity. The date of his death is unknown. The verses handed down to us under the name of Theogais amount in ell to 1389. Not a few of them are ascribed on the evidence of the ancients to Tyrtæus, Mimnernus, and Solon ; modern criticism has made it probable that two of the longer elegies $a \cdot \theta$ from the hand of Evenus (467-496 and 667-686); other frayments are demonstrably later than Theognis. It is now generally admitted that the Theognidea were put together long after Thengnis-possibly even as late as the 4th century B.C.-by some compiler who wished to provide a good collection of moral maxims for educational purposes. To separate the genuine fragments of Theognis from those which were ascribed to him by the reverence of a later age is a hopeless task.
The collection is divided into two books. The first, which is addressed to a youth called Cyrnus, cr Polypædes, openo with a spirited invocation of Apollo and Artemis, along with the Muses and the ${ }^{\circ}$ Graces (vv. 1-18); then follows a passage which bas been much discussed in comnexion with the early history of writing, recommending Cyrnus to set a seal apon the suthor's verses, to prevent forgers from passing off spurious iines under his name (see Jevens, Hist. of Greck Lit., p. 46). With verse 27 begins a series of counsels to Cyraus. On the whole they are remarkable neither for loftiness of tone por for poetic elevation. Cyraus is counselled to avoid "tho bsd" and frequent the bociety of "the good" menthe terms "good" and "bad" being used to denoto sristocrats and democrats, just as кadds kà $\gamma a \theta$ ds mennt an oligarch in the later days of the Pelopounesiad War. Sometimes the violence of party feeling leads Theognis beyoud all bounds, as when he prays that he may "drink the black blood" of his opponents (349; of. 337339 and 361). One striking feature in these elegies is the continual refrain about the evils of poverty. "To avoil poverty one should even throw oneself into the vasty deep, or from the beetling rocks" ($175-176$; of. 266 sq., 351 sq ., and 649 sq .). Elsewhere the poet reprosches Zeus with allowing evil men to prosper, and aflicting the good (373 sq .); he also complains that the punishment due to wicked men often falls upon their sons (731 sq.). A pleasing feature is the high value which is placed npon friendship: one is not to part with a friend lightly, or upon eome slight occasion of displeasure (323 sq .). At the same time no ore knowe better tben Theognis how quickly frieuds fail one in adversity (299-300). Life has on the whole few charns for our poet: "the best thing for man is not to be beru or look upon the rays of the ewift sun; once born it is best for him to pass as 800 n as possible the gates of dosth, and lie with a great barrow of earth above him" (425-429). The prevailingly 6 ad tone of the elegies is occasionally broken by a convivial note. "It is shameful," says the paet, "to be drunk when others are sober, or sober whon others are drunk" (626627); "among the aproarious I sm very uproariuns, but among the proper I am the properest of men " (313-314). The only elegy which possesses any considerable poetic merit in the first book is that in which Theognis predicts immortality for his young friend throngh the fame swaiting his own poems. Tbo second book (1221-1389) consists of a number of amatory elegies addressed to some young friend of the auther's. In vigour and harmony of versification they are on the whole euperiur to the first book; but most if not all of then are probably spurious.
Bergk, Poetm Lyrici Oreci, ii. 117-236, Lelpsle, 1882

THEOLOGY

T१HE word iheology comez from a heathen sourcefrom the Greek classics. In the Republic of Plato and the Metaphysics of Aristotle it occurs, and in its etymological meaning of "discourse or doctrine concerning Deity and Divine things"- גóyos тєpıे roû Ocoû каi $\pi \in \rho \grave{\imath}$ тûv $\theta \in \epsilon \hat{\imath} \dot{v}$. Men who wrote about the gods and their doings, or who speculated about the Divine in the origination and operations of nature-men like Homer, Hesiod, Pherecydes, and Thales,-were called θ colóyou. But there could, of course, be no theclogical science based on the popular religion of Greece. Theology was only to be found among the Greeks in the form of philosophical speculation. Through St Augustine we know that Varro,
"the most learned of the Romans," distinguished three kinds of theology, - the first mythical or fabulous, the second physical or natural, and the third civil or popular. The mythical theology be censured as containing many things contrary to the dignity and nature of immortal beinge; the natural theology he described as that which is true but beyond the capacity of the vulgar; the civil theology he considered to be that which it was good for the citizens to believe-the received religion of Rome. The general attitude of the Greek and Roman mind to religion was unfavourable to the cultivation of theology. Religion being dissociated in thought from truth could not give rise to scieace

The words theology and theologian do not occur in Scripture, but it was inevitable that they should be transplanted into Christian soil. ©éóloyos is found, as a V.R. in the inscription of the Apocalypse-the Revelation of John "tho Divinc;" "the theologian," - and almost certainly
 rov̂ λ óyou θ cótnta, -that the λ óoos is θ cós. In the 3 d and 4th centuries a theologian usually meant one who distinguished himself in defending the personality and Divinity of the Logos. It was on this ground that Athanasius and Gregory Nazianzen were honoured with the distinctive appellation of "theologians." The term theology hàs r.ot yet lost its early signification of "doctrine concerning God," although a much wider meaning is more common. Theology in its ordinary general acceptation includes, as one of its divisions, theology understood as the treatment of the problems which directly refer to the Eeing, attributes, and works of God. The Introductio ad Theologiam; and a later form of it, the. Theologin Christiana, composed by Abelard in the 12 th century, first gave currency to an asceptation of the word inclusive of all religious truth or belief. Among later scholastics the common designation for a general compendium of religious doctrine was Summa Theologix. Of such Summe among the most celebrated and characteristic are those of Alexander Hales, Albertus Magnus, and Thomas Aquinas. The medixral mystics deemed the essence of theology to be the immediate 'intuition of God, who, being once in contact with the soul, reveals to it the truth of all the principles of faith, and gives it at the same time spiritual peace and happiness. This view led to a use of the word which was prevalent among the Reformers and their immediate successors,-a subjective application which identified it with what was haracteristic of the mind of a true theologian, an enlightened and experienced homo renatus. In this sense it was a living practical acquaintance with the revelation of grace and truth made by God to man, a "habitus practicus," a "sapientia eminens practica," as it was called. With it, however, these earlier Protestant divines generally conjoined that objective application of the term which was current in later scholasticism, and this at length wholly displaced the subjective acceptation; in other words, theology came to signify, not knowledge of a certain kind as inherent in the mind and operative in the life of the individual, but knowledge in itself, a body of systemat:zed truth, a science. Theology, thus understood, may be viewed, discussed, and applied in a variety of ways, so as to give rise to certain kinds or species of theology. In the 17 th century the necessity for specialization of this sort began, from the operation of several causes, to be widely and strongly felt, and it became usual for divines to indicate by the titles of their theological systems the point of riew and mode of treatment adopted. An adjective added to the term "theologia" served their purpose. Of adjectives tius emplojed in the 17 th and early part of the 18 th century, the following may. be mentioned as either frequently used or of some intrinsic interest:-theoretica, practica, didactica, elenctica, polemica, irenica, pacifica, positiva, comparativa, dogmatica, theoretico-practica, didac. tico-elenctica, $\&<$ c.

The extension given to the signification of the term theology was for a very lengthened period almost unirersally restricted to the knowledge dcrivable from the Scriptures, the systematic exhbition of revealed truth, the sclence of Christian fatth and life. It is still thus, perhaps, that the word is most commonly understood. Two things, however, have naturally suggested the employment of it in a wider manner First, there was tho rise and development of a theology not based on revelation,- the rise and development of what 18 called natural theolož.

The Greeks and Romans could not distinguish between nature and revelation, reason and faith, because ignorant of revelation and faith in their distinctive Christian sense. In the patristic and scholastic ages of the church, and for some time after the Reformation, men were not in general prepared to admit that there was a knowledge of God and of His attributes and of His relations to the world which might be the object of a science distinct from and independent of revelation. Yet the most learned and thoughtful even of the scholastic divines recognized in some measure that such was the case, and could hardly, indeed, do otherwise after they had become acquainted with the contributions which Greek, Jewish, and Arabian philosophers had made to the defence and elaboration of the doctrine concerning God. The separation of natural and revealed theology was virtually the work of the scholastics. The Theologia Naturalis sive Liter Creaturarum of the Spanish physician, Raymond de Sebonde, who taught theology in the university of Toulouse during the earlier part of the 15th century, was, perhaps, the first work which, proceeding on the principle that God has given us two books, the book of nature and the book of Scripture, confined itself to the interpretation of the former, merely indicating the mutual relations of natural and revealed religion. A conviction of the truth of the distinction which he so clearly apprehended gradually spread; mure and more importance came to be attached to it. The deists proceeded on it, and tried to exalt natural theology at the expense of all theology professedly based on revelation, by representing the former as the truth of whicb the latter was the perversion. The wisest of their opponents, and thoughtful Christian writers in general-the adherents of the moderate and rational theology of the 17 th and 18th centuries-strove, on the other band, to show that natural theology was presupposed by revelation. and should carry the mind onwards to the acceptance of revelation. Thus natural theology came into reputation, notwithstanding the opposition of those who have denied its existence and contended that the reason of itself can teach us absolutely nothing about God or our duties towards Him. The recognition of natural theology contributed to awaken an interest in the various religions of the world, and thus led to the second circumstance referred to, namely, the rise of what may be called comparative theology, although it has hitherto been more generally designated the science of religions. It can be shown to bave originated in the attempts made to prove that the principles of natural theology were to be found in all religions. In Bishop Steuco of Kísami's De Perenni Philosophia, published in 1540, and in Lord Herbert of Cherbury's De Religione Gentilium, published in 1663, wo have two of the earliest and most characteristic attempts of the kind. From that time to the present the study of religions has proceeded at varying rates of progress, but without interruption. Important results lave been obtained, and especially this result, the ascertainment, to the satisfaction of all competent judges, of a right method of investigation, -the establishment, as the true mode of study, of the comparative method. As we have a right to speak of comparative anatomy and comparative philole \boldsymbol{r}°, so bave we Ω right to speak of comparative theolo cy. The inference from the preceding remarks is obvinus. If there be a natural theolngy and a comparative th.cology, it is a mistake to identify theology per se with Christian theology. The word Christian is, in this case, a real and great restriction of tho signification of the word theology, and Cbristian theology is not the only kind of theology. The proper procedure is to give to theology a general and comprehensive meaning. which can be limited and specialized, when requisite, by adjectives like "natural" or "Clisistian."

What, then, is the general signification which we should give to the term? There is room for difference of opinion, and especially as to whether God or religion should be regarded as the object of the science. Is theology the science which treats of God? or is it the science which treats of religion? The latter view is now, perbaps, the more current. In addition to intrinsic reasons, the critical and sceptical spirit of the time is in its favour. Many speak of theology as a science of religion because they disheliere that there is any knowledge of God to be attained. Dr Martineau, in his lecturo on Ideal Substitutes for God, protests against this tendency, and contends that the older view of theology, as the doctrice or rational apprehension of God, ought not to be abandoned, seeing that the new " science of religions," i.e., "the systematic knowledge of what men have believed and felt on things sacred to them," can be no proper substitute for the old "theology." We may admit, however, that the protest is essentially true,-that a knowledge of man's religious opinions, emotions, and actions can never supply the place of a knowledge of God, that, when from religion its objective basis, the reality and apprehensibility of God, is taken away, the study of it can have merely the psychological interest which belongs to mental disease and illusions, and yet prefer the definition of theology as "the science of religion" to its definition as "the doctrine of God." The latter seems much too narrow. Even Christian dogmatics is about as much occupied with man as with God. The doctrines of sin and of the church, for example, are not doctrines regarding God. Then, although the new "science of religions" is not a substitute for the old "t theology," it is still a 'science, or at least a very interesting and important branch of knowledge, whick yet cannot be brought under the definition of theology approved by Dr Martineau, -the definition immediately yielded by the etymology of the term. The science of religion is a very different thing from the "science of religions." It is far more comprehensive. The "science of religions" is but one of the latest offshoots of the science of religion ; the old theology is its main trunk or stem. Theology, when viewed as the science of religion, has not to do merely with the religious consciousness and its states. It must aim at the complete comprehension of religion, and, unless religion be a delusion and disease, this can never be attained by treating religion merely as a subjective or psychological process to which there are no corresponding objective realities manifested either through nature or revelation. We have no right to assume that it is thus without a real and rational foundation in fact; on the contrary, we are bound to inquire whether it has external grounds and real objects or not, and, if it have them, what they are. We must endeavour to ascertain and expound its objective grounds as well as its subjective contents. Thus the definition of theology as the science of religion in no way excludes what is implied in the definition of it as the science conversant about God and Divine things. It includes more than the latter definition, but does not exclude anything contained therein.
The definition of theology as the science of religion has been objected to by Dr Charles Hodge on two grounds: ${ }^{1}$ first, that the word religion is ambiguous, having both an objective sense and a subjective sense, and that its etymology is doubtful ; and, second, that to define theology as the science of religion "makes theology entirely independent of the Bible. For, as moral philosophy is the analysis of our moral nature and the conclusions to which that analysis leads, so theology becomes the atalysis of onr religious consciousness together with the truths which that analysis evolves." As to the first objection, the word Frvematio Theology, vol, i, pp. 20-21.
religion has, it is true, more significations than one, and consequently may be ambiguously used, but in point of fact it is not so used in the definition in question, in which religion is understood in its generic meaning, and as inclusive both of subjective and of objective religion. Theology bas to treat of both, and if it treat of them aright it will not confound them. "The etymology of the word religion is doubtful." Very true. But is ne word to be employed in a definition if its etymology be doubtful? That wonld be an extremely hard law. In definition we have only to do with the actual meaning of terms; we have nothing to do with their origin or history. As to the second objection, it bas to be remarked that the definition does not make theology entirely independent of the Bible. It does not make Biblical theology in any degree independent of the Bible. It does not imply that the Bible is not the sole perfect standard by which truth and error, health and disease, are to be separated in the religious consciousness of individuals and the religious history of the race. It only implies that all religious phenomena whatever are to be studied by the theologian, just as moral philosophy cannot leave any moral phenomena unstudied. Moral philosophy, in treating of vice as well as of virtue, does not thereby equalize vice and virtue ; and no more does comparative theology, when it treats both of Christianity and heathendom, assume that the former has no superiority over the latter. It is merely a part of the task of moral philosophy to analyse the moral consciousness; it is an equally essential part thereof to inquire into the foundation of rectitude, and to determine objective moral distinctions and relations. In like manner theology has much more to do than merely to analyse the religious consciousness; it has also to treat of the grounds and objects of religion. If some reduce it to a mere analysis of the religious censciousness, and overlook or deny that there is an objective religions revelation in nature and Scripture as well as a religious susceptibility in the mind of man, this is no logical consequence of the statement that theology is the science of religion. There needs, perhaps, no other proof that the definition to which Dr Hodge objects is of some use than to consider for a moment his own definition. "Theology is the science concerned with the facts and the principles of the Bihle." Is theology, then, not concerned with the facts and principles of the physical world, the human mind, and hietory, so far as these are disclosures of Gol's nature and ways? How can theology start from the Bible when it needs to be proved that there is a revelation from God in the Bible? And how can this be proved unless it is known from otber sources than the Bible that there is a God? If there he such sources, theology must have to do with them; it can have no right to neglect anytbing by which God may be known or by which light may be thrown on the relations between God and man. It is a service to theology so to define it as to leave no room for asserting that it is only conversant with the Bible.

Theology, then, is the science of religion. What does this definition imply as to the relation of theology to religion? It implies, first, that theology presupposes and is preceded by religion. This is but an instance of the general truth that experience must precede science, and that science must be founded on experience. The im plicit use of principles is always prior to their explicit development. Speech is a great deal older than grammar ; men reasoned long before Aristotle taught them how they reasoned; and just as there must be specch before grammar, and reasoning before logic, so must there be religion before theology. Secondly, that theology is the science of religion implics that theology must not only succeed religion, but must evolve out of it a system of
truths entitled to be called a science. Science is knowledge in its completest, highest, and purest form. Theo$\log y$, therefore, by claiming to be the science of religion, professes to be the exhibition of religious facts and principles in their most general and precise shape, in their internal relationship to one another, in their organic unity and systematic independence. The principles of causality and of unity in the human mindimpel it to eeek law and order, explanation and connexion, as regards the phenomena of religion no less than any other species of phenomena; they impel it, in other words, to perfect its knowledge of these phenomena, and can allow it no rest until it has attained to the system and science of them. Theology is the scientific system of them, and as such is a necessity to the thoughtful religieus mind. It is ne accident that in every age and nation thoughtful men have reflected on their religious convictions, and sought to trace them to their grounds, and to harmonize and systematize them, or that the Christian church has anxiously studied and debated for centuries problems concerning God, Christ, ain, ealration, dec.,-no accident, but the necessary consequeace of those fixed laws of human nature by which man over seeks, once that his intellect has been truly a wakened, to define and complate his knowledge. Conscieus that his religious experience, however vivid, involves much which requires to be cleared up; perceiving that the religious history of his race presents many apparently contradictory facts, many perplexing problems ; a ware that the Bible is no more a system of theology than nature is a system of mechanics or chemistry, -man cannot, as a rational being, da otherwise than endeaveur by the investigation of the whole phenemena of the case to verify, analyse, combine, and co-ordinate his notions as to spiritual things, se as to work them up into a comprehensive, consistent, firmly established, adequatoly certified, naturally organized whole, a scientific system.

But how may man hope to sacceed in his efforts to arrive at a scientific understanding of his religious beliefe, feelings, and practices? How may be educe and elaborate from the phenomena of religion a system of theology entitled to be called science? Only, it is obvious, by following a truly scientific method. What then is a truly ecientific method in theology? And what is implied in following it ? To these questions a comprehensive, ailthough necessarily brief, answer must now be given.

A right method in theology, as in all other sciences, is sech a use of reason on appropriate facts as will best attain truth. It implies, therefore, as an essential condition, a right relation of reason to religious truth or fact, and to the evidence for it. What the right relation is may, perhaps, be defined with substantial accuracy in the follewing propositions. (1) Religious truth, like all other truth, is "above reason" in the sense of being not created by but manifested to reason, but is not "above reason" in any special sense which withdraws it from the cognizance of reason. The truthe of al science are the discoperies but not the creations of science, and they have been discovered because they existed, because they are the equivalents of a reality which is independent of science. In regard alise to mathematical, physical, mental, and religious truth, reason has only pewer to seek it, and to find or to miss it; it has no power to make it or right over it, but must accept it as something presented or given to it, and to which it is bound to do homage and yield submission. In this sense all truth is above reason and revealed to reason. In this sense reason stands to religieus truth in the same relation as to physical truth, and to Christian truth in the same relation as to the truth in natural religion. Reason is simply the instrument or faculty of adoreheading the truth manifested or revealed
to it, and it can iu no case apprehend truth without the aid of the appropriate manifestation or revelation. Unless Christ had lived and taught,-reason ceuld never have known His character and dectrine ; but no more could it have known Dante and his Divira Commedia, Shakespeare and bis creations, Napoleon and his achievements, unless these men had appeared in the werld and accomplished in it their work. Without Christ the truth in Christ could not be known, but, Christ being given, that truth comes under the cognizance of reason, ceases to be in any special sense above reason, and, affords to reason material fer science. By truths ebove reason are semetimes meant truths which cannet be fully apprehended by reason. Such truths are, however, in no way peculiar to religion. In all regions and directions reasen finds that its range of vision is limited, and that its knowledge and science are bounded by nescience and mystery. Truths of special revelation are sometimes represented as above reason in the sense that reason can have.no other evidence for them than that of testimony and external autherity. But what truths of Scripture have thus been revealed to reveal nothing, and are thus deveid of intrinsic light, of natural aftinity to reason, of self-ovidencing power? If there be any such, it must be admitted that they cannot in themselves fall within the province of science, although the testimony and assent to them may. Where reason atops science must end. (2) Reason in its investigation of religion must be completely free, i.e., subject to no othel laws than those which are inherent in its own constitution. In regard to most sciences there is no need to insist that the method of science is one in which reason is free, because all who occupy themselves with these sciences acknowledge it. But in regard to theology it is otherwise. All who call themselves theologians are by no means disposed to admit that reason, in its search for religious trath and in its efforts to construct theological science, must be absolutely free ; on the contrary, many of them hold that the church or the Bible, tradition or the common sense of humanity, must be allowed to have a co-prdinate or even superior jurisdiction. The proposition laid down implies that, if any view of this kind be true, theology is essentially different from 8cience, and it is vain to speak of scientific method in theology. It implics that all claims to religious suthority must be based on and conformed to reason, and that all the deliverances of every professedly religious anthority must be submitted without reserve or restriction to the reason of the theolegian before be can make a scientific use of them. This leads us to another proposition. (3) The only ascertainable limits of reason in the investigation of religious truth, as of other truth, are these which are inherent in its own constitution; and in the search of religieus truth, as of oll other truth, reason ought to go as far as it can go without violation of the laws of its own constitution. Reason has its limits in its own laws. It is the business of psychelogy and logic to discover what these luws aro. When they are known the powers of reason are known, because reason can never claim to be irrational. It is useless, however, to attempt to mark off the external or objective boundaries of rational research. Human inquiry has, no doubt, external boundaries beyond which it will never pass, bat all apparent boundaries of this kind recedo as they are approached There is even absurdity, self-contradiction, in the very attempt to draw any line eeparating the knowable from the unknowable. To know it one must have already dene what we affirm to be impossible,-known the nuknowable. We cannot draw a boundary unless, we вee over it. Reason cannot investigate too deeply any matter whatever, cannot possibly go too far, so long as it remains reasen. Its own laws, the lans of eridence
and of inference, are the only discoverable expression of its lawgiver's "thus far." When it violates any of these laws it has gone too far, but only then, and then simply because it lizs ccased to be rational. As long as it conforms to them the farther it goes the better. All this holds good not less in regard to religion than to any other object of investigation, and is an essential condition of the possibility of religious science. (4) In the study of religion, as in every other department of study, reason should admit nothing as true without sufficient evidence, while rejecting nothing sufficiently proved by evidence of any kind although it caunot be proved by evidence of another kind, or although it may be imperfectly understood or have unsolved difficulties connected with it. Theology is sometimes said to bo a doctrine or science of belief or faith (" "Glaubenslehre"). Not a few, however, of those who say so rcgard belicf or faith as essentially inclusive of reason, in the form of an immediate apprehension of primary truth or self-evident fact; in which case theology is only a Glaubenslehre in common with other sciences, and belief or faith is in no special mode or measure its foundation. But, whenever by belief or faith is meant mere belief or faith, a belief or faith independent of and unconformed to reason, the apprehension and appreciation of truth,-to affirm that theology is based on such belief or faith is to represent it as so unlike every other science that it clearly cannot be a science at all. For all belief or faith we are bound to have real evidence, and enough of it. But we have no right to reject any real evidence because there is not more or because there is not evidence of some other kind,-no right to neglect to follow any light there is because it may be dim, and much around it may be dark,-no more right to refuse to accept any well-established conclusion as to God and religion because there is great uncertainty as to the essence of religion, and because God in His absoluteness and infnitẙ immeasurably transcends our highest thoughts, than we have to ignore or costest the conclusions of physical science because we cannot tell what matter is, and becanse we find that every hypothesis as to its nature brings with it many doubts and dificulties.

The foregoing conditions are perhaps the most general
quarces of reliErous and fundaniental of those to which reason must conform if it would originate and follow a scientific method in theology. The next question which demands an answer is, Whence are the data to be derived on which reason must operate in religious apprehension and theological investigation? What are the sources of religious truth? Reason bas not the truth in itself, but in order to possess it must find it. As the eye has not physical light within itself, but merely so corresponds to it as to apprehend it, not otherwise is it with reason and intellectual light. By sources of religious truth can only be meant the media through which God manifests Himself,--the ways by which He makes himself known ; and the physical world, finite minds, human history, Scripture, and the testimonium Spiritus Sancti may all be maintained to be such sources. The atheist and the agnostic will not allow that there are any sources of religious truth; the deist and the rationalist will only admit the claims of general revelation, the exclusive Biblicist only of Scripture ; and the mystic will trust chiefly to special spiritual illumination; while the iheologian of broader view will hold that all the ways indicated are sources, $8 e e i n g$ that in and through them all knowledge and experience as to God and religion may be acquired, and must contend that in the study of theology none of them is to be ignored or excluded, underestimated or overestimated, but all are to be duly considered, and the information supplied by each to be taken in connexion witk that supplied by the rest. The sources are distinct,
but not isolated. The light from each combines and harmonizes with the light from all the others. The revela. tion of God in nature is presupposed by that in Scripture, and Scripture contributes to unveil the spiritual significance of nature. Without the light which the buman mind supplies there can be no illuminatiou from any other source, and yet all the light of the human mind is gained in connexiou with the light from external sources. History gradually evolves the significance of nature, mind, and Scripture, yct cannot be understood if dissevcred from the creation in which it is placed, from the mind of man in the principles and faculties of which it is rooted, or from Scripture as the record of the development of a plan of redemption which gives unity and meaning to the whole historical inovement. However deep and full a source of religicus truth the Bible may be, it is neither independent of other sources nor a substitute for them; on the contrary, while castiug light on them all it likewise reccives light frow them all. The living apprehension of spiritual realities presupposes a discernment which the Divine Spirit alone can give; yet that Spirit, according to the testimony of Scripture, speaks not of Himself, but only in conformity with what has already been uttered by the Father and the Son. It would obviously neither be consistent with the scope nor possible within the limits of an article like the present to determine the distinctive features, natural spheres, and various relationships of the media of revelation or sources of religious truth, but a sufficiently thorough investigation having this aim may safely be pronounced to be one of the chief desiderata of theological science.

The process of theological method itself has next to be procens considered. Its first step is the ascertainment of the of logical relevant facts. But these sre all the facts of nature and methon history, all the truths of Scripture, and all the phases of religion. The various departments of theology are based on and inclusive of various orders of these facts, and each order of facts must be ascertained and dealt with in appropriate special ways. Thus the relevant data of The fane natural theology are all the works of God in nature and ran natu, providence, all the phenomena and laws of matter, mind, logy; and history, -and these can only be thoroughly ascertained by the special sciences. The surest and most adequate knowledge of them is knowledge in the form called scientific, and therefore in this form the theologian must seek to know them. The sciences which deal with nature, mind, and history hold the same position towards natural theo$\log y$ which the disciplines that treat of the composition, genuineness, authenticity, text, development, \&c., of the Scriptures do towards Biblical theology. They inform us, as it were, what is the true text and literal interpretation of the book of creation. Their conclusions are the premisses, or at least the data, of the scientific natural theologian. All reasonings of his which disregard these data are ipso facto condemned. A conflict between the results of these sciences and the findings of natural theology is inconceivable. It would be a conflict between the data and conclusions of natural theology, and so equivalent for natural theology to self-contradiction. Then, the data of Biblical theology are all the words contained in the Bible, viewed in their appropriate positions and historical conuexions, and what these are and signify can only ive ascertained by the processes of historical criticism and of hermeneutics. Biblical theology is the delineation of a section of the history of religious ideas, -that section of which the traces and records remain in the Bible. But the Bible comprehends many strata of writing, deposited at different times, and collocated and connected in various ways, and the history of its composition, the age and succession of its parts, must be ascertained before we can exhibit the history of its coutents, the sourse of the evolu-
tion of its ideas. If the theories of zecent critics as to the formation and relationship of the conponeut portions of the Old Testament be true, the view taken of the development of Old Testament theology, must be very different from that formed on the supposition that the traditional theory is correct. And which theory is correct is a question of fact which can only be decided by dispassionate and thorough critico-historical investigation. So false readings must be distinguished from truc, erroneous translations from correct, and appropriate from inappropriate interpretations, which presupposes an adequato measure of linguistic, grammatical, and exegetical knowledge and skill. The religion of the Bible, however, is but one of a multitude of religions which have left traces of themselves in documents, monuments, rites, creeds, customs, institutions, individual lives, social changes, \&c.; and there is a theological discipline-comparative theology-which undertakes to disclose the spirit, delineate the character, trace the development, and exhibit'the relations of all religions with the utmost attainable exactitude. Obviously the mass of data which this science has to collect, sift, and incerpret is evormous. They can only be brought to light and set in their natural relationships by the labours of hosts of specialists of all kinds. That hypotheses in this domain will for long arise and vanish with disappointing rapidity is only what is to be expected from its rast cxtent, the amount of its baried wealth, the gradual and frasmentary way in which its contents must be disinterred, the losses and changes which have occurred in the course of time, and the constant suggestion of fresh interprotations of ancient texts and ber solutions of old problems which must come from unceasing discorery. Some theological discipines, it must also be observed, presuppose others, and have consequently among their data the conclusions of those other disciplines. All doctrine, for example, founded on special revelation presupposes doctrine founded on general revelation; all Christian theology must imply and incorporate catural theology. Christian dogmatics has to make use of the results of natural theology, Biblical theolory, and comparative theology, and to raise them to a higher stage by a comprehensive synthesis which connects tiem with the person and work of Christ, as of Him in whom all spiritual truth is comprehended and all spiritual wants supplied. The conception of it prevalent until lately, as a system formed of generalizations and inferencas from texts of Scripture, answers properl弓 to no theolog.cal science, but mach more nearly to Biblical theology than to Christian dogmatics.

When religious data have beon ascertained, the materials of t noological science have been obtained, but the scientific odifice itself has still to be constructed. The general trutins involved in particular disclosures have to be ovolved; the laws of the development of pheoomena have to be discovered; elements have to bs reached by analysis and comprehensive views by synthesis; laws and facts, fundamental and derivative principles, have to be exhibited in their natural orgenic connexion. This can only be done aright by right metheds, and only by a varioty of methods. No ove-sided process can be appropriate or sufficient. The method must cooform to the nature of the matter dealt with and to the end that has to be attained. Theology includes a variety of sciences or disciplines, and these differ so greatly in character that they plainly canoot bo studied aright if studied precisely in the same way. Some of them are more allied to criticism, others to history, and others again to philosophy. In some deduction can manifestly have littlo place, while in others there is no obvious reason why it shonld not be largely used. There is no kind of science which, with its special processes, may not bo called on to contribute to some department of theology.

There must be, therefore, in theology need and scope for a great rariety of applications of method.

It is easy, howeser, to exaggcrato the importance of acquaintance with the formal rules of method laid down by logicians. The theory of method must be preceded by practice-true theory by successful practice; and the ablest practitioners are always only to a small extent guided in their practice by conscious reference to the rules of method prescribed by logicians. In theology, as in all other departments of science, a man can only become an investigator by investigating. And whether he will become, throngh the practice of investigation, a successful investigator or not will depead far more on his general intellectual char. acter, his ingenuity, originality, tact, and seasibility, his familiarity with the relevant facts and with the researches which are really bringing now truths in his department to light, his perseverance and diligence, than on his knowledge of what the theorists on inethod hare taught as to its מature and requirements. Yet, of course, such instruction as logical theory can give is not to be despised, but to be received and acted on with all due appreciation.

When the data of the, theologian are before him as particular facts, it is obvious that he must so enumerate and classify, so analyse and generalize, so correlate and combine them, as to elicit from them the principles which they imply, before either his procedure or results can be properly characterized as scientific. In other words, a method which starts from particulars raust, in order to be scientific, be largely inductive. But in theology, as in all other departments of knowledge, the only induction which is of any ralue is more than any mere summation or combination of facts. This is not the place for a discussion of the nature of a true induction; but on any view it must hold good that to understand aright what induction in theology is we must know what is implied in all that is comprehended in it , -the ascertainment and collocation of facts, the discrimination of their characteristics, the classification of them, the analysis of what is complex, the synthesis of what is partial, the tracing of uniform relations, the inferential act, dc. Much which would not be without interest or use, or even some degree of novelty, might be said on all these points. Numerous as have been treatises on theology, there has not as jet appeared a single earnest attempt to expound the nature of method in theology; even the many works professedly dealing not only with the encyclopzdia but with the methodology have, in reality, quite ignored theological method proper. The present writer can only here note the desideratum ; to supply it rould require a special and leggthened discussion. The so-called methods of inductionthe methods of agreement, of differeuce, and of concomitant rariations-are as applicable io theology as in physical or mental science. They äre not, properly speaking, processes of induction; they are merely rules for testing inductions. Their value, of course, is not thereby lessened.

The theologian, not less than the physicist, must be od his guard against fancying that the validity or certainty of his inductions is to be estimated by the number of his instances. Many who have undertaken to frove the Divine existeoce by the cosmological and teleological arguments have made the fatal mistake of supposing that all that was needed was an accumulation of what they deemed examples or illustrations of Divine wisdom. They have overlooked that what is, above all, necessary is to show the truth of the principles of causality and fioality, and the legitimacy of those applications of them, which are involved in the cosmological and teloological arguments. They hare spont their strength on what is easy, superficial, and indccisive, and had none left to deal with what is difficult, decp, and of vital moment. T rey have failed to XXII. - 34
apprehend that the essential question at issue is not, What or how many appearances of order and of adaptation may be traced in the various provinces of nature? but, Do such appearances in any case warrant an inference to a supernaturai intelligence and purpose ? In like manner many slogmatic theologians have seemed to think that in order to establish a doctrine it was enough to cite a number of texts in its favour. Often their doctrines mould be more sasily believed if their texts were fewer. Often in the Westminster Confession, for example, where the doctrine sauses no difficulty, the texts cited in connexion therewith are quite inadmissible as proofs. Induction requires the strictest regard to relevancy. Whether the data for the proof of general truths in theology must be many or may be fow will largely depend, as in physical and mental science, on the nature of the traths. When Newton had made out that the law of gravitation explained a single fact, applied to the moon, no person who fully comprehended his demonstration could seriously doubt either of the certainty or of the universality of the law. It was q case of a vast intellectual conquest achieved by one decisive victory. What remained was merely to take possession of what had been won, and to explain certain spparent anomalies. On the other hand, when Mr Darwin published his Origin of Specres, he had already accumulated, with amazing indnstry and ingenuity, and through the uninterrupted investigations of many years, a multitude of observations and considerations in support of the general propositions therein enmaciated as laws of biological evolution. Of similar observations and considerations there has since keen an enormous increase. Yet the so-called Darwinian, laws are still under discussion. Why has their proof or disproof been so different a process from that of the establishment of the law of gravitation? Largely because they are in themselves so different in nature. Laws of evolution can only be reached through the minute investigation of a far greater number of changes and appearances than laws of persistence. The discovery of truths of beconing may not be a more difficult but it is certainly a more delicate and complex process than the discovery of truths of being. Now this distinction not only emerges in theology but pervades it. In some departments of theology the laws to be discovered are laws of evolution, while in others they are laws of existence. Hence the method to be followed in the former must be predominantly chronological and genetic, in the latter predominantly açalytic and synthetic. For example, in Biblical theology and comparative theology the inductive process must be of the kind appropriate in historical investigation, whereas in natural theology and Cbristian dogmatics it must be of the kind appropriate in systematic investigations into which considerations of time, place, and circumstance do not enter. The faculties of inind and processes of method implied in the complete comprehension of religion as a concrete manifestation of spirit are those which are of prime moment in the bisterical disciplines of theology; the faculties of mind and processes of method involved in the clear apprebension of the truths and laws of religion in its abstract or essential nature are those chiefly requisite in the theoretical disciplines of theology; and, speaking generally, complete comprehension of the concrete presupposes a more minute and exbaustive acquaintance with particulars than does a clear apprehension of the abstract. To determine with scientific precision and thoroughness, for example, what were the stages of the development of doctrine in the Bible, or even to trace with such accuracy and completeness as the data supplied by the Bible and alrxiliary sources permit the growth of single important ideas, as, e.g., election, heliness, atonement, and kingdom of God, demands laborious critical
investigation and comprehersive and minute historical knowledge Given, on the other Land, the Christian ideas of God aud of man, and the fundamental relation letween God and man caunot be othernise conceived by enlifhtened reason and conscience than as one of salvation through faith and not by works. True, as all physical nature obeys the law of gravitation, so all Scripture nud spiritual experience testify to the powel of the principle of faith; but then, also, as the dccisive proof of the former lies in the thorough elacidation of any phenamenon which exemplifies it, not in the collection of numerous illustrative phenomena, so the decisive proof of the latter lies in an adequate analysis of any portion or form of the life of genuine faith, not iu the accumulation of examples of faitb drawn from the Scripturs or other records.

The two methods of induction to which reference has Elece. just been made-the listorical and the thetical-are to be carefully distinguished but not absolutely separated, aud still less exbibited as antagonistic. Both have specific and appropriate functions; neither is exclusively legitimate or can alone accomplish the work of science. The historical method by itself can only yield history. It has done all that can in any circumstances be reasonably expected from it, when it has enabled us accurately to realize the course of the history studied, or, in other words, when it has given us a correct reflexion of the history. If, not content therewith, we would further ascertain the nature and laws of the factors which formed the history we must supplement the historical with the thetical method. The historical method leads only to history, and in no form or province is history science. Science even of history, or of any department of history, cannot be reached simply by the historical method, but further requires recourse to the processes of positive science Comparative theology, Biblical theology, and the history of Claristian doctrines are most valuable theological dis ciplines, but, inasmuch as their methods are purely historical, their results are also purely historical, and they are not, rigidły speaking, sciences, but ouly sections of the history of religion. The tendency to substitute bistory for science, and the historical method for the scientific method, is prevalent in the present day in theology, as well as in ethics and jurisprudence, social philosoply and political economy. Obviously, however, it rests on ax aggeration and illusion. and confounds things which ought to be distinguished. Neither history of the objects of 8 science, nor history of the ideas or dactrines of a science, is science, and the historical method of itself can only give us in connexion with science either or both of these forms of history. It is, therefore, inherently absurd to suppose that the historical method can bo sufficient in such theological disciplines as uatural theology and Christian dogmatics. In reality, it is not directly or immediately available in the study of these disciplines at all, and that just because it does not directly or immediately yield theary, doctrine, science. Only be who knows both the history of the objects and the history of the ideas of a science, and especially of a poychological, social, or religious science, can be expected to advance the science. In the splere of religion, as in every other sphere, to confound history with science is to eliminate and destroy science; but in no sphere is knowledge of history more a condition of the attainment of science, and histarical research, properly conducted, more serviceable to sciontific investigation, than in that of religion. To the historical method we owe, not only the historical disciplines of theology, but also in a considerable measure the recent progress oi its positive or theoretical discipliacs. It can never, however, be, as som fanatical disciples of the historical school would have us to suppose, the method of these last.

The inductions of theology, even in its systematic or non-historical departments, often require to be very careful and comprehensive in order to be conclusive. Theorics or doctrines like the Christian dogmas of the Trinity, incarnation, and atonement were only arrived at through the labours and controversies of many generations of theolcgians. It could not be otherwise. These dogmas, simple as they may seem to a superficia! glance and untrained eye, are in reality very complex organisms of thought, only capable of being formed by a long process of evolution. They are theories inclusive of many theorems. They comprehend a number of directly constitutive propositions and a still greater number of propositions subordinate and subsidiary to these. Every proposition which they involve should be the expression of real and relevant facts. As wholes they ought to combine a inultitude of particulars of different kinds, and eren of kinds the harmony of which is far fron obvious and needs confirmation. Whoever intelligently accepts any one of these dogmas must, by necessary implication, reject a bost of hypotheses regarding its subject, as either inadequate or positively erroneous. Inasmuch as they are not consistent with or are contrary to the dogma, he is logically bound to repudiate then, and yet he is only logically entitled to do so if his proof of the dogma have been so comprehensive and complete as to include their separate and collective refutation. The establishment of the whole truth is only possible through the disproof of all the opposing errors. How the inductive method is applied in theology, however, will be better understood by the examination of a particular exemplification of it than by a general description; and, perhaps, as regards at least form, a more careful or elaborate exemplification could bardly be pointed out than that exhibited iu Dr Crawford's treatisc on the atonement. An examination of it will show how very complox in reality may be a doctrine which is very simple in appearance, and how comprehensive, thercfore, must be the inductive procedure necessary to establish it and to warrant the rejection of the hypotheses which must seem to one who accepts it to err by excess or defect or to be absolutely false.

Tha inductions of theology, like those of other sciences, are seldom or never mere or pure inductions. They would he useless if they were. The examples of pure induction given in treatises on logic may serve their purpose, the illustration of the pature of ratiocination, but they are nct reasonings of a kind which can increase positive knowledge. The abstraction of induction from deduction may be needed to exhibit its distinctive formal character, but it is fatal to its practical effciency. In all reasoning meant to increase our knowledge of objects, induction must receive from deduction some measure of assistance and guidance. This certainly holds true in theology. In regard to the doctrine of the Trinity, for cxample, the nost difficult questions involved turn largely on the signification and application of the terms emplojed in its expression. These terms must be somehow defined, and definitions once introduced cannot fail to bo used to some extent as principles of deduction. They are often largely so used by those whe are quite unconscious of making any use of them, and who have no suspicion that the course and charazter of their reasonings are modified by them. Definitions often secretly introduce a great amount of hypothesis and deduction into reasonings imagined to be exclusively inductive. Further, principles of deduction are directly and explicitly introduced. The truth of the catholic doctrine, or indeed of any doctrine, of the atonement, for example, cannot be proved purely by induction. It is necessary to start with some assumption as to the authority of the Scriptures, or at least as to the authority of those whose teaching is contained in the Scripturcs.

That assumption itself should, it is true, be proved by a process of apologetical and critical reasoning whicb is in the main inductive. It cannot, however, any more than the doctrine of atonement, be proved by a purely or exclusivtly inductive process, i.e., without some co-operation or participation of deduction; and once proved, it becomes a principle of which a deductive use is made. Every particular statement of Scripture is read and interpreted in the light of it. So far as this is the case, deduction underlies all the inductions of doctrine hased on the statements of Scripture. Of course, the dogmatic theologian, in so far as he founds on Scripture, is bound not to presuppose more than he is prepared to prove as a Christian apologist or Biblical critic and interpreter. The assumptions made in systematic theology ought to be tho firmly ascertained results of its subsidiary sciences. And the less assumed the better, as the relcvancy of the reasoning employed will be so much the more widely acknowledged. Every additional assumption diminishes the number of persons who will grant the principles on which the argumentation proceeds. When, for instance, a doctrine like plenary inspiration is assumed as the basis of an argument for the atonement, the number of persons who can be benefited by the argument must be few. Those who will grant plenary inspiration are not likely to require to be convinced of the truth of the ordinary doctrine of the atonement ; they are almost certain to be already convinced. On the other hand, a man may have loose or vague views of inspiration, and yet it may be possible to satisfy him that the doctrine of the atonement is well founded. The proof of the doctrine of the atoncment may receive support and confirmation from the proof of the doctrine of plenary inspiration, but ought not to be made dependeat on it.
Scientific method has not only to ascertain the facts and data of science, and to discover its laws, but also to distribute and co-ordinate its contents. And this last is likewise an important function. Science is system. To exclude system from science is to suppress and destroy science. The spirit of system is in itself nothing more than the spirit of order and unity. Without unity and order-that is, without system-there is no science; instead of it there can be only confused ideas, isolated opinions. It is absurd to condemn either system or the spirit of system in theology or any other science. To systematize is an intellectual necessity; to systematize aright is a happy achierement and an immense boon; it is merely systematizing erroneously which is evil. Theoblogy, by professing to be a science, pledges itself to systematize in a scientific manner. By claiming to be the science of religion it undertakes to exhibit the truths of religion in their proper relationship to one another, in their organic unity and essential interdependence. Thus to proceed is necessary to it, not only as a consequence, but also as a means of the development of its constituent dogmas, for no doctrine can be truly and fully crolved in isolation, but only in connexion with kindred ductriues and through the general growth of the science or system to which it belongs. Increasc of insigbt into any oue truth brings with it clearer views of all contiguous and related truths, and the collective light thus gained illmmines each particular to which it extends. To apprehend more distinctly the relations between either facts or theorics is to understand better the facts or theor:es themselves. To comprehend any single doctrine aright we must study, not merely its special data, but those of allied doctrines, trave its connexions with thoso doctrines, and vicw both it and them as parts of an organic and harmonious whole. Hence the endearour to systematize the contents of scienco should not mercly follow the formation of its separate doctrines, but likewise accompany and participate in the process of their forma-
tion. Wiscly conducted systematization is entitled to be deemed an aid to discovery. It reveals where exploration is needed, and indicates the directions in which research will be successful. It is the highest form and effort of synthetic thought, and synthesis is a not less necessary and fruitful operation in scientific method than analysis.

Unfortunately it cannot be denied that there has been a vast amount of erroneous systematizing in theology, and that it has done a vast amount of harm. Doubtless much of the aversion felt and expressed to system in theology is to be traced to the imperfect, artificial, false character of many theological systems. Instead of exlibiting religious truths in their real significance and interdependence, theological systens have often disguised and disfigured, cramped and contorted these truths, or eveo ignored and rejected them. How, then, is a true and appropriate system to be distinguisled from one which is false and imperfect? In various respects, which can bere be merely mentioned.
Thus, first, a true systern is natural and not artificial. In equivalent terms, it is directly derived from the character of the matter of which it treats, and not arbitrarily imposed on that matter from without. Every system of thought, whether true or false, must, of course, be the product of intellect, but no true system is a mere invention of intellect, a mere subjective creation interposed between the mind and things; it is, on the contrary, a representation of the real natures and relations of things. The human intellect can only construct a tríue system by finding in and among facts the connexions and harmonies which are actually there. But to do this may require more labour than is agreeable, or may contravene some cherished prejudice, or may not be recognized to be the sole legitimate procedure, and so it may devise, instead, a formula or scheme of thought suggested by some idaa drawn from an extraneous source, force that sclieme or formuia upon things to which it is inappropriate, and so construct a system which is artificial and erroneous. Most sciences have suffered from artificial systematization of this kind, but probably none nearly so much as theology. Metaphysical philosophy has always sought to shape and modify religious and even distinctively Scriptural truths according to its own ideas, methods, and dogmas. Paul and John have often been merely the masks through which Plato and Aristotle have taught. Hegelian divines have passed all religious beliefs, all Scriptural doctrines, through the dialectic devised by their master, and, whatever those beliels and doctrines may have been before subjection to the operation of that wonder-working machine, they have always come out ground into Hegelian notions. Jurisprudence exerted os similar influence, owing to its having been the ouly science which was studied with zeal and success in the Latin world when theology began to be independently cultivated by the Latin Church. The La + :n mind was so possessed by juristic or forensic ideas that the Latin fathers could not avoid looking at the gospel through them. This way of viewing it is still familiar. The socalled federal school of theology, long and widely influential, exhibited the whole system of religious truth according to the analogy of a covenant,- a succession of covenants between Gorl and man,--in other words, according to a conception which is essentially juristic and political, not intrinsically and properly religious. The making of a metaphor in this manner the basis of an entire system of theology is far from uncommon. Thus, because sin may be likened to dieease or to darkness or to death, and holiness to health or light or life, not a few would conceive of all religious truth according to these similitudes, and do violence to the reality when it does not easily adapt itself to the moulds which they have chosen for it. Dr Chalmers, for instance, distributed all systematic theology
into a study of the disease and a study of the remedy, and treated the doctrine of the Trivity merely as an appendix. At present, owing to the dominaocy of physical science, there is a strong temptation to work upon spiritual facts with physical categories, and even to identify, i.e., to confound, the spiritual with the plysical. Hence we hear of natural law, in the sense of mechanical or biclogical law, in the spiritual world.

Secondly, in a true system of theology the material and formal constituents of knowledge will be duly conibined, but not in a false system. No true system of theology can be constructed simply by logical deduction from abstract conceptions, from a priori assumptions, from selfevident axioms. Mere reasoning from data so insufficient as these may be made plausible and imposing by being thrown into syllogistic, dialectic, or mathematical shapes, but it cannot be made truly profitable and productive. When the Wolfians bad presented theology in the semblance of geometry, they liad merely succeeded in dressing it in masquerade and binding it with fetters. Reason can only work effectively in theology when it is in possession of a large and close acquaintance with Divine things and acts harmoniously with the whole spiritual nature. On the other hand, without the application of logical reflexion to the truth implicitly contained in the sources of religions knowledge, without the help of definition, induction, deduction, and all the processes involved in analysis, generalization, judgment, and reasoning, we never could reach a sçientific system at all. Such a system is not simply an aggregation or accumulation of the data and constitueats of religion, but the product of all the activities and forms of thought which give to the contents of religious experience the order and organization which theo logy, as science, demands.
Thirdly, a true system is one in which unity is the result of the conciliation of all relevant principles, even although they may be apparently antagonistic, while a false system is one which bases itself on some particular principle or idea to the exclusion of others, also legitimate. In a true system unity is produced by harmonizing differences; in a false system it is produced by ignoring differences. A true system of theology is one which grows out of the struggle of opposing elements and recognizes the validity and significance of all religious truth. It is not, for example, so based on Divine sovereignty that injustice is done to Luman liberty, or so based on free will that God's agency is largely ignored, but it assigns to both Divine efficiency and buman action their proper place, and does so, not meerely by maintaining the truth of both, but also by exhibiting their relationslip and harmony.

Fourtlity, in a true system all the members are not merely included, connected, and classified,-they are also unified through reference to a centre. A true system must be a unity of members pervaded by a common life. In its remotest members must be traceable the pulsations of its heart. Only of late lave theologians begun clearly to recognize that this characteristic of a true organic systen must be taken into account in the formation of their science. Long after they were fully alive to the importance of treating of each head of doctrine or article of faith, each separate theological locus, they felt hardly any interest as to how the various doctrines, artieles, or loci were to be connected. They were often content to take the order of arrangement from some external source, some creed, confession, or cateclism. It was a step in advance when, although still arranging the dogmas merely in a series, they endeavoured to give eacl dogma its place, on the ground o? its matural and intrinsic relationship to other dogmas. Theologians have, indeed, differed much as to what is the proper seriatim order. One, for examule

Gas begua with the nature and state of man, a second with the being and character of God, a third with the Divine authority of the Scriptures, and a fourth has followed the order of the Divine dispensations. Yet there need be no doubt that there is such an order, one in which every dogma is exactly where it ought to be. This order, it may also be safely affirmed, can only be one of advance from the simpler to the more complex. An order in which each dogma has before it only its natural antecedents, and after it only its natural consequents, must be one of continuously increasing complexity. The spirit of order and of system cannot rest, however, in the series. It must classify as well as connect the doctrines. This also may be accomplished in rarious ways, and even when there is gencral agreement as to what are the natural gioups, there may be coasiderable differcnce of opinion as to their celimitation. But the most perfect distribution by classification, if unsupplemented, inust be unsatisfactory. A still higher kind of unity has to be attained. It is that of the only unity which is truly organic. It is that of co-ord:nation and correlation tbrough a single central principle. An intellectual system, a system of scieace or doctrine, caa only have this unity, and be in consequence a true system, when all its particular trnths and various departments or divisions of truth are connected with one another and combined into a whole by reference to a common and ceatral truth. The necessity of conforming to this condition of systematizing has now begun to be felt among theologians, and hence in several modern systems of Cbristian dogmatics the doctrines are not merely distributed into groltps, but an attempt is also made to find a centre for the whole system in a single pervasive idea. Such a centre Rothe, for example, finds in the religious consciousness, a consciousness of sin and of grace; Kahnis in the doctrine of the Trinity; and Thomasius and H. B. Smith in Christ Himself, His person and work. So far as Christian theology is concerned, the last of these views is doubtless correct. Cluristian theology, like Christianity itself, must be Christocentric. All its doctrines either directly and immediately relate to Clirist's manifestation of God and redemption of man, or are the antecedents and consequents of those which do. To Christ the entire system owes its distinctive character. For general theology, on the other hand, the central and vital idea cau be no other than that of religion itself. It must obviously be one derived from the domain of the science itself, and indeed from the essential nature of the object of the science. As it would be au error to seek the priaciples of biology elsewhere that in "life," or of psychology elsewhere than in "mind," so must it be to seek the principles of theology elsemhere than in "religion." Theology is the science of religion, and in the true idea of religion should be found the central and constitutive priaciple of the general system of theology. That it can be found therein will appear as we proceed.

Must the work of method in theology end, however, sven with the formation of a system which answers to the requiremeats just indicated? Is there no still higher procedure or application of theological method legitimate ? This is to ask if there be any place for a speculative method in theology, and if speculative theolegy rest on any solid basis.

The history of theology might, perhaps, suffice of itself o show, on the one hand, that speculation has a large and 1 :gitimate place in the sphere of theology, and, on tho other hand, that its place is one the limits of which are difficult to fix or keep within. Cluristian theology was initiated by Guostic speculation, grandly reasonable in aiming at the exhibition of Christianity as the absolute truth and absolute religion, but otherwise wildly extra-
vagant. An Origen and an Augustune owed largely tc speculativeness both their successes and their failures. The defects of scholasticism were due more to misdirection of the reflective understanding than of the speculative reason, and it was especially the speculative and the mystic dirines of the Middle Age who opened up the way tc modern thonght and nodern theology. Men like Nicholas of Cusa, Bruno, Telesio, and Camplanella, looking from the heights of speculation, saw some aspects of religious truth which the lieformers, standing on lower if safer and lese cloudy ground, overlooked. A Descartes and a Spinoza, into whatever errors they may have fallen, certainly did much, and in a directly speculative manner, to enlarge and advance the rilosophy of religion. Kant supposed that. by his critical researches into the nature and limits of knowledge, he kad made an end of speculative theology and done that would effectually deter reason from specu lative adventures. It sooa became apparent that his expectations had been doomed to disappointment, that is reality he had excited speculative reason to extraordinary activity and even audacity, and inaugurated an era of theology far more speculative than any which had preceded it. The great speculative movement in philosophy headed by Fichte, Schelling, Hegel, Baader, Krause, and others passed on immediately into the sphere of theology, its leaders themselves proceeding to apply their principles and methods to the explanation of the doctrines and phases of religion. Theologians by profession soon followed in their footsteps. Danb and Marheinecke constructed systems of Protestant dogmatics by means of Hegel's dialectic. Stranss, Baur, and their followers reached by the same method negative and antichristian results, bringing out the contradictions between the doctrines of the church and the speculative truths to which it was held that they should give place. Many theological systems of an almost exclusively speculative character have since appeared in Germany. Weisse's Philosophische Dogmatik and Rothe's Theologische Ethik are good tspical instances. And, while not so predominant, the speculative nse of reason is yet conspicuous io the treatises on Christian dogmatics of Dorner, Martensen, Schöberlein, Hofmann, Liebner, Biedermann, and others. In the department of philosophy of religion a speculative procedure is not less frequently followed, either as alone appropriate or as a necessary supplement to the genetic and historic method. Rosmini, Gioberti, and Mamiani inangurated in Italy a speculative theology second only to that of Germany. Contemporary French theological literature can boast of at least one work displaying real speculative power, -the Philosophie de la Liberté of M. Secrétan. In America Hickok, Bushnell, and Mulford may be mamed as having shown confidence in the competency of speculative reason in the spiritual sphere. In Britain Principal Caird has argued in favour of a speculative procedure in theology with raro skill in his Introduction to the Philosophy of Religion. On the whole, however, both in America and Britain, the speculative method has received little recognition from theologians. But this, of-course, may be held to be partly cause and partly effect of the want of life and originality, of thoroughness and truthfnlness. of ordinary American and British systematic theology.
Is therc, then, room and need in theology for the speculative method? The answer must depend on what is meant by speculative method. There are kinds of socalled speculation which are plaiuiy illegitimate and inapplicable. Thus, some have represented speculative theology as part of a philosophy of which the whole esystem is deduced in a purely and strictly logical manner from an m priori principle, idea, or datom. On this fiew the specmlativa thinker somehow apprehends on absolute first of
thenght or being, or both, and then from this primary and necessary datum evolves syllogistically or dialectically a whole philosophy, whicn includes a whole theology. Such speculation may be safely pronounced futile and delusive. It can never reasonably vindicate its choice of a startingpoint, for the absolute first of existence and thought can only be that to which the worlds of fact and experience, of matter and of mind, refer us as their ultimate explanation. It ascribes an extravagant power to mere formal thinking. It is only consistent with exclusive idealism and exclusive rationalism, both justly discredited apecies of philosophy. It makes theology wholly dependent on a philosophy waich must be false, since pure reason cannot, as it assumes, spin out of its own essence or out of any single datum the whole system of truth.

There is, however, a theology which clains to be at once speculative and independent of philosophy. Such was the theology which Rothe sought to elahorate in his Theological Lthics. In the "Introduction" to that work he has fully explained his method. It is, as there represented, the very same metuod with that of speculative philosophy, but it starts from a different point,- Dot from pure self-cousciousness, but from the religious self-consciousness or God-conscionsuess. Its primary datum is, according to Rothe, as immediately certain as that of speculative philosophy, the pious man being just as directly sure of God as the natural man is of his own self. Out of this datum it must evolve all its conclusions by an inward logical necessity, and construct an entire theological system of such a nature that every single thought implicitly supposes the whole. Speculative theology thus conceired of needs but a single fact, the datum from which it starts, and that fact must be a self-evident one, given immediately in and by consciousness; all the rest is a succession of inferences deductirely obtained. The facts of religion presented in nature, history, and Scripture not only need not but ought not to be taken into account by it, although at the close of its labours its success must be tested by the conformity or nonconformity of its results with those facts.
"This aystem of a priori thought," says Rothe, "to be snccess. tul as a speculation, must be an ahsolutely corresponding and constant image of the reality; but the speculative process itself takes no thought whether there be such a reality existing, or how the ileas which it constructs are related to it; but, without looking either to the right hand or to the left, it follows only the course of logical necessity, until it bas accomplished the whole circle of its ideas, and constructs a complete system. Then .first the speculative thinker looks out of himself, in order to compare the system of thought which he has independently constructed with the objective reality, and to assure himself of his correctness by such a comparison; but in so doing he is slipping out of the region of apeculative into that of reflective thinking. The necessity of such a verification, indeed, he acknowledges unconditionally, but he distinguishes clearly betwees the speculation itself and that reflective critical process by which alone such a verification can be realized. With referenco to the empirical reality around him, he acknowledges that his specnlation is incorrect if his system of thought is not there reproduced, but he still persists that he has to complete his speculative labour without any direct reference to it. He concludes rather, from a clear want of correspondency, that he has speculated incorrectly, and can look for his error in nothing else than in his departure from a strict adherence to the laws of logic. Forthwith, then, he destroys his laboriously constructed system; but if he again proceed to construct another, he must proceed in the very same manner as before, i.e., by looking solely into his own thoughts, as though there were no world around him."

Rothe, it will be observed, cannot be charged with haviug made theology dependent on philosophy. He represented theological speculation and philosophical speculation as starting from different data, as running parallcl to each other, and so as throughout distinct. But this was to avoid one extreme by falling into another. It was virtually to deny the unity of thought, and to assume an ineredible dualism in the universe of speculation. A theology absolutely separated from philosophy muss be even
more unsatisfactory than one wholly dependent on it. Then, the method itself proceeds on assumptions unsupported by evidence, yet far from self-evident. It assumes, for instance, that a system of ideas generated a priori will be a counterpart of reality, although it is neither inconceivable nor improhable that the characteristics of real existence may be incapable of being determined by the mere logic of necessary thought. Reason should not thus be credited with the extraordinary power of comprehending reality without requiring to apprehend and study.it. Another assumption is, that a complete and self-consistent system can only be reached by an exclusively a priori procedure, whereas it is far more likely that such a system will only be attained by a combination of different processes. Again, the primary datum of theological speculation as understood by Rothe-the idea of God-is assumed to be immediately given and immediately certain. But the idea of God is not immediately given or immediately cortain. The piety which chooses to affirm so is a piety capricious in its affirmations; the speculation which starts from such a foundation starts from an assumption easily shown by psychology and history to be erroneous. Rothe went even farther astray. He represented not only the bare consciousness of God but the Christian, yea, the evangelical God-consciousness, as a simple and primary datum of consciousness. This was utterly arbitrary. It was to treat as an original apprehension what is indubitably an acquired experience. No a priori system-no properly deductive system-can be reasonably imagined to have such a starting-point. For these and other reasons, theological speculation of the kind advocated by Rotho may be rejected.

Still another species of theological speculation, however, has been attempted and commended,-one which seems more modest, and claims to be more distinctively Cbristian. It is the method advocated and exemplified in the Schriftbeweis of Von Hofmann. He, iustead of starting like Rothe with the religious consciousness, chose to start from a real concrete fact, what he calls the Christianity of the Christian,-a Christianity which be supposes to have acquired in the Christian a separate standing of its own, in virtue of which, and independently even of Scripture, it is self-evident certain truth sustained aud authenticated by the Spirit of God. From this fact or experience, expressed in its simplest and most geveral form, as a personal relationship or fellowship between God and man through Jesus Christ, Hofmann would deduce the whole theological system by a process of "thinking within" the central fact, so as logically to evolve from it its manifold wealth of contents, and would refrain on principle from looking outwards, and taking into account the religious facts presented by history, experiedce, or Scripture. Now, in this system also, speculation is in excess. Such a speculative deduction of facts from facts as is contended for is impossible. Facts are not so involved in one another that they can be evolved from one another by mere thinking, and still less so that from one fact a whole system of facts can be thus evolved. From a single bone, indeed, of an animal which he has never seen or heard of a naturalist may in thought correctly construct the whole skeleton, but not by think」 ing within or from the one fact before him, but by making use of all the knowledge he has acquired of the structure of adimals, of the relations of bones to bones. Dr Hofmann himself was quite unable to carry out the method he contended for. His so-called speculative argu* ments are mere semblances of what they profess to be, Instead of the contents of his system being really "de rived " from the simplest expression of the fact of Christianity, new propositions are constantly borrowed from the known contents of Cbristianity, and added from without
or the efopplest expression, in order to help out the unfolding of the system. Further, iu Hofmann's system of speculation, is in that of Rothe, we ate asked to start from an assumption which is not, andi caulot be, justi-fied-the assumption that Christianity in the Christian is independent of its objective grounds. Surely every experience may reasonably be called upon to produce eridence of its legitimacy and validity; aud, if so called upon, how can it avoid referring to its grounds? It is only by an examination of the grounds of an experience that we can know whether it is an experience of reality or a form or effect of illusion. The fact from which we are told by Hofmann that we must deduce all other farts is only itself intelligible in the light of many of these facts, and even of the Christian system as a whole; it is a fact which has many conditions, and the right understanding of it requires its being viewed under its rarious conditions, not as abstracted from and independent of them.
In the forms indicated, then, speculation has failed to make good its claim to participate in the formation and development of theology. Does it follow that its claim is wholly unfounded? By no means. Speculation in the forms described pretends to an independence of reality and a creative power for which there is no warrant in reason or confirmation in fact. Hence the futility of such speculation is no disproof of the utility of a specnlation which will fully recognize reality and directly endeavour to elucidate it. Speculation of this latter kind seems to be a necessary condition of true systeratization and a necessary supplement to induction and to all the special methods of particular sciences. In a true philosophy, for instance, acience and speculation must necessarily be combined. So far from claiming independence of the sciences, a trne philosophy will base itself upon them, and scek to rise above them by means of them. It is only thus that it can hope to reach the ultimate universal and real priaciple of knowledge aud being, without which there can be no rest for reason or unity in the universe. But, having asceaded by, an analytic and inductive course to tha unity of an sil-comprehensive ultimate principle, philosophy nust endeavour to descend from it in a synthectic and deductive manner, so as to exhibit the whole organism of existence, or to determine how the many laws of science and the many facts of experience are connected with the absolute in being and causation, and through it with one aaother. It is conceivable that the descent should be accomplished in various ways, and Plato and Plotinus, Descartes and Spinoza, Fichte, Schelling, Hegel, Krause, Gioberti, and others have attempted it each in a way of his own; but two things are obvious, namely, that philosophy cannot consistently decline the task, and that any method it may adopt in trying to perform it must be one essentially speculatire. An inductive and analytic method is clearly inapplicable, for the highest and last results of induction and analysis are just what are to be elucidated through being viewed in relation to the one supreme truth or fact. And among the data with which philosoplyy must thus synthetically or speculatively deal aro those of religion. It requires to show how what theology teaches as to God's nature and operations comports with what itself affirms as to the sbsolute source and ground of existence, and this necassarily commits it to have recourse to a theologicospeculative use of reason. And to a very large use of it if, for example, theism bo true ; since, in this case, the absolute principle of philosophy can bo no other than God Himself, and its highest task no other than to show Him to be the essence of all existence, the light of all knowledge. In this case philosophy must ineritably become in the bighest stage of its development a speculative theology.

Nor can positive theology dispense with speculation.
cannot, indeed, begin with it or confine itself to it,-caumot start with some single immediately certain religious fact, and then by mere force of logic cvolve therefrom a whole theological eystem. Its data are all real facts of religion, and these it must deal with, in the first place, mainly by observation and induction. But obsersation and induccion will not always alone lead to a satisfactory result. Observation is confined to experience, which gives only the particular. Induction, in so far as it effects a transition from the particular to the general, already involves the activity of speculative reason; it makes discoveries only when guided by theory; it can never of itself reach ultimate truth; and it is manifestly not its function to raise coherent comprehensive systems on their proper constructive principles. Then, the theologian who renounces speculation must deal most inefficiently with the chief ideas and doctrines of his science. Consider the greatest idea of all-the idea of God. Mere observation and induction do not yield the idea. Exclusively applied, they cannot take us beyond the contingent and conditioned, cannot take ns beyond atheism and secularism. Waive, however, this objection, and grant that the idea of God may be given, say, through revelation. What sort of idea must it be in the mind of the theologian who refuses to specnlate? Merely that of a complex of the attributes predicated of God in the Bible. Surely that is unworthy to be accounted an idea of God at all. The theologian who is in earnest with the idea of God, who would find order and light in the idea, who would think of Him as He is, Absolute Being, Harmonious Life, Infinite Personality, Perfect Spirit, Ultimate and only Complete Explanation of the Universe, must assuredly speculate, and speculate.freely and largely, although he ought also to do so humbly and reverently. Even if he would maintain that we cannot lave a knomledge of God as He is--that we must renounce the hope of a speculative knowledge of Him, and be content with a merely regulative knowledge,--he will find that ho needs, as Kant, Hamilton, Mansel, and Spencer have practically so fully acknowledged, speculation, and much speculation, to support his thesis. The mind is not necessarily relieved from the duty of exercising speculative thought on the nature of God by receiving a special revelation regarding God. Christianity is a proof that such revelatiou may only increase obligation in this respect. It brought with it a wondrous idea of God, one of marrellous practical efficacy, but one also which forced Christian reason into paths of speculation, which could only be formulated after lengthened and severe speculative labour, and which no intellectually or spiritually quickened soul can accept otherwise than rith speculative exertion, And this may show that speculation is as legitimate and applicable within the sphere of Christianity as within thal of gencral theology. The compreliension of Christianity requires that we penetrate to its distinctivo and central principle, and view all its contents in the light of that principle. It is only so that we can hope to accomplish either a true systematization or a true elucidation of ity contents. The procedure by which this is effected cannot be one of mere formal logic, of pure deduction, or strict demonstration; it must be one which implies a constant reference to facts and inductive results; but still it must be ono which is essentially syntletic and speculative.
Theology is a unity, a whole, but a very complex unity, a whols of many dissimilar jarts. It may ba spoken of in a broad and general ray as a science, lut not less correutly as a department of sciences. Yt includes nany studies or disciplines which man be culltivated is a scientific spirit and according to scientific metbods, and these sturies or disciplines, whilo closely connected, are also clearly distinct. They are by no menns mero divisions of a special science. Ňatural therlogy nid Cliristian dogmatics aro as distinct science.
from each other as phe, sics is from chemistry or anatomy from pbysiology. Comparativo theology and Biblical theology nro as
distinct from each other as the atudy of the general history of mankind is from the study of the history of Eagland.
Hence arise a number of problems. How are the theological sciences related to the non-theological sciences a ad to one another? sciences are they located in the vast organism of science as a whole ? and how are they connccted with oae another so as to form a omaller organic whole in themselves? What principles have they in common, and what tasks are proper to each? Wherein do they agree and wherein do they differ in their methods of research These are very important questions. There cannot be an earnest and scientific study of theology where they are overlooked. It is the special task of the theological discipline called "encyclopadia of theology" to discuss aad answer them, -or, in other words, to determine the boundaries of theology, to exhibit anf explain its inper organization, to indicate its componeat parta, and to trace their relations both to one another and to the theological system as a whole. This discipline is, therefore, the appropriate scientific approsch and introduction to theology and to the various theological sciences.

It is of comparatively little, importance whether or not it be itself called a theological acience. Strictly epeaking, perhaps, it is rather a section or rolongation of that division of genersl philosophy which treats of the relations of the sciences. One of the tasks of philosophy is to defiae and distribute, classify and co-ordinate, the eciences, so as to exlibit them as parts of an harmonious cosmos or members of a well-proportioned corpus. Bụt philosophy, when in the pursuit of its merely geperal ends, cannot be oxpected to go into details aod to concern itself with all the aubdivisions and ramifications of ocience. It will be content to trace main liaes, to appreciate leading principles, processes, and results, and, in a word, to erhihit the organic unity and variety of acience as a whole. It will leave the exact and exhaustive distribution and survey of any particuler kind or group of sciences to those who arc extensively and minutely acquainted with that kind or group of sciences. The oomprehensive philosophic survey of any order or department of studies is the encyclopadia thereof. Hence there is encyclopædiz of mathematics, of physics, of philology, and of jurisprudence, as well as of theology. Encyclopzedia of philosophy, however, comprehends all the departmental eacyclopadias of science. And this for the simple reason that philosophy is inclusive and unitive of all science. As scientia scientiarum philosophy is, as Hegel has aptly said, "wesentlich Encyolopädie." Hence theological encyclopædia-the encyclopedia of the scicnces conversant with religioa-may reasonally be held to be essentially a prolongation, a direot continuation; of pbilosophy.
Theological encyclopædia has had its course determined by the general moveruent of theology. The various theological disciplines required to be evolved before they could be co-ordinated. The desigaation "theological encyclopædia" first occurs in its current technical sense in Mursines's Prinx Linez Encyclopredizs Theologices (1764). It was only with the publication of Schleiermacher's Kuree Darstellung des theologischen Studiuris in 1811 that the full acieatific importance of the discipline was weade evident. It has aince been diligently cultivated in Germany, and is at length finding recogaition in other countries.

There are, however, serious defects even in the latest and best expositions of it. Two of these may be noted as being so serioua that, owing to their prevalence, theological eacyclopxdia can hardly be said to have ovea yet eatered a truly scientific stage. Oue is the virtaal or express identification of theology with Christian theology. All the chief theological encyclopædists of Germany-Hagen bach, Lange, Räbiger, Rothe, Von Hofmann-follow Schleiermacher in this amazingly absurd procedure. Logically the Brahmanist, Buddhist, and Mohammedsn might with cqual justice identify all theology with their owa. The superiority of Christianity to other religions, the uniqueness of Christianity among religions, does not alter the pature or lessen the magnitude of the error. Every encyclopædia of theology which confounds the general with the special so completely as to identify theology with Christian theology forfeits its title to recognition as acientific; aed almost all, even of the latest and best thcological encyclopædias, do so. The other fault referred to is that, even in the latest and best of theological encyclopedias, the constituent sciences of theology are not so coordinsted with reference to a centre as to reuder apparent their organic conaexions. The German encyclopedists siace Schleiermacher claim, indeed, that they so distribute the various disciplines of theology as to exhibit its antural organization. But the claim is not well founded. In reality, their schemes of distribution have po real unity. They are simply arragements of the arious theological disciplines in a fourfold, threefold, or twofold menner, i.c., for example, as exegetical, historical, systematie, and practical, or as historical, systernatic, and practical, or as didactic and practical. But this is merely external classinication. It may he faultless of its kiod, but it cannot of itself yield more than a superficial and mechanical arrangement of the theological sciences. Theology, to be scientifically surveyed and distributed, must be viewed as a he scientifically surveyed and distrinuted, must be riewed as a
to have a definite place in it from its very nature and definition, as the science or philosophy of religion. Their relationship to one another must be determined by their relationship to the whole of which they are parts, to that science or rather philosophy which treats of religion as a whole. They can only be unified and coordinated in a truly organic manaer by their due reference to religion, and consequently proper inclusion and location in the philosophy of religion. This necessity has as yet been only verbally acknowledged by theological encyclopredists.
There is an all-comprehensive scieace of religion,-one which treats of religioo in its unity and entirety 1 t alope completely answera to the idea and definition of theology. It is the ons general theological science, comprehends and dominstes the apecial theological sciences, so as to be the science of these sciences, and hence, io accordance with the true distinction between philosophy and science, is properly called philosophy rather than science-the philosophy of religion. All philosophy is science, but all science is not philosophy. Plilosophy, as distinguished from acience, is goneral or universal as distinguished from particnlar or special ecicace. This distinction is, of course, not an absolute one, hut of degree-of more or less; every other distinction between them, however, is pasitively erroneous. The one general theological acience is appropriatoly, therefore, terned philosophy. It is the philosoplay of religion as there is a philosophy of nature and a philosophy of mind, each inclusive of various scicnces. It is of the very nature of plilosophy to be both befere and after the sciances to which it relates, - to be at once their root and result, and at the eame time their bond of union and source of life. And the general thealogy which may justly be ideatified with philosophy of reli. gion has undoubtedly held this relation to the special theological sciences. It preceded them, being the germ from which they evolved, the root from which they have sprung ; it has grown up along with them, permeating them as their common life; and it also succeeds and transcends them, hasing itself on them and perfecting itself by means of them. 1t is the one geoeric science of the object with which it deals, and vast enough to comprehend a wholo group of sciences, because its object-religion-is so rich. complex, and varied.

The primary task of a philosophy of religion is to ascertain and exhibit the pature of religion. Now, a general theory of religion is the natural iatroduction to all special religious stuclics and theological sciences, and yet can itself ooly he brought to perfection through the advancement of these studics and sciesces. For example, we can on!y adequately understend the nature of religion through study of the history of religion, and yet we cannot trace the history of religion at all onless we know generally what religion is. Again, in such works on Christian dogmatics as those of Šhenkel, Kahnis, Diedermann, and Lipsius, we fiod a considerable placa assigned to an investigation into the geacral nature of religion. The investigation is nanifestly not there strictly appropriate ; its true position can only be in another and wider science. At the same time, it is undoubtedly a necessary antecedent to the investigations of Christian dogmatics, from the very fact that Christianity is a religion. On the other haud, Christiacity is not only a religion, but a religion which claims to be the perfect or absolute rcligion; and, clearly, if the claim he well fouaded, the complete nature of religion caa only be understood through that full knowledge of Christianity which Christian scietice may he expected to give.

From the very nature of religion the science or philosophy which treats of it as a whole must obriously be most compreheasive. Religion is a relation between a worshipping subject and a worshipped object. It implies both distinction and unity. Were there no distinction between the subject and the object there would be no religion, whether the self-identical unity were named God or man. Were there only distinction between them-were God and man absolutely separate from and iadifferent to each other, religion must be in this case also impossible. Religion thus surposes two factors, which are different yet related, 60 far distiact and so far alin; and our victrs of religion must depend on our riews of these two factors. It involves still more. God does not

[^115]act on man by the direct manifostation of His absolute essence, nor does man know God by inmediate vision. Take eway the physical and moral worlds and the written word and the Incarnate Word of God-buppose, that is to say, both general and special revelation removed-and an impassable chasm will separate man from God and all religion be destroyed. Tho revelation in nature and the revelation through particular inspiration and intervention, however, bridge over this chasm, and consequently religion is overywhere found existing in eoroe form. But even revelation would be uselcss if ran had not facultics to apprehend it and to arail him. aelf of it. The communion of man with God aupposes powers of communion in man as well as in God. It can only bs realized through religious facultics and processes which can be analysed and which have laws of exercise and evolution that can be traced. Further, religion has a history which ohows how man lias interpreted or misinterpreted the revelations made to him, what forms religion has assumed in various lands and ages, and how these forms-the religions of the world-have arisen and epread, developed and decayed, influenced one another and affected morality, civilization, and general history. Thus religion, from its very nature or idea, requires us to treat-(1) of the object of religion (God), (2) of the subject in religion (man), and (3) of the media and process of religion, -or, in other vords, (a) of the modes of Divine manifestation, (b) of the powers of human apprahension of the Divine, and (c) of religion itself as a kind of psychical life. All the special theological eciences deal with some of these themea, or some pertion op portions of aome of these themes, in certain asnects, but the philosophy or genersl scienco of religion deals with them all in their entirety and organic connectedoess, the form appropriato to philosophy-to ecience which comprehends and thereby transcends special ecioncea.
For the philosophy of religion, as the highest discipline of theology, the most natural order to be followed in the treatment of its themes is probably that which has been indicated. It is the order whictr has been most commonlyadopted in treatises that aimed at rys. tematic completeness. God, man, God'e manifestation of Himself to $\operatorname{in} 3 n$, man's experience of God, and the development of religions, -these are the topics, and auch is, in the main, tho order of their discussion, usually found in philosophies of religion proporly so called. This is, however, because the philosophy of religion as a distinct discipliue presupposes tha reaults of tha several epecial theological sciences. Theology ends as it begins, in unity; but the unity in which it onds is very different from that in which it begins. It begins with the confused unity of common knowleuge, the complex and undifferentiated germ of the theelogical eciences; it ends with the unity of tho clearest and deepest insight, in which all distinctions are at onco recognized and reconciled. This last is the uaity of that ultimate stage of theological knowledgo which can alone claim to be philosophical as diatinguished from ecientific; and it can only be reached by those who have attained to an adequats mastery of all the sciences conversant with religion. The philosophical student of the whole mnst have otudied scientifically its parts, know what is to be known about them, and make use of his knowledge in his orn proper labours. The atudent of the parts needs to know only in a gencral way what religion is, and muat follow in his atudies an ordar of procedure detcrmined by his lack or limitation of knowledgg. Tho courae by which the mind traverses the partial and apecial eciences of religion and rises to a philosonhy of religion cannot be the eame as that through which it unfolds a philosophy of religion itself, exhibits and confirma a religious theory of the universe, and harmonizes and olucidates all results of theological regearch and all varisties of religious phenomena.

The philosophy of religion is itsolf, of course, special in relation to philosophy, of which it is only a dopartment. And thero may even be a apecial kind or form of the philosophy of religion, if thest kind or form be genaral enough to iuclude a natural group of theo. logical bciences and to have regard to their collective effects. A opecial religion may be so significant, so important, and the aubject of so many theological disciplines as to render indispensable the division alike of the philosophy aud of the sciences of religion into genaral and special. Christianity, as the most perfect form of religion, the fullest revelation of epiritual truth, the source and theme of a large group of sciences, is euch a religion. Hence there may be, and ahould be, not only a philosophy of religion hut σ philosophy of Cbristianity, - bat only a geperically religious but a epecifically Christian theory of the universe. If the claims of Christianity be warranted, if in it religion and revslation were consummated, the philosophy of religion can only reach a a3tis. factory conclusion when it has passed into a philosophy of Christianity, or, in other words, attaincd auch a compreheusion of existence end-life in relation to the person and work of Clirist as 13 possible to the humanspirit The philosophy of Christianity mnst obvously be connocted with all Christian disciplincs in the samo manner as the philosophy of religion is with all other theological disciplines

Tha history of the philosophy of religion has, of couree, beer closely conjoincd with the histories beth of theoloty and of philosonhy, and influcaced by all the causeg which hava affected them. in the wido eense of religious reflexion it is as old as
oither philosophy or theology. As a distinct depsrtment of philosonhy, and-the highest and most comproheasiva theological science, it is of compsratively rocent origin, and, indeed, younger than many a living individual ; but even in this latter acnse the whole bistories both of philosophy and of theology have been needed as tho proparation and foundation for it. It could only appear in its alone adequate form when both philosophy and theology wero highly dive'oped, when both had freed themselves from the yoke of all authority eave that of truth and reason, when both had discovered their appropriato mothods, when they could so combine as to do no violence to the proper nature of either-a kind of combination most difficult to accomplish. But this, as might easily be chown, was not before philosuphy and theology becana at once critical and speculative, or, in other words, before that great revolution of thought with which the Dames of Kant, Hegel, and Schleiermacher are so gloriously associatad. Only in the present cantury have philosophy and theology reached tho stage in which they can unito and produco a philosophy of raligion, And within the century many philosophies of religion have made their appear. ance, especially in Germany. Indeed, all the more cminent philo. sophers of Germany have fully recognized that a philosophy of religion is a most essential department of philosophy. That not a few of the so-called philosophics of religion produced havo beeu very defective and erroneous is ouly what was to be expected. The worth of a man'e philosophy of religion cannot bo greater than the worth of his philosophy and theology in general. It is impossible that the philosophy of relinion of an Hegolian and a Neokantiat can accord, very possible that both may be far romoto from the truth. If empiricism, positivism, or materialism be true philosophy, or if authority be the foundation of religion and tho standard of theology, a philosophy of religion must bo illegitimate and supcrlluous. When religion is assumed to consist merely of belicfe, emotiono, and actions which have no objective grounds, no ral and rational basis, its development can only be an ohject of history and of psychological analysis, and there can ba no philosophy of religion, but eimply a ecience of religrions, which, secing that it deals entirely with certain forms of mertal disease and delusion, must be deemed merely a department of mental pathology. A jbilo. sophy essentially roligious must combine with a theology essentially rational in order to yield what deserves to be callod a philosophy of religion. If religion be the living appreheasion nod enjoymont of the truth which philosophy has for its mission to aeek to comprehend, then, but ouly then, must a philosophy of religion be necessary alike to philosoplyy aud religiou. ${ }^{1}$
We now pass to opecial theological dieciplines which can at the utmost merely becoms sciences as distinguislied from philosophy. They all deal with religion, each of then treating of some particular portion or sapect of it; and the order and mode in which they do eo determinos their relations to one azother and the order of their euccession. If wa would rise, for example, through otudy of the parts or phases of religion in a aure and natural manaer to a knowledge of it as a whole, we mast neecssarily begin with what of it is nearest and most accessible to us. But what is so is its history. In its historical manifostation it is a phenomenon which no ore can refusa to acknowledge. The history itself, bowever, is not only a most extensive but a very complex pheuoraenon. It is externsl and internal, corporesl and ajpiritual, a history of outward ovents and actions, institutiona and titos, and also nf ideas, convictions, and affections. What is external is uearer and more accessible to us than what is intermal, and it is through the former that we must pezetrate into the latter. They cannot bo quito separated, for tho external is only intelligible ilirough the internal, end the internal ouly sttainable and verifiable throagh the external ; but they can be oo far differentiated, and thara is a history mainly of what is oxternal in religion and another mainly of what is internal. The ordinary history of religion is mainly concerned witli tracing the growth of roligion in its most appareut form and institutional character! It may be divided into three great ecctions-the ethnic, Biblical, and ecclesisstical, -the history of the heathen religions, the history of tho Jewish roligion and of the rise of Christiaaity, and the history of the Christian church.'
${ }^{1}$ Thare is a laborlous and Impartal history of tho phllosophy of rellgloo by
 83. Of this valuablo vork an Engllsh translatloa 15600 n to appoar. Some chaptors of tha history haro boen obly written hy O . Pooldoror in his Rertion
 jest edtion of Hagenbact mey ba coasalted. Ifern tho following only con be mentioncd :-Hegcl, Phillosophio dre Rellglon, 2 vols $1832 ; \mathbb{E}$ reube, Df absolute
 Refmmung mid Vernunf, Gciehlehic, und Offenbarung, 1836, Billroth, Porirnunge
 1839: Teoto, Religiontphiflosophise, som Standpunle dere Phillosophte firrbarts
 Dogmatth oder Phillosophle des Chr iusenuhums. 3 vols, 18E5-c3. Apoli. Restgicna
 Grunderigo der Religiononhlosephre, 18R2; Von Hartmann, Relloton dra Gonctos 1893; Telchmulter, Recigionsphitiosophio, 1880; Moroll. PhitosopAy of Follyton, 1s.v3: Colrd, Inspotursfo
exd Crs suficials, 2883.

Whether history in this form, oven when studied in the most accurate and thorough manner, should be called science may be doubted, as it is simply occupied with the discovery and description of the particular and conerete. It is not usual so to designate it in any of its sections. The history of religious beliefs and ideas may be as purely and properly history as that of external institntious and transactions. It deals, however, not only with what is internal and epiritual but also with what is abstract and general, and heace it is at least more akin to science than is common history, and its acctions are often called sciences. These sections are three in number, and correspend to tho sections of the ordinary history, They are known as comparative theology, Biblical theology, and the history of Christian doctrine. To the last of these, symbolics may fairly claim to be a necessary supplement. They are quito distinct from a conceivably attainable knowledge of We laws of religious history, such as might be with strict propriety ciesigoated science of religious histery, a department of science of Listory. Of historical science in this last sense there is as jet xtremely little.

Religion is a spiritual process, and its history continuously mplies the affections and operations of mind. The historical treatment of religion, therefore, necessarily leads to its psychological treatment. The history alike of religious events and actions and of religious ideas and beliefs can only be explained through a knowledge of the religious powers and processes, i.c., of the psychological facters and states which condition and determine its development. The psychological study of religion, although it has been greatly neglected, should reach over a very large depertment of theology. The department may be distributed into three disciplines-the general, comparative, and epecial psychology of religion. The first sheuld treat of the general religious nature of man; the second should discover and compare the psychical peculiarities to be found in the various religions; and the third should exhibit claborately the psychology of a particular religion, as, e.g., Biblical and Christian psychology.
The historical and psychological sciences of religion deal with religion merely as an historical and psychological phenomenon. They do not imply its truth, and can be cultivated by those who regard it as a doltasion equally with those who acknowledge it to be a certainty. It is the office of apologetics to determine rhether or not it is true and how far it is true. If it end not in a negative result, in agnosticism or atheism, it must prove that God reveals himsclf to man, aud that man apprehends God. In other words, apologetics treats of the media of revelation-aliko the objective and subjective, Divine and human media-and so is the science, on the one hand, of revelation, and, on the other hend, of religious certitude. It is divisible into general and special, or, in equivalent terms, into theological and Clristian apologetics, - the former being the scientific exhibition of the grounds of natural religion, and the latter of the grounds of the Christian religion. They are sometimes combined, inasmuch as both are needed in order to establish the truth of Christianity. In Germany it has become not uncommon to fuse them into one under the name of fundamental theology, described as the science which treats of the foundation of Christianity. And, undonbtedly, it is not only expedient but even necessary to treat of both as introductory and preparatory to the construction of Christian scicnce. But tho distinction between them must not, therefore, be forgotten or ignored. Theological apologetics might be irresistible althongh Christian apologetics Were futile. Theological apologetics derives its validity from its relation to natural theology, which has an absolute value of its own, wholly independent of any other science, of Cbristianity, or of anything else. 1 The alliance of theological and of Christian apologetics is perfectly legitimate; the attempt to combine them into a single science, into a single homogeneous discipline, is decidedly the reverse.

The highest stage of theological sciense is the methodical education and exhibition of the truth involved in religion, either as con${ }_{i}$ tcuts of faith or clements of life. When conversant with the faith i^{i} is docmatics, when with the life ethics; but, of course, liere ngain distinction is net to be confonnded with separation. True faith is living faith, and true life is the life of faith. Dogmatics and ethics are so intimately related that it is not surprising that they should have been long left undifferentiated, or that a few ominont theologians should atill deny that they can be properly treated apart. Theology at this stage is commonly designated systematic, although the term is not a good one, and others, little if any better perhaps, as didactic, theoretical, positive, thetic, \&c., have been suggested as substitutes. Systematic theology, like historical, psychological, and apologetic theology, is divisible into general and special, the former including natural theology and theologrical ethics, and the latter Christian dogmatics and Christian ethics. The identification, 60 common in Britain, of systematic theology with Christian dogmatics is, of course, solely due to the survival among us of prescientific thought and language in theology.

The historical and psychological sciences of religion may be conjoined under the designation of empirical, or phenomenological, ur
historical (in the widest sonse); the apologetic and systematic eciences nuder that of didactic, thetic, speculative, or systematic (in a loose sense). This trofold division of them is the one gene. rally sdopted. And as it rests on an obvious and impertant dis. tinction it is fully entitled to acceptance, provided it be 60 received as not to bide or extrude the fourfold-division fonnded on the real moments or stages of the process of theological investigation.

There are a considerable number of disciplines not included in the divisions indicated, yet for which the theological encyclopædist is bound to find appropriate places. The best classification of these is into exegetical and practical. So-called exegetical theology, however, is in all its departments simply instrumental and intro. duetory to historical thcology; and practical theology is in all its departments concerncd with the use and application of religious knowledge, not with its acquisition and advancement. The former is not directly occupied with religion but with the records and documents from which its history must be ascertained; the latter is art and not science.

Considering theology, then, only as science directly engaged on religion, the following are the sciences which belong to general theology:-(1) the history of religions; (2) comparative theology; (3) psychology of religion; (4) theological apōlogetics; (5) natural theelogy; and (6) theological ethics. Those of Christian theology are-(1) Biblical history; (2) ecclesiastical history; (3) Biblical theology; (4) history of Christian doctrine; (5) symbolics; (6) Biblical and Christian psychology; (6) Christian apologetics; (8) Christian dogmatics; snd (9) Christian ethics. The remainder of this article will be devoted to a brief indication of the nature of such of the above studies as have not already been treated of in separate articies.

The history of religions and comparatire theology differ from each other as sacred history and Biblical theology or ecclesiastical history and the history of Christian doctrines differ. That they should rarely be distinguisced proves only that the ethnic sacred books have not yet been oo closely studied as the Bible, and that the histories of the great ethnic religions are not yet so well knowu as the history of Christionity. Ae regards both the history of relimions and comparative theology, see Religions.

The general psychology of religion shonld analyse tho religions nature of man and trace the laws of its development. It has to ascertain the principles which guide reason in the search after God; to determine what subjective religion is, what clements it involves, and through what stages it may pass; and to show how the understanding and imagination, the emotions and affections, the qualities and energies of will, operate in religiou and influence its character. While general psychology of religion thus treats man as framed and fitted for religion, the comparative psychology of religion treats of the psychological composition and peculiarities of the various concrcte and collective manifestations of religion. It is related to the general psychology of religion as comparative psychology to general psychology. It must concern itself with the religions of the rudest peoples. It has to explain what is psychologically distinctive of fetichism, animal worship, naturalistio religions like the Vedic, anthropomorphic polythoisms like those of Greece and Rome, and pantheisms like Brahmanism and Bud. dhism. For example, in each of these forms of religion imagination works diferentiy, and the comparative psychology of religion forma give a complete view of the operations of imagination in the intellectusi principles and all the chief sentiments.

The psychological study of religion was not, as is often said, begun by Kant. Hume - in virtue of his Natural History of Neligion, whe clear recognition of the distiaction between the causes and the reasons of religion-is much more entitled to be considered initiator in this department, but even his claim may be contested. The department is one of which there is as yet no general survey, and of which many portions have been ontirely overlooked. What the ordinary psychologists-e.g., Bain, Snlly, Thompson, Rabier, Fortlage, Strimpell, Volkmann, Wundt-say segarding it is very vague and meagre. The only two points which have been closely investigated are those as to the nature of religious cogrition and the essence of religion, and as to both speculation has been frequently allowed to disturb and pervert psychological analysis For some of the later literature on these points, see notes on article Treism. Neither the general nor the comparative psychology of religion as yet exists in a ceparate and appropriate form. Wbat religions psychology there is will be found chiefly in the writings of anthropologists like Bastian and Tylor, of comparative philologists like Max Müller and Steinthal, of philosophers like Spencer and Renouvier, of theologians of the school of Schleiermacher, and, above all, in the historics of religions and the philosophies of religion. ${ }^{1}$

Theological apologetics is not to be confounded with natural
1 Allott's Psychology and Theology, Newmen Smyth'e Religious Feching, Brinton's' Relioious Senliment, Hsppel's Anlage des Menschen rwe Religion, Ulric's Goll und Mensch, and Lesbazellie's "Bases Paychologiques do la ReD
theolagy, irom which it is as distanct as Christian apologetics is from Christian logmatics. It lajsa foundation for natural theology, inasmuch as it vindicates religion by showing that it rests on pobjective spiritual truth. It presupposes a knowledge of religion as an historical and paychological phezomenon, but none of natural theology, which it, of conrse, leaves as a science to establish.its own doctrines. It has the following taska to perform. (1) To show that man is capable of apprehending the divine. This requires the refutation of agnosticism and the riadication of the priaciples implied in religious knowledge and certitude. ${ }^{1}$ (2) To prove the reality of a revelation of the Diviae in physical nature, miad, and history. The results of the various sciences will thereby be shown to be data of theology. It requires the refutation of atheism, materialism, positivism, and secularism, and of all principles which logically involve these systems. (3) To exhibit the reasons for the true conception of the Divine, and to expose the arguments employed in favour of false conceptions. The defence of theism, for example, must be accompanied by proof of the erroneousness pand insufficioncy of the polytheistic, dualistic, deistic, and pantheistic hypotheses. (4) To adduce whatever evidence may be contained in general revelation for the inmortality of the ooul and a future state of remards and punishments.

Natural.theology is the systematic exposition of the truths in natural or general revelatios. Its data are the facts and laws of nature, as ascertained by physical, mental, and historical science. Its inductions and inferences relato to God, men, and their relationship. Its appearance as a distinct science mary be dated from the publication of Raymond de Sebonde's Theologia Naturalis in 1436 , although portions of it had been admirably presented by ancient philosophers; e.g., Socrates, Plato, Aristotle, and Cicero. It flourished with extraordinary vigour in the latter half of the 17 th and thronghout the 18 th century. It should endeavoar to perform the followiag tasks. (1) To deacribe the nature, character, and attributes of God, so far as they are disclosed by the material world, mind, and history. (2) To treat of God in relation to the world and man, and of the world and man in relation to God, under which head all questions as to creation, providence, theodicée, optimism and pessimism, oducation of the haman race, \&c., will fall to be discussed from the standpoint of general revelation. (3) To determine, so far as can bo doue from general revelation, what nan maj reasoabbly hope for as to deliverance from sin and its consequences, and what he may reasonably believe as to the conditions of existence in a future world. As to this third point the view is prevalent that the light of nature discloses nothing regarding man's salration or future destiny. But does this vjew not arise from overlooking that the kiogdom of God is within, and from falsely supposing that salvation is entrance into an external, non-spiritual hearen on conditions which, being in themselves non-natnral, cannot be naturally known i The heathen hations hare certainly not supposed nature to bo wholly silent and dark on the onbject. In every developed othnic religion there is a aoteriology and eschatology as well as a theology. Man is no where necessarily without hope any moro than without God in the world. ${ }^{3}$

Theological ethics differs from nataral theology in that it seoka in nature, viewed as a Divine revelation, laws of epiritual life, not merely religious doctrines. Its place is betreen moral philosophy and Christian ethics. It is unmistakably distiact from both, and may be more plausibly includad in natural theology than in either. It ahould endeavour (1) to determine how religion and morality aro distinct and how connected ; (2) to ascertain how morality has been affected and modified by the various positive othnic religions and the various religious but non-Christian philosophies; (3) to exhibit hom the character of God, as delineated by natural theology, stands related to the moral law, the moral life, and the chiof ethical end or supreme good of man ; (4) to describe the nuties which the light of Dature ohows that man owes directly to God ; and (5) to trace how piety to God must influenco personal and eocial virtue. Unlike moral philosophy and Christian ethics, it can hardly be auid to have boen yot treatod as a separate discipline and presented as a whole. Danb and Marhoineke bsre, indeed, Fritten works mominally on Theological Norals, and Fothe and Fon Hofmann on Theological Ethics, but in all these Trorks it is really Christian ethics which is exhibited to us under certain epreculative lights. There is, however, a very extensive literature relating to particular

${ }^{i}$ For the literatnre on agnostlctsm, 800 above, p. 248 note 2.

${ }^{2}$ For the literature of apologetics (theolonical and Chrisian), nea Redford'e CTristlan Plea against MOdern Unbelief, pp. 497 - 538 . For a lise of the best works pp. 149-161. Indlications as to the hletory and literatore of many particolar Qpestions ond portions of both disciplines are given in the ooles to Fliot's Theism and Antitheistic Theories. One of the best bletehes of the history of natural theology ts that in Zocklder's Theologio Naturalis. Here it may be eufficied to mentou tho follew1oc woiks:-Butler's Analogy; Paley's Natural Theology; Chalmera's Natural Theology; the Bridgencader Treatises: Thomrson's Theism: Talloch's Theism : M'Cosh's Mehiod of the Dicine Governmens: Liricl's Gas und dio Nalur: Jules Simon's Nashrol Religion (Eng. tr.) ; Janet's F'inol Causes (Eng. (T.) ; Caro'a Idie de Dicu, 5iL od. ; Gratry'e Corrainuare do Dicu, 7th ed. and Uargerlo a Theodicese, 8 d ed.
problems and portions of theological ethics. Thus कhat has beer just indicated no problem first-that es to the relation of religion and morality-has been loug much discussed. ${ }^{3}$ The second problem demands trile and close bistorical research; it has been touched at a multitude of points, but only touched. With the third problem, or rather group of problems, almost all systems of Christian ethics have to some extent dealt; and with the fourth and fifth problems almost all aystems of moral philosonlay.

We now pass to Christian theolory. Its historical section includes, besides the histories of Israel and the church (as to which gee Isbafl and Cnurch II istory), Biblical theology, the history of Christian doctrine, and Christian eymbolics.

All hermeneutical studies are auxiliary to exegesis, and all Biblical exegesis leals up to that comprehensive and connected View of the development of Biblical idens which it is the aim of Biblical theology to set forth. Biblical theology is not to be under: etood as meaning a theology founded on the Bible-Curistian dogmatics ander another name. It does not ascume that the Bible is either a source or standard of truth. It does not set forth the ideas which it exbibits as true in themsolves, but only as truly in the Bible. It seeks no other truth than truth of exposition. It aims at doing no more than giving a true account of what are the religious ideas in the Bible, of how they are related as set forth in the Bible, and of what their history has been throughout the Biblical period. Its aole business is critically to ascertain and truthfully to exhibit what Scripture teaches, what each writer, ovea, of Scripture teaches, in a purely objective, organic, historical manner. It cannot possibly be confounded with Christian dogmatics by any ons who has the slightest notion of what it is, although the latter must in great part rest on it and derive most of its materials from it. It is the ultimate direct reault and the most comprehensive and perfect prouluct of Biblical exegesis, and related to the history of retigious ideas as a part to the whole in which it is included, comparative theology preceding and the history of Christian doctrine following it. It dividea into theology of the Old Testament and theology of the New Testament; and 150° mothod is one appropriate to an historical discipline, and, therefore, chronological, genetic, analytic, and aynthetic. It is a com. paratively recently conatituted departnent of theological science, both Catholic and Protustant divines having made for ages the enormous mistake of etudying Scripture-so far as their interest therein was theoretical and not practical-primarily in order to find proof of the doctrines contained in their creeds and coufessions They failed to a pprehend and appreciate the seemingly very simple thought that Scripture should be studied in the first instavice with a giaglo oyo to find out what was really in it, and that to this end the study of it should be strictly and purely exegetical and his. torical. J. Ph. Gabler, in his thesis De Justo Discrimiue Theologiss Biblicas et Dogmaticer, published in 1787, was the first clearly to ehow the true character of Biblical theology as as essentially historical atudy. Sinca then it has been cultivated n ith great zeal by a host of able labourers.

The history of Christian doctrioe only began to be treated as a separate theological discipline in the latter part of the 18 th century. Proviously it was dealt with as an appendix to doge matics or as a part of church history. It is not an appendix to dogmatics, but it includes its history and contribute日 to lay a foundation for it. No doctrime can be either correctly onderstood or right!y developed where there is ignoranee of its history. The history of Christian doctrine is a part of the history of Christianity, namely, ile history of Christian beliefs, as distinguished, on tha one hand, from the history of Christian lifo and practice, and, on the other hand, from the outward history of the church. It is a part also of the history of religious thought, and of the history of thought in general, and tberefore closely connected with the history of philosophy. 1ts development must be admitted to be ruled by the general lawe of the intellectual history of maio. It may ha taken, however, in a wider or marrower sense,-in the former being the history of Christian thought and belief as auch, and iu the latter the history ouly of dogmas atrictly eo called, i.e., of doctrines formulated and promulgated by ecclesiastical anthority, and accepted either by the whole church or by large divisions of the church. There ought perhaps to bo a history of doctrines in both eenses. One in the former aense has only been undertaken recently by Ilarnack. The method of the bistory of Chistian doctrive must be strictly historical, and at the same time both analytic and syathetic, seeing that both the history of the scparatu ductrines and the gencral and connected evolution of tho doctrines require to be traced. Its periods will coincide with those of church history, but they ought to bo determined from direct examisation
-The following references may be giveo:-the last chapter of Janctia La Morole, the Arst threo chapters io Carois Blorale Sociale; many arwclen ond
 5i 8-1t; Plelderers Horal und Relfoion; fradle
308 ; and Calrde Introd to Phsi. of Rel., ch. Ix.
308; and Calrde Introd. Tobhe: of Rel., cb. Ix.
i For the history of Riblical theolory, Bese Biblical Siudy; for tho Hteratore Care, Hagenbach, Rabsger, or Zeskier: for a referedce to some of t? best worko, oee Thelsx. nuera, p. 389 nokea 2 and 8.
of the development of the doctrines. It is incorrect, therefore, to represent the discipline as having its general distribution into periods given it by church history. ${ }^{1}$

Symbolics is the historico-comparative siudy of the dormatic systems of the various Christian commnnions, as expressed and involved in their symbolical documents. It treats of the origin, history, and contents, and relations of difference and agreement, of the rarious creeds and confessions of Christendom. It mas preceded by "polemics" and "controversial theology"-pre-scicntific and anti-scientific kinds of theology. The older so-called systematic theologies and systems of divinity-consisted largely of symbolical matter treated in an unscientific and ungenerous spirit. Christian dogmatics will never be properly purified until Christian symbolics receives intelligent and due recognition, and has relegated to it the subjects which properly belong to jt. Christian symbolics may be sail to have made ita appearance as a separate scientific discipline with Jlarheineke's Syimbolik, pnblished in 1810. The chicf reason why it appeared thus late was the difficulty of exercising in this spliere the impartiality of the true historical spirit. The arrangement cf its material is determined partly by the order of succession in which the churches appeared in history and partly by the historical importance of the different churches. "In some treatises on symbolics the symbolical system of doctrine of each church is treated separately, while in others the several doctrines of the various churches are compared together. Each of these methods has its advantages and disadvantages. Their combination is requisite." ${ }^{\prime 2}$

The psychology of Christianity may be beld to include Biblical psychology and the psychology of the Christian life. It must be admitted, however, that the right of the former to a place aunong psychological sciences is doubtiful. It is universally admitted that it ought to present what is taught in the Bible as to the origia, nature, faculties, states, processes, and fature development of the human spirit, and also elicit tho conceptions implied and preoupposed in the Biblical statements on these points. But if it do this in a merely bistorical manner, and do mothing beyond this, it must manifestly be regarded as simply a section of Biblical theology, To be entitled to bo considered a scparate psychologico-theological discipline it must at least elso discuss the questions as to the truth of the ideas relative to the huraan spirit expressed and implied in Scripture, as to their accordance with the facts of mind, and their relationship to the conclusions of ordinary scientific nsychology; and even then it may be held to be rather the result of a peculiar combination of history, apologetics, and psycholocy than a properly psychological discipline. However this may be, the study is an exceedingly intercsting one. It has had a lengtlicned history, for in almost every generation since the $2 d$ century treatisca on some of its subjects liave appeared. It was inaugurated by Melito and Tertullian, obtained in the 17 th and 18 th centuries distinct recognition under the desigrpation of "psychologia sacra" or "psycliologia e sacris literis collecta," and acquired iresh life and scientific form from tho publication of Beck's Umriss der biblischen Seclenlehre in $1843 .{ }^{s}$

The psychology of the Christian lifo is a much more comprehensive discipline than Biblical psychology, and one as to the precise place
aud scope of which no dubiety noed befelt. Its work is to elacidate all the distinctively Christian phenomena both of the individual and of the collective life. As to the former it should evolve a theory of personal Christian experience, normal and abnormal, in its purity and in its perversions. As to the latter, it bhould explain the spiritual experience of Christian society-the development of Curistian piety-in different ages, countries, and churches. For the accomplishment of the former task it will find help and material in religious poetry, religions biography and antobiography, and all other expressions and records of personal Christian experience ; and for the accomplishment of the latter in all the sources and contents of church history, although these must be used in accordance mith the psychological purposo in view. Christian psychology thus understood is a department of theology still to form. And the difficultie3 in the way of its formation must be allowed to be very great. They will only be overcome by men in whom profonad psychological scienco and insight are combined with a raro ausceptibility and richness of spiritual life.
For Christian apologetics, see Apolooetios. For Chrisciar dog. matics, mee Dogratic.

Christian dogmatics and Christian ethics are the two disciplines includad in Christian bystematic theology. They ought to be separated and cultivated apart, and yet must be recognized to be closely connected, and each the necessary complement of the other. The former sees in Christ the truta and the may thereto ; the latter sees in Him the life and the way thereto. Christian ethica is much the more recent discipline of the two, and it has not yet attained the same definiteness and homogeneousness. Alike as to method and distribution there is greater indecision and confusion. Among its earlier cultipators Nere Danrus, Calixtus, Perkins, Ames, Colville, Mosheim, Crnsius, Stäudlin, and Von Ammon. Schleiermacher may justly bo regarded as tho founder of modern Christian ethics. His superiority to his predecessors was due chiefly to his profounder apprchension of the nature of the problems of philosophical ethics, and to his comprehensive and spiritual concepfion of the kingdom of Goul as the highest good, pervasive and regulative of every sphers of human life, iudustry and art, science and plilosophy, fanily, church and state. The following may be given as a scheme of Christian ethics. I. Determination of the natnre, liniits, and method of tho scimee, and of its relations to other disciplines, and especially to those which are ethical and theological. II. Presunpositions of the science: these are-(1) the ethical idea of God as revealed in nature and in Christ ; (2) man as a moral being and in his relaiion to tho law and revelation of God; (3) creation and prorideuce as etinical systems; and (4) the king. dom of God in itself, in relation to creation and providence, and as tho goal of moral life. III. The fundamental conceptions of the science: these are-(1) tho Christian ethical lars; (2) the Christian conscience; (3) the Christian ethical ideal ; and (4) Christian virtue. IV. The reign of sin in tho individual and society viewed in the light of Christianity. V. The origin and progress of the kingdom of God in tho individual soul, and ita manifestation in the virtues and graces of the Christian character. VI. The realization of the kingdom of God in the various spheres o society-the family, the clurch, the nation.
(F. F.)

THEOPHILUS. Nicholas Alemanni, in his notes to the first edition of the Anecdota of Procopius (see Procopics), published in 1623 , repeatedly quotes a Life cf Justinian, which he attributes to "Theophilus Abbas, preceptor Justiniani," but without telling us where he found this Life or who Theophilus was. Subsequent writers have continued to quote Theophilus from Alemanni's notes for the facts ascribed to him in those notes, and, among others, for the name Uprarda, said to have been the original name of Justinian, and other proper names of members of the family of that emperor. Mr Bryce has, since the article Justinian was published, discovered in the Barberiai library at Rome what appears to be the MS. of the so-called Life of Justinian used by Alemanni. It is in Latia, and purports to be an extract made by Iran

[^116]Tomeo Marnavich, a Croatian ecclesiastic (1573-1639): from a Life of Justinian by a certain Bogomil (Græcє Theophilus), who is alleged to have been the instructor of Justinian, and abbot of St Alexander at Prisrend (in Macedonia), and afterwards bishop of Sardica (now Sofia in Bulgaria), the original of which Life, in Slavonic, is stated in the Barberini J1S. to exist in the Slavonic monastery of Basilian monks on Mount Athos. No such Slavonic MIS. (so far as is known) bas ever been discovered in Athos or elsewhere; no Slaronic MS. of the age of Justiaian could possibly exist; and the contents of the Latin extract preserred at Rome are of so legendary a character as to throw the greatest doubt on the facts cited from Theophiius by Alemanni, including the name Upravda abore referred to, and the Slavonic origin of Justinian. It seems doubtful whether this Theophilus Abbas, whom

[^117]the I. man MS. identifies with a certain Domnio, bishop of Sardica in 517 (see Marcellinus Comes, Chernicon, ad ann. 51\%), ever existed at all. Mr Bryce has printed this Roman MS., with his observations thereon, in the Avchivio Storico of the R. Società Romana di Storia Patria, IS87.

THEOPHRASTUS, the successor of Aristotle in the Peripatetic schools was a native of Eresus, in Lesbos. The date of his birth is a matter of inference, and has been fixed between 373 and 368 B.c. It is said that his original name was Tyrtamus, and that the name Theophrastus was given him by Aristotle on account of his eloquence, but this story is quite as likely to be an afterthought suggested by the name at a later date. After receiving his frst introduction to philosophy in Tesbos from one Leucippus or Alcippus, he proceeded to Athens, and became a member of the Platonic circle. After Plato's death he attached himself to Aristotle, and in all probability accompanied him to Stagira. The intimate friendship of Theophrastus with Callisthenes, the fellow. pupil of Alexander the Great, the mention made in his will of an estate belonging to him at Stagira, and the repeated notices of the town and its maseum in the IIistory of Plants aro facts which point to this conclusion. Aristotle's affectionate confidence in his pupil and friend is proved by his making Thcophrastus guardian of his children in his will, and designating him as his philosophic successor at the Lyceum on his own removal to Chalcis. Eudemus of Rhodes was not without claims to this position, but the master, according to the well-known story, delicately indicated his preference by the remark that the wines of Lesbos and Rhodes were both excellent, but the Lesbian was the sweeter. Aristotle also bequeathed to Theophrastus his library and the originals of his own works. Theophrastus presided over the Peripatetic school for thirty-five ycars, and died in 288 e.c. Under his guidance the school flourislzed greatly in point of numbers, and at his death he bequeathed to it his garden with house and colonnades as a permanent seat of instruction. His popularity was also shown in the regard paid to him by Cassander and Ptolemy and by the completo failure of a charge of impiety brought against him. He was honoured with a public funeral, in which the whole people took part.

Theophrastus's philosophical relation to Aristotlo and his place in the development of Peripatetic doctrine have been sketched noder the head Peripatetics. It remains to say a few words abont his works Froun the lists of the ancients it appears that the activity of Theophrastus extended over the whole field of contemporary knowledgo. Logical, physical, biological, psychological, ethical, political, Thetorical, and metaphysica! treatises are mentioned, most of which probably differed little from the Aristotelion treatment of the same thencs, though supplementary in details, Oo the whole, Theophrastus seenis to have developed by preferenco the observational and scientific side of his mastor, and of this character are the books and fragments that have come down to us. The most important of these are two large botanical treatises, On
 ten), and On the Causes of Plants ($\pi \in \rho$ l ϕ vī̀v airtêv), in six hooks (originally eight). These constitute the mest important contribu• tion to botanical seience till we come to modem tinies, and furnish proof of the author's extrasive and careful nbservation combined with a cousiderable critical saracity. We also possess fragments of a History of Physics, a fragmentary treatise On Slones, a work On Sensation (π epl aioend $\sigma \in \omega s$) in the same condition, certain metaphysica! ȧmopiat, which probably oace forned part of a systematic treatise, and the well-known Ethical Characters (ñorsol xapaктn̄pes), containing a delineation of moral types, probably an extract or compilatiou by a later hand from a larger ethical work of Theo. phrastus. Various smaller scientific fragments have been collected in the editions of J. G. Schneider (1818-21) and F. Wimmer (1886) and in Usener's Analecta Theophrastea.
THEOPIYLACT, a well-known Biblical comnentator, was born most probably at Euripus, in Eubœa, about the middle of the 11 th centurj. He became a deacon at Constantinople, and attained a bigh reputation as a scholar, as is shown by the fact that he became the tutor of

Constantine Porplayrogentus, son of Michael VII., for
 went into Bulgaria as archbishop of Achris. In his retter he complains much of the rude manners of the Bulgarians, and he sought to be relieved of his office, but apparently without success. His death took place after 1107
His commentaries on the Gospels, Acts, the Pauline episties, aod the Minor Prophets are founded ou those of Chrysostom, but deserve the considerable place thoy hold in exenetical literature for their appositeaess, sobriety, aceuracy, and judiciouspess. His other extant works include seventy-five letters and various hoanilies and orations and other miner pieces. A splendid edition of the whole in Greek and Latin, with a preliminary dissertation, was rublished in 1754-63 by J. F. B. M. de Rossi (4 vols. fol., Venice).

THEOPHYLACT of Simocatta. Sce vol. iv. p. 613.
THEOPOMPUS of Chios, a celebrated historian and rhetorician, was born abont 378 b.c. In early youth he seemseto have spent some time at Athens, along with his father, who had been exiled on account of his Laconian sympathies. Here he becamo a pupil of Isocrates, and rapidly made great progress in rhetoric: we are told that Isocrates used to say that Ephorus required the spur but Theopoupus the bit (Cic., Brutus, § 201). At first he appears to have composed epidcictie speeches, in which he attained to such proficiency that in $352-35$! he gained the prize of oratory given by Artemisia in honomr of her husband, although Isocrates was himself anoong the competitors. It is said to have been the advice of his teacher that finally deternined his career as an Listorian, - a career for which his abundant patrimony and wide knowledge of men and places (Fr. 26) had singularly fitterl him. Through the influence of Alexander; he was restored to Chios about 333 , and figured for some time as one of the boldest and most uncompromising leaders of the aristocratical party in his native town. After Alexander's death he was again expelled, and took refuge with Ptolemy in Egypt, where he appears to have met with a somewhat cold reception. The date of his death is unknown.
The works of Thcopompus were chinfly historical, and later writers frequently cite them as authorities. They inclucied an
 iotopiat), tho History of Philip (\$ıגıлтıкá), and several panegyrics and hortatory addresses, the chief of which was the Letler to Alexander. The genuineness of the epitome of lierodotns has been called in question; wo possess only five quotations from it, preserved by grammarians or lexicographers, and consisting only of single words. The Hellenics was a somewhat ambitious work in 12 books, extenting from 411 (where Thucydides breaks off) to 394 -the date of the battle of Caidus. A few insignificant fragmeuts remain, but do not suffice to give us any idea of the geoeral character of the work. By far the most ambitions history written by Theopompus was the Φ intratкá. Ia this he narrated the history of Philip's reign (360-336) in 58 books, with frequent digressions on the names and customs of the various races and conntries of which he had occasion to speak. So unmerous were these digressions that Philip 1II. of JIacerlon reducel the bulk of tho history from 58 to 16 books by cutting out those parts which had mo connexion with the achievements of the king. It wes from this history that Diodorus and Trogus Pompeius derived much of their materials. Several fragments, chicfly ancedotes and strictures of varions kinds upon the character of mations and individuals, are preserved by Athemeus, Plutarch, and others. Of the Leller to Alcurander we possess one or two fragments cited by Atheweus, animalverting severely upen the immorality and diss! pations of Harpalus. The Attack upun Plato, an 1 the trentise On Piety, whith aro sometimes referred to as separate works, were perhaps only two of the many digressions in tho history of Philip; sonie writers have dothted the ir authenticity.

The nature of the extant fragnent fully bears ont the criticisms of antiquity upon Theopompus. Their style is clear and pure, full of choice and poiated expressions, but lacking in the weight and dignity which only profomm thought cau supply. As we might expect in a pupil of Isocrates, he is especially careful to avoid biatus. The artistic unity of his work suffered severely from tbe frequent episodes with which it was interspersed; his account of Sicily, for example, extended orer several books. Another fault was his excessive fonduess for romentic and incredible stories (Fr. 33, 66, 76, \& .) ; a collection of some of these was afterwards made aud published uader his name, with the title of Oavudora
(Diog. Laert., 1. 115). He was also severely blamed in antiquity for his censoriousness, and throughout his fragments no feature is more striking than this (Fr. 54, 65, \&ic). On the whole, however, he appears to have been fairly impartial. Philip himself he censures sererely for drunkenness and immorality (Fr. 136, 178, 262, 298), while Demosthenes receives his warul praise (Fr. 239, 263). There can be no doubt that in the Philippica the world has lost a great rariety of pleasant cales and historians much valuable information upon many difficult points of Greek history and life.

See Mäller, Fragmenta Kisfoyicorum Grecorum, 1. 278-333, Parl9, 1385.
THEORBO. See LUTE, vol. xv. p. 71.
THEOSOPHY, as its derivation implies, is a term used to denote those forms of philosophic and religious thought Which claim a special insight into the Divine nature and its constitutive moments or processes. Sometimes this rnsight is claimed as the result of the operation of some nigher faculty or some supernatural revelation to the individual ; in other instances the theosophical theory is not hased upon any special illumination, but is simply put forward as the deepest speculative wisdom of its author. But in any caso it is characteristic of theosophy that it starts with an explication of the Divine essence, and endeavours to deduce the phenomenal universe from the play of forces within the Divine nature itself. It is thus differentiated at once from all philosophic systems which attempt to rise from an analysis of phenomena to a knowledge more or less adequate, of the existence and nature of God. In all such systems, God is tho terminus ad quem, a direct knowledge of whom is not claimed, but who is, as it were, the hypothesis adopted, with varying degrees of certainty in different thinkers, for the explanation of the facts before them. The theosophist, on the other hand, is most at his ease when moving within the circle of the Divine essence, into which be seems to claim absolute insight. This, howerer, would be insufficient to distinguish theosophy from those systems of philosophy which are sometimes called "speculative" and "absolute," and which also in many cases proceed deductively from the idea of God. In a wide sense, the system of Hegel or the system of Spinoza may be cited as examples of what is meant. Both thinkers claim to exhibit the universe as the erolution of the Divine nature. They must believe, therefore, that they have grasped the inmost principles of that nature: so much is involved, indeed, in the construction of an absolute system. But it is to be noted that, though there is much talk of Cod in such systems, the known universe-the world that now is-is nowhere transcended; God is really no more than the principle of unity immanent in the whole. Hence, while the accusation of pantheism is froquently brought against these thinkers, the torm theosophical is nover used in their regard. A theosophical system may also bo pantheistic, in tendency if not in intention; but the transcendent character of its Godhead definitely distinguishes it from the speculative philosophies which might otherwise seem to fall under the same definition. An historical surrey shows, indeed, that theosophy generally arises in connexion with religious nceds, and is the expression, of religious convictions or aspirations. Now the specifically religious consciousness is not pantheistic in any naturalistic sense; God is rather regarded as the trauscendent source of being and purity, from which the individual in his natural state is alienated and afar off. Theosophy accepts the testimony of religion that the present world lies in wickedness and imperfection, and faces the problem of speculatively accounting for this state of things from the nature of the Godhead itself. Theosophy is thus in some sort a mystical philosophy of the existence of evil; or at least it assumes this form in some of its most typical representatives.

The name with which it is oftenest cour led is mysticism (see Mysticism). The latter term has properly a practical rather than a sueculative reference; but it is currently
applied so as to include the systems of thought on which practical mysticism was based. Thus, to take only one prominent example, the profound speculations of Meister EckHart (q.v.) are always treated under the head of Mysticism, but they might with equal right appear under the rubric 'Cheosophy. In other words, while an emotional and practical mysticism may oxist without attempting philosophically to explain itself, speculative mysticism is almost another name for theosophy. There is still a certain difference observable, however, in so far as the speculative mystic remains primarily concerned with the theory of the soul's relation to God, while the theosophist gives his thoughts a wider scope, and frequently devotes himself to the elaboration of a fantastic philosophy of nature.

In the abore acceptation of the term, the Neoplatonic doctrine of emanations from the supra-essential One, the fanciful emanation-doctrine of some of the Gnostics (the æons of the Valentinian system might be mentioned), and the elaborate esoteric system of the Kabbalah, to which the two former in all probability largely contributed, are generally included undor the head c_{i}^{f} theosophy. In the two latter instances thero may be noted the allegorical interpretation of traditional doctrines and sacred writings which is a common characteristic of theosophical writers. Still more typical examples of theosophy are furnished by the mystical system of Meister Eckhart and the doctrine of Jacob Boemme (q.v.), who is known as "the theosophist "par excellence. Eckhart's doctrine asserts behind God a predicateless Godhead, which, though unknowable not only to man but also to itself, is, as it were, the essence or potentiality of all things. From it proceed, and in it, as their nature, exist, the three persons of the Trinity, conceived as stadia of an eternal self-revealing process. The eternal generation of the Son is equivalont to the eternal creation of the world. But the sensuous and phenomenal, as such, so far as they seom to imply independence of God, are mere privation and nothingness; things exist only through the presence, of God in them, and the goal of creation, like its outset, is the repose of the Godhead. The soul of man, which as a microcosmos resumes the nature of things, strives by self-abnegation or self-ancihilation to attain this unspeakable reunion (what Eckhart calls being buried in God). Regarding evil simply as privation, Eckhart does not make it the pivot of his thought, as was afterwards done by Boehme, but his notion of the Godhead as a dark and formless essence is a favourite thesis of theosophy. The followers of Eckhart are either practical mystics, or reproduce at most what may be called their master's speculative theology, till we come to Boehme.

Besides mystical theology, Boehme was indebted to the writings of Paracelsus. This circumstance is not accidental, but points to an affinity in thought. The nature philosophers of the Renaissance, such as Nicholas of Cusa, Paracelsus, Cardan, and others, curiously blend scientific ideas with speculative cotions derived from scholastic theologyं, from Neoplatonism, anu eren from the Kabbalah. Hence it is customary to speak of their theories as a mixture of theosophy and physics, or theosophy and chemistry, as the caso may be. Boehme offers us a natural philosoplyy of the same sort. As Boehme is the typical theosophist, and as modern theosophy has nourished itself almost in every case, upon the study of his works, his dominating conceptions supply us with the best illustration of the general trend of this mode of thought. His speculation turns, as has been said, upon the necessity of reconciling the existence and the might of evil with the existence of an all-embracing and all powerful God, without falling into Nanichæanism on the one hand, or, on the.
other, into a naturalistic pantheism that denies the reality of the distinction between good and evil. He faces the dificulty boldiy, and the eternal conflict between the two may be said to furnish bim with the principle of his philosophy. . It is in this connexion that he insists on the necessity of the Nay to the Yea, of the negative to the positive. Eckhart's Godhead appears in Boehme as the abyse, the eternal nothing, the essenceless quiet ("Ungruad" and "Stille ohne Wesen" are two of Boehme's phrases). But, if this were all, the Divine Being would remain au abyss dark even to itself. In God, however, as the condition of His manifestation, lies, according to Boehme, the "eternal nature" or the mysterium magnum, which is as anger to love, as darkness to light, and, in general, as the negative to the positive. This principle (which Boebme often calls the evil in God) illuminates both sides of the antithesis, and thus contains the possibility of their real existeace. By the "Qual" or torture, as it were, of this diremption, the universe has qualitative existence, and is knowable. Even tho three persons of the Trinity, though existing idealiter beforehand, attain reality only through this principle of nature in God, which is hence spoken of as their matrix. It forms also the matter, as it were, oat of which the world is created; without the dark and fiery priaciple, we are told, there would be no creature. Hence God is sometimes spoken of as the father, and the eternal nature as the mother, of things. Creation (which is conceived as an eternal process) begins with the creation of the angels. The subsequent fall of Lucifer is explained as his surrender of himself to the principle of nature, instead of dwelling in the heart of God. He sought to make anger predominate over love ; and he had his will, becoming prince of hell, the kingdom of Cod's anger, which still remains, however, an integral part of the Divine universe. It is useless to follow Boebme further, for his cosmogony is disfigured by a wild Paraceisian symbolism, and his constructive efforts in general are full of the uncouth straining of an uutrained writer. In spite of these defects, his speculations have exercised a remarkable influence within the present century, notably upon the later phases of Schelling's philosophy, upon Franz von Baader, Molitor, and others. : Sclelling's Philosophical Inquiries into the Nature of IIuman Freedom (1809) is almost entirely a reproduction of Boehme's ideas, and forms, along with Baadcr's writings, the best modern example of theosophical speculation. In his philosophy of identity Scherime (q.v.) had already defined the Absolute as pure indiffereace, or the identity of subject and object (of the ideal and the real), but without advancing further into theogony. He now proceeded to distinguish three moments in God, the first of which is the pure indifference which, in a conse, precedes all existeace-the primal basis or abyss, as he calls it, in agreement with Boehme. But, as there is nothing before or besides God, God must have the ground or cause of His existence in Himself. This is the second moment, called nature ia God, distioguishable from God. but inseparable from Him. It is that in God which is not God Himself ; it is the yearning of the eternal One to give birth to itself. This yearning is a dumb uointelligent longing, which moves like a heaving sea in obedience to some dark and indefinite law, and is powerless to fashion anything in permanence. But in correspondence to the first stirring of the Divine existence there awakes in Cod Himself an inner reflexive perception, by means of which-since no object is possible for it but God-God beholds Himself in His own image. In this, Cod is for the first timo as it were realized, although as jet only within Himself. This perception combines as understanding with tho primal yearning, which becomcs thereby free creative will, and

Frorks formatively in the originally larless natare or ground, In this wise is created the world as we know it. In every natural existence there are, therefore, two principles to be distinguished-first, the dark principle, through which this is separated from God, and exists, as it were, in the mere ground; and, secondly, the Divine principle of understand, ing. The first is the particular will of the creature, the second is the universal will. In irrational creatures the particular will or greed of the individual is controlled by external forces, and thus used as an instrument of the universal. But in man the two principles are consciously prcsent together, not, however, in insoparabls union, as they are in God, but with the possibility of separation. This possibility of separation is the possibility of good and evil. In Boehme's spirit, Schelling defended his idea of God as the only way of vindicating for God the conscious ness which naturalism denies, and which ordinary theism emptily asserts. This theosophical transformation of Schelling's doctrine was largely due to the influence of his contemporary Basder (q.v.). Baader distinguishes, in a manner which may be paralleled from Boehme, between an immanent or esoteric process of self-production in God, through which He issues from His unrevealed state, and the emanent, exoteric, or real process, in which God overcomes and takes up into Himself the eternal "nature" or the principle of selfhood, and appears as a Trinity of persons. The creation of the world is still further to be distinguished from these two processes as an act of freedom or will ; it cannot, therefore, be speculatively constructed, but must be historically accepted. Baader, who combined bis theosophy with the doctrines of Roman Catholicism, bas had many followers. Among thinkers on the eame lines, but more or less independent, Molitor is perkaps the most important. Swedenbora (q.v.) is usually reckoned among the theosophists, and some parts of his theory justify this inclusion; but his system as a whole has little in common with those speculative constructions of the Divine nature which form the essence of theosophy. as strictly under, stood.
(A .8 se .)
THERA, or, as it is now called, SANTokin, is a volcani¢ island in the Æigean Sea, the southernmost of the group of islands, called Sporades, which intervene between the Cyclades and Crete. From the last-named island it is separated by a space of 60 miles of sea, but the lofty Cretan ranges of Dicte and Ida are clearly visible from it in fine weather In shape Saatorin forms a crescent, and encloses a bay on the north, east, and south, while on the western side lies the smaller island of Therasia. The encircling wall thus formed, which is elliptical in shape and 18 miles round in its inner rim, is
 Ther rim, is Thera and neighbouring 1slards. broken in two places,-towards the north-west ty a strait a mile in breadth, where the water is not less tias 1100 feet deep, and towards the south-west by an aperture about

3 miles wide, where the water is shallow, and an island called Aspronisi or White Island, lying in the middle, serves as a stepaing-stone between the two promontories. The cliffs rise perpendicularly from the waters of the bay, in some'places to the height of 1000 feet; but towards the open sea, both in Santorin and Therasia, the ground slopes gradually away, and has been converted into broad level terraces, everywhere covered with tufaceous agglomerate, which, though extraordinarily bare and ashen to the eye, is the soil which produces the famous Santorin wine. Towards the south-east rises the limestone peak of Mount Elias, the highest point of the island (1887 feet), and the only part that existed before the volcano was formed. In the middle of the basin lie three small islands, which are the centre of volcanic activity, and are called Palæa, Mikra, and Nea Kaumene, or the Old, the Little, and the New Burnt Island ; the lighest of these, Nea Kaumene, is 351 feet above the sea-level. Owing to the depth of the water there is no anchorage, and vessels have to be moored to the shore, except at one point in the neighbourhood of the modern town, where there is a slight rim of shallow bottom. The cliffs both of Sautorin and Therasia present an extraordinary appearance, being marked in horizontal bands by black lava, white porous tufa, and other volcanic strata, some parts of which are coloured dark red. The modern town of Thera (or Phera, as it is more commonly pronounced) is built at the edge of these, overlooking the middle of the bay at a height of 900 feet above the water, and the houses of which it is composed are themselves peculiar, for their foundations, and in some cases their sides also, are excarated in the tufa, so that occasionally they are hardly traceable except by their chimneys; and, owing to the absence of timber,-for, with the exception of the fig, the cactus, and the palm, there are hardly any trees in the island,-they are roofed with barrel vaults of stone and cement. Both wood and water have occasionally to be imported from the neighbouring islands, for there are no wells, and the rain water, which is collected in numerous cisterns, does not always suffice. The largest of the other towns or villages is that of Apanomeria, near the northern entrance, which is crowded together in a white mass, while the rocks below it are the rededest that are seen in the island.
Santorin has from the earliest times been a centre of volcanic agency, and is closely connected with the earthquake movements to which the countries in the neighbourhood of the Egean are subject, and which have been the chief causo of the destruction of the public buildings of ancient Greece. It is hardly accurate to speak of the basin which forms the harbour as a crater, for most goologists, including Lyell, aupport the view that the whole of this, epace was once covered by a single voleanic cone, the incline of which is reprcsented by the outward elope of Santorin and Therasia, While the position of the crater was that now occupied by the Kaumene Islands; and that, at some remote period, owing to the sinking of the strata beneath, the central portion of this, extending over an area which a French writer compares with that included within the fortifications of Paris at the time of the siege, fell in, by which convulsion the basin was formed. The principal eruptions that have taken place within historic times are that of 196 n.c., When, as we learn from Strabo (i. $3, \$ 16$, p. 57), flames rose from the water halfway between Thera and Therasia for four days, and the island of Palæa Kaumene was ejected; that of 726 A.D., during the reign of the emperor Leo the Isaurian, when an addition was made to that island, and the pumice-stone that was cast forth was carried by the waves to the shores of Asia Minor and Macedonia; that of 1573, when Mikra Kaumene appeared; that of 1650, a foarful eruption, which deatroyed many lives by its nozious exhalations, and ended in the upheaval of an island in the sea to the north-east of Santorin, which afterwards subsided and became a permanent reef below the ees-lovel; that of 1707, when Nea Kiumene arose; and, within the recollection of the present generation, that of 1866.
Santorin and Therasia have been recently the scene of a remarkfible archæological discovery. In the southern parts of both those islands prehistoric dwellings have been found at some height above the sea, and there is no reasonable canse to doubt that these date
from a period autecedent to the falling in of the crater and the formation of the bay. This is proved by their position underncath the layer of tufa which covers the islands, and, moreover, hy these layers of tufa being broken off precipitously, in the same way as the lava-rocks, a fact which can ouly be explained hy the supposition that they all fell in together. The foundations of the dwellings rested, not on the tufa, but on the lava below it; and here and there between the stones branches of wild olive were found, accord. ing to a mode of building that still prevails in the island, in order to resist the shocks of earthquakes. Part of the skeleton of a man was discovered, and largo vases, some containing grain, othera stone instruments very carefully worked. Some of these vases were of fine yellowish earth, ornamented with brown bands; some, of smaller size, were more elaborately decorated, sometimes with lines representing foliage, and in a few instances with figures of animals; some were of red earth, without ornament; while others, of pale red earth, were of very large dimensions. No implements of metal were found. Naturally it has been the subject of much discussion what was the origin of this very primitive art. The late ML. Dumont, who was the leading authority on the subject (Les Céramiques de la Grèce Propre, pp. 74, 75, 209), though speaking with great caution on account of the insufficiency of the evidence, iuclined to the belief that it was partly derived from Phonician influence, but at the same time that there were evident traces of uative originality. Comparing it in respect of date with the other prehistoric developments of art in the neighbourhood of the Egesn, he would place it later than that of Hissarlik, but earlier than those of Ialysus in Rhodes, and of Mycenæ.

In Greek legend the island of Thera was connected with the story of the Argonauts, for it was represented as sprung from a clod of earth which was presented to those heroes by Triton (Apollon., Argonaut., iv. $1551 \mathrm{sq} ., 1731 \mathrm{sq}$.). According to Herodotus (iv. 147), a Phœenician colony was established there by Cadmus-a story which proves at least the belief that there was an early settlement of that race in the island. It has even been conjectured (see vol. xviii. p. 806) that the alphabet was introduced into Greece, not, as was commonly believed, throurh Thebes, but by way of Thera. Subsequently, we are told, a colony from Sparta, including some of the Minyæ, was led thither by Theras, who gave the island his own name, in place of that of Calliste which it had borne before. But the one event which gave importance to Thera in ancient history was the planting of its famous colony of Cyrcne on the north coast of Arrica by Battus in 631 B.c., in accordance with a command of the Delphic oracle. The ancient capital, which bore the same name as the island, has been identified by an inscription as occupying a site on the eastern coast called Mesa-Vouno, between Mount Elias and the sea. The other remains of the classical period consist of walls and tombs, together with several herod or small shrines, one of which, now dedicated to St Nicholas Marmorites, who is so called in honour of his marble structure, is an almost unique specimen of a perfoct Greek temple, for even the roof remains intact. After the fourth crusade, when the Byzantine empire was partitioned among the Latins, this island formed a portion of the duchy of the Archipclago; and it was at this period that it received the name of Santorin, i.e., St lrene, after the patron saint of the place, to whom Tournefort mentions that in his time nine or ten chapels were dedicated. 'At the present day Santorin is in a prosperous condition, for, in addition to the wine trade, which is highly remunerative, there is a large export of pozolana, which has been much used for the works at-Port Said in connexion with the Suez Canal, since, when mixed with lime, it forms a very hard cement which resists the action of the sea.
General information with regard to the Thera groap will be found in Ross's Inselfeisen, and in Lieut. Leycester's paper in vol. xx. of the Journal of the R. Geogr. Soc,; a very complete aecount of the scientific phenomens is given in Fouqués Saztorin et ses Eruptions. On the prehistoric antiquities, Lenormant, Revue Archeologigue, new ser., vol. Xir, and Fouqqé, Archires des M/issions, 2 d
 roc ixxxif, shonld be consalted. Of the life of the modera Inhabitants s praphtio
account fo given in Mr Bent's Cylades.

THERAMENES, an Athenian who played a prominent part in the history of Athens towards the close of the Peloponnesian War and in the revolution which followed it. He was one of the conspirators who, in 411 B.c., abolished the democracy at Athens, and substituted the oligarchy of the Four Hundred. The adhesion of the army in Samos to the democracy, however, created dissensions among the oligarchs at Athens. Theramenes supported the more moderate section, and was the chief means of destroying a fortress which the extreme section had been building at the mouth of the harbour, ostensibly as a protection against any violent movement on the part of the democrats, at Samos, but really, according to Theramenes, to admit the encmy. He further accused Antiphon and Archeptoles mus, members of the extreme oligarchical party, whul
aceording to Lysias, had been his own intimate friends, and sccured their capital punishment. In 410 Theramenes commanded one of the three squadrons of the Athenian fleet in the victory over the Spartans at Cyzicus. In 409 he took part in the siege of Chalcedon and the capture of Byzantium. At the battle of Arginuse in 406 he was one of the officers deputed by the generals in command to pick up the crews of the disabled ships; but the rescue mas not effected, on account, it seems, of the storm. Nevertheless, on his return to Athens, Theramenes took a leading part in accusing and procuring the condemnation to death of the generals for neglecting to rescue the men. When Athens was besieged by the Peloponnesians, Therainenes conducted the negotiations for surrendering the city, traitorously prolonging them till starvation compelled the Athenians to accept the rigorous terms imposed by Sparta. After the surrender he formed one of the notorious Thirty who, backed by a Spartan garrison, misgoverned Athens. But by opposing their excesses he incurred their suspicions, and, being denounced by Critias, the most violent of the Thirty, be was, in defiance of the forms of law, put, to death (404). He submitted to his fate with a fortitude which won the admiration of his contemporaries and of posterity, and which might well have graced the close of a better life. His ability and eloquence are recognized by Thucydides, and Aristotle is said by Plutarch (Nic., 2) to have reckoned him one of the three best patrints of Athens. This latter judgment is not borne out by the facts as we know them. Rather Theramenes appears as a selfish and faithless trimmer, who deserved his nickname Cothurnus (a boot which fitted either foot).

The chief authorities for his life are Thucydides, viii.; Xenophon, Hellenica, i., ii. ; Lysias, Contra Erat. ; Diodorus, xiii., xiv.

THERAPEUTÆ. See Monachism, vol. xvi. p. 698.
THERESA, St (1515-1582). Teresa de Cepeda, perhaps the favourite saint of modern Spain, was born at Avila, in Old Castile, on the 28th of March 1515, -at the rery time, adds her biographer, " when Luther was secreting the poison which he vomited out two years later." She was one of a large family-eight sons and three daughters. Her father was a Spanish gentleman of good family, whose time was chiefly occupied with devotional reading and works of charity. Teresa's mother, his second wife, was a beautiful woman, confined generally to a sofa by delicate health. From her her danghter appears to have inherited both delicacy of health and a remarkably susceptible imagination. She delighted in the books of knight-errantry which abounded in the library, and Fier children sat up at night in their nursery over the same romances. But Teresa's imagination was judiciously diverted by ber father to another form of heroism. She was soon as deep in the histories of the martyrs as she had been in the tales of chivalry. She learned from these histories that martyrs passed straight to heaven without any detention in purgatory ; and, being eminently practical as well as imaginative, she reselved to secure that blessing for herself. When she was seven years old, she started uff with her little brother to go and seek martyrdom in the country of the Moors. They had reached the bridge on the stream which runs through the town, when an uncle met them and brought them back. Balked thus of their desire, they played at hermits, making themselves cells in the garden, and giving array their pocket-money to beggars. Teresa lost her mother early, and as she grew up the vanities and flirtations of a pretty girl took the place of these pious imaginations. Her father deemed it best to send her to be educated in an Augustinian convent in the torn, but without any thoughts of her adopting a religious life. She would probably have married like her sisters, had it not been for an attack of illness. She was
sent a way for change of air on a visit to one of her sisters, and on her way home spent some days with a saintly uncle, who was on the ere of entering a monastery, and who strongly urged her to withdraw from the world. Her father was greatly opposed to the step, but Teresa was not to be turned from what she conceived to be her duty. She was only eighteen when she left home ons morning, and applied for admission at the Carmelite convent of the Incaruation. She was disappointed at first at the slackness of discipline. The sisters mixed frecly in the society of Avila, receiving visits and returning them, and often absenting themselves from the cloister for months at a time. For the first three years she was constantly subject to attacks of sickness, fainting fits, and paroxysms of pain, but she prayed to St Joseph, after which she became comparatively better, though her nervous system was completely shaken. But she appears afterwards to have accommodated herself with tolerable success to the worldliness of her environment, though not without intervals of religious misgiving. "For twenty years," she says, "I was tossed about on a stormy sea in a kretched condition, for, if I had small content in the world, in God I had no pleasure. At prayer time I watched for the clock to strike the end of the hour. To go to the oratory was a rexation to me, and prayer itself a constant effort." At one time she abandoned prayer altogether, as she found it impossible to fix her thoughts, and she abhorred the hypocrisy of mechanically repeating a fortu of words. It was in the year 1554 (her noviciate daind from 1534), when she was thus nearly forty, that the event known as her conversion took place, and the second part of her life began. The death of her father roused her to serious reflexion, and one day, as she entered the oratory, she was struck by the image of the wounded Christ, placed there for an approaching festival. The blood was depicted as streaming over the face from the thorns and running from the side and the hands and feet. The spectacle of suffering pierced Teresa's breast; she fell in tears at the feet of the figure, and felt every worldly emotion die within her, The shock threw her into a trance, and these trances, accompanied by visions, recurred frequently in the subse. quent part of her life. They hare since been adduced as Divine attestations of her saintship, but the sisterbood in the conrent set them down to possession by a deril ; ber new departure was due in their eyes to no worthier motive than the desire to be peculiar and to be reputed better than other people. Teresa herself was very humble, and thought their explanation might be true; she took ber case to her confessor and to the provincial-general of the Jesuits. The latter put her under a course of discipline: she was to flog herself with a whip of nettles, to wear a haircloth plaited with broken wires that would tear the skin, and to meditate daily on the details of Christ's passion. One day, while thus occupied, her trance came upon ber, and she heard a voice say, "Thou shalt have nu more converse with men, but with angels." After this the trance or fit always returned when she was at prayers, and she felt that Christ was close to her. Presently she was able to see him, "exactly as he was painted rising from the sepulchre." Her confessor directed her to exorcise the Ggure, and she obeyed with pain, but, it is needless to say, in rain. The visions grew more and more vivid. The cross of her rosary was snatched from lier hand one dey, and when returned it was made of jewels more brilliant than diamonds, visible, bowever, to Ler alone. She had often an acute pain in her side, and fancied that an angel came to her with a lance tipped with firc, which he struck into ber heart. The 27th of August is kept sacred io Spain to this mystery, which has also formed a favourite subject of Spanish painters: it forms the frontispiece of
XXIII. - ${ }^{6} 6$
the biography which is put into the hands. of Catholics. 'She had also visions of another description: she was shown hell with its horrors, and the devil would sit upon her breviary, belabour her with blows, and fill her cell with imps. For several years these experiences continued, and the verdict as to their source still remained far from unanimons. Meanwhile, on the broad stage of the world, the Reformation continued to spread and establish itself; and this great falling away became the subject of much searching of hearts to pions Catholics. Tepesa reflected like the rest, and her experience led her to find the real cause of the catastrophe in the relaxation of discipline within the religious orders. If the ancient rules' could be restored, it appeared to her that the evil might be stemmed; and she formed the project of founding a house In which all the original rules of the Carmelite order before its relaxation would be observed. She met, not unnaturally, with great opposition from the authorities of the order, and in particular from the prioress and sisters of the Incarnation, who looked upon the step as a reflexion upon themselves. Nevertheless, she persevered with her scheme, being encouraged to appeal to the pope by certain priests who saw the benefit which would accrue to the church from ber zeal. A private house in Avila was secretly got ready to serve as a small convent, and, when the bull arrived from Rome, Teresa went out on leave from the Incaruation and installed fuur poor women in the new house dedicated to her patron St Joseph. It was on the 24 th of August 1562 that mass was said in the little chapel and the new order constituted. It was to be an order of Descalzos or Barefoots, in opposition to the relaxed parent body, the Calzados. The sisters were not to be literally shoeless, but to wear sandals of rope; they were to sleep on straw, to eat no meat, to be strictly confined to the cloister, and to live on alnis without regular endowment. After lodging lier four sisters, Teresa returned to the Incarnation, as in duty bound; but, when the secret was discovered, Carmelites and townspeople were alike furious. Yiolence, however, was prevented, and the inatter was referred to the council of state at Madrid. Philip II. referred it again to the pope, and after six months a fresh bull arrived from Pius V. The provincial of her order now gave her leave to remove and take charge of her sislerhood. The number of thirtecn, to which on grounds of discipline she had limited the foundation, was soon filled up, and Teresa spent here the five happiest years of her life. Her visions continued, and, by cominand of her ecclesiastical superiors, slie wrote her autobiography containing a full account of these experiences. She hersalf, however, profoundly as she believed in their reality, saw the danger which attachos to such experiences, and was far from basing any claim to holiness upon thein. One of her visions about this time is interesting as illustrating what is called her mysticism. She fancied that she was a mirror withont frame and without dimensions, with Christ shining in the centre of jt, and the mirror itself, she knew not how, was in Christ. Teresa was now encouraged to carry her work still further, for the chureh was girding itself to the work of the Counter-Reformation. The general of the order visited her at Avila, and gave ber powers to found other houses of Descalzos, for meu as well as women. The last fifteen years of ber life were spent mainly in journeys witi this end and in the continually growing labour of organization. She travelled in a rude cart in all weathers, and the story of her hardships and misadventures impresses us with the strength of will that animated her old and shaken frame. Convents were founded at Medina, Malaga, Valladolid, Toledo, Segovia, and Salamanca, and two at Alva under the patronage of the famous duke. Then she had three
years of $r k_{0}$, as prioress of her old convent or the incard mation. She next went to Seville to found a house, thug overstepping for the first time the boundaries of the Castiles, to which her authorization limited her. The latent hostility of the old order was aloused ; the general ordered the imnediate suppression of the house at Seville, and procured a bull from Gregory XIII. prohibiting the further extension of the reformed houses (1575). But the movement against her came from Italy, and was resented by Philip and the Spanish authorities as undue interference; and, after a fierce strnggle, duriug which Teresa was twn years under arrest at Toledo, the Carmelites were divided into two bodies in I580, and the Descalzos obtained the right to elect their own provincial-generals (see Carmelftes). The few remaining years of Teresa's life were spent in the old way, organizing the order she had founded, and travelling about to open new convents. Sixteen convents and fourteen monasteries were founded by her efforts; she wrote a history of her foundations, which forms a supplement to her antobiography. At Burgos, during the whole of a wet autumn and winter! she endured terrible privations. Her own nuns, too, were not always as single-minded and obedient as the ideal sisterhood of her hopes had been. Those at St Joseph in Avila mutinied for a meat diet; the prioress at Medina answered her impertinently. Her last journey of inspection was cut short at Alva, where she died on the 29th of September 1582, and was laid in her first, but not her last, resting-place. A violet odour and a fragrant oil were said to distil from her tomb; and when it was opened nine montlis afterwards the flesh was found uncorrupted. A hand cut off by a fervent brother was found to work miracles, and the order became convinced that their, founder had been a saint. It was resolved in 1585 to' remove her remains to Avila, where she was born, the sisters at Alva being consoled by permission to retain the mutilated arm. But the family of the duke of Alva procured an order from the pope enjoining that the body' should be restored to Alva, and she was accordingly laid there once more in a splendid tomb. But even then sho was not allowed to rest: she was again disentombed, to be laid in a more maguificent coffin, and the greed of reverential relic-seekers made unseemly havoc of her bones.

Teresa was canonized by Gregery XV. in 1622. The honour

 was doubtless largely due to her asceticism and mystic visions. She called herself Teresa de Jesus, to signify the closeness of hei relatiou to the heavealy Bridegroom, who directed all her actiona Thourh she deprecated excess of ascetic severity in otbers, sno scourged hersclf habitually, and wore a peculiarly painful haircloth. But her life shows her to have been, besides, a woman of strong practicality and good sense, full of natural shrewdness, and with ituusual powers of organizetion. "You deceived me in saying she was a woman," writes one of her confessors; "she is a bearded man." Slie was brave in the face of difficulties and dangers, pure in her motives, and her utterances, some of which liave been quoted, have the true ethical ring about them. Her MSS. अero collected by Philip I1. and placed in a rich case in the Escorial the key of which the king carried about with lim. Besides hew autobjography and the history of her foundations, her works (all written in Spanish) contain a great number of letters and varions treatises of mystical religion, the chief of which are The Way of Perfcction and The Castle of the Soul. Both describe the progress of the sonl towards perfect mnion with Goul.Her works, edited by iwe Dominicans, were first pullished in 1587, and have since appeared in various edltions. They were soon afterwards transiated Into 1tallan, French, and Latin; an English translation of the Life and works (except the letrers) by A. Woodhead appeared in 1669. More recently various transla. thons of tha Life havo appeared, -by Jolin Dalton (1851), who also translated the IFay of Perfection, and by Mavid Lewis (1870), followed in 1871 by the Foundations from tho asme land. Biographes appeared soon after her death by the Jesuit Ribera, who had been her confessor (1602), and by Diego de Yepez, confessor to l'hilip 11 . (1599). Detalls are alog giren in Ribadeneyra'a Flos Sanctorum and In Alinn Butter's Lives of the Saints. A separate blography, with prefaca by Arclibishop Manning, apperred in 1865 , and an intercsting and nympathetle account of her life is given in the Quarterly Revieto for'October 1883. (A. SE.)

THERESIOPEL, or Theresienstadt. See Szabadka.
THERMAL SPRINGS, See GEOLOGY, vol. x. pp. 223, 270, and Mineral Waters.

THERMODYNAMICS. In a strict interpretation, this branch of science, sometimes called the Dynamical Theory of Heat, deals with the relations between heat and work, though it is often extended so as to include all transformations of energy. Either term is an infelicitous one, for there is no direct reference to force in the majority of questions dcalt with in the subject. Even the title of Carnot's work, presently to be described, is much better chosen than is the more modern designation. On the other hand, such a German phrase as die bewegende Kraft der Wärme is in all respects intolerable.

It has been sbown in a previous article (Energy) that Newton's enunciation of the conservation of energy as a general principle of nature was defective in respect of the connexion between work and heat, and that, about the beginning of the present century, this lacuna was completely filled up.by the researches of Ramford and Dary (see also Heat). In the same article Joule's experimental demonstration of the principle, and his determination of the work-equivalent of beat by various totally independent processes, bave becn discussed.

But the conservation of energy, alone, gives us an altogether inadequate basis for reasoning on the work of a heat-engine. It enables us to calculate how much work is equivalent to an assigned amount of heat, and vice versa, provided the transformation can be effected; but it tells us nothing with respect to the percentage of either which can, under given circumstances, be converted into the other. For this purpose we require a special case of the lav of transformation of energy. This was first given in Carnot's extraordinary work entitled Reflexions sur la Puissance Motrice du Feu, Paris, 1824. ${ }^{1}$

1 The author, N-L-Sadi Carnot (1796-1832), was the second eon of Napoleon's celebrated minister of war, himself a xaathematicisa of real note evea among the wonderful galaxy of which. France could then boast. The delicate constitution of Sadi was attributed to the agitated circumstaaces of the tine of bis birth, which led to the proscriptioa add temporary exile of his pareats. He was admitted in 1812 to the Ecole Polytechnique, where be was a fellow-atudent of the famous Chasles. Late in 1814 be left the school with a commission in the Engineers, and with prospects of rapid advancement in his profession. But Waterloo and the Restoration led to a second and fial proscription of his father; and, though Sadi was not himself cashiered, he was porposely told off for the merest drudgeries of his serviep; il fut " envoyé successivernent das plusieurs places fortes pour y faire son métier d’iagénieur, compter des briques, réparer des paas de murailles, et lever des plans destiaés à a'enfocir dans les cartons," as we learn from a biographical notice writtea by his younger brother. Disgusted with an employment which afforded him neither leisure for original work nor opportunities for acquiring scientific instruction, be presented himself in 1819 at the examination for admission to the ataff-corps (etat-major), and obtained a lieutenancy. He now devoted himself with astooishing andour to mathematics, chemistry, Datural history, tecbaology, and evon political economy. He was an enthusiast in music and other fine arts; and he habitually practised as an amusemeat, while deeply studying ia theory, all sorts of athletic sports, including swimming and fencing. He became contain in the engineers in 1827, bat left the service altogether in the followiog year. His aaturally feeble constitution, farther weakened by excessive devation to atudy, broke down finally in 1832. A relapse of scarlatina led to prain fever, from which be had but partially recovered when be fell a fictin to cholera. Thus died, at the early age of thirty-six, ona of the most profound and orizinal thiakers who have ever devoted themoelves to science. The work damed above was the only one he published. Thengh of itself sufficient to put him in the very foremost rank, it contains ouly a fragmeat of Sadi Carnot's discoveries. Fortunately his manuscripts have been preserved, aod extracts from them have beeu appended by his hrother to a reprint (1878) of the Puissance Motrice. These show that he had not only realized for himself the true nature of heat, but bad noted down for trial many of the best modera methods of finding its mechanical equivalent, such as those of Joule with the perforatcd piston aud with the internat friction of water and mercury. W. Thomson's experiment with a corrent of gas forced through a porous plug is also givea. Ono sentence of extract, however, must suffice, aud it is astanishing to think that it was writted over sixty years ago. "On peut conc poser en thèse générala que la puissance frolrice est en quantité́ invariablo dans la nature, qu'elle D'est jamais, \& proprement parler, ui produite, ni détruite. A Ja vérité. ella change de forme, c'est-dे-dire qu'elle
'The chief novelties of Carnot's work are the introduction of the idea of a cycle of operations, and the invaluable discovery of the special property of a reversible cycle. It is not too mach to say that, without these wonderful novelties, thermodynamics as a theoretical science could not have been developed.

Carnot's work seems to hare excited no attention at the time of its publication. Ten years later (1834) Clapeyron gave some of its main features in un anaIytical form, and he also employed Watt's diagram for the exhibition of others. Even this, bowever, failed to call attention properly to tho extremely novel processes of Carnot, and it was reserved for Sir W. Thotason (in 1848, and more at length in 1819) to point out to scientific med their full value. His papers on Carnot's treatise, following closely after the splendid experimental researches of Colding and Joule, secured for the dynamical theory of beat its position as a recognized branch of science. James Thomson, by Carnot's methods, predicted ir 1849 the lowering of the freezing point of water by pressure, which was verified experimentally in the same year by his brother. Von Helmholtz had published, two years before, a sirikingly original and comprehensive pamphlet on the conservation of energy. The start once given, Rankine, Clausius, and W. Thomson rapidly developed, though from very different standpoints, the theory of thermodynamics. The methods adopted by Thomson differed in one special characteristic from those of his concurrents,-they mere based entirely on the experimental facts and ou necessary principles; and, when hypothesis was absolntely required, attention was carefully directed to its nature and to the reasons which appeared to justify it.

Three specially important additions to pare science followed almost directly from Carnot's methods:-(1) the absolute definition of temperature ; (2) the thermodynamic fuaction or entropy; (3) the dissipation of energy. The first (in 1848) and the third (in 1852) were given by W. Thomson. The second, though introduced by Rankine, was also specially treated by Clausius.

In giving a brief sketch of the science, we will not adhere strictly to any of the separate paths parsued by its founders, but will employ for each step what appears to be most easily intelligible to the general reader. And We will arrange the steps in such an order that the necessity for each may be distinctly visible before wo take it.

1. General Notions.-The conversion of mechanical work into heat can always be effected completely. In fact, friction, without which even statical results would be all but unrealizable in practical life, interferes to a marked extent in almost every problem of kinctics,-ancl work done against friction is (as a rule) converted into heat. But the conversion of heat into work can be effectod only in part, usually in very small part. Thus beat is regarded as the lower or less uscful of these forms of energy, and when part of it is clevated in rank by couversion into work tho remainder sinks still lower in the scale of uscfulness than before.

There aro but tivo processes known to us for the con version of heat into work, viz., that adopted in heatengines, whero the changes of volume of the "working substance" are employed, and that of clectromagnctic engines driven by thermoelectric currents (see Electricriv, vol. viii. p. 96). To tho latter wo will not again refer. And for simplicity we will suppose ihe working sulstance to be fluid, so as to have the same Iressure throughout, or, if it be solid, to be isotropic, and to be subject only to bydrostatic pressure, or to tension uniform in all directions and the same from point to point.
produit tantôt ua genre de mouvement, tantôt un autre; mais cliw n'est jamais aqéantic."

The state of unit mass of such a substance is known by experiment to be fully determined when its volume and pressure are given, even if (as in the case of ice in presence of water, or of water in presence of steam) part of it is in one molecular state and part in another. But, the state heing determinate, so must be the temperature, and also the amount of energy which the substance contains. This consideration is insisted on by Carnot as the foundation of his investigations. In other words, before we are entitled to reason upon the relation between the heat supplied to and the work done by the working substance, Carnot says we must bring that substance, by means of a cycle of operations, back to precisely its primitive state as regards volume, temperature, and molecular condition.
2. Watt's Diagram.-Watt's indicator-diagram (see Steam-Fingine) enables us to represent our operations graphically. For if OM (fig. 1) represent the volume, at any instant, of the unit mass of working substance, MP its pressure, the point P is determinate and corresponds to a definite temperature, definite energy, de. If the points of any.curve,
 as PP^{\prime}, in the diagram represent the successive states through which the working sub. stance is made to pass, the work done is (loc. cit.) represented by the area MPP' M^{\prime}. Hence, a cycle of operations, whose essential neture is to bring the working substance back to its primitive state, is necessarily represented by a closed boundary, such as PP'Q'Q, in the diagram. The area enclosed is the excess of the work done by the working substance over that spent on it during the cycle. [This is positive if the closed path be described clockwise, as indicated by the arrow-heads.]
3. Carnot's Cycle.-For a reason which will immediately appear, Carnot limited the operations in his cycle to two kinds, employed alternately during the expansion and during the compression of the working substance. The first of these involves change of volume at constant temperature; the second, change of volume without direct loss or gain of heat. [In his hypothetical engine the substance was supposed to be in contact with a body kept at constant temperature, or to be entirely surrounded by non-conducting materials.]. The corresponding curves in the diagram are called isothermals, or lines of equal temperature, and adiabatic lines respectively. We may consider these as having been found, for any particular working substance, by the direct use of Watt's indicator. It is easy to see that one, and only one, of each of these kinds of lines can be found for an assigned initial state of the working substance; also that, because in expansion at constant temperature heat must be constantly supplied, the pressure will fall off less rapidly than it does in adiabatic expansiog. Thus in the diagram the adiabatic lines $P Q, P^{\prime} Q^{\prime}$ cut the lines of equal temperature $P P^{\prime}$, $Q Q$ downwards and to the right. Thus the boundary of the area $P P^{\prime} Q^{\prime} Q$ does not cross itself. To determine the behaviour of the engine we bave therefore only to find how much beat is taken in along PP^{\prime} and how much is given out in $Q^{\prime} Q$ Their difference is equivalent to the work expressed by the area P1'Q'Q.
4. Carnot's Principle of Reversibility.-It will be observed that each operation of this cycle is strictly reversible; for instance, to take the working substance along the path $\mathrm{P}^{\prime} \mathrm{P}$ we should have to spend on it step by step as much work as it gave out in passing along PP', and we should thus restore to the source of heat exactly the amount of heat which the working substance took from it during the expansion In the case of the adiabatics
the work spent during compression is the same as that done during the corresponding expansion, and there is no question of loss or gain of beat directly.

If, however, a transfer of heat between the working substance and its surroundings bave taken place on account of a finite difference of temperature; it is clear that such an operation is not reversible. Strictly speaking, isothermal expansion or contraction is unattainable in practice, but it is (without limit) more closely approximated to as the operation is more slowly performed. The adiabatic condition, on the other hand, is more closely approximated to in practice the more swiftly the operation is performed. We bave an excellent instance of this in the compression and dilatation of air caused by the propagation of a soundwave.

And now we have Carnot's invaluable proposition, a reversible heat-engine is a perfect engine,-perfect, that is, in the sense that no other heat-engine can be superior to it. Before giving the proof, let us see the immense consequences of this proposition. Reversibility is the sole test of perfection; so that all heat-engines, whatever be the working substance, provided only they be reversible, convert into work (under given circumstances) the same fraction of the heat supplied to them. The only circumstances involved are the temperatures of the source and condenser. Thus we are furnished with a general principle on which to reason about transformation of heat, altogether independently of the properties of any particular substance.

The proof, as Carnot gave it on the hypothesis of the materiality of beat, is ex absurdo. It is as follows. Suppose a heat-engine A to be capable of giving more work from a given amount of beat than is a reversible engine B, the temperatures of source and condenser being the same for each. Use the wo as a compound engine, A working direct and B reversed. By bypothesis B' requires to be furnished with part only of the work given by A to he able to restore to the source the beat abstracted by A, and thus at every complete stroke of the compound engine the source has its heat restored to it, while a certain amount of external work has been done. This would be the Perpetual Motion (q.v.).
5. The Basis of the Second Law of Thermodynamics. Carnot's reasoning, just given, is based on the hypothesis that heat (or caloric) is indestructible, and that (under certain conditions) it does work in being let down from a higher to a lower temperature, just as does water when falling to a lower level. It is clear from several expressions in his work that Carnot was not at all satisfied with this yiew, even in 1824, and we have seen that he soon afterwards reached the true theory. But it is also clear that such an assumption somewhat simplifies the reasoning, for in his hypothetical heat-engine all the heat which leaves the boiler goes to the condenser, and vice versa in the reversed working. The precise point of Carnot's investigation where the supposed indestructibility of heat introduces error is when, after virtually saying compress from Q^{\prime} to a state Q determined by the conditien that the heat given out shall be exactly equal to that taken in during the expansion from P to P^{\prime}, he assumes that, on farther compressing adiabatically to the original volume, the point P will be reached and the cycle completed. J. Thomson, in 1849, rectified this by putting it in the true form :compress from Q to a state Q, such that subsequent adiabatic compression will ultimately lead to the state P.

We have now to consider that, if an engine (whether simple or compound) does work at all by means of heat, less heat necessarily reaches the condenser than left the boiler. Hence, if there be two engines A and B as before, and the joint systen be worked in such a way that R constantly restores to the source the heat taken from it by,

A; we can account for the exccss of work done by 1 over that spent on B solely by supposing that B takes more heat from the condenser than A gives to $i t$. Such a compound engine would transform into work heat taken solely from the condenser. And the work se obtained might bs employed on B, se as to make it convey heat to the source while farther cooling the condenser.

Clausius, in 1850 , sought to complete the proof by the simple statement that "this contradirts the usual behaviour of heat, wbich always tends to pass from warmer bodies to colder." Some years later he employed tbe axiom, "it is impossible for a sclf-acting inachine, unaided by any external agency, to convey heat from one body to another at a higher temperature." W. Thomson, in 1851 , employed the axiom, "it is impossible, by means of inenimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects." But he was careful to supplement this by further statements of an extremely guarded character. And rightly so, for ClerkMaxwell has pointed out that such axioms are, as it were, only accidentally correct, and that the true basis of the secand law of thermodynamics lies in the extreme smallness and enormous number of the particles of matter, and in consequence the steadiness of their average behaviour. Had we the means of dealing with the particles individually, we could develep on the large scale what takes place continually on a very minute scale in every mass of gas, -tbe occasional, but ephemeral, aggregation of warmer particles in one small region and of colder in another.
6. The Laws of Thernoodynamics.-I. When equal quantities of mechanical effect are produced by any means whatever from purely thermal sources, or lost in purely thermal effects, equal quantities of heat are put out of existence, or are generated. [To this we may add, after Joule, that in the latitude of Manclester 772 foot-pounds of work are capable of raising the temperature of a pound of water from $50^{\circ} \mathrm{F}$. to $51^{\circ} \mathrm{F}$. This correspends to 1390 foot-pounds per centigrade degree, and in metrical units to 425 kilogramme-metres per calorie (see Неat).]
II. If an engine be such that, when it is worked backwards, the physical and mechanical agencies in every part of its motions are all reversed, it produces as much mechanical effect as can be produced by any thermodynamic engine, with the same temperatures of source and refrigerator, from a given quantity of heat.
7. Absolute Temperature.-We have seen that the fraction of the beat supplied to it which a reversible engine can convert into work depends only on the temperatures of the beiler and of the condenser. On this result of Carnot's Sir W. Themson based his absolute definition of temperature. It is clear that a certain freedom of choice is left, and Thomson endeavoured to preserve as close an agreement as possible between the new scale and that of the air thermometer. Thus the Lefinition ultimately fixed on, after exhaustive experiments, rons:-"The temperatures of two bodies are proportional to the quantities of heat respectively taken in and given out in localities at one temperature and at the other respectively, by a material system subjected to a complete cycle of perfectly reversible thermodynamic operations, and not allowed to part with or take in heat at any other temperature ; or, the absolute values of two temperatures are to one another in the propertion of the heat taken in to the heat rejected in a perfect thermodynamic engine, working with a source and refrigerator at the higher and lowcr of the temperatures respectively." If we now refer again to fig. 1 , we see that, t and t^{\prime} being the absolute temperatures correspondince to $P P^{\prime}$ and $Q Q^{\prime}$, and H, H^{\prime} the amounts of heat talen
in during the operation PP^{\prime} and given out duriug the operation $Q^{\prime} Q$ respectively, we lave

$$
\mathrm{H} / t=\mathrm{H}^{\prime} / l^{\prime},
$$

whatever be the values of t and t^{\prime}. Also, if heat be measured in terms of work, we have

$$
\mathrm{H}-\mathrm{H}^{\prime}=\text { area } \mathrm{PP}^{\prime} \mathrm{Q}^{\prime} \mathrm{Q} .
$$

Thus with a reversible engine working between temperatures t and t^{\prime} the fraction of the heat supplied which is converted into work is $\left(t-t^{\prime}\right) / t$.

It is now evident that we can construct Watt's diagram in such a way that the lines of equal temperature and the adiabatics may tegothon intercept a serics of equal areas. Thus let PP' (fig. 2) be the isothermal t, and on it so take points P, $P^{\prime \prime}, P^{P \prime \prime}$, \&c., that, as the working substance passes from P. to P^{\prime}, P^{\prime} to $P^{\prime \prime}$, scc., t units of beat (the unit being of any assigned value) shall in each case be taken in. Let QQ^{\prime},
 $R R^{\prime}$, \&c., be other isothermals, so drawn that the successive areas $P Q^{\prime}, Q^{\prime}$, \&c., between any two selected adiabatics, may be equal. Then, as it is clear that all the successive areas between each one pair of isothermals are equal (each representing the area $t-t^{\prime}$), it follows that all the quadrilateral areas in the figure are equal.

It is now clear that the area included between PP^{\prime} and the two adiabatics PQR, $P^{\prime} Q^{\prime} R^{\prime}$ is essentially finite, being numerically equal to t. Thus the temperature for each isothermal is represented by the corresponding area. This is indicated in the cut by the introduction of an arbitrary line SS^{\prime}, supposed to be the isothermal of absolute zero. The lower parts of the adiabatics also are unknown, so that we may draw them as we please, subject to the condition that the entire areas PS', P"S", $\mathrm{P}^{\prime \prime} \mathrm{S}^{\prime \prime \prime}$, \&c., shall all be equal. To find, on the absolute scale, the numerical valus of two definite temperatures, such as the usually employed freezing and boiling points of watcr, we must tberefore find their ratio (that of the heat taken and the heat rejected by a reversible engine working between these temperatures), and assign the number of degrees in the interval.

Themsen and Joule experimentally showed that this ratio is about $1 \cdot 365$. Hence, if we assume (as in the centigrade scale) 100 degrees as the range, the temperatures in question are 274 and 374 ncarly. A full discus. sion of this most important matter wiil be found under Heat.
8. Entropy.-Just as the lines $\mathrm{IP}^{\prime}, \mathrm{QQ}^{\prime}$, i.c., are claracterized by constant tempe:aturo along each, so we figure to ourselves a quantity which is characteristic of eacl adiabatic line, 一being constant along it. The equation of last section at once peints out such a quantity. If we write ϕ for its value along $P Q$, ϕ^{\prime} for $P^{\prime} Q^{\prime}$, we may define thus $\phi^{\prime}-\phi=\mathrm{H} / \mathrm{l}$.
From the statements as to the equality of the areas in fig. I the reader will see at once that the area bounded by $t, t^{\prime}, \phi, \phi^{\prime}$ is $\left(t-t^{\prime}\right)\left(\phi^{\prime}-\phi\right)$. We are concomed only with the chunges of ϕ, not with its actual maynitude, so that any one adiabatic may bo chosen as that for which $\phi=0$.
9. The Dissipution of Energy.-In the before-cited article Exerar (vol. viii. 1. 210) this part of the subject has alrcady been treated. Since that article was written Sir William Thumson las introduced the tern thernodynamic motivity to signify "the possession the waste of which is
called dissipation." We speak of a distribution of heat in a body or system of bodies as having motivity, and we may regard it from rithout or from within the system.

In the first case it expresses the amount of work which can be obtained by means of perfect engines employed to reduce the whole system to some definite temperature, that, say, of the surrounding medium. In the second case the system is regarded as self-contained, its hotter parts acting as sources, and its colder parts as condensers for the perfect cugine.

As an iostance of internal motivity we aay take the case of a system consisting of two equal 1 rrtions of the same substance at different temperatures, s y a pound of boiling water and a pound of ice-cold r ater. If we neglect the (small) change of specific heat with temperacure, it is found that, when the internal motivity of the system is exhausted, the temperature is about $46^{\circ} \mathrm{C}$., being the centigrade temperature corresponding to the geometrical mean of the original absolute temperatures of the parts. Had the parts been simply mixed so as to dissipate the interoal motivity, the resulting temperature would have been $50^{\circ} \mathrm{C}$. Thus the work gained (i.e., the original interaal motivity) is the equivalent of the beat which would raise two pounds of water from $46^{\circ} \mathrm{C}$. to $50^{\circ} \mathrm{C}$.

As an instance of motivity regarded from without we may take the simple case of the working substance in §.2, on the hypothesis that there is an assigued lower temperature limit. As there is no supply of heat, it is clear that the maximum of work will be obtaioed by allowing the anbstance to expand adiabatically till its temperature sinks to the assigned limit.

Thus if P (fig. 3) be its given position on Watt's diagram, $\mathbb{P Q}$ the adiabatic through P, and $P^{\prime} Q$ the isothermal of the lower temperature limit, Q_{p} is determinate, and the metivity is the area PQNM. If, agaio, we wish to find the motivity when the initial and final states P and P^{\prime} are given, with the condition that the temperature is not to fall below that of the state P^{\prime}, the problem is reduced
 to finding the course $P P^{\prime}$ for which the area PP'I'M is greatest. As no heat is supplied, the course cannot rise above the adiabatic $P Q$, and by hypothesis it cannot fall below the isothermal $P^{\prime} Q$,-bence it must be the broken tine PQP'. Thus, under the circumstances stated, the motivity is represeated by the area MPQP'M1. If any other la wful course, such as $P P^{\prime}$, be taken, there is an unnecessary waste of motivity represented by the area PQP^{\prime}.
10. Elemenlary Thermodynamic Relations.-From what precedes it is clear that, when tha state of unit mass of the workiag substance is gives by a point in the diagrain, an isothermal asd an adiabatic cin be drawn through that point, aad thus ϕ aad t are determiaate for each. particular substaace when p and v are given. Thus aay two of the four quantities p, v, t, ϕ may be regarded $s s$ functions of the other two, chosen as indepcadent rariables. The change of energy from ong stato to another can, of coursa, be oxpressed as in §9, above. Thus, puttiag E for the anergy, wa have st once

$$
d \mathrm{E}=t d \phi-p d v
$$

(1)
if ϕ and v bo chosen as iadapendent variables, and if huat ba measured, as above, in uaits of work. This eqaatios expresses, in symbols, the two lawe of thermodyaamics. For it states that the gain of energy is the axcess of the heat supplied ova: the work done, which is an expression of the first law. And it expresses the hest supplied as the product of the absolute temperature by the gain of entropy, which is a statement of the second law in terms of Thomson's modes of measuring absoluta temperature.

But we now have two equatious in 'partial differsntisl co. sficieats:-

$$
\left(\frac{d \mathrm{E}}{d \phi}\right)-t, \quad\left(\frac{d \mathrm{E}}{d v}\right)=-p
$$

From these sve have two exaressions for the value of $\left(\frac{d^{3} E}{d v d \phi}\right)$.

Equating them, we are lad to tha thermodynamic relation

$$
\left(\frac{d t}{d v}\right)=-\left(\frac{d p}{d \phi}\right)
$$

the differential coefficients beiag agaia partial.

This axpresses a property of all "working substances," dafined as in § 1. To stata it in words, let us multiply and divide the right hand side by t, and it then reads:-

The rate at which the temperature falls off per unit increase of volume in adiabatic expansion is cqual to the rate at which the pressure inereases per dynamical unit of heat supplied at constant volume, .multiplied by the absolutc temperature.

To obtain a similar result with yand t as iadependent variables, we have only to subtract from both sides of (1) the complete differentisl d $(t \phi)$, so thst

$$
d(\mathrm{E}-t \phi)--\phi d t-p d v .
$$

Proceeding exactly as bcfore, wa find

$$
\left(\frac{d \phi}{d v}\right)-\left(\frac{d p}{d t}\right)
$$

In words this rasalt luns (whes both sides are multiplied by t):-
The rate of increase of pressure with temperature at constand volume, multiplied by the absolute tempcrature, is equal to the rato at which heat must be supplied per-unit increass of volume to keep the temperature constant.

Very slight variations of tha process just given abtain the follow* Ong varisties of expression:-

$$
\left(\frac{d v}{d \phi}\right)-\left(\frac{d t}{d p}\right) \text { and }\left(\frac{d v}{d t}\right) \Rightarrow=\left(\frac{d \phi}{d p}\right)
$$

which are to be interpreted as above.
11. Increase of Total Energy under various Conditions.-The expression (1) of $\$ 10 \mathrm{may}$ be put in various forms, each convenient for some special purpose. We give ove exampla, as sufficiently showing the processas omployed. Thus, auppose we wish to find how the energy of the working substance varies with its volume whes the temperature is kept constant, we must express $d \mathrm{E}$ in terms of $d v$ and $d t$. Thus

$$
d \mathrm{E}=t\left(\frac{d \phi}{d t}\right) d t+t\left(\frac{d \phi}{d v}\right) d v-p d v
$$

But we have, by, $\S 10$, undsr 1 resent conditions

$\left(\frac{d \phi}{d v}\right)=\left(\frac{d p}{d t}\right)$	
Hence	$\left(\frac{d E}{d v}\right)=i\left(\frac{d p}{d t}\right)-p$,

a result assumed in a previous article (Radiation, vol. xx. p. 217). If the working substance have the property (thst of tho eo-c.allod "idssl" perfect gas)
we see that, for it,

$$
\rho v=\mathrm{R} t
$$

$$
\left(\frac{d \mathbb{E}}{\frac{l v}{l v}}\right)=0
$$

The energy of (unit mass of such a substance thus dapends upos its temparature alose.
12. Specific Heat of a Fluid.-Specific heat in its most general acceptation is the heat required, uader some giren condition, to raisa the temperature of usit mass by ouo degrea. Thus it is tho beat taken in while the workiug sulstance passes, by some assigned path, from one isotharmal t to another $t+1$; and this may, of course, have as many values es there aro possible paths. Usually, howsver, but two of these paths are spoken oif, and these aro tal6o parallel respectively to the coordinato axes in Watt's diagram, so that we speak of the specific heat at coastant volemo or at con. staut pressure. In what followe thase will bo denoted by c and k respctivaly.
T'se v and p for the iudependent variables, ss in the diagransnd let κ be the specific heat correspoadiag to the condition

Theo

$$
\begin{gathered}
f(v, p)-\text { const. } \\
\kappa d t-t d \phi-t\left(\frac{d \phi}{d v} d u+\frac{d \phi}{d p} d p\right) ;
\end{gathered}
$$

while

$$
0-\frac{d f}{d \theta} d v+\frac{d f}{d p} d p,
$$

and $d t-\frac{d t}{d v} d v+\frac{d t}{d p} d p$.

Thus ${ }^{7}$

$$
k=\frac{\frac{d \phi}{d v} \frac{d f}{d p}-\frac{d \phi}{d p} \frac{d f}{d v}}{\frac{d t}{d v} \frac{d f}{d p}-\frac{d \ell}{d p} \frac{d f}{d v}} .
$$

This cepression vanishes if f and ϕ vary together, i.e., in saushens. axpansion, and becomes infinite if f and t vary together, o.e., zu isothermal expansion; as might easily have beea foresesa. Otherwise it has a finite value. It is ueual, howevar, to choose v and t as independedt rariables, while we deal analytically (as distin. guished from diagrammatically) with the subject. From this point of tiew we bave

$$
x d t-t\left(\frac{d \phi}{d v} d v+\frac{d \phi}{d t} d t\right)
$$

Bat the last term on the right is, by definition, cdt; 80 that

$$
(\kappa-c) d t=t \frac{d \phi}{d t} d v_{2}
$$

with the condition

Thas

$$
\begin{gathered}
\frac{d f}{d t} d t+\frac{d f}{d v} d v=0 \\
\kappa-c=-i \frac{d \phi}{d v} \frac{d f}{d t} \int \frac{d f}{d v},
\end{gathered}
$$

which is a perfectly general expression. As the most important case, lot f represent the pressure, thea wo sce, by § 10 , that

$$
\frac{d \phi}{d v}=\frac{d p}{d t}
$$

aud the formals becomes

$$
\hbar-c=-c\left(\frac{d p}{d t}\right)^{2} / \frac{d p}{d v}
$$

13. Properties of an Ideal Substance which follous the Lavs of Boyls and Charles.-Closely approximate ideas of the thermal behavionr of a gas such as sir, at ordinary temperatures and pressures, may be obtained by assuming the relation

$$
p o-R i
$$

Which expresses the lswa of Boyle sud Cbarles. Thns, by the fermuls of last section, wo bave at once

$$
\dot{r}-\varepsilon-\ell \frac{\mathrm{R}^{3}}{v^{3}} / \frac{p}{v}-\mathbf{B}
$$

a relation given originally by Carnot.
Hence, in ench a substance,

$$
d \phi-c \frac{d t}{t}+(k-c) \frac{d v}{v}
$$

or $\quad \phi-\phi_{u}-c \log t+(t-c) \log 0$.
In terms of volnne sud pressure, this is

$$
\begin{gathered}
\phi-\phi_{0}-e \log p / \mathrm{R}+k \log v_{1} \\
p_{2} 8 / \epsilon \cdots \mathrm{R}_{\epsilon}\left(\phi-\phi_{0}\right) / \rho
\end{gathered}
$$

or
the equation of the sdiabatics on Watt's diagram.
This is (for ϕ constant) the selation between p and θ in the propagation of sond. It follows from the theory of wave-motron (Hydromeohanics) thst the speed of sound is

$$
\sqrt{\frac{\hbar_{i}}{c} \mathrm{Rt}},
$$

Where t is the temperature of the ondisturbed air. This expression gives, by compsrison with the observed speed of sound, a very accurate determination of the ratio k / c in terms of R . The valne of R is easily olntained by experiment, and wo hare just secn thst it is equal to $k-e$; so that k and e can be found for sir with great sccuracy by this process, -a most remarkable iostance of the indirect measurcmeat of a qoantity (c) whose dirct dotermination presents very formidable dificulties.
14. Effect of Prcssuro on the Mclting or Boiling Point of a Substance. - By the second of the thermodynamis relations in $\$ 10$, above, we have

$$
\left(\frac{d p}{d t}\right)-\left(\frac{d \phi}{d v_{0}}\right)
$$

so that

$$
\delta p=\left(\frac{d p}{d t}\right) \delta t+\left(\frac{d p}{d v}\right) \delta v-\left(\frac{d \phi}{d v}\right) \delta t+\left(\frac{d p}{d v}\right) \delta v
$$

But, if the fraction e of the working substauce be in one molecular stato (say liquid) in which V_{0} is the rolume of unit mass, while the remainder 1 - e is in a state (solid) where F_{1} is the volnme of unit mass, we have obviously

$$
v-6 V_{0}+(1-6) V_{1}
$$

Let $\mathrm{L} \overline{\mathrm{b}}$ the latent hest of the liquid, then

$$
\left(\frac{d \phi}{d v}\right)=\frac{t d \phi}{t\left(V_{0}-\sqrt{1}\right) d s}-\frac{\mathrm{L}}{l\left(\mathrm{~V}_{0}-\nabla_{1}\right)}
$$

Also, as in e mixture of the same substance in two different states, the pressare remaias the same while the volnme changes at constantitempersture, we have $d \rho / d v=0$, so that finslly

$$
\delta t=\frac{t\left(V_{0}-\nabla_{1}^{\prime}\right.}{\mathrm{L}} s p
$$

which sinow how the tomperatare is altered by a small change of presaure

In the case of ice avd water, V_{1} is greater than ∇_{0}, so the temperature of the freezing-point is lowered by increase of pressure. When the proper namerical values of Y_{0}, ∇_{1}, and L srointroduced, it is fonnd that the freezing point is lowered $u 5$ about $0^{\circ} .0074 \mathrm{C}$. for each additional atmosphere.

When water and atean are in equilihriom, we have V_{0} much greater than ∇_{3}, so that the boiling-point (as is well known) is raised by pressure. The aame happene, and for the amme reason,
with the melting point, in the case of bodies which expand in the act of melting, sach sa beeswar, paraffo, wo.loiron, sud lava Such bodies may therefore be kep̣t solid by safficient pressure, oven at temperatures far above their ordinary melting points.

This is, in a slightly altered form, the reasoving of James Thomson, alluded to abore as one of the first striking spplications of Carnot's methods made after his work was recalled to notice.
15. Effect of Pressure on Maximum Density Point of Water. One of the most singular propirties of water at atmospheric pressure is that it has its maxinum density at $4^{\circ} \mathrm{C}$. Another, first pointed out by Canton in 1764 , is that its compressibility (per atroosphere) is greater at low than at ordiaary tomperatures, - being, according to his measurementa, $0.000,049$ st $34^{\circ} \mathrm{F}$., and only $0.000,044$ at $64^{\circ} \mathrm{F}$. It is easy to see (though it aplears to have beed first pointed out by Puschlin 1875) that the second of these properties involves the lowering of the maximum density peint by increase of pressure. Te calculate the mumerical amount of this effect, note that the expassibility, like all other thermsl properties, may be expressed as a function of any two of the quantities p, v, t, ϕ; say in the present case p and t. Then we have for the expan. sibility

$$
e=\frac{1}{v}\left(\frac{d v}{d t}\right)=\left(\frac{d}{d t}\right) \log v \Leftrightarrow f(p, t)
$$

Also the compressibility may be expressed as

$$
\Leftrightarrow-\frac{1}{v}\left(\frac{d v}{d p}\right)=-\left(\frac{d}{d p}\right) \log v
$$

The relstion betwcen small simultaneous increments of pressare and temperature, which are such as to leave the expasibility uncbauged, is thus

$$
\left(\frac{d e}{d l}\right) \delta t+\left(\frac{d e}{d p}\right) \delta \dot{p}=0
$$

Now the expansibility is zere st the maximnm density pernt, fer which therefore this equation belds. But the equations above give

$$
\left(\frac{d c}{d p}\right)=\left(\frac{d^{2}}{d p d t}\right) \log v=-\left(\frac{d t}{d t}\right)
$$

so that

$$
\left(\frac{d e}{d t}\right) \delta t-\left(\frac{d t}{d t}\right) \delta p=0
$$

The volnme of water at low teroperaturcs noder atmospheric pressure varies approximately as

$$
1+\frac{(\ell-4)^{2}}{144,000}
$$

Thus we bave $\left(\frac{d \ell}{d \ell}\right)=\frac{1}{72,000}$ nearly; sud from Canton's exp̄èrid mental result above stated we gather that (ronghly at least)

$$
\left(\frac{d t}{d t}\right)=-0.000,005 \frac{1 \cdot 9}{30}--0 \cdot 000,000,3
$$

from which the formuls gives $-0^{\circ} .02 \mathrm{C}$. nearly for the clisage of the maximum deasity point due to one additional stnosphere.
Recent inrestigations, carricd out by direct as well as by indirect mothods, seem to agree in showing that the truc value is somewhat less than this, viz., about $-0^{\circ} 018 \mathrm{C}$. ; so that water bas its maximnm density at $0^{\circ} \mathrm{C}$. when subjected to about 223 stmospheres. Thns, taking account of the resnlt of $\$ 14$ gbove, we find that the maximum density point coincides with the freezing point at $-2^{\circ} \cdot 8 \mathrm{C}$. under an additional presure of about 377 atmospheres, or (say) 2.5 tons reight per square inclu.
16. Motivily and Entropy, Dissipation of Energy.-The notivitv of the quantity H of heat, in a body at teruperature t, is

$$
\mathrm{H}\left(t-t_{0}\right) / t
$$

Where f_{0} is the lowest available temperature.
The entropy is expressed aimply as
H / ϵ,
being independeut of any limit of tcmperature.
If the heat pass, by conduction, to a body of temperatare t (less than ℓ, but greater than ℓ_{0}), the chage of rootivity (i.e., the dissipation of energy) is

$$
H t_{0}\left(\frac{1}{t}-\frac{1}{t^{2}}\right)
$$

Which is, of courso loss; while the corresponding change of entropy is the gain

$$
11\left(\begin{array}{l}
1 \\
i
\end{array}-\frac{1}{\ell}\right)
$$

The numerical values of these quautives differ by the factor r_{0} so that, if wa could have a condouser at absoluto zero, there coold be no dissipation of energy. But we seo that Clansius's statement that the entropy of the miverse tends to a maximom is practically merely snother way of expressing Thomeon's earlicr tbeory of the dissipation of energy.

When heat is exchanged aroong a number of hodies, part of it
being transformed by heat-engines into work, the work obtainable (i.c., the motivity) is

$$
\Sigma(\mathrm{H})-\ell_{0} \Sigma(\mathrm{H} / \varphi) .
$$

'Che work obtained, however. is simply
$\Sigma(\mathrm{H})$.
Thus the waste, or amount needlessly dissipated, is $-t_{0} \Sigma(H / t)$.
This nust be essentially a positive quantity, excopt in the case when perfect engines have been employed in all the operations. In that case (unless indeed the unattainable condition $t_{0}=0$ were fulfilled) $\Sigma(H / t)=0$,
which is the general expression of reversibility.
17. IV orks on the Subject.-Carnot's work lias, as we have seen, been reprinted. The scattered papers of Raukine, Thenson, and Clausius have also been issued in collected forms. So havo the experimental papers of Joule. The special treatises on Thermodynamics are very numereus; but that of Clerk-Maxwell (Theory of Heal), though in some respects rather formidable to a beginner is as yet far superior to any of its rivals.
(P. G. T.)

THERMOELECTRICITY. See Electricity, vol. viii. pp. 94 sq.

THERMOMETER, an instrument for detecting and measuring differences in temperature. The name is usually restricted to instruments adapted for use at moderate temperatures; those for measuring high temperatures are termed pyrometers (see Pyrometer). Thermometry has been treated theoretically under Heat (see vol. xi. p. 558 sq .). It here remains to trace the history of thermometers, and to describe the principal forms in use.

History. -The honour of inventing the thermometer has been given to several natural philosophers of the 16 th century; the claims of Robert Flidd are more tangible than those of Drebbel and Santorio, but the instrument invented by Galilee before 1597 seems best entitled to be considered the precursor of accurate thermometers. All the early instruments were air thermoscopes, and, until the variations of atmospheric pressure were discovered, their use was only deceptive. Galileo's thermometer (fig. 1) consisted of a glass bulb containing air, terminating below in a long glass tube which dipped into a vessel containing a coloured fluid. The variations of volume of the enclosed air caused the fluid to fall or rise in the tube, to which an arbitrary scale was attached. The great step in advance of inventing the alcohol thermometer is also due to Galileo, but the date (probably 1611 or 1612) is not precisely known. Rinieri

FIg. 1. certainly had alcohol thermometers made before 1647 , and they are referred to as familiarly known in the oldest memoirs of the Accademia del Cimento (1667). In form they resembled those now in use; they had large spherical (or, occasionally, cylindrical or helical) bulbs, and the degrees intended to represent thousandths of the volume of the reservoir were marked with beads of enamel fused on to the stem (fig. 2). All the Florentine instruments were graduated in the same way, but the scale was arbitrary, and the recorded readings were accordingly supposed for a long time to be useless. In 1829 the fortunate discovery by Antineri of a number of those early Florentine thermometers enabled their scale to be ascertained and translated into known degrees. The temperature of melting ice was marked by them as 13.5 , while 50 corresponded with $55^{\circ} \mathrm{C}$. No means of comparing observations made by thermometers of different manufacture existed until certain fixed points of universal accessibility were discovered. The thermal conditions of freezing fle. 2. water were studied with great care, but natural congelation Was generally supposed to take place at variable tompera-
tures, until Fahrenheit preved that, however much water could be cooled down without 'freezing, the temperature when ice began to form was always the same. Hooke, in 1665 (Micrographia, p. 38), describes the manufacture and graduation of comparable spirit thermometers with the freezing point of water as the zero of their scales, and he evidently recognized it as fixed. Halley in 1693 stated that the temperature of boiling water is constant, and this was again proved by Amontons in 1702. In 1694 Renaldeni of Padua proposed to graduate thermometers by taking as standards of temperature mixtures of definite volumes of ice-cold and boiling water. This method, although theoretically admirable (see Heat, vol. xi. p. 559), is delective in practice. Seven years later Newton proposed anonyinously (Phil. Trans., 1701, vol. xxii. p. 824) a thermometer scale on which the temperature of freezing water was 0°, and that of the blood of a healthy man 12°. Continuing the graduation of a linseed-oil thermometer above this point, he found that water boiled at 34°. Fahrenheit in 1714 took as fixed points the temperature of the human body and that of a mixture of ice and sal ammoniac or common salt. In 1721 be made a mercury thermometer according to Halley's suggestion of 1693 , and by means of it he proved the dependence of the boiling point on pressure. It was not until after Fahrenheit's death that the freezing and boiling points of water were universally accepted as fixed points on tha thermometric scale. The thernometer has remained unchanged in its main features since the middle of the 18 th century. Mercury has been found the most convenient fluid for ordinary use, in spite of the advantages (Heat, vol. xi. p. 561 sq.) presented by lighter and more volatile liquids. Graduation of thermometers, by marking off volumes of the stem equal to a given fraction of the capacity of the bulb, although reintroduced by Réaumur in 1730, has now been entirely discontinued.

The idea of a self-registering thermometer early pien sented itself. Many forms were devised by natural philosophers and instrument-makers. That of Sixe, in 1782 , a precursor of which, dating frem the 17 th century, is preserved amongst the instruments of the Florentine Academy, was the most successful.

Scales.-The absolute zero of temperature is the logical Deginning of a thermometric scale, but some point easy of reference is desirable, and this is found in the temperature at which ice melts and water freezes. The second accepted fixed point is that at which distilled water boils under the pressure of 760 millimetres (29.92 in .) of mercury. For the division of the space between the two fixed points into degrees of convenient length only three of the innumerable methods proposed have survived, and one of these, the centigrade, is rapidly becoming universal. The oldest system, that of Fahrenheit, dates from 1724. It is used for meteorological purposes, and popularly, in Great Britain, the British colonies, and the United States. The freezing point is marked 32° and the boiling point of water 212°. At first Fahrenheit employed a scale of 180 degrees; the zero was $\}$ 了laced at "temperate" ($9^{\circ} \mathrm{C}$.) ; 90° at "blood-heat," the point to which the alcohol rose when the thermometer was placed under the arm of a liealthy man; and -90° at the temperature of a mixture of ice and salt, then believed to be the greatest possible cold. In 1714 Fahrenheit changed his scale at the suggestion of the Danish astronomer Roemer, placed 0° at his "absolute zero," and divided the space between that and the warmth of the human body into 24 degrees. The freezing point of water thus became 8°. For convenience, these long degrees were divided into quarters, which were afterwards termed degrees; thus the freezing point became 32° and blood heat 96°. A mercury thermometer graduated ir:
this way, with divisions of equal length continued above blood heat, registered 212° in boiling water Thus the Fahrenheit scale came from a dnodecimal reckoning.
De Jisle, in 1724, introduced a scale in which tho boiling point of water was marked 0° and the temperature of the cellars of the Paris Onservatory 100°. He afterwards adopted the freezing point of water as his upper fixed point, and called it 150°. This scale was used for many years in Russia, but is now obsolete.

In 1730 Reaumur made alcohol thermometers with their zero at the freezing point of water, and degrees of oncthousandth of the volume of the bulb. On some of these the boiling point of water was 80°; but the instruments were defective in principle and very unegual in their indications. Deluc introduced mercury thermometers graduated from 0° in melting ice to 80° in boiling water, and these, with Reaumur's name attached, are in use for popular purposes in Germany, Holland, and other parts of the Continent,

Celsius adopted a centesimal scale in 1742. The boiling point was marked 0° and the freezing point of water 100°. Linnæus introduced the mode of reckouing from 0° in melting ice to 100° in boiling water, which is now known as the centigrade, and is used universally in laboratories, and in all except English-speaking countries for every scientific purpose.

Fahrenheit's scale is convenient for meteorological work on account of its short degrees, admitting of great accuracy in reading and compactness in recording, and on account of its low zero, which makes it possible in temperate climates to dispense with negative quantities. On the other hand, the centigrade scale is on the whole so convenient, its use is so nearly universal, and the advantage of a uniform system is so great that it must ultimately be adopted for all pnrposes. ${ }^{1}$

Air Theramonetrr - Uider constant pressuro gases expand eqnally for equal increments of heat. Hence, when an air thermomoter is graduated between two fixed points the graduation may be continued above and below these points in degrees of the same length; and any number of air thermometers so made will agree amongst thenselves at every tenperature. The pripciple of air thermometers is treated of in HEAT (ut sup. $\mathrm{h}_{\text {and }}$ andenples of apocisl forms are described in thist article and in PrRoweter The sir therimometer is the uitinate standaris of reference to which all ether thermoneters are referred.
alcobol Tuermcamter - Aicobo!, the first lignid nsed for thermometric purposes, passesses numuerous adsantages, end or sccount of its iow freezing point it is siways used for observations in polsr regioue Aicaliol therincnicters are graduated by fixing the freazing point in meiting ice sude by comparison witb a mercury or air therncexeter at severai bigl:er and icu or temperatures. Recently iow-temperature thericointiters have been verificd at Kevv is meiting mercary to the temperstare of - 40 The law of expan. sico cf sico hol in giass at low terf peratures is not kyown with such precision \&e to make the minimun. indicaticris of Aretic expeditions entirely trustworthy. The graduatiou of ordinary minimum alcohoi thermometers used for motcorciogical purposes is effected hy coniparison with mereury stardarde, and their indicatious, so far as this source of uicertainty is corcorned, may consequeutly he reiied cr.
Mekcury in Glass Tiebxoxeter - The simplest form is the II cight Therrinometer, \& iarge giass buib terminating in a capillary tube and flied with a known weight of merenry at $0^{\circ} \mathrm{C}$. The weight of mercury that escapes whed the apparatus is beated to
5 The proeese of couverting readings of any one of the three existing seales inte those of sey cther is 8 simple matter of proportion. They Etard in the ratio of $86: 100$: $180!32$ being sobltracted from Falurenheit temperatures lefore the caiculistion is miade, snd edded to thio result when convortirg fronc Fiesumair or centigrade isto Fahrenheit). An easy rule for clergeing centigrade readiogs inta Fahreutheit mentally Ls-msit:ply the centigrade temperatare by 2 , eubtract ona-tenth of tho product, and anid $32 \cdot$ e. . . $11^{\circ} \mathrm{C}=20-2+22 \sim 50^{\circ} \mathrm{F}$. Those rules sre only to le appitied to thermometers made with sill modern precautions. Wheer the boiling point was determired by imrrersing thic bulb of the thermicruter in boiing water or in steann at any proseuro other thati 760 vina. appropriato cortections have to bo anl lied. Fer a detailind histormeal acceciat, see Reuou, Histoiru do Tlierin ructro, " Anmuaire Suc. Alst. de France, 1876
100° is determined, and the temperature of any enclosure is then ascertained by placing in it the thermometer filled at zero, and weighing the liquid that runs out. Thermometers on this principle were used by Regrault in his celebrated researches on steam.
Sturdard Thermomelers.- The tube is sometimes made with elliptical bore to ensure visibility of the mercury column, but it is usually circular in section. The internal diameter most be as nearly as possible uniform. This is tested by a preliminary calibration in which a elocrt thread of mercury is measured in different parts of the tube. The length of stem and the range of the thermometer baving been docided upon, the size of the bulb is calculated from the known expansibility of mercury and the section of the bore. The bulb is made as nearly as possible the required size, either by blowing it from a tube or preferably by forning it of a glass cylinder, and attached to the stem. The bulb is usually cylindrical in form and it must be uniform in thickness. The utmost care requires to be cxercised to keep the bulb and stem dry and clean and to fill them with pure mercury reeently distilled. The mercury is boiled in the thernomoter for some time to drive out all traces of air and noisture, and the point of the stem is sealed off. If the thermometer is not intended to measure temperatures up to the boiling point'of mercury, an expansion should De made at the top of the iube to prevent bursting from accidental overheating. Under Heat (vol, xi. p. 661) the changes of volume which thermometer bulbs undergo in cooling and for a long time aftervards are discussed. The process of annealing by heatiug to a tenperature exceeding $400^{\circ} \mathrm{C}$. for some hours as originally proposed by Person, ${ }^{2}$ or in vaponr of mercury for several daya as recently practised ot Kew, renders the thermometer much less liable to sufficr change of zero by the lapse of time or by heating to any lower temperature. All instruments of precision should be treated in this way, or kept for several years after they have been filled and sealed before they are graduated.
The first fixed point on the scale is marked at the place where the mercury stands when the thermometer is buried in melting ice from which the water is allowed to drain awas, the eecond at the place where the mercury stands when the thernometer is immersed in steam of water boiling freely under the pressure of 760 mm . (29.92 inches) of mercury corrected to $0^{\circ} \mathrm{C}$. The space betwecr these may be graduated either in arhitrary equidistant divisions, as it is best to do in delicato instruments, or in degreas of any scale. Each degree centigrade is r fo of the volume of the tube between the freezing and boiling points; if the tube is quite uniform in bore the degrees will be of equal length and may be marked off correctly by a dividing engine. If the prelimiusry calibration showed the tube to vary in diameter, the degree marks are often edjusted to correspond to intervals of equal volume. It is better in all cases, whether degrees or arbitrary divisions aro adopted, to have them of equal length and correct the readings by the callisration curve. The scale may be continued sbore and beneath the fixed points in degrees or divisions of the same length.
Calibration consists in meaanring the internal volume of the thermometer tube by means of a thread of mercury detached from the main column. There are several ways of doing this, fer particulars of which reference may be made to the British Associstion Fepport on the subject (1882, Pp. 145-204), where references to erigiral memoirs, are given. The best and simplest is Gay Lussac's "step by ste?" inethod.
The most recent and approved processes of manufacturing, testing, and n ing standard thermometers of great delicacy and high precision are described ly Guillaume in his "Études Thermométriques" (Travauzet Necmoires du Burcaut International des Poids et Mesures, v. 1888) ; ${ }^{3}$ for additional inforimation the work of Pickering cited below may also be consulted.
Comparison of Thermomaters. - As the apparent expansion of nuercury in glass from -39° to $100^{\circ} \mathrm{C}$.s is very nearly proportional to the amount of heat imparted to it, a thermometer made and divided as indicated abovo is a дatural standard. But the apparent expansion with different kinds of glass differs (see Heat, vol. xi. pp. $563-4)^{5}$ sad, except at the fixed pointo or near them, mereury thermometcrs of different construction will only fortuitously agree sbsolutely amodg themselves or with the air thermometer. Bosscha ${ }^{6}$ states that at $50^{\circ} \mathrm{C}$. the mercury thermometer shows an error of $0^{0} 5$, other experimcntere place it as high as 1°, but Mascart found it to amount only to $0^{\circ} 06$. ${ }^{\circ}$ For purposes of ordiDasy experiment thermometers are compared at several temperatures with some standard instrument of known valuo-that of tho K EN observatory for Great l3ritain, -and all results are stated in terms of the standard

The methods of comparison at Kew are

[^118]described by Welsh (Pros, \mathcal{R} S., vi. 181) and Whipple (Phil. Mag., [5], xxi., 1886, p. 27).
The reading of thermometers is greatly facilitated by the process of ensmelling the back, snd still more by that of entirely surround. ing the instrument with onamel except over a parrow strip through which the mercury is 日een. ${ }^{1}$ The onamel must not be allowed to oncroach on the bulb, for that rould endanger the homogeneity and etrength of the glass

Thermometers Employed for Special Purposes. - Physical and Chemical Work.-For all purposes of minute accuracy where thermometers are applicable standard instruments must be employed. They mast be used in one position only. The stem is nsoally engraved with an arbitrary seale of equal divisions, the total range not exceediog $15^{\circ} \mathrm{C}$., and zeadings are made by a cathetometer at some distance. The use of an intermediste bulb, first reeommended by Person, enables the fixed points to bo observed on instruments of very short range. Results of great accuracy, cortainly to $0^{\circ} .005 \mathrm{C}$., may be obtained in this way for comparative porposes if sufficient care be taken; but the greater the sensitiveness of a thermometer the more difficult is it to obtain a Beries of concordant readiogs (HEat, vol. si. p. 562). Pickering ${ }^{2}$ uses thermometers of extreme sensitiveness, in which, by conveying the excess of mereury iato an expansion at the top of the stem, he secures that the same part of the short arbitrary scale is used for every temperature that has to be measured. In physical researches thermoolectric junctions are more often used than thermometers for measuring very small differences of tomperature.
For ordinary work in a chemical or physical laboratory thermo. uneters.are used which can be read easily to one-tenth of a degree centigrade, and hare a range from 0° to 100°, or in some casea to $350^{\circ} \mathrm{C}$. They are always either engrared on the stem or graduated on an included scale (see H户at, figs. 4, 5), and are not mounted on frames of any kind. It is not necessary to calibrate such thermometers; but they should be compared with a standard at several temperatures and frequently verified in melting ico and eteam of boiling water.
Zincke's cbemi al thermometer for high temperature has a scalo commencing at $100^{\circ} \mathrm{C}$. In Geisster's nitrogen thermometer the range is extended by raising the boiling point of the included mercury, the upper part of the tube heing flled with rareficd nitrogen.
Afcteorological. - The thermometer was early spplied to the study of differences of climate, and this is still one of its most inportant ases. The wet and dry bulb thermometers placed in the shade give the tcmperature and humidity (sce Hyorometry) of the surrounding nir, but "shsde" and "surrounding air" require to be defined. Shade is intended to exclude rain and prevent all radiation; and the surrounding air is that of the atnusphere in the ueighbourhood of the thermoraeter outside any shelter that may be used. The simplest way of observing is to hang up a thermometer in the ahadow of some rather cuistant object and leave it until it acquires a steady temperature; but this method hes beeu found impracticable and does not give very exact results.

In different countries different patterns of thermomoter shelter are employed and exposure takes place at a different height above the ground. Results so obtained cannot be critically compared, and the relative mean temperatures of the atmosphere in different countries are only known to within one or troo degrees. The Stevenson double-loupred screen (sea vol. xvi. p. 115), a box open below, provided with a solid roof, is used at all meteorological stations in Great Britaio. It is placed 4 feet from the ground, $a=d$ painted white outside and inside. The results derived from its use are comparable, becanse the conditions in which it is employed are the same, but the general introduction of a double roof would greatly add to its efficiency. Exposure outside windows or in wall bores is the rule in Austria. In France the Renou screen id largaly used; it is a flat roof one equare metro in extent, and double; the thermometers are hang under it two metres from the ground. A eimilar roof, but of much larger size, is emploged in Australia, in combination with a metal thermometer-box. A metallic box, constructed of double louvres with sn air-space botween, finds favour in Spain. In Russia and Switzerland Wild's ebelter is extensively employed. The thermometers are onclosed in a case composed of two or three concentric zinc cylinders perforated to admit air, and placed 11 feet above the ground. They are protected by a large shelter of wood, the south wall and roof of which are double and made of solid boards, between which air circulates; the east and west sides are louvred, and the north side entirely opeo. A aimilar sbelter is used in Canada, to cover a box of single abeet-iron louvres in which the thermometers are placed $4 \frac{1}{2}$ feet from the ground. Various systems of exposure were authorized in the United States until 1885. It was then decided, as tho result of experiments ${ }^{3}$ carried on for nearly two years, that a uniform pattern of shelter be adopted by the Signal Service. It

[^119]is f single-louvred wonden box, 3 feet 6 incles long, 3 feet wide and high, with a movable bottom and a double roof. The louvres ore provided with an upright flange on their inner side, designed to keep rain from the thermometers. The bottom of the shelter is to be fixed either 9 feet above a roof or 16 feet above grass.

All these screens are confessedly imperfect, slthough most of them are well adapted for the elimatcs in which tliey are used. Numerous comparisons of different screens with each other have been mado, ${ }^{4}$ but in some cases sufficient preeautions in the way of using instruments precisely similar and only dissimilarly situated have not been observed, and the results are uncertain. A critical comparison of the leading forms of thermometer shelter in use is still a desideratun.
The sling thermoneter ${ }^{5}$ (thermometre fronde), a small thermometer whirled in the air at the end of a string, is often nsed ob a standard, and gives more correct resdings than most closed screens. All open screens aro untrustworthy. Aitken ${ }^{6}$ has devised a series of thermometer boxes on a new principle, radiation being taken sdvantage of to produce a constant draught over the thermometer bulbs hy the use of a long blackened chimney. These give admirable results. Very small and bright objects are little affected by radiation: hence thermometers with bulbs of amsll diameter and coated with a hright deposit of gold or silver have been used without acreens. The sir temperature has also becn calculated by mesns of a formula from the readings of t wo similar thermometers, the bullus of which are unequally affected by radiation. Some form of sling thermometer should always be used for observations at sea; the Board of Trade screen generally employed is theroughly objectionsblp, and can only give moderately good results by the exercisa of great precautions on the part of the observer.?

As s rille, thermometers for meteorological purposes are made with spherical bulbs, although cylindrical reservoirs present certain advantages. Ta ersure perfect uniformity in registration, the bulbs should all be as nearly as possible of one size, constructed of one kind of glass, and the mounting perfectly uniform. Better-class instruments have the bulb clear of the frame, and the stem attached te a slab of metal, of porcelaia,
 or of glass backed by wood; but sometimes they are simply fixed to a boxwood scale. In all caself they should bo graduated on the stem, and compared with standard, but in view of the uncertainty of the methods of ther, mometer exposure great delicacy is undesimble

The inflnence of heiglit on themnometers for ascertamng thi temperature of the air has been investigated witl somewhat con. ficting results; a the dispraity is at least jartlv due to the use of dissimilar instruments.

Registering Thermometers.-Rutherford's maxunum, invented before $1790,{ }^{9}$ was an ordinary mercury thermometer placed horizon. tally; the column pushed before it a small stecl index, which was left at the lighest point reached. It is lattle used now. The maximum thermoneters in common use for metenrological purposes are Negretti \& Zambra's and Phillips's. The forner is a modified outtlos thermometer. It is inado with a constriction in the tube near the bulb, past which the merrmy easily expands, but cannot return when the temperature falls, as the column oreaks at the narrowed point when the finid in the bulb begins to eontract. The thermometer acts horizontally, but Evelett devised a modification whieh is hung bulb uppermost, and the mercury, as it passes the constriction, falls down and stands as a columa in the inverted tube. The thermometer is sct by swinging

[^120]It. Phmips's maximum, claimed alse by Walferdin, bas a portion of tho mercury thead separated from the rest by a minute bubble of air. It is placed horizoutally, aud. as temperoture increases, the detached prortion of inercury is pushed forward and is not withlrawu when the main column retreats toward the bulb od cooling. It is set for a new olservation by lringing it into a verticai position and tapping it slightly. By reducing the length of the index aud the lore of the stem this therusometer uay bo made suitable for uso in any position without altering its registor. Walfcrdin's outlow maximum thermometer is a modification of that of Lord Charles Cavendish ${ }^{1}$ and the type of a number of similar instrunents. It is set by filling the stem cotircly with unercury from a lateral chauber at the top (ig. 4). Tho instrumul is placed vertically, and as temperatura rises mercury overflows into the roservoir. To be read, the thermometer is brought back to its originsl temperature, then the number of degree 6paces left vacant at the top of the tube shows the excess of maximum tempera. ture above that at the time of setting.

The miuiumn therdometer in most frequent use 18 that of Johu liutherford, inveuted in 1790 . It is a spirit thermometer, preferably filled with anylalcoliol to redice zisk of distillation, in the column of which a stanall preebaiu inder is included. The instrument is hung horiroutally, aud, as temperature falls, the index is drawn back by the surface tension of the fluid. When tempera-
 ture rises, the liqnid fows past the index casily, leaving it at the lowest point attained. Bandin invented a modilication called the thermometre d martcuu in 1862; it acts vertically, the index being fixed by a spring, as in Sixe's thermoneter, and set by a long glass needle included in the stem, which, when the instrument is ioverted, falls on the index and drives it to the surface of the alcohol. The sacreurial mininuu of Casella is an instroment of great delicacy and beanty, extremely difficult to make, sod requir. ing careful haudling in its use, A side tube cf wide bore ac (fig. 5) is jonned to the stern of an ordinary mercurial thermometer near the bull. This tube terninates in a small
 chamber $a b$, cut off by a perpendicular glass diaphragm which is perforated by a hele of greater liaunoter than the thermometer stem. When set, the mercury in the steus indicates the actual temperature, and the chamber is cmpty. On the principle of Balfour Stermart's iluctua. tion thermometer, ${ }^{2}$ when the instrument is heated the urercury remains stationary in the stem but expands into the chamber ab. When cooled, the nercury passes out of the chamber; when this is cmpty, the temperature lias returned to that at which the instrument was set, the surface attraction of glsss and merchery prevents the fluid learing the diaphragm b, and all subsequent contraction sakes place from the stem. The position of the mercury colunin in the stem marks the minimum temperature siuce last setting. Tho instrument is set by raising the bull ead aud allowing all the mercury to flow from the chamber.
Thermometers which record the actual tenperature at ady required time, by a change of position produced by a clock, wero amployed by Blackader ${ }^{3}$ in 1826 . His process was complicated and uncertain. Negretti \& Zambra have a eimpler arrangement that works well. Several of their reversing thermoneters (see nnder Decp-Sea Thernometcrs) sre pivoted on a frame, and leld upright ly eatchas which are withdrawn in turn at definite intervals by an electrical arrangement rogulated by e elock. Eack. instrument, when it reverses, preserves the record of temperature at that moment until it is set again.
No thoroughly eatisfactory self-registering maximum or minimum thermonseter has yet been produced. In all existing forms the fndications ore liable to be disturbed by shaking. Where alcohol is the fluid used, it is apt to volatilize and accurulate at the top of the tube, oo registering a much lower temperature than actually occurs. It is extrencly difficult slso to free alcohol thermometers from air, which gradually escapes from solution in the fluid and puders the instruanedt untrustworthy or even useless.
Tiadiation Thermometers. - The intensity of solar radistion is measured by the pyrheliometer, which usually consists of a body hoated by the sun's rays and s thermometer to measura the rise of temperature. In ancteorology radiation is measured by thermomsters simply exposed with blsckencd bulls. Results of tho utmost diversity are given by dillerent methoc's. As there is no mbans of determiniog the true messure of rasliation, all that cau be cone is to bave the instruments whose incicatione are to be compered constructed and exposed in the sane way. The naual

[^121]form, as suggestel by Herschel, is a maximunu thermoatete: with a spherical bull, holf an inch in dameter coated with lampblack and placed in the contre of a spherical vissel of clear glass, $2 \frac{1}{2}$ iuches in diameter, and exhausted of sir. The state of the vacuum may bo showd by iacluding a sinall mercurial mauometer, or a radiometcs, or by soldering iu platiuuu electrodes through which a discharge can bo made in the interior. It is not osseutial that the vacuun bo very perfect; some observers prefer to employ a globe filled with dry air. For separate anstruments to be comparable, Whipple a a Ferrel ${ }^{5}$ havo showa that the lullos must bo truly spherical, of equal thickness and size (a differenco of 8 per cent. in diameter produces variations of several dergrecs), blackened sufficiently to absorb all radiation falling on them, snd placed accurately in the centre of perfectly spherical enclosures, which must also be of equal dianeter. The stem should be as small as possibled in proportion to the bulb; and before being used for comparatire purposes all radlation thermometers should be compared with an arlitrary staudard by daily exposure for seresal wceke to subshine.

Mininanu radiatiou therioonoters, intended to measure radiatice frou the earth at night, are usually filled with alcolol, and much ingeunity has heen expended on increasing their delicacy. The bulbs are unde very largo relatively to the bore, sud constructed so as to expose a great surface, the reservoir being often helical, leuticular, annular, syoou-shaped, forked, or cveu like a gridiron.
Earth Thernometers. - Saussure introduced the use of sluggish thermoneters packed iu non-conducting material for taking the teuncrature of the soil at different depths. Symon's earth thermometer on this phiuciple is a slow-action iustrument cased in felt, aud is lowered by a chain into an iron tube which hos previously been sunk to the required depth. It may be withdrawu aud read withont changing its rccord. The underground temperature comnittee of tho British Association have used weth elow-action aud self-registering thermometers for their obscrvatious in mines and shafts. ${ }^{8}$.
Thermoneters with very long stems, which can be read above gronud, fitted in deep borings in the rock, are used at the observatories of Greeuwich and Edinburgl for investigatiog earth temperature. Those at present established at the Royal Obscrvatory, Ediuburgh, ${ }^{7}$ are the successors of a sot fixed in the rock iu 1837, and broken accidentally in 1876. They are placed witli their bulbs at depthe of $25,12,6,3$ feet beneath the surface respectively, and one has its bulb just covered. The readings of the intermediate thermonefters supply dats for correcting the long columus of alcohol in the deeper ones for the different temperatures of their different parts. Allowance ruay ba made for this elfect without calculation by utilizing the príueiple applicd by. Sainte-Claire Deville to pyrometers. A second sted, similar in every wsy to that of the thermometer. ucarly filled with the came fluid, but hermetically sealed at the lower end, is fixed beside the thermometer stem. The fluctuations it shows are due solely to causes affecting the stelu and not the bulb of the thermometer, aud they are ehnimated fron the reachugs of the latter by taking account only of the difference of level of the fluid in the two tubes.
Deep-Sea Thernoncters.-The earliest observations of warintle bencath the surface were made by raisiog samples of water io a valved box and noting the tewperature when it was brought on board. Saussure, io addition to this, used sluggish thernmometers, which be left iminersed for several hours before reading. His latest therwometer for sea. work was filled with alcohol, and had a bulb more than au iuch in diameter, which was inneedded io a mass of wax and enclosed in a stout woolenc casu. It attaincel the temperature of its surroundings very elowly, preserved it ior a long time, aud gave, in his hanils, thoroughly trustwortby results. On the introduction of registering thermometers these were usent, bnt tiso uosuspected magnituile of the effect of prossure at great depths mado the earler records entirely misleading.
A tuodification of Sixe's thormometer, protected from pressure by the adlition of an outer bulb partially filled with a liquid, is now usuafly employed oa deep-sea cxpeditions. Thoso used on the "Challer.ger," uadar the namo of Miller-Casella thermometers, were of the form shown in fig. 6. The tube is U-shaped, the beod and part of each lion filled with mercury, the rest of tho tube, the bulb, and part of the expansion on the other eide with alcobol. A A ateel index, held in its place by tho pressure of a bair, is immorsed

[^122]in the epirit in each limb above the mercury, which pushes one or other before it as the temperature is rising or falling, and leaves them at points denoting the highest end lowest temperatures passed through. The indexes are set by a magnet. The "Challenger" thermometers, which were not graduated on the etems, were secured side by side with porcelain temperature scales to vulcanite frames and placed in copper cases perforated to allow a circulation of water. Tait investigated tho wholo subject of pressure corrections efter the return of the expedition, and fouud that the high result obtained by a previous experimenter was due mainly to heat developed by compression of the vulcanite, which affected the thermometer in the press, but would not do so at sea. The correction which had to be applied was rather less thao $\frac{4}{4}$ of a degree Fahr. per mile of depth. ${ }^{1}$ These thermometers require to be immersed from twenty minutes to half an bour bofore they acquire the temperature of the water, they can only be read to quarter degrees Fahr., and they eimply indieate the extreme teluperatures through which they have passed. Buabanan has greatly improved the instrument by reducing the bore of the tube on the minimum side, which is that most frequentiy used, thus giving long degrees. Ao arbitrary scale is engraved on the stem. ${ }^{3}$ His mercury piezometer is affected by temperature and by pressure, and enables the actual temperature at any known depth to be found.

Aimé in 1845^{8} invented a very ingenious arrangement of outtow thermometers, which were inperted by a weight slipping dowu the line, and registered as they were being drawn up. His instru. ments were aceurate, but very delicate and troublesome to manage. Within the last few yoars Negretti and Zambra have patented several forms of modified outflow thermometere. The first instrument of the kind was complicated and unmanageable, but that how before the public is both simple and convenient. It consiste of a mercury thermometer with a cylindrical bulb and a stem AC (fig. 7) of wide bore terminating in a amall pyriform aneurism. The stem is contracted and conterted just above the bulb, and when the inetrumest is turned upside down the mercury columa breaks at this peint and flows down iato the tube, which is graduated in the inverted position. To protect it from pressure the thermometer is hermetically өealed in a strong glass tube, the portion of which surrounding the hulb contains a quantity of mercury socured by a ring of indis-rubber cement. Whon the thermometer is made to turn over at any depth in water of any temperature, the record remains nearly unaltered, and, until set for a new observa. tion, ezables the actuel temperature at the instant of reversal to be ascertained at any subsequent time and in any other place. The detached column etanding in the tube changes ita length slightly by change eif temperature. A series of expcriments with twelve instroments has ehown thet for $60^{\circ} \mathrm{F}$. change of tem. perature there is a diference of one degree in the reading of the inverted thermometer. Hence a correction must be applied in all cases where the tenperature at which the thermometer is read diffore more then a few degrees from that at which it was inverted, contrary to the opinion of the Germen observers. ${ }^{6}$ If a thermometer is inverted in water and read whilo wet, the temperature by which it ehould be corrected is obrionsly that given by the wet-bu!b in air. In view of the great range of temperature experienced ip deep-sea work in the tropics, the size of the littio overflow cell \mathbf{B}, which prevents mercary from the bulb from entering the tube must be considerably increased before the thermometer can be nsed with safety for euch parposes. The Negrotti and Zembra thermometer acquires the temperstura of its surroundings very rapidly (two or three minutes ere usually sufficientl); it can be read easily to tenths of a degrce Fahr.; and, above all, it ascertaios temperature at erect points of depth, and has thus revealed layers of remarkably varying temperature ${ }^{5}$ wlich could not have been detected by the other instruments in use.
The loaded woolen frame originally cmployed for reversing the thermometer is unsatisfactory, and Magnaghi's reversing gear actuated by the revolution of a amall propeller eet in motion by the water when the thermometer is drawn up briskly, is not to be trusted in shallow water or where there are rapid currents. When the pin is withdrawn tha tiermoneter caso turns over and is clamped by a eide-spring on the frame. Ruag ${ }^{6}$ edopted a simpler and better though sumewhat clumsy frame, in which the thermometer fas made to turn by slipping a neight down the line.

: "Challenge, * Narrative, 11, ApF 1., 1882.

For a gencial accoont of deep-aea thermooibters, sce Zuchanan, Proc. R \& E_{z} z. $1878_{\text {, }} 77$; and - Chal." Roporss, Nartaure, vol 1., 1884, pe 84
${ }_{3}$ Ann Chim. Phys.. [3], 1845, xv. 1
Ergebnesse der Uncersuchungensfahry der Dracho, Berda, 1880, p, \%
Mul. Jour. Scot. Met. Soc. [3], 1986, No. Il. p. 283.

The United States Fish Commission ${ }^{7}$ employ the thermometer in a frame adepted for use on a wire sounding line, and also actuatrd by a messenger, but the thermometer is not clamped on turning over. The Scottish marine station produced ${ }^{s}$ a modification of Mognaghi'e frame, the propeller being replaced by a forked lever beld down by a spiral spring and reised when the thermometer is to bo reversed by the impact of a Rung's messenger (fig. 8). A messenger placed on the line below, and hung by a loep to the upper groove of the thermometer, is let go when the thermemster turns and reverses another instrument lower down. Instead of being lashed to the sounding lioe, the fremo is retained by a ram'a horn spiral below and clamped by a small vice at the upper end. Buchanen has modified and simplified the fratue, combining its mode of attachment to the line with the Auerican method of reversing.

Neumayer ${ }^{9}$ has attempted to nse a photographic thermograph for deep-sea work, the light being supplied by a Geissler tubo excited by a small battery. Siemens'e elactrical thermometer has also been experimented with, ${ }^{10}$ but hes hardly been brought to a practicable state, and the same miny be said for the use of thermoo!ectric junctions.

Hypsometer. - The boiling-point thermometer or hypsometer may be rased to obtain an independent measure of the pressure of the atmosphere, and so to determine ao altitude or verify an aneroill barameter. It consists of a very delicete morcury thermometer graduated ouly for 20 or 25 degrees Fahr. in the neighbourheod of the boiling point of water and divided on the stem into tenths. A large aneurisun on the tube a little above the bulb should ellow the freezing point to be verifial from time to time on the portion of stem beneath it. Tlise thermoreter is hung in a cylindrical tin vessel in which water is boilad by a spirit lamp pleced underneath. The bulb must be raised considerably above the level of the water, and the whole stem to the top of the mercury column imnersed in the steam. Aiter steam hes been escaping freely for some time the temperatere is read, and by reference to a table the barometric pressure, and consequently the altitude, is obtained.

Clinical Thermometers.-The first nse to which thermoneters wero applied was the study of the tempersture of the blood in fevers; end the constancy of the temperature of the healtly liuman body was for a century considered sufficient to entitle it to the position of a fixed point in graluating thermome. ters. The increased importance now attached to temperature in disease has led to the production of many forms of clinicel thermometor. The large instruments intended to bo :ead in situ are now eutirely superseded by ounall maxiunm self-registering thermometers. Greduatiou is carried to one-tifth of a degree, and the usual range is about 25 degrees Fahr., from 85° or 90° to 110° or 115°. Olive-slapped

Fir. 8, - Seol lisb Frame iur Deep-Sea Thar mometar. Mas aengerdescels
ing ta rever se the inatrumeyt bulbs have boen nsed, but a cyliadrical form is most commes. There should be an arrangement like thet suggested for hypros. metcre to enable the freezing peint to be verifed. Casella'e thernemeter on Phillips's system has a small expansion on the ste μ, followed by a contraction, to prevent the index following the rist of the mercury into the bulb when the iustrument is nat in nee. The "half-minute thermometer" is quick in action; it has a bulb of very small diameter and an extremely fine bore, the mercury thread being rondered visible by Hieks's arrangement of a leus. fronted stem. Immisch's avitreous thermometer is recommended for clinical use ou account of its small size, convenient shape, and non-liability to get out of order.
Thernometers for Technical Purposes.-These are mede in an infinite variety of forms, adapted to the various processes of manufacture and industry. The scale is often dispensed with in these instruments, a movable pointer being fixed at the point at which the mercory is to be kept. Air or steam thermometers (see PYRO. METER) are rapidly superseding mercury instrumento for all temperatures above the boiling point of water. The cheap German paper-scele thermometers are largely used, fitted in wooden cases,

[^123]ne dairy thernometers, and a larger aiz, for brewing purposes. Alarm thermometers are ofter employed, in which electric contact is made snd a bell rung when the temperature exceeds or falls short of e certain limit. Thermostats of various forms are made use of, in which a thermometer, by the position of the mercury in the atem, regulates the gas-supply of a burner and thus the heat of an enclosure.

Metallic Thermometers. - Thermometers depending on change in length or ferm of composite metal bare, auch as Crighton's zinc-iron bar and Bréguet's silver-gold-platinum spiral (see PYRometer), sre converted inte registeriog instruments by the addition of tro light painters pushed forward by the index needle as it travels round the graduated are to either side and left at their extreme points. Jiirgunsen in 1841 constructed a chronometer, the balance wheel of which was arranged ac as to exaggerate the effects of change of temperature and thus to affect the rate. It furnished a jery close spprozimstion to the mean temperature between the intervals of rating, and was approved by Arago for use in observations. Hermann and Pfister'a metallic thermometer ${ }^{1}$ is probably the best adapted for meteorological purposes, and has giren eatisfactory results at the Zurich observatory. It is a flat spiral of brass and ateel, which unrolls and coils up according to changes of temperature, moving an index an a divided horizontal circle and marking the maximum and minimum by light pointers. In order to secure regular resulte, the instrument must be annealed by heating for some time in beiling linsced oil.

Seversl instruments koown popularly as motallic thermometers depend on a different prisciple, that of the chauge of form in a thin metallic enclosure containing liquid. Immisch's avitreous thermometer (fig. 9) is sn example. A minute Bourdon's tube is fixed at one end, and the other bears on the ehort srm of a lever, the long arm of which acts by a rack on the pinion forming the sxis of the pointer. It is only one inch in diameter and extremely accurate.

Thermographs. -The first form of thermo. graph, due to Wheatstone, was an electrical spparatus. It has recently been improved by Van Rysselberghe, in whose bands it has assumed the following form. The thermometer is of rather wide bore and open above. At intervals of quarter of an hour a wire is moved gradually down the tube by a clock nutil
 it touches the mercury; an electric circuit Avitreous Thermorneter. is thus completed, and causes an indentation by a diamond point which moves in the same way as the wire down a rotating cylinder covered with thin sheet copper or zinc. The metal sheet is renewed at each revolution of the cylinder, and it is snfficient to join the indented points with a graver to have a plate from which any number of copies of the record may be printed. Cripn's thermograph records hourly on a revolviag cylinder. It consists essenfially of a mercury thermometer coiled into a flat spiral and suspended on a horizontal axis. Any change of temperature displaces the centre of gravity of the system, and the instrument rotates through an arc, moving a pencil as it does so. A perfectly continuous record is produced by the photographic thermograph. Wet and dry bulb thermometers are so arranged that a beam of light passes through an air-speck, which separates part of the mercury thread, or through the vacant part of the tube, and falls on a rotating cylinder covered with photograplic paper on which it traces the curve of temperature Huctuation. This apparatus is probably the mest perfect of its kind. In Bowkett's thermograph the change of form of a curved tube containing oil moves a pencil radially orer a card turned horizoutally by a clock. The resulting cnrve is referable to polar instead of rectangular coordinates; the radius measures temperature, the anglo time. Richard's thermo. graph is also actuated by means of a sealed metallic capsule containiog fluid. It draws a continnous curve in ink on a revolving drum on which one sheet lasts for seven days. This instrument is largely employed in observatories to check eyo-observations, and is jreculiarly adapted for use in positions to which access can only be hasl occasionally. It is made in many forms, one of which is specially adapted for marine work, the sealed capsule being rolled inte the form of a cylinder and exposed to the water on both surfaces.
(H. R. M.)

théroigne de mericourt, Anne Joseph

 (1762-1817), was born at Marcourt (from a corruption of which name she took her usual designatien), a small town in Luxerr.bourg, on the banks of the Ourthe, on 13th August 1762. She was the daughter of a well-to-do farmer, Peter Théroigne. She appcars to hare been well educated, having been brought up in the consent ofRobermont; she was quick-witted, strikingly handsome in appearance, and intensely passionate in temper; and -he had a strong and almost voleanic power of cloquence, which she used with great effect upon the mobs of Paris during that short space of her life (1789-93) which alone is of historical interest. The story of her having been betrayed by a young seigneur, and having in consequence devoted her life to avenge her wrongs upen aristocrats, a story which is told by Lamartine and others, is unfounded, the truth being that she left ber bome on account of a quarrel with ber stepmother. She went to Par:s, and, on the outbreak of the Revolution, she was surrounded by a coterie of well-known men, chicf of whom were Pétion and Desmoulins. She belonged to their party to the last, became in fact the "Fury of the Cironde." On 14th July 1789 she came prominently into notice at the fall of the Bastilie, and for about four years thereafter she was seen in many of the stormiest scenes of the Revolution, being known as "la belle Liégoise," and singularly attired in a riding habit, a plume in her hat, pistols in her belt, and a sword dangling by her side. Early in October she took a leading part in the march to Versailles, and the return journey with the king and queen to the capital. No horror appalled her, and the violemee of ber language and her power with the mob were no less retnarkable than the influence which she was able, by combining cajolery, threats, and money, successfully to exert on the royalist soldiers, so winning them over to the Revolution. Being justly accused of dangerous conduct, her arrest was ordered in the following year (1790), and she left Paris for Marcourt, whence after a short stay she proceeded to Liége, in which town she was seized by warrant of the Austrian Government, and conveyed first to Tyrol and thereafter to Vienna, accused of having been engaged in a plot against the life of the queen of France. After an interview, howerer, with Lcopold II., she was reieased; and she returncd to Paris, crowned of course with fresh laurels because of ber captivity, and resumed her influeace. In the clubs of Paris her voice was often heard, and even in the National Assembly she would violently interrupt the expression of any moderatist views. She commanded in person the 3 d corps of the so-called army of the faubourgs on 20th June 1792, and again won the gratituda of the reople. She shares a heary respensibility for her conncxion with the riots of the 10 th of August. A certain contributor to Desmoulins's journal, the Acts of the Apostlcs, Suleau by name, earned her savage hatred by associating her name, for the sake of the play upon the word, with a deputy named Populus, whom she had never seen. On the 10 th of August, just after she had watched approvingly the massacre of certain of the national guard in the Place Vendome, Sulcau was peinted out to her. She sprang at him, dragged him among the infuriated mob, and he was stabbed to death in an instant. But the time came when her party was in peril at the hands of one more extreme, and she now wildy urged the mob to more moderate courses. Then the furies of the "Mlountain" seized the fury of the Cironde, and they stripped her naked, and flogged her in the public garden of the Tuilerics: The infamous affront drove her mad. She was removed to a private house, thence in 1800 to La Salpetriere for a month, and thence to a place of confinement called the Petites Maisons, where she remained-a raving maniac-till 1807. She was then again removel to La Salpetrière, where she died, never having recovered her reason, on 9th June 1817.

THESEUS, the great hero of Attic legeud, ${ }^{2}$ son of
${ }^{2}$ All the passages in the Ilicul and Odyssey in which his name or allusions to his legend occur are regarded with niere or less probaé bility as spurious.

Ægeus, king of Athens, and Rthra, daughter of Pitthẹus, king of Trezzen. Thus through his father he was descended from Erechtheus ad the autochthones of Attica; through his mother he car zof the Asiatic house of Pelops. Egeus, being childless, went to Delphi to consult the god; who gave him an ambiguous answer. He went to Trozen, and told the oracle to Pittheus, who, seeing its bearing, contrived that Egeus should have intercourse with his daughter 凷hra. ङgeus then departed to Atheus, and in due time Ethra, who remained at Trœzen, brought forth Theseus. It was given out that the child's father was Poseidon, the great god of Trozen, and in after ages the Trœezenians pointed to the Holy Isle as the place where Poseidon and Ethra met, and where Ethra raised a temple to Atheue Apaturia, at which Trcezenian maids dedicated their girdles before marriage. For his tutor and guardian young Theseus had one Cannidas, to whom, down to Plutarch's time, the Athenians were wont to sacrifice a black ram on the ove of the festival of Theseus. On passing out of boyhood, Theseus, in accordance with custom, went to Delphi, and there cut off his front hair. Egeus had deposited his sword and boots under a heavy rock, telling Ethra that, if she gave birth to a son who, on attaining manhood, should be able to lift the rock and remove the sword and boots, she was to send him with all secrecy to his father at Atlens. Theseus now lifted the rock, removed the sword and boots, and set out for Athens. He encountered many adventurerp on the way. First he met Periphetes, surnamed Coryneres (Clubman). Him Theseus slew, and carried off his club. At the isthmus of Corinth dwelt Sinis, called the Pine-Bender, because he killed his victims by fastening them to the top of a pinetree (or two pine-trees), which he had bent down and then suffered to fly up. Theseus boisted the Pine-Bender on Lis own pine-tree. Now, the deceased Pine-Bender had a pretty daughter, who ran aud hid herself in a thicket where asparagus grew plentifully; and, when Theseus came to look for her, slie prajed to the asparagus, and promised that if it wonld hide her she would never injure asparagus any more. Theseus wiled her from the thicket, and from their uniun sprang the family of the Ioxids, who worslipped asparagus. Next Theseus despatched the Crommyonian sow (or boar) a dreadful monster. Then Le flung over the cliff the wicked Sciron, who, while his guests were perforce washing his feet, used to kick them over into the sea. In Eleusis Theseus wrestled with and killed. Cercyon. A little farther on he slew Procrustes, who had only one bed for all comers: if his guest was too short for the bed, he stretched him out; if he was too long, he cut him down to the requisite length. At the Cephissus Theseus was met by the Phytalid family, who purified bim from the taint of bloodslied. As he passed through the streets of Athens, his curls and long garment reaching to his ankles drew on him the derision of some masons, who were putting on the roof of the new temple of Apollo Delphinius: "Why," they asked, "was such a pretty girl out alone ?" In reply. Theseus took the bullocks out of their cart and flung them bigher than the roof of the temple. He found his father married to Medea, who had fled from Corinth. Being a witch, she kuew Theseus before his father did, and tried to persuade Egeus to poison his son; but Ægeus at last recognized him by his sword, and took him to his arms. Theseus was now declared heir to the throne, and the Pallantids, who had hoped to succeed to the childless king, conspired against Theseus, but he crushed the conspiracy. He then attacked the flame-spitting kull of Marathon and brought it alive to Athens, where he sacrificed it to Apollo Delphinius. Now comes the adventure of the Cretan Minotaur (see Minos), whom.Theseus slew by the aid of Ariadne (q.v.).

While Thescus was iu Crete, Minos, wishing to see whether Thesens was really the son of Poscidon, flung his ring into the sea. Theseus dived and brought it up, together with a golden crown, the gift of Amphitrite. On the return voyage the ship touched at Naxos, and thero Thescus abandoned Ariadne. He landed also at Delos, and there he and the youths danced the crane dance, tho complicated movements of which were meaut to imitate the windings of the Labyrinth. ${ }^{1}$ In historical times this dance was still danced by the Delians round the horned altar-an altar entirely coniposed of left-sided iorns. Theseus lad promised Egeus that, if he returned successful, the black sail with which the fatal ship always put to sea ${ }^{2}$ should be exchanged for a white one. But he forgot his promise; and, when from the Acropolis at Atlens Fgeus descried the black sail out at sea, he flung himself from the rock, and died. Hence at the festival which commemorated the return of Theseus there was always weeping and lamentation. Thesens now carried out a political revolution in Attica by abolishing the semi-independent powers of the separate townships and concentrating those powers at Athens, and be instituted the festival of the Panathenæa, ${ }^{5}$ as a symbol of the unity of the Attic race. Further, according to a deurocratic tradition, he abolished the monarchy, and substituted in its place a popular government; but, to obviate the evils of a pure democracy, he instituted the three classes or castes of the eupatrids (nobles), geomori (Lusbandmen), and demiurgi (artisans). He also minted coins bearing ths figure of au ox. He extended the territory of Attica as far as the isthmus of Corinth.

Ho was the first to celebrate in their full pomp the Isthmian games in bonour of Poseidon; for the games previously instituted by Hercules in honour of Melicertes had been celebrated by night, and had partaken of the nature of mysteries rather than of a festival. Of Theseus's adrentures with the Amazons there were different accounts. According to some, he sailed with Hercules to the Euxine, and there won the Amazon Antiope as the meed of valour ; others said that he sailed on his own account, and captured Antiope by stratagem. Thereafter the Amazons attacked Athens. Antiope fell fighting on the side of Theseus, and her tomb was pointed out on the south side of the acropolis. By Antiope Theseus had a son, Hippolytus. On the death of Antiope, Theseus married Phædra. She fcll in love with her stepson Hippolytus, who, resist ing her advances, was accused by her to Theseus of having attempted her virtue. Theseus in a rage imprecated on his son the wrath of Poseidon. His prayer was answered : as Hippolytus was driving beside tho sea, a bull issuing from the waves terrified his horses, and he was throtn and killed. This tragic story is the subject of .one of the extant plays of Euripides.

The famous friendship between Theseus and Pirithous, king of tho Lapiths, originated thus. Hearing of the

1 The Ostiaks of Siberis have an elaborate crane dance, in which the dincers are dressed up with skins and the heads of cranes (Pallas, Reise durche verschiedene Provinsen des russischen Reichs, iii. 65).

So, too, the ship that sailed annually from Thessaly to Troy with offerings to the ohade of Achilles put to sea with sable saile (Pbilostratus, Heroica, $\mathbf{x x} .25$). The ship that was to bring Iseult to the mortally wounded Tristram was to hoist a white eajl if she-was on board, a buack sail if sife was not. The black eails recur in the modern. Greek version of the tale of Thesous. Ccmparv Aezatich Researches, ix. 97.

3 Besides the Panathenæs, Theseus is said to have instituted the festival of the Synoikia or Bretoikia. Wachsmuth ingenionsly enpposes that the latter feetival commemorated the local unior in a single city of the eeparate settlements on the Acropolis and ite immediate neighbourhood, while the Panathenæa commemorated the political union of the whole of Attica (C. Wachsmuth, Dis Stadt Atherr in Alterthum, p. 453 sq.).
strength and courage of Theseus, Pirithous desired to put them to the test. Accerdingly he drove away from Marathon sume corrs which belonged to Theseus. The latter pursued, but, when he came up with the robber, the two heroes were so filled with admiration of each other that they swore brotherhood. At the marriage of Pirithous to Hippodamia (or Deidamia) a fight broke out between the Lapiths and Centaurs, in which the Lapiths, assisted by Theseus, were rictorious, and drove the Centaurs out of the country. Theseus and Pirithous now carried off Helen from Sparta, and when they rew lots for her she fell to the lot of Theseus. who *cok her to Aphidnæ, and left her in charge of hie motier Æthra and his friend Aphidnus. He now descended to the lower world with Pirithous, to help his friend to carry off Proserpine. But the two were caught, and confined in Hades till Hercules came and released Theseus. Meantime Castor and Pollux had captured Aphidnæ, and carried off their sister Helen and Ethra. When Theseus returned to Athens, he found that a sedition had been stirred up by Menestheus, a descendant of Erechtheus, one of the old kings of Athens. Failing to quell the outbreak, Theseus in despair sent his children to Euboea, and, after solemnly cursing the Athenians, sailed away to the island of Scyrus, where he had ancestral estates. But Lycomedes, king of Scyrus, took him up to a high place, and cast him into the sea, that he died. Others said that he fell of himself over the cliff as he was taking his evening walk. Menestheus reigned at Athens, but, when he died before Troy, the sons of Theseus recovered the kingdom. Long afterwards, at the battle of Marathon (490 b.c.), many of the Athenians thought they saw the phantom of Theseus, in full armour, charging at their head against the Persians. When the Persian war was over, the Delphic oracle bade the Athenians fetch the bones of Theseus from Scyrus, and lay them in Attic earth. It fell to Cimon's lot in 469 b.c. to discover the hero's grave at Scyrus, and bring back his bones to Athens. They were deposired in the heart of Athens, and henceforth escaped slaves and all persons in peril sotioht and found sanctuary at the grave of him who in his life had been a champion of the oppressed. His chief festival was on the 8th of the month Pyanepsion (October 21st), but the 8th day of every month was also sacred to him.
Whatever we may think of the historical reslity of Theseus, his legend seems to centain recollections of historical events, e.g., the $\sigma_{i v a i k i} \sigma^{\prime} \delta \delta_{5}$, whether by this we understand the political centralization of Attica st Athens or a local union of previously separato eettlements on the pite of Athens. The birth of Theseus at Trezen points to the immigration of an lonian family or tribe from the south. With this agrees the legend of the contest between Athene sad Poseidon for supremacy on the acropolie of Athens, for Theseus is intimately connected with Poseidon, the grest Ionian god. Egeus, the father of Theseus, hass been identified by some medern scholars with Poseidon.
The Atheuisn festival in October, popularly aupposed to commemorate the return of Theseus from Crete. is interesting, as some of its festures are identical with those of larvest-festivals atill observed in the north of Eurepe. Thus the ciresione, a brench of olive wreathed with weol and decked with fruits, bread, \&c., which was carried in procession and hung over the door of the house, where it was kept for a year, is the Erntemai (Harvest-may) of Germany. ${ }^{1}$
The well-preserved Doric temple to the north of the ecropolis at Athens, commooly known as the Theseum, was long aupposed to be the sanctuary in which the bones of Theseus reposed. But erchreologists are now much divided on this question. It is agreed, however, that the temple is ef the 5 th century B.c., and that the date of its construction cannot differ widels from that of the Parthenon. ${ }^{3}$ There wero soveral (according to Philecherus, fonr) temples or Ghrines of Theseus at Athens. Milchhëfer thinks he has fonnd one of thera in the neighboarhood of Pirene. ${ }^{3}$

[^124]Onr chlet authority for the legend of Thesens is the life by Plntarch, which Is a compllation from earler wifters G Ollbert, who has inveatgated tha sonrces from which Plutarch drew for hia lifa of Theseus, believea that hia chiet anthority was the Altht; of later, and that Ister mainly followed Phllochoros. See Philologus, xxxill., 1974, p. 46 sq.
There is a modera Greek iolik-tale which preserrea anome features of the legend of Theseus and the Minotaur, but for the Minataur has been aubaritnted a bevenheaded anako. See Bernard Schmidt. Orvechbsche Möhrchen, Sagen, und Folks. lieder, p. 118 sq .
(J. G. FR.)

THESMOPHORIA, an ancient Greek festival, celebrated by romen only in honour of Demeter ©eqرoфópos. At Athens, Abdera, and perhaps Sparta, it lasted three days. At Athens the festival took place on the 11 th , 12 th , and 13th of the month Pyanepsion (24th, 25th, and 26th October), the first day being called Anodos (ascent), or, according to others, Kathodos (descent), the second Nesteia (fast), and the third Kalligeneia (fairbora). ${ }^{4}$ If to these days we add the Thesmophoria, which were celebrated on the 10th at Halimus, a township on the coast near Athens, the festival lasted four days. ${ }^{5}$ If further we add the festival of the Stenia, which took flace on the 9th, the whole festival lasted five days. ${ }^{6}$ The Stenia are said by Photius to have celebrated the return of Demeter from the lower world (Anodos), and the women railed at each other by night. ${ }^{7}$ The Thesmophoria at Halimus seem to have included dances on the beach. ${ }^{8}$ The great feature of the next day (the Anodos) is generally assumed to have been a processiou from Halimus to Athens, but this assumption seems to rest entirely on an interpretation of the name Anodos, and it loses all probability ' hen we observe that the day was by others called Kathodos. ${ }^{9}$ Probably both names referred to the descent of Demeter or Proserpine to the nether world, and her ascent from it. ${ }^{10}$ The next day, Nesteia, was a day-of sorrow, the women sitting on the ground and fasting. ${ }^{11}$ As to what took place on the Kalligeneia we have no information. Nor can we define the time or nature of the secret cerermony called the "pursuit," or the "Chalcidian pursuit," and the sacrifice called the "penalty." 12

During the Thesmophoria (and for nine days previously, if Ovid, Met., x. 434, is right, and refers to the Thesmophoria) the womed abstained from intercourse with their

[^125] Demosth., 30) atates that the Neateia took place on the 16 th of Pyenepsion, but in this he standa alone.

- Schol. on Aristoph., Thesin., 80; Phetiuk, Lex., s.v. ©ef 0 oф opfop in μ '́par δ^{\prime} (where Naber should not hase altered the MS, reading δ^{\prime} into

${ }^{8}$ Schol. on Aristoph., Thesm., 834.
7 Photius, Lex., s. ₹. $\sigma \tau$ fvia; cf. Apollodorus, i. 5, 1.
${ }^{6}$ Plut., Solon, 8 ; for this passage probably refers to the Theswophoria, the Cane Colias mentioned being near Halinue (see Erläuternder Text to the Karlen von Attika, is. i sq.). The Thesmepherium at Halimus is mentioned by Pansanjas (i. 3I, I).
- Hesychius (e.r. Kyooos) and the Schol on Arist., Thesm., 585, euppose that the dey was so called becanee the wemen ascended to the Thesmophorium, which (according to the echoliast) stood on a height. But no ancient writer mentione a procession from Galimus For the dame Kathodos, see Schol., loc. cil.: Photins, Lex., or.
 feetival (commonly assumed, by the writers who accept the ststen.ent. to be the Anodos) the women carried on their heads the "books of the law," We have only the authority of the scholias on Theocritus, iv. 25, who displays bis ignorance by describing the womels as rircins (see below), and esying that they went in procession to Eleusis. The etatement may therefore bo dismissed as an etymological fictiou. Aristophanes, Eccles., 222, is no evidence tor the lool-cerrying.

10 The Bootian fostivel of Demeter, which was held at about the same time as the Athenian Thesmophoria, and at wlich the negara (see below) were opened, is distinctly statod by Plutarch (De ls. et Osir., 69) to have been a mormiug for the dgaceut (Kathodas) of I : veerpine.
${ }^{11}$ Plat., Dem., 30 ; Id., Je Is. et Osir., שै.
 chins, e.v. Snula. For flight and pursuit as parts of relicioue ceremonies, ©f. Plntarch, Quest. Grac., 38; Id, Quest. Rom, 63; Id., Di Def. Orac., I5; Alıan, Nat. An., xil 34; Pausanias, i. 24, 4; Id., viii. 53, 3; Diodorus, i. 9 I ; Lobeck, Aglaophamus, p. 676 : Marquardt, Staadsverwaltung, 2d ed., ill. 328.
husbands, and to fortify themselves strewed their beds with Agnus castus and other plants. The women of Miletus strewed their beds with pine branches, and put fir-cones in the sanctuaries of Demeter. ${ }^{1}$ Whether unmarried women were admitted to the festival seems doubtful; in Lucian's time it would appear that they were. ${ }^{2}$ The women of each deme (township) elected two married women of their number to preside over them at the festival; and every married man in the township who possessed property to the value of three talents had to provide a feast for the wemen on behalf of his wife. ${ }^{5}$ During the festival the women seem to have been lodged by tres in tents or huts, probably erected within the sacred presincts of the Thesmophorium. ${ }^{4}$ They were net allowed to eat the seeds of the pomegranate or to wear garlands of flowets. ${ }^{5}$ Prisoners were released at the festival, ${ }^{6}$ and during the Nesteia the law-courts were closed and the senate did not meet. ${ }^{7}$ Aristophanes's play on the festival sheds little light on the mode of its celebratiou.

At Thebes Thesmophoria were celebrated in summer on the acropolis.(Cadmeia) ; at Eretria during the Thesmopheria the women cooked their meat, not at fires, but by the heat of the sun, and they did not invoke Kalligeneia (which seems to mean that they did not celebrate the last day of the festival) ; at Syracuse, during the festival, cakes called mylloi, made of sesame and honey in the shape of pudenda muliebria, were handed round. ${ }^{5}$ Agrigentum, Ephesus, and Dryme, in Phocis, had also their Thesmophoria. ${ }^{9}$

The above was nearly all that was known about the Thesmo. phoria down to 1870 . In that year E. Rohde published in tha Rheinisches Muscum (N. F. 25, p. 548 sq.) a scholion on Lucian !Dial. Merctr., ii. 1), which he discovered in the Vatican MS. Palatinus 73, and which furaishes some curious ilatals about tlio Thesmophoria. It also explains two obscure and corrupt pessages of Clemens Alexandrinus and Pausanas, the true meaniag of which had been divined by Lobeck (Aglaophamus, p. 828 sq.). The substance of the scholion is this. When Proserpine was carried off by Pluto, a amineherd called Euhuleus was herding his swide at the apot, and his herd was angulfed in the chasm down which Pluto had vanished with Proserpine. Accordingly at the Thesmophoria it was customary, in memory of Eubulsus, to fling pigs into tha "chasms of Demater and Proserpine." (These "chasms" may hava been natural carerns or perhaps vaults. The scholiast speaks of thera also as adyla and megara. ${ }^{10}$) In these chasms or sdyta thare were supposad to be serpents, which guarded the adyta and consumed most of the flesh of the pigs that were thrown
${ }^{1}$ Ảlian, Nat. An., ix. 26; Schol. on Thcocr., iv. 25 ; Hesychins, - . . кvéwpon; Pliny, N. H., 24, 59 ;. Dioscorides, i. 135 (134, ed. sprengel); Schol. on Nicander, -Ther., 70 so.; Galan, xi. 808, cd. Kuhn; Steph. Byz., в.т. Miגŋros.
${ }^{3}$ Lucian, Dial. Mereta., ii. 1. On the othar hand, we read in Strabo (i. 3, 20) of virgins at Alponus ascanding a tower as apactators (ratà eiav) of the Thesmophoria, which would a日am to imply that thay did zot participate in it.
${ }^{8}$ 1sæus, De Cironsis Hered., 19; Id., De Pyrrhi Hered., 80.

- Aristoph., Thesm., 624, 658, with the Schol, ad ll. As to the custom of camping out at festivala, Plutarch (Quest. Conviv., iv. 6, 2) compares the Jewish Feast of Tabernacles with the Grask Dionyaia; from which we may perhaps infer that the worshippers camped out at the Dionysia. Cp. Gumilla, Histoire de l'Orenoque, i. p. 256 sq.
- Clem. Alex., Protrep., 19.; Schol, on Sophoclss, CEd. Col., 681.

6 Marcellious oo. Hermogenes, in Rhetores Graci, ed. Walz, iv. 462 ; Sopater, ibid., viii. 67.

Aristoph., Thesin., 80. The word rpir η saams to mean the Nesteia, as the Schol, ad l. takes it. That the "middls day" was the Nesteia wa know from Athauæus, $307 f$.

8 Xenophon, Heilen.. フ. 2, 29; Plutarch, Quest. Gr., 31; Athen*08, 647 a.
${ }^{2}$ Polyænus, v. 1, 1; Herodotns, vi. 16 ; Pausanias, z. 33, 12.
${ }^{10}$ MrC. T. Newton discovered in tho sauctuary of Dameter and the Infernal Deities at Cnidus a chamber which may have been one of the megara referred to by the scholiast. It contained hoves of pigs and marhle figurea of pigs. The chamber was not, however, originally aubtarraneav. Ses Newtoo's Discoveries at Halicarnassus, \&c., ii. p. 383 sq. ; Id., Travels and Discoveries in the Levand, il. p. 180 sq. According Zo Porphyry (Do Andro Nympharum, 6) the Infernal Daities had megara, as the Olympian had templea, and the aacrificial pits of the former cortesponded to the altars of the latter.
in. The decaped remains of the flesh were afterwards fetched by women called "draners" (antletriai), who, after observing rules of ceremonial purity for three days, descended into the caverus, aad, frightening away the serpeats by clappiag their hands, brought up tha remsius and placed thera on the altars. ${ }^{11}$ Whosver got a portion of this decayed flesh and sowed it with the sead in tha ground was aupposad thereby to secura a good crcp. ${ }^{13}$ The rest of the scholion is obscure, sad perhaps corrupt, hut the following seams to be the sensa. Tha ceramony above described was called the arretophoria, and was supposed to exercise the same quicksaing and fartilizing influenca on man as on fields. Further, along with the pigs, sacred cakes made of dough, in the ahapo of serpents and of phalli, were cast into the caveros, to aymbolize the productivity of the arth and of man. Branches of pines wers thrown in is for a similar reason.

Tha custom described in this important acholion is clearly the same as that reforred to by Clemans Alezandridus (Proirep., § 17) and Pausunias (ix. 8, 1). From the latter we learn that tha pigs were aucking pigs, and from the former (if we adopt Lohack's
 in alire. From Pausauias we may further perbaps infar (though the passage is corrupt) that the remains of the piga thrown down in one year were not fatched up till the same time next year (cp. Paus., x. 32, 14). The question remains, At what point of the Thesmophoria did the ceremouy deacribad by the acholiast on Lucian take placa: Rolda thinks that it formed part of the cersmonies at Halimus, his chief ground boiug that Clemans (Protrep., 34) and Arnobius (v. 28) mention phalli in counexion with the "mysteries at Halimus"; but it is not cartaiu that these myateries were the Thesmophoria. Tha legend of Eubulans seams to show that the corenvon commemorated the descent of Proserpina to the nether world; and, if we are right iu our interpretation of the name Kathodos as applied to the first day of the Thesmophoria proper, the ceramouy described would daturally fall on that day. Furthor, if our interpratation of Pausauas is correct, the same day must have witnessed the dasceut of the liviug pigs and the ascent of the ratten pork of the previous year. Heace the day night ba anduftanatly styled Kathodos or Δ nodos ("descent" or "asceat") ; and so in fact it was.
It is usual to uterpret Thasnophorus "lawgiver" and Thesmophoria "the feast of the lamgiver." But the Greek for "lawgiver" is not Thesumophorus but Thesmothetes for Nomothates, when nomos displaced thesmos in the rease of "law"). If we compare such names of festivals as Oschophoria, Lampadophoria, Hydrophoria, Sciropbona ("the carryings of grapes, of torches, of water, of umbrellas") with the corresponding Oschophorus, Lampsde. phorus, Hydrophorns, also Thallophorus and Kanephorus, we can scarcely help concluding that Thasmophoria must originally have meant in the literal and physical sense the carrying of the thesmoi, and Thesmophorus the persou tho so carried them; and, in view of tha caramony disclosed by tha acholiast on Lucisn (compared with the analogous ceramony observed by the Arraphoroi at Athans), weare strougly teraptad to supposa that the women whom he calls Antletriai may bave hean also known, at one time or other, as Thesmophorei, and that the thesmoi were the sacra which they carried and deposited on the altar. Tha word would then be used in its litaral sense, "that which is set down." How the name Thesmophorus should have bean trassferred to the goddess from her ministers is of course a dificulty, which is bardly disposed of by pointing to the apithsts Amallophorus ("shaaf-bearing") and Mislophorus ("appla-baaring"), which vera applied to men as well as to the goddess.

As to the origin of tha Thesmophoria, Herodotus (ii. 171) asserta that they were introducad into Greece from Egypt by the daughtere of Danaus; whila, according to Plutarch (Eragments, p. 55, ed. Dübarr), tha feast was introduced into Athens by Orpheus the Odryaian. From these statements we can only infer the similarity of the Thesmophoria to the Orphic rites and to the Egyptian rapreasutation of the suffarings of Osiris, in connexion with which Plutarch meations them. The Thesmophoria would thas form one of that class of rites, widely spread in Westorn Asia and in Europie, in which the main feature appears to be a lamentation for the annual decay of vegetation or a rajoicing at its revival. This seams to have bean the root, e.g., of the lamentations for Adonis and Attis Ses W. Mannhardt, Antike Wald- und Feld-Kulle, p. 264 sq.
${ }^{11}$ Compare the fuactions of the two Arrephoroi at Athena (Pans., i, 27, 3). For aerpents in connexion with Demater, compasa Strebo, ix. 1,9 .
${ }_{13}$ This, as Mr Aodraw Lang has pointed out, resembles the Khond custom of barying the fleah of the hnman victim in the fislda to fertilize them. The haman victim was with the Khoods, like the pig with the Greeks, a sacrifics to the Earth goddess.- See. W. Macpher800, Memorials of Service in India, p. 129.1
 castom of Miletus supra. The pine-tres plsyed an important part in tive worship of Cybela. Cp. Marquardt, Staatsverwaltung, iii. 371.

On the Thasmophorid, see Meursiss, Orachi Feriata, p. 151 sq.; L. Proller, Demeter urd Perseplone, p. $335 \mathrm{sq} .: 1 \mathrm{~d}$., Oriech. Afyth., $[3\}$], 1.639 s $9 .:$ F Fitache's ed. of the Thesmophoriazusse, p. 577 sq.: Aug. Mommsen. Heortotogic. p. 287 *9; Rheinisches Museum, xxv. (1870), p. 548 ; GazettB Archeologique, 1880, p. 17 ; air Andrew Laug, in Nineleenth Century, April 1887.
(J. G. FR...)

THESPIE, an ancient Greek city of Beotia. It stood on level ground commanded by the low range of hills which runs eastward from the foot of Mount Helicon to Thebes. In the Persian invasion the Thespian contingent of 700 men voluntarily stayed with the Spartans at Thermopyle, and shared their fate. For its resistance to the Persians, the city was burned by Xerses (480 r.c.). Nevertheless, in the next year 1800 Thespians shared in the great victory of Platea. At the battle of Delium (424) the flower of the Thespians fell fighting against Athens on the side of Thebes, and in the following year the jealous Thebans availed themselves of the weakness of their gallant confederate to pull down the walls of Thespix. The walls were restored by the Spartans under Agesilaus in 378 , but were again destroyed by the Thebans, apparently before the battle of Leuctra (371). ${ }^{1}$ After the battle the Thespians, who had taken no part in it, withdrew to a strong place, Ceressus, from which, however, they were expelled by the Thebans. In 343 the city was not yet restored; but it must have been subsequently, for it is mentioned in the Roman wars.

In the 2d century Pausanias mentions that Thespix contanned a theatre, a market-place (agora), and canctuaries of Aphrodite, the Muses; and Hercules. Love (Eros) was the deity most venerated by the Thespians; they possessed a very ancient image of him in the shape of an unhewn block of stone. The marble statue of Love by Ptaxiteles was the great eight at Thospie, and drow crowds to the place. It was carried off to Rome by Caligula, restored by Claudius, and again carried off by Nero. There was also a bronze statue of Love by Lysippus. From an inscription we learn that one of the deities worshipped was Demeter Achea, the "Mater Doloross." Tho Thespians also worshipped the Muses, and celebrated a festival in their honour in the sacred grove on Mount Helicon. Remains of vhat was probably the ancient citadel are stil' to be seen, consisting of an oblong or oral line of fortification, solidly and regularly built. The adjacent ground to the east and south is coverch with foundations, bearing witness to the extent of the ancient city. The neighbouring villaye Eremokastro, on bigher ground, was thought by Ulrichis to be probably the site of the aneient Ceressus. In 1883 there were discovered, about 1200 yards east of Eremokastro, on tho road to Arkopodi (Leuctra), the remains of a polycrudrion, including a colossal stone lion. The tomb dates from the 5th century B.o., and is probably that of the Thespians who foll at Platiea, for those whe fell at Thermopyle were buried on the field.
 Greece, 1. 258 : Bursian, Geoor. von Oriecheniand, i. 237 sq.; Utricha, Reisen u. Forschungen in Oriechenland, il. 84 sq. sistheil. d. deutsch. arechool. Inst. in
 itrapiac, 1882, pp. 65-74.
THESSALONIANS, Epistles to the. Thessalonica, now Salontica (q.v.), was in the time of the Romans the aost important town of Macedonia. In consequence of 1ts advantageous situation, on a good harbonr and on the Via Egnatia, the great trade road which connected the Adriatic with the Hellespont, the town had surpassed the old capital Pella, and had indeed becomo one of the chief commercial centres of the ancient world. Since the Roman conquest the seat of the Roman provincial government had been here. Here, as in Corinth, tho conditions were favourable for the reception of Christianity. The popuiation was not purely Greck, but cosmopolitan, a mixture of divers nationalities. Such a population is always more susceptible to religious novelties for good and for evil than one of old, firmly established national growth. The apostle Paul experienced this to his great joy and satisfaction here also, as he for the first time set foot on the

[^126]shores of Europe with the message of Jesus Christ. It was about the year 52 or 53 that he, on his arrivai from Philippi, nreached the gospel of Christ in the rich merchant city As in other places, he began with the Jews. There was a Jewish congregation at Thessalonica, as at all the great ports and trading centres of the Mediterranean, with thcir own synagogue and regular service. For three Sabhaths Paul stood up in the synagogue, proviog loy the Scriptures that Jesus was the promised and expected Messiah (Acts xvii. 1-3). Me had not rauch success with the Jews, but this was more than compensated by the number of "devout Greeks" (i.e., Gentiles who already had some connexion with Judaism) whom bo won to a belief in Christ. Ho found hearing especially with the chief women (Acts xviii. 4). But Paul had also converted a not smaller number of real teathens. Indecd, they must have constituted the majority of the Christian church there formed, for in his first epistle he says quite generally that his readers, :n consequence of his preaching, had turned from idols to the one true God (1 Thess. i. 9).
Paul's stay in Thessalonica was short. The plots of the Jews soon obliged him to leare the town, and he betook hirsself to Bercea (Acts xvii. 10), thence to Athens (Acts xvii. 15), and finally to Corinth (Acts xviii. 1). The two epistles were written to the church of Thessalonica during a stay of a year and a half in Corinth (Acts xviii. 11), about 53-54, not before this in Athens, as is osserted in the subscription of both episties in the Codex Alexandrinus and other MSS. For when Paul wrote the first epistlo some time had elapsed since the formation of the church : some members were already dead (1 Thess. iv. 13), and Paul had worked for somo time, not only in Macedonia, but also in Achaia (i. 7, 8). On the other hand, the churchr appears to be comparatively young; the couversions are still spoken of everywhere in Macedonia and Achaia (i. 9). All this points to the conclusion that the first epistle was written in Corinth, and this is confirmed by tho opening salutation (i. 1), in which Silvanus (Silas) and Timotheus are named as joint authors, for they were in Coriath with Paul (Acts xviii. 5).
The first epistle gives us a very clear pieturo of the disposition aud state of such a young church, composed of former heathens. They had received with enthusiasm the gospel of Jesus Christ, the Bringer of salvation, the Saviour in the approaching day of judgment (i. 9, 10). But the realization of this salvation is now a amaited with impatience, and a sense of disappointment is experienced because some members of the church have died without having seen the advent of the Lord (iv. 13). At the same time many there are still living in gross heathen sins and vices (iv. 1-8). Paul had sent back Timotheus from Athens to Thessalonica in order to advise the young inexperienced church, and to ohtain news concerning it (iii. 1-5). He has just returned to Paul (iii. 6), and tho information received through this sourco is the occasion of the first epistle, ${ }^{2}$ designed to supply the place of Paul's personal presence and bring neir exhortation and instruction from the apostle to tho young church, which still much needed guidance.
We have no information conceraing the effect of this lotter. It is conceivablo, however, that the church required yet further advice and direction from the apostle, and so far it is not remarkable that Paul saw the need for a second similar letter of teaching and exhortation. This second epistle also, if it is genuine, was written during Paul's stay of a year and a half at Corinth, very soon afur

[^127]the first. For it also is written in tho conjoined names of Silvanus and Timotheus, who were still with Paul, while we must understand from Acts xviii. 18 that after Paul's departure from Corinth they ceased to be his companions. The occasion of this epistle seems especially to have ariseu from the circumstance that the chirch had been put into fear and anxiety about the advent of Christ, perhaps by a pretended letter from Paul. Two passages point to the existence of such a thing: in ii. 2, Paul says that the church shall not let itself be alarmed " by word or by letter as from us " (i.e., nominally coming from us), and in iii. 17 again Paul lays emphasis on his signature by his own hand as the token (of genuineness) to be noticed in each letter. If any case the chief aim of the epistle is to tranquillize the church concerning the advent of Christ, which is not yet immediately imminent. He particularly exhorts them not to let themselves be shaken in mind, as that the day of Christ is at hand (ii. 1, 2). For before this day comes the "man of sin" muast first appear, who seats himself in the temple of God, and gives himself out for God (ii. 3-5). And he too is for the present kept back by another power (ii. 6, 7). Only when the latter is taken out of the way shall "that wicked" be revealed, and the great falling a way shall follow (ii. 8-12).
The genuineness of the two epistles has not remained unquestioned by the newer criticism. Baur declared himself against the genuineness of both epistles, ${ }^{1}$ and he is followed by Van der Vies ${ }^{2}$ and several others. ${ }^{3}$ But in general the predominant opinion of impartial criticism at present is that the genuineness of the first epistle is certain, while that of the secoud must be given up.
This is the opinion of Milgenfeld (Z. f. wiss. Theol., 1862, p. $225-264 ; 1866$, p. $295-3 \theta 1$; 1869, p. 441 s $q . ; 1870$, p. 244 sq.), Van Manen (Onderzoek naar de echtheid van Paulus tweeden brief aan de Thessalonicensen, Utrecht, 1865), S. Davidson (Introd. to the Nero Testament, 2d ed., 1882, i. 4-16, 336-351), Teizsäcker (Das apostolische Zeitalter, 1886, y. 249-261); and Holtznann also leans to the same view, without, however, definitely committing himself (Einl. ind d. N. T., 2d ed., 1886, p. 233-241), The genuineness of the firsi epistle ie viudicated by Lipsins (7heol. St. u. Kr., 1854, p. 905-934), Von Soden (ibid., 1885, p. 263-310), and Paul Schmidt (Der erste Thessalonicherbrief neus erklärt, Berlin, 1885), while, on the other hand, Kern (Tübing. Zeitefr. f. Theol., 1839, ii. 145-214) and Bahnsen (Jahrb. fur prot. Theol., 1880, p. 681-705) attack that of the secoud. Grimm (Theot. St. u. Kr., 1850, p. 753-816) and Westrik (De echiheid van den tweeden brief can de Thessalonicensen, Utrecht, 1879) have untered the lists for the genuineness of both epistles.

The final decision of the newer criticism is jastifed by the evidence. No real difficulties can be brought against the genuineness of the first epistle, but they certainly can against that of the second. When Baur finds that the epistles lack the characteristic Pauline ideas, he is only so far right that the doctrine of justification by faith is not dealt with, for which, however, no occasion arises. It has been asserted that there are traces of imitation of the epistles to the Corinthians, but the points of resemblance are'not such as to juatify this conclusion. The connexion of the passage in 1 Thess. ii. 16 (the wrath of God is already come upon the Jews) with the destruction oi Jerusalem rests on an arbitrary, vay false, interpretation. And it cannot be maintained on impartial examination that in 1 Thess. ii. 14, 15, the Jewish churches of Palestine are set forth in a way unlike Paul, ns an example for the heathen churches.
The objections to the second epistle are much weightier, though bere also not all the arguments adduced by hostile

[^128]critics are ralid. It has been often said that the author, like the author of the Apocalypse, regards Nero as the Antichrist, expecting him to reappear as the arch-enemy of Christ. But this interpretation of the short statement of our instle cannot be proved. The assumption that before the dawn of salvation godlessness would reach its height, through the appearance of an arch-enemy of God and His church is, so to speak, a dogmatic postulate which rests on the prophecies of Daniel and other prophets of the Old Testament. And, in so far as the picture of this archenemy is endowed with historical features, they can quite as well have been drawn from Caligula as from Nero. For Caligula had already laid claim to the honours of a god, and brcause of this appeared to the Jews to be the embodiment of godlessness. The assumption of such an Antichrist would not be striking in Paul. Even if it is. correct (as is generally and with reason taken for granted) that by the hindrance which keeps back the appearance of Antichrist (2 Thess. ii. 6, 7) the established might of the Roman emperor and empire is to be understood, this view would be quite in keeping with Paul's views about the Roman dominion (Rom. xiii. 1-7). Yet it must be conceded that the statements on this head create real difficulty, if we compare them with those nf the first epistle, in which all stress is laid on the fact that the day of the Joord comes as a thief in the night, and that man must be prepared for it at any moment (1 Thess. v . 1-11). In the second epistle it is. pointed out with equal emphasis that the day of the Lord is not immediately imminent, and that certain events must come first. (2 Thess. ii. 1-10). It is certainly very striking that Panl, 30 soon after the admonitions of the first kind, should bave given the quieting assurances of the second. And 2 Thess. ii. 2 and iii. 7 can bardly be explained except by the supposition that the readers had been thrown into alarm by a pretended epistle from Paul. Could this have beer dawed in that early time, almost under the eyes of the apostle? Finally, it is not to be denied that the style of the second epistle is different from that of the first, and that the contents often appear a mere imitation, except in the eschatological passages on account of which it was written. It must therefore be admitted that weighty if not conclusive cousiderations have been produced against its genuineness.
(E. s^{*}.)

THESSALONICA. See Salonioa.

THESSALY is the district of northern Greece which intervenes between Macedonia and the more purely Hellenic countries towards the sonth, and between the upland region of Epirus and the Egean Sea. It forms an irregular square, extending for about sixty miles in each direction, and this area, which is for the most part lerel, is enclosed by well-marked boundaries - by the Cambunian Mountains on the north, and by Othrys on the south, while on its western side runs the massive chain of Pindus, which is the backbone of this part of Greece, and towards the east Ossa and Pelion stand in a continuous line ; at tho north-eastern angle Olympus rises, and is the keystone of the whole mountain system. The eleration of eome of the summits in these ranges is considerable, for three of the peaks of Pindus are over 5000 feet, and Olympus, Ossa, and Pelion reach respectively the height of 9754 , 6407 , and 5310 feet. The coontry that is contained within these limits is drained by a eingle river, the Peneius, which, together with the water of its numerous confluents, passes into the eea through the Vale of Tempe. This place, whicn the Greeks were accustomed to associate with rural delights, is a chasm, cloven in the rocks, as the fable tells us, by the trident of Poseidon, between Olympus and Ossa; but thongh it posseeses every element of tha sublime, rat its features are soft and beantifu! irom the
boad winding river, the luxuriant vegetation, and the clades that at intervals open out at the foot of the cliffis. It is about four miles and a half long, and towards the middle of the pass, where the rocks are lighest, the presipices in the direction of Olympus fall so steeply as to bar the passage on that side; but those which descend from Ossa are the loftiest, for they rise in many places not less than 1500 feet from the valley. Owing to the length and narrowness of the ravine, it was a position easily defended, but still it offered a practicable entrance to an invading force, in consequence of which a number of castles were built at different times at the strongest points. On the north side of Thessaly there was an important pass from Petra in Pieria by the mestern sido of Olympus, debouching on the plain northward of Larissa; it was by this that Xerxes entered, and wo learn from Herodotus (vii. 173) that, when the Greeks discovered the eristence of this passage, they gave up all thoughts of defending Tempe. On the side of Epirus the main line of conmunication passed over that part of Pindus which was called Mount Lacmon, and descended the upper valley If the Pencius to Rginium in the north-west angle of Thessaly, near which place now stand the extraordinary wonasteries of Meteora. This was the route by which Iulius Ceesar arrived before the battle of Pharsalia. dnother pass through the Pindus chain mas that of Gomphi, farther south, by means of which there was conmunication with the Ambracian Gulf. The great southern pass was that of Cœela, which crosses Mount Othrys near'y apposite Thermopylæ. These Thessalian pā̄̄ее were of the utmost importance to soutbern Greece, as commanding the approaches to that part of the country.
Though Thessaly is the most level district of Greece, it does not present a uniform unbroken surface, but is consrosed of a number of sections which open out into one awother, divided by ranges of hills. The principal of these were called Upper and Lower Thessaly, the former comprising the western and south-western part, which contains the higher course of the Peneius and all those of its tributaries that flow from the south-the Enipeus, the Apidanus, the Onochonus, and the Pamisus; while the latter, which reaches eastward to the fout of Ossa and Pelion, is inundated in parts at certain seasons of the year by the Peneius, the flood-water from which forms the lake Nessonis, and, when that is full, escapes again and pours itself into the Lake of Boebe. The chief city of the latter of these districts was Larissa ; and the two were separated from one another by a long spur, which runs southwards from the Cambunian Mountains on the western side of that city. Again, when Thessaly is entered from the aouth by the pass of Cela, another plain, containing a imall lake, which was formerly called Xynias, intervenes, and a line of low hills has to be crossed before the town of T.'aumaci is reached, which from its commanding position ovorlooks the whole of the upper plain. The riew from this point has been described by Livy in the following remarkable passage :-"When the traveller, in passing thr,ugh the rugged districts of Thessaly, where the roads are entangled in the windings of the valleys, arrives at this cit.; on a sudden an immense jevel expanse, resembling a rast sea, is outspread before him in such a manner that the eye cannot easily reach the limit of the plains extended beneath " (xxxii. 4). To the north-eastwards of this, where a portion of the great plain begins to run up into the mountains, the Plain of Pharsalia is formed, which is iatersected by the river Enipeus; and still farther in the same direction is the scene of another great battle, Cyaoscephala. Thessaly was further subdivided into four districts, of which Pelasgiotis embraced the lower plain of the Peneius, and Hestiæotis and Thessaliotis respectively
ths northera and the southern portions of the upper plain ; while the fourth, Phthiotis, which lies towards the southeast, was geographicaily distinct from the rest of the country, being separated from it by a watershed. The determining feature of this is the Pagasmus Sinus (Gulf of Volo), a landlocked basin, extending from Pagasæ at its head to Apheta at its narrow outlet, where the chain of Pelion, turning at rigLt angles to its axis at the end of Magnesia, throws out a 1 :0jecting line of broken ridges, while on the opposite side rise the heights of Othrys. In the beroic age this district was of great importance. It was the birthplace oi Greck navigation, for this seems to be implied in the story of the Argonauts, who started from this neighbourhood in quest of the golden fleece. From it the great Achilles came, and, according to Thucydides (i. 3), it was the early home of the Hellenic race. The site of Iolcus, the centre of so many poetic legends, is at no great distance from the modern Volo. Near that town also, at a later period, the city of Demetrias was founded by Demetrius Poliorcetes, who callcd it one of the three fetters of Greece, Chalcis and Corinth being the other $t w o$.

The history of Thessaly is closely connected with its geography. The fertilily of the land offered a temptation to invaders, and was thus the primary canse of the early migrations. It was this motive which first induced the Thessalians 10 lcave their bome in Epirus and descend into this district, and from this movement arose the expulsion of the Bootians from Arne, and their settlement in the country subsequently called Bootia; while another wave of the same tide drove the Dorians also southward, whose migrations changed the face of the Peloponnese. Again, this rich soil was the natural home of a porverful aristocracy, such as the families of the Alenadæ of Larissa and the Scopariæ of Crannon; and the absence of elevated positions was unfavourable to the foundatiols of numerous cities, which might have fostered the spirit of freedom and democracy. The plains, also, Fere suited to the brecding of horses, and consequently the force in which the Thessalian nation was strong was cavalry, a kind of troops which has usually been associated with oligarchy. The wealth and the semi-Hellenic character of the people-for in race, as in geograph: ical position, the Thessalians lield an intermediato place betrees the non-Hellenic Macedonians and the Greeks of pure bloodcaused them to be wanting in patriotism, se that at the time of the Persian wars we find the Aleuadix making common cause with the enemies of Greece. When they were united they were a formidable power, but, like cther half-organized communities, they seldom combined for long togcther, and consegueutly they infuenced but little the fortunes of the Grecks.

For severel centuries during the Middle Ages Roumanian immigrants formed so large a part of the population of Thessaly that that district was called by the Byzantine writers Great Walachia (Meqád \quad Bגax (a) : the Jewish traveller, Benjamin of Tudela, who passed through the country in the latter half of the 12 th century, describes them as then occupying it. At ihe present day only a few colonies of that race remain, the principal of which aro found on the western side of Olympus and in some of the gorges of Pindus. The Turkish inhabitants are settled in the larger towns, and bere and there in the country districts the most impertant colony being those called Koniarates, wno were brought from Konieh in Asia Minor shortly before the taking of Constantinople, and planted under the south-west angle of Olympus. The Greeks, however, form the vast majority of the population, so much so that, even while the country belouged to the Ottomans, Greek tras employed as the official language. In accordaneo with the provisions of tho Berlin treaty, Thessaly was ceded to the Greeks by the Porte in 1881, and since that period it has formed a portion of the Hellenic kingdom.
(H. F. T.)

THETFORD, an ancient borough and market-toma, partly in Norfolk and partly in Suffolk, is situated on the Thet and Little Ouse, and on tho Great Eastern Railmay line between Cambridge and Norwich, 36 miles south-west of Norwich, 12 north of Bury St Edmunds, to which there is a branch line, and 96 north-north-east of London. Tho Little Ouse, which divides the counties, is crossed by a cast-iton bridge erected in 1829. In the time of Edward III. the tomn had trenty churches and eight monasteries. There are now three churches-St Peter's, St Cuthbert's, and St Mary's : of these St Mary's, on the Suffelk side, is the largest. There aro various monastic
remains in the town. The most important relic of antiquity is the castle hill, a mound 1000 feet in circumference and $10 \bigcirc$ feet in height, probably the largest of the Celtic earthworks in England. The grammar school was founded in 1610. In King Street is the mansion-house occupied as a hunting lodge by Queen Elizabeth and James I. Brewing and tanning are carried on; and there are also manure and chemical works, brick and lime kilns, flour-mills, and agricultural implement works. The Little Ouse is navigable from Lynn for barges. The population of the municipal borough (area 7296 acres) in 1871 was 4166 and in 1881 it was 4032.

Thetford is eupposed to have been the Sitomagres of the Romans, In the time of the Saxous, by whom it was called Theodford, it was the capital of East Anglia. During the heptarchy it was frequently desolated by the Danes. It res burned by them in 998 after a drawn battlo between Swend end Ulfcytel, and again after Ulfcytel's second battle at Ringmere, 10 th May 1004. From the reign of Athelstan to that of King John it possessed a mint. The see of Elmhara wes removed to it in 1070 , but it was transferred to Norwich in 1094. At Domesday it had Give burgesses, but by the time of Edward III. they had increased to 953 . It was incorporated by Elizabeth in 1573. It returned tro membere to parliament from the time of Edward VI., but was disfranchised in 1868.
-THEVENOT, Jean de (1633-1667), an eminent Oriontal traveller, was a native of Paris, where he received his education in the college of Nararre. The perusal of works of travel ${ }^{2}$ moved him to go abroad, and his circumstances permitted him to please himself. Leaving France in 1652 , he first visited England, Holland, Germany, and Italy, and at Rome he fell in with D'Herbelot, who invitcd him to be his companion in a projected reyage to the Levant. D'Herbelot was detained by private affairs, but Thevenet sailed from Rome in May 1655, and, after vainly waiting five months at Malta, took passage for Constanfinople alone. He remained in Constantinople till the end of the following August, and then proceeded by Smyrna and the Greek islands to Egypt, landing at Alezandria on Nerr Year's Day 1657. He was a year in Egypt, then visited Sinai, and, returning io Cairo, joined the Lent pilgrim caravan to Jerusalem. He visited the chief places of pilgrimage in Palestine, and, after being twice taken by corsairs, got back to Damietta by sea, and was again in Cairo in time to view the opening of the canal on the rise of the Nile (August 14, 1658). In January 1659 he sailed from Alexandria in an English ship, taking Goletta and Tunis on the way, and, after e sharp engagement with Spanish corsairs, one of which fell a prize to the English merchantman, reached Leghorn on April 12. He now spent four years at home in studies useful to a traveller, and in November 1663 again sailed for the East, calling at Alexandria and landing at Sidon, whence he proceeded by land to Damascus, Aleppo, and then through Mesopotamia to Mosul, Baghdad, and Mendeli. Here he entered Persia (August 27, 1664), proceeding by Kirmanshahan and Hamadan to Ispahan, where he spent five menths (October 1664-February 1665), and then, joining company with the merchant Tavernier (q.v.), proceeded by Shiraz and Lar to Bender-Abbas, in the hope of finding a passage to India. This was difficult, because of the opposition of the Dutch, and, though Tarernier was able to proceed, Thevenot found it prudent to return to Shiraz, and, having visited the ruins of Persepolis, made his way to Basra, and sailed for India November 6, 1665, in the ship "Hopewell," arriving at the port of Surat January 10, $1666 .{ }^{\circ}$ He was in India for thirteen months, and crossed the country by Golconda to Masulipatam, returcing overland to Surat, from which he sailed to Bender-Abbas and went up to Shiraz. ${ }^{2}$ He passed the summer of 1667 at Ispahan,

[^129]disabled by an accidental pistol shot, and in October started for Tebriz, but died on the way at Miyan; (November 28, 1667).
Thevenot. Was on accomplished linguist, skilled in Tuskish Arabic, and Persian, and a curious and diligent observer. His was also well skilled in the natural sciences, especially in botany, for which le made large collections in India. His persenal character mas admirable, and his writings are atill esteemed, thougb it has been justly observed that, unlike Chardin, be saw only the outside of Eastern life. The account of his first journoy was published at Paris in 1665 ; it forms the first part of his collected Voyages. The licence is dated December 1663, and the preface oliows that Therenot himself arranged it for publication before learing on his second voyage. The second and third parts were posthumously published from his journals in 1674 and 1684 (all 4to). A collected edition appeared at Paris in 1689, and a eecond in 12 mo at Amsterdam in 1727 (5 vols.). There is an indifferent English translation by A. Lovell (fol., London, 1687).

THiAN-SHAN, or Celestial Mountains. See Asla (vel. ii. p. 686), Syr-Daria, and Tureestan.

THIBAUT, Anton Friedrion Justus (1774-1840), one of the greatest of Cerman jurists, was born at Hameln, in Hanover, January 4, 1774, that is, ten years after his contemporary and rival Hugo, about a year before Feuerbach; and five years before Savigny. Thibaut's father was an officer in the Hanoverian army, a skilful mathematician, and, like his son, a man of much force of character. His mother was the daughter of the oberbürgermeister of the town. The Thibauts were of French descent; they came from a family which had been driven out of France on the revocation of the edict of Nantes: As a child and youth, Thibaut lived in Hameln, Harburg, and Hanover. ' He was foad of rowing, skating, and strimming, and, abovio all, of music, which remained his passion through life. As a lad he set his heart, chiefly fer romantic reasons, on being a forester, and he actually spent two years es such. But he soon became disenchanted, and in 1792 went to Göttingen to study. In 1793 he moved to Königsberg, where Kant still taught. Thibaut was deeply affected by the critical philosophy; his very latest writings bear traces of it, and it is not unimportant in the history of jurisprudence in Germany that Hugo was equally influenced by it. From Königsberg. Thibaut moved in 1794 to Kiel, where he formed a friendship with Niebuhr, at that time a student there. They lived for a year in the same honse, taking their meals together, and holding much converse on literature and politics. Both already displayed the bent of their minds - Niebubr despondent and affrighted at the pregress of the French Revolution, Thibaut hopeful, undismayed, and certain that eventually all would be well. In 1798 he was appointed extraordinary professor of civil law, and in the same year appeared his Versuche über einzelne Theile der Theorie des Rechts (Kiel, 1798), a collection of essays, of which by far the most important was entitled "Ueber die Einfluss der Philosopnie auf die Auslegung der Positiven Gesetze." Taking as his text an observation of Leibnitz, he sought to show that history without philosophy could not interpret and explain law. The essay was partly by anticipation a corrective of the teaching of the historical schooi of jurists. It enters into speculations on the possibility of forming an ideal body of law as a measure and mode of exposition of particular law, -speculations which have never been continued, certainly not by Thibaut. In 1799 be was made ordinary professor of civil law. In that year was published his Theorie der logischen Auslegung des römischen Rechits, one of his most remarkable works, a farourite book of Austin's, and, as his well-annotated copy in the Inaer Temple library shows, one which he liad most carefully studied. In 1800 Thibaut married the daughter of Professor Ehlers at Kiel. In 1802
somowhat cnvious scholar is wrong in saying that this was Thavenot's only visit to the ruins (Chardin, Voyages, ed. Langlés, viii. 345). Sie Thevenot, pt. ii. bk. 3, chap. 6.
he published a short criticism of Feuorbach's theory of sriminal law. It is an excellent illustration of his good rense; it discriminates between what is good and what is ansound and crude in the writings of criminal law reformers; it recalls in many ways the speculations of Bentham. The same year appeared Thibaut's essay Ueber Besitz und Verjöhrung. In 1803 Thibaut was called to Jena, where he spent three years, made happier than they othervise would hare been by intercourse with Goethe and Schiller, At the invitation of the grand-duke of Baden he went to Heidelberg to fill the chair of civil law and to assist in organizing the university; and he never quitted that torn, though he received in afte: years, as his fame grew, invitations to Göttingen, Munich, and Leipsic. His class was large, his influence-great; and, except Hugo and Savigny, no civilian of his time was so well known. In the work of the university he took an active part; and he cultivated with rare devotion bis favourite art. In 1814 appeared his Civitistische dbhandiungen, of which the principal was his famous essay, the parent of so much literature, on the necessity of a national code for Germany. He had no wish to enter into official or practical life. "I am Professor Thibaut, and wish to be nobody else." In 1819 he was appointed representative in the first chamber of the Baden parligment. He was also mado member of the Scheidungsgericht. In 1825 appeared anonymously his work Ueber die Reinheit der Tonkunst, in which he eulogized the old miusic, and especially that of his favourite master, Palestrina. It involved him in a contest with Nägeli and other admirers of the new school of music, whose merits Thibaut was somewhat slow to own. This has been translated into English by W. H. Gladstone. In 1836 Thibaut published his Erörtorume"n des römischen Rechts. One of his last works was a contribution in 1838 to the Archiv für die civilistische Praxis, of which he was one of the editors (see below). He died peacefully, full of years and honour, on the 29th of March 1840.

Thibaut was of the middle height and broad-shouldered, his ejes bright and piercing, his head noble and striking; his whole appearance told of power, simplicity, and reserve. All who knew him speak of his strong personality, his manly consistent nature. Young men loved him, and he drew to the young. If. he somptimes signed his letters "Semper idem A. F. J. Thibaut," it was not a phrase. Every incident told of him has a curious flavour. He was much more than a jurist: he deserves to. be remembered in the history of music. Palestrina and the carly composers of charch music were his delight. "Jurisprndence is my business; my music room is my temple." His friend, Dr Baumstark, has left an interesting record of his musical pursuits and of the work of his "Sangvercin" at Heidelberg. Among the masters of Carman prose Thibaut hulds no mean place. Nothing could bo clearer, more unpedantic and uapretentious, than his exposition; his prose is scarcely inferior to Lessing's. Like his speech, his written style was simp!e and manly, but it is simplicity marked by care, and is rich in the happy accidents of expression which come only to true artists. He liked the old classical models; he read and reread the classice, ancient and modern, his taste being catholic enough to include Plato and Chrysostom, Montaignc, Hume's Essays, Adam Smith's works, Ferguson's Essay on the History of Civil Society (which ho particularly admired), and the later derelopments of German literature.
Most of Thibaut's works have already been mentioned. Sereral of them, however, deserve further notice. And first as to his cssay刀 the nccessity of a code for Germany ("Ueber die Nothwendir. teit eines allgomeinen burgerlichen Rechts fur Dentsciland "). Kin more persuasive argument for codification was ever advancer. It has all the vige ur of Benthsnis aryuments for the samo causc,
bnt is withont hie pamphletecring recklessness of expression. Unlike Hugo, whosa cducation dsted back to the tirne when French literatura mas supreme in Germany and who felt himsell aomerthai a atranger to later German culture, Thibsut was of his own time eensitivo to tho great change which had come over Germany aftel tho battle of Leipsic, consclions of the insufficiency of Roman law and eagor to promoto the greatness of his country. In his con' tribution to the "Archiv fur die civilistische Pra:cis, in 1838, on "the so-called historical and unihistarical schonl," he tolls the histary of his memorabla essay on the necessity of a coda fos Germany. Ho had scen many German soldiers in 1814 about ℓ march to Paris. Ho realized the chenge which this denoted; and out of the fulness of his heart he wrote tho essy y in a fortnighto The mode of treatment is more comprehensive ton the theme and to-day, perhaps partly for this reason, tho cssay is us readable as it aver was ; jurists have wot yet carried out all the oug. gestions whicle it contains. For Germany, its sciil freed and its honour vindicated, a happy future had, ho predictod, been opened up. "The division into small atates was inevitublo, and not to be deplored. The existence of great states is alvaya in a eensd nunaturel ; it iraplies a warm life only at one point, -8 conatanf repression of individuals for a common object, and no real unity between the rulers and tho aubjects. In a land of small statea, on the other hand, the peculiarity of cach nes full play; thero is developuent of variety, and the unity of princes and people is decper and more living." The only unity practicable and needfal in Thibaut'a judgment was oue of lsw; nud for such all the German Governmenta should labour. His review of tha atato of jurispradence in Germany is severe; it recalls the contemporaneous criticisms passed by Beatham on English law. Thibmut pointed out luminoualy tho contrast between the fuudamental conceptions of Roman and German society, and the inadequecy of Roman law to supply defects in German jurieprudence. It was not pleasing to many jurists to be told that a fow lectures on the laws of the Persians and Chiuose would do moro to awaken a true judicial gense than minute disquisitions on tha Roman law of intestacyobservations tho full effect of which Thibsut himself did not perlasps conctive. The essay was as much a condemnation of the entire atate of jurisprudence as an argment for codification; it wes a challonge te civilians to justify their very exiatenca. Savigny took up the challonge thus thrown down; and a long controvcray as to points not very clearly defined took place. The glory of the controveray belanged to Savigny; tha real victory rested vith Thibant. By recent legislation Germany has carried out some of the ideas of Thibant; and others indicated bat not developed in his essay remain te be completed by a acientific school of jurista One of his works best worth reading is his Theory of Construction. Though directly applicable to Romen lave, it is, of general nse. The subject is divided into- two branches-"Interyretation nacb der Absicht des Cesctzgeber" and "Interprotation nash dena Grunde des Geaetzes," or, ss Austiu expressea the distinction in a marginal note on his copy," What the legislator would hava contemplated had he conceived his purpose completely and distinctly, and what the legislator actually contemplated." It would bo interesting to compare the rules of interpretation stated by Thibaut with the rules of construction, familiar to English laryerg, laid down by Coke in Ileydon's Caso, $3,7 b$, Reports. Thibaut'a best-known work is on the Pandects (System des Pandeftenrechts, 3 vols., 1803), a part of which was translated by Lord-Justice Lindley. He was one of the earliest to criticize tho divisions found in the Institntes, and he carried on with Ilugo a controversy as to theso points. Thibant's own classification earlier is unsatisfactory. Ife divided the subject into public law (that which treats of the relationa botwcen Govorument and subjects), private law, and international law. Public law ho subdivided into constitutional law (Staalso recht, tho laws binding on tho sovereign) and administrativa law (Regierungsrcch, or criminal law, and laws relatim, to financo und polico). Tho laws relating to civil process wero dealt with partly under administrative law and partly under privato law. Statua was placed partly in tho former partly in tho latter; and tho law as to guardianship and parantal authority is treated as a jart of the lew of polica. Thibnut, hawever, abandoned in 1 ractice this unscientific dirision. One of his most interesting works is bis posthumons treatiso on tho "Cods Civil," Lekrbuch des franzassischon Civirrchts in stceer Perghichung mit den römischen Civil. rechl. While criticizing the code, which bo desigastes as in tho highest degres unsystematic, bo recognizes in it merits which Cerman jurists of bis time were reluctant to admit.
In modern German legal literaturo Thibaut's influenec is not rery perceptible. Even at Heidelberg it was quichly supersted ly that of his sucuessor, Vangerow, and in Gurmany his works are now little used as text-booke. But those best ablo to jndge Thabaut have nost prasel him. Austin, who used mucb to him, describea him as one "who tor penetrating acul ness, rectitulu of judgment and depth of learning, and cloquenco f exposition may be pleced, bf the sido of Ton Savigny; at tho head of all living civilians; and elsewhere ho prases Thibaut's indefatigable perseverance aud
"aagocity not surpassable." High though such eulogies are, they are scarcely adeqnate. In Thibaut's worlis are promises which ho did not fulfil, and they contain fertile suggestions which future jurists may ntilizc. It was not the least of his merits that he introduced scientific methods into legal practice and practical aease into jurisprudence.
(J. M H .)

THIELT, a town of Belgium, in the province of West Flanders, 15 miles south-south-east of Bruges, on a branch line between lngelmunster and Deynze. It manufactures linen and woollen goods, gloves, vinegar and spirits, and has tanneries and bleacheries. There is also some trado in cattle and grain. The town was of considerable importance in the Middle Ages, but was almost entirely destroyed by fire in 1383, a calamity from which it never wholly recovered. The population in 1876 was 10,527 .

THIERRY, the name of two excellent French historians, brothers (Augustin and Amédée), both of whom, though their literary and historical faculty was not quite equal, displayed the same devotion to historical study.
I. Jacques Nicolas Augustin Thierry (1795-1856), the elder and most gifted, was born at Blois on the 10th May 1795. He had no advantages of birth or fortune, but was greatly distinguished at the Blois grammar school, and entered the Ecolo Normale, an establishmeut which, designed on the best principles to supply France with perfectly equipped teachers, has on the whole done more service to journalism and literature than to pedagogy. He appears to have been very susceptible to personal influences, and was for a time docile to St Simon and afterwards to Comte. Buthis real bent was towards more golid studies, and, under the impulse of the strong current setting at the time towards medirval research, he began, and in 1825 published, his History of the Norman Conquest of England, much altered and improved in the later edition of 1840 . Two years later he published important Lettres şur l'Histoire de France, attacking the traditional method of history-writing, and recommending recourse to the priginal documents. About this time the heavy calamity of blindness threatened him, and by 1830 he had totally lost his sight. His marriage, however, with Julie de Quérengal, a woman of ability, considerably lightened his misfortune, and about the same time he was elected to the Académie des Inscriptions. He continued to pursue his historical studies, now through other eyes, and in 1834 published Dix Ans d'Études Mistoriques, which was followed by his capital work, the Récits Merovingiens, in 1840. His later years were chiefly occupied in the study of the history of the Tiers Etat, which bore fruit in mere than one publication. He died at Paris on May 22, 1856.

The duller sohool of picturesque Dryasdusts (a rather miraculous combination) who have profited by Thierry's labours and continned his work have sometimes charged both him ond his brother with having entered on history with their minds full of Walter Scott, and with baving subordineted facts to graphic presentation. The charge is entirely unjust, and is generally found in tho montha of those who ere particularly ill qualified to make it, inasmuch as they owe Thierry nearly everything in style. By others he is de. scribed as the founder of the picturesque school, and in this capa. city, no donbt, he has much to answer for. His own work, howover, is of a very high and remarkablo character. He had hardly any forerunners, nnless Gibbon may be counted as one, and his freedom from the besetting sin of his own school-the subordina. tion of aober history to picturesque deacription and romantic narrative-is best aeen by comparing him with his contemporary Barante, who, however, is himself not to be named otherwise than honoris causa.
II. Amédee Simon Dominique Thierry (1797-1873) was the younger brother of Augustin, and was bern on the 2d August 1797. He began life as a journalist (after an essay, like his brother, at schoolmastering), was connected with the famous rol antic harbinger the Globe, and obtained a small Governr ent clerkship. His tirst book was a brief history of Guicnno in 1825, and three years Later appeared the Histnire des Gaulois, which was received
with much favour, and obtained him, from the royalist premier Martiguac, a history professorship at Besançon. He was, however, thought too liberal for the Government of Charles X., and his lectures were stopped, with the result of securing him, after the revolution, the important post of prefect of the Haute-Saône, which he held eight years. During this time he published nothing. In 1838 he was transferred to the council of state as master of requests, which post he held through the revolution of 1848 and the coup d'état till 1860, when he was madu senator-a paid office, it must be remembered, and, in effect, a lucrative sinecure. He also passed through all the ranks of the Legion of Honour, became a member of the Académie des Inscriptions in 1841, and in 1862 received the honerary degree of D.C.L. at Oxford. He had, except during the time of his prefecture, never intermitted his literary work, being a constant contributor to the Revue des Deux Mondes, his articles (usually worked up afterwards into books) almost all dealing with Roman Gaul and its period. The chief were the Histoire d'Attila (1856), frequently reprinted, tho Histoire de la Gaule sous l'Administration Romaine (1840-2), a Tablear de l'Empire Romain, and, in imitation of his brother, certain Récits of Roman history, a book on St Jerome in 1867, and one on Chrysostom and Eudoxia in 1873. He died March 27, 1873.

His literary and historical genins was perhaps inferior to his brother's, and he exhibits more of the defects of the anecdotic method of writing listory, but he shared Augustin's passion for going to the fountainhead and for animating tho dry bones of mere chrouicles and mere academic discussions with accounts of the lifo of peoples.

THIERS, a town of France, chef-lien of an arrondisscment in the department of Puy-de-Dôme, on the railway between Clermont and St Étienne, 24 miles east-northeast of the former town. It is most picturesquely situated on the side of a hill, at the font of which the Durolle rapidly descends throngh a narrow valley into the Dore, in its turn a tributary of the Allier. The streets, rising in steep rows, contain many wooden and gabled houses, some of which are as old as the 15 th century, and a fine viuw of the Plair. of Limagne and the Dôme Hills is obtainalle from the termaces. All the processes of making cutlory may bo scen at Thiers, giving employment to 12,000 wo k men in the town and the villages within a radius of 6 tc 7 miles. Sheath-making, tanning, and paper-making (chitfiy stamps and playing cards) employ 8000 hands, and th. business done reaches $£ 1,200,000$ per annum. The chu iclof Le Moutier, so named from a Bencdictine monastyry of which it formed part, contains building of the 7 th, 8 th, and 11th centuries; the tower is more modern. There were 12,005 inhabitants in 1886 (commune 16,754).
Thiers was sacked in 523 by the soldiers of Thierry, the sou of Clovis; and Gregory of Tours speaks of a wooden chapel which then existed here (an the site of the present church of Le Moutier). The church of St Genez was built in 573 by Avitus, bishof of Clermont, on the site of the ancient Tigernum Castrum, was rehuilt in 1016 by Wido, Jord of Thiers, and again in the 12th centary. There is some curious mosaic work of the 12 th century, aud a fine tomb of the 13 th. The commercial importence of Thiers was greatly increased three centories ago, when the manufacture of the larger kinds of cutlery was introduced from Chateldon, between Vichy and Thiers.

THIERS, LOUIS ADOLphe (1797-1877), " liberator of the territory," as even the short-lived gratitude of France continues to call him, was born at Marseilles on April 16, 1797. His family are somewhat grandiloquently spoken of as "cloth merchants ruined by the Revolution," but it seems that at the actual time of his birth his father was a locksmith. His mother belonged to the family of the Chéniers, and he was well educated, first at tho Lycée of Marseilles, and then in the faculty of law at Aiz. Here ho began his life-long friendship with Mignet, and was
called to the bar at the age of 23 . He had, however, little taste for law and much for literature ; and he obtained (it is said by an ingenious trick, and in spite of unfair and prejudiced attempts to deprive him of it) an academic prize at Aix-for a discourse on Vauvenargues. In the early autumn of 1821 Thiers went to Paris, and was quickly introduced as a contributer to the Constitutionnel, at first on literary and then on general and especially political subjects, as well as art and the drama. In each of the years immediately following his arrival in Paris he colleeted and published a volume of his Constitutionnel articles, the first on the salon of 1822 , the second on a tour in the Pyrences. Ho was put out of all need of money by the singular benefaction of Cotta, the wellknown Stuttgart publisher, who was part-proprictor of the Constitutionnel, and made over to Thiers his dividends, or part of ther. Meanwhile he became very well known in Liberal society, especially in the house of Laflitte, and he had begun and was rapidly compiling (at first with the assistance of M. Felix Bodin and afterwards alone) the celebrated Histoire de la Révolution Francaise, which founded his literary and helped his political fame. The first two volumes appeared in 1823, the last two (of ten) in 1827. The book brought him little profit at first, but became immensely popular. The well-known sentence of Carlyle, that it is "as far as possible from meriting its bigh reputation," is in strietness justified, not merely in regard to this, but in regard to all Thiers's historical work, which is only too frequently marked by extreme inaccuracy, by prejudice which passes the limits of accidental unfairness and sometimes seems to approach those of positive dishonesty, and by an almost complete indifference to the merits as compared with the successes of his heroes. But Carlyle himself admits that Thiers is "a brisk man in his way, and will tell you much if you know nothing." In other words, the Histoire de la Révolution (again like its author's other work) possesses in a very high degreo the gifts of clearness, liveliness, and intelligible handling which so often distinguish French writing. Coming as it did just when the reaction against the Revolution was about to turn into another reaction in its favour, it was assured of success.
For a moment it seemed as if the author had definitely chosen the lot of a literary man, even of a literary hack. He planned an Histoire Générale, and was about to survey mankind from China to Peru on the deck of a French man-of-war as a preliminary process. But the accession to power of the Polignac ministry in August 1829 changed his projects, and at the beginning of the next year Thiers, with Armand Carrel, Mignet, and others, started the National, a new opposition newspaper, which openly attacked the older Bourbon line and was foremost in provoking the famous and fatal Ordonnances of July, Thiers himsclf was the soul (or at least one of the souls) of the actual revolution. What share ho had in the process sometimes attributed to him of "overcoming the scruphes of Louis Philippo" is no doubt a dcbateable question, with the problem in linine of the debate whother Louis Philippe had any scruples to overcome. At any rate Thiers had his reward. He ranked, if not at once, yet very 8000 , as one of the radical though not republican supporters of the new dynasty, in opposition to the party of which his rival Guizot was the chief literary man, and Guizot's patron the duke of Broglie the main pillar among the nobility, and which might be called by comparison Conservative. At first Thiers, though eleeted deputy for Aix, obtained only subordinate places in the ministry of finance. After the overthrow of his patron Laffitte, he scemed to change his politics and becamo much less radical, aud, after the troubles of June 1832, this teuc!.
ency was strengthened or rewarded by his appointment to the ministry of the interior. He repeatedly changed his portfolio, but remained in office for four years, became president of the council and in effect prime minister, and began the series of quarrels and jcalousics with Guizot which make one of the chief and not the most creditable features of the politics of the reign. At the time of his resignation in 1836 he was foreign minister, and, as usual, wished for a spirited nolicy in Spain, which he could not carry out. He travelled in Italy for sone tinne, and it was not till 1838 that ho began a regular campaign of parliamentary opposition, which in March 18 ± 0 made him president of the council and foreign ministe: for the second time. But he held the position barely six months, and, being unable to force nn the king au anti-English and anti-Turkish policy, resigned on October 29, afte: having, as was generally thought, with the direct purpose of stirring up Anglophobia, begged the body of Napoleon irom England. This was made the occasion of the ceremcay immortally ridiculed by Thackeray, and, it is said, con demned by Thiers himself as unvorthy of the occasion. He now had little to do with politics for some years, and spent his time on the preparation, on a much larger scale than his first work, of his Histoive du Consulut et de l'Empire, the first volume of which appeared in 1845, and which continued to occupy him for more than tweuty years of composition and nearly twenty of publication. During the interval, though he was still a member of the chamber, he spoke rarely, but after the beginning of 1846 his appearances were more frequent, and he was evidently bidding once more for power on the liberal and reforming side. Immediately before the revolution of February be went to all but the greatest lengths, and when it broke out he and Odillon Barrot were sumanoned by the king, but it was too late. Thiers was unablo to govern the forces he had helped to gather, and he resigned.
Under the republic he took up the position of conservative republican, which he ever ofterwards maintained (his acceptance of the republic being not mucls more heartfelt than his subsequent acceptance, after an interval, of the empire), and he never took office. But the consistency of his conduct, especially in voting for Prince Louis Napoleon as president, was often and sharply criticized, one of tho criticisms leading to a duel with a fellow deputy, Bixio. On the whole, his conduct during these years, and still more during the last years of Louis Philippe, may be said to have been not wholly creditable. He was arrested at the coup diétat (when some malicious and apparently false stories were spread as to his cowardice), was sent to Mazas, and then escorted out of France But in the following summer he was allowed to return. For the next decade his history was almost a blank, his time being occupicd for the most part on The Consulate and the Empire. It was not till 1863 that he re-entered political life, being elected by a Parisian constituency in opposition to the Government candidate. For the seven years following he was the chief speaker among the small band of anti- Imperialists in the Frenel chamber, and was regarded generally as the most formidable enemy of the cmpire, all the more formidable because he never gave occasion for taking any violent steps against him. It laas been pointed out that, whilo nominally protesting against the foreign enterprises of the empirc, he perpetually harped on French loss of prestige, and so contributed more than any one else to stir up the fatal sprit which brought on the war of 1870 , and that, while constantly criticizing and weakening the Government of his country, he gave it no help nor even offered any. Eyen when the Liberal. Imperialist Ollivier ministry was formed, he maintainod at first an angting but benevolent neutrality, and the,
an open opposition, and it would be pleasant to feel more certain than wo can feel that his vigorous denuncia. tion of the war with Prussia was the result of honest. conviction, and not inerely of the fact that it was not his war. At any rate, it brought him great anpopularity for the moment, with a correspoading reaction of gratitude when the crash came. Again it is impossible to be sure whether mere "canniness," or something better, kept him from joining the Government of the National Defence, of which he was in a manner the author.

Nevertheless the collapse of the empire was a great opportunity for Thiers, and it was worthily accepted. He undertook in the latter part of September and the first three weeks of October a circular tour to the different courts of Europe, in the hope (which he probably knew to be a vain one, though the knowledge neither daunted his suirit nor relaxed his efforts) of obtaining some interveation, or at least some good offices. The mission was unsuccessful; but the negotiator was on its conclusion inmediately charged rith another-that of obtaining, if possible, an armistice directly from Prince Bismarck. For a time this also failed, as the Provisional Government would not accept the German conditions; but at last France was forced to yield. The armistice having been arranged, acd the opportunity baving been thus obtained of electing a National Assembly, Thiers was chosen deputy by more than twenty constituencies (of which ho proferred Paris), and was at once eiected by the Assembly itself practically president, nominally "chef du pourorr exécutif." Ho lost no time in choosing a coalition cabinet, and then personally took up the negotiation of peace. l'robably no statesman has orer had a more disgusting task; and the fact that he discharged it to the satisfaction of a vast majority, even in a nation popularly reputed the vanest, the least ballasted with common sense, and the most ungrateful to public servants who are unsuccessful, is the strongest testimony to Thiers's merits. After contest. ing the mafter, on the one side with the determination of Germany to hare the pound of flesh, on the other with the reluctance of the Assembly to submit to the knife, be succeeded in convincing the deputies that the peace was necessary, and it was (March 1, 1871) voted by more than Gre to one.

Thiers held office for more than two years after this event,-a length of tenure which, in tho circumstances and considering the French temper, is very surprising, and shows the strength of the general conviction that he alone could be trusted. Ho lad at frst to meet and crush at once the mad enterprise of the Paris commune ; and the severity which was undoubtedly shown in doing this is more than justified by two considerations, first, that failure to suppress it would have meant anarchy throughout France; and, secondly, that the Germans would almost to a certainty have made it a pretext for further demands. Soon after this was accomplished, Thiers became (August 30) in name as well as in fact president of the republic, and be set himself with rigour and success to the tasks of rearranging the army, the finances (including the paying off of the war indemnity), and the civil service, and of procuring the withdrawal of tho German arniy of occupation.

T'ne strong personal will and inflexible opinions of the president had much to do with the resurrection of France; hut the rery same facts uade it inevitable that he should excite riolent opposition. It seems to be generally acknowledged that to him personally were due the establishment and retention of the republican rather than the monarclical form of government, to which latter the Assembly as first elected was notoriously disposed. Ho uas a confirmod protectionist, and freo-trado jueas Lad
made great way in France under tho empire: bo was an advocate of long military service, and the depotees of la revanche wero all for the introduction of gencral and compulsory but short service. Both his talents and his temper mado him utterly indisposed to maintain the distant, Olympian, apparently inactive, attitude which is supposed to be incumbent on a republican president; and (fur his tongue was never a carefuily governed one) he cometimes let drop expressions scarcely consistent with constitutional theories of the relation of the chief of the state, whether president or king, to parliament. In January 1872 he formally tendered his resignation; but the country was then in too manifestly ciisorganized a condition to allow even his enemies to accept it. His position, however, was clearly one not teaable for long in such a country as France. The Right (ard not merely the Extreme Right) hated him for his opposition to the restoration of tho monarchy, and with some justice reminded him of former declarations ard opiaions on the subject ; the Extreme Left could not forgive the suppression of the commune, while some radical leaders, who may hare had little sympatby with the commune itself, saw in his great reputation and imperious personality a bar to their own accession to power. His chief supporters - men liko Rémusat, Barthélerny SaintHilaire, and Jules Simon-mere men rather of the past than of the present ; and he had few younger adherents.

The year 1873 was, as a parliamentary scar in France, occupied to a great extent with attacks on Thiers. In the early spring regulations were proposed, and on April 13 were carried, which Fere intended to restrict the cxecutive and especially the parliamentary powers of the president. On the 27 th of the same month a contestad clection in Paris, resulting in the return of the opposi. tion candidate, M. Barodet, was regarded as a grave disaster for the Thiers Government, and that Government was not much strengthened by a dissolntion and reconstitution of the cabinet on May 19 . Immediately after. wards the question was brought to a head by an interpel. lation moved by tho duke of Broglie. Tho uresident declared that he should take this as a veto of want rif confidence; and in the debates which followed a rote cf this character (though on a different formal issue, and proposed by M. Ernoul) was carried by 16 votes in \& house of 704. Thiers at once resigned (May 21).

He survived his fall four jears, continuing to sit in the Assembly, and, after the dissolition of 1876 , in the Chamber of Deputies, and sometimes, though rarely, speaking. He was also, on the occasion of this dissolution, elected senatur for Belfort, which his exertions had sared for France; but be prefarred the lower house, where he sat as of old for Paris. On May 16, 1877 , he was one of the " 363 " who voted want of confidence in the Broglie ministry (thus paying his debts), and he took considerable part in organizing the subsequent electoral campaign. But he was not destined to see its success, being fatally struck mith apoplexy at St Germain-en-Laye on September 3. Thiars had long been married, and his wife and sister-in-law, MIle. Dosne, were his constant companions; but he left no children, and bad had only one-a daughter, - who long predeceased him. Ho bad been a member of the Academy since 1834. His personal sppearance was remarkable, and not imposing, for he was very short, with plain features, ungainly gestures and manners, vary near-sighted, and of disagreeabla voice; yet he becama (after wisely giving up an attempt at the ornate style of oratory) a very effectire speaker in a kind of conversational manner, and in the epigram of debate he had no superior among the statesmen of his time except Lord Beaconsield.

Thiers is by far the most gifted and interesting of tho group of literary statesmen-not scatesmen who have had a penchant for
literature, hut men of lettera whose literary distinction has mado them politiciaos-which forms a uniquo featuro in tho French political history of this century. Numcrous as these are, there are only two who are at all comparable to him-Guizot and Lamartine; and as a statesman hestands far above hoth. Nor is this eminonce mercly due to his great opportunity in 1870 ; for Guizot maght ander Louis Philippe bave almost made himself a French Walpole, at least a French Palinerston, and Lamartıno's opportunitics after 1848 were, for a man of political genius, illimitavie. But both failed, -Lamartino almost ludicrously,-whilo Thiers ini hard conditions made a striking if not a brilliant success. A devil's advoceto may indeed urge that his egotist a od alnost gasconading temperament atood hiu in stad in the trying circumstances of his negotiations with the powers and with Prince Bismarck, -but this is not really to his discrelit. Noless inasterful methods than his would haro sufficed to bring France into order from the chaos succecding the fall of the empire and the invasion of the Germans. But Thiers ouly showed well when he was practically supremc. Eren as the minister of a coustitutional monarch his intoleranco of interfercuce or joint authonty, his temper at onco imperious and intriguing, his invetemate inclination towardsbrigute, that is to say, underhand rivalry aud caballing for power and place, showod themselves uafavourably; and his coustant teudency to inflane the agcressive and chauvinist surit of his country, though it may fairly clain to havo beeu a kind of patriotism, nerglecterl fact, was not lused ou any just estimato of the relative power and jutcrests of France, and led his country wore than once to tho verge-once, though he affected to waru her off, over the verge-of a great calamity. In opposition, hoth !nuler Louis Chilipice and under the empire, and cren to some extent in tho last furr yeors of his life, his worse qualities vere always manifestull. But with all theso drawbacks loconqued and wall retain o place in what is gerhaps the highest, as it is certaiuly tho smallest, cliss of statesmen-the class of those to whon their country has had recourse in a great disaster, who havo shown in hringing her through that disaster the utmost constancy, comrage, devotion. and skill, and who have been rewarded by as much success os the occasion permitted.

As a man of letters Thiers is very nuch smaller Ho las not only the fault of diffuseness, which is common to so Diany of the best-known histories of this century, but others as scrions or more so. The charge of elishonesty is one never to he hifhtly made against men of such distinction as his, especially when therr evideat confidenec in their own infallibility, their faculty of mgentoos casuistrj, and the strcugth of rill which makes them (unconsciunsly. at : loulti) closo and keep closed the cyes of their mind to all incouvenicnt facts and infercuces supply a more charitahle explanation. But it is certain that from Thicrs's dealings with the men of the first Revolution to his dealines with tho battlo of Waterloo, coustant, angry, and well-supported protesta against his unfairness wero not lacking. Although his search among documents was undoubtedly wide, its results are by no means alvays accurate, and his admiress themsolves admit great inequalities of style in himo. These tharacteristics reappear (accompanied, however, by frequent touches of the epigrammatic power above mentioned, which scems to lave some to Thiers more leadily as an orator or a journolist then as on historian) in his specclies, which bave, since his death, been collected in many volumes, by his willow. Sainte-Beruve, whose notices of Thicrs are gencrally kindly, says of him, "\$1. T'liers sait tout, traurhe tout, parle de tout," and this ommiscience and "cocksuraness" (to use the word of a pimo ininister of Eugland con. temporary with this prime mivister of France) are jerhaps tho chicf pervading features both of the statesman and the than of letters.

His historles, in many different editlong, and his specches, as abore, aro easily accesslble; bls minor works and newspaper amticles have nol, wa belleve, been eollected in any form. Works on him, by Mi Laya, IS de Mazailo, his collengue and friend 31 Jules Simon, and uthers, are nunitruiv But a thinough bocrapho ical stady of hm has not yet been made a and, thongb monumenis canueh hava beea ralsed in has own oomntry, it evea thero oten romptabird that the ancessant and fulle political serucztes of tha reputation and weakened the memory of the last great satcsman of abscored the reputation and weakened the memory of the last great statesman
(G SA.)
(GAnce.

THIRLWALI., Coxxop (1797-1875), bishop of St David's, was born at Stepney on 11 th January 1797, and was the son of the Rev. Thomas Thirlwall, at the time recturer at St Dunstan's, Stepney, and afterwards rector of Bowers Gifford, in Essex. The family were of Northumbrian extraction. Young Counop showed the mest remarkable precocity, learning Latin at three, reading Greek at four, and writing scrmons at seven. When he was twelve his admiring father published his Primitix, sermons and poens, the thoughts of an imitative boy in the style of a grown man. No especial greatness could have been safely predicted from these performances, which Thidwall assiduously strove to suppress in after years He shortly afterwards went to the Charterhouse, whero
he wrote a number of letters to a friend named Johu Candler, some of which have been preserved. They display the same extraordinary prematurity, but are barren of anything original except what lio himself calls "sensibility to the great and beautiful in morality." By a curious coincideoce bis future rival in Greck history, Grote, and liare, his coadjutor in the translation of Nicbuhr, were among his sclioolfellows. He took up his rosidence at Trinity Collegc, Cambridse, in October 1814, and gained the Craven tuiversity scholarship, ono of threo recorded instauces of this honour being obtained by freshmen, and the chancellor's classical medal. In October 1818 he was elected to a fellowslip, and immediately went for a year's travel ou the Cootinent. At Rone he gained the friendship of Bunsen, which had a nost important influenco on his life. On his return," "distrust of his own resolutions and convictions" led him to abandon for the sime his intention of beinis a clergyman, aud he settled down to the study of the law, "with a firm determination not to sufficr it to engross my time so as to prevent me from pursuing other branches of knowledge." This was not the way to lecomo lord chancellor. and, though he nfterwards says, "My aversion to the law has not mcreased," he adds, "It searcely could." How little his beart was with it was shown by the latume ho soon insposed upon himself of trauslating and prefacing Schleciermacher's essay on tho Ciospel of St Luke, "very injudi ciously," says Maurice, who seems to think that it may have cost Thirlwall the archbishopric of Canterbury. The translation, nevertheless, marks an era in English theology. He further, probally influenced by Hare, who had already translated Tieck, rendered two of the latter's most recent Nooellen into Englisl. In 1827 he at length made up bis mind to quit his uncongenial profossion, and was ordained deacou the same year. Beyond all question ho might have obtained the highest distinction both as jurist and advocate, had law interested hime more, or other thing. less. No one ever possessed a more judicial mind. Of his oratory, Mill, whom he opposed at a debating society, says, "Before he had uttered ten sentences I set him down ns the best speaker I had ever heard, and I bave never since heard any one whom I placed above him."

It is not often that a scholar twice makes an epoch by a translation. Such was Thirlwall's destiny : be joined with Hare in translating Niebuhr's History of Romo ; the frst volume nppeared in 1828. The translation was nttacked in the Quarterly as favourable to scepticism, and the translators jointly replied. [n 1831 the friends established the Philological Museum, which lived through only six numbers, though am8ng Thirlwall's contributions was his masterly paper on the irony of Sophocles,-"the most exquisite critcism I ever read," says Sterling. On Hare's departure from Cambridge in 1832, Thirlwall became essistant college tutor, which led him to take a memorable share in the great controversy upon the admission of Dissenters which arose in 1834. Dr Turton, the regius professor of divinity, had written a pamphlet oljecting to the admission, on the pretext of the apprehended unsettlement of the religious opinions of young clurchmen. Thirlwall replied by ןointing out that no provision for theological iustruction was in fact made by the collegcs except compulsory attendance at clanel, and that this was mischicvons. This attack upon a time-hallowed piece of college discipline brought upon bim a demand for the resignation of his office as nssistant tutor. He complied at once ; his friends gencrally thought that he ought to Lave tested the master's power. The occurrence marked him out for promotion from a Liberal Government, and in the nutumn he reccived the chancellor's living of Kirby-under-Dale, in Yorkshire. Though devoted to his par

314

ochual dnties, he found ume to begna the book which has remained the principal work of one whose performance, however great, rarely ruse to the level of his power. His Fistory of Greece, unfortunately for him and for us, was a commission from Lardner's Cabinet Cyclopsdia, and was originally intended to have been condensed iuto two or three duodecimo volumes. The scale was enlarged, but Thirlwall always felt cramped. He seems a little below his subject, and a little below himself. Yet, such was his sbility that his history is usually allowed to fall only just short of Grote's, a work undertaken with far greater enthusiasm, and executed with far greater advantages. Sterling pronounces him "a writer as great as Thucydides and Tacitus. and with far more knowledge than they." The first volume was published in 1835, the last in 1847. A noble letter from Thirlwall to Grote, and Grote's generous reply, are published in the life of the latter.

In 1840 Thirlwall was raised to the see of St David's. The promotion was entireiy the act of Lord Melbourne, an amateur in theology, who had read Thirlwall's introduction to Schleiermacher, and satisfied himself of the propriety of the appointment. "I don't intend to make a heterodox bishop if I know it," he said. Thirlwall so little expected the bonour that he was absent on a pedestrian tour, and it was some days before he could be found. In most essential points he was a model bishop, and in acquainting himself with Welsh, so as to preach and conduct service in that language, he performed a feat which few bishops could have imitated. It cannot be sajd that he was greatly beloved by his clergy, who felt their intellectual distance too great, and were alternately frozen by his taciturnity and appalled by his sarcasm. The great monument of his episcopate is the eleven famous charges in which he from time to time reriewed the position of the English Church with reference to whatever might be the most pressing question of the day,-addresses at once judicial and statesmanlike, full of charitable wisdom and massive sense. No similar productions, it may safely be said, were ever so eagerly looked for, or carried with them such weight of authority. His endearours to allay ecclesiastical panic, and to promote liberality of spirit, frequently required no ordinary moral courage. He was one of the four prelates who refused to inhibit Bishop Colenso from preaching in their dioceses, and the only one who withheld his signature from the addresses calling upon Coleuso to resign his see. He took the liberal side in the questions of Maynooth, of the admission of Jews to parliament, of the Gorham case, and of the conscience clause. He was the only bishop who voted for the disestablishment of the Irish Church, though but as a painful necessity. Concurrent endowment would have been much more agreeable to hum. For many years he was the only statesman ou the pench; it would hare been a great benefit to the Church of England had it been possible to have raised him to the primacy upon the death of Archbishop Howley. But such was the complexion of ecclesiastical politics that the elevason of the most impartial prelate of his day would have been resented as a piece of party spirit.

Thirlwall's private life was happy and busy. He never married, but found sufficient outlet for his deep affectionateness of pature in his tenderness to the children of others, and to all weak things except weak-minded clergymon. He was devoted to animals, and rivalled Southey and Jeremy Bentham in his love for cats. Perhaps the most durable monument to his memory will be his incomparable volume of letters to a friend, Miss Johnes of Dolaucothy, a young lady in every way worthy to be the correspondent of such a man. Even as letters these rank with the best in the language; but as letters from age to youth, bympathizing with all its feelings, entering into ull its pleasures,
at once inspiring and amusing, guiding without seeming to direct, and cntertaining without seeming to condescend, they are unique in their delightful beanch of literature. They are also important as revealing Thirlwall's mind 'on numerous subjects which he has not elsewhere treated, and most interesting from their picture of simplicity of character associated with greatness of intellect, and of the multiplicity of his intellectual interests, from which novele and fine art were by no means excluded. During his latter years he took great interest in the revisiou of the anthorized version of the Bible, and was chairman of the revisers of the Old Testament. He resigned his see in May 1874, and retired to Bath, where he died on July 27, 1875.

As scholar, critic, and ecclesiastical statesman Thirlwall is almost above praise. He was not a greaf original thinker; he lacked the creative faculty and the creative impulse. The world owes such vestiges of his power as it possesses to a series of fortunate accidents-an importunate editor, vexatious church controversies, and an admirable friend. Though not most fully exerted, the force of his mind is perhaps best appreciated in the volume of his letters edited by Dean Perowne. His treatment of every question is consummate ; the largest and the smallest seem alike to him. His character, with its mixture of greatuess and gentleness, was thus read by Carlyle:-"a right solid honest-hearted man, full of knowledge and sense, and, in spite of his positive temper, almost timid."
Thirlwall's Eistory of Grecce remaius a standard book. His literary and theological remains have beeu edited by Dean Perowne in three volumes, two of which are occupied by his charges. His letters ou literary and thcological subjects, with a connecting memoir, hare been published by Dean Perowne and the Rev. Louis Stokes. His Letters to a Friend were originally published by Dean Stanley, and there is a rerised and corrected edition. For a general view of Thirlmall's life and character, see the Edinburgh Reviev, vol. cxliii, for a picture of him in his diocese, Temple Bar, vol. lxxvi. The rerier of his letters in Blackwood's Maga. zine for 1852 is by the late Rev. W. Lucas Colling.
(R. G.)

THIRSK, a market-town in the North Riding of Yorkshire, is sitnated on the North Eastern Railway, and on the Codbeck, a branch of the Strale, 21 miles south of Darlington, 11 north-east of Jipon, and 210 north of London. The Codbeck is crossed by two stone bridges connecting the old and the new town. The church of St Mary, in the Perpeudicular style, with parvise, chancel, nave, aisles, porch, and tower 80 feet in height, is the noblest church in the Riding. The chancel was repaired in 1811, and the whole building restored in 1877. The moat of the ancient castle built by the Mowbrays about 980 still remains. The principal modern buildings are the assembly roous (1849), the mechanics' institute (1852), and the new court-house (1886). Standing in the fertile district of the Vale of Mowbray, the tomn has an extensive home and foreign agricultural implement trade. Ironfounding, engineering, tanning, and brickmaking are carried on, and there are large flour-mills. The population of the parliamentary borough, now disfranchised (area 11,828 acres), in 1871 was 5734 , and in 1881 it mas 6312. The population of the township in 1881 was 3337.

Thirsk owes its origin to the castle of the Mowbrays, and here Roger de Mowbray erected his atandard, in conjnuction with the king of Scotland, agaimst Henry 11. Upon the suppression of the revelt the castle was destroyed. In the reign of Henry VII., Неary Percy, earl of Northumberland, is said to have been put to death beneath an elm tree which formerly grew on St James'e Grcen. Thirsk was a borough by prescription, but was never incorporated. It first returned members to parliament in the reign of Edward I, but not again till the last parliament of Edward V1. In 1832 the nnmber of representatives was rednced to one, and in 1885 it ceased to be separately represented.

THISTLE. This term, as geneally employed, is of vague application, being given to almost any herbaceous plant that is of a spiny character. More atrictly, it is ap-
plied to the species of Carduus. These are Composite herbs with very spiny leaves, and similar bracts surrounding a head of purplish-white, tubular, 5 -parted flowers seated on a pitted and hairy receptacle. The anthers have appendagos both at the apex and at the base. The style has a ring of hairs at the point of bifurcation of the two stigmata. The fruit is surmounted by a tuft of silky white hairs. The species are numerous, and some are of great beauty, though not unnaturally looked on with disfavour by the farmer. The Cotton Thistle, remarkable for its covering of white dowa, is Onopordon Acanthium; the Blessed Thistle is Carduus benedictus; the Holy Thistle, the leaves of which are spotted with white, is C. Marianus. The common C. lanceolatus seems to be the most suitable protetype for the Scotch Thistle, though that honour is also conferred on Onopordon Acanthium, the cotton thistle, a doubtful native, and on other species. The great objcction to thistles from an agricultural point of view resides in the freedom with whick they produce seed, and in the vigour of their underground growth, which makes their uprooting a matter of difficulty. Partial uprooting may indeed, in the case of the perennial species, iacrease the nuschief, for each fragmeut left behind may grow into a distinct plant. Annual species might be kept in check were they cut down before the flowers appear, but unless all the cultivators in a particular district co-operate the efforts of individuals are of little avail. The Globe Artichoke and Cardoon are very near allies of the thistles. The Saflower, Carthamus, anotber thistle, yields a serviceable dye; the Burdock, Arctium lappa, has an edible root; and numerous allied species have medicinal properties.
thistle, Order of tee. See Knigethood, vol, xir. p. 123.
'fhistlewood conspiracy, or Cato Street Conspiracy, a plot formed in 1820 to murder Lord Castlereagh and other ministers of the British crown, and to seize the Bank and Mansion-House and proclaim a provisional government. Its chief instigator was Arthur Thistlewood, or properly Thistlewaite, bern in 1770, the son of a civil engineer in Lincolnstirc, who bad held a commission in the militia and afterwards in the line in the West Indies. In America and in France ho had imbibed revolutionary views, and, leaving lost his wife's fortune in speculation and on the turf, bad planned the desperate scheme probably for his own benefit as well as the good of the nation. The intention was to inurder the ministers in the house of the earl of Harrowby in Mansfield Street on the evening of the 23d February. For this purpose between twenty and thirty men assembled in a stablo in Cato Street, Edgeware Road, but while they were arming themselves they were pounced upon by the police, and a large number captured, though the majority, including Thistlewood, escaped. A reward of $£ 1000$ having been offered for Thistlewood, he was arrested next day at 10 White Street. After a trial Thistlemood and four others were executed on the lat May, while five were transported. On being asked on the scaffold if he repented, Thistlewood replied, "No, not at all ; I shall-soon know the last grand secret."
See the Triats of Ar ihur Thistlcevood, Jumes Inos, John Thomas Burnt, Rtchard

thol uck, Friedrich August Gottreu (1799-1877), German theologian and preacher, was born at Dreslau, March 30, 179 \hat{S}_{0}, in humbla circumstances. He received his education at the grammar school and university of his natire town, and early distinguished himself by wonderful versatility of mind, a phenomenal power of acquiring languages, and aa omnivorous appetite for books. I romantic love of the East and its literature led him' to exchange the university of Breslan for that of Berlin, that he might study Oriental lancuages to greater aairad-
tage, and there he was received into the house of the Orientalist Von Dietz. He was introduced to Pietistic circles in Berlin, and came specially under the influence of Baron Von Kottwitz, who became his "spiritual father," and of the historian Neander. Before deciding on the career of theological professor, he had in view that of a missionary in the East. Meanwhile he was feeling the influence to a certain degree of the remantic schoel, and of Schleiermacher and Hegel too, though he never sounded the depths of their systems. At length, in his twenty-first year, he finally decided to adopt the academioal calling. From December 1820 to April 1826 he was "privat-docent" and "prof. extraordinarius" of theology in Berlin, though he was at the same time most active in the work of home and foreign missions. He lectured on the Old and New Testaments, theology, apologetics, and the history of the charch in the 18th century. The first fruit of his Oriental studies and his iatroduction to his profession was his work Ssufismus, sive Theosophia Persarum Pantheistica (1821); following the same line of study he published Blütensammlung aus der morgenländisctien Mystik (1825) and Speculative Trinitätslehre des späteren Orients (1826). His well-known essay on the nature and moral influence of heathenism (1822) was published by Neander, with high commendation, in his Denkwürdigkeiten; and his Commentary on the Epistle to the Romans (1824) secured him a foremost place amongst the most suggestive, if not the most accurate, Biblical interpreters of that time. Another work, which was soon translated into all the principal European languages, Die Lehre von der Sünde und vom Versöhner (1823), the outcome of his own religious history, procured for him the position which he ever after held of the modern Pietistic apologist of evangelical Christianity. In 1825, with the aid of the Prussian Government, he visited the libraries of England and Holland, and on his return was appointed professor of theology at Halle, the centre of German rationalism. Here he made it his aim to combine in a higher unity the learning and to some extent the rationalism of Semler with the devout and active pietism of Francke ; and, in spite of the opposition of the theological faculty of the university, he succeeded in changing the character of its theology. This he effected partly by his lectures, particularly his exegetical courses, but, above all, by his personal influence upon the students, and, after 1833, by his preaching. His theological position was that of a mild and large-hearted orthodoxy, whieh laid more stress upen Christian experience than upon rigid dogmatic belief. On the two great questions of miracles and inspiration he made great concossions to modern criticism and philosophy. The battle of his life was on behalf of personal religious experieace, in opposition to the externality of rationalism, orthodosy, or sacramentarianism. He fought this battle with weapons taken in the first instance from his own personal history, but also from the wide world of human culture, ancient and modern. Carl Schwarz happily remarks that, as the English apologists of the 18 th century were themselves infected with the poison of the deists whom they endeavoured to refute, so Tholuck abserbed some of the heresies of the rationalists whom he tried to overthrow. As a preacher Tholnck ranked amongst the foremost of his time. He was also one of the prominent members of the Erangelical Alliance, and few men were more widely known or more beloved throughout the Protestant churches of Europe ard America than he. He died at Halle, June 10, 1877.

After his commentaries (on. Romans, the Gospel of John, tha Sermon on the Mount, and the Epistlo to the Hebrews) and several volnmss of sermons, his best-known books are Stunder christlicher Andacht (1839, 8th cd. 1870), intended to taks the place of Zschokks's standard rationalistic work with the samo title, and his repiy to Sirauss's Lifo of Jesus (Glaubudrdigkcit der rvanglisehen

Geschichic, 1837). He published at variens timea valuable centribn. tions towards a history of ationalism, - Vorgeschichte des Rationalismus (1853-62), Geschichtc des Rationalismus, i. (1865), and a namber of essays connected with the history of theolegy and espe. cinlly of apologetics. His vierss of inspiration rere indicated in his work Die Propheten und ihre Weissagungen (1860), in his essay on the "Alte Inspirationslehre," Deutsche Zeitschrift für christliche W isscruschaft (1850), and in his Gespräche uber die vornehmsten Glaubensfragen der Zeil (1846, 2d ed. 1867).
See Das Leben Thoircks, by L. Witte, 2 vols., $1884-1886$; A. Tholuck, ein Lebens.
 ische Kirchecitung, 1885, No. 45, and 1886, No. 47; Carl Scbwarz, Zur Geschichte der neuesten Theologic (4th eá,' 1869); Nippold'a Eandbuch der neuesten Kirchengesehichie
THOMAS, St, one of the twelve apostles. The synoptical Gospels give only his name, associating him in their lists with Matthew (Mat. x. 3; Mark iii. 18; Luke ni. 15) ; in Acts i. 13 he is coupled with Philip. In the Gospel of John (xi. 16 ; xiv. 5 ; xx. 24 sq.; xxi. 2) he appears in a characteristic light, full of personal devotion and ready to die with his Master, but slow to grasp the true significance of the redeeming death of Jesus, and incredulous of the resurrection till direct evidence convinces him of its truth and at the same time of the Divinity of his risen Lord. John translates the Aramaic name or surname Thomas (אמNn) by the Greek equivalent Didymus (twin) Tradition has it that he was the twin brother of a sister Lysia (his parents being Diophanes and Rhoa, and his birthplace Antioch; "XII. Apost. Patriæ," in Chron. Pasch., ii. 142), cr of a brother Elieser (Hom. Clem., ii, 1), or, according to the Acta Thome (ed. Bonnet, pp. 11, 23), of Jesus Himself. The last form of the tradition scems to be derived from the name Judas Thomas, which he bears in Edessene legend (ff. Eusebius, II. E., i. 13,10), and implies the identification of Thomas with Judas, the brother of the Lord. The mast ancient tradition makes Thomas the evangelist of Parthia (Eus., II. E., iii. 1, 1); and at Edessa, which claimed to possess his bones, it was related that their missionary Thaddæus (Eus., II. E., i. 13, 10), or Addai (Doctrine of Addai, ed. Phillips, 1876, p. 5), was scnt to them ky him. Later tradition, originating with the Gnostic Acta Thomx, and accepted by catholic teachers from the middle of the 4th century, makes him proceed to India and there suffer martyrdom. The Indian king Guadaphorus of the Acta is, however, certainly identical with the historical Gondophares (see Persta, vol. xviii. p. 603), whose dynasty was Parthian, though his realm included regions loosely reckoned to India. The Parthian and Indian missions of Thomas may perhaps therefore be regarded as derived from a single tradition. Later authors, but not the Acta, give as the ecene of his martyrdom the city of Calamine, which the modern Christians of St Thomas (see below) identify with Mylapur, but which Gutschmid would connect with the Calama of Nearchus, on the coast of Gedrosia, which was under the sceptre of Gondophares. Other names of historical persons and places can be traced with more or less probability in the Acta, but these do not alter the utterly apocryphal character of the legend, which indeed is in many respects easier to understand if we accept the bold hypothesis of Gutschmid, that it was borrowed by the Gnostic author from a Buddhist story of the conyersion of Arachosia (N. Rhein. Mus,, xix. $1618 q$).
The Acta Thome, very imperfectly published by Thilo (1823) and Tischhondorf (1851), bave been edited in Grook, together with the Latin De Miraculis and Passio S. Thomer, by Bonnet (Leipsic, 1883), and in Syriac, with an English translation, by W. Wright (Apocryphal Acts, 2 vols. London, 1871). See also Lipsius, Die apocryphcen Apostelgeschichten, vel.' i. (Branswick, 1883), for these and other veraiens of the legend. The Acta are said by Pbotuus
 Charinus, but this unknown parsonage is to ba theught of as a cellecter of Gnostic "Acts of Δ postles," rather than as the first anthor. In epite of extensive catholic revision, thay form one of the meat Interestigg moniments of early Gnosticism Interabl evidenco
assigns them with great probability to the school of Dardesanea, and the vary ancient allegorical hymn about the soul which is inscrted in the Syriac text (p. 274 sq., Eng. tr., p. 238 sq) is per. haps by Bardesanes himself (cf. Noldeke in Z. D. DI G, 1871, p. 676). It is one of the most remarkable pieces in Syriac litarature.

Cnristians of St Thomas is a name often applied to the members of tho ancient Christian churches of soutlicin India, which claim him as their first founder, and heneur as thenr sccond founder a certain Themas of Jernsalem, whe is said te hara led a Christian colony to Malabar in 345 A. D. ${ }^{1}$ According to therr tradition, St Thomas went from Malabar to Mylapur, now a auburb of Madras, where the shrine of his martyrdom, rebuilt by the Pertuguese in 1547, still stands on Dount St Themas, and where a miraculous cross is shown with a Pahlavi inscription which may be as old as the end of the 7th century. We know from Cosmas Indepleustes that there were Christian churches of Persian (East-Syrian) origin, and doubtless of Nestorian creed, in Ceylon, in Malabar, and at Caliana (north of Bombay) before the middle of the 6th century, and even then St Thomas, the reputed apostle of Persia, may hara been their apecial saint. The ancient churches of southern ludia never died out or wholly lost their sense of connexion with their mother church, for we find them sending deputies in 1490 to the Nestorian patriarch Simeon, whe furnished them with bishops (Assemani, Bib. Or., iii. 1, 590 sq.). IJard pressed by the Meslems, they welcomed the approach of the Portuguese, but preved by ne means tractable to efforts to bring them within the Roman obedience. At length a fermal union with Rome was carried through in the synod of Diamper (1599). Syriac was to remain the ecclesiastical language, but the service books wers corrected and purified from error. A century and a half of foreign Jesuit rule followed, but the levo of independenca was not lost. A great schism took place in 1653, and of 200,000 Christians of St Thomas only 400 remained leyal to Reme, theugh many of their churches were seon weu back by the Carmelites. Those whe remained independent iell under the influence of the Jacobite Mar Gregorius, styled patriarch of Jerusalem, who reached Malabar in 1665 as an emissary frem Ignatins, patriarch of Antiech. Frem his time the independent Christians have been Jacebites, the counter-efferts of the Nestorians under Mar Gabriel, bishop of Adharbaijan, having apparently come to nothing after his death in 1730. Siuce the visit of Claudius Buchanan, whose Christian Re. scarches in Asia (1811) excited great interest, much has been done for tho Christians of South. India by English missionary effert, and Anglicans have cultivated friendly relatinns with the clergy of tho independent native church, while disceuraging dependence on tha Jacobito patriarch of Antioch.
A. valuabla though tedious and Al-arranged blstory of tha Christian of St
Thomas has been written by W. Germañ, Die Kirche der Thomaschristen Gutersloh, 18\%\%. Sea also La Croze, Histoire du Christianisme des Indes. The Ilagne, 1724 ; Alexlus da Menezes, Eistorta Ecelesix Malabarice, Latin by F. Raulin, Rome, 1745 (especially for the syacd of Diamper); Paulinus a S. Bartholomæo, India Orientalis Christiana, 4to, nome, 1794.
THOMAS, St , of Aquino. See Aquinas.
thomas becket, or À Becket. See À Becket
THOMAS of Celano, the contemporary and supposed biographer of Francis of Assisi, was born probably towards the end of the 12th century, and died about 1255. He derives his surname from Celano (q.v.), in the Abruzzo Ulteriore. His name does not occur among those of the earliest disciples of Francis, but he is recorded by some historians of the order, though not by all, to have held the office of custos in various Franciscan houses (Cologne, Mainz, Worms, Spires) from 1221 onwards. An old biography of Francis, which is incorporated in the Acta Sanctorum, is attributed to Thomas with much probability, and nothing cogent has been urged against his authorship of the Dies Ire (see Hymns, vol xii. p. 583), although, so far as is at present known, his name is not associated with that remarkable poem by any writer earlier than 1385.
thonas of Erceldoune, called also the Rhymer (c. 1225-c. 1300), occupies a prominent place as a poet and prophet in the mythical and legendary literature of Scotland. The historical person of that name figures in two charters of the 13 th century, and from these it appears that he owned lands in Erceldoune (now Earlston), in Berwickshire, which were made over by his son and heir to the cloister of the Holy Trinity at Soltra, or Soutra, on

[^130]the burders of the same county. He figures in the works of Barbour and Blind Harry as the sympathizing contemporary of their heroes, and Wyntoun tells how he prophesicd a battle. In the folk-lore of Scotland bis name is associated with aumerous fragments of rhymed or alli, terative verse of a more or less prophetic and oracular character ; but the chief extant work with which his name is associated is the poem of Sir Tristrem, edited from the Auchinleck MLS. by Sir Walter Scott in 1804, and again in 1886 for the Scottish Text Society by Mr G. P. M'Neill. In the latter edition the claim of Thomas to the authorship of this work (conceded by both editoris) is fully discussed.
thonas a Krialis. See Kempis.
ThOMASIUS, Chpistian (1655-1728), German jurist aud publicist, was born at Leipsic January 1, I655, and educated by bis father Jacol Thomasius, professor of philosopby and eloquence, a learned man, and friend of Spener. Through bis father's lectures Christian came under the influence of the political philosophy of Grotius and Pufendorf, and continued the study of law under Stryck at Frankfurt on the Oder. In 1681 he commenced the career of professor of law at Leipsic, and soon. attracted attention by his abilities, but particularly by his daring attack upon all ancient prejudices. His views on matters of law were heretical; he made the daring innovation of lecturing in German instead of Latin; he published a monthly periodical in which he ridiculed with vast wit and humbur the pedantic meaknesses of the learned; he took valiantly the side of the Pietists in their controversy with the crthodox, and defended mixed marriages of Lutherans and Calvinists. In consequence of these and other sins, he was preached against from the pulpits, forbidden to lecture or to write (May 10, 1690), and his arrest was soon commanded. He cscaped the latter by \#ight to Berlin, and the elector Frederick III. offered him a refuge in Halle, mith a salary of 500 thalers and the right to lecturo there. He took part in founding the university of Halle (1694), where he became second and then first professor of law and director of the university. He was one of the most esteemed university teachers and influential writers of his day. He died, after a singularly successful and honourable career, in his 74 th year, September 23, 1728.
Though not a profourd and systematic philosophical thinker, hut rather a clever eclectic of the connion-sense school, Thomasius prepared the way for great reforns io pliilosophy, anul, above all, io law, literature, social life, and theology. It was his nissiun to bring all the high matters of divine aud humau sciences into close and living contact witl the cveryday world. He made leanning, law. philosonhy, and theology iook at every thing from a rational common-sense point of view, and speak of everything in vigorous German. He thns created 80 croch io German literature, fhilosorhy, and lav, and SJiittler opens with lim tho modern periph of uccecsiastical history; Tholuck prooounces limn "the persotififed spirit of illurainism." He mado it one of the aiuns of his life to frco ${ }^{3 p h l i t i c s}$ and jurisprudence from the control of theology. Ho fought bravely and consistently for frecdom of thought and speech on celigious matters. He is often syoken of in Coriasa works as tho author of the "territorial system," or Erastian theory of ecelesiastical gorernmeat. But he taught that the state may interfero with lcg gal or public duties only, anil not with moral or private ones. He introduced a dew definition of horesy, and pronouaced it a bughear of the theologians. Ho would not have eron a theists punished, though they should be expelled the country. He came forward as ao earnest opponent of tho prosccution of witches and of the uso of torture. In theolony he was not a a naturslist or a dcist, but a belierer io the necessify of revealed roligion for salvation. He felt strongly the infueuco of the Pictists at times, particularly of Spener, and thero was a mystie wcin in his thought; but other elements of his nature werc too powerful to allow him to attach himself finally to that party.
Thomasius's most popular and influential German pablications xere his periodical Monnlsgesprache, vornehnnlich uber newe Dicher (1688); Einft itung zur Verriun flehre (1691, 5t11 ed. 1719); Verniuft. ige Gedankien über allerhand duserlicscrne, gemischte, phillosorhisthe, und juristische Hündel (1723-26); Geschiche der Weashcit und Thorhei (3 yols, 1993); Āurze Letrsütee von dem Laxecr der

Znebcrei mit dem Ifexenprocess (1304); Weilere Erläutcrungrn dcr neucren Wiscuschafl Aulerer Gednakien kenaen =u lernen (171I). See IIflnrich Luten's Chrissian Thomassus nafh seinen Scherkalom und

 histortes of German llicrature. eapccially llettner's Fieseniehte der deutsehen Lis.
im 1Sten Jaht : Thaluck's article in im 1Sten Jahth: Thaluck's article in Incrzego heal.Encytlop.
thompson, Sir Benjamin, Coent Remford (17531814), an eminent man of science, enlightened philanthropist, and sagacious public administrator, was born at Woburn, in Massachusetts, in 1753, and died at Autcuil, near Paris, in 1814. II is fanily bad been settied in New England since the middle of the century preceding bis birth, and belonged to the class of modcratcly wealthy farmers. His father died while Thompson was very young, and his mother speedily married a sccond timc. But be seems to have been well cared for, and his cducation was so far from neglected that, according to his own statement, he was at the age of fourteen sufficiently advanced "in algebra, geometry, astronomy, and even the higher mathematics," to calculate a solar eclipse within four seconds of accuracy. In 1760 be was apprenticed to a storekeeper at Salem, in New England, and while in that cmployment occupied himself in chemical and mechanical experiments, as well as in engraving, in which he attained to some proficiency. The outbreak of the American war put a stop to the trade of his master, and he thereupon left Salem and went to Boston;, where he engaged himself as assistant in another store. He afterwards applicd himself to the study, with a view to the practice, of medicine, and then (although, as he affirns, for ouly six weeks and three days) he became a school teacher-it is believed at Bradford on the Merrimack. Thompson was at that period between eighteen and nineteen years old, and at nineteen, he says, "I married, or rather 1 was married." llis wife was the widor of a Colonel Rolfe, and the daughter of a Mr Walker, "a highly respectable minister, and one of the first settlers at Rumford," now called Concord, in New Hampshire. His wife was posscssed of considerable property, and was his senior by fourteeu years. This marriage was the foundation of Thompson's success. Within threè years of it, however, he left his wife in America to make his way to wealth and distinction in Europe, and, although his only child by her, a danghter, subsequently joincd him, he never saw and, so far as anything appears to tho contrary, never attempted or desired to see Leer again.

Soon after his marriage Thompson became acquainted with Governor Wentworth of New Hampshire, who, struck by his appearance and bearing, conferred on bim the majority of a local regiment of militia. IIe speedily became the object of disirust among the friends of the American cause, and it was considered prudent that he should seek an early opportunity of leaving the country. On the evacuation of Boston by the royal troops, thercfore, in 17i6, he was selected by Governor Wentworth to carry despatcbes to England. On his arrival in Londou he almost immediately attracted the attention of Lord George Germaine, secretary of state, who appointed him to a clerkship in his office. Within a few months he was advanced to the post of secretary of the province of Georgia, and in about four years he was made undersecretary of state. His official duties, however, did not materially interfere wiih the prosecution of scientific pursuits, and in 1772 be was elected a fellow of the Royal Society. Among the suljects to which he especially directed his attention were the explosive force of gunpowder, the construction of firearms, and the system of signalling at sea. In connexion with the lasty le made a cruiso in the Channel fleet, on board the "Victory," as a volunteer under the command of Admiral Sir Clar!es Hard5. On the resignation of Lord North's administration, of which Lord George Germaine was one of the least
lucky and most uapopular members, Thompson left the civil service, and was nominated to a cavalry command in the revolted provinces of America. But the War of Ircuependence was practically at an eud, and in 1783 he finally quitted active service, with the rank and balf-pay of a lieutenant-colonel. He now formed the desiga of joining the Austrian army, for the purpose of campaigning against the Turks, and so crossed over from Dover to Calais with Gibbon, who, writing to his friend Lord Sheffield, calls his fellow-passenger "Mr Secretary-Colonel-. Adniral-Philosoplier Thompson." At Strasburg he was introduced to Prince Maximilian, afterwards elector of Bavaria, and was by him invited to enter the civil and military service of that state. Having obtained the leave of the British Government to accept the prince's offer, he received the honour of knighthood from George III., and during eleven years he remained at Munich as minister of war, minister of police, and grand chamberlain to the elector. His political and courtly employments, however, did not absorb all his time, and he contributed during his stay in Bavaria a number of papers to the Philosophical Transactions. But that he was sufficiently alert as the principal adviser of the elector the results of his labours in that capacity amply prove. He reorganized the Bavarian army; he suppressed mendicity and found employment for the poor ; and he immensely improved the condition of the industrial classes throughout the country by providing them with work and instructing them in the practice of domestic economy. Of the prompt and the businesslike manner in which be was wont to carry his plans into execution a single example may serve as an illustration. The multitude of beggars in Bavaria had long been a public nuisance and danger. In oue day Thompson caused no fewer than 2600 of these outcasts and depredators in Munich and its suburbs alone to be arrested by military patrols, and transferred by them to an industrial establishment which he bad prepared for their reception. In this institution they were both housed and fed, and they not only supported themselves by their labours but earned a surplus for the benefit of the electoral revenues. The principle on which their treatment proceeded is stated by Thompson in the following memorable words:-"To make vicious and abandoned people happy," he says, "it has generally been supposed necessary first to make them virtuous. But why not reverse this order? Why not make them first bappy, and then virtuous?" In 1791 he was created a count of the Holy Roman Empire, and chose his title of Rumford from the nane as it then was of the American township to which his wife's family belonged. In 1795 he visited England, one incident of his journey being the loss of all his private papers, includ. ing the materials for an autobiography, which were contained in a box stolen from off his postchaise in St Paul's Churchyard. During his residence io London he applied himself to the discovery of methods for curing smoky chimneys and the contrivance of improvements in the construction of fireplaces. But he was quickly recalled to Bavaria, Munich being threatened at once hy an Austrian and a French army. The elector fled from his capital, and it was entirely owing to Rumford's energy and tact that a hostile occupation of the city was prevented. It was now proposed that he should be accredited as Bavarian am. bassador in London; but the circumstance that he was a British subject presented an insurmountable obstacle. He, bowever, again came to England, and remained there in a private station for several years. In 1799 he , in conjunction with Sir Joseph Banks, projected the establishment of the Royal Institution, which received its clarter of incorporation from George III. in 1800. Rumford him. self selected Sir Humphry Davy as the first scientific
lectarer there. Until 1804, when ho definitively sittled in France, Rumford lived at the Royal Tastitution in Albemarle Street, or at a house which be rented at Brompton, where he passed his time in the steady pursuit of those researches relatiug to heat and light and the economy of fuel on which his scientific fame is principally based He then established himself in Paris, and married (his first wife having been dead for many yeare) as his second wife the wealthy widow of Lavoisier, the celebrated chemist. With this lady he led an extremely uncomfortable life, till at last they agreed to separate. Rumford took up his residence at Auteuil, where he died suddenly in 1814. in the sisty-second year of his age.

He was the foumder and the first recipient of the Rumford medal - of the London Royal Society. He was also the founder of the Rumford needal of the American Acadomy of Arts and Sciences and of the Rumford professorship in Harvard university. His complete works were published by the American Academy of Arts and Sciences at Boston in 1872 ; and a full and extremely interest. ing memoir of the author which was issued with then was repub. lished in London by Messrs Macuillan in 1876.
(F. DR.)

THOMPSON, Thomas Peronnet (1783-1869), mathematician and political writer, was born at Hull in 1783. He was educated at the Hull granmar school, and in October 1798 entered Qucens College, Cambridge. He entered the nary as midshipman in the "Isis" in 1803, but in 1806 exchanged to the army. Through his acquaintance with Wilberforce, he was appointed governor of Sierra Leone in 1808, but was recalled on account of his hostility to the slave trade. In 1812 he returned to his military duties, and, after serving in the south of France, was in 1815 attached as Arabic interpreter to au expedition against the Wahlabees of the Persian Gulf, with whom he negotiated a treaty (dated January 1820) in which the slave trade was for the first time declared piracy. He was promoted major iu 1825, lieutenantcolonel in 1829, and major-general in 1854. He entered parliament as member for Hull in 1835, and. afterwards sat for Bradford. He took a prominent part in the cornlaw agitation, his Catechism of the Corn Laws (1827) being by far the most effective panphlet published on the subject. He was joint-editor of the Westminster Reviero, to which he contributed a large number of articles, republished in 1824 in six volumes, under the title Exercises, Political and Others. His mathematical publications were of a somewhat eccentric kind. He published a Theory of Parallels (1844), and was also the author of Geometry without Axioms, in which he endeavoured to "get rid" of axioms and postulates. His new Theory of Just Intonation (1850) is, however, a contribution of great value to the science of musical acoustics, and has gone through many editions. It may be said to form the basis of the tonic sol-fa system of music. He died 6th October 1869.

Thonson, Sir Charles Wyville (1830-1882), was born at Bonsyde, Linlithgowshire, became prcfessor of natural history in Aberdeen, Cork, Belfast, and finally Ediaburgh, and will be specially.remembered as a studeut of the biological conditions of the depths of the sea. Being interested in crinoids, and stimulated by the results of the dredgings of Sars in the deep sea off the Norwegian coasts, which had conclusively disposed of the error of Edward Forbes, that animal life ceased at a depth of a few hundred fathoms, he succeeded, along with Dr W. B. Carpenter, in obtaining the loan of H M.S. "Lightning" and "Porcupine," for successive deetp-sea dredging expeditions in the summers of 1868 and 1869. It was thus shown that animal life existed in abundance down to depths of 650 fathoms, that all invertebrate groups were represented (largely by Tertiary forms hitherto believed to be extiuct), and, moreover, that deep-sea temperatures are by no means so constant as was supposed, but varv
considerably, aud indicate an oceanic circulation. Further dredging expeditions at greater and greater depths followed. The remarkable results gained for hydrography as well as zoology, in association with the practical needs of ocean telegraphy, soon led to the granting of H.M.S. "Challenger" for a circumnavigating expedition, and Thomson sailed at the end of 1872 as director of the scientific staff, the cruise lasting three years and a half. On his return he received many academic honours, and was knighted. In 1877 he publishod two volumes of a preliminary account of the results of the voyage, meanwhile carrying on his administrative labours in connexion with the disposition of the special collections and publication of the monographs of these. His licalth, never robust, was meanwhile giving way; from 1879 he ceased to perform the duties of his chair, and he died in 1882.
Sco obituary notice in Proc. Moy. Soc. Edin., 1883, also Thomson's Voynge of H.M.S. Challenger, London, 1877, and Thomson and Morray, Reports of the Voyage of II.ML.S. Challenger, Edinburgh, 1885 .
THOMSON, James (1700-1748), author of The Seasons, was a native of the Scottish Border country, his father being successively minister of the parishes of Ednam and Southdean, in Roxburghshire. He was born at Ednani on September 11, 1700, and was reared at a distance from the social influences and literary fashions that helped to form and fix the manner of the "classical" school, the monotony of which be was the first to break. Amidst the bare breezy hills and glens of a Border parish, his youth was safe against the ascendency of the taste established in the metropolis. Jedburgh school and Edinburgh naiversity gave him his book learning of the ordinary type; and he was fortunate enough to have neighbours of extraordinary accomplishment, who opened his eyes to the poetic side of nature, and encouraged him in verse-making. The teacher from whom he learnt most was a Mr Riccalton, or Riccaulton, a graduate of Edinburgh, who lad taken to farming, but was afterwards persuaded to enter the church, and made some contributions to theological literature. This scholarly enthusiast taught Latin to the boys of Jedburgh in an aisle of the church, and encouraged Thomson in his poetical turn by example as well as precept. We have the poet's own acknowledgment that the first hint of the Seasons came from a striking dramatic poem by Riccaulton entitled A Winter's Day. As a schoolboy Thomson wrote verses, and at the university be continued the practice, but his early efforts were not particularly promising. He was intended for the ministry, and was for five years a student of divinity; but in 1725 he determined to follow his friend and classfellow David Mallet to London, and seek his fortune there. Through the influence of Lady Grizel Baillie, herself a song-writer, he obtained a tutorship in the family of Lord Binning; but the plain-looking and plain-mannered poet had not the adroitness of his friend Mallet, and he gave up the post after a few months, It was while he lingered in the ncighbourliood of Barnet, without employment, without money, with few friends, saddened by the loss of his mother (his father had died when he was eighteen), that Thomson conceived the idea of the first of his poems on the Seasons, Winter. The linesWelcorme, kindred glooms,
Congenial horrors, hail!
came from the heart; they expressed his own forlorn mood on the approach of the winter of 1725 . Winter appeared in the spring of 1726. A publisher, Millan,-not Millar, who afterwards published for hin,-gave him three guineas for the poem. The tradition is that it attracted no notice for a month, but that, at the end of that time, a litepary clergyman, Whatley, chanced to take it up trom a bookseller's counter and at once rushed off to the coffee-
houses to proclaim the discovery of a new poet. The town received the discovery with acclamation; in another month a second edition was called for. No time could have been better suited for the appreciation of Thomson's striking qualities; they were so entirely unlike what the public had for many years been accustomed to. The fresh treatment of a simple theme, the warm poetical colouring of commonplace incidents, the freedom and irregularity of the plan, the boldness of the descriptions, the manly and sincere sentiment, the rough rigour of the verse, took by surprise a generation accustomcd to witty satire and burlesque, refined diction, translations from the classics, themes valued in proportion to their remoteness from vulgar life. Thomson at once became famous, and, his naturally easy temper roused to full exertion, vigorously followed up his success with Summer and an Ode to the Memory of Sir Isaac Newton. Spring was completed and published in 1728. A longer interval elapsed before the appearance of Autumn; it was published in 1730, and followed presently by a handsome cdition of the whole four Seasons. Meantime, drawn into the ardent political strife of the time, he had produced, in 1729, his Britannia, and early in 1730 had made his first attempt as a dramatist with Sophonisba. From this time there was a manifest slackening either in his will or in his power to produce. He was appointed travelling tutor to the son of Sir Charles Talbot, travelled with his pupil on the Continent, and in 1733 obtained a small sinecure in the Court of Chancery. It may lave been this removal of the spur of necessity that made him take longer over his poems. But it is a fair theory that the rigid taste of the time for finish, which he had unconsciously defied with triumplant results, began to make good an ascendency over him, and that he wrote less because he was cramped by fear of the critics. None of the other Seasons have the same large and careless frcedom as Winter; Autumn especially, the last of then, is much more laboured, and his revisions and enlargements in successive editions show an anxious ambition after the finish of the classical school. How. ever this may be, he hesitated long over nis next poem, Liberty; the first part was published in 1734 and the conclusion in 1736. He intended it to be his masterpiece, but with all his care and pains it has fallen into deserved oblivion. In 1737 he lost his sinecure by the death of his patron, but was recompensed by a pension from the prince, Poverty, rather than natural fitness or inclination, drove him. again to dramatic composition. Agamennon was produced in 1738 , with indifferent success. Next year a play, written in the intercst of the prince and the opposition, was interdicted by the lord chamberlain. The masque of Alfred, written by Thomson in conjunction with Mallet, and containing the song Rule Britannict, was produced in 1740, Tancred and Sigismunda in 1745. A ycar before this last event the "poetical posture" of the poet's income was improved by his appointment to the sinecure office of surveyor-general of the Leeward Islands. The Castle of Indolence was his last work. It was not published till the year of his death (1748), but he had been long engaged upon it. The poem is full of character and humour, with here and there passages of elaborately rich description ; it is fuller than any other of the personality of the poet, of the good-nature, generosity, and solid wisdom which gained him the affection of so many friends; but still it is in the Seasons, a ad especially in the first of them, that Thomson is seen at his best and strongest.

Till tho advent of Scott and Byron, Thomson was the most ridely popular poet in our language; and as late as the middle of this century a sumptuous edition, illustrated by the Etching Club, was priated three times within ton years (1812-52). Tho popuiar verdict on Thomson bas bean unanimously justifed by critics.
(W. M.)

THOMSON, JAMES (1834-1882), author of The City of Drealful Night, was born at Port Glasgow, in Renfrewshire, on November 23, 1834, the eldest child of a mate in the merchant shipping service. His mother was a deeply religious woman of the lrvingite sect, and it is not improbable that it was from her the son inherited his sombre and imagiuative temperanent. On her death, James, then in his seventh year, was procnred admission into the Caledonian Orphan Asylum, from which he went out into the world as an assistant army schoolmaster. At the garrison at Ballincollig, near Cork, he encountered the one brief happiness of his life: he fell passionately in love with, and was in turn as ardently loved by, the daughter of the armourer-sergeant of a reginent is the garrison, a girl of very exceptional beauty and coltivated mind. Two years later, when Thomson was at the training college at Chelsea, he snddenly received news of her fatal. illness and•death. The blow prostrated him in mind and body; and the former endured a hurt from which it never really recovered. Hencefortin his life was one of gloom, disappointment, misery, and poverty, rarely alleviated by episodes of somewhat brighter fortunc. While in Ireland he had made the acquaintanco of Mr Charles Bradlaugh, then a soldier stationed at Ballincollig, and it was undor' his auspices (as editor of the London Investigator) that Thomson first appealed to the public as an author, though actually his earliest publication was in Tait's Edinburgh Magazine for July 1858, under the signature "Crepusculus." In 1860 was estallished the "paper with which Mr Bradlaugh has been so long identified, The National Reformer, and it was here, among other productions by James Thomson, that appeared (1863) the powerful and sonorons verses "To our Ladies of Death," and (1874) his chief work, the sombre and imaginative City of Dreadful Night. In October 1862 Thomson left the army, and through Mr Bradlaingh (with whom for some subsequent years he lived) gained employment as a solicitor's clerk. In 1869 he enjoyed what has been described as his "only reputable appearance in respectable literary society," in the acceptance of his long poem, "Sunday up the River," for Fraser's Mfagazine, on the advice, it is said, of Charles Kingsley. In 1872 Thomson went to the Western States of America, as the agent of the shareholders in what he ascertaincd to be a fraudulent silver mine; and the following year he received a commission from The New York World to go to Spain as its special correspondent with the Carlists. During the two months of his stay in that distracted country he saw little real fighting, and was himself prostrated by a sunstroke. On his return to England be continued to write in The Secularist and The National Reformer, under the at last well-known initials "B. V." I In 1875 he severed his connexion with The National Reformer, owing to a disagreement with its editor ; henceforth his chief source of income (1875-1881) was from the monthly periodical known as Cope's Tobacco Plant. Chiefly through the exertions of his friend and admirer, Mr Bertram Dobell, Thomson's best known book, The City of Dreadful Night, and other Poeres, was published in April 1880, and at once attracted wide attention; it was succeeded in the autumn by Vane's Story, and other Poems, and in the following year by Essays and Phantasies. All his best work was produced between 1855 and 1875 ("The Doom of a City," 1857 ; "Our Ladies of Death," 1861; Weddah and On-elBonain: "The Naked Goddess," 1866-7; The City of Dreudful Night, 1870-74). In his latter years Thomson too often sought refuge from his misery of mind and body

[^131]in whe Lethe of cpinm and alcohol. His mortal iliness came npun him in the house of a poct friend; and he was conveyed to University College hospital, in Gower Strect, where shortly after he died (June 3, 1882). He was buried at Highgate cemetery, in the same grave, in uncon secrated ground, as his friend Austin Holyoake.

To the productions of Jaines Thomson already nentionce mas be added tho posthumous volume entitled A Voice from the Nile, and other Pocins (1884), which has the advautage of Mr Bertrans Dohell's valuable prefatory memoir and an etched portrait of the poet. This volume containa nuch that is interesting, but nothing to increase Thomson's reputation. If an attempt ho made to point to the most apparent literary relationship of the author of The City of Dreadjul Night, ono might venture the suggestion that James Thomson was a yonnger brother of De Quincey. If he las distinct affinity to any writer it is to the author of Suspiria de Profund is; if we look further aficld, wo might perhaps discern shadowy prototypos in Leopardi, Heine, and Laudalaira. But, after all, Thomson holds so unique a place as a poet that the effort at cinssification may well be dispensed with. If he wantains his owis lonely little height, ic will be as a distinct individuality. His, it is absolutely certain, was no literary pessimism, no assumed gloom. The poein "Insomnia" is a distinct chapter of hiography; and in "Mater Tonehrarum" and elsewhere among his writings self-revelative passagee are frequent. The merits of Thomson's poetry are its imaginative power, its sombre intensity, its sonorous music ; to theso chararteristics may he added, in lifg lighter pleces, a Heinu-like admixture of strange gaiety, pathos, and caustic irony. Much the same may be said of his best prose. His faults are a morotong of eprithet, the not infrequent use of mero rhetoric and verbiage, and perhaps a prevailing lack of the senso of form, to these may be adJed an occasional vulgar recklessnesn of exprossion, as in parts of Vanc.s Story and in somo of lis prose writincs. Time will reduce his noteworthy work within a narrow compass, but within that limit it will be found as remark. able as it is unique.

THOMSON, JoHN (1778-1840), amateur landscape painter-Thomson of Duddingston, as he is commonly styled, -was born on September 1, 1778, at Dailly, Ayrshire. His father, gracdfather, and, as we are informed, great-grandfather also, were clergymen of the Church of Scotland. The father determined that his son should follow the ancestral profession, and, greatly against his natural bent, -for all his thoughts turned instinctively towards art, -he acceded to the parental wish. He studied in the university of Edinburgh; and, residing with his elder brother, Thomas Thomson, afterwards celebrated as an antiquarian and feudal lawyer, he made the acquaintance of Francis Jefirey and other young members of the Scottish bar afterwards notable. The pursuit of art, however, was not abandoued; during the recess he sketched in the country, and, while attending bis final college session, he studied for a month under Alexander Nasmyth. After his father's death he became, in 1800, his successor as minister of Dailly ; and in 1805 he was translated to the parish of Duddingston, clase to Edinburgh. Tho practice of art was now actively resumed, and it came to be continued throughout life-apparently without any very great detriment to pastoral duties. Thomson's popularity as a painter increased with his increasing artistic skill; and, having mastered his initial scruples against. receiving artistic fces, on being offered £15 for a land-scape-reassured by "Grecian" Williams's stout assertion that the work was "worth thrice the amount"-the minister of Duddingston began to dispose of the productions of his brush in the usual manner. In 1830 he was made an honorary member of the Royal Scottish Academy. Besides that of art, Thomson had other singularly varied tastes and aptitudes. He was an accomplished performer on violin and flute, an exact and well-read student of physical science, and one of the writers on optics in the carly numbers of the Edinburgh Review. His life passed peacefully away in the kindly and charitable discharge of bis clerical duties, varied by the enthusiastic pursuit of his art, and the enjoyment of intercourse with a singularly
wide and eminent circle of friznds, which, among artists, included Turner and Wilkio, and among men of letters Wilson and Scot,-the latter of whom desired that Thomson, instead of Turner, should have illustrated the collected edition of his works. He died at Duddingstun on the 27 th of October 1840 (not the 20th, as stated by some authorities). Thomson was twice married, and his second wife, the widow of Mr Dalrymple of Cleland, was herself also a skilful amateur artist.

Thomson holds an honourablo position as the first powerful Jandscapist that Scotland produced, and he is still among her greatest. Pis styled was founded, in the first instanco, upon the practice of the Dutch masters ; but ultimately he submitted to the influence of the Poussins and the Italians, rightly believing that their method-in the richer solemnity of its colour and tho deeper gravity of its chiaroscuro-was more truly fitted for the portrayal of the scenery of Scotland, more in larmony with the gloom and the glory of its mountains and its glens and tho jassion of its wave-vexcd cliffs. But to the study of the art of the past he joincd a close and constant reference to nature which kept his own work frcsh and original, thongh, of course, he never even approaclice such seientific accuracy in the rendering of natural form and effect as is expected from even tho tyro in our recent schools of iandscape. His art is clearly distiuguished by "style"; at their best, his works show skilful selection in the leading lines of their composition and admirable qualities of abstract colour and tone. Thomson is fairly represented in the Scottish National Gallery; and the Aherlady Bay of that collection, with the soft infinity of its clouded grey sky, and its sca which loaps and falls agrain in waves of sparkling and of shadowed silver, is fit to rank among the triumphs of Scottish art.
tholi. See Æsir, vol. i. p. 210, and Mythology, vol. xvii p. 156.
thoreau, Henry David (1817-1862), one of the most strongly-marked individualities of modern times, epent the greater part of his life in the neighbourhood of the place where be was born-Concord, a village town of Massachusetts, pleasantly situated some twenty niles northwest of Boston, a midst a pastoral country of. placid beauty. I'o Thoreau this Concord country contained all of beauty and even grandeur that was nccessary to the worshipper of nature : he once journeyed to Canada ; he went west on ane occasion ; he sailed and explored a few rivers; for the rest, he haunted Concord and its neighbourhood as faithfully as the stork doesits ancestral nest. John Thoreau, his fa ther, who married the daughter of a New England clergyman, was the son of a John Thoreau of the isle of Jersey, who, in Boston, married a Scottish lady of the name of Burns. This last-named John was the son of Philippe Thorcau and his wife Marie le Gallais, persons of pure French blood, settled at St Helier, in Jersey. Frorn his New England Paritan mother, from his Scottish grandmother, from his Jirscy-American grandfather, and from his remoter French ancestry Thoreau inherited distinctive traits: the Saxon element perhaps predominated, but the "hauntings of Celtism" were prevalent and potent. The stock of the Thoreaus was a robnst onc ; and in Concord the family, through never wealthy nor officially infiuential, was ever bild in peculiar respect. As a boy, Henry drove his mother's cow to the pastures, and thius carly became eramoured of certain aspects of nature and of certain dit lights of solitude. At school aul at Irarvard university he in nowise distinguished himself, though he was an intelligently receptive student; he became, however, pro: ficient enough in Greek, Latin, and the more gencral acquirements to cnable him to act for a time as a master. But long beforc this he lad become apprenticed to the learring of nature in preference to that of man: when only twelve years of age he bad mado collections for Agassiz, who had then just arrived in America, and alrcady the meadows and the hedges and the stream-sides liad becomo cabinets of rarc knowledge to him. On the desertion of schoclmastering as a profession Thoreau bccame a decturer and auther, though it was the labour of his hands
which mainly supported him through many years of his life : professionally he was a surveyor. In the effort to reduce the practice of economy to a fine art he arriver at the conviction that the less labour a man did, over and above the positive demands of necessity, the better for him and for the community at large; he would have had the order of the week reversed,-six days of rest for one of lahour. It was in 1845 he made the now famous experiment of Walden. Desirous of praving to himself and others that man could be as independent of his kind as the nest-building bird, Thoreau retired to a hut of his own construction on the pine-slope over agatnst the shores of Walden Pond, - a hut which he built, furnished, and kept in order entirely by the labour of his own hands. During the two years of his residence in Walden woods he lived by the excrcise of a little surveying, \& little job-work, and the tillage of a few acres of ground which produced him his beans and potatoes. His absolute independency was as, little gained as if he had çamped out in Hyde Park; relatively he lived the life of a recluse. He read considerably, wrote abundantly, thought actively if not widely, and camato know beasts, birds, and fishes with an intimacy more extraordinary than was the case with. St Francis of Assisi. Birds came at his call, and forgot their hereditary fear of man; beasts lipped and caressed him; the very fish in lake and stream would glide, unfearful, between his hands. This exquisite familiarity with bind and beast would make us love the memory of Thoreau, if his egotism were triply as arrogant, if his often meaningless paradozes were even more absurd, if his sympathies were even less humanitarian than we know them to have been. His W'alden, the record of this fascinating two years' experience, must always remain a production of great interest and consillcrable psychological value. Some years before Thoreau took to Walden woods he nade the chief friendship of his life, that with Emerson. He became one of the famous circle of the transcendentalists, always keenly preserving his own individuality a mongst such more or less potent natures as Emerson, Hawthorne, and Margaret Fuller. From Emerson he gained more than from any man, alive or dead; and, though the older philosopher both enjoyed and learned from tho association with the younger, it cannot be said that the gain was equal. There was nothing electrical in Thoreau's iutercourse with his fellow-men ; he gave off no spiritual sparks. He absorbed intensely, but when called upon to illuminate in turn was found wanting. It is with a sense of relief that wo read of his haring really becn stirred into active enthusiasm anent the wrongs done the ill-fated John Brown. With children he was affectionate and gentle, with old poople and strangers considerate. In a word, he loped his kind as animals, but did not seem to find them as interesting as those furrod and feathered. In 1847 Thoreau left Walden Lake abruptly, and for a time occupied himself with leadpencil making, the parental trade. He never warried, thus further fulfilling his policy of what one of his essayistbiographers has termed "indulgence in fine renounccments." At the comparatively carly age of forty-five he died, on 6th May 1862. His grave is in the beautiful cemetcry of Sleepy Hollow, besido those of Hawthorne and Emerson.
Thoreav'a fane will rest on Walden, the Excursions, and his Letters, though he wrote wothing which is not deserving of notice. Up tiil his thirtictly year he dabbled in Yerse, but he had little ear for metrical music, and he lacked tho spiritual impulsivencss of the true pooet. He hall occasional flashes of insight and could record beautifully, notwithstanding: his little poom "Haze" is surcharged with concentratcd loveliness. Ilis weakDess as a philosophcr is hia tendency to base tho laws of the universo on the expericnce-born, thought-produced convictions of one man-himself. His wcakness as a writer is the too frequent striving after antithesis and parador. If he bad bod all kis own originality without the itch of appearing
original, he would have mado his fescination irresistible. As it is, Thoresa holds a naique place. He was a naturalist, but absolutely devoid of the pedantry of science; a keen observer, but no retailer of disjointed facts. He thus holds sway orcr tiro domains: he has tho adherence of the lovers of fact aod of the children of fancy. He must slways be read, whether lovingly or interestedly, for he has all the variable charm, the strange saturninity, the contradictions, ansterities, sud delightful surprises, of Nature herself.
Soo W. E. Chaoning, Thoreau the Poet Naturalist, Boston, 1873; F. B. Sanborn, Biography of Thoresu (American Slen of Letters Serles); II. A. Page, Bioorophy of Thoreas; Elocrson, Introduction to Excursions; J. Rassell Lowell, My Study Hindows: Till. II. Dircks, Introdoctlon to Wa/den; Professor Nichol, American Litorature, pp. 312 sq. ; Sir Burrouchs; Dlr Henry James, \&c. Aftor Thoreag'e death were poblished (bestdos tho Exeursions, 1863) The Maing IFoods (186t); Cape Cod (1865); Letsers and Poems (1865) ; A Fankes in Canaja (I8i6). In thio Alfantic Monthly, in 1862, appcared "Walking," "A Atnma Tints," and "Wild Apples"; in 1863 "Night and Mconight." Als Best known work, Falden, constitntes the second volume of the sorles calted The Camelot Classics; otherwlso Thoreau'e prodactlons aro nut wldely knowa in Brlenin.
THORIUM, in chemistry, is the name of the as yet unisolated radical of thoria, one of the now numerous "rare earths." Thoria was discovered by Berzelius in 1828 in the mineral now called thorite. It is present also in pyrochlor, monazite, orangite, and euzenite. Being similar to the oxides TiO_{2} and ZrO_{2} of titanium and zirconium, thoria is assumed to 1 e a binoxide ThO_{2}. The atomic weight, according to Cleve, is $\mathrm{Th}=233$, O being 16 .
THORN (Polish Torin), an interesting old town in the province of West Prussia, is situated on the right bank of the Vistula, near the point where the river enters Prussian territory, 26 miles south-east of Bromberg and 92 miles south of Dantzic. Its position near the frontier of Russian Poland makes it a strategic point of importance ; and, strongly fortified since 1818, in 1878 it was converted into a fortress of the first class. The " old town," founded in 1231, and the "new town," founded thirty-three years later, were united in 1454, and both retain a number of quaint buildings dating from the 15 th and 16 th centuries, when Thorn was a flourishing member of the Hanseatic League. The town-house, of the 14 th and 16 th centuries, the churches of St John and the Virgin, with aisles as lofty as the nave, the ruined castle of the Teutonic order, and the gates, leaning tower, and fragments of the walls, all of the 13th century, are among the most interesting edifices. The ancient wooden bridge, now burned down, at one time the only permanent bridge across the lower Vistula, has been succeeded by a massive iron railway viaduct, half a mile long. Thorn carries on sn active trade in grain, timber, wine, colonial wares, and iron, and has manufactures of leather, hats, starch, candles, and numerous other articles. It is famous for its "Pfefferkuchen," a kind of gingerbread. Part of the trade is carried on by ressels on the Vistula. In 1885 the population was 23,914 (in 1816 7909), about three-fifths being Protestants and two-fifths (chiefly Poles) Roman Catholics.
Thorn, foanded in 1231 by the Teutonic order as 8 bn ortpost against the Poles, was colonized mainly from Westphalia. The first peace of Thorn, betweea the order and the Poles, was concladed in 1411. In 1454 the tomaspeople revolted from the knights of the order, destrojed their castle, and sttached themselves to the king of Poland. This resulted in a war, which wss terminated in 1466 by the secoad peace of Thorr. In the 15th and 16 th centuries Thorn was \& Hanse town of importance, and received the titles of "queen of the Vistala" and "the beantiful." It ombraced the Reformation in 1557, and in 1645 it was the ecene of a "colloquinm charitativum," or discussion betrixt the doctors of the rivsl creeds, which, however, resulted in no agreement. In 1724 s riot between the Protestant and Roman Cathofic inhabitants was soized apon by the Polish king as \mathbf{s} pretext for beheading the burgomaster and nine other leading Protestant citizens, za act of oppression which is known as the "bloodbath of Thorn." The second partition of Poland conferred Thorn apon Prussis; by the treaty of Tilsit it was assigned to the duchy of Wrrasw ; but since the congress of Vienna it has again been Prussian Copernicus was born at Thorn in 1473.
THORNBACK is the name given to a species of ray (Raja clavata) which is found all round the coasts of Enrope, and locally abundant; it derives its name from
the peculiar armature of the skin of its body, the upper and lower surfaces of the body of the female being armed with scattercd, more or less numerous, large round osseous bucklers, each with a spine in the centre; the tail also is armed with rows of similar bucklers. In the male fish these bucklers are absent, or nearly so. The thornback does not grow to the same large size as the skates, a specimen three feet across being considered large. It is more valued as food than the other rays, and consumed in large quantities, fresh as well as salted.

THORNHILL, Sir JAMES (1676-1734), historical painter, was born at Melcombe Regis, Dorset, in 1676, coming of an anciect but impoverished county family. His father died while he was young, but he was befriended by his maternal uncle, the celebrated Dr Sydenham, and apprenticed to Thomas Highmore, sergeant-painter to King William III., a connexion of the Thorchill family. Little is known regarding his early career. About 1715 he visited Holland, Flanders, and France; and, having obtained the patronage of Queen Anue, he was in 1719-20 appointed her serjeant-painter in succession to Highmore, and was ordered to decorate the interior of the dome of St Paul's with a series of eight designs, in chiaroscuro heightened with gold, illustrative of the life of tbat apostle,-a commission for which Louis Laguerre had previously been selected by the commissioners for the repair of the cathedral. He also designed and decorated the saloon and hall of Moor Park, Herts, and painted the great hall at Blenheim, the princesses' apartments at Hampton Court, the hall and staircase of the Southsea Company, the chapel at Wimpole, the staircase at Easton-Neston, Northamptonshire, and the hall at Greenwich Hospital, usually considered his most important and successful work, upon which he was engaged from 1708 to 1727. Among his easel pictures are the altar-pieces of All Souls and Queen's College chapels, Oxford, and that in Melcombe Regis church ; and he executed such portrait subjects as that of Sir Isaac Newton, in Trinity College, Cambridge, and the picture of the House of Commons in 1730, now in the possession of the earl of Hardwicke, in which he was assisted by Hogarth, who married Jane, his only daughter. He also produced a few etchings in a slight and sketchy but effective manner, and executed careful full-size copies of Raphael's cartoons, which now belong to the Royal Academy. About 1724 be drew up a proposal for the establishment of a royal academy of the arts, and his scheme had the support of the lord treasurer Halifaz, but Government declined to furnish the needful funds. Thornhill then opened a drawingschool in his own house in James Street, Covent Garden, where irstruction continned to be given till the time of his death. He acquired a considerable fortnne by his art, and was enabled to repurchase his family estate of Thernhill, Dorsetshire. In 1715 he was knighted by George I., and in 1719 he represented Melcombe Regis in parlinment, a borough for which Sir Christopher Wren bad previously been member. Having been removed from his office by some sourt intrigue, and suffering from broken health and repeated attacks of gout, he retired to his conntry seat, where he died on the 4th of May 1734. His son James was also an artist. He succeeded his father as serjeant-painter to George II., and was appointed "painter to the nary."
.The high contemporary estimste of Sir James Thornhill's works has not since been confirmed; in spite of Dr Young, "late times", do not

$$
\begin{aligned}
& \text { Onderstand } \\
& \text { nhill's hands." }
\end{aligned}
$$

He is weak in drawing,-indeed, when desling with complicated, Ggures he was assisted by Thomas Gibson; snd, ignorant of the great monumental art of Italy, he formed himself upon the lower

Foodel of Le Brun. It nust, however, be admitted that, in the departmonts of art which he chose for his own, he was the best putive painter of his time.
THORWALDSEN, Bertel (1770-1844), a very able Danish sculptor, was the son of an Icelander who had settled in Copenhagen, and there carried on the trade of a wood-carver. While very young Bertel Thorwaldsen learnt to assist his father; at the age of eleven be entered the Copenhagen school of art, and soon hegan to sbow his exceptional talents. In 1792 he wou the highest prize, the travelling studentship, and in 1796 he started for Italy in a Danish man of-war. On the 8th of March 1797 he arrived in Rome, where Cauova was at the height of his popularity. Thorwaldsen's first success was the model for e statue of Jason, which was higbly praised by Canova, and he received the commission to execute it in marble from Thomas Hope, a wealthy English art-patron. From that time Thorwaldsen's success was assured, and he did not leave Italy for twenty-three years. In 1819 he returned to Denmark, where he was received with the greatest enthusiasm. He was there commissioned to make the colossal series of statues of Christ and the twelve a postles which are now in the Fruenkirche in Copenhagen. Theso wore executed after his return to Rome, and were not completed till 1838, when Thorwaldsen again returned to Denmark. He died suddenly in the Copenhagen theatre in 1844, and bequathed a great part of his fortune for the building and eadowment of a museun in Copenhagen, and also left to fill it all his collection of worky of art, and the models for all his sculpture, - a very large collection, cxhibited to the greatest possible advantage. Thorwaldsen is buricd in the courtyard of this museum, under a bed of roses, by his own special wish.
On the whole Thorwaldsen was tho most snccessful of all the imitators of elassical senl|ture, and many of his statucs of pagan deities are moddellal with mnel of the antigue feeling for brealth and purity of design. 11 is attempts at Christian sculpture, such as tlic tomb of Pius V11, in St Peter's and tho Cluilst and A postles nt Copeulagen, aro less successful, anil were not in accordance with the sculptor's real sympathics, which were purely classic. Thorwaldseri's privato lifo was not atmirable: ho worked sone. times with feverish cagerness; at other times, he was idlle for many montlss tonctlier. A great number of lis best works exist in privato collections in England. His not very sucessful statue of Lord Byron, ofter being refused a placo in Westuninster Abbey, was finally deposited in the library of Trinity College, Cambridge Tho most widely popular among Thorwaldsen's works liave becu sonce of his bas-rulicfs, such as the Night and the Mlorning, which be is sail to lare modellecl in ono daj. In tho 1rain his jopularity is nov a thing of the past, owing chiffly to the reac. tion against the pseudo-classic style of sculpture.
A wellilliustrated occmunt of Thir waldsen and lids works is given bp Fureno

 Thicle, Thorwald den's LDben, Lelpsic, 1852-56.

THOU, Jacques Auguste de (1553-1617), sometimes known by the Latinized form Thuanus, as his great listory is by the name Thuana, was hom at Paris on Cotober 8, 1553. He belonged to a family of distinction in the Orlsanais, of which the elder branch had, he tells us, been noblesse d'epée, though he gives no particulars except of those who had for some generations been nublesse de robe. He and his were closely connected hy birth, marriage, and friendship with several of those great legal families-the Harlays, the Huraults, the Brularts, the Lamoignons, and others-which for many generations furnished France with by far her most valuable class of prblic men. The historian's father was Christophe de Thou, first president of the parlement of Paris, a man whose strong legal and religions prejudices against the Huguenots bave rather obscured, in the eyes of historians, his undoubted ability and probity. Curistophe's brothers, Adricn and Nicolas, were both men of nark, the former being also a lawyer, and the latter ultimatcly becoming bishev of Cbartres in which eapacity be "instructed"

Henry IV. at his conversion. De Thou's mother was Jacqueline Tuleu, dame de Céli. He was a delicate child, and seems by his own account to have been rather neglected by his parents; perhaps it was for this reason that, though he grew stronger with age, he was destined for the ohurch. He took minor orders, and obtained some benefices. It was, however, to the legal side of the ecclesiastical profession that he was devoted, and, after being at school at the Collége de Bourgogne, be studied law at Orleans, Bourges, and Valence, being at the last two places under the tuition of jurists no less celebrated than Hotman and Cujas. It was not, however, till he approached middle life that he definitely renounced the clerical profession, married, and accepted lay offices. Meanwhile he had travelled much and discharged important duties. In 1573, that he might profit by seeing foreign parts, he was attached to the suite of Paul de Foix, who was sent on a circular mission of compliment to the Italian princes, and with him Do Thou visited Turin, Milan, Mantua, Venice, Rome, Florence, and many minor places. On his return he studied for four years, travelling to the Netherlands in the interval,-and in 1579 to Germany. Two years later he was appointed to a royal commission in Guienne, and made the acquaintance of Henry of Navarre and of Mentaignc. He had already become the friend of most of the cminent men of letters of the time, from Ronsard downwards, and was particularly intimate with Pierre Pithou, the soul of the future Sative Menippuce. De Thou, by all his sympathies, belonged to that later and better phase of the politique party which devoted itself to the maintenance of royalty as the one hope of France; and, when Henry III. was driven from his capital by the violence of the Guises and the League, De Thou followed him to Blois. After his renunciation of orders, he had been made, first, master of rocyuests, and then president a mortier, which was the highest dignity he cver attained. After the death of Henry III. he attached limsclf closcly to his successor, and in 1593 was apprinted (be was a great biblioplile) grand matre of the royal library, in succossion to Amyot, the translater of Mutarch and Longus. It was in this same ycar that he began his bistory, the composition of which was interrupted, not only by his regular official duties, but by frequent diplomatic missions at bone and abroad. His most important employinent of all was on the commission which, in face of the greatest difficulties on both sides, successfully carried throngh the negotiations for the cdict of Nantes. Nor were his duties as a diplomatist intermitted by the death of Henry IY., though the Government of Marie de' Medici refused him tho place of premier president which he dosirech and hart his feelings l.y appointing him instead a momber of the financial coma mission which succeeded Sully. This appointment he rather strangeiy chose to think a, degradation. It ls, huwever, absurd to say that the affair, which ho survivel six years, had anything to do with his death. That, as far as it was hastcned by any mental affliction, seems to have been rather due to grief at the death of his second wife, Gasparde de La Châtre, of whom aod of his sons and daughters by her (his first marriago with Maric de Barbançon had been childless) be was extrencly fond. His eldest son, François Auguste, was the friend of Cinq Mars, and shared his downfall and fate. But this was a quarter of a century after De Thou's own death, which happened on May 7, 1617.
Althongh a distioguished ornament of France, De Thou lias nothing to do, properly speaking, with French literature. Thositns minor works in Latin (a poem on lawking, somo parpplyracs of tho IBible, \&c.), he wrote also in Latin tho great history "hirh lias malo his namo known Entitled llistoria Sui Temporis, it benine shortly before the author's birth (in $15 \$ 0^{\circ}$), and cxtends to 1607 ,
ten years befora his deatl. The first part, in cightecn books, was pulilishod in 1604; the second, thirsl, and fourth appearel in 1000 and the two following years. Tho last part, which makes a totol of 138 books, rlid not appear till 1620, under tho care of tho suthor's frionds Rigatlt and Dupuy, whom he hat manell his literary executors. The first mamollikewise put final tonches to De Thon's nutobiorraphy, which, also written in Latin, appears in French in most collcctions of French momoirs. It contains minuto details of the author's life down to 1607 , mixed with rather miscellancous descriptions of interesting places which he had visited (such as Mont St Michel, an carlo's oyric in Danphiné, \&c.) ; nud its composition is said to havo been partly dotermined by the obloguy cast foy liseted adherents of tho papacy on tho History. Do 'l'hon was imlect obnoxions to these on inany gromnds. He had helped to negotinto tlocectict of Nautes; he had npposed the acknowletenent in France of the decrees of 'Irent; ho hat been o stealy Anti-Lesguer; null lie was necused of speaking in tho Mistory itsclf ef Protestants nul Pruteqtantism, not moroly with criminal milducss, but with gomething like sympathy. It is necelless to say that theso blots in the Wistory have secmed beautics to later and more dispassionato students. Thers is no doubt that the charges of partiality on mingr and mostly personal points are cither disprovable or manportant; and tha whole scems to be as fair and as carefully eccurato as at such a tino was possible. On tho other hand, the work is undoubtedly plamed aud cxecuted on much toe large a scale, and the inclusion of cencuts in forcign countrics, on which tho anthon was often but ill-informed, has not improved it. But it is clearly and on tho whole cxcellently written, and will always be, as far as any gencral contemporay history can be so called, tho great authority for at least tho French part of its sulyect and period. It wits first published as a whole when, as above mentionol, the hast part aprearch in 1620, ond it was several times reprinted. More than a humbed years later, in 1733, an Liglishman, Sammel Buckley, working in part on the materials of 'lhomas Cirte, producod at Lombon wint is recognized as the standard cilition of tho original, in 7 vols. folio. The stamind French trauslation was inato immediately afterwards by a gromp of literary 1 nen, the best known of whon were the Ablis Dusfontaines and IPreost, the anthor of Mranon Lescent. A choice ropy of the first enlition of the first part, with the amo of Honry IV. on tho bincling is in the Britisla Aluscum library.
THIOUSAND AND ONE NIGHTS. The Thousand and One Nughts, commonly known in English as The Arabian Nighls' Entcrtaimments, is a collection of tales rritten in Arabie, whieh first becamo generally known in Europe in the early part of last century through the French translation by Antoine Galland (q.u.), and rapidly attained such universal sopularity that it is unnecessary to describe the contents os the book. But the origin of the Aralian Jights claims lisenssion in this place. In the Journal Asiulique for li'27, p. 253, Von Flanmer drew attention to a passago in the Golden Mewrlou's of Maseudi (ed. Barbier de Mcynarc. iv. $S 9$ sq.), written in 9 ± 3 A.D., in which eertain storics current among the old Arabs are compared with "the books which have reached us in translations from Persian, Indian, and Greck, such as the book of ICezio ifscine, a title which, translated from Persian into Arabie, means "the thousand tales.' This book is popularly called The Thousched and One Nights, and contains the story of the king and his vizier and of his daughter Shiraz\&d and her slave girl Dinazád. Other books of the same kind are the book of Ferie anel Simas, containing stories of Indian kings and vizicrs, the book of Sindibad, des." Yon Hammer conclurled that tho Thouscurd and One Nights were of Persian or Indian origin. Against this conelusion De Sacy protested in a memoir (Ment. de rAcad. des Inscr., $1833, \mathrm{x} .30 \mathrm{sq}$.), demonslrating that the character of tho book we know is genuincly Arabian, and that it must have been written in Egypt at a comparatively recent date. Von Hammer in reply adduced, in Jour. As., 1539 , ii. p. 175 sq., a passaro in the Fihrist (987 A.D.), which is to the Collowing effect:-
"The ancient Persians were the first to invent tales, and make books of them, and some of their talcs wero pat in the mouths of animals. The Ashchanians, or thire dynasty of l'crsian kings, and after them the Sisanians, had a special part in the development of this literaturo, which found Arabic translators, and was taken up liy necomplishod Arabic literati, who culited it and initated it. flhe carliest book of the kind was the Mezdi adetn or Thousand

Talcs, which harl tho following origin. A certain Pcrgie. Kis be was accustomed to kill his wives on the morning alter the ceublubliction of the sarriage. But oned he married a clover prinues called Shahrazad, who spent thomamiaro night in telling n atory which in tho morning reached a point so interesting that the king spared her, and asked rext night for tho sequel. F'lis weat on for a thousand nights, till Shahruzad liad a son, aud ventured to tell the kinf of her devico. He admired her intelligence, loved her, and spared her life. In all this tho princess was assisted by the king's btewardess Dinazate. This book is said to havo been witten for the princess IIomái ($\mathbb{C S S}$. IIomini), danghter of l3ahman. . . . It contains nearly two hundred stories, ono story often ocelipjing scveral niglits. I lavo repeatedly secn the completo book, but it is really a incagre and uninteresting production" (Fihrist, cd. Fhigul, p. 301).

Persian tradition (in Firdausi) makes Princess Tomai the daughter and wife of Bahman Ardashifr, i.e., Artaxerxes I. Longimanus. She is depicted as a great builder, a kind of Persian Seminamis, and is a lalf-nyythical personage already mentioned in the Avesta, but lier lerend scems to be founded on tho listory of Atossa and of Parysatis. Firdensl says that she was also called Shahrazad (Mohl, v. 11). This namo and that of Dinizid both occur in what Mastudi tells of licr. Aecording to him, Shahrazad was Homati's mother (ii. 129), a Jowess (ii. 123). Bahman had married a Jewess (i. 11S), who was instrumental in delivering lier mation from captivity. In ii. 122 tlis Jewish maiden who did her poople this service is called Dinizad, but "tho accounts," says out author, "vary." Plainly slio is the listlier of Jewinil story. Tabarl (i. 688) calls Esther the mother of Bahman, and, liko Firdausl, gires to Homai tho name of Shalirazid. Tho story of Esther and that of the original Nights havo in fact one main featuro in common. In tho former the king is offended with his wife, and divorces her; in tho Arubian Nights ho finds her unfaithful, and kills her. But both stories agree that thereafter a new wife was bronght to him crery might, and on the morrow paseed into the sceond house of the women (Esther), of was slain (Jights). At length Estlice or Shahbrazad wins lis licart and becomes queen. The jssuc in tho Jewisll story is that liather faves lier people ; in the Nights the gainers are "the danghters of the Mosiems," but the old story liad, of course, some other word than "Moslems." Estlier's fonter-father becomes vizier, and. Sliahrazad's father is also vizier. Shahrazad's plan is helped forvard in the $\lambda_{\text {Fighls }}$ by Dinizíd, who is, according to Masiudi, her slave gill, or, according to other MSS., her murse, and, aecording to the Fihuist, the king's stewardess. Tho last aceount comes nearest to Esther ii. 15, where Esther gains tho favour of the king's clamberlain, keejer of the women. It is also to fo noted that Alnsuerus is read to at night when he cannot slecp (Esther vi. 1). And it is just possiblo that it is worth notice that, though tlie wame of Alasuerus corresponds to Aerxes, Joscplus identifies him with Artaxerxes I.

Now it may be taken as admitted that the book of Esther was written in Persia, or by one who had liced in Persia, and not carlier than the 3 d century b.c. If now there is real weight in the points of contact letween this story and tho Arabian Nights - and the points of difference cannot be held to outweigh the resemblances between two legends, each of which is nceessarily so far removed from the hypothetieal common somree-the inference is important for both storics. On the one bancl, it appears that (at least in part) the book of Esther draws on a Persian source; on the other hand, it oecomes probable that the. Nights are older than the Sastaian period, to which Lane, iii. 677 , refers them.

It is a piece of good fortune that Mas'udl and the Fibuist give us the information cited above. For in general the Moslens, though very fond of stories, are asbamed to recognize them as objects of literary curiosity. In fact, the next mention of the Jights is found ouly after
a lapse of three centuries. Makrizh, describing the capital of Egypt, quotes from a work of Ibn Said (c. 1250 A.D.), who a asain cites an older author (Al-Kortobi), who, in speaking of a love affair at the conrt of the caliph Al-A mir (1097-1130), says "what is told about it resembles the romance of A1-Battal, or the Thousand and One Nights " (IIitat, Búlak ed., i. 485, ii. 181).

That the Nights which we have are not the original translation of the IIezar Afsane is certain, for the greater part of the stories are of Arabian origin, and the whole is so thoroughly Mohammedan that even the princes of remote ages who are introduced speak and act as Moslems. It might be conceived that this is due to a gradual process of modernization by successive generations of story-tellers. But against this notion, which has been entertained by some scholars, Lane has remarked with justice that, much as MSS. of the Nights differ from one another in points of language and style, in the order of the tales, and the division into nights, they are all so much at one in essentials that they must be regarded as derived from a single original. There is no trace of a recension of the text that can be looked on as standing nearer to the Hezár Afsine. And the whole local colour of the work, in point of dialect and also as regards tho manners and customs described, clearly belongs to Egypt as it was from the 14 th to the 16 th century. Some points, as De Sacy and Lane have shown, forvid us to place the book earlier than the secoud balf of the 15 th century. Galland's MS. copy, again, was in existence in 1518. Lane accordingly dates the work from the close of the 15 th century or the beginning of the 16 th, but this date appears to bo too late. For Abu'l-Mahasin, an Egyptian historian who died in 1470 , writing of Hamdi, a famous highwayman of Baghdad in the 10th century, remarks that he is probably the figure who used to be popularly spoken of as Abmed al-Danaf (ed. Juynboll, ii. 305). Now in the Nights Ahmod al-Danaf really plays a part corresponding to that of the historical Hamdi, being now a robber (Lane; ii. 404) and again a captain of the guard (Lane, ii. 249). It would seem that Abn'l-Mahasin bad read or heard the stories in the Nights, and was thus led to compare the bistorical with the fictitious character. And, if this be so, the Nights must have been composed very soon after $1450 .{ }^{1}$
No doubt the Nights have borrowed much from the Hezar 4 fsine, and it is not improbable that even in the original Arabic translation of that work some of the Persian stories were replaced by Arab ones. But that our Nights differ very much from the Hesir Afsane is further manifest from the circumstance that, even of those stories in the Nights which are not Arabian in origin, some are borrowed from books mentioned by Mas íds as distinct from the Hezar Afstine. Thus the story of the king and his son and the damsel and the seven viziers (Lane, chap. xxi. note 51) is in fact a version of the Book of Sindbad, ${ }^{2}$ while the story of Jalf ${ }^{\prime}$ ad and his son and the vizier Shammás (MNaghten, iv. 366 sq.; of. Lane, iii. 530) corresponds to the book of Ferza and Simas. ${ }^{3}$

Not a few of the tales are unmistakably of Indian or

[^132]Persian origin, and in these poetical passages are rarely inscrted. In other stories the scene lies in Persia or India, and the source is foreign, but the treatment thoroughly Arabian and Mohammedan. Sometimes, indeed, traces of Indian origin are perceptible, even in stories in which Harún al-Rashid figures and the scene is Baghdad or Basca. ${ }^{4}$ But most of the tales, in substance and form alike, are Arabian, and so many of them have the capital of the caliphs as the scene of action that it may be guessed that the author used as one of his sources a book of tales taken from tho era of Baghdad's prosperity.

The late date of the Nights appears from sundry anachronisms. In the story of the men transformed into fishwhite, blue, yellow, or red according as they were Moslems, Christians, Jews, or Magians (Lane, i. 99), 一the first three colours are those of the turbans whicb, in 1301, Moharmmed b. Kelaun of Egjpt commanded his Moslem, Christian, and Jewish subjects respectively to wear. ${ }^{5}$ Again, in the story of the bumpback, whose scene is laid in the 9th century, the talkative barber says, "this is the year 653 " ($=1255$ A.D.; Lane, i. 332, writes 263 , but see his note), and mentions the caliph Mostansir (died 1242), who is incorrectly called son of Mostads. 6° In the same story several places in Cairo are mentioned which did not exist till long after the 9 th century (see Lane, i. 379). ${ }^{7}$ The very rare edition of the first 200 nights published at Calcutta in 1814 speaks of cannon, which are first mentioned in Egypt in 1383; and all editions sometimes speak of coffee, which was discovered towards the end of tho 14 th century, but not generally used till 200 years later. In this and other points, e.g., in the mention of a mosque founded in 1501 (Lane, iii. 608), we detect the hand of later interpolators, but the extent of such interpolations can bardly perhaps be determined even by a collation of all copies. For the nature and causes of the variations between different copies the reader may consult Lane, iii. 678, who explains how transpositions actually arise by transcribers trying to make up a complete set of the tales from several imperfect copies.

Many of the tales in the Nights have an historical basie, as Lane has shown in his notes. Other cases in point might be added: thus the chronicle of Ibn al-Jauzf (died 1200 A.D.) contains a narrative of Kamar, slave girl of Slaghb, the mother of Al-Molstadir, which is the sourco of the tale in Lane, i. 310 sq , and of another to be found in M'Naghten, iv. 557 sq. ; the latter is the better story, but departs so far from the original that the autbor must have had no more than a general recollection of the narrative be drew on. ${ }^{8}$ There are other cases in the Nights of two tales which are only variations of a single theme, or even in certain parts agree almost word for word. Some tales are mere compounds of different stories put together without any art, but these perhaps are, as Lane conjectures, later additions to the book; yet the collector hinself was no great literary artist. We must picture him as a professional story-teller equipped with a mass of miscellaneous reading, a fluent power of narration, and a ready faculty for quoting, or at a push improvising, rerses. His stories became popular, and were written down as he told them, -hardly written by bimself, else we should not have so many variations in tho text, and such insertions of "the narrator says," "my noble sirs," and the like. The frequeat coarseness of tone is proper to the condition of Egyptian society under the Mameluke sultans, and would not have been tolerated in Baghdad in the age

[^133]to which so many of the tales refer. Yet with all their faults the Nights have beauties enoagh to deserve their popularity, and to us their merit is enhanced by the pleasure we feel in being transported into so ontirely novel a state of society.
The original of some of the most interesting tales in Galland's version, as "Aladdin and the Wonderful Lamp," "Ali Baba and the Forty Thieves," has just been discovered by Dr Zotenberg in a MS. recently acquired by the National Library at Paris. A careful examination of this MS. and of the Wortley.Montagu MS. in the Bodleian may lead perbaps io a more certain conclusion as to the time of composition.

The Thousand and One Nights beceme known in Europe through A. Galland's French version (12 vols., 12ma, Paris, 1704-12) ; the publication was an event iu literary history, the influence of which can be traced far and wide. This translation however, left much to be desired in paint of accuracy, and especially failed to reproduco the colour of the original with the exactness which thase who do not read merely for amusement must desire. It was with a special view to the remedying of these defects that Lane produced in 1840 his admirably accurate, if somewhat atilted, translation, enriched with most valuable notee end a discussion of the origin of the work. (new edition, with some additional notes, 3 rols., 8 re ., London, 1859). Lane's translation omits the tales which he deemed uninteresting or unfit for a European public. No full translation into Euglish can be published, and, though two such have been privately printed, and one of these (by Sir R. Burton) is being reproduced in an expurgated form, Lane's version is atill unsuperseded for all serious use. Of the Arabic test of the Nights the priacipal editions are-(1) M'Naghten's edition, 4 vols., 8vo, Calcutta, 1839-42; (2) the Breslau edition, 12 vols., 12 mo , 1835-43, the first 8 vols. by Habicht, the rest by Fleischer (compare as to the defects of Habicht's mork. Fleischer, De Glossis Habichtianis, Leipsic, 1836); (3) the first Búlák edition, 4 vols., 1862-3.
(M. J. De G.)

THRACE is a name which was applied at various periods to areas of different extent, but for the purposes of this article it will be taken in its most restricted sense, as signifying the Roman province which was so called (Thracia, see Plate of the Roman empire in vol. xx.) after the district that iutervencd between the river Ister (Danube) and the Hwnus Mountains (Balkan) Lad been formed into the separate province of Mœesia, and the region betweeu the rivers Strynion and Nestus, which included Philippi, had been added to Macedonia. The boundaries of this were-towards the N . the Hæmus, on the E. the Euxine Sea, on the S. the Propontis, the Hellespont, and the Ægean, and towards the W. the Nestus. The most distinguishing features of the country were the chain of Rhodope (Despoto-dagh) and the river Hebrus (Maritza). The former separates at its northernmost point from the Hæmus, at right angles, and runs southward at first, nearly parallel to the Nestus, until it approaches the sea, when it takes an easterly direction: this bend is referred to by Virgil in the line (Georg., iii. 351)Quaque redit medium Rhadope porrectas sub axem.
The summits of this chain are higher than those of Hæmus, and not a few of them range from 5000 to 8000 feet ; the highest point, eo far as is at prosent known (for these mountains have been imperfectly explored), rises towards the north-west, near the point where now stands the famous Bulgarian monastery of Rilo. The Hebrus, together with its tributaries which flow into it from the north, east, and west, drains nearly the whole of Thrace. It starts from near the point of junction of Hæmus and Rhodope, and at first takes an easterly direction, the chief town which lies on its banks in the earlier part of its course being Philippopolis; but, when it reaches the still more important city of Hadrianopolis, it makes a sharp bend towards the eouth, and enters the sea nearly opposite the island of Samuthrace. The greater part of the country is hilly and irregular, though there are considerable plaius; but besides Rhodope two other tolerably definite chains
intersect it, one of which descends from Hæmus to Adrian ople, while the other follows the coast of the Euxine at no great distance inland. One district in the extreme north-west of Thrace lay beyond the watershed that separates the etreams that flow into the Egean from those that reach the Danube: this was the territory of Sardica, the modern Sophia. In the later Ronan period two main lines of road passed through the country. One of these skirted the southern coast, being a continuation of the Via Egnatia, which ran from Dyrrhachium to Thessalonica, thus connecting the Adriatic and the Ægean; it became of the first importauce after the foundation of Constnatinople, because it was the direct line of communication between that city and Fome. The other followed a northwesterly course through the interior, from Constantinople by Hadrianopolis and Philippopolis to the Hrmus, and thence by Naissus (Nisch) through Moesia in the direction of Pannor:ia, taking the same route by which the post-roed now runs from Constantinople to Belgrade. The climate of Thrace was regaided by the Greeks as very severe, and that country was spoken of as the hone of the north wind, Boreas. The coast in the direction of the Euxine also whs greatly feared by sailors, as the harbours were few and the sea proverbially tempestuous; but the southern shore was more attractive to navigators, and here we find the Greek colonies of Abdera and Mesambria on the Fyean, Perinthus on the Propontis, and, the most famous of all, Byzantium, at the meeting-point of that sea and the Bosphorus. Another place which proved attractive 10 colonists of that race was the curious narrow strip of ground, called the Thracian Chersonese, that intervened between the Hellespont and the Bay of Melas, which penctrates far into the land on its northern side. Ainong the cities that occupied it, Sestos and Callipolis (Gallipoli) are the most worthy of meation. In order to prevent the incursions of the Thracians, a wall was built acros its isthmus, which was less than five miles in breadth. The north-eastern portion of the Egean, owing to its proximity to the coast of Thrace, was known as the Thracian Sea, and in this were situated the islands of Thasos, Samo. thrace, and Imbros.
There is no sufficient evideuce to deternine the ethnological affinities of the Thracian race. Their language has perishod, and the information respecting them which has conie down to us hardly furnishes more than material for conjecture, so that the miost that we can affirm on the subject is that they belonged to the IndoEuropean family. The most striking archæological monuments of the prehistoric period are the sepulchrel mounds, which have been compared in appearance to the tumulus on the plain of Morathon; these ere found by thousands in various parts of the country, espe. cially iu the neiglibourhood of the ancient towns. As Roman implements and ornaments have heen found in some of them, it is fiain that this mode of burial continued to be practised until s late period. The deity whose worship prevailed most extensively in the country wes Dionysus. The most pawerful Thracian tribe Was that of the Odrysx, whose king, Teres, in the middle of the 5tb cantury b.o. extended his dominion so as to include the greater part of Thrace. During the Peloponnesian War his son Sitalces wes an elly of some importance to the Athenians, because ho kept in check the Macedonian monarch, who opposed the intefests of the Athenians in the Chalcidic peninsula. On the death of that pritus his kingdom was divided, eid the power of the Thracians was consequently dininished; but in the time of Philip of Mlacedon we find Cersobleptes, who ruled the south-astern portion of the country, exercising an important influence on the poficy of Atbens. During the early period of the Roman empire the Thracian kings were allowed to maintain an indepandent sovereignty, while acknowledging the auzerainty of Rome, and it was not until the reign of Vespasian that the country was redured to the form of o province. From its ontlying position in the northern part of the Balkan peniusula, it was much exposed to the inroads oi barbarian invaders, $s o$ that it was overrun ly the Goths on several occasions, and subsequently by the Huns; but its proxirnity to Constantinople' caused its fortunes to be closely connected with those of that city, from the time Then it became the capital of the Eastern empire. In-the course of time its inhabitants seem to have been theroughly Romanized, end to have adopted the Latin language, end thera in
much probability in the view that they were the progenitors of the Vlachs, or Roumanians south of the Danube, whose language is of Latin origin, and who at various periods formied an important factor in the countries to the northward of Greece. The first evidence of the depelopment of this nationality is found in a curious story told by Theophanes at the end of the 6th century. At that time a khan of the Avars liad overrun the Eastern empiro and appeared before the walls of Constantinople; but two generals of the imperial forces, who had concealed themselves in the Balkan, oucceeded in mustering a considerable body of troops, ind were on thcir way to surpriso the rear of the Avers when their project mas brought to sn end by the following occurrence. One of the beasts of burder happened to fall down in the line of march, on which some one close by called out to its driver, in the language of the country, "Torna, torns, fratre," that is, "Turn him round, brother." The driver did not hear this, hut the other eoldiers did; and, thinking the cnemy were upon them, and that this was the sign for rotreat, they took up the cry "Toras, torna," and the whole force fled precipitately. It seems probable that the men who used theso words were Roumsnian inhebitants of the Balken. In the course of the Middle Ages the northern parts of Thrace and some othor districts of that country were occupied by a Bulgarisn population; and iu 1361 the Ottomaus, who had preriously established themselves iu Europe, made themselves mesters of Adrienople, which for a time became the Turkish capital. When Constantinople fell in 1453, the whole country passed into the hands of the Turks, and in their possession it remained until 1878, when, in accordence with the provisions of the tresty of Berlin, the northern portion of it was placed under a aeparate administration, with the title of Eastern Houmelia; this province has now hecome, to all intents and purposes, a part of the principality of Bulgaria. The popalation of Thrace at the present day is composed of Turks, Greeks, and Bulgarians.
(H. F. ‘.f.)

thrale. See Piozzi.

THRASYBULUS, an Athenisn who played a distinguished part in the latter years of the Peloponnesian War and in the restoration of the democracy at Athens. In 411 b.c., as an officer in the Athenian armament at Samos, ho energetically opposed the oligarchical conspiracy of the Four Hundred, and was mainly instrumental in keeping the fleet and army loyal to the democracy and in procuring the recall of the banished Alcibiades. At the battle of Cynnosems, in the same year, he commanded the right wing of the Athenian fleet, and to his valour and conduct the Athenian victory was largely due. He took an active part in the naval operations of the followicg ycars, being present at the victories of Cyzicus (410) and Arginusæ (406). In 407 be commanded a squadron on the Thracian coast, where he reduced places which had gone over to the Lacedæmonians. When tho infamous Thirty Tyrants were at the height of their power in Athens, Thrasjbulus, who as a democrat had been banished, marched from Thebes with about seventy men, with the connivance of Thebes, pad established hinnself at Phyle, a strong place in the rear of Athens. There he repulsed an attack directed against him by the Thirty; his numbers increased, and, after surprising nad routing a body of foot and horse, he eeized Pureus, the port of Athens, but, finding the circuit of the walls too great to be defended by his smaill force, he retired into the adjoining Munychia. Here he was attacked by the troops of the Thirty, but in the streetfighting the democrats bad the best of $i t$, and the Thirty were in consequence deposed and retired to Eleusis. Hostilities, he rever, continued until Pausanias, one of the kings of Sparta, intervened, and by force and craft effected a reconciliation. The democrats marched into Athens with all the pomp of war, and eacrificed to Athene on the Acropolis This restoration of the democrscy by Thrasybulua ranked henceforward with the memorable deeds of A thenian history. To his counsels seems due in part the credit for the wise moderstion with which the democrats used their victory, and the inviolate good faith with which they observed the politicsl amnesty. The grateful citizens rewarded their champion with an olive crown. In 395, whon Thebes was threatened by Sparta, the Athenisns, stimulated by Thrasybulus, repaid the
friendly shelter which the Thebans had afforded them it exile by resolving to stand by Thebes against Sparta, and by actually sending a force under Thrasybulus to ber aid. In 390 , while the war known as the Corinthian was still dragging on, Thrasybulus was sent with a fleet to check the growing power of Sparta in the Egean. He substituted a democracy for an oligarchy at Byzantium, and won the friendship of Chalcedon; then, landing in Lesbos he defeated a joint force of Lacedæmoniansand Lesbians In the following spring he prepared to assist Rhodes, which was tbreatened by the Lacedæmonians; but to recruit his forces he levied contributions from various cities. At Aspendus, in Pamphylis, an outrago committed by some of his men roused the anger of the people, who fell on him by night, and slew him in his tent. Ho was buried at Athens, in the Ceramicus, near the graves of Pericles and Phormio.

THREADWORMS. See Nematoidea.

THREE RIVERS, the third city of Quebec province, Canada, and capital of St Maurice county, is situated at the confluence of the rivers St Maurice and St Lawrence. The St Maurice flows in from the north, and, being divided at its mouth by two islands, the channels give the town its name. It is on the line of the Canadian Pacific Railway, 78 miles south-west of Quebec, snd 92 north-east of Montreal. Founded in 1634 , Three Rivers is one of the oldest towns in Quebec. It is the centre of a large lumber trade, which is carried on by the St Maurice and its tributaries. Three leagues from the city are the St Maurice forges, where iron wares were formerly manufactured extensively. Other industries are furniture and cabinet making, boot and shoo making, and those carried on in the spool factories, brass and lead foundries, sawmills, and carriage factories. The city is the residence of the Roman Catholic bishop whose diocese bears the same name. The chief trade is in lumber, grain, cattle, \&c., which find sale in South America, the West Indies, Great Britain, and the United States. The city sends one member to the Canadisn House of Commons and one to the Legislative Assembly. The population of the city in 1881 was 8670 (males 4173, females 4497). The district of Three Rivers comprises the counties of St Maurice, Nicolet, Champlain, and Maskinongé.

TEROAT DISEASES. These form a large and important class, and include some of the most serious and fatal of maladies (see Croup and Drphtheria). The present article will be deroted mainly to a general account of the more common diseases affecting the upper part of the rospiratory passages, but certain morbid conditions of the back of the mouth and of the gullet will also be referred to. The diagnosis of not a for of these diseases has been greatly aided by the introduction into medical practice of the laryngoscope; but, while the use of this instrument ie a part of the education of every well-equipped medical practitioner, the minute investigation and the treatment of the more occult and serious maladies affecting the throat are by general consent, and with much adrantage, relegated to the specialist.

Laryngitis, or inflammation of the macons membrane of the Laryinx, may be either acute or chronic

Acute laryngitis is usually produced by exposure to cold directly, or by a catarrh extending either from tho nassl or from the bronchial micous membrano into that of the larynx. It is an occasional accom. paniment of certain of tho infectious disesses in which the throat is liable to suffer, such as small-pox, measles, ecarlet fever, and erysipelas. Excessive use of the voice, as in loud spesking or aing. ing, sometimes gives rise to laryogitis. Further, the inhalation of irritating particles, vapours, \&c., and the local effects of owallowing very bot fluids, are well-recognized causes. Tho chiof changes in the larynx are great redness, with swelling of the perts, which sffect the rhole interior of tho carity, but are epacially marked fhere the tissues are lax, aurh as the neighbourhood of the epigiottls and
of the vocal cords. The effect is to produce narrowing of the chanael for the entrance of air, and to this the chief dangers are due. The symptoms vary with the intensity of the attack, but, along with more or less feverishness and constitutional disturbance, there is usually a sense of heat, dryness, and pain in the threat, attended with sume difficulty in the act of ewallowing. Cough is a constant symptom, and is either loud, barking, or clanging, or else husky and toneless. It is at first dry, but afterwards is accompanied with expectoration. The voice, like the cough, is rough or husky. The breathing shews evidence of laryngeal obstruction, both inspiration and expiration being prolonged and difficult, with a comewhat hissing sound, and with almost no interval between the two acts. In severe cases the face and eurface generally hecome livid, and suffocation threatens, particularly during the paroxysma of coughiog. In favourable cases, which form the majority, the ettack tends to abate in a few days, but on the other hand death may occur suddenly in a suffocative paroxysm, particularly in the case of childrea. Many cases of acute laryagitis are so compara. tively slight as to make themselves known only by hoarsencss and the character of the cough; nevertheless in evcry instance the attack demands serious attention. The treatment consists in keeping the patient in bed in an atmosphere of 60° to $73^{\circ} \mathrm{F}$., made moist by steam. The use of warm gargles, and the frequeut inlialation of the vapour of hot water, coutaining such soothing substances as benzoin, coniurs, hop, \&c., and the application of hot fomentations to the throat, will be found of much valne. Internally diaphoretics, such as atall doses of antimony or Dover's powder, are also to be recommended. Such remedies usually suffice to relieve the attack, but in very eevere cases more achive interference may be necessary. When there is much owelliug of the mucous membrane in the upper portion of the larynx, scarification of the parts with the aid of the laryngoscope may afford relief, but trachootomy should not be neglected where death appears, to be imminent from suffocation. Attacks of laryngitis may be largely prevented in those liable to them by a regimen calculated to invigorate the syetem, euch as the cold bath, regular open-air exerciso, \&c.

Chronic laryngitis may occur as a result of repeated attacks of the acute form, or may arise independently from such causes as habitual exposure (especially where along with this there is overindulgence in alcohol), the habitual overuse of the vocel organs, \&c. The changes taking place in the parts are more permanent than in the acute form, consisting mainly in thickening of the mucous membrane, vocal cords, \&c. With it may be ulceration, and also sometimes destruction, of the cartilaginous parts of the larynx.f The symptoms vary according to the extent and amount, as well as the duration, of the infammation. Thas there may simply be a certain huskiness or hoarseness on attempta at the use of the voice, this condition being well exemplified in the a0-called clergyman's sore throat (dysphonia clericomm) ; while, on the ether hand, there may be, not only complete loss of voice, but severe pain in the act of ewallowing and great difficulty in breathing, accom. panied sometimes with expectoration of large quantities of matter in the cases where ulceration is present. Under this variety of the diaease may be included the nlceration due to syplilis and that occurring in the course of phthisis, both of which aro attended with the aymptoms now mentioned. The diagnosis and the treat. ment of a) such cases is greatly aided by the use of the layyngoscope, by which a view of the affected parts can be obtained, and the proper remedies more readily applied. In the treatment of the chronic forms of laryngitis rest to the parts is essential, any attempts at continuing the use of the voice only aggravating the condition; while tonic remedies and regimen should be diligentlj employed to strengthen the system generally. Applications to the affected parts in the forms of solutions of silver, alum, zinc, tannin, \&c., either hy means of a sponge-probang introduced into the cavity or by the simpler method of epraying, are often beneficial. The insuffation of powders, such as iodoform, or starch mixed with a minute quantity of morphia, is also of service, as are likewise inhalations of vapours of iodine, carbolic acid, turpentinc, eucalyptus, \&c. In aggravated forms of this disease tracheotnmy is occasionally necessary to rolieve threatened suffocation.
Symptoms similar to those already described are produced by tumours and othor growths in the larynax. Such growths may ho of eimple character, in the form of isolated fibrous formations attached by a peduncle to some portion of the laryngeal inucous membrane, or as warty excrescences occurring upon or in the neighbourhood of the vocal cords. They are detected by means of the laryngoscope, and can often be dealt with effectually by the surgeon. In the more eerious malignant tumours (epitheliomatous or cancer. ons), which either take origin in the larynx, or apread into it from adjacent parts, iuterference by surgical measures can only afford temporary relief.

Certain affections of the larynx are of purely nervous origin, and occur independently of any local disease. One of the most imn rtant of these is laryngismus stridulus, otherwise called child-crowo. ing or spasmodic croup. This condition occurs chielly during the
early years of childhood, often in infants during dentition, and manifests itself after premonitory symptorne of a common catarrh, lasting a day or two, by the occurrence of a viblent suflocative attack due to sudden apasmodic approximation of the vocal cords, and consequent interruption to the breathing. The synuptoms are not connccted with any local infammatory condition, hut are the result of reflex irritation affecting the nervea supplying the laryngeal muscles. Such disturbance appears specially apt to occur in rickety or otherwise unhealthy children, in connexion either with dentition or with disurders of the alimentary canal. The onset is sudden, resembling a convulsire eeizure, and symptoms of euffocstion are at once developed. The child makes strong efforts to inspire, which are accumpanied witl stridulous or crowing suunds, but, notwithstanding, very little air can enter the chest owing to the spasm of the glottis, and unless relief speedily comes death may be very rapid. In most cases, however, the attack quickly passes off, and the child aeems little the worse. A liability to this disorder is eometimes observed in families, and in such instances the attacks are apt to occur in their more serious and fatal forms. Treatment to be of any avail must be promptly applied. It coneists mainly in the employment of means to allay the apasm. The use of the warm bath is very serviceable for this purpose, as is also chloroform inhalation. But one of the simplest and most effectual measures is putting the finger bacis into the child's moutb, which is sufficient in many cases to relax the spasm of the glottis, and permit the entrance of air. In impending asphyxia the dashing of cold water over the face and chest, and the use of artificial respiration, should be tried, and even tracheotomy or laryngotomy if practicable. In all cases every effort should be made to discover sny causes likely to prolluce nervous irritation, such as teething, intestinal worms, \&c., and to deal with these by appropriate remedies.

Symptoms not unlike these now described sometimes occur in adults es the result of irritation of the recurrent laryog sal nerve, by the pressure upon it of a thoracic aneurism or other tumour. Such pressure, if long continued, results in paralysis of the nerve, occasioning more or less coustant trouble in breathing.

In the condition known as norvous aphonia, which occurs mostly in women of hysterical habit or in circumstances of enfeehled health, the voice becomes reduced to a whisper, but there is seldom any affection of the breathing, or cough, and the laryngoscope reveals a perfectly healthy state of the parts. In such cases the remedies must be directed to the improvement of the general health. The use of electricity (faradism) applied to the neck is often attended with marked henefit.

Diseases affecting the Trachea are usually associated with laryngeal affections on the one hand or branchial on the other, sud their separato consideration ia unnecessary.

The Tonsils are frequently the seat of inflammation, and acute tonsillitis or quinsy is one of the most common forms of sore throst. This affection is usually induced by cold, but it would appear to ariso under other cooditions also, such as digestive disturbaruces, \&c. It is eaid to be more common in persons of rheumatic constitution, and one attack prediaposes to othera. The symptoms come on somewhat suddenly and eharply, with chill fallawed by fever, the temperature frequently attaining a high point of eluration. Pain is experienced in the act of swallowing from the outset. The inflammation is usually at first confoed to one towsil, but on examining the throat there is seen to be considerable redness and swelling of the whole eurrounding mucous membrave, the uvula, soft palate, \&c., while a copious accretion accumulates at the parts, and causes much discomfort. The act of swallowing becomes increasingly difficult, and fiuids are apt to regurgitate through the nose. Pain is felt along the Eustachian tube towards the ear, and there are tenderness and awelling in the neck about the angle of the jaw on the affected side. The voice acquires a peculiar and very characteristic enufling tone, and there may be some embarrassment to the breathing. In a few daye tho inflamed coosil shows aigns of snppurating, and an alscess is neen to he bulging forward into the mouth. When this bursts or is evacuated, speedy relief is obtained, and the patient. is soon restored to his usual bealth. Occasiooally, however, the inflammation passes from the one tonsil to the other, and a similar experience has to be gone through sgain. An attack of quiner raroly lasts beyond a week or ten days, and is not as a rulo attended with danger to life, although it ia said that suffocstion has occasionally occurred owing to the burating of a largo tonsillar abscess during sleep, and the passage of its contents into the trachea. The treatment for a quinay is much the same as that for an ordinary catarrli of cold, -confinement to the house, the employment of diaphoretics or mild laxatives, together with light diet, being all that is necessary as regards general management. For the relief of the local inflammation the frequent employment of warm gargles of milk and water or glycerin and water or the inhalation of vapour afford much relief, as do also hot applications to the neck. Some authorities recommend the sncking of ice and the external application of cold compresses, but on the waso
warmth appears to bo the more eoothing remedy. Whou sn absecss has formed it may be punctured, but care ze puires to be olbsorved in doing this that no injury be inflicted on any important blood-vessol.
The tonsils are frequently tho seat of permanent culargement chronic lonsillitis), which may result from frequont sttacks of quinsy or may exist independently. They aro often scen in delicato young people, aud, in the case of come at lcast, denoto a atrumous tendsucy. They givo trouble from tho mechnnical impediment they present to swellowing and clear articulation, and when very large they cause the breathing to be more or less noisy at all times, but especially during sleep, while rgain they masy give rise to a mensure of deafness. They are treated by renedics which prompte the general uutrition, such as cod-liver oil, iron, \&c., by the use of astringeut gargles, and wheu necessary by cxcision.

The Pharynx or opper portion of the gullet (seeu to a large extent on looking at the back of the mouth) is frequeutly the reat of a chronic inflammatory cordition, asually associated with derangementa of the digestive organa, and sometinies the result of excessive tobacco smoking. On inspection the mucous membrane is seen to be unduly red and glazed looking, with the enlarged follicles staudiug out promincutly. It produces coosiderable iritation, cough, and discomfort, which nay he of long continu. ance unless subjected to appropriato treatracnt. This cousists in removing any locsl source of irritation, in rectifying by dist and other remedies (see Stomach Diseases) any gastric disturbence, and by the application to the parts of siiver or other mild caustic solution.
The Eisophages or gullet may be the seat of catarthel or uflammatory conditions, but the more important ailmenta alfecting this tract are those which arise from local injuries, wuch es the apallowing of scalding or corrosive substances. This may causo alceration follomed with cicatrization which asrrows the passage and produces the symptoms of stricture of the cesopharnus, - armely, paiu acd diffeulty is swallowing, with regurgitation of the food. The eeverity of the case will uecessarily depend upon the amonnt of narrowing and consequent mechanical obstruction, but in some instanees this has occurred to such an extent as practically to ocelude the canal. Cases of csophageal stricturo of the kind now referred to may sometimes be reliered by the diligent use of the bougie, but not nnfrequently, in order to prevent death by starvation, surgical interference is requisite to form an opening in to the stomech by mecns of which food may be introduced.

A sti" more serious and frequeut cause of osophageal stricture is that due to cancerous growth in the canal, which may occur at soy part, but is most common at the lower end, in tho ricinity of the eatrance into the stomach. Tho eymptoms of this condition are increasing difficulty in the passage downrrards of the food, the steady declins in streogth, end the derelopment of the caucer ous eachexia, together with cnlargements of the glends in the neck ; while the disgnosis is rendeced the more certain by the abseace of auy cause, such as local iujury, for the formation of a stricture, and by the age (as a rule at or beyond middle lifo). Treatment here can only be pallistive whale life continues, which in genoral is not loog. Feeding by tho bowel (enemata) may be envantageously resorted to as supplementery to efforts to ednin. ister liquid motriment in tho usual way. It is to bo observed in all cascs of arganio etricture that the food does not vecessarily roiurn st once, but scema as if it lasd passed into the stomach. In reolity, howover, it has passed iuto the dilated or pouched portion of the conal, which is almost almays present imiocdistely above the seat of stricture, where it remains until, from ita amount, it regurgitstes back ioto the mouth, when it can bo seed, ly the absonce of any crideuce of digestion, that it has norer been rithin tho envity of tho stomach. While in this way a largo quantity of tho food roturng, it often happeas that a small amount of tl: a Hynid portion docs triekle through the oarrowod canal into tha otomach, and thus lifo may be prolowged for s considerablo time

Strictures of the cesophagns may also be produced by the pres. sure of tumoars or ancurisms within the eavity of the chest but external to the canal. Further, a varioty of cesophageal atricture is zot anfrequently met with which is due entirely to wervous causes, and is quite unconnected with orcanic disease, -namely, that form occurring in hysterical femaleg termed spaswodic etricture. Here the attack of difficulty iu swallowing coincs on nsually when tho patient is of meals, and the food cannot pass down. The absuce, howerer, of all history of any organic source of disease, and especially the perfect facility with mlich the oesophageal tube or bounio is passcd, logether with other manifeatations of hysteria commonly present, serve readily to estahlish the diagnosis The remedies most suitallo are tonics and the frequeot passage of the siomsch. tube, which aq a rule soon entirely rerooves tho terdency to soasm.
Finally, dificulty in amallowing sometimes occurs in cortan serious aervous disceses from paralysig affecting tho nerves supply. ing the muscular coats of the oesophagus, which thas loses its propulsive porer. When eneh complications occur they usually denote an adrajccu atage of the ceotral diseasa with which they are connected, and aspeedilv fatal termination
(J. O. A.)

THRONDHJEM, or 'I'rondejem (1)ronthem), the third town of Aorway, capital of the Throndhjen stift and of the South 'Throadhjem amt, is pleasantly situated on the southern shore of the Throndhjem fjord, at the month of the Nid, 318 milcs by rail to the north of Christiania, in $63^{\circ} 25^{\prime} 52^{\prime \prime} \mathrm{N}$. lat. and $10^{\circ} 33^{\prime} 19^{\prime \prime}$ E. long. In front of tho town is tho islet of Nunkholm, fermerly a monastery and now a fortress ; on the high ground to the east is the small stronghold of Cbristiansten. The houses of Throndhjem, principally of wood, are substantial, spacious, and well lighted; and the streets are wide, regular, and scrupulously clean. The principal building is the calhcdral, partly dating from about 1090, but chieffy belonging to the 12th and 13th centurics (c. 1161-1248). Its extreme length was 325 feet and its extremo brcadth 124 feet; but in the 14 th, 15 th, and 17 th centurics it suffered grcatly from repeated fires; after the last of theso the nave was completely abandoned, and soon becamo a heap of ruins. The building, which still ranks as the finest ecclesiastical edifice in Norway, and is the place of coronation of the Norwegian sovereigns, is now undergoing extensive but judicious restoration. The workmanship of its eastern windows and of the marble or steatite columns of the choir is specially noteworthy. Throndhjem possesses thrce churches in all, and amoag its other public buildings may be mentioned tho residences of the stiftsantmand and the bishop, the grammar school, the real school, the head office of the Bank of Norway, the deaf and dumb institute, the hospital, and the theatro. It is the seat of the royal Norwegian scieutific society, in connesion with which aro an excellent library and a good zoological and antiquarian museum. Throndhjen, which bas steamboat communication with Christiania, Hamburg, and Mull, and is connceted with Sweden by the Meraker Railway (63 miles), carries on an extensive trado ia copper (from the Rüros mines), timber, oil, and dricd and salted fish; the industries includo shipbuilding, sawmilling, distilling, tanning, rope-making, znd ribbor-making. The population ia 1875 was 22,152 ; in 1885 it was estimated at 24,000

Throndhjem, origiually Nidaros, was founded by Olaf Tryegyason, who buile a rojal residence and a church here in 996 . It was made an archlishopric in 1152 . The city attained its highest development shout tho latter lalf of the 13 th century, by which time it had become an important pilgrimage centre and had as many es fifteen churcheg. It has slistsincd frequent sieges, as well as devastating conflagrations. Ita importance declined about tbe timo of the Roformation, when it ceased to be a resort of pilgrims. At the berinuing of the present century its inhabitants numbered only 8832.

THRUSH (A. S. prysce, Icel. pröstr, Norw. Trast, O. H. Germ. Drosce, whence the modern German Drossel, to be compared with the analogous English form Terostles, ${ }^{\text {a }}$ now almost obsolete, both being apparently diminutives), the namo that in England secms to haro been common to two species of birds, tho first now generally distinguished as the Song-Thrush, but known in many districts as the Mavis, ${ }^{2}$ the seeond called the Mistletoe-Thrush, but having many other local designatious, of which nore presently.

The former of these is ono of the fincst songsters in Europe, but it is almost everywhero so common that its merits in this reanect are often disregarded, and not unfrequently its melody, when noticed, is ascribed to the princo of feathered vocalists, the Nigntingale (vol. xvii. p. 493). Tho Song.Thrush is too well known to need description, for in the spring and summer there is hardly a fiold, e copse, or a garden that is not the resort of a pair or moro; and the brown-backed bird with its spotted breast,
1 For may interesting facts conaected with the mords "Thrush" and "Throstle" which canoot bo cotered upon bere, tho reader should consult Prof. Skeat's Etymological Dictionary.
${ }^{2}$ Cognate with the French Mrawvis, though that is nowadaye almoer restricted to the ReDwio (vol. xx. p. 318). Its diminutive is Varvielte, the modern table-name of the Skylark, and perhaps Maris Fis to Eng'ish origionly the table-дame of the Thrasb.
hopping over the grass for a fow yatds, then pausing to detect the morement of a worm, and vigorously seizing ths same a moment after, is one of the most familiar sights. Hardly less well known is the singular nest built by this bird-a deep cup, lined with a thin but stiff coating of fragments of rotten wood ingeniously spread, and plastered so as to present a smooth intorior-in which its sea-grcen eggs spotted with black aro laid. An early breeder, it builds nest after nest during the season, and there can be few birds more prolific. Its ravages on ripening fruits, especially strawberries and goosebarries, excite the enmity of the jmprudent gardener who leaves his crops unprotected by nets, but he would do well to stay the hand of revenge, for no hird can or does destroy so many snails, as is testified to the curious obscrver on inspection of the stones that it selects against which to dash its captures, - stones that are besmeared with the slime of the victims and bestrewu with the fragments of their shattered shells. Nearly all the young Thrushes reared in the British Islands-and this expression includes the storm-swept isles of the Outer Hebrides, though not those of Shetland-seem to emigrate as soon as they are fit to journey, and at a later period they are followed by most of their parenis, so that many parts of the kingdom are absolutely bereft of this species from October to the end of January. On the continent of Europe the qutumnal influx of the birds bred in the North is regarded witl much interest, as has been already stated (Birds, vol. iii. p. 765), for they aro easily ensnared and justly esteemed for the table, while their numbers make their appearance in cartain districts a mstter of grest iusportance.
The secoud species to which the name applies is distinguished as the Mistletoe-Thrush, or, by corrupt sbbreriation, the MisselThrush. ${ }^{1}$ It is known slso in many districts as the "Storm-cock," from its habit of singing iu squally weather that silences almost all other birds, and "Holm. (i.e., Holly-) Thrush," while the harsh cries it utters when angry or slarmed have given it other local names, as."Screech," "Shrits," and "Skrike," all traceable to the Anglo.Saxon Scric. ${ }^{2}$ This is a larger species than the last, of paler tints, and 'couspicuous in flight by the white patches on its outer tail-feathers. Of bold disposition, snd fearless of the sleety storms of spring, as of predatory birds, the cock will take his stand on a tall tree, "liko sn enchanter calling up the gala" (as Kuapp hsppily wrote), snd thence with loud roice proclaim in wild and discontinuous notes the fervour of his love for his mate; nor does that love cease when the breeding-season is past, since this species is one of those that appear to pair for life, and even when, later in the year, it gathers in small flocks, husband and wife may bo seen in close company. In defence of nest and offspring, too, few birds are more resolute, and the Daw, Pie, or Jay that approaches with an ill intent speedily receives treatment that causes a rapid retreat, while even the marauding cat finds the precincts of the "master of the coppice" (Pen y lhoyn), as the Welsh name this Thrush, unsuitable for its stealthy operations. The connexion of this bird with the mistletoe, which is as old as the daye of Aristotle, is no figment, as some have tried to maintain. Not only is it exceedingly fond of the luscions viscid berries, but it aeems to be almost the only bird that will touch them. Of other British Thruehes, the Fieldfare (vol. ix. p. 142), Redwing (vol. xx. p. 318), and the Blackbird and Ring-OUses (vol. xyiii. p. 75) fiare been before noticed in thess pages, 89 has been (under the first of those headiugg) the so-called "Robiu" of North America.

The Thrushes hare been geverally considered to form a distinct Family, Turdidx, which is placed by some taronomers the highest in rank among birds. An attempt has already been made (Ornithology, vol. sviii. pp. 30, 48) to point out the fallacy of this viers, and space is here wanting to dwell longer on the matter. This is the more to be regretted, for, though many modern systematists will admit the close connexion of the Turdidx and some of the so-called Fanily Sylviida or Warblers (q.v.), the abolition or modification of the latter, by wholly or partially merging it in the former, has not yet been satisfactorily effected, and Mr Seebohna, in his portion of the British Museum Catalogue of Birds ($\mathrm{\nabla} . \mathrm{p} .1$), being con.
1 There is no doubt of the bird taking its nams from the plant Mistletos (1 iscum albam), sbout the spelling of which there can be no uncertaiuty-A.S. Misteltan, the fual syllable originally dignifying "twig," sud surviving in the modern "tine," ss of a fork or of a deer's sutler.
${ }^{2}$ It seems quite possible that the word Sbaike (vol. xxi. p 845), thongh now conmonly accepted as the equivalent, in an ornithological senss, of Lanius, msy have been originally applied to the Sistletos. Thrush. In seteral of the Anglo-Saxon Vocabularies dating from the 8th to the 11 th century, as printed by Thonss Wright, ths word Scric, which can bo hardly syything elso than the early form of "Sbrike," is glossed Therche
pelled by the conditions previously laid down by Mr Sharpe (op. cit., iv. pp. 6, 7) to unite them, protests against doing so. His own assignment of the Subfamily Turdinx is into 11 genera, of which, however, 6 ouly would be commonly called Thrishes, and it must be borne in mind that in establishing these he regards coloration as the most valid character. They are Geocichla with 40 species, T'urdus with 48, Merula with 52, Mimocichla with 3, Catharus with 12, and Monticola with 10. These last, well known as Rock-Thrushes, make a very near approach to the Nightingale (vol. xvii. p. 498), Redstart (sol. xx. p. 317), and Vheatear (q.v.).
(A. м.)

THUCYDIDES. Thucydides was the greatest historian of antiquity, and, if not the greatest that ever lived, as some have deemed bim, at. least the historian whose work is the most wonderful, when it is vieised relatively to the age in which he did it. The most important facts which wo know about him are those which he has told us himself. It matters very little, fortunately, that the biographical materials are scaniy. For posterity, his life is represented by his life's labour, the IIistory of the Peloponnesian War ; and the biographical facts are of intere.st chiefly as aids to the appreciation of that history. He was probably born in or about 471 b.c. The only definite testimony on the snbject is contained in a passage of Aulus Gellius, vho says that in 431 Hellanicus "seems to hare been" sixty-five years of age, Herodotus fifty-three, and Thucydides forty (Noct. Att., 15, 23). The authority for this statement was Pamphila, a compiler of biographical and historical notices, who lived in the reign of Nero. She must have had access to Greek sources of the th century в.c.; and her precision-though qualifed, in the version of Gellius, by the word "seems"-would warrant the supposition that she had taken some pains to secure accuracy. Further, the date which she assigns is in good accord with an inference fairly deducible from the language of Thucydides himself, viz., that in 431 he had already reached the full maturity of his powers. Krüger, indeed, would place his birth earlier thay 471, and Ullrich later, but for reasons, in each case, which can scarcely outireigh the ancient authority.

The parentage of Thucydides was such as to place him in a singularly favourable position for the great work to which he afterwards deroted his life. His father Olorus, a citizen of Athens, belonged to a family which derived wealth and influence from the possession of gold mines at Scaptesyle, on the Thracian coast opposite 'Thasos, and was a relative of his elder namesake, the Thracian prince whose daughter Hegesipyle married the great Niltiades, so that Cimon, son of Miltiades, was a cousin, perhaps first cousin, once removed, of Thucydides. It was in the vauit of the Cimonian fanily at Athens, and near tho remains of Cimon's sister Elpinice, that Plutarch saw the grave of Thucydides. Thus the fortune of birth secured three signal advantages to the future historian: he was rich; he had two Lomes-one at Athens, the other in Thrace, -no small aid to a comprehensive study of the conditions under which the Peloponnesian War was waged; and his family connexions were likely to bring hin. from his early years into personal intercourse with the men who were shaping the history of his time.

The development of Athens during the forty years from 471 to 431 was, in itself, the best education which such a mind as that of Thucydides could have received. In the first two decades of his life the expansion and consolidation of Athenian power was proceeding; between his twentieth and fortieth year the inner resources of the city were being applied to the embellishment and ennoblement of Athenian life. As Cimon had been the principal agent in the former period, so Pericles was the ceatral
figure of the latter. A consciousness of such periods may be traced in the passage of the Funeral Oration where Pericles refers, first, to the acquisition of empire by the preceding generation, and then to the improvement of that inheritance by his own contemporaries (ii. 36.5). It is a natural aubject of regret, though it is not a just cause of surprise or complaint, that the History tells us nothing of the literature, the art, or the social life under whose influences its author had grown up. The Funeral Oration contains, indeed, his general testimony to the value and the charm of those influences. There we have the very essence of the Athenian spirit condensed into a few pregnant sentences, which show how thoroughly the writer was imbued with that spirit, and how profoundly he appreciated its various manifestations. But le leaves us to oupply all examples and details for ourselves. Beyond a passing reference to public "festivals," and to "beautiful surroundings in private life," be makes no attempt to define those "recreations for the spirit" which the Athenian genius had prorided in such abundance. No writer of any age, perhaps, has rendered a more impressive tribute to the power of the best art than is implied in the terse phrase of Thucydides, when, speaking of the works which the Athenian daily saw around him, he declares that "the daily delight of them banishes gloom"
 not to Thucydides that we owe any knowledge of the particular forms in which that art was embodied. He alludes to the newly-wilt Partheuon only as containing the treasury; to the statue of Athene Parthenos which it enshrined, only on account of the gold which, at extreme need, could be detached from the image ; to the Propylæa and other buildings with which Athens had been adorned under Pericles, ouly as works which had reduced the surplus of funds available for the war. Among the illustrious contemporaries whose very existence would be unknown from his pages are the dramatists Eschylus, Sophocles, Euripides, Aristophanes; the architect Ictinus; the eculptor Phidias; the physician Hippocrates; the philosophers Anazagoras and Socrates. If Thucydides had mentioned Sophocles 88 a geveral in the Samian War, it may be doubted whether he would have noticed the circumstance that Sopbocles also wrote dramas, unless it had been for the purpose of distinguishing him from a namesake. And, had he lived to carry his story down to the debate in the Athenian ecclesia after the battle of Arginusæ, wo may conjecture that Sarrates, if named at sll, would have been barely mentioned as the one prytanis ont of fifty who resisted an unconstitutional act, 一with some expression, perhaps, of praise, but mithout any fuller characterization. Wo think of the countless occasions which Herodotus, if he had dealt with this period, would iare found for invaluable digressions on men and manners, on letters and art; we feel the severity of the loss which the reticence of Thucydides has caused to us; and we might almost be tempted to ask whether the more genial, if laxer, method of Herodotus does not indeed correspond better with a liberal conception of the historian's office. No one can do full justice to Thucydides, or appreciate the true completeness of his work, who has not faced this question, and found the answer to it. It would be a hasty judgment which inferred from the omissions of the History that its author'a interests were exclusively political. Thucydides was not triting the history of a period. His subject was an event-the Peloponnesian War, - a war, as he believed, of unequalled importance, alike in its direct results and in its political significance for all time. To his task, thus defined, he brought an intense concentration of all his faculties. He worked with a constant desire in make each successive incident of the war as clear as
possible. To take only two instances: there is notning in literature more graphic than his description of the plague at Athens, or than the whole narrative of the Sicilian expedition. But the same temper made him resolute in excluding irrelevant topics. The social life of the time, the literature and the art, find no place in his picture simply because they did not belong to his subject. His work was intended to be "a possession for crer." He could conceive a day when Sparta should be desolate, and when only ruins of Athens should remain. But his, imagination never projected itself into a time when the whole fabric of Hellenic civilization should have perished. Could his forecast have extended to an age when men of "barbarian" races and distant climes would be painfully endeavouring to reconstruct a picture of that civilization, - when his own narrative would need the help of sidelights which seemed to hin wholly unneccssary, -then, assuredly, he would bave added all that such readers could require. But he would not have done this in the manner of Herodotus, by free indulgence in digression; rather he would have gathered up the social and intellectual phenomena of his day in a compact and systematic introduction, specially dcsigned for the non-Ifellenic reader.

The biography which bears the name of Marcellinus states that Thucydides was the disciple of Auazagoras in philosophy and of Antiphon in rhetoric. Such statemerts were often founded ou nothing more than a desire to associate distinguished names, and to represent an eminent man as having profited bJ the best iustructiou in each kind which his contemporaries could afford. It this case there is no evidence to confirm the tradition. But it may beo observed that Thucydides and Antiphou at least belong to the same rhetorical school, and represent the same early stage of Attic prosc. Both rriters uso words of an antique or decidedly poetical cast ; bollı joint rerbal contrasts ly insisting on the precise difference between terms of similar import; and hoth use metsphors somewhat bolder than were congenial to Greek prose in its riper* age. The differences, on the other hand, between the style of Thucydides and that of Autiphon arise chiefly from two general causes. First, Antiphon wrote for hearers, Thucydides for readers ; the latter, consequently, can use a degree of condensation, and a frcedom in the arrangement of words, which would have been hardly possible for the former. Again, the thought of Thucydides is often more complex than any which Antiphon undertook to interpret; and the greater intricacy of the historian's style exhibits the endeavour to express each thought. ${ }^{1}$ Few things in the history of literary prose are Style of more interesting than to watch that figorous mind in its Thucy. struggle to mould a language of magnificent but in- dides. mature capabilities. The obscurity with which Thucydides has sometimes been reproached often arises from the very clearness with which a complex idea is present to his mind, and his atrenuous offort to present it in its entirety, when the strong consciousness of logical coherence will make him heedless of grammatical regularity. He never sacrifices the thought to the language, but he will sometimes sacrifice the language to the thought. A student of Thucydides may always be consoled by the reflexion that he is not engaged in unravelling a mere rhetorical tangle. Every light on the sense will be a light on the words; and, when, as is not seldom the case, Thucydides comes rictorionsly out of this struggle of thought and language, having achieved periect expression of his meaniug in a sufficiontly lucid form, then his style risea into an intellectual brilliancy-thoroughly manly, and also penctrated with intense feeling-which nothing in Greek prose literature surpasses
${ }^{1}$ Sea Jebb's Altic Orators. vol. i. p. 35.

The History shows not only a thorough insight into the political ideas of Pericles, but also a sympathy with him, and an admiration for his character, which indicate personal friendship. If, before 431, Thucydides had wished to take a prominent part in the public life of Athens, everything wás in his favour. Dut there is no trace of his baving done so ; and it is possible that his opportunities In this respect were modified by the necessity of frequent visits to Thrace, where the management of such an important property as the gold mines must have claimed the occasional presence of the proprietor. The manner in which be refers to his personal influence in that region is such as to suggest that he had sometimes resided there (iv. 105.1). He was at Athens in the spring of 430 , when the plague broke out. If his account of the symptoms has not enabled physicians to agree on a diagnosis of the malady, it is at least singularly full and vivid. He bad himself been attacked by the plague; and, as he lrivfly adds, "he had seen others suffer." The tenor of his narrative would warrant the inference that he had been one of a fow who were active in ministering to the sufferers -in that fearful time when religion and morality lost all control over the despairing population of Athens-when all the ordinary decencies of life were set at nought, and when even the nearest relatives failed in the duties of humanity towards the dying.
The turning-point in the life of Thucydides came in the winter of the year 424. He was the:: forty-seven (if his birth has been rightly placed in 471), and for the first time he is found holding an official position. He was one of two generals entrusted with the command of the regions torards Thrace ($\tau \grave{\alpha} i \pi i$ © © $\dot{\alpha}$ ín $\bar{\prime}$), a phrase which denotes the whole Thracian seaboard from Macedonia eastward to the vicinity of the Thracian Chersonese, though often used with more special reference to the Chalcidic peninsula. One reason why Thucydides bad been chosen for the post was the local influence which he possessed among the people of the Thracian seaboard, through his fanily connexions and his ownership of the gold mines. His colleague in the command was Eucles. About the end of November 424 Eucles was in the city of Amphipolis, on the river Strymon. That city was not mercly more important to Athens than any othcr place in the region, -it was the stronghold of Athenian power in the north. To guard it with all possible vigilance nias a mattor of peculiar urgeucy at that mourent. The ablest of Spartan leaders, Brasidas, was then in Thrace with a Peloponnesian army,-not, indeed, close to Amphipolis, but still within a.distance which imposed special caution on Athenian officers. He was in the Chalcidic peninsula, where he had already gained rapid success; and part of the population between that peninsula and Amphipolis was already known to be disafected to Athens. Under circumstances so suggestive of possible danger, we might have expected ihat Thucydides, who had seven ships of war with him, would have been near his colleague Eucles, and ready to coopperate with him at a monent's notice. It appears, however, that, with his ships, he was at the island of Thasos, several miles distant from the Thracian coast. Brasidas, making a forced march from the Chalcidic peninsula, suddenly appeared bcfore Amphipolis. Eucles sent in all haste for Thucydides, who arrived with his ships from Thasos just in time to beat off the enemy frons Eion at the mouth of the Strymon, but not in time to save Amphipolis. Only a few hours before, it had capitulated to Brasidas, who had offered exceptionally favourable terms. The profound rexation and dismay felt at Athens found expression in the punishment of the commander who seemed primarily responsible for so grave a disaster. For the next twenty years-i.e., till 404
-Thucydides was an exile from Athens.- It is not improbable that the charge brought against him was that of treason ($\pi \rho \circ \delta \circ \sigma i a$), for which the penalty was death, and that he avoided this penalty by remaining in banishment. A special psephism is said to have been required before Thucydides could return in 404 , which would have been regular if a capital sentence had been on record against him, but not so if he had been merely under sentenee of exile. Cleon is said to have been the prime mover in his condernnation; and this is likely enough. Eucles was probably punished also. Grote was the first. modern writer to state the reasons for thinking that Thucydides may have been really guilty of culpaole negligence on this occasion, and that his punishmentwhich had usually been viewed as the vindictive act of a reckless democracy-may have been well deserved. Everything turns on the question why he was at Thasos just then, and not at Fion. No one disputes that, after the summons from Eucles, he did all that was possible. It is true that the facts of the situation, so far as we know them, strongly suggest that he ought to have beon at Eion, and do not disclose any reason for his being at Thasos. But it is only fair to remermber, in a case of this kind, that there may have been other facts which we do not know. There is some presumptive evidence of carelessness ; but we can hardly say more than that. The absence of Thucydides from the neighbourhood of Amphipolis at that precise juncture may have had some better excuse than now appears.

From 423 to $40 t$ the home of Thucydides was on his property in Thrace, but much of his time appears to have been spent in travel. He visited the countries of the Peloponnesian allies,-recommended to them by his quality as an exile from Athens; and he thus enjoyed the rare advantage of contemplating the great war from a point of view opposite to that at which he had previously been placed. He speaks of the increased leisure which his banishment secured to his study of events. He refers partly, doubtlcss, to detachment from Athenian politics. partly, also, we may suppose, to the opportunity of visiting placcs signalized by recent events, and of examining their topography in the light of such information as he could collect on the spot. The local knowledge which is often apparcnt in his Sicilian books may have been acquired at this pcriod. The banislıment of Thucydides was the most fortunate event that could have occurred for him and for us, when it enabled him, in this way, to look at his subject all round. If it is always hard for an historian to be impartial, it is especially so for the historian of a great war in which his own country bas becn one of the combatants. The mind of Thucydides was naturally judicial, and his impartiality-which seems almost superhuman by contrast with Xenophon: Hellerica-was in some degrce a result of temperament. But it cannot be doubted that the evenness with•which he holds the scales was greatly assisted by the experience which, during these years of exile, must have been familiar to him-that of hearing the views and aims of the Peloponnesians set forth by themselves, and of estimating their merits otherwise than would havo been easy for an observer in a hostile camp.
His own words make it clear that he returned to Atbens, at least for a time, in 404. Classen supposes that his return took place in the autumn of that year, about six months after Athens had surrendered to Lysinder, and while the Thirty were still in power. Finding that the rule of the oligarchy was becoming more and more violent, Thucydides again left Athens, and retired to his property in Thrace, where he lived till his death, working at his History. The preponderance of testimony certainly goes
to show that he died in Thrace, and by viotence. It would seem that, when he wrote chapter 116 of his third book, he was ignorant of an eruption of Etna which took place in 396. There is some reason then, for believing that he did not survive his seventy-fifth year. According to ancient tradition, he was killed by robbers. His relics were brought to Athens, and laid in the vault of Cimon's family, where Plutarch saw their resting-place. The abruptness with which the History breaks of agrees with the story of a sudden death. The historian's daughter is said to have saved the unfinished work, and to have placed it in the hands of an editor. This editor, according to one account, was Xenophon, to whom Diogenes Laertius assigns the credit of having "brought the work into reputation, when he might have suppressed it." The tradition is however, very doubtful. In its origin, it may have been merely a guess, suggested by a feeling that no one then living could more appropriately have discharged the office of literary executor than the writer who, in his IIellenica, continued the narrative.

At the outset of the Listory ' 1 nucydides has quacated his general conception of his work, and has statad the principles which governed its composition. His purpose had been formed at the very beginning of the war, in the conviction that it would prove more im. portant then any event of which Greeks had record. The leading belligerents, Athens add Sparta, were both in the higbest condition of effective equipment. The whole Hellenic world-including Greek asttlements outside of Greece proper - was divided into two parties, either actively helping one of the two combatants or meditating such action. Nor was the movement confived within even the videst limits of Hellas; the "barbarian" world also was affected by it,-the non-Hellenic populations of Thrace, Macedonia, Epirus, Sicily, and, fually, the Persian kingdom itself. The aim of Thucydides was to preserve an accurate record of this war, not only in view of the intrinsic interest and importence of the facts, but also in order that these facts might be permanent sources of political teaching to pesterity. His hope was, as he aays, that his History would be found profitable by "those who desire en exact knowledge of the past as a key to the future, which in all probability will repeat or resemble the past. The rork is meant to be a possession for ever, not the rhetorical triumph of an hour." As this context shows, the oft-quoted phrase, "a possession for ever," had, in its author's meaning, a more definite import than any mere anticipation of abiding fame for his History. It referred to the permanent value of the lessons which his History contained. Thucydides stands alone among the men of his own daye, and has no superior of any ago, in the width of mental- grasp which could seize the general significance of particular events. The political education of manlind begau in Gresce, and in the time of Thacydides their political life wes otill young. Thucydides knew only the small city-commonwealth oo the ode hadd, and on the other the vast berbaric kingdom; and yet, as has been well eaid of him, "there is hardly a problem in the science of government which the statesman will not find, if not solved, at any rate handled, in the pages of this universal master."

Such being the spirit in which ho approached lis task, it is interesting to inquire what were the points which he himself considered to be distinctive in his macthod of executing it. His Greck predecessors in the recording of events had beed, he conceived, of two classes. First, there were the epic pocts, with IIomer at their head, whose characteristic tendency, in tho eyes of Thucydides, is to exaggerste the greatoess or splendour of thiugs past-as, for instance, conceding the historicel character of tho Trojan war, be supposea the streogth of the Greek flect to be overstated in the Iliad. Secoudly, there were the Ionian prose writers whom he calls " chronielers" (10 оо子páфo九). These writers are directly kdown to us only by meagie fragmocuts; but Dionysius of Halicarnassus has described their general characteristics in a manner which servez to illustrate the differences indicated by Thucjuldes between their work and his own. Their geaeral object was to diffuse a kDowledge of legends preserved by oral tradition, snd of mritten docu-ments-usually lists of officisls or genealogies-proserved in public archires; and they published their materials as they found them, without sDy attempt at sifting fact from fable. Thucydides de-
 -the difference betwecn the terms answering to that between com. pilation of a somewhat mechanical kind and historical composition ia a higher sense. The vice of the "chroniclers," iu his view, is that they cared only for popularits, and took no pains to make their narratives trustworthy. In contrast with these predecessors,

Thacydides has subjected his materiale to the most searching scrutiny. The ruling principle of his wark has beeu atrict adherence to carefully verified facts. "As to the deeds aoze in the wer, I hava not thought myself at liberty to record them on hearsay from the firat informant or on arbitrary conjectura. My account rests either on personal knowledge or on the closest possible eerutiny of each statement mado by others. The process of research was laborions, because conflicting eccounts were given by those who had witnessed the saveral events, as partiality ewejed or memory served them."

A period of at least twenty years must heve elspsed between the date at which Herodotus ccased to write ar I that st which the History of Thucydides received its present furm. There can be no doubt that Thucydides knew the History of Herodotus, and that in coine places he alludes to it The diligence and the honesty of Herodotus are alike besond question, and would, we may be sure, have been fully recegnized by Tliucydides. The work of Herodotus was distinct in kind from that of the Ionian chroniciers, and was of an immeasurably higher order. While they dealt, in a bold fashion, with the andals of separate cities or pooples, Herodotes set the first example of multifarious knowledge suberdinated to the execution of a great historical plan, and also showed for the firet time that a prose history could have literary charm. But Thucy. dides doubtless thought of Herodotus as ha:ing certain traits in common with the Ionien chroniclers, and as being liable, so far, to the same criticism. Ons such trait would be the inadequate sifting of evidence; another, the mixture of a fabulous elemeat with historicai fact; and another, perhaps, the occasional siming at rhetorical effect. Of this last trait the chicf instaoces would be those imaginary dialogues or epeeches with whieh Herodotus sometimes enlivens his narrstive. This brings us to no important topic, - the purpose with which Thucydides himself has admitted speeches into his History, and the manner in which ther have been composed.
The speeches constitute between a fourth and a fifth part of the IIistory. If they नere eliminated, an admirable narrative would indeed remain, with a few comments, usually brief, on the mord striking characters and ovents. But ve should lose all the most rivid light on the inner workings of the Greak political mind, on the motives of the actors, and the arguments which they used, in a word, on the whole play of contemporary feeling and opinion. To the specches is due in no small measure the imperishable intellectual interest of the Ilistory, sines it is chiefly by the speeches that the facts of tho Pelopodncsian W'ar sre so lit up with kecy thought as to become illustrations of genersl laws, and to acnuire a permaneat auggestiveness for the student of politics. When Herodotus made his persons hold conversations or deliver speeches, he was fellowing the precedent of epic poetry; his tone is usually colloquial rather than rhetorical ; bs is merely making thought and motive vivid in the was datural to a simple age. Thucydides is the real founder of tho tradition by which historions were eo long held to be warranted in introducing set specches of their own composition. His own account of lis practice is given in the following words. "As to the speeches made on tha eve of the war, or in its course, I hare found it difficult to retain θ memory of the precise words which I had heard spoken; and so it was with those who brought me reports. But I have made the persons say what it seemed to me most opportune for them to say in view of each sitnation; at the same time 1 have adhered as closely as possible to the general sense of what was actually said." So far as the language of the specches is concerned, then, Thucydides plainly arowa that it is mainly or wholly his own. As a general rule, there is littlo attempt to mark different styles. The case of Pericles, whom Thucydides must have repeatedly heard, is probably an excention; the Thucydidean specehes of Pericles offer several axamples of that bold imagery which Aristotle and Plutarch ogree in ascribing to him, while the Funeral Oration, especially, has a certain majesty of rhythm, a certain union of impetuous movement with lofty grandeur, which the historian has given to no other apeaker. Such strongly markerl charccteristics as the curt bluntness of the Spartan ephor Sthenelædas, or tho insolent rehemenca of Alcibiades, are also indicated. But the dramatic truth of the speeches gencrally resides in tha matter, not in the form. In regard to those speeches which wero delivered at Athene before his banjsbsnent in 424 , and seven auch speeches are contained in the LEstory, -Thucydides could rely either on his own recollection or on tho sources accessiblo to a resideat citizen. In these cascs there is good reason to belleve that he has repro. duced the substance of what was actwally said. In other cases he had to trust to more or less imporfect reports of the "general eense"; and in somo instances, no doubt, the speech represents simply his own conception of what it would hava been "most opportuno" to say. Tho most gvident ef such instances occur is tho addresses of Jeaders to their troops. The historian's aim in these military harangues-which are usually short-is to briog out the points of a airategical bitustion; a modera mriter would lisre attained the object by comments prefred of exbjoined to
his account of the battle. The comparative indifference of Thucydides to dramatic perisimilitude in these military orations is curiously shown by the fact that the specch of the general on the one side is sometimes as distinctly a reply to the speech of the general on the other as if they had been delivered in debate. We may be sure, however; that, wherever Thucydides had any authentic clue to the actual tenor of a specch, he preferred to follow that clne rather than to uraw on his own invention. Voltaire has described the introduction of set speeches as "a eort of oratorical falsohood, which the historian used to allow himself in old times." The strongest characteristic of Thucydides is bis devotion to truth, -his laborious persistence in separating fact from fiction; and it Is natural to ask why he adopted the form of set speeches, with tho neasure of fiction which it involved, instead of simply atating, in lis own jerson, the argurments and opinions which he concerved to have becis provalent. The question must be viowed from the ataudpoint of a Grook in the 5th contury b.c. Epic pootry had then for many gencrations exercised a powerful influence over the Greck inind. Jlomer had necustomod Grecks to look for two clo. meuts in any complete expression of human cnergy, -first, an accomnt of a man's deeds, then an image of his mind in the report of his worls. The Homeric horoes aro exhibited both in action and in speech. Further, the contemporary realers of Thucydides were men habitnated to a civic life in whicb public spect played an all-important part. Every adult citizen of a Greck democracy was a nicinher of the assembly which dobated and decided great issues. The law-courts, the fustivals, tho drama, the market-place itself, ministered to tho Gicek lopo of animated description. To a Greck of that age a written history of political events would havo scemed strangely insipicl if speech "in the first person" had been absent from it, especially if it did not nffer somo mirror of theso deluates which were inseprarably associated with the central interests and tho decisive nomonts of political life. In making historical persons say what they might havo said, Thneydudes confuned that oratorical lieenco to tho purpose which is its best justification: with him it is strictly dramatic, an aill to tho complete presentment of action, by the vivid expression of ideas and argmments which were really current at the tiunc. Among later histormans who continued the practice, Polybus, Sallust, and Tracituq most resemblo Thucydides in thes particular ; while in tho Byzantine lastorians, as in some moderns who followed classical precelent, the speches were usually mero oecasions for rlectorical display. Jootta's Jistory of Italy from 1780 to 1814 alfords one of the latest examples of the practice, which was peculiarle suited to the ltalian genius.
Tho present division of the IIistory into cight books is one wheth night well havo prozeded from the author himself, as being a natural and convement disnosition of tho contents. The first bonk, after a general introduction, scts forth the causes of tho Peloponnesinn War. The first nino years of tho war are containel in the sceond, third, and fourth books, -three vears in eacli. Tho fiftli book contains tha tenth year, followed by tho interval of the "insecure peace." Tho Sicilian expedition fills tho sixtli and serenth books. The cighth book opens that last clapter of the strugerle which is known as the "Decclean" or
"Ionian" War, ant breaks off abruptly-in the midille of a sentence, indecd-in the year 411. The words in which Grote bids farewell, at that point, to Thacydiles well express what every careful stuilent must feel. "To jrass from Thucydides to the Ifcllenier of Xenoplion is a descent truly mournful; and yet, when we look at Grecian history as a whole, we have great reason to rejoice that even so inferior a work as tho lntter has reached us. Tho historical paposes and conceptions of Ihucydides, as set forti, by himself in his preface, are exalted and philosophical to a degrec altogether wonderful, when we consiler that he had no pre-cxisting molcls beforo him from which to derive them. And the cight books of his work (in spite of the unfinished condition of the last) aro not unwortliy of these large promises, cither in spirit or in execution."

The principal reason against believing that tho division into cimht books was made by Thucydides himself is the fact that a dilierent division, into thjrtecn books, was also current in antiquity, as appears from Marcellinus ($\$ 58$). It is very improbable-indeed harelly conccivable-that this shomld have been the case if the cirflit-book division had come down from the hand of the author. Vie may infer, then, that the division of the work in to eight books was introduced at Alexandria, -perlaps in the 3 d or 2 d century B.c. T...' tivision was already familiar to the grammarians of the Augustan arce. Dionysius of Halicarnassus, who recognizes it, has also anolluer mode of indicating portions of the work, viz., by stichometrin, or the number of lines which they containcd. Tbus, in the MS. which he used. the first 87 chanters of book i. containerl about 2000 lines (equivalent to about 1700 lines in Bekker's stercotyped 8 vo text).

Ullrich has maintained with much acuteness that Thucydides composed the first three books and about half of book iv. in the pears 421-413, and the rest of the rork after 404. His general
ground is tho existence in i.-ir. of pasiages which seem to imply ignorance of later avonts. Classen has fully examincl the ovidence, and, as a result, has arriyod at tho following conclusion. it is possible that a irst rough draft of the llistory, down to 413 , inay fiave been eketched by Thacydides boforo 405. But tho whole History, from the first book onwards, was worked iip into its present form only after 404. This viow is condirmed by somo passages, found even in the earliest books, which imply that tho writer already knew the latest incidents, or the final issmo, of tho war. We have scen that, aftor 404 , Thucydides may have enjoyed some six or seven years of leisure. Several peenliarities of expres. sion or statement in book viii. stggest that it had not yet receiyed the author's final rovision at the timo when death broke of the work. The absence of specehes from the cighth book has also been remarked. But it should be observed that much of the eighth book is occupied with negotiations, cither clandestinc or indecisive, or both. Its narrative hardly presents any moment which required such dramatic emphasis as tho speeches usually impart. The neere misrepresentations by which Alcibiades and Chalcideus prevailed on tho Chians to revolt certninly did not claim such treatinent.

Tho division of the war by summero and winters (кata of́pos ual Mode of $\chi \in \boldsymbol{\mu} \boldsymbol{\omega} \boldsymbol{y}$) - the end of the winter being considered as the end of tho reckonia year-is perhaps the only one which Thucy dides hinself usecl, for time. thero is no inclication that ho made any division of the llistory into books. His "summer" includes spring and autumn, and extends, generally speaking, from March or the berinning of A pril to the end of October. His "winter"-Novenber to February inclusive-mecns practically the period during which military operations, by land and sea, are wholly or jiartly suspiended. When ho speaks of "sumincr" and "winter" as answering respectively to "half" the jesr (v .20 .3), the plirase is not to lic pressed: it means mercly that he divides his year into these two parts. The mode of reckoning is cssentially a rough one, and is not to be viewed as if the commencement of summer or of winter could be preciscly fixed to constant dates. For chronulogy, licsides the festivals, ho uses the Athenian list of archons, the Spartan list of ephors, and the Argive list nf priestesses of Hera,

There is no reference to the History of Thucs dides in the extant Greck writers of the 4 th century b.c. ; but Lucian has preserved a tradation of the enthusiasm with which it was studied by Demo. sthenes. Tho great orator is said to have copied it out cight times, or even to have learnt it hy heart. It is at least heyond doubt that the study of Thucydides contributed a very powerful influenco to the style of Demosthenes, though that influence rather passed into tho spirit of bis oratory than showed itsclf in any marked resemblances of form. The Alexandrian critics acknowledged Thucydides as a great master of Attic. Sallust, Cornelius Nepos, Cicero, and Quintilian are among the Roman writers whoso adniration for bim can be tracel in thoir worle, or has been expressly recorded. Tho most claborate ancient criticism on the dictioo and composition of Thncydides is contaiped in threa essays by Dionysius of Halicarnassus.
Among the best MSS. of Thucydides, the Codex Vnticanus 126 (1th eent.) re. MSS., do prescnis a recension made In tho Alexandyian or Roman age. In the first six bonks the number of pas-ages in whith the Vnticanis alone has preserved atrue reading is comparsilively bmall; in book thi. it is somewhat Inrger; in bouk riai. It is so laree that here the Vatiennus, os enmpared with the other MSS, nequires the character of a reviscdext. Otherimportan: MSS. nie the l'alatinua 252 (11th cent.): tho Cesselanis (1252 A.D.); the Altgustentis Mollacensis 430 (1301 A.D.). A cillation, in Louks i. H., of two Cambridgo MSS, of the 15 th century (Nx. 3. 18, KE. 5. 19) has been publishcd by Shilleto. Setcral Parisinn NSS. (II, C. A. F.), ond a Venctinn MSS. (V.) collated by Arnold, nloo descrve mention. The Aldise cdition was published in 1302. It was formerly supposed that there had been fwo Juntine cditions. Shlleto, in the " Notice " prefixed to book L., first pointed out that the only Juntine edition was that of 1526, and that the belicf in an carlice Juntine, of 1506, arose merely from the occidental omission of the word vicesimo in the Latin version of the imprint.
Of recent edalions. the most cernerally uscful is Classen's, in the Weidmann beries (Berlin, 1962-79) ; cnch book can ba obtained scparately. Arnold's cdition (1848-51) coniains much that is still valunble. For bouks I. and ii. Stilleto ${ }^{\circ}$ with many difficurt namo those of Duker, Eekker, Gocher, Poppo, and Krüger. Bétani'e fexicon to thuefdides (2 vols, Gencya, is 33) is well executed. Jowelt's translation (Oxford, 1883) is sopplemented by a folumic of notes. Dale's version (Bohn) also deserves 1883) is sopplemented by a tolumic of notes. Dase s version (Bohn) also deserves
mention for its fidelity, as Crawley's (London, 1976) for its vigour liellenica (London, 19Se) contains an cssny on "The Specches of Thucydides," pp. 266-323, (London, $195 e$) contains an essny on "The Speches of Thucydides," pp. 26G-323,
which has becn translated into German. Tlie beat cluo to Thucydidean biblio. graplyy is in Eogelmann's Scriptores Grieci, pp. 74 sq s., Bth ed., 1980. (1.. C. J.)

THUGS. That the Sanskrit root sthag (Pali, thak), "to cover," "to conceal," was mainly applied to frauduYent concealment, appears from the noun sthaga, "a cheat," which has retained this signification in the modern vernaculars, in all of which it has assumed the form !nag (commonly written thug), with a specific mcaning. The Thugs were a well-organized confederacy of professional assassins, who in gangs of from 10 to 200 travelled in various guises through India, wormed themselves into the confidence of wayfarers of the wealthier class, and, when a favourable opportunity occurred, strangled them by throw-
ing a bandkerchief or noose round their necks, and then plundered and buried them. All this was done according to certain ancient and rigidly prescribed forms and after the performance of special religious rites, in which the consecration of the pick-axe and the sacrifice of sugar formed a prominent part. From their using the noose as an instrument of murder they were also frequently called Phansigârs, or "noose-operators." Though they themselves trace their origin to seven Mohammedan tribes, Hindus appear to hava been assuciated with them at an early period ; at any rate, their religious creed and practices as staunch worshippers of Devì (Kali, Durgâ), the Hindu goddess of destruction, had certainly no flavour of Islam in them. Assassination for gain was with them a religious duty, and was considered a holy and honourable profession. They had, in fact, no idea of doing wrong, and their moral feelings did not come into play. The will of the goddess by whose command and in whose honour they followed their calling was revealed to them through a very complicated system of omens. In obedience to these they often travelled hundreds of miles in company with, or in the wake of, their intended victims before a safe opportunity presented itself for executing their design ; aud, when the deed was done, rites were performed in bonour of that tutelary deity, and a goodly portion of the spoil was set apart for ber. The fraternity possessed also a jargon of their own (Ramasi), as well as certain signs by which its members recognized each other in the remotest parts of India. Even those who from age or infirmities could no longer take an active part in the operations continued to aid the cause as watchers, spies, or dressera of food. It was owing to their thorough organization, the secrecy and security with which they went to work, but chiefly to the religious garb in which they sbrouded their murders, that they could, unmolested by Hindu or Mohammedan rulers, recognized as a regular profession and paying tazes as such, continue for centuries to practise their craft. Both the fractions into which they were divided by the Nerbudda river laid claim to antiquity : while the northern, however, did not trace their origin farther back than the period of the early. Mohammedan kings of Delhi, the southern fraction not only claimed an earlier and purer descent, but adhered also with greater strictness to the rules of their profession.
The earliest authenticated mention of the Thugs is found in the following passage of Zláu-d dín Barnf's History of Firoz Shah (written about 1356): "In the reign of that aultan," that is, about 1290, "aome Thugs were taken in Delhi, and a man belonging to that fraternity was the means of about a thousand being captured. But not one of these did the sultan have killed. He gave orders for them to be put into boats and to be conveyed into the lower country, to the neighbourhood of Lakhnaut1, where they were to be set free. The Thugs would thus have to dwell about Lakhnaut1, and would not trouble the neighbourhood of Delhi any more" (Sir H. M. Elliot's History of India, vol. iii. p. 141). The first European travellers who speak of them without mentioning their pame are Thevenot (1665) and Fryer (1673). Though \{nstances of Thuggee had been known to the English rulers in India for many years, and sporadic efforts bad been made by them towards the extinction of the gangs, it was not till Lord W. Bentinck (1828-35) took vigorous steps in this matter that the system was gradually uomasked, and finally all but stamped out. His chief agent, Captain (afterwards Sir William) Sleeman, with several competent assistants, and the co-operation of a number of ative states, sureeeded in completely grappling with the evil, so that up to October 1835 no fewer than 1562 Thugs had been committed, of which number 382 were
hanged and 986 transported or imprisoned for life. It is true that, according to the Thuggee and Dacoity Report for 1879, the number of registered Punjabi and Hindustani Thugs then still amounted to 344. But all of these had already been registered as such before 1852 . It may, therefore, fairly be assumed that none are alive now, and that the whole fraternity may be considered as extinct.
Full particulars concerning the aystem of Thaggee are giveu by Dr Sherwood, "On the Murderers called PŁánsigárs," and J. Shakespear, "Observations regarding Bradheks and Thegs" (both treatises in vol. xiii., 1820, of the Asiatic Researches); [W. N. Sleeman,? Ramaseaana, or a Vocabulary of the Language used by the Thugs, with an Intioduction and sippendix, Calcutta, 1836 ; the Edinburgh Review for Jan. 1837; [E. Thornton,] Illustrations of the History and Practices of the Thugs, London, 1837; Meadowa Taylor, Confessions of a Thug, London, 1839 ; Major Sleeman, Reporl on the Depredations committed by the Thug Gangs, Calcutta, 1840 ; J. Hutton, Popular Accornt of the Thetgs and Dacoits, London, 1 ' 57 Yule and Burnell, Glossary of Anglo-Indiar Colloquial Word's and Phrases, London, 1886, p. 696 sq.
(R. R.)

THUGUT, Franz Maria von (1734-1818), foreign minister of Austria, was born of humble parentage at Linz in 1734, placed in the Government school of Oriental studies in 1752, and sent to Constantinople as an interpreter in 1757. At Constantinople he rose from post to post in the embassy, until in 1771 be became internuncius or ambassador. In 1776, after the war between Russia and Turkey, he obtained from the latter power the cession of the province of Bukowina to Austria. After thus crowning bis long service in the East and gaining the confidence of Maria Theresa, he was sent by her without the knowledge of her son, the experor Joseph, to Berlin, to avert by a peaceful settlement with Frederick the Great the threatened Bavarian war. In 1790 he was employed in the negotiations of Sistova, and his next mission was to Paris, where he entered into close relations with Mirabeau as the friend of Marie Antoinette. On the invasion of France by the allied armies in 1792, Thugut was sent to the scene of operations. It is well known that Kaunitz, the veteran minister of Austria, condemned the terms of the alliance with Prussia, as securing to Prussia the annexation of a great part of Poland, while only bolding out to Austria an uncertain prospect of acquiring its equivalent in Bavaria. Thugut, a politician of the same achool, viewed the new alliance with even greater hatred. After the failure of the campaign of 1792 he formed the deliberate opinion that persons around the duke of Brunswick bad been bribed by the French, and that the retreat had been ordered in consequence. A few months later the anticipations of Kaunitz were realized. Prussia seized western Poland, while Austria remained as far as ever from gaining Bavaria. The emperor Francis now dismissed the ministers responsible for the Prussian alliance, and called Thugut to power. From this critical moment the alliance was doomed, and the allied commanders thwarted rather than assisted one mnother's operations on the eastern frontier of France. On the other hand, Thugut drew nearer to Russia, and negotiated at St Petersburg for the aeizure of Venice by Austria. With England he desired to stand on a good footing; but, while Pitt's object wes the overthrow of the revolutionary Government, Thugut's was simply the acquisition of territory for Austria. This discrepancy of aim led to results exasperating to the English ministry, such as the fall of Toulon, to which Thugut neglected to send the troops which he had promised. The evacuation of Belgium in 1794, usually attributed to Thugut's treachery, was, however, due to the incapacits or intrigues of others. In 1795, after the withdrawal of Prussia from the coalition, Thugut obtained financial help from England, gained from Russia a large abare of Poland in the last partition, and prepared to carry on the mar against France with the utmost energy. The campaign
of the archduke Charles in 1796 drove the French from the east of the Rhine, and Bonaparte, who had conquered northern Italy up to Mantua, narrowly escaped destruction before this fortress. But for the genius of the French commander and the wretched character of the Austrian generals and officers, the immense efforts made by Thugut at this time would have turned the tide of the war. Defeat after defeat seemed to make no impression upon his "world-desolating obstinacy"; and, even when Bonaparte had advanced to within eighty miles of Vienna, it is stated that the empress had to throw herself at her Lusband's feet when in conference with his minister, in order to overcome the resistance of the latter to an armistice. The subsequent peace of Campo Formio was hotly condemned b.: Thugut, who tendered his resignation. Then followed the congress of Rastadı and the murder of the French envoys, long attributed, but without any real ground, to Thugut himself. War was renewed; the French were driven out of Italy by Austrian armies assisted by Suvaroff; and it-was determined that the allies should conquer Switzerland, and so invade France where the frontier is nost epen. Thugut, now at the height of his power, and ar more anxic is to recover Beigium than to ererthrow the republic, took the fatal step of withdrawing a great part of the Austrian forces from Switzerland at the ver. moment when the Russians were entering it. The result : as t.le destruction of the Russians by Masséna and the total failure of the campaign, followed by the secession of Russia from the coalition. Still full of designs for annexatiou in Italy, Thugut continued the war with the help of England. On the very day when he renewed his engagements with England the news arrived of the battle of Marengo, which at one blow made an end of all that Austria had won in Italy in the preceding year. Nothing dauuted, Thugut continued, during the armistice which followed, his preparation for the struggle with Moreau in the valley of the Danube; and, if he could have inspired his master with his own resolute spirit, the result of the war might have been different. But, while Thugut was actually receiving the British subsidies, the emperor, without the knowledge of his minister, surrendered the fortresses of Ulm and Ingolstadt to Moreau, in returu for an extension of the armistice. Thugut's passionate indignation on learning of this miserable act is impressively described in Lord Ninto's despatches from Vienna. He withdrew from office; but Lord Minto's protests compclled the emperor again to place in his hands the direction of affairs, which he held until the battle of Hohenlinden made all further resistance impossiblo. He was then, in deference to French influence, banished from Vienna, ant never resumed office. In his retirement he was occasio ally consulted, as after the battle of Wagram in 1809, when he recommended the emperor to make peace at any cost, stating that the existence of the Austrian monarchy was at staks and that the dissolution of Napoleen's empire was not far off. After the overthrow of Napoleon he returned to the capital, where be died May 29, 1818. Thugut pessessed many of the qualities of a great man,-indomitable courage, calmness iu danger, devotion to public interests, enormous industry; but all this was spoilt by the persistent disregard of obligations towards allies in the greedy pursuit of Austria's own aggrandizement, and by the intriguing spirit inseparable fron this policy. The materials for forming a fair estimate of Thugut's conduct of affairs fron 1793 to 1801 nave but recently been gisen to the world. Of his private life next to nothing is known.
TH: LE was the name given by Greek and Roman Nengraphers to a land situated to the north of Britan, woteh they believed to bu the most northerly portion of

Europe, or indeed of the known world. The first writer who mentioned the name was Pytheas of Alassilia, whose statements conccrning it have been already given under the heading Pytaeas. But it is impossible for us to determine with certainty what those statements, which have only been transmitted to us at second or third hand, really were, and still more so what was their real signification. It is almost certain that Pytheas did not himself profess to have visited Thule, but had only vaguely heard of its existence, as a land of unknown extent, situated, accord. ing to the information he had received, six days' voyage to the north of Britain. This account was adopted by Eratosthenes (though rejected by Polybius and Strabn), and accordingly this unknown land became a cardinal point in the systems of many ancient geographers, as the northern limit of the known world. Nothing more was learnt concenning it until the Romans under Agricola (about 84 A.D.) accomplished the circumnarigation of the northern point of Britain, and rot only visited, but according to Tacitus subdued, the Orcades or Orkney Islands. On this occasion, the historian tells us, they caught sight also of Thule, ${ }^{1}$ which in this instance could only mean the group of the Shetland Islands. No further account of this mysterious land is found in any ancient author, except vague statements, derived from Pytheas, but mostly in an inaccurate and distorted form, concerning its position and the astronomical phenomena resulting from this cause. It is probable that what Pytheas really reported was that at the summer solstice the days were twenty-four hours in length, and conversely at the winter solstice the nights were of equal duration, a statement which would indicate the notion of its position in about $66^{\circ} \mathrm{N}$. lat., or under what we now call the Arctic Circle. The skill of Pytheas as an astronomer would have been quite sufficient to lead him to the conclusion that this would be the case at some point in proceeding northwards, and the rapid changes in this respect that would be reported to him by any navigators that had really followed the shores of Britain to any considerable extent in that direction would confirm him in the correctness of his views. He had, too, a very exaggerated notion of the extent of Britain (see Pytheas), and hence he would be led to place an island which was six days' voyage to the north of it much nearer to the Arctic Circle than its true position.
The statement of Pytheas on this point appears to have obtained almost universal belief until the time of Marinus of Tyre and his successor Ptolemy, who were led-apparently from their knowledga that the group of islands to which the namo of Thule had been applied by the Romaus was really not very far distant from the Orcades-to bring down its position cousiderably more to the south, so that Ptolemy places the island of Thule, which he still regards as the most northerly point of Europe, in only $63^{\circ} \mathrm{N}$. lat. Unfortunately this more reasonable viev has been discarded by many modern writers, who have gone back to the statements of Pytheas ccacerning the leagth of the day, and have in consequence iusistea upon placing Thule within the Arctic Circle, and hava thus been led to identify it with Iceland. The improbability of such an hypotisesis, when we consider the state of ancient naviga. ticn. is in itself a sufficient refutation, and there appcars no reason. able doubt that the Thula of P_{j} theas, like that of the Romans and of Ptolemy, was merely an exaggerated and solnewhat erroneous conception of tha large group of the Shetlaul Islanda, of which the principal, called Mainland, is in fact so predominant that the whole may well have been considered as one large island rather than a scattered group like the Orkneys. If we might trust to the accuracy of Strabo's quotation (ii. 5, p. 114), that Pytheas called Thule "the most northerly of the British lslands," thia would be decisive on the point; but unfortunately the verbal accuracy of such references by ancient writers can seldom be relied on, and Strabo nad evidently never seen Py theas's original work.
it appears, however, to be certain that lceland was really visited by aome lrish monks long before its discovery by tha Northmen, and ia described under the name of Thula by a writer named Dicuil, himself an Irish monk. who wrote in the first half of the

[^134]9th century, in such a manner as to leare no doubt that his statements really refer to that extensive but remote island. See Letronne, Ficcherchcs sur Dicuil, Paris, 1814.
thÜMmel, Moritz Adgust von (1738-1817), German writer in prose and verse, one of the imitators of Wieland (see vol. x. p. 541), was born May 27, 1738, in the ncighbourhood of Leipsic, was educated at Rossleben and the university of Leipsic, and from 1761 till 1783 held various offices in the ducal court of Saxe-Coburg. Ho died at Coburg on October 26, 1817. He wrote a comic prosc epic, Wilhelmine, oder der vermählle Pedant (1761); Die Inoculation der Liebe (1751), a tale in verse; Reise in die mittäglichen Provinzen von Frankreich (17911805), a romance in 10 rols.; and Der heilige Kilian, oder das Iricbespaar (1818) An edition of his works was published at Leipsic in 8 vols. in 1854-55.
thunderg, Carl Peter (1743-1828), an emident traveller, and one of the most distinguished botanists of the school of Linnæus, was born in 1743. He became a pupil of Linnæus at the university of Upsala, where he graduated in medicine in 1770. Obtaining a travelling scholarship, he visited Holland, whence he embarked on a voyage of exploration to Java, in quest of vegctable treasures. He sailed as far as the Cape of Good Hope in 1771, and three years aftermards went to Japan, remaining five years, engaged in making collections of plants, and in observing the habits, manners, and language of the people. On his return in 1779 he visited England, and made the acquaintance of Sir Joseph Banks. In 1777 he was made demonstrator oi botany at Upsala, and be succeeded Linnxus as professor of botany in 1784. Thunberg published in 1784 his Flora Japonica; in 1788 he began to publish his travels. He completed his Prodromus Plantarum in 1800, in 1805 his Icones Plantarum, and in 1813 his Flora Capensis Thunberg published numerous memoirs in the Transactions of many Swedish and foreign scientific societies, of sixty-six of which he was an ionorary member He died in 1828.
THUNDERSTORIF. All the more ordinary phenomena of thunderstorms lad, about 1750, been conclusively traced to electrical charges and discharges (Euectricity, vol. viii. p. 6), so that they could casily be reproduced on a small scale in the laboratory To the article cited we therefore refer for their explanation. Some of the laws of relative frequency of thunderstorms, in different places at the same season or in the same place at different seasons, will be found in Mfreorology (vol. xvi. p. 128). A discussion of the cause of thunder, and of the circumstances which give rise to a crash, a roll, or a peal of thunder is given under A. soustics (vol. i. p. 107). In what follows, therefore, the rarcr phenomena of thunderstorns, and the possible sources of the atmospheric electricity, will be the chief points treated.

Thicre can be little doubt that atmospheric electricity, at least in the great developments which characterize a thunderstorm, is due in some way to water. Before a great thunderstorm the lower air is usually at an abnormally high temperature, and fully saturated with water vapour, so that it is in a thoroughly unstable condition. 1 mmense cloud masses, often miles in rertical thickncss, which produce almost midnight darkacss by day in the region of the stornl, and which appear, when scen from a distance, as if boiling upwards, are always a notable feature of great thunderstorms. These are usually accompanicd by torrents of rain, or by violent hail-showers. And it is commonly observed that each flash of lightning is followed, after a brief interval, by a sudden but temporary increase in the rate of rainfall. At what stage of its transformations the elcctrification is developed by watersubstance is, as yct, only guessed at,-though it scems
most reasonable to conclude that it is anterior to the formation of cloud, i.e., to the condensation of rapour. And, though the idea was at one time very geoerally beld and still has many upholders, it seems unlikely to be the direct result of evaporation. For, were it due directly either to eraporation or to condensation, it is almost impossible to donbt that proof would long siace have been furnished by careful experiment, even if made on a scale so limited as that afforded by our laboratories. No trace of electrical effect has been found to attend the precipitation of moisture ; and the electrical effects, sometimes considerable. Which have been found associated with evaporation have always been accompanied by relatively violent physical and mechanical actions which are not observed in conjunction with atmospheric electricity. It has been suggested by some authoritios that the electricity of a thunderstorm is developed during the formation of hail, by others that it is due to the molecular actions which accompany the diminution of total surface when two or more drops of water coalesce into a single one. It has been ascribed to the friction of moist against dry air, and to the dust-particles which appear to be necessary for the condensation of vapour. Again, it has been suggested that it may be a niero phenomenon of contact electricity, due to the impact of uncondensed vapour particles on particles of air. It is almost unnecessary to observe that, whatever hypothesis we adopt, some explanation must be given of two important points:-(1) What becomes of the electricity equal and opposite to that in cach drop, which must be produced simultaneonsly with it? (2) By what means is the attraction between the drops and the recipient of the opposite charge of electricity overcome so that the drops may be enabled to part with their charge? It is to be presumed that gravity satisfies the second of these questions. As to tho first, it seems to necessitate the presence of something besides water, in order that the electric separation may be commenced, and thus appcars to be fatal to the capillary theory indicated above. Whatever be the true source of the charge, it is easy to see, by known properties of electricity, that even an exceedingly small charge on each rapour particle would lead to a very high potential as soon as a visible drop is formed, and that as a drop increases in size its potential is proportional to its surface. That drops of rain are often individually electrificd to a very high potential is proved by the frequent occurrcnce of "luminous rain," when the ground is feebly lit up by the multitude of tiny sparks given out by the drops as they come near it. The flakcs of falling snow, also, are often strongly elcetrificd, so that smart sparks lave been drawn from an umbrella on which the snow was falling. But the law of electric repulsion shows us at once that, as soon as the drops in a cloud are sufficiently electrified, at lcast the greater part of their charge must pass to the boundary of the cloud. When this occurs, the nature of the further belaviour of the charge presents no difficulty. The reason for our singularly complete ignorance of the source of atmospheric electricity scems to lie in the fact that it can only be discovercd by means of experiments made on a scale very much larger than is attainable with the ordinary resources of a laboratory. The difficulties will probably be easily overcome by the first nation which will go to the expense of providing the nccessary means.

Nunberless other explanations of the origin of thunderstorms have been suggested; but the more reasonable of these do little more than shift the difficulty, for they begin by assuming (without any hint as to its source) an elcctrification of the earth as a whole, or of the lower (somctimes the upper) laycrs of the atmosphere. Induction, zonscetion, ic., are then supposed to effect the rest.

Another and much less reasonable class of explanations depends upon magneto-electricity. Some of these introduce the so-called "unipolar" induction supposed to be due to the rotation of the earth, which behaves like a gigantic nagnet. Of this nature is the suggestion of Edlund, which was recently crowned by the Academy of Sciences of Paris. That rapid variations in the earth's magnetic elements, such.as often occur on a large scale, as in a " magnetic storin," have at least a share in the production of the aurora is a perfectly reasonable and even plausible hypothesis, long ago brought forward by Balfour Stewart. But we bave yet to seek the source of these variations.

The brightness of a flash of lightning is usually much underrated. It is true that it rarely gives even at night an illumination greater than that due to moonlight. But it must be remembered that Swan has proved that the impression of a flash on the cye depends upon the duration, being nearly proportional to it, and steadily increasing for about a tenth of a second. Now the duration of a light-ning-lash is (roughly speaking) only about one millionth of a second. This is proved by the fact that the most rapidly rotating bodies appear to be absolutely steady when illuminated by it. Hence, if it could bo made to last for a tenth of a second, it would give near objects an illumination one hundred thousand times more brilliant than that of moonlight. It must be remembered that the flash is not a mere line, but a column, of intensely heated air, driven outwards from the track of the discbarge at a rate initially far greater than that of sound.

What is called "summer lightning" or "wild-fire" is sometimes a rather puzzling phenomenon. In the majority of cases it is merely the effect of a distant thunderstorm. It is also often due to a thunderstorm in the higher strata of the atmosphere overhead, -the reason why we hear no thunder being not so much the distance from the spectator as the fact that sounds generated in rarer air lose rapidly in intensity as they are propagated into denser air. But, besides these more common forms of the phenomenon, there is certainly a form of sheet lightning which occurs, without either sound or cloud, often close to the spectator. The cause of this is not at all obvious.

But the most mysterious phenomenon is what goes by the name of "globe lightning" or "fire-ball," a phenomenon lasting sometimes for several seconds, and therefore of a totally different character from that of any other form of lightning. The fire-ball is almost incomparably less brilliant than forked lightning, because, though it lasts long enough to give the full impression of its brightness, it is rarely brighter than iron in the state which we call "red-hot." It is always spherical, often more than a foot in diameter, and appears to fall from a thunder.cloud by its own gravity, sometimes rebounding after striking the ground. It usually bursts with a bright flash and a loud explosion; occasionally discbarging flashes of lightning. No experimenter has yet succeeded in producing artificially enything resembling these natural and intensely charged Leyden jars.
The term " thunderbolt," which is nowadays rarely used except by poets (and by the penny-a-liners), preserves the old potion tinat something solid and intensely not passed along the track of a lightning flash and buried itself in the ground. Two distinct classes of phenomena probably gave fise to this notion. When lightning strikes the ground it pften bores a hole of considerable depth, which is found to be lined in its interior with vitrified sand. This presents no difficulty. But Aerolites (q.v.) are often found, in the boles which they have made, still intensely hot, in consequence of their rapid passage through the air. A hasty generalization seems to have connected these two entirely independent phenomena, end thus given rise to the notion
of the thunderbolt. The ancient notion that a lightning flash could occur in a clear sky is probably to be accounted for by the occasional appearance of these ultramundane visitors.

The sulphurous smell of lightning, which is vividly described in the Odyssey, is now known to be due to the formation of Ozone (q.v.).

For the precautions necessary to prevent danger from a thunderstorm, see Lightning Conductor.

A whole volume of Arago's collected works is devoted to thunder. storms, and many important observations are to be found in the writ. ings of M. D'Abbadie and other scientific travellers. (P. G. T.)

THÚN-KHWA, or Thonegwa, a district in the Pegu division of Lurmab, lying between $17^{\circ} 37^{\prime}$ and $19^{\circ} 28^{\prime}$ N. lat., and between $95^{\circ} 53^{\prime}$ and $96^{\circ} 53^{\prime}$ E. long., with antarea of 5413 square miles. It is bounded on the N. by Henzada, E. by Rangoon, S. by the Bay of Bengal, and W. by Bassein district. Thewhole district is a large deltaic plain, divided by the numerous channels of the Irrawaddy into saucer-shaped islands, with deep depressions in the centre. The Irrawaddy traverses Thün-khwa from north to south, throwing of numerous branches until it falls into the Bay of Bengal. Geologically, Thún-khwa is composed of "older alluvial clay," differing from that of the Gangetic basin in being less rich in lime.
The population of Thún-lihwa in 1881 was returned at 284,063 (males 150,131, females 133,932); Hindus numbered 723, Mohammedans 1650, Christians 6894, and Buddhists 274,237. The largest towns in the district are Yandoon and Pantanaw, with populations (1881) of 12,673 and 6174 respectively. The land is nuch less fertile than that of the neighbouring districts. In 1855-86 the area under cultivation was 349,259 acres, and the cultivable area 1,262,374 acres. The principal crops are rice, fruits, vegetables, and sugar-cane. The total revenue realized in the year 1885-86 amouted to $£ 194,737$, of which the land contributed $£ 66,590$. Thúu-k liwa was constituted a districi in 1875, and its history previous to that date is identical with that of Henzada, to which administrative division it originally belonged. During the first Burmees war no resistance was offered to the British in the district as it ar present exists except at the town of Donabyu. At the time of the second war Donabyu was undefended, hut, after the oceupation of Prome, Myat Htin, an ex-thúgyi of a snall circle, succeecled in collecting a body of men and defied thr British. Early in January 1853 the enemy were driven out of Donabyu, but on jrenetratiug into the interior the British were forced to retire. In a subsequent engagement the British were driven back; but the enemy were oventually dispersed and their works captured.

THURGAU, or Thurgovia, a canton of Switzerland (ranking as seventeenth in the Confederation), takes its name from the river Thur. It is bounded on the N. by the Rhine, on the E. by the Lake of Constance (the cantonal frontier being so drawn as to leave the town of Constance to Baden), on the S. by a line running from Arbon on the lake west and south-west to Hörnli, and on the W. by a line drawn from Hörnli passing east of Winterthur and west of Frauenfeld to the Rhine, a little west of Diessenhofen and opposite Schaffbausen.: It is thus slaped like a triangle, of which the Hörnli (3274 feet, the highest point in the canton) is the apex, and comprises the middle basin of the Thur. Its total area is $381 \cdot \frac{1}{2}$ square miles, of which 322.6 (or 84.6 per cent.) is reckoned as "productive land," 69.8 being covered by forests, and 6.9 by vineyards. Of the "unproductive" portion no less than 50.5 square miles consists of the cantonal share of the Lake of Con. stance. According to the census of 1880 , the population amounted to 99,552 (females being in a majority of 1000), an increase of 6252 on the census of 1870 ; of these, 99,026 are German-speaking. . In religion the inhabitants are divided, there being 71,821 Protestants to 27,123 Roman Catholi.s; the canton till 1815 was in the diocese of Constance, and since 1828 has been in the reconstructed diocese of Basel, though for some time after 1873 the Government would not recognize the authority of Bishop Lachat, in consequence of his support of the dogme of

Infallibility at the Vatican council. The capital is Frauenfeld (5811 inhabitants), and Romanshorn (population 3647) is an important railway centre on the lake. The canton has many small villages, and the population is chiefly employed in agricultural pursuits, though cotton-spinning is rapidly increasing. The orchards are 80° splendid that Thurgau has been called "the garden of Helvetia." A network of well-made roads traverses it in every dizection.
The Thurgau originally took in all the country, ronghly epeaking, between the Renss, the Lake of Lucerne, the Rhine, and the Lake of Constance; but many smaller districts (Zürichgau, Toggenbarg, Appenzell, St Gall) were gradually carved out of it, and the county was reduced to about the size of the present canton when in 1264 it passed by the gift of the last count of Kyburg to his nephew Rudolph of Hapsburg, chosen emperor in 1273. In 1415 the count, Duke Frederick of Austris (a Hepsbnrg), wes put under the ban of the empire by the emperor Sigismund for having aided Pope Jobn XX11I. to escape from Constance, and the county was overrun, 8igismund i.is 1417 mort gaging to the city of Constance the eppeellate jurisdiction in all ciril snd criminal matters (" landgericht"" and "blatbann") arising with in the county, which le had declared to be forfeited in consequence of Frederick's conduct. In 1460 tome of the Confederates, now Decoming very eager for conqnests, overran 4 4d seized the county. Winterthur was esved, but in 1461 Frederick's son, Duke Sigismand, hed perforce to cede the county to tbe Confederates. Henceforth it was ruled as a "subject district" by seven members of the Leagne, - Bern, occupied in the west, not being admitted to s ehare in the governneat till 1712, efter one of the wars of religion. It was only in 1499 that the Confederation (then consisting of ten members) obtained from Constance her supreme jarisdiction, through the mediation of the duke of Milan, but there were etill forty-two minor jarisdictione belonging to various lords, apiritual and temporal, which went on till 1798 and greatly limited the power of the Confederates. Thurgan had hoped, but in vain, to be admitted in 1499 a full member of the Confederation.
At the time of the Reformation many of the inhabitants became Protestants, and bitter quarrels ensued between the Protestant and Catholic (the latter having a large najority) membera of the Confederation who had rights over Thurgau, with regard to the toleration of the new doctrines in the "sabject districts" such as Thurgau. By the first peace of Kappel (1529) the majority in each "commune" was to settle the refigiou of that "commune," but by the eecond (1531, after Zwingli'e death) both religions were to be allowed side by side in each "commune." Thurgau thus became a "canton of parity," as it is to this day. lits rulers, however, continued to watch each other very closely, and Eilisn Kesselring, one of the chief military commanders in Thurgan, was in 1633, or anspicion of having connived at the advance of the Swedes throngh Thurgau on Constance, seized by the Catholic cantons and severely punished. In 1798 Thurgau became free, and was one of the ninetteen cantons of the Helvetic republic, being formally reeceived (like the othe" "sabject lands") as a full member of the Swiss Confederation in 1803 by the Act of Mediation. It was one of the very first cantons to revise, in 1830, after the July revolution in Paris, its constitution in a very liberal sense, and in 1831 proposed a revision of the federal pact of 1815. This failed, but the new federal constitutions of 1843 (of which one of the two drafters was Kern of Thargau) and 1874 were approved by very large majorities. In 1849 the cantonal constitution was revised and the veto introduced, by which the people might reject a bill passed by the cantonal assembly. Finally, in 1869 , the bxisting constitution was drawn up, by which the "initiative" (or right of 2500 electors to compel the cantonal assembly to take, any subject into coneideration) and the "obligatory referendum" (by which all laws passed by the cantonsl assembly, and all finsncial resolutions involving a capital expenditure of 50,000 francs or an annual one of 10,000 , must be submitted to a popalar franes or an annual one of the cantonal government consists of a
vote legislative assembly (now of ninety-seren members; one to every 250 electors) and an executive council of five members, both elected directly by the people; 5000 electors can at any time call for a populer vote on the question of the dismissal of either one or the other. Further, to ebow the very democratic character of the oonstitution, it may be sdded that members of botn hotses of the federal assembly are in Thrrgau elected direct by the people. The "commanes". in Thurgau are of no less than eleren or twelve varieties. The division of tie lands, \&c., of the old "burgher commanes $"$ " between them and the new communcs, consisting of sll residents (with whom political power rests), was carried out (1872) in all of the 214 commnnes; but there are still thirty-ight guilds or corporations with specisl rights over certain forests, $\dot{\text { we. }}$
Thi best history of the canton is that b5 bJ. A. Pupporefr, of whikb \& eccond ud very much eularged editlon is now (1887) belog published.
thurif, or Thurivm, a city of Magea Grecia on the Gulf of Tarentum, near the site of the older Sybaris ($q . v$.). but farther inland. It owed its origin to an attempt made in 452 b.c. by Sybarite exiles and their descendants to repeople their old home. The new settlement was crushed by Crotona, but the Athenians lent aid to the fugitives, and in 446, or rather in 443, Pericles sent out to Thurii a mised body of colonists from various parts of Greece, among whom were Herodotusand the orator Lysiab. The pretensions of the Sybarite colonists led to dissensions and ultimately to their expulsion; peace was made with Crotona, and also, after a period of war, with Tarentum, and Thurii rose rapidly in power and drew settlers from all parts of Greece, especially from Peloponnesus, so that the tie to Athens was not always acknowledged. The oracle of Delphi determined that the city bad no founder but Apollo, and in the Athenian war in Sicily Thurii waa at first neutral, though it finally helped the Athenians. Thurii had a democratic constitution and good laws, and, though we hear little of its history till in 390 it received a severe defeat from the rising power of the Lucanians, many beantiful coins testify to the wealth and splendour of its days of prosperity. In the 4th century it continued to decline, and at length called in the help of the Romans against the Lucanians, and then in 282 against Tarentum. Thenceforward its position was dependent, and in the Second Punic War, after several vicissitudes, it was depeopled and plandered by Hannibal (204). In 194 a Roman colony was founded, with Latin rights, known for a time as Copix, jut afterwards by the old name of Thurii. It continued to be a place of some importance, the sitnation being favourable and the region fertile, and does not seem to have been wholly abandoned till the Middle Ages. Its site, near Terranova di Sibari, is marked by considerable ruins of the Roman period (cf. Lenormant, in Academy, xvii. 73, and Barnabei, ibid., xvi. 55 sq.).

THURINGIA (Germ. Thüringen), a territorial term without modern political significance, designates, strictly -speaking, only that district in Upper Saxony that is bounded by the Werra, the Harz Mountains, the Saale, and the Thuringian Forest; but in common parlance it is frequently used as equivalent to the Thuringian states, i.e., the group of small duchies and principalities lying between Prussia, Hesse-Nassau, Bavaria, and the kingdom of Saxony. ${ }^{1}$ The name is derived, with great probability, from that of the Hermunduri, a branch of the great Suevic family; and the ancient Thuringians, a heathen tribe first mentioned in the 5th century by Vegetius Renatus, are believed to be the descendants of that Teutonic people. The Thuringians seem at one time to have occapiea territories stretching from the Elbe not far from Hamburg to the Danube at Ratisbon ; but about 531 their empire was overthrown by the united Franks and Sazons. The north part of their lands fell to the Saxons, and was known for some time as the North Thuringian gan; the district to the south of the Thuringian Forest was called Franconia after its con. querors; and the name Thuringia was restricted almost to the narrow limits to which it now properly applies. The adrance of the Sorbs to the east bank of the Saale about the middle of the 7 th century made the limitation still more exact. Thuringia remained under Frankish dominion, and varions Frankish counts ruled in the diferent "gaus* into which it was dirided. Christianity, if not introduced, was confirmed in this district by the British Boniface ; a

[^135]bishopric was founded at Erfurt ; and under Charlemagne the Thuringian marls was the base of active operations against the heathen Sorbs. In 839 the title of duke of Thuringi2, (ducatus Toringubx) appears; but that of landgrave seems to bave superseded it ; neither dignity implied sovereignty over the whole district. Otto the Illustrious, duke of Saxony (880), added Thuringia to his duchy, but the union was not permanent. About the beginning of the 12 th century Louis the Springer, builder of the Wartburg, rose to eminence among the Thuringian nobles; and about 1130 his son, also Louis, was appointed landgrave by the emperor Lothair I. Thuringia now began to be a united land under one prince; and the landgraves, who aequired the Saxon palatinate on the fall of Henry the Lion of Sazony in 1180, rose to considerable power. The last landgrave of this line was Henry Raspe (1242-1247), brothcr and successor of Louis the Saint. His death was followed by a devastating war of succession between bis nicea Sophia, duchess of Brabant, and Henry the Illustrious, margrave of Meissen (1221-1288), whose mother Jutta was a Thuringian princess. Peace was finally established in 1263: Sophia received Hesse, and Henry took the rest of Thuringia, the general history of which thenceforth merged in that of Meissen, and later of Saxony, although it maintained its separate name. Thuringia was included in the administrative circle of Upper Sazony (see vol. xxi. _ 352, note 3). For its subsequent fate, and the rise of the present Thuringian states, see under Saxory (vol. xxi. pp. 353 sq.).
The most striking natural feature of Thuringia is the Thuringian Forest (Thilringervald), a range or systam of hills, extending in ans irregular line from the neighbourhood of Eisenach in the north. west to the Lobensteiner Kulm on the Bavarian frontier on the sonth-east, aud forming the southern boundary of Thuringia, separating it from Franconia. On the south-east it is continued directly by the Frankenwald Mountains to the Fichtelgcbirge, which is in immediato connexion with the Erzgebirge, while on the north-east it approaches the Harz Mountains, and thue takes its place is the great Sudetic clain of central Germsny. The length of the illuringian chain is 70 miles, and its breadth paries from 8 to 25^{\prime} miles. It nowhere rises into peaks, and only a few of its rounded summits reach the height of 3000 feet; the successive hills melt into each other in gentle undulatioos, forming a continuous and easily traced comb, and ouly the north-west alopes are precipitous, aud seamed with winding gorges. This mountainrange encloses many clarming aud romentic valleys and glens; the most prominent feature of its picturesque scencry is formed by the fine forests, chiefly of pires and firs, which clothe most of tho hills. The north-west part of the system is the loftier and the more deneely woodell, os well as the more beautiful; the highest oummits here are the Grosser Beerberg (3225 feet), Sclineekepf (3179), and the Inselberg (2957), all in the duchy of Gotha. The southeast part of the Thuringian Forest is the me1e populous and industrial ; the chief eummits sre the Kieferle (2851 feet) st Steinheid, the Blessberg (2834 feet) near Schalkan, the Wurzelberg (2746 feet) uear Oelze, and the Wetzstein (2719) near Lehcsten. The crest of the Thusingian Forest, from the Werra to the Saale, is traversed by the Rennsteig or Rainsteig, a broad path of unknown antiquity, though it is believed to he referred to in a letter of Pope Gregory Ill. dated 738. The vame means probably "frontierpath"; and the path marks iv fact the boundary between Thuringia and Franconia. It may he also regarded as part of the boundary. lino betwéen North and Sonth Germany, for dialect. customs, local names and costume are different ou the two sides.

thuringorum lex. See Salic Law.

THURLES, an ancient market-town of Ireland, in the county of Tipperary, and the seat of the Catholic archdioccse of Cashel, is pleasantly situated on the Suir, and on the Great Southern and Wcstern Railway, 46 miles east of Limerick, 29 west from Kilkenny, and 87 southwest of Dubliu. The cathedral of St Patrick is a beautiful building, erected at a cost of $£ 45,000$. The town is the seat of other important Catholic establishments, including an Ursuline couvent, in which is a large board-ing-school for young ladies; a Presentation convent; St Patrick's Catholic college (1829) for ecclesiastical students,
where was held in 1850 the sjzed of Thurles, composed of all the Catholic bishops of Ireland ; and an establishment of Christian Brothers, who devote themselves to the instruction of boys on the Lancastrian method. The torm has a considerable agricultural and retail trade. The population was 5008 in 1871, and 4850 in 1881

Originally the town was called Durlas O'Fogarty. In the 10the century it was the sceno of the defeat of the Irish by the Danes. A preceptory was founded here by the Knights Templhars, who possessed themselves of a castle erected early in the 13th contury. A castlo was subseqnently erected by James Butler, first lord palatine of Tipperary, of which till recently a tower still remainel.
thurlow, Edward Thurlow, Baron (1732-1803), was born at Bracon-Ash, in the county of Norfolk, in 1732. His father was a cle:gyman, and held successively the livings of Littie Ashfield in Suffolk and of Stratton St Mary's in Norfolk. His mother Elizabeth was the daughter of Robert Smith of Ashfiald. Thurlow received his early education at bome. He was next placed undcr the care of Mr Brett at Scarning, where he remained for four years, and was then sent to the grammar school of Canterbury, where he was considered a bold refractury clever boy. In October 1748 Thurlow entered Caius Collcge, Cambridge, and speedily justified his school reputation. The dean of the college, upon the extent and accuracy of whose classical acquirements grave suspicion rested, had directed hin, as a punishment for some act of insubordination, to translate a chapter of the Spectator, into Greek. Thurlow executod bis task with care, and then gave it for revisal, not to the dean, but to the tutor of the college. When reprimanded for having thus infringed the college rules, Thurlow retorted that he had carried his exercise to one who could inform the dean whether or not he had obeyed his orders. The insult was too grave for rustication, and yet too slight to justify expulsion. Thurlow was therefore permitted to withdraw his name from the college books, and he left Cambridge without a degree (1751). H9 now took chansbers, and began regularly to keep terms in the Inner Temple, which he bad joined while still an undergraduate. He was for some time a pupil along with the poet Cowper in the office of Mr Chapman, an eminent solicitor in Lincoln's Inn. On 22d November 1754 Thurlow was called to the bar, and subsequently went on the western circuit-at first with little success. But the tide turned. In the case of Luke Robinson v. the Earl of Winchelsea (1758) Thurlow came into collision with Sir fletcher Aorton. then the terror of solicitors and the tyrant of the bar, and put down his arrogance with dignity and success. From: this time his practice increased rapidly. In Decemoer 1761 he was made a king's counsel, through the infurenc? of the duchess of Queensberry. In January 1762 he was elected a bencher of the Inner Temple. It now becamo necessary for him to take his side in politics, and, after repeated oscillations, and with some hesitancy, Thurlow threw Limself iuto the ranks of the Tory party. In May 1768 he became member for Tamworth. In 1769 the Douglas Peerage case came on for hearing in the House of Lords, and Thurlow, who had drawn the pleadings some Jears before (Notes and Queries, 3d ser., iiii. 122), led for the appellant in a speech of great ability and analytic power. In March 1itio, as a recognition of his defence in the previous January of the expulsion of Wilkes, Thurlow was made solicitor-general on the resignation of Dunning, and in the following year (23d January 1771), after be had enhanced his reputation with the Government by attacking the rights of juries in cases of libel (Rex u. Miller, 20 Siate Trials, 870-896) and the liberty of the press (16. Parly. Hist., 1144), was raised to the attorncegeneralship. Thurlow's public life was as factious as his youth had been daring. His riolent laatred of the Amcrican colonists, and his extreme and imprudent assertion
that as attorney-general he might set aside by scire facias as forfeited every charter in America (debate on the American Prohibitory Bill, 18 P. H., 999); bis speech in aggraration of punishment in the case of Horne Tooke (20 S气. Tr., 777-783) when ho argued that the prisoner ought to be pilloried, because imprisonment was no penalty to a man of sedentary habits and a fine would be paid by seditious subscription; and his consistent opposition to all interference with the slave trade,-are characteristic of the man. In 1778 Thurlow became lord chancellor and Baron Thurlow of Ashfield (June), and took his seat in the House of Lords, where he soon acquired an almost dictator:al power. He resolutely opposed the economical and constitutional reforms proposed by Burke and Dunning. Under Rockingham he still clung to the chancellorship, while conducting himself like a leader of the opposition. To the short-lived ministry of Shelburne he gave a consistent support. Under the coalition of Fox and North (April to December 1783) the great seal was placed in commission, and Lord Loughborough was made first commissioner. But Thurlow, acting as the king's adviser, and in accordance with his wishes, harassed the new ministry, and ultimately secured the rejection of Fox's India Bill (24 P. II., 226). The coalition was at once dissolved. Pitt accepted office, and Thurlowagain became lord chancellor (December 23, 1783). At first he supported the Government heartily, but soon his overbearing temper asserted itself. Imprudently relying on the friendship of the king, and actuated by acarcely disguised enmity to Pitt, Thurlow passed rapidly from occasional acts of hostility to secret disaffection, and finally to open revolt. He delivered himself strongly against a bill, introdueed without his privity, for the restoration to the heirs of attainted owners of estates forfeited in the Jacobite rebellion of 1745 . Partly to please the king and queen, partly from dislike to Burke, and partly perhaps from a real belief in the groundlessness of the accusation, he supported Warren Hastings on every occasion "with indecorous violence." His negotiations with the Whigs during the discussion of the Regency Bill (1788-19th February 1789) went beyond the limits of mere perverse coquetry, and were designed to secure his seat on the woolsack in the erent of Fox being called to power. The climax was reached in 1792 , when he virulently attacked Pitt's bill "to establish a sinking fund for the redemption of the national debt," not on account of the economic objections to which it was justly liable, but on the trivial ground that it was an unconstitutional attempt to bind fature parliaments. The bill was carried, but only by a narrow majority, and Pitt, feeling that co-operation with such a colleague was impossible, insisted successfully on lis dismissal (June 15, 1792). The ex-cbancellor, who had a few days before (June 12) been created Baron Thurlow of Thurlow, with remainder to his brothers and their male deseendants, now retired into private life, and, with the exception of a futile intrigue, under the auspices of the prince of Wales, for the formation of a ministry from which Pitt and Fox should be excluded, and in which the earl of Moira should be premier and Thurlow chancellor (1797), finally abandoned the hopes of office and the dictatorship which he had so long exercised in the House of Lords. In $1: 95$ he opposed the Treason and Sedition Bills without success. In 1801 he spoke on behalf of Horne Tooke-now his friend-when a bill was introduced to render a priest in orders ineligible for, a seat in the House of Commons. His last recorded appearance in the House of Lords was on May 4, 1802. He now spent his time between his villa at Dulwich and Brighton, Bognor, Scarborough, and Bath. He died at Brighton on 12th September 1806. and was buried in the Temple chureb. Thurlow
was never married, but left three natural daughters, for whom be made a handsome provision. The title descended to his nepher, son of the bishop of Durham.

Lord Thurlow was a master of a coarse canstic wit, which habitually in his private and too frequently in his public life displayed itself in profanity. He was a good classical scholar and made occasional translations in verse from Homer and Euripides. His judicial and his ecelesiastical patronage was wisely exercised; he was the patron of Dr Johnson end of Crabbe, and was the first to detect the great legal merits of Eldod. Thurlow's personal appearence was striking. His dark complexion, harsh but regular features, severe and dignified demeanour, piereing black eyes and bushy cyebrows, doubtless contributed to his professional and political eminence and provoked the sarcasm of Fox that he looked wiser than any man ever was. Yet he was far from being an impostor. By intense though irregular application he had acquired a wide if not a profound knowledgo of law. Clear-healed, self-confident, and fluent, able at once to reason temperately and to assert strongly, capable of grasping, rapidly assimilating, and forcibly reproducing minute and complicated detnils, he possessed all the qualities which command snecess. His speeches in the trial of the duchess of Kingston for bigany (20 S. T., 355-651) are singularly vigorous and effective, while his famons opening in the Douglas Peerage case and his argument for the crown in Canpbell v. Hall ($20 S$. T., 312-316) show that he might have rendered high service to the judicial literature of his country had he relied more upon his own industry and less upon the learning of Hargrave and Kenyon
See Lord Campbell's Lives of the Chancellors, vil. 153-333; Foss's Judges of England, vill. 3it-385; Public Claracters, 1793 ; Aotes and Queries, 2 d ser., iii. 283: 3 d scr., iii. 1122: Feports of lils tecisions by Brown, Dickens, anil Vesey
(Junior); E;Ougham's Sealesment of the Time of Gcorge 111.
THURSO, a seaport, police burgh, and burgh of barony of Caithness, Scotland, is situated at the mouth of the Thurso, on the beautiful Thurso Bay, at the northern terminus of the lighland hailway, 21 miles north-west of Wick, and 367 north of Edinburgh by rail. The new town, regularly built with broad strcets and good houses, is steadily increasing in population. In Macdonald Square, now laid out with ornamental walks, there is a statue of Sir John Sinclair (q.v.). Along the sands a promenade 300 yards in length was formed in 1882. The town-hall (1870) embraces a court-room and rooms for the free public library and the museum, which contains the geological and botanical specimens of Robert Dick, the "Thurso baker," commenorated by Samuel Smiles, as well as a large collection of northern birds. In the neighbourbood are large quarrics for Caithness flags, which are cut and dressed in the town. They constitute the principal export, but the trade of the port is hindered by the inconvenience of the harbour. There is, however, communication with the south and west, and with Orkney by steamer from Scrabster pier, 3 miles to the north. To the east is Thurso Castle, the residence of the Ulbster branch of the Sinclairs. The population in 1871 was 3622 and in 1881 it was 4026.
Thurso was the centre of the Norso power on the mainland when at its height under Thorfinn (1014), aud afterwards till the battle of Largs. Count Moddan, neplew of King Duncan, quartered his army for a time at Thurso, which ho ternis "the town of Caithness," and was llentifully supplied by spoil till surprised and slain by Thorkel in 1040. In the tine of Malcolm II. Earl Erlend resided in the town. In 1633 it was created a burgh of barony, and was the seat of the sheriff courts of the county till they were removed to Wick in 1828.
THIIIE. The genus Thymus (nat. ord. Laliatx) comprises a number of fragrant aromatic undershrubs, with very small leaves and whorls of small lilac flowers in the axils of the leaves or at the ends of the branches. The common garden thyme, a native of the Mediterranean region, is Thymus vulgaris; the wild thyme of our banks is T. Serpyllum. Marjoram (Origanum) is also closely allied. All these plants are remarkable for their essential oil, to which their fragranee is duc. From this oil is produced by distillation a substance known as thymol, analogous to camphor. It is homologous with phenol or carbolic acid and may be used as a disinfectant and germicide.

TIBBUS, or 'lubus, a nomad race of North Africa, occupying the eastern section of the Sahara from about 12°, where they are conterminous with the Tuareg Berbers, to about 24° E. long., and from Fezzan southwards nearly to Lake Tchad, 25° to $15^{\circ} \mathrm{N}$. lat. Their westernmost settlements are the oases of Agram, Kawar, and Jebado, their northernmost the district of Qatrún within the Fezzan frontier, while south and south-east they merge gradually in the Negroid populations of Kanem, Bornu (Tchad basin), Wadai, and north-west Dar.Fúr. But the heart of the nation is concentrated in the central region of Tibesti or Tu , whenca they take their collective name of Tib-bu or Tu-bu, i.e., "people of Tibesti or Tu." There are two main divisions, - the northern Teda, more or less full-blood Tibbus, and the southern Dasa, more or less mixed or Negroid Tibbus. Somewhat more distantly connected with the same family are the Baele of the eastern and southeastern oases and the Zoghawa (Zaghwa) of Dar-Fúr, making a total population of about 190,000, distributed as follows:-

190,000

The Tibbus, who are not expressly meutioned under this name by any ancient or medieval writer, are usually identified with the Garamantes of Herodotus (iv. 183), whose capital was Garama (Edrisi's Germa) in Phazauia (Fezzan), and of whom Ptolemy already spoke cloubtfully as Ethiopians (Negroes?): "(v, $\omega \nu$ סz kal
 them to the Berber connexion, whose fifth great division he deals with under the names of Gumeri (Garamantes?) ami Bardxi or Bardoa, that is, the Teda of the Barlai oasis, Tibesti. ${ }^{2}$ Lastly Barth on linguistic grounds grouped thens with the Kanuri of Bornu, who are undonbtedly Negrocs ; and since his time (1952-53) the Tiblus havo been regarded by most ethologists as a Negro or at least a Negroid people. ${ }^{3}$ Nachtigal, who has studied them more carefully than any modern observer, sees gooll reason to challenge this conclusion (op. cit., ch. vii.) ; and, although his own iufercaces are somewhat varue, he supplies sullicient evidence for a solution of this difficuit etluological problem. There can be no donbt that the Tcla, or true Tibbu, probably identical with the Tedamansii, a branch of the Gammantes, placed by Ptolemy south of the Samamycii in Tripolitana, ${ }^{\text {a }}$ are physically a Hanitic, not a Nogro people, elosely resembing their western Tuareg neigbbours. They are a pure homogeneous raee, who have for ages undergone no perceptible change in their rocky homes, and who are still distinguished by the regular features, loug black ringletty hair, haughty bearing, and ficree expression conmon to so many of the Derber and other Hamitic peoples. Mostly of middle size, they are finely proportioned in all their limbs, except the somewhat too small hauds aud feet, with lighter complecion than that of the southern Dasa, and no trace of the Hat nose, thick tumid lips, or other marked characteristics of the true Negro. "Their women are charming while still in the bloom of youth, unrivalled amongst their sisters of North Africa for their physical beauty, pliant and graceful figures" (keane's Reclus, xi. p. 429). But there has been a gencral displacement of the race southwards ; and, while only a few still liuger in the northern Qatrun and Kufara districts, laree numbers have since medirval times penetrated into the Eanenu, Boruu, Wadai, and Dar-Fír regions of central Sudan. Here they have everywhere merged with tho natives, so that in tho Dasa, Kanembu, Kanuri, Baele, and Zogharra groups the Tibbu
${ }^{1}$ Cf. Kanem-bu $=$ people of Kanem, bu being the plural personal postix answering to the Bantu prefir ba, q00 (Ba-Suto, Wa-Ganda, \&c.), aud to the be of Ful-be $=$ Fuil people or Fulahs from Pul. In Tedlaga the root $t e$ means "rock"; hence Tu-bu= "rock-dweliers," as described by Herodotus and as exnlained in their Arab designation Reshideh, from reshad = rock, bill.

See Vater, Mithridates, ii. p. 45 of Berlin ed. 1812, and Nachtigal, Stihara und Sudan, 1881, ii. p. 189.
s "Urspriinglich ein Negervolk," Lepsius, Nubische Grammatik (Einteilung), Berlin, 1880.

The original inhabitants of the Kufara (Kufra) oasis in south Tripolitana were Teda, some of whom still survive in a small hamlet sonth of Jebel Nari. Since the berinning of the 18 th centary they have been replaced elsewhere in Kufara by the Zwiya Arabs from the Leshkertel oases.
rare presents all the shades of transition between the true Negre and the true Hamite that are also found to prevail between the hlacks of western Sulan and the Tuareg Berbers, and between the Nubas and other eastern Sudan Negroes and tho Hamitic Gallas Somáli, and Bejas.
The same transitional stages are observed in the Tibbu forms of specclı, which constitute a wide-spread linguistic family, whose most archaic and purest branch is the Tedaga of Tibesti (Nachtigal). Tbrongh the southern Dasaga the Tedaga merges in the more highly developed and more recent Kanem, Bornu (Kanuri), Ennedi (Baele), and Dar-Fír (Zogháwa) dialects, which, owing to the abscnee of grammatical gender and some other structural features, are usually classed as Negro languages. But a Negro tongue could not have arisen among the Hamites of the Tibesti uplands, and the explauation of this linguistic difficulty is obviously the same as that of the physical puzzie. The Negro affinities of the southern members of the gronip hare arisen through assimilation with the original and now partly displaced Negro idioms of central Sudan. There remains the final difficulty that Tedaga itself bas absolutely nothing in common with the Berber or any other Hamitic tongue. If therefore it is neither Hamitic nor Negro, the only two stock languages recognized by Lepsius in Africa (op. cit., passim), how is it to be placel? First of all Lepsius's hasty generalization, wholly inconsistent as it is with the conditions occurring in other parts of the continent, must be unhesitatingly rejected. Room having thus been found for other linguistic fainilies, the Tedaga of Tibesti may be readily explained as an independent evolution from a primeval Tibbu-Berber germ, amalogous to other linguistic evolutious in other isolated or inaccessible highland regions, such as the Caucasus, the Pyrenees, and the Anahuac tableland. The common germ, essentially evanescent in its naturc, has long since perished, or can no longer be detected, and the Tibbu and Lierber languages stand side by side as now fundamentally distinct, while the two races still remain physically one. The Tibbus are therefore a llamitic people, who in their secluded rocky homes have bad time to evolve an Independent form of speech, which southwards has become largely assimilated to the Sudanese Negro dialects.

Lying on the track of the great caravan route between Fezzan and Lake Tchad, the Tibbus have always been a predatory race, levying blackmail on the convoys passing through their territory, maintaining intertribal feuds, and carrying on constant warfare with the surrounding Berber and Sudanese populations. This, combined with the serere struggle for existence in their inhospitable upland valleys, has rendered them harsh, greedy, and suspicious, -sentiments reflected in their hard features and stern expression. Till comparatively recent times all were pagans, whence the term Kufra (Kufara), "Land of the Unbeliever," applied by the Arabs to the southern oases of Tripolitana. But for two or three centuries they have been zealous Mohammedans, and some have eveu lately been brought within the influence of the political Senusiya sect (see Tripoli, below). They are a frugal race, living mostly on goat's milk, dates, berries, durrha, and the fruit of the dum-palm; nevertheless they are of robust constitution and remarkably agile. They are also intelligent, crossing the wilderness by a sort of instinct quite unintelligible to the stranger, and in all ordinary transactions they display surprising tact and shrewdness. The tribal organization embraces dardai or headmen, maina or nobles, and the common folk, while the unwritten law of custom rules supreme over all classes. The women, who are orderly and industrious, are well treated, and the polygamy allowed by the law is little practised. But the rendetta is still a social institution.
(А. Н. к.)

TIBER. See Italy, vol. xiii. pp. 43S-439.
TIBERIAS, now TAbariya, a city of Palestine, on the western shore of the Sea of Galilee or Lake of Tiberias, occupies a narrow strio of plain under a hill in a feverish but fertile situation. Recent estimates place the population at from 2000 to 3000 ,-about half the inhabitants being Jews, and many of the latter immigrants from Poland. The streets are indescribably filthy, and an Arab saying is that "the ling of the fleas holds his court at Tiberias." The walls of the town and the castle on the north were in great part ruined by an earthquake in 1837, when half the population perished. The most interesting building
is a very ancient synagogue by the lake, the lower story of which is said to have been unaffected by the earthquake. Outside the town are the plastered monuments ("whited sepulchres ") of Ir. Akiba and Maimonides. Half an hour to the south are the famous hot baths mentioned by Pliny (H.N., จ. 15 [71]). Josephus calls this place Emmaus, which has suggested an identification with Hammoth-dor (Josh. xxi. 32) or Hammon (1 Chron. vi, 76 [61]), names which perhaps point to the existence of thermal springs.
Tiberias was founded by Herod Antipas apparently not beforc 26 A.D., ${ }^{1}$ and so was quite a new place at tho time of our Lord's ministry in Galilee. And, though it became the capital of Galilee, it was at first a purely Greek eity, which accounts for its not appearing among the scenes of the Galilæan ministry. It joined in the war of liberty, but yielded without resistance to Vespasian, and was restored by him to its master Agrippa, on whoso death in 100 it fell directly under Roman rule. The place camo-to bo a grcat seat of Jews and Jewish learning: it was the residence of R. Judah, the ellitor of the Mishnali; and, thongh the schools of Palestino were ultimately overshadowed by thoso of Babylonia, the school of Tiberias was still famous in the time of Jerome. According to Epiphanius; the first Christian chareh was built by Constantine, and frose this timo we hear of bishops of Tiberias. The Arabs took Tiberias in 637; it was restored to Christenclom by Tancred, but yiclded to Saladin in 1187 after tho battle of Ilittín. It was again in Christian hauds from 1240 to 1247. In the middle of the 18th century it was one of the fortresses of the renowned Sheikh Záhir, who for many ycars deled the Turkish power.

TIBERIUS (42 b.c. -37 A.d.), emperor of Rome, whose full name was Tiberius Claudius Nero, was born on the Palatine Hill on 16 th November 42 в.c. When he became a member of the imperial family, the court genealogists made him out to be one of the ancient patrician Claudii ; but the pedigree is at some points difficult to trace. His father, who bore the same name, was an officer of Julius Cæsar, who attarwards proposed to confer honours on the assassins, then joined Mark Antony's brother in his mad uttack on Octavian, took refuge with Mark Antony, and returned to Rome when the general amnesty was proclaimed in 39 b.c. Livia, the mother of Tiberius, was also of the Claudian family, out of which her father had passed by sidoption into that of the Livii Drusi. Early in 38 Livia was amicably ceded to Octavian (the future Angustus), and three months after her new marriage Drusus, brother to Tiberius, was born. Livia had no children by Augustus, and therefore devoted all her remarkable gifts to the advancement of her sons. They were treated with high consideration by the emperor, yet Augustus held firmly to the hope that his throne might be filled on his death by one in whose veins ran the 'blood of the Octavii; and not till Tiberiuts was past forty aid there appear any probability that he would ever rise to be emperor. He passed through the list of state offices in the usual princely fashion, beginning with the quæstorship at the age of eighteen, and attaining the consulate for the first time at twentynine. From the great capacity for civil business which he displayed as emperor it may be inferred that he applied himself with determination to learn the business of government.

But from 22 to 6 b.c. and again from 4 to 10 A.D. by far the greater part of Tiberius's life was spent in the camp. His first service was as legionary tribune in one of the desperate and arduous wars which led to peace in the Spanish peninsula through the decimation, or rather the extermination, of the rebellious tribes. In 20 b.c. Augustus scnt Tiberius with an army to seat Tigranes of Armenia on the throne as a Roman vassal. As Tiberius approached the frontier of Armenia, he found its throne racant through the assassination of the king, and Tigranes stepped into his place without a blow being struck. Tiberius cromned Tigranes king with his own hand. Then the Parthian monarch grew alarmed and surrendered "the spoils and the
standards of three Roman armfes." The senate ordered a thanksgiving such as was usually celebrated in honour of a great victory. The following year was passcd by Tiberius as governor of Transalpine Gaul. In the next year (15) he was despatched to aid his brother Drusus in subjugating the Ræti and Vindelici, peoples dwelling in the mountainous region whence the Rhine, Rhonc, and Danube take their rise. ${ }^{2}$ Drusus attacked from the eastern side, while Tiberius operated from the upper waters of the Rhine, and by stern measures the mountaineers were reduced to a state of quietude, and could no longer cut communications between northern Italy and Gaul, nor prosecute their raids in both countrics. In 12 b.c. Agrippa, the great general of Augustus, to whom he may be almost said to have owed his throne, and who was its chief support, died at the age of fifty-one, leaving Jnlia, the emperor's only child, a widow. Agrippina, daughter of Agrippa by an earlier marriage, was wife of Tiberius, and had borne him a son, Drusus, afterwards father of Germanicus. Livia with great difficulty prevailed upon Augustus to replace Agrippa by Tiberius, who was com pelled to exchange Agrippina for Julia, to his bitter grief. During the year of mourning for Agrippa, which delayed his new marriage, Tiberius was occupied with a victorious campaign against the Pannonians, followed by successful expeditions in the three succeeding summers. For his victories in the Danube regions, the emperor conferred on him the distinctions which flowed from a military triumph in republican times (now first separated from the actual triumph), and the enjoyed the "ovation" or lesser form of triumphal entry into the capital. On the death of Drusus in the autumn of 9 в.c. Tiberius, whose reputation had hitherto been eclipscd by that of his brother, stepped into the position of first soldier of the empire. The army, if it did not warmly admire Tiberius, cntertained a loyal confidence in a leader who, as Velleius tells us, always made the safety of his soldiers his first cere. In the campaign of the year after Drusus's death Tiberius traversed all Germany between the Rhine and the Elbe, and met with slight opposition. Pי1t it would be too much to believe the statement of Velleius that "he reduced Germany aimost to the position of a tributary province." He was rewarded with the full triumph, the military titlo of "imperator," and his second consulship, though the opposition of the powerful Sugambri had been only broken by an act of treachery, the guilt of which should perhaps be laid at the door of Augustus. In 7 в. \dot{c}. there was another but insiguificant campaign in Germany. Next year Augustus bestowed on his stepson the tribunician authority for five years. Tiberius was thus in the most formal manner associated with the emperor in the conduct of the government on the civil side; but Tacitus (Ann., iii. 56) goes too far when he says that this promotion maraed him out as the heir to the throne.
Tiberius now suddenly begged permission to retire to Rhodes and devote himself to study. He seems to have declined absolutely at the time to state lis reasons for this course, but he obstinately adhered to it, in spite of the tears of Livia and the lamentations of Augustus to the senate that his son had betrayed him. If we may velieve Suetonius, Tiberius determined to commit suicide by abstention from food, and Augustus only gave way when this design was all but accomplished. The departure from Italy was as secret as it could be made. Iears afterwards, when Tiberius broke silerce about his motives, he declared that he had retired in order to allow the young princes, Gaius and Lucius, sons of Julia, a free course. There was perhaps a portion of the truth wrapped up in this declaration. Like Agrippa, who retired to Mjtilene
2. See tho discussion in Schürer, Gesch. d. Jüd. Foolles. ii. 127 sq.
to avoid the young Marcellus, Tiberius had clearly no taste to become the servant of the two children whom Augustus had adopted in their infancy and evidently destined to be joint emperors after his death. But it may well be believed that Tiberius, unlike Agrippa, had no burning ambition to see himself in the place destined for his stepsons; and it may have been in his eyes one of the attractions of exile that it released him from the obligation to aid in carrying out the far-reaching designs which Livia cherished for his sake. But the contemporaries of Tiberius were no dou'd right in believing that the scandal of Julia's life did more than all else to render his position at Rome intolerable. His conduct to her from first to last gives a strong impression of his dignity and self-respect. When at last the emperor's eyes were opencd, and he inflicted severe punishment upon his daughter, her husband, now divorced by the emperor's act, made earnest intercession for her, and did what he could to alleviate her suffering At Rhodes Tiberius lived simply, passing his time mainly in the company of Greek professors, with whom he associated on pretty equal terms. He acquired a very considerable proficiency in the studies of the day, among which must be reckoned astrology. But all his attempts at composition, whether in prose or verse, were laboured and obscure. After five years' absence from Rome, he begged for leave to return ; but the boon was angrily refused, and Livia with difficulty got her son made nominally a legate of Augustus, so as in some degree to veil his disgrace. The next two years were spent in solitude and gloom. Then, on the intercession of Gaius, Augustns allowed Tiberius to come back to Rome, but on the express understanding that he was to hold aloof from all public functions,-an understanding which he thoroughly carried out.

He had scarcely returried before death remored (2 A.D.) Lucius, the younger of the two princes, and a year and a half later Gaius also died. The emperor was thus left with only one remaining male descendant, Agrippa Postumus, youngest son of Julia, and still a boy. Four months after Gaius's death. Augustus adopted Agrippa and at the same time Tiberius. The emperor now indicated clearly his expectation that Tiberius would be his principal successor. The two essential ingredients in the imperial authority-the proconsulare imperium and the tribunicia potestas -were conferred on Tiberius, and not on Agrippa, who was too young to receive them. Tiberius's career as a general now began anew. In two or three safe rather than brilliant campaigns he strengthened immensely the Roman hold on Germany, and established the winter camps of the legions in the interior, away from the Rhine.

In 5 A.D. it became necessary to attack Maroboduus, who by combining peoples formerly lostile to each other had constructed a formidable power, with its centre in Bohemia, menacing the Roman acquisitions in Cermany, Noricum, and Pannonia. The operations were conducted both from the Rhine and from the Danube, Tiberius being in command of the southern army. Just as the decisive engagement was about to take place, Tiberius learned that Pannonia and Dalmatia were aflame with insurrection in his rear. He was therefore forced to conclude peace on terms honourable to Maroboduus. The terror inspired in ltaly by the Pannonian and Dalmatian rebellion under the able chief Bato had had no parallel since the invasion of the Cimbri and Teutones. The four serious campaigns ;which the war cost displayed Tiberius at his best as a general. As he was about to celebrate his well-won triumphs, the terrible catastrophe to Varus and his legions turned the rejoicing into lasting sorrow, and produced a profnund change in the Roman policy towards Germany.

Although Tiberius with his nepherv and adopted son Germanicus made in 9 and 10 A.D. two more marches into the interior of Germany, the Romans never again attempted to bound their domain by the Elbe, but clung to the neighbourhood of the Rhine. Tiberius was thus robbed in great part of the fruit of his campaigns ; but nothing can deprive him of the credit of being a chief founder of the imperial system in the lands of Europe. From the beginning of 11 , when he celebrated a magnificent triumph, to the time of the emperor's death in 14 'Tiberius remained almosi entirely in Italy, and held rather the position of joint emperor than that of expectant heir. Agrippa Postumus had proved his incapacity beyond hope, and had heen banished to a desolate island. In all probability Tiberius was not present when Augustus died, although Livia spread reports (eagerly amplified by Velleius) of an affectionate interview and a lingering farewell.
Tiberius ascended the throne at the age of fifty-six. What struck his contemporaries most was his absolute impenetrability. As was said of a very different man, the poet Gray, "he never spoke out." All his feelings, desires, passions, and ambitions were locked behind an impassable barrier, and had to be interpreted by the very nncertain light of his external acts. It is recorded of him that only once did he as commander take counsel with his officers concerning military operations, ana that was when the destruction of Varus's legions had made it imperatively mecessary not lightly to risk the loss of a single soldier. He was an unparalleled master of passive and silent dissimulation, and the ineritable penalty of his inscrutability was widespread dislike and suspicion. But behind his defences there lay an intellect of high power, cold, clear, and penetrating all disguises. Few have erer possessed such mental vision, and he was probably never deceived either about the weaknesses of others or about his own. For the littleness and servility of public life in regions below the court he entertained a strong contempt. It is a question whether he ever liked or was liked by a single bcing; but he did his duty by those with whom he was connected after a thorough though stern and unlopable fashion. As a general he commanded the full confidence of his soldiers, though he was a severe disciplinarian ; yet the men of his own legions greeted his accession to the throne with a mutiny. Tiberius proved himself capable in every department of the state more by virtue of industry and application than by genius. His mind moved so slowly and he was accustomed to deliberate so long that men sometimes made the mistake of deeming him a weakling and a waverer. He was in reality one of the most tenacious of men. When be had once formed an aim he could wait patiently for years till the favourable moment enabled him to achiere it, and if compelled to yicld ground he never failed to recover it in the end. The key to much of his character lies in the observation that he had in early life set before himself a certain ideal of what a Roman in high position ought to be, and to this ideal he rigidly and religionsly adhered. He may in ene sense be said to have acted a part throughout life, but that part had entered into and interpenetrated his whole nature. His ideal of character wae pretty much that of the two Catos. He practised sternness, silence, simplieity of life, and frugality as he deemed that they had been practised by the Fabricii, the Curii, and the Fabii. That Tiberins's character was stained by vice before he became emperor no one who fairly weighs the records can believe. The persuasion entertained by many at the end of his life that he had been always a monster of wickedness, but had succeeded in concealing the fact till he became emperor, has slightly, but only slightly, discoloured the narratives we possess of his earlier years. The clange which came over him in the last years of his life seems to have been due to a kind of constitutional clouding of the spirits, which made him what the elder Pliny calls him, "the gloomiest of mankind," and disposed him to brood over mysteries and superstitions. As this gloom deepened his will grew weaker, his power tended to fall into the hands of unworthy instruments, terrors closed in around his mind, and his naturally clear vision was perturbed.

The change of masters had been anticipated by the Roman world with apprehension, but it was smooth! $;$ accomplished. Tiberius was already invested with the necessary powers, and it may even be that the senate was not permitted the satisfaction of giving a formal sanction to his accession. Agrippa Postumus was put to death; but Livia may be reasonably regarded as the instigator of this crime. Livia indeed expected to share the imperial authority with her son. At first Tiberius allowed some recognition to the claim; but he soon shook himself

free, and later became estranged from his mother and held no communication with her for years before her death. The history of Tiberius's relations with other members of his family is hardly less miserable. Perhaps with any other commander than Germanicus the dangerous mutiny of the troops on the Rhine which broke out soon after Tiberius's accession would bave ended in a march of the discontented legions upon the capital. The perilous episode of Arminins caused the recall of Germanicus and his despatch to the East on an honourable but compratively inactive mission. The pride and passion of Agrippina, the granddaughter of Augustus and wife of Germanicus, tended to open a breach between lier husband and the emperor. In his Eastern command Germanicus found himself perpetnally watcheri and even violently opposed by Piso, the governor of Syria, who was suspected to have received secret orders from Tiberins. When Germanicus died at Antioch in 19 A.D., the populace of Rome combined with Agrippina in demanding vengeance upou Tiso; and the emperor was forced to disown him. The death of Germanieus was followed four years later by that of Drusus. These two princes had been firm friends, and Livilla, the wife of Drusus, was sister to Germanicus. Years afterwards it was found that Drusus had fallen a victim to the treachery of his wife Livilla, who had joined her ambition to that of the emperor's minister of state Sejanus. When Drusus died, Tiberius nominated two of Agrippina's sons as his heirs. But Sejanus had grown strong by nursing the emperor's suspicions and dislike for the household of Germanicus, and the mother and the princes were imprisoned an a clarge of crime. In his memoirs of his own life Tiberius declared that he killed Sejanus becanse he had discovered that he entertained a mad rage against the sons of Germanicus: But the destruction of Sejanus did not save Agrippina and her two children. The third son, Gaius Cresar (Caligula), lived to become emperor when Tiberius died in 37 .

Throughout his reinn Tiberius strove carnestly to do his duty to the empire at large ; his guiding principle was to maintain with an almost superstitions revercnce the constitutional forms which had been constrieted by Augustus. Only two changes of moment were introdnced. The imperial guard, hitherto only seen in the city in small detachments, was by the advice of Sejanus encamped permanently in full force close to the walls. By this measure the turbulence of the populace was kept in check. The officer in command of the guard became at once the most impertant of the emperor's lieutenants. The other change was the practically complete abolitiou of the old comitia. But the senate was treated with an almost liypocritical deference, and a pedantically precise compliance with the old republican forms was obscrved towards the senatorial magistrates. The care expended by Tiberius on the provinces was unremitting. His favonrite maxim was that a good shepherd shonld shear the flock and not flay it. When he died he left the subject peoples of the empire in a condition of prosperity such as they had never known before and never knew again. Soldiers, governors, ant oflicials of all kinds wero kept in wholesome dread of vengeance if they oppressed those beneath them or enconraged irregularity of any kind. Strict economy permitted light tazation and enabled the cmperor to show generosity in periods of exceptional distress. Public security both in Italy and abroad was maintained by a strong hand, and commerce was stimnlated by the improvement of communications. Jurisdiction both within and without the capital wis on the whole exurciced with steadiness and equity, and the laws of tho empire mere at many points improved. The social and moral reforms of Angnstus were upheld and carried further. Such risings against the emperor's authority as occurred within the lionan domain wero put down with no great difficulty. The foreign or rather the frontier policy was a policy of peace, and it
was pursucd with considerable success. With few exceptions the duties of the Roman forces on the bordera were confined to watch. ing the peoples on the other side while they destroyed each other. On the Rhine, at least, masterly iuactivity achieved tranquillity which lested for a long period.

The disrepute which attaches to the reign of Tiberius has come mainly from three or four sources, from the lamentable story of the imperial household, from the tales of hideous debauchery practised in deep retirement at Caprea during the last eleven years of the emperor's life, from the tyrany which Scjanus was permitted to wield in his master's name, and from the political prosecntions and executions whicla Tiberius encouraged, more by silent compliance than by open incitement. The otorica of immorality are recorded chiefly by Snetonius, who has evilently ueed a poisoned sourcc, possibly the memoirs of the younger Agrippina, the mother of Nero. Tiberius loved to shroud himsclf in mystery, and such stories are probably the result of unfriendly attempts to uplift the darkness. If history ventures to doubt the blackness of Theodora, that of Tiberins grows cootinnally lighter noder tho investigations of criticism. Suctomius makes tho cmperor's condition to have been one of mania, issuing frequently in the abandomment of all moral restraint. But in that case the atathority of Tiberius, which was as firnly upheld during the years spent at Capreæ as it had been carlier, sust have fallen to pieces and come to an end. With respect to Sejanus it is jupossible to acquit Tiberius of blame. If he was deceived in his favourite he must have been willing to be deccived. He conferred on Sejanus a position as great as had been held by Agrippa during the reign of Augustus, and the minister was actually, and all but formally, joint eroperor. Of the administrative ability of Sejanus there can be no question; but the charm aud secret of his power lay in the use he made of those apprehensions of personal danger which seem never to have been absent from his master's mind. The growth of "delation," the darkest shadow that lies on the reign, was in part a consequence of the supremacy and the arts of Sejanns. Historians of Rome in ancient times remembered Tiberius chiefly as the sovereign under whose rule prosecutions for treason on slight pretexts first became rife, and the hateful race of informers was first allowed to fatten on the gains of judicial murder. Augustus had allowed considerable licence of speech and writing against himself, and had made no attempt to set up a doctrine of constructive treason. But the history of the state trials of Tiberius's reign shJws conclasively that the straining of the law proceeded in the first instance from the eager flattery of tho senate, was in the earlier days checked and controlled to a great extent by the emperor, and was by him acquiesced in after a timo with a sort of contemptuous indifference, till he developed, under the influence of his fears, a readiness to shed blood.
The principal aut orities for the reign of Tiberius are Tacitos and Snctonius. The Anncls of Tacitus were not pnblished till pearly eigbty years after the death of Tiberius. He rarely quntes an suthority by vame. In all probability cetent he suabied himself of oral tradition; and of archives and original records he made some, but comparatively little, use. In bis history of Tiberins two influences were st work, in simost cqual strength: on the one hand he strives continuslly sfter fairmess; on the other the bias of a man steeped in senatorial traditions forbids hirn to attain it. Tacitus is certainly not among the bistorians in whom tur confidence grows by repeated reading. Sactonius was n hiographer rather than an historisn, and the sncient biographer was even less given to exhaustive inquiry than the ancient historian; moreover Suetonius was not gifted with great critieal racalty, thongh he told the trath so far as he could see it. His Lives of the Turelze Cosars was written nearly at the time when Tacitus was conposing the Annals, bnt was poblished a little inter. Vellcins Patcrealus is hy far the oldest suthority for any part of Tiberius's life. He had been an officer under Tiberius, and bo cnlogizes his old gencral enthusiastically,-fceling it necessary, howevcr, to do less than justice to the Rehicvements of Germanicus. To Velleius all defenders of Tiberius have eazerly appealed. In truth it is his silence alone which affords any external aid in repelling the charges of Tacitus and Scetonios, and the fact that Velleius puhlished his work in the lifetimo of his master deprives that sileoce of ita value. The eulogy of Sejanus whieh is linked with that of Tiberics must needs shale faith in the scrupulousness of the anthor. It is still douhtful whether Dio Cassius (whose History ended with the year 229) in his narrative of the reign of Tiberius is to shy-great extent independent nf Tacitus. In recent times a considerable rass of inscriptions has added to onr knowledge of the almintistration of this emperor. The chier accanat of Tiberius in Finglish is that contained in Dean Merivale's History of the Romans under the Empire Mr Bees,y has written on interesting defence of him in his Catiline, Clodius, and Tiberius. Tho best recent history of this period is Hermann Schiller's Ge schichte der römischen Kaisereeit (Gintha, 1883). Numerong manngraphs relating of the imperial sdministration of thic provinces by Tiberios have heen treatod by Mommsen in the firth volume of his IVistory of Rome, laanslated intn Iengich under the title of The Romax Provinces from Augustus so Iriodetian. (J. B. . K.)

TLBESTL. See SAHARs, vol. xoxi. p. 149. and Thabus

TIBET

TIBET, ${ }^{1}$ Thibet, or Tübet, an extensive and highly elevated region in the heart of Asia, comprising tablelands ranging from 10,000 to 17,600 feet aboye sea-

[^136]level. The Himalayan mountain ranges and the transverse ranges of upper Yun-nan constitute the southern scarp
itself, though only found there in an attenusted form. The following forms are also met with-in Chinese ennals $T^{\prime \prime} 1$ b-bat (5th cont) and
the Yun-ling Doountains of China the eastern scarp, and the Kuen-Lun (Kiun-Lun) ranges the northern scarp, towards Turkestan and Mongolia; on the west, where it narrows considerably, it merges into the Pamir tablelands. Its extreme length from east to west exceeds 1600 miles ; its breadth from north to south ranges from 150 niles in the rest to an average of 500 in central Tibet and a maximum of 700 in the east. The area of Tibet exceeds 200,0n0 square miles.

Much of Tibet is wholly abandoned to wild animals, and much is uncultivable and occupied only by various wandering tribes of nomads. The centres of the settled and
Tie-bu- ${ }^{\prime}$, T'u-bo-te (11th cant.) ; in Mongolian, Tiubet, Toost; in Arabic Tubset; Rabbi Benjamin (1165), Thibet; J. de Plano Carpioi (1247), Thabet; Rubruquis (1253), Marco Polo (1298), Tcbet; Ibn Batuta (1340), Thrbat ; Ibo Hankal (978), Al Biruai (1020), Odoric of Pordenona (c. 1328), Orazio della Penna (1730), Tibet. A 'libetan, arriving at Darchiendo from Lhasa, states that he comes from Teu-peu, meaniog High or Upper Tibet,-Stod-Bod in coutradistinction to SwerBod of Lower Tibet. The former expression, were it eupported by any ancient authority, might be regarded as tha etymological origin of "Tibet"; historical svidence, howerer, seems to iadicato another eource. The state of which Lhása is the capital is often called "Deba jang" or "land of the Dabas" (sdepa ljongs). The title of the tepa lama is familiar. Chiaesa records say that tha king of the coustry is called diba ; and Joh. Gruaber ioforma us that the king is styled devn or teva, and ia descensled from an ancient race of Tangut Tatars. Tha Chiness anoals of the T'ang dynasty record that Fanni Tubat, the historical founder of a state in the east of Tibet in 433, gave to his fominioa his surname of Tulat. This was a famons family name proper to a日versl Tatar dynasties which ruled io tha north aod northwest of China, and lelonged to the Sien-pi race, in the laagaage_ of which tubat meat "a coverlet." An appended logend atated that the fifth ancestor of Liluku, the founder of the couthern Liang dynasty and family and father of Fanai, derived the aurname of Tubat, which becams that of his family, from the fact that he was lorn in a coverlet while his mother Huyksha was aleepiog. However worthleas the legend, thers is complete aimilarity between the oams of the Tubat or Tobat Tatars and that of Tibet, and we may with considarable gafety take the latter word as derived from the former, the fact beiag that it was and is still extausively used in the aease of "great," "chief," among the Tatar tribea. Tibet, however, is not the name by which the modern Tibetans designats themselves and their country. Bod-pa, "s man of Bod," Bod-yul, "country of Bod," are tha expressions in curreat use; but what "Bod" means is nacertain. Hodgson has maintained that before the airival of Indirn teschers the peopls had no nama for themsalves or their country, and the presant Boil comes from tha Sanskrit B^{\prime} ot-an opiuion which, though inconaistent With the evidence collected about Tubat, is rather confirmed by a legeadary account. According to that acconnt, the country, which wes occupied by a race of mon aot yet emerged from primitive barbariam, was originally called Bod-rgyal, i.e., "Bod'e victory." The pecondary name then might be in its simple form Bod, a Buddhist hppellative auggested by the Sanskrit homonyme of -bat or $-b^{\prime} a t$, part of The name brought in by tha Tatar conquerors. Anyhow there is no occesion for the othar otymologies suggested, such as that from Euddba, or that proposed by Schiefner (t 'ub und p^{\prime} od, both meaning "able," "capsble"). An old name for Tibet in the native books is GJong-mar'-gyi-yul, "country of the red-faced men," во called apparently from the aucient national custom of painting the face red, a practica which was forbidden by Kiog Srong-btsan at the instance of his wife Wan cheog, a Chisess priacess. Among the Mongols Tibet was eimply called Barontala (the "right side"), in contradis. tinction to Dröntala (the "left side"), which was anoug them the name of Mlongolia. In China, during the Yuan or Mongol dynasty, it was called Wei-gze-Tsang, in which we recogniza the nemes of the two ceatral provinces of $\mathrm{DbUa}(\mathrm{U})$ aad Tsaog. Khachi, Khache, Khaschi, Fashi, are varions forms of a term which is often mat with in books as applied to a part of the platears of Tibet, and which cannot vithout difficulty be iclentified in positiva gaography. Wa taks it to bs aimply a revival of tha old name of tha 'r'angut or Hia kingdom, the Khashi or Khoshi of the Moogols (982-1227), on the north-east of Tibet, on the west of the Hoaug ho, whence Ho-ai in Chinese history, and perhaps the origio of the nama. In the 11 th century Milaraspa mede use of the term K'aché for Mussulman; Huc and Gabet hava reported the usa of the cause expression io the ceotral provinces with a similar accaptation. A popular ety $10 \operatorname{logy}$ has coafounded it with the words K'a-ché for K'a-chen, literally " lig nouth," which is now supposed to be its meaning when applied to Mohammedaos. Kashair is also cslled K'a ché, from tha fact that it is under Mohammedan rule, beys Jaeschke; but, as this has been the case only since 1605, thera is grest probability that here tha term ia simply used as as abridged form of Kashmir.
(T. DE L.)
agricultural population lie to the south, iu a region named Bod-yul (meaning Bod-land) by the iulabitants, who are called Bod-pas ; by the Hindus it is calied Bhot, and by the Chinese Si-tsang. The greater portion of this regiou is governed, under the supremacy of China, by lamas and syalpos, eccle.iastical and lay Borl-pas, the principal seat of gorerument being at Lhása, the chief city of Bod-yul. Portious are subject to Kashmir and Nepal, and to independent chieftains, and portions are directly subject to China; but the Bod-pa ethnological element prevails nore or lcss throughout.

Tibet was long a terra incognita to Europeans. It is difficult of access on all sides, and everywhere difficult to traverse. Its great eleration causes the climate to be rather arctic than trojpical, so that there is no gradual blending of the climates aud plysical conditions of India and Tibet, such as would tend to promote intcrcourse between the inhabitants of these neighbouring regions; on the contrary, there are sharp lines of demarcation, in a nountain barrier which is scalable at only a few points and in the social aspects and conditions of life on either side. No great armies hare ever cros ed Tibet to invade India; even those of Jenghiz Klan took the circuitous route via Bokhara and Afghanistan, not the direct route from Mongolia across Tibet. Thus it was no easy matter Earoo for the early European travellers to find their way into perns and explore Tibet. Friar Odoric of Pordenone is sup- 1 trave
posed to have reached Lhasa circ. 1328 , travelling from Cathay; three certuries afterrards the Jesuit Antouio Andrada, travelling from India, entered Tibet on the west, in the Manasarowar Lake region, and made his way across to Tangut and north-western China; in 1661 Fathers Grueber and D'Orville travelled from Peking via Tangut to Lhassa, and thence through Nepal to India; and during the first half of the 18 th century various Capuchin friars appear to have passed freely between Delhi and Zhása, by way either of Nepal or Kashmir. The Airst Englishman to enter Tibet was George Bogle, iu 1774, on an embassy from Warren Hastings to the tashi (tcshu) lama of Shigatze. In 1811 Thomas Manning mado his way from India to Jhása; he is the only Englishman Who has succeeded in reaching the sacred city, and he had soon to leave it. During the 19 th century Europeans have been systematicaliy prevented from entering the country or speedily expelled if found in it. In 1844-46 the French missionazies Huc and Gabet made their way to Lhása from China, but were soon deported back aganIn 1866 the Abbe Dergodins travelled through portio of eastern Tibet and reached Chiamdo (in iilián.), butit was prevented from approaching any closer to Lhása. Last of all the Russian Colonel Prejevalsky succeeded in exploring portions of northern Tibet, but was unable to penetrate southwards into Bodland.

Geographers have long been in possession of maps of Tihet, compiled from surveys executed early in the 18 th century loy lamas, under instructions from the Jesuit fathers who made a gurvey of China for the emperor Kang-he. The lamas' naps were the loasis of D'Anville's Allas, published in 1733 , and wers employed Jy Klaproth in constructing his map of Asia in 1824 ; but they are generally very meagre, only reliabla in the vicinity-of the principal roads, and occasionally very misleading. They must have licen compiled at hest from rude estimates of distance and direction, and in aoms parts from mere hearsay or conjecturc. They ars, however, supposed to have been hased on astronomical determinations of position; but this is improhable, for the latiturles of such important places as Lhása and Pátang are 30 to 60 niles in error. Our knowledge of the geography of the country is complete only for portions of western Tibet, which are aubject to the maharajah of Kashmir, and hava been regnlarly surveyed. This knowlerlge has been largely supplemented during the last twenty jears by the work of natives of India-the so-called trans. Himelayan cxjlorers of the Iadian Survey, notably Pandits Nain Singlı and Krislun ($A-K$) - Who have been traincd to calry route surveys through regions which they may, but Europeaus may not, euter.

Tibet is commonly divided into two parts called Great and Little Tibet, the former Iying between 102° and 79° Es long., the latter between 79° and 74°. Great Tibet is broadly divisible into a western region, in which there is a considerable preponderance of tableland over hill and mountain and of lake basins over river basins, and an eastern region, in which the reverse holds good and the surface of the ground is so greatly corrugated that the natives call it rong-rtsub, "a rough country full of ravines." In Little Tibet the Himalayas converge towards the KuenLun, and the breadth of the plateau meridionally diminishes to less than a fourth of what it attains in Great Tibet. The entire region may be broadly divided into three iongitudinal zones, increasing in elevation from south to north, viz., a southern zone, which contains the centres of the settled and agricultural population; a middle zone, comprising the pasture lands of the Bod-pa nomads; and a northern zone, for the most part abandoned to wild animals, but partly occupied by tribes of Turkic and Mongolian nomads. The southera and middle zones comprise Bodland proper and are divided into four provinces, viz., Nári (Ngari, Ari) on the west, between 74° and 85° E. long.; Khám, otherwise Do-Khám, on the east, between $92^{\circ} 30^{\prime}$ and 102°; and in the centre, Tsáng, adjoining Nári, and U or Us (otherwise Y or Wei), adjoining Khám; the two central provinces are commonly called U-tsáng, as one. A considerable belt of the middle zone is known as the Hor country. The middle and northern zones embrace the greater portion of the region known to Bod-pas as the Cháng-táng (Byán-táng, Ján-táng) or "Northern Plain," which, however, protrudes southwards and abuts upon the Himalayas from 80° to $85^{\circ} \mathrm{E}$. long., thus interposing a nomad population between the settled populations to the east and the west. The northern zone merges on the west into the Pamir tablelands.

The tableland of Tibet attains its maximum elevation, 17,600 feet above sea-level, on the 79 th meridian, in the Lingzi-tang plateau of the northern zone; thence there is a gradual fall east, west, and south, the plateau level on the 97 th meridian being about 13,500 feet in the northern zone and 10,000 in the southern." Between the 82 d and 90 th meridians the northern zone is known only from the maps of the lamas' surver, which indicate a surface slightly corrugated with hills and containing numerous lakes, some of great size, but no rivers of importance.

The river basins in this zone apparently commence to the east of the 90 th meridian and from them issue the Di-chu ${ }^{1}$ (Chinese Kin-sha-kiang), whose headwaters unite at Di-chu Rab-dun, in $94^{\circ} 30^{\prime}$ E. long.; the Chiamdo river or Lan-tsan-kiang; the Hoang-ho, in about 96°, which fows through the Kiaring and Orin lakes (13,500 feet above the sea and each exceeding 80 miles in circumference) and passes northrards out of Tibet through the Kuen-Lun; and the Ja-chu or Yalung-kiang, also in about 90° E. long., which flows southwards through eastern Tibet. In the middle zone a system of lakes on the 90th meridian gives birth to the Nag-chu, which becomes the Sok-ctru and lower down the Giama-Nu-chu-known to the Cbinese as the Lu-tse-kiang-and, trending southwards, winds round tho eastern extremity of the Himalayas. In the lorer zone the Indus and the Yaro-tsanpo rise on either side of the 82 d meridian and flow in opposite directions parallel to the Himalayas, and then, passing through openings in those mountains twenty degrees apart in longitude, enter India on the extreme east and mest. The Lohit Brahmaputra rises behind the eastern Himalayas and flows

[^137]south-westwards into India. The Giama-Nu-chu, Chiam-do-chu, and Di-chu flow southwards into Burma and Yunnan, through closely contiguous valleys beiween a system of meridional ranges which project as spurs from the Tibetrn plateau. Test of 82° a single water-parting between north and south-that of the Mus-tagh and Karakoram, some= times called the Turkic-separates Indo-Tibetan from Turko-Tibetan waters; east of that meridian there are longitudinal water-partings between the basins of the several rivers already mentioned.

The Himalayan Mountains, which constitute so considerable a portion of the southern scarp of Tibet, consist of a succession of longitudinal chains, running in general parallel to each other along the glacis of the plateau. The: 9 chains are much higher on their southern than on their northern faces, and are connected in some parts by tracsserse ridges, but in other parts are broken and interruptel by fissures and valleys. The principal chain is the one of high peaks covered with perpetual snow which culmizates in Mont Everest, 29,000 feet above the sea. This chain may be regarded as the geographical boundary between Tibet and India. In some parts it is the water-parting; but at the several points where its continuity is broken the water-parting recedes to an inner chain on the plateau, and basins aro formed between the two chains, the waters of which descend in rivers to the plains of India. The plateau is a region of plains and wide open valleys of little depth; the scarp is a region of mountains and narrow confined valleys of great depth. The narrow valleys of the scarp, being lower, are warmer and more farourably adapted for cultivation than the broad valleys of the plateau.

Higher than these last are the plains of the Cháng-táng, Chang* which are, for the most part, too high and cold for any tíng but pastoral uses. All such tracts the inhabitants call rand chang-tang, though the werd strictly signifies "the Northern Plain"; and all tracts which contain valleys warm enough for cultivation they call rong (signifying a ravine or narrow valley or cleft in a hill), but more particularly the lower and warmer valleys which produce crops twice in the fear; the rord is also commonly employed to indicate a tarm country. The alluvial beds in the valleys are composed of the debris of the surrounding rocks, laid out in horizontal deposits, which in course of time have become furrowed into gigantic ravines with a succession of narrow terraces in steps on each flank. It is on the existing lower allurial beds and the remnants of higher beds that cultivation is carried on, in plote which are usually well watered and very fertile. The sharp needle-peaks, which are highest of all and bare of soil, but covered with perpetual snow, are met with most frequently in tracts of rong, and the rounded hills coated with grass to altitudes sometimes exceeding 16,000 feet in tracts of chang-ting. The forest-clad mountain slopes which are occasionally met with occur chiefly in the rong. The general direction of the hill and mountaiu chains is east and west, but north-west and south-east in we stern Tibet, north-east and south-west in the province of U, and north and south in eastern Tibet. The peaks rise in mans parts to between 20,000 and 25,000 feet-in the Mus lagh range to 28,250 -above the sea-level, but rarely to more than 10,000 , and often to not more than a few hundred, feet above the general level of the plateaus from which they spring. The priscipal water-partings in some dis tricts follow the crests of low ridges and gentle undulations which are of barely appreciable elevation abore the surface of the ground.

Nári, the western province of Bodland, is divided into the sub-provinces of Ladak and Balti on the west, between 75° and 79° E. long., now a part of Kashmir : Khursum.
between 79° and 82°, conterminous with the Himalayan provinces of British India; and Mang-yul or Dokthol, between 82° and 87°, conterminons with western Nepal. The last two are under the government of Lhása. Western Nári is bounded on the sonth by that portion of the Himalayan chain of snow-peaks which stretches in almost a direct line north-west from the Manasarowar Lake region to the Nanga Parbat peak (26,620 feet), at first facing the plains of the Punjab, then passing north of Kashmir. The provinces appertaining to Kashmir have already been described in the article Ladak and Balti (q.v.). The Karakoram chain, although its principal pass is 18,500 feet above eea-level, nowhere rises very high above the tableland. It constitutes a portion of the water-parting between India and Turkestan, separating the Lingzi-tang plateau, the highest in all Tibet, from the broad and open valley of Chang-chenmo; it has been traced eastwards to the meridian of 82°, but no farther.

Khorsum is mainly chang-táng, but has some upland cultivation round the capital, Rudok, and in the Gartang valley, and lowland cultivation in the rong of the great plateau (120 miles long by 15 to 60 broad) of Guge or Hundes, the upper basiu of the Sutlej. In this province lie, within the small area of a square degiee, the sources of four great rivers-the Indus, the Yaro-tsanpo, the Sullej, and the Karnali-the sacred lakes of Manasarowar and Rakas 'l'al, 15,300 feet above the sea and each 50 miles in circuruference, and two famous mountains, Nimo Namling (25,360 feet) to the south, believed by the Tibetans to be their lighest mountain, and to the north the sacred Kailas Cangri (21,830 feet), the Kantysee of the lamas' survey. From the Kailas Gangri a chain of hills stretches to the north-west, separating the upper basins of the Sutiej and the Indus; to the north of that another chain, running east and west, culminates in the Aling Gangıi peaks (24,000 feet) and separates the Indus basiu from the Pangong Lake (100 miles long, from 3 to 7 broad, and 14,000 feet in altitude), near which Rudok is sitnated. Roads pass from Ladak to Lhása through the plains of Rawang and Sarthol, the gold-fields of Thok Jalung and Thok Daurakpa, and the Hor country.

Mang-yul, or Dokthol, contaius the upper basins of the Yaro-tsanpo-here known as the Nári-chu-aud its principal affluents, the Cha-chu and the Charta-tsanpo. The province is wholly Chang-t负g and its population uomadic, the capital, Sarka Jong, being merely a good-sized village.

The common border of the provinces of Nári and Tsang falls nearly on the 87 th meridian. Here the Cháng-tang recedes from the Himalayas, and its southern scarp, trending north-east, forms the upper fringe of tracts appertaining to U-tsang that are capable of producing a single crop annually. This region constitutes the most important portion of the basin of the Yaro-tsanpo, for it contains the chief towns and monasteries of the settled Bod-pas. Cultivation commences on a slight scale where the river enters Tsang on the west. The first town of any importance is Junglache (13,600 feet), on the right bank, with a large monastery. Thence goods may be taken down the river for some distance by boats of leather over a wooden framework, light enough to be curried back overland. Eighty-five miles lower down, also on the right bank, are the city of Shigatze or Digarchi (12,000 feet) and the great monastery of Tashilunpo (Teshu-Lumbo), the residence of the "tashi lama," one of two spiritual incarnations of equal rank, of which the other, the "dalai lama," resides at Lhása; the monastery contains 3500 lamas. Between Junglache and Shigatze the river receives the Raka-tsanpo from thë changatíng on its left, and the Sakja-Jong-chu from that on its right. The latter descends from the Himalayan water-parting past the monastery of Saky\&
(13,900 feet), which is surrounded by cultration and governed by a chief lama called the "sákya-gángma," who is held in considerable reverence as an avatar. At Shigatze the Yaro-tsanpo receives the Pena-Nyang-chu from a valley to the south-east which contains the towns of Pena-jong and Gyangtse-jong (13,000 feet), and numerous monasteries and villages, and through which passes the main road from Bhutan to Shigatze travelled by Bogle in 1774. A little lower down it receives from the left the Shiang-chu, which rises in the Ninchen-thangla range and flows past the town of Namling (12,200 feet, 200 houses), where sheep are employed as baggage animals, the country being too cold for donkeys and the roads too stony for jaks. Then at Shangpa (Jagsa) it receives trom the right the Rong-chu from the famous Yamdok-tso or Scorpion Lake to the sonth-east. This lake is 120 miles in circumference, $\mathbf{1 3}, 800$ feet above the sea, and is surrounded by villages and monasteries; its scorpion claws embrace a peninsula which rises above 16,000 feet, is grassgrown to its summit, and embosoms the Damo-tso, a sacred lake, 24 miles round and 500 feet above the main lake, which is expected some day to rise and destroy all animal life by a flood. Here the roans from India vir Bhatan and from Shigatze to Lhás̊ converge, and after crossing the Khamba-lá (15,000 feet) strike the Yaro-tsanpo at Chiak-jam-chori (= "the iron bridge at the rocky bank"). The river in its course from Shangpa down to this point is unnavigable, passing over rapids between precipitous bills; there is no road on either bank. A little below the bridge it receives from the left the Ki-chn, the river of Lhdsa (q.v.), the chief city of Borllanc. Below the junction of the Ki-chu the Yaro-tsanpo cerstinues its castward course through a broad and well-peopled valley. It is crossed at Chetang by a ferry ou the road from Lhása to Tawang in Bhutan wiu the Yarlvag-chu valley (right bank), which is said to be the pleasaratesl and most populous in Tibet; fruits grow in profusion at its lower extremity and the hills are forest-clad. At Chetang the river is 350 yards broad, 20 feet derp, and 11,000 feet alove the sea, and has a sluggish current. On crossing the meridian of $92^{\circ} 30^{\prime}$ E. it passes out of the province of U into that of Khám and enters its eastern basin. After traversing the Eastern Kongbo (Khombo) district, it trends north-east for 100 basin of miles-in general parallel with the contiguous Kongho ranges and the distant Nincheu-thangla-and on reaching 94° turns abruptly to the south. Its course has been explored 20 miles bolow the bend, to Gya-la-Sindong (8000 feet), but no farther. The basin is bounded on the north and east by the continuous plateaus of Lharugo, Arig, Pemba and Lhojong, Pasku, Dainsi, and Nagong, and on the south by the inner. Himalayan water-parting. Numerous tributaries join the river from both sides, but little is known of them. Those from Kongbo, Lharugo, and Arig are said to unite and join it a little above Gya-la-Sindong, and one from Nagong a little below. This last rises near the Ata-Gang-la, a pass over the Himalayas between the Nagong plateau and the Zayul district, and is said to be on the direct road from Lhása to Zayul via Gya-la-Sindong; it is probahly joined by the Kenpu river of the lamas' survey, which rises in the southern scarp of the I'emba-Lhojong plateau and probably flows through the Potod and Pomed districts of Khám. The independent Lhoyul country lies to the south of the Nagong-chu (lit. "black water"). The region is generally of a comparatively low elevation, is said to have much more of rong than of cháng-táng, and probably contains much more forest and luxuriant vegetation than any other part of Tibet north of the Himalayas.

The lawer course of the Saro-tsanpo has long been a matter of controversy between English and French geographera: the former
have maintained, in accordance with information from natives of Tibet and Assam, that it enters the Assam valley and is the principal source of the Brahmaputra riser, of which the Lohit Brahmaputra river is the eastern source; the latter have maintained, on the authority of Chinese geographers, that it flows into Burma and is the principal source of the Iramadi river. But now its eastern basin has been explored, and the Lohit Brahmaputra has been found to have its sources in a rance bordering the Giama-Nu-chu; the Yaro-tsampo must therefore mecessarily pass into Assam, and measurements of the discharges of the principal rivers entering Assam from the nortle conclusivcly identify it with the Dihong. That river, which receives the Lohit Brahmaputra a little below Sadiya (450 feet ahove the sea), has been explored upwards into the Himalayas to a point within 100 miles of Gya-la-Sindong; but as yet nothing is known of the connecting channel, excent that it must hare a fall of about 7000 fect, or as much as the entire fall of the Yaro-tsanpo in its upper course of 900 miles.

The Tibetan basins to the south of the Taro-tsanpo which are included between the Himalayan chains of water-parting and of high snow-peaks are the Bheri, the Kali Gandak, and the Buria Gandak, subject to Nepal ; then the following, which are subject to Lhása:-(I) the Tirsuli Gandak, on the direct road from Kathmandu to Dokthol via Kirong (9700 feet); (2) the Bhotia Kosi, through which the road from Kathmandu to Shigatze passes via Nilam Jong or Kuti (13,900 feet) into (3) the Arun-Barun basin, 120 miles by 30 , which embraces the Dingri Maidan and Shikar Jong plateaus and the great Chomto Dong Lake (14,700 feet); this same road, after passing Sikkim and western Bhutan, where the chain of high snow-peaks, including Kanchinjinga (27,815 feet), is the water-parting, traverses (4) the Lhobra, (5) the Cha-yul, and (6) the Mon-yul basins, which are also crossed by the road between Chetang and Tawang. East of the 93 d meridian the height of the peaks of the outer Himalayan chain falls to about: 15,000 feet; the inner line of water-parting recedes northwards, and with it the boundary of Lhása rule. The included basins are occupied by independent semi-sarage tribes,Miris, Aborz, Mishmis, \&c. ; but about the 97 th meridian Lhása rule again asserts itself. The mountains again rise to a great height in the Nechin-Gangra range, the easternmost Himalaya, which terminates about the 98 th meridian in spurs thrown off to the north and south, parting the waters of tho Lohit Brahmaputra and the Giama-Nu-chu. The southern spur bends westwards in horse-shoe fashion round the Zayul basin, and then merges into the range which separates upper Assam and eastern Bengal from Burma. Lhésa rule extends over Zayul, and for a short distance down the ralley of the Giama-Nu-chu, embracing some tracts which lie outside the geographical limits of Tibet, as lower Zayul, where the elevation falls below 4000 fect and the climate is so warm that criminals are sent there from Lhása as a punishment.
The Giama-Nu-chu is called hy the Chinese the Lu-kiang or Lu-tsc-kiang. Its course is known down to obout $27^{\circ} 90^{\circ} \mathrm{N}$. lat., a few marches below Bonga, on the left bank, where the Abbé Desgodins establiglacd a mission etation temporerily; but mothing certain is known of its lower course. It is generally believed to be identical with the Salwin river, which the Chinese also call the Lu-kiang; but the sinilarity of name is not conclusive of identity, for the Lin comntry covers a large area, and its neme may be given to e sccond river rising among the Ly-su and Lu-tse tribes to the south. Nothing certain is knowin of the Salwin ehore $25^{\circ} \mathrm{N}$. lat. ; where it is crossed on the road from Tali-fu to Bano, it is almost certainly of too small a volume to hare its sources farther off than, say, 250 miles in the southern Tibetan scarp, end not far away in the heart of Tibet. There is a considerable probability that the Giama-Nuclill is the cource of the Irarredi, and thus thet Chinese geogrephers have been right in assigning a Tibetan origin to that river, though wrong in identifying it with the laro-tsanpo.

The Daynl plateau, with the lofty mountams of Kokarpo to tle north near Dayul (11,450 feet) and Dokela to the sontlı meny Bonga, lies betreen the Giama Nu-chu and the Cliando or Lan-tsan-kiang; the latter river is believed to become the Mckang of Cambodia. The Ou-kio river of the dul心 Descrodins rises in an important valley between
the Giama-Nu and Chiamdo rivers and, flowing past Dayul, joins the former above Bonga. Next comes the Makhani plateau, between the Chiamdo and the Di-chu, of whicls the chief town (II,900 fect) is called Gartok by Tibetans and Kiangka by Chinese. East of the Di-chu or Kin-shikiang lie the plateaus of Batang, Litang, and Darchendo, which, though geographically and ethnologically Tibetan, are directly under China. The last two are separated by the Ja-chu, which is known as the Yalung in its southerly course to join the Kin-sha; the united streans flow east wards throngh China as the Yang-tse-kiang or Blue river.

The western Hor country lies to the north, on the direct route between Ladak and Lhása; it is a region of extensive grassy plains and numerous lakes, some of great size, ar.d occasional hill ranges, which, though often snow-covered, are of no great elevation above the tableland. It is inhabited by nomads-Cláng-pas of local origin and Khánpas from the east-and occasional communities of golddiggers and of traders in salt and borax, which are plentifully found on the margins of the lakes. Thok Daurakpa (15,300 feet), the centre of a large gold-field, is the chief settlement. Within a remarkable basin, surrounded by high hills and enclosing the great Dangra-lim Lake and a cluster of small but well-built villages, Ombo, are lands which produce a profusion of barley at an altitude of 15,200 feet, - a unique instance of cultivation at so great a height, no other cultivation occurring within 300 miles on either side. The Tengri-nur or Nam-cho, 150 miles in circunference and 15,350 fect above the sas, lies to the north-west oi Lhása; and beyond it there is said to be a still larger lake, the Chargut-cho, and numerous smaller lakes, to one or more of which the sources of the Giama-Nu-chu may perhaps be traced, though as a rule the lakes in this region have no outlet. The Ninchen-thangla range lies betreen the Tengri-nur and Lhasa; it is considered by some writers to rival the Himalayas, but is probably not more than 300 miles long nor anywhere higher than 24,000 feet above the sea.

The Cláng-tang attaine its greatest width (over 500 The miles) on the meridian of 55°; north of Lhása it contracts Ching to 400 miles, and is probably narrowest (140 miles) on the meridian of 97°. It is covered to a very considerable extent t_{2} probally everywhere below 16,000 feet, with a succulent grass, which forms from May to August the softest of green carpets and furnishes an abundance of grcen pasture. Willow and tamarisk are occasionally met with on the margins of the lakes; but as a rule there is little mood or scrub of any kind, and cultivation only in rery exceptional localities, such as Ombo. Myriads of wild animals -chiefly the yak and the antelope, but also the ass and the caniel-roam over the entire region, but mostly congregate in the uninhabited northern portion; their argols furnish a plentiful supply of fuel, without which it would be impossible for travellers to cross the country, as there are stretches of hundreds of miles in which no other fucl is procurable. As the Cuing-tang narrows to the east, its surface becomes corrugated with chains of low hills. Here too there is more marsh land than on the west the Odontala plateau at the sources of the Hoang-ho river is described by Prejevalsky as one rast bog in summer, during the prevalence of the south-west monsoon from the Indian Ocean. The openings between the meridional hill ranges to the south permit the rain clouds to pass up to much higher latitudes before discharging their moisture than on the west, where they are faced by the great longitudinal ranges of the Himalayas.

The Kuen-Lun has been identified, geologically, by Stoliczka, as far mest as the Victoria Lake on the great Pamir, in 74° E. long.; it has been snrvejed between 11 and 8%, where it rises to more than 22,000 feet, and
towers above the plains of eastern Turkestan．To the east it is known for some distance as the Ioguz－Daran（Eleven Passes）rango；Prejevalsky observed a prominent peak （Jingri， 20,000 feet）on the 90 th meridian，east of which sucoessive portions are known as the Angirtakshia，Shuga， Namohon，Burkhan Budha，and Dzun－mo－Lun ranges．The rivers flowing north through openings in the Fuen－Lun are generally small，with the excention of the Hoang－ho．East of the 85th meridian the Kuen－Lun constitutes the chord of an are formed by the Altin Tagh，Nan－shan，and Koko－ nur ranges，which project northwards and border the plains of the Lob－nur region and the Chinese province of Kan－ suh；several hill ranges and some great plateaus－notably those of Chaidam or Tsaidam－are comprised between the arc and the chord，and the region generally is closely allied to Tibet in its physical aspects．Occasional peaks rise to considerable altitudes and are covered witl perpetual snow ； the plateaus form a succession of steps ascending from the plains of Gobi to the Tibetan plateau．

Darchiendo，called Ta－chien－ln by the Chineso，on tho extreme eastern boundary of Tibet，is the principal emporinm of the trade between that conntry and China．Thence tvo important roads lead to Lhása；one called the Júng－lám or＂official road＂（935 miles long），tbe other the Cháng－lám or＂northern road＂（ 890 miles）．Tbe former，which is the more direct，is the post road and that by which officials travel between Lhása and Peking；but it crosses much rugged and difficult country．The other is preferred by traders，as being less difficult and less harassed by officials，and mostly passing over plains with on abundance of pasture for their haggage animale．Tho former has long been known from the pub－ lished travele of Huc and Gabet and the embassies from Nepal to China，and its eastern section，from Batang to Iarchiendo，has been traversed by several Europeans of late years．The latter lies in regions in eastern Tibet into which no European has yet penetrated， but which were recently crossed by Pandit Krishns from orth to eonth ；they belong to the province of Khám，which appears to be oplit up into a number of districts，each governed by its own gyalpo or chieftain，who in somo instances is subject to Lhasa，in others to China，but not unfrequently is independent of hoth．Darchiendo itself lies iu the Minia（Miniak）district，from which the Chang－ lám passes through a succession of petty districts，Tau，Dango，Dau， and Rongbacha or Horko，skirtiog Niarong（Cyarung？）．The inhobitants of this last are said to have conquered the neighbouring districts and to have even braved the Chinese，but at last to bave boen won over to Lhása by bribery．Rongbacha lies in tho ralley of the Ja－chn and contains the large town and monastery of Kanzego （ 2500 honses， 2000 lamas ；10，200 feet above the sea）．Beyond it lies，in the valley of the Di－chu，the district of Dar－ge（De－gue）， said to be one of the richest and most populous in all Tibet，con． taining towns in which tho best jerellery，saddlery，guns，and ewords are manufactured．The Chang－lám passes through Dar－ge up to Kegudo（11，800 feet），where it meets roads over the Chang． tang from Chaidam on the north and the Koko－nur district in the north－east．Very little is known of the country betmeen the Cháng－ lám and the frontiers of China；it is called Sifan or＂the country of the western barbarians＂by the Chinese；to the north are the districts of Chiamogolok and Banakhasum，inhebited by marauding tribes，and lower down are the Amdo and Thochu districts，on the borders of tracts occupicd by the Manchu tribes of Sze－chuen （China）．From Kegudo the Cháng－lam trends westwards over the eastern Hor country，all chang－tang，for 300 miles．The ronte has not yet been explosed，but probably passes through the pasture． lande of the Sok－pas；on reaching Lake Chomora it turns south－ wards，thon passes the monastery of Shiabden（ 14,930 feet），a notable resting－place for caravans，crosses the lower scarp of the Cháng－táng by the Lani pass（ 15,750 fect），and finally descends into the Lhása platcau．
The Jung－lam or official road from Darchiendo passes through Litang（ 13,400 feet ； 2500 houses）and Latsog（ 8150 feet； 2000 houses）to Gartok or Fiangka，crossing en route the Yalung and Kin－sha rivers；thence it proceeds up the valley of the Chiamdo－ chn or Lan－tsan－kiaog，and has been traversed by the Abbé Desgodins via Dayag（his Tchraya）to Chiamdo（his Tchamouto）． He saye，＂To get an idea of the congguration of the ground let any one take a sheet of parchment，crumple it in his hands into many creasee，and then spread it ont on a table，and he will obtain s roap in relief，furrowed with depressious and steep slopes and presenting very little flat surface．＂Cbiamdo is the chief town of the proviuce of Khám，and，being considered a point of great strategic importance，is atrongly garrisoned；it las a large monas－ tery，containing 3000 lamas．It is situated at the junction of tro （ivers，which are frozen in wincer；but in summer the ralleys are
highly cultivated．Thence the Jung－lám proceeds south－west to the bridge of Shang－ye．Jam（Kia－yu－kiao）over the Giama－Nn－chn －here called tho Sok river－and then ascends to Lhojong（ $13,1 \leq 0$ feet）－tbe Lourondson of the lamas＇survey－where it is joined by the road from Gartok via Zayul and Nagong．It then trends westwards over the plateans alrealy mentioped as bordering the eastera basin of the Yaro－tsanpo，passes occasional small villages， monasterics，and lakes，crosses two lofty passes－the Nub－Gang－lá （ 17,940 feet）and the Tola－lis（ 17,350 feet）－descends to the little town of Giamda（ 10,900 feet）in Kongbo，and，passing out of Khán into U，enters the Lhása plateau．From the capital it is continued over a distance of about 900 miles to the westera limits of Khorsum， crossing the Iaro－tsanpo at the Chiak－jan－chori bridge and recross－ ing at Junglache，midway passing through Shigatze；it then tra－ verses a great breadth of cháng－táng and crosses the meridional water－parting at the Muriam－la（ 15,500 feet）．There are twenty－ five etaging places called tarjums，from 20 to 70 railes epart，be－ tween Lhása and Rudok，with accommodation－sometimes houses， but more generally tents－for abont 200 men ；they are under the charge of a jalno，who is bound to provide jaks and other beasts of burden and horses for carrying the mails，impressing them from the nomads eucamped near the tarjums．The road is generally well defined：loose stones are cleared away in the narrow defiles，and piles of stones，surmonnted by flags on sticks，aro erected at places on the open stretches of tableland where the track is liable to be lost．
The climate of Tibet differs greatly in different parts and at different seasons of the year．In western Tibet the frost is perna－ nent from October to April，and the lakes and rivers down to 8000 feet are frozen every winter；at 15,000 feet the thermometer falls below the freezing－point every night ；and at 20,000 feet there is probably perpetual frost in the shade．The meau monthly tempera－ tures and ranges of temperature，embracing from six to ten yeara＊ observations at the meteorological ohservatory at Leh（in $34^{\circ} 10^{\prime}$ N．lat．，height 11，540 feet），are as follows in degrecs Falrenheit ：－

폄 웃			号	号	：	者		$\begin{aligned} & \stackrel{\text { ® }}{\text { a }} \\ & \text { ल̈ } \\ & \text { H } \end{aligned}$	S 或 N	鵾	离
Jan．	$18^{\circ} \cdot 0$	$28^{\circ} \cdot 5$	April ${ }^{\prime}$	$2^{\circ} \cdot 0$	S1． 0	July	$61^{*} \cdot 1$	$31^{\circ}-2$	Oct．	$41^{\circ} \cdot 3$	80－．5
Feb，．．	$21^{\circ} \cdot$	$30^{\circ} \mathrm{O}$	May	$48^{\circ} \cdot 6$	$30^{\circ} \cdot 1$	Aug．	$52^{\circ} \cdot 6$	$31 \cdot 3$	Nov．	$32^{\circ} \cdot{ }^{\circ}$	$20^{\circ} \cdot 7$
March	$33^{\circ} 0$	$28^{\circ} \mathrm{O}$	Juno	$56^{\circ} \cdot 4$	\＄1－8	Sept．	$52^{\circ} 8$	31^{-4}	Dec．	$24^{\circ} \cdot$	$25^{\circ} \cdot 2$

At Lhasa（in $29^{\circ} 39^{\prime} \mathrm{N}$ ．lat．，height 11，800 feet）the mean tem－ peratures observed by tho pandits were 36° in Fcbruary and March and 61° in June and July．Southern Tihet is described as being delightful in summer，－the land covered with vegetation，streams flowing in every valley，and all nature bright，sparkling，and fresh． But in winter snow and frost reign supreme；all vegetation is dried np ；the lakes and rivers are frozen；tho roads and footpaths are paved with ice；and cold cutting winds sweep across the surface of the land．In northern Tibet Prejevalsky found＂a terrible climate＂in summer at 14,000 feet：in the second half of May wintry snowstorms were not unfrequent and the frost by uight reached -9° Falir．；and in June and July there were frosts $\left(23^{\circ}\right.$ Fahr．）every clear bight．In the winter the cold is intense；Huc and Gabet，crossing the Di－chu river in 1846，found a great herd of y aks entombed in ice，the river having frozen whilst they were swimming across．
（J．T．W．）

Industry，Trade，and Government．

Tho industrial arts are at a somewhat low ebb，though in metal．Industry founding the natives display a certain amoment of alility and taste． Their statues and small bells are，however，only copies of Indian models．They use the iron from their mines，which is very good． for making excellent blades for sabres and other weapons．They are very fond of precious stones，but do not know how to work them．Their chief industries are comected with wool，the great and inexhaustible staplo of the country．Weaving is geuerally the work of women．－The cloth usually camployed for summer garments is the lwa－wa，which is dyed with madder or indigo，and sold in pieces cight or tel inches in width and abont twelve yards in length．Another sort of cloth largely sold is the chro or pring， of a leetter quality of wool，fincr and thicker，which is ofteu mamu－ factured in DbLsa（U），whence it is sometines called DbUs p＇rig； it is generally dyed dark red．T＂crma is a superior kind of thin woollen cloth，\＆flanael－like fabric，dyed dark red，of which there are two sorts，－lc－t＇er，made of shawl wool，and bat－t＇cr，of common wool．Sag－lad is for fine clnth made of fine shawl．wool（le－na）； aud snam－bu is a woollen cloth，very coarso and loosely woven，tho common sort of which is not dyed．

Every Tibetan is more or less a trader．Officers for the super inteodence of trade，called garpons，are appointed by the king，the ministers，and the great lamaserais．The import and export traffic is carried on by cararans，which，according to tho loute and its dimixin pploy yaks or sheep．The two great markets are

Shigatze (or Digarchi) and Lhass, where the caravans arrive in Uecember and January from Chins and Moagolia, Khám aad Sze-chuen, Bhutan, Sikkim, and Nepal, Kasamir and Ladsk. Of the four principal trade routes the two which start from Darchiendo have hecn mentioned above (p .342). The third route, 915 miles ia length, starting from Si-ning in Kan-su (Chios), runs along the Eoko-nur to Jun, therce to Di-chu Rab-dun, crosses the homa or lower Dangla,. and proceeds via Giaro and Lake Chomora to Lhása; this ronte, which is forbidden to the Chinese, is less frequented than the others because of tise numerous bands of robbers infesting the country towards Si-ning. Mnch more important is the route which comes from the west, with Leh as its otarting point; it runs via Gartok, Lake Maaasaromar, Muriam pass, Tadom, and Shigatze to Lhása. Like the other caravans, the gearly one which follows this route otops several times on the way for local fairs; the districts passed through aro compelled to furnish it with 300 jaks for carrying goods and to provide food for the travellers. The centres for Tibetan trade on the borders arefor Mongolia and north China, Si-ning ; for Sze-chuen, Darchiendo; and in Assam, Davangiri and Udalcuri, where there is a great fair trice a year in connexion with the Tawang route. Darjiling is the central mart for the Chumbi valley trade, Patna for that passing through Nepal, and Leh and Kashmir in the west. From Chiaa come silks of all raricties (Buddhist prejudice not permitting the Tihetans to rear silk worms and kill them), carpets, and hardware; from Mongolia leather, saddlary, sheep, and horses; from Khám perfume; from. Sze-chuen brick tea (some six millions of ponnds annually; tea in leaf is not in use in Tibet); from Tawang, Bhutan, and Sikkim rice and tohacco; from Nepal broadcloth, silk, indigo, coral, pearls, sugar, spices, and Indian manufactures; from Ladak snd Kashmir saffron and Indian commodities. Silver and gold are the most important articles of export; then follow salt, wool, woollen manufactures, furs, drugs, and musk. By the Nepal and Ladak rontes Tibet exports large quantitios of yaks' tails, horax, gold, silver, and pouies. In 1882-83 the total exports to India amounted to $£ 58,322$ (Punjab $£ 17,710$, North.West Provinces and Oudh $£ 40,612$). The imports into Tibet reached $£ 24,197$ ($£ 1530$ from Punjab, £22,667 from North. West Provinces aad Oudh). The principal exports were borax ($£ 17,222$), salt ($£ 13,978$), wool and woollen goods (£4936). The imports included grain (£13,587), cotton goods ($£ 2875$), aud ougar ($£ 2395$). In $1883-84$ the export of borax had increased by 12, 329 maunds (about 453 tons), that of wool and woollen goods by 2244 maunds (82 tons), while the exports of ealt had decreased by 572 mannds (21 tons). The whole of the increase in borax is in the, trade with Kumaun, and in weight it is almost donble the increase in the export of rice from that district, for which it is bartered in Tibet, the usual rate of exchange lring two of borax to one of rice. The total excess of the value of exports over impoits amounted to nearly two lakhs of rupees. In 1885-86 the valne of the wool and voollen stuffs exported rose from $£ 4300$ to $£ 8800$. These figures, however, coovey no adequate idea of the British trade with Tibet, as a large quantity of goods passes through Nepal. Russian woollen cloths, coarse and loose, of scarlet, green, blue, aad riolet colour, as well as hearthrugs, thickly woven and of a flowered pattern, come through Yarkand and are conveyed all over the country.

Since 1720 Tibet has been a dependency of Chins, and as such is nnder the Chinese viceroy of Sze-chuen. Chinese authority is represented by two imperial delegates, one of whom is the assistant of the other. They direct exclusively the foreign and military administration of the country, leaviag the civil and religious government in the hands of the Tibetans. They are appointed for terms of three years. Snbordinate to these are two daluhi or great officers and two paymasters, residing, one of each grade, at Lhása and at Bzhikartse (Shigatze or Digarchi). Next in rank are three commanders, residiag at Lhasa, Digarchi, and Dingri near the Nepal frontier: Below these are three tingpuns, non-commissioned officers, who completa the staff of military Chinese officers in the country. The usual number of Chinese troops, all ManchuTatars, in Tibet does not exceed 4500 men (2000 at Lháse, 1000 at Digarchi, 1000 at Giangchi, 500 at Dingri). In matters of civil government the supreme authority belongs to the dalai lama, the rgyal-ba rin-po-cé, residing ia tho famous tenple-palace of Potala (see LHASA, yol. xiv. p. 500). But he is consulted only in cases of emergency, when his decision is never questioned. His powers are traosmitted to a special officer for life, nominated by the Chinese Government, who is knomn by several titles, euch as de-sri or the Moagol nomokhan, "king of the law"; he is the rgyal-po or "king" as well as the prime minister of the dalai lama, and the regent when the latter is a minor. Ho is selected front among the four head lamas of the Chomoling, Fonduling, Tangialing, and Chajoling divisions near Lhása, so-called from their chicf monas-

1 This is still in a disturbed state, the pass being closed by the Tibetans in consequence (1) of the important preparations mads in 1886 for a commercial mission to Lhass hy Mr Macsulay and (2) of the pressore of the Nepalese Government on that of Tibet in a receat treaty, in order that the whole trade should osess through Neinal.
teries or dgoripa (rulg. gomba). Each of the four must be, like thic dalai lama, $3 n$ avatar, i.e., when removed by diath he must reappear in the flesli $s s$ a child, sod be raised to that position. Of equal rank with the nomokhan is tho dela lana of dGa-ldan, the great monastery near Lhása; he, however, is not an avatarian lama: Lis appointment has to bo confirmed by the Chinese emperor. Next to him is the lama guru or chaplain of the dalai lama, the dircctor of his cooscience; lie may be an avatar, but his nemination is also in the hands of the Chiaese cmperor, and this furnishes $2 n$ interesting clue to the extcot of the impcrial power orer the church of Tibet. Tho nomokhan rules with the help of five ministers: four of theso-laymen-are for the fuaucial, judicial, revenue, and home departments, and a fiftn, a iama, for ecclesias. tical affairs. The four provinces of Mngari-Khorsum, DbUs , g'โasng (Tsking), and Khams (Khám) are ruled each by a bka-blon or governor, with a proper staff of minor officera, voder the authority of the nomokhan. Besides these there are several minor kings or rgyal-pos ontside of the four provinces; but within these provinces there are four principalities which are under tlie direct government of the Chinese imperial delegates. These are (1) Dayag or Chraya and (2) Kismdo or Chiamdo, both on the east; (3) hKira-sis-lhun-po or Tashiluapo, where resides the pan-den rin-po-te lama, who yields to none but the dalai lama in religious importance, and, though an aratar, requites also the confirmation of the Chiaese emperor to his election; ; (4) Sakya-Kongma, couth-west of the preceding. There is also a Chinese officer (y-tsin) in resideace at Lhása who ouperintends eeveral minor principalities seattered over the country. Every five years Lhása, Chiamdo, and Tashilunpo scod envoys with presents to the emperor. In the east of the country is the principality of Darge or Degue, in the upper course of the Yalung.kiang, ruled by a king who recoguizes the suzerainty of Chins, and at the sams time since 1863 has managed to keep on good terms with the king of Lháse, to whom he has promised submission. On the lower course of the same river are the Chentui or Gyarung tribes, who from the conquest of Tibet were subject to China, but since 1864 have been transferred by the Chinces Government to the rule of the king of Lhasa, who is now represented among them by a Tibetan resident. South of the Chentui is the principality of Dar-rtse-mdo or Darchiondo, the Ta-chien-lu (Tatsienlu) of the Chinese, the rGyala of the Tibetans, where the government, ander the supervision of Chioese officers, is entrusted to a native kiog, called Ming-chang-se by the Chinese and rGyala rgyal-bo or king of rGyala by the Tibetaus.

Ethnolgay

The Tibetans, in a legend of the Tandjur, pretend to be the do- Inhabifd scendants of an ape, sent to the saory kiagdom (i.e. Tibet) by anta Chenresig (Spyan-ras-gzigs = Avalokitêshvara), and of a Tibetan srimno (a femalo demon or rubshasi). They had six children, whom, as soon as they were weaved, they abandoned in a forest of fruit trees. Coming back after a few jears, the father found to his great surpriss that their number had increased to 500 . Bnt, ss they were starving, he had recourse to his patron Chenresig, who declared that he would be the guardian of the race. So he went to Mount Tise (or Kaila the Su-Diern), and threw down a great quantity of the fiva kinds of grain, with which the farnished apes long fed themselves. As the consequence of eating this grain the mookeys' tails and the hair on their bodies grew shorter and shorter, until they finally disappeared. The monkeys hegan to speak and became men, and clothed themselves with leaves. The interest of this legend, when stripped of its Buddhistic sulornments, lies in the fact that belief in a mookej ancestor seems to havo been common to various branches of the race. The Taog-chang and Peh-lang tribes boasted also of being descended from a monkey; they were the two great divisions of the Tang-hiang or Tangut, offsets of the same Sicn-pi stock as that of the conquerore of Tibet under Fanni Tubat (see note, p. 338 sbove). The iahabitaats of Tibet belong to the Moogoloid races. Besides the Tibetans so called, occupying the greater part of the country, especially io the south from west tc east, there are Turkio tribes called Hor in the north?west, Mongol trihes called Sog (Sok) in the north-east, and several ill-defined tribes oa the borders of China, who differ from the others. The Tibetan race is not thoroughly homogeneous, as may be scen from the various accounts of travellers. On the west they are described as being sloort, with an average stature of 5 feet 2 inches, according to the measurements of General Alezander Cunningham ; in central Tibet and the east they are of middle stature, rather tall than short, -a diference resulting apparently from their intermingling with the surroundiag races. As general characteristics, they are strong, slender in limb, with black eyes slightly oblique, large mouth, brown hair, no beard, a clear ruddy brownish complexion with an intelligent expression. They are a people of good natural gifts, mild in temper, true to their word, kind and simpla, tond of music, dancing, and singing, but thoroughly imbued with superstition and lacking enterprise. Exception is marle of the peoplo of the eastern borders, who are described as beiog cheats and cowards. The most highly gifted are the inhabients of Ando, the region beyond Kham, havine

Koko-nur on the nortn and China on the east. Taller than the Tibetans of the west, they aro famed for their quick intelligenco and open disposition; a large proportion of the readers and chief lamas of the great schools and tho highor onicials beloug to this race. The nomad tribes of the north-east are known by the Chinese common appellative of Sifan ("western aliens"). They include Mongol, Tibetar, and other tribes. In tho east, near the borders of China, are the numerous tribes called Gyarung or Cbentui; their language bas been studied by Hodgson, who has pointed out its remarkable similarity of structure to that of the Tagals in the Philippines. To tho south theso are the Laka or Lolo (mainly iff Sle-chuen), Liso, and Moso; the last-named have advanced to some extent into Indo-China. The Laka or Lolo aro remarkable for their European white fcatures. Their languago, along with that of the Liso and Moso, \&c., forms a group cornato to the Burmese. Not so far east are the Lutzo or Kumung, Melam, Arru, Pagny or Djion, Telu, and Remepu, all apeaking a rlialect of Tibetan, mixed with foreign words, for which the namo of Melam is appropriate. Savages are found, says the pandit explorer A-K, in some of tho valleys of the range north of Saithang (i.c., the Altin-tagh north of the Syrten plain). They have a thick and dark skin, aro well built and apparently well fed. They are clad in skins, and live in caves and dens or under the shelter of overhanging rocks. Being ignorant of the use of arms in the cbase, they lie in wait for their prey near springs of water or salt flats. They are remarkable for their fleetness of foot; even a horscman finds difficulty in overtaking them. Whenever they seo a civilized man tboy run off in great alarm. They are said to know how to kindle a firo by meana of a flint; and they flay the onimals they kill with sharp-edged stones. This is not tho only survival of the Stonc Age, for in tho caso of somo religious rites the lamas are shaved with a "lightning stouc." Tho country is thinly pcopled and large tracts in the upper plateans and Mngari-Khorsum are quite uninhabited. In the province of Kham the population is very irregularly distributed, and the nomad character of the tribes occupying a great part of the upper country makes any estimate doubtful. Tho central provinces of DbUs and gTsang are the most densely peopled, and A-K puts the population of Lhasa at 25,197 (7540 boing lamas). The totals lately given by Chinese authoritics ($4,000,000$) and by the Russian staff-officers $(6,000,000)$ are probably nearer the trinth than the $11,000,000$ and $33,000,000$ of former authorities. The Tibetans are a very spcial people, and all possiblo circumstances, especially marriages and births, aro mallo occasions for feasting and enjoyment. The burial customs are peculiar: First tho hair is plucked out from the ton of the head, 11 order to facilitato transmigration: The corpse is not disposed of everywhere or always in the same way (lack of fuel somethmes preventinge cromation), and the lamas decide whether it is to bo put away by interment, by throwing into the river, by burning, or by exposure to beasta and birds of prey. The last-namel mode (remarded as very honourable) has almost disorpeared m tho west, hat is still practised in the central and eastern provinces; the body is cut in pieces and the bones broken into fragments by professional corpse butclers, and, when all the flesh has been devoured at the selected spot, called duir krod, to which the body had been previously caricd, it is not unusual to throw the remaining fragments of the broken bones into tho liver; sometimes tho phalanges of the fingers are preserved to bo used in bead-rolls. Tho lamas aro gencrally inhumed in a sitting posture, the knees being hrought ap to tho chin and corded together as tightly as possilile. In the caso of the gyaljos or kalilons tho body is burned in a metal vessel, the ashes bcing afterwards earcfully collected to Le inale into an image of the deceascd. Polyandry has been practised from the carliest times, and has been carried by the spread of the race into more genial countrics, such as Bhutan. Tho joint hnsbanils are usually, but not always, brothers. Tho arrangement geems to work smoothly, and women onjoy general consicleration, according to all travellers who have spokon of the subject. The redding ceremony takes place at the houso of tho hrides parents, after arlequate presents hare been offered by the elder brother, husband or hriclegroom, and without the assistance of any priest. It consista chiefly in the engagement of tho intending sponses and the placing of a pieco of butter by the bride's parent on the head of the bridegroom and by his paront on that of the bride. Unless otherwise stated by the mother in each case, tho elder husband is tho putative father of the children, and the others are uncles. Polyandry lias resulted in the assignment to tho wifo of a paramount position, which in the north-east and pist of the country has grown among certain tribes into a real sove: eignty, of which we hear from the berinnings of Chinese history, and which has left certain survivals among the Lolo and Moso tribes of the present day as well as in the late Eurmese court.

There are two religions in Tibet-Buddhism, in the shape of Lamaism (q.v.), and an earlier creed, generally called the Bon religion, of which not much is known. The latter, a creed erolved from Shamanism, docs not seem, from what is said in Buddhist books, to have received any regular form cither in doctrinc or other wise until the introduction of Euddhum, which incited the Bonpo
to scek in a betto organization tho means of helding their own They borrowed much from tho Bueddrísts, as the latter did from them, - many deities supposed to bo Buldhist becauso of their Budubist names being simply Bon gods. At the present thy the two religions exist peaceably side by side, and the bon ereed las numerous adherents and rich convents in the central provinecs of DbUs and gTsang, but fow in tho western and castern provinces. Tho Bonpo are somotimes called the "Scet of tho Jllack," as clistinguishod from the "Red" or Old and "Yellow" or Reformed Lamaists, both appellations boing derived from tho colour of their garmente, though Donpo have been secn in red as well as in black. They aro also called Griun-druiu-pa(sco below). The cstablishment of tho bonpa or Bon-ěos, i.c., the Bon religron, is attributcd to Gisen-ribs, also called Bstan-na Gsen-rabs, ie, Gisn-rabs of tho doctine, the namo under which bo is worshipped in tho temples of his sect, as, for instance, at Tsodam in cast Tibet, not far from Bonga; hia statuc, which occupres tho contral place, represents him as supatting, with his right arm outside his red scarf, and boldingt in his left the raso of knowlcdgo. In a Bon sutra ho is said to hold in his right hend tho ron hook of mercy, with which ho fishes pcople out of tho ocean of transmigration, in his left hand the scal of equality, and to wear on his head tho mitra jewel. His full namo is Bon gsen-rabs-gruñ-drun." Gisen-rábs-mi-no, or "(the) excellent luman god," another name of tho samo personage, has been iclentified by some Trbetan authorities with Lao-tsze or Lao-kiun of Chins. This identification, howover, rests only on the slender basis of an apparent aflinity of sound botween the sicn of gsen and a common Chinese appellativo for the Taoists. The genuinc resemblances between Bonpa and Taoism come from tho fact that both religions have drawn from similar sources, from the nativo rnde Shamanism which ia much tho same in both countrics, from the tantric and esoteric doctrines of India, and from Buddhist ideas. The identity is sufficient to havo deceived tho uncritical mind of native scholars, and the matter has not yot been carcfully examined by Europeans. The eighth book of the Grub-mthah-sel-kyi-mé-lon, in twelvo books, by a Tibetan lama, Chkoikyi Nyima (1674-1740), which, with three others, has been lately translated by Sarat Chandra Das (in Jour. As. Soc. Beng. for 1881-1882), gives some information on the risc of the Bonpa in the region of Shang-shung, identificd, not with the modern region of tho samo namo in the north-west of Lhasa, but with Guge or Ghughè and Knáor or Upper licsahr. Three stages are pointed out in the development of tho Bonpa after the time of its mythical founder, who reckoncd among his spiritual descendants sages of Persia, Leg-tang-mang (some names of Lao-kiun ?) of China, of Thomo, of Miniak (east Tibet), of Sumpar, and of Shang-shung. The first stage is that of the human and hiatorical founder of the religion, a sago of tho name of Shong-hon, who lived in the semihistorical time of Thi-de-tsanpo, the sixth king of Tibet (tho first is said to have ruled about 415 e.c.). The second stage, dating from the 3 d century n.c., is that at which Bon theories and doctrines began to cxist, a beginming coincident with the arrival in the country of three Bon priests from Kashmir, Dusha, and Shangshung. The recital down to this point gives evidence of the vogueness of the traditions prescrved by the Tibetans with reference to their own beginnings, and shows that the author has striven hard to pat togcther shreds of ancient reminiacence within a falulous and mythical account With the third stage we come down to hiatorical times. It is divided into three periods, -the first dating from the arrival of an Indian pandit by way of Kashmir, who wrote some of the Bon books; the second being that of the introduction of Buddhism and the consequent persecution leading tho Rompo to multiply their sacred books, whith they concealed; and the last beng that of the revivai of the Lolspa and the bringing forth of the hidden books subsequent to tho overthrow and temporary effacement of Buddhism by gLang-dlarma (208-1013). According to this source, which, howerer, is certainly tinged hy Buddhist prejudico, it was only at tho last-mentioned dato that the Bonpa reached its completo organization.

Eighteen principal gous and goddesses are enumerated, including the red wrathful razor spirit, tho black wrathful razor spirit, the tizer god of glowing fire (the popular god universally worhipped), the messencer demon Rgyal-po, otherwise Pe(d)kar rgyal po (much dreaded and worshipped in the central provinces: he is said to be ilentical with the deity Kye-páng of Lhasa, figured as a wooden atick or log decked with rags; see Jaeschke, Dict., p. 7) the god of sound, the great demon, and the serpent demon. Information is lacking as to the specific characteristics of these gods, and it is not clear to which of them belongs the title of Junetu bzany-po, frequently cited sa the chief Bon god; ho is reputed to hare a wife Yom-ki-long-mo, the eternal female principle, and from their union have resulted all the minor gods and the whole world

[^138]Of the Beapa literature the only text which has been made accessible to Westera scholars is a sutra translated by A. Schiefper in Mim. de $l^{\prime} A c a d$. de St. Pitersb. (xxviii., No. 1) called Gisangma kizh hbum diar-po ("The holy white nâga, the hundred thousand "); but Buddhist influence is so manifest in it that no correct idea of the primitive Bon religion can be derived from it. In a native account, dating from the 18 th century and translated by Sarat Chandra Das, the following are enumerated-three works on philosoply and metaphysics, four meditative works, nine ritual serials, six series of epistles, and four mystic works of a late period, in all of which the title of the translated sutra is not mado known. It is stated in the translation that these Bon ecriptures originally consisted of wholesale plagiarisms, subsequently altered in orthography and terminology from Buddhist carmnical morks The Bonpo are said to bave got the counterparts of the Koh.gyur in general. As a correlative of the six-syllable prayer of the lamas òm mani pad-me hüm (rulgarly "om-mani péaé-on"), they havo one in eight syllables, which they pronounco $m a$-tri-mu-trc-sa-ladiu. The Bonpo are Dow frequently confounded with the Red Lamas or Buddhists of the Old school, who are distinguished from the Yellow or Reformed seet by their garments.

History.

From the 12th century B.c. the Chinese used to call by the name of Kiang the tribes (about 150 in number) of nomads and ehepherds in Koko-nur and the north-east of present Tibet; but their know. ledge continued to be coafined to the border tribes until the sixth century of our era. In the annals of the T'ang dynasty it is said that the population of the country originated from the Bat-Kian or Fah Kiang ; and, as the information collected in the first part of the notice concerning Tu-bat, afterwards Tu-ban, the uodern Tu-fan, dates partly (as is proved by internal evidence) froin a time anterior to the T'ang dynasty (618 A.D.), some degree of reliance may be placed on its statements. There we are told that Fanni, a scion of the southern Liang dynasty of the Tu-bat fanily (which flourished from 397 to 415 at Liang-chu in Kan-suh), who had submitted to the northern Liang dynasty, fled in 433 with all lis people from his governorship of Lin-sung (iu Kin-chu) westwards across the Yellow river, and founded beyond Taih-slihh ("heapy stones ") a state amilst the Kiang tribes, with a teritory extend. ing over a thonsand $l i$. By his mild and just rule he was soon enabled to establish his sway over an immense territory. $1 l$ is original state was apparently situated along the upper course of the Yalung river, an affluent of the Kin-sha-kiang. The foregoing statements, which are most probably genuine history, are preceded in Tibetan chronicles by a mass of legends iarented by the aative Buddhist historians for the purpose of connectiug their monarchy with India.
Throngh the exertions of Prinsep, Csoma de Eörüe, E. von Schlag. intweit, and Sarat Chandra Das we possess five copies of lists of kings, forming the royal canon of Tibet from the legendary beginnin오영 between the 5 th and $2 d$ century B. C. down to the end of the roonarchy in 914 . But the serions divergences which the g show (except as to later times and in general outlines) make their un. authentic character plain. As the last published list is accompanied by a commentary, it is the easiest to follow, and requires only to be cupplemented here and there from the other lists and from the Chinese sources. The first king, Gnya.lihri htsso-po, is said to havo been the fifth son of King Prasenadjit of Kosala, and was born with obliquely drawn eyes. He led north of the Himalayas into the Bod country, where he was elected king by the twelve chicfs of the tribes of couthern and central Tibet. He took np bis residence in the larlung country south of Lhisas. This Yarlung, which borrowed its name from the Yalung of the state of Fanns Tu-bat, is a river which flows into the Yaro-tanpo. The first king and lis six successors are known as tho beven celestial Khri; the next serics consists of six kings knowia as the carthly legs; and they were followed by eight terrestrial lde. This threefold succession is apparently an imitation or a debased form of the ancient legend of heavenly, earthly, and human rulers, which mas carricd into Persia and China and from the latter country into Japan and Tibet, -the relative dumber of kings leing altered in the last-named countries to suit local convenience and the small amount of truth which they contain. Whilst giving an Aryan descent to their first kings, the ancient Tibetans essigned to their princesses a divine origin, and called them thamo, "goddess." The gynaeratic habits of the rare are manfested in the names of all these kings, which were formed of a combination of those of their parents, the mother's gencrally preceding that of the father. The lde kings were followed by four rulers sumply called bisan ("mighty").

Then occurs a break in the lineal descent, and the king next in order (c. $46 i$) may be the Tatar Fanni Tu-hat, but most probably Lis son and suecessor. His name was Lhe-tho thori gnyad.btsan, otherwise Gnyan-btsan of Lha-tho thori, according to the custorn usual in Tibet of calling great personages after the name of their birtholace. Lha-tho means "heaps of stones," and therefore
appears "to be a tradslation of Tsih-shih, "heapy stones," the country mentioned in connexion with the foundation of a stato by Fanni Tu-bat. It was during his reign that the first Buddhist objects are reputed to have reached Tibet, probahly from Nepal. Little is said of his three inmediato successors. The fourth was $\mathrm{gNam-r}$ srong btsan, who died in' 030 . During his reign the Tibotans obtained their first knowledge of arithmetic and mediciae from China; the prosperity and pastoral wealth of the country were 60 great that "the liag built his palace with cement moisteded with the rilk of the cow and the yak." To the same king is attributed the discovery of the incxhaustible salt mine called Chyang-gits'wa (Byang.gi-ts'wa = "porthern salt"), which still supplies the greater portion of Tibet. The reign of his illustrious son, Srong btsan sgam-no, opened up a new eri, he introduced Rudrlhism and the art of Writing from Inrlia, and was tio founder (in 639) of Lha-ldan, afterwards Lha-sa. Ila was preatly belped in his proselytism by his two mives, one a Nepal princesa, daughter of King Jyoti varma, the other an imperial danghter of China; afterwards, they being childless, ho tuok two more priucesses from the Ru-yong ($=$ "left corner" ?) and Mōn (general appellative for the nations between Tibet and the Indian plains) countrics, As a conqueror he extended his sway from the still unsublued Kiang tribes of the north to Ladak in the west, and in the south he carried his power through Nepal to the ladian side of the Himalayns. Hovy far southward this dominion at first extended is not known; but in T03 Nepal and the country of the Brahinans rebelled, and the Tibetan king; the third successor of Srong htsan sgam-po, nas killed while attempting to restoro bis power. It is rather curious that nothing is said of this Tibetan ruto in India, oxcept in the Chinese annals, where it is montioned until tle end of the monarchy in the loth centory, as extending over Bencal to the sea,-the Bay of Bengal being called the Tibetan Sea J. R. Logan has found ethuoIngical and linguistic evidence of this domination, which was left unmoticed in the Indian listories. Jlang-srong mang btsau, tho second 600 and 6 uccessor of Sroug btsan sgam \cdot po, continuit 2 the conquests of his father, eubdued tho Tukuhmn Tatars around the Koko-nor in 663, and ottacked the Chinese; after some odverse fortune the latter took their roveugo and penetrated as far as Lhasa, where they burnt the royal palace (Iumbu-lagang). Iibri lde gtsng-brtan-uesag-ts'oms, the grandson of Mang-srong and seconcl in succession from him, promoted the epread of Buddhism and obtained for his son, Jangta'a Lhapon, who was famcus for the beauty of his person, tho hand of the accomplished princess liyinehang, daughter, otherwise えuny-chu, of the Chineso emperor Jny. tsung. But the lady arrived after tho death of her betrothed, and after long hesitatiou became the hrida of the father. She gave birth in T30 to Jihri srong leleu litsan, in the Buddhist annals the most illustrinus nonarch of his comntry, because of the strenuous efforts he made in favour of that religion during his reign of fortysix years (743-789). Mis son and successor Mluui bisan-po, being deterunined to raise all his anbjects to tiao samo level, enacted that there should be no distinction between poor and rich, humble and great. He compelled the wealthy to share their riches with the indigent and helpless, and to mako them their equals in respect of all the conforts and conditions of lifo. He repeated this experin:ent three tinies; but each time he found that they all returged to tleir former couclition, the rich becoming still richer aud the poor still poorer. The aages attributed this curious phenomenon to the good and evil acts of their former lives. Nothing of im. portance occurred during the following reigns, until that of Ralfachen, who won glory hy his care for the translations of the Buddhist scriptures which ho caused to be completed, or rewritten more accurately when required. In this leign a severe gtruggle took place with China, peace being concluded in 821 at Ch'angmgan and ratified at Lhusa the following year by the erection of bilingual tableta, which otill exist. Ralpaclien was assassiaated by the partisans of gLang-dharma and the country fell into disorder. gLang- Wharina instituted a violent persecution of Buddhism; but he was soon assassinated in his turn, and the kingfom divided into a western and an eastern part by his two sons. The partition did not, however, prevent internecine wars. The history for some time now becomes rather intricate, and requires some atteution. Pal K'or tsan, the second western king, after a reign of thirteen years died leaving two sons, Thi Tasii Tsegpa-pal and Thi Kiyida Nyimagon. The latter went to NGgari (Mhgari) and founded the capital Purang; he left threo sons, of whom the eldest declared hiraself king of Mang-yul (the Moahuil of our maps), the aecond seized Purane, and the joungest, Detsud.gan, become king of the provinco of Shang-shung (the madera Ghughe). The revival of Gnddhism begars with the two sons of the last-named, the elder o! whom becamo a monk. Tho younger, Khorré, inherited his father's throne, and was followed in his authority by twenty successors Tasi Tisegpa also had three sons, - Palde, Ilodac, and Kyido. The descendanta of the first mado themselves masters of Gung.t'arıen, Lugyalwa, Chyipa, Lhatse, Langlung, and Tsakor, Nhere they soverally ruled as petty chicfs. The descendants of Eyids spread soverally ruled as petty chiefs, Jang, Tanag, Jarulag, and Gyaltse
diatricts，Where they also ruled as petty princes，Hodde left four． sons，－Phabdese，Thids，Thich＇ung，aud Gnagpa．The frat and fourth became mastera of Tsangrong，the second took possassion of Amdo and Teongkha，the third bocame king of DbUa ，and removed the capital to Yarlung，south of Lhása．He was followed on his throns from aon to son by elerch successors．History is ailent an to the fate of the eastern king，the other aon of gLang－clharma， gnd his auccessors，but the geographical nemes of the ehieftainships enumerated ebove make it clear that the western kingdom had extaniled its power to the east．Chronology is deficient for all that period．While the dynasty of Ehorre in Shang－shung and that of Thich＇ung in DbUs were running，anothar authority，destined to become the auperior of both，had arisen in Tibet．Khorré left his throne to his son Lhade，who was himself encceeded by his three aous，tha youngest of whom invited the celobrated Indian Buddhist， Atisha，to leave his monastery Vikrama Shila for＇libet，where he aettlod in the great lamaserai of Thoding in Ngari．Besidcs religious books and teachings，he introduced in 1026 the method of computing time by cycles of sixty ycars，＂obtained from the Indian province of Shambala．＂He was the first of the eeveral chisf pricsts whose authority became paramount in the country． The kings of DbUs greatly patronized tham，as for instance in the case of the celebrated Sakya Pandita by the aerenth of thess kings． Pandita，at the special request of Kuyuk，the successor of Ogdai， paid a visit to his court in 1246－48．Five ycara afterwards Kublai Khan conquered all the east of Tibet；and，after he had ascended the throne of China，the Mongol emperor invited to his court Phagspa Lodoi Gyaltshan，the nephow of the aamo Pandita．He remained twelve years with the emperor，and at his renquest franicd for the Mongol language an alphabet imitated from the Tibetan， which，however，did not prove aatisfactory，and disappeaind after oighty five years without having becn very largely nsact．In return for his acrvices，Kublai invested Phagspa with sovereimn power over （1）Tibet proper，comprising the thirtecn districts of U and Thaing， （2）Khim，and（3）Amdo．From this time the Sakya－pa lanas becume the universal rulers of Tibet，and remaincd so，at least nominally，under twenty－one successive lamas during seventy ycare （1270－1310）．Their yamo was derived from the Sakya monastery， which was their cradle and abole，and their authonity for temproml matters was exercised by specially appointed rements．When tho power of tho Sakya began to wane，that of tho rival monasterics of bigung，Phagdub，and Tshal increasce largely，and their respectivo influence and authority overbalanced that of the successors of Phagspa．It was at this troubled eproch that Chyang Club Gyalt－ alan，bettor known as Plagmoin from the uame of his native town， appeared on the secne．He subduel Tibet proper and Khim，for the contiausd pessessioiz of which he was，however，couppelled to fight for suveral years；but lio succeceded in the long zun，and witli the approral of the court of Pcking established a dynasty which furnishel twelve rulcrs in succession．When the Mongol dyuasty of China passed away，the Mings confirmed und cnlarged the dominion of the Tibctan rulers．secognizing at the same time the chicf lamas of the cight principal monasteries of the country． Peaco and prosperity gradually weakened the benign rule of the kings of this dynasty，and during the reign of the hast but one internecine war was rife between the chiefs and nobles of U and Taing．This state of things，vecurring just as the last rulers of the Ning dynasty of China were struggling against the encroach－ ments of the Manchus，their future successors，favoured the inter－ ference of a khoskot Mongol prince，Tengir To，called in the Tibetan sources king of lioko－11ur．The Mongols were intercisted in the religion of the lamas，cspecially since 1576 ，when Altan， khakan of the Tumeds，and lis cousin summoned the chicf lama of the uost important monastery to vasit him．This lama was Soduan rGyantso，the third successor of Geduudub，the founder of tho Tashilumbo monastery in 1447，who had been elected to the more important abbotship of Gallan near Lhasa，and was thus the first of the great，afterwards dalai，lamas．The immediate successor of Gedundub，who ruled from 1475 to 1541 ，had appointed a special afficer styled depa to coutrol the civil admiuistration of the conntry． To Sodnam rGyaintso the Mongol khans gave the title of Valjra Dalai Larua in 1576，and this is tho first use of the widely hnown title of dalai lama．During the minority of the fifth（really the third）dalai lama，when the Mongol king Tengir To，under the pretext of supporting the religion，intervened in the affairs of the country，the Pau－ch＇cu Lo－sang Ch＇o－kyi Gyal－ts＇ang lama obtained the mithdrawal of the invaders by the payment of a leavy war indemnity，and then applicd for help to the first Mauchu emperor of China，who hid just ascended the throne．This step enraged the Mongols，and causerl the advance of Gushri Khan，son and auccessor of Tengir To，who invaded Tibet，dethroned all the petty princes，including the king of Tsáng，and，after having subjugated the whole of the country，made the fifth dalai lama supreme monarch of all Tibet，in i645．Tho Chineso Government in 1653 confirmed the dalai lama in his authority，and he paid a visit to the emperor at Peking．Tinc Mongol Khoskotes in 370 f and the Sungars i： 1717 interecred again in the succession of the dahai
lama，but the Chineae army finally conquered the country in 1720 ， and the present syatem of government was established The ercnts which hava happoned aince that time bave beeu recorded iu the articleb Lhaba and Ladas．

Lanovaog and Literature．

Bod－skad is the general name of the language of Tibet，which is also occasionally called Gangs－ctan－gyi akad（i．e．＂the glaciera languaga＂$)$ ．This namo is apccially applied to the forms in use in DbUa－gTang．The vernacular ia called p＇dl－skad or common language in contradistinction to the yos－skad or book lenguage． Besides the Bod－elad there are two chief dialecta ${ }^{2}$ in Great Tibat，－ that of Thama，apoker in the three provinces of MiJo（Darrtsc－ mdo），Khám，ani Gong in the east，and that of Ngari－Khorsum in the west．Jaeschke arvanged theso dialects under threo heads，－ （1）western，including those of Balti and Purig，the most archaic， and of Ladak and Lahul ；（2）central，including those of Spiti and of DbUs and ETaang ；（3）Khams．To the same Bhot group belong the Clanglo or Bhutani or Lhopa，the language of Bhutan，of which we have a grammatical notice by Robinsou（1849），and the Serpa and the Takja，of Tawang，both of which are only known through the vocabularics collectel by Hodgson．The later Takpa forms tho transition botwecn the lihot group and the Si－fan groun，which in－ cludes the Miniak，Sungpan，Lifan，and Thochu dialects，spoken near the castern borlers，as well as the Horpa，apoken on a larger area west of the preceding，and much mixed with Trurkic in－

The Capuchin friars whó were ecttled in Lhisa，for a quarter of a century frola I719 aludicd the language；two of them，Franciaco Orazio della Peana， well knowa from his accurate description of Tibet，and Cassian di Maccrata oent home materials which were utilized by the Angustiae friar Aug．Ant．Georgi of Rimini（ 1711.97 ）in his Alphnbetum Tibetanum（Rome，ITip， 4 to），a ponderous and confused compilation，which may he still referreal to，but with breat caution． The Tibetan clanacters were drawn by Della Penna，and engraved by Ant． Fontarita in I735．Ia 1 s20 Abel Kemusnt publisherl his Nicherches sur les J．angues Tertares，a chapter of which was devoted to Tiluctin．Tho next work of inportance was a dictimary，intemed for European atudents，which was pmblislicd，with Tibetan types，at the expense of the East India Company，in 1806 at Scrampur，and edited by John Narshman，froma a MS．cojuy matu by Fr．Chr．G．Scluocter，o missionary in Bengal，who had sulstituted Euglisl for the Itulian of the original．It was the unsifted result of the labourg of at unknowu ltalian inisslinary，who hal been stationed cither fin eastern Tiluet or close to the fronticr in Bhatan．It was properly a collection of all the aentences he conld gat written by a native teacher，completed with extiactas from the Fadma bungyig，a popmlar serics of legends alout Fadma Sambliava， Unfortunately tho work，was left undimished，aml unrevised，as thero was no Tibetan scholar to correct the proofs．Though richer in words than later dictinuarics，the work cannot，for these reasonsybe accepted as an anthority on any doubtful point．The gramantical notice，consisting of forty pages frome
 descrves＂＂ntinn，At Caleutta in $1 s 34$ the Hungasian Alexaulur Csoma de Koros（ 1 St 1840）brouglit out has Dictionary，Tiucian and Jingish，and his
 I＇ukdal in Zansliar，and finally at Kanum in Upper Besalur，cujuying the help Pukdal in Zansliar，and finally at Kanutn in Uper Busalur，cnjesying the help language（chicfly that of the Budhhist translations）．At St l＇etersburg J．J． language（chicfly that of the Budhlhist translations）．At St Petersburg J．J．
Schanit published his Grammatik der Tibefisehen Spractic in 1839 and his Schunit published his crammatik der Tibofischen sprache in 1539 and his freat pretensions of tho author，whose aecess to Monholian sources had enablets him to curich the results of lus laburs with a cellain amomet of information maknown to his prellecessors．In France，F．E．Foucaux pullished in 134 个 ${ }^{2}$ transiation from the ligne telier rol pa，the Jibetan version of the Lalita Vistara， and in ISj8 a Gummaire Thivinine；while Ant．Schefner had bogun at St Petersburg in $18: 9$ his scyics of Lranslations and researelacs．His Liuctische
Stulien（lSjlobs）is a valnablo collectiont uf documents and ouscrvations．In Isisi Icplsius published his paper Ucber Chincsische und Tibetische Lerufrcrhallaisec； and since 1 Sobt Lion Fcor lias brought out in l＇aris many thamslations of texis from Tiletan Euldhist literature．In 1 Sis the．Journal of the Asiatic Suciety of Bengal pmblished comparative rocabularies of spolien and written Tibulan by Bryan II．Iloulgson，sut grammatical motices af Tivetan（according to Csumais Eramanar）and of Changlo，a Tibetan dialect，by W．Robinson．But it was at Singnpore 111852 that the general relationship of the Tibetion and the Burman， uow allmitted in comparalive jhilology，was establishod foy the first time，qy J．R．Logna，in the Jomrand of the Indist Archipelugo．Prof．Max Muller，in his ＂Leiter on Lhe Classification of the Turanian Langıages＂n§ 1 Sj3，arrived mo depemently at a similar conclusion．In 1857 the Monavinn missionaries estalso and a lithomraphic press， 8 nd it is to the Jabours of II．A．Jacsehke uf this mission that we are indebted for the most valuable materials for the practical study of Tibetan．From 1500 to 1567 that sclinlar made several important combe muniealions，chiefly with reference to the phoneties and the dialectical pro－ muciation，to the acaulemies of 13 crlin ant St 「etersburg，and in the Journal of the Asialic Sneicty of Betmal．In iSus at liyclarg he puhbished by lithograplyy A Short Tructical Crummarn of the Yiuctan Jurngurge，with special reforence to the spoticis dialects，anul the following ycar a Romuni＝cal libelis and Finglish Dic－ lionarl．Lic aon publishel in lsil－ic at Gathantin Pryssia by the same process a Tibetan and German dictionayy．Afterwarts he prepatce tor the English

 a lama compilal A Manuut of Tiuctun，or rather a serics of collonual phases
which was browht ont at Calcutta in 18.9 ．A portion of the New Testament has been translated into Tibetan．As recards native plilology，the most ancient work extant is a grammar of the Tibetan tongue，by Toman Sambota， the introducer of the Imlian alphabet，preserved in the Dsfan－hgyur（mato cxxiv）．This collcetioa alsn contrins of her works of the same kind，dichon arics by later uriters，translations of many Sanskrit works on grammar vorabulary，太c．，and bilingual dictionaries，Sanskrit and Tinetan．As senarate
pulticatinns there are several vorabularies of Chinese and Tiluetan；Mongol and Tinhetan：Clifnese，Manclua，Mongol，Oelot，Tibetan，and Turkish；Tibetan， Sanskrit，Manchu，Moncol，anm Cbinese．

There are without doubt many minor slad－lugs or dinlects which are still anl：nowu．For instance，in the Pan－yul valley north of Lhasa the inhabitants are said to spcak an indjstivet skad－lugs．
gredients. With tho exception of the Sokps, \& Mongol dialect, aur of the Gyarung, a pre-Chineso dialect, the languages spoken in Tibet belong to the largo linguistie family cowmonly called TibetoBurman, a division of the Kiten-lun group, which is a part of the Turano-Scythion stock.

The language is more consouantal than vocalic, though much ooftened in tha central dialect. The consonants, 30 in number, which aro deemed to possess an inherent sound a, are the follow-
 $m a, t s a, t s^{\prime} \pi, d z a, v a, z h a, z a, ' h, y a, r a, l u, s h r, s a, l i a, ' a$, tho so. called Sanskrit cerebrals are represented by the letters $t a, t$ ' a, da, na, sha turned the other way. I'a, when combined as second consonant with $k-, p=, m-$, is written under the first letter. Ra, when combined as second letter with $k_{-}, t-p$-, is written under the first, and when combined with another consonant as first letter over the second. The vowels are $a, i, u, \varepsilon, 0$, which oro nat distinguished as loog or short in writing, though they are so in the vernachlars in the case of words altered lyy plonetic detrition. Arglomerations of consonants are not objectionable; sud they are ofteo met with as initials, giving the appearauce of telescoped words-an appearance which historical etymology often confirms. Many of these initial cousonants are silent in the softened dialects of the central provinces, or have becn resolved into a simpler one of anotlier character. The language is much ruled by laws of euphony, which have been strictly formulated by grammarians. Among the initials, five, viz., g, d, b, m, ' h, aro regardcl as prefixes, and aro called so for all purposea, though they belong sometines to the stem. As a rule none of these letters can be placed before any of the same organic elass. Post-positions, $p a$ or $b a$ and $m a$, are required by the noun (subatantivo or adjective) that is to be singled out ; po or bo (masc.) and mo (fenı.) are used for distiaction of gender or for emphasis. The cases of nouns are indicated by suffixes, which wary their initials according to the final of the nouns. The plural is deooted wheu required by adding one of several words of pluralits. When several words are connected in a sentence they seldom require more than one case elemeut, and that comes last. There are peraonal, demonstrative, interrorgative, and reflexive pronouns, as well as an indelinite article, whicly js also the numeral for "one." The personal pronouns are replaced by various terms of respect when speaking to or before superior's, and there are many words besides which are ooly employed in cercmonial language. The verb, which is properly a participle, has no element of person, and denotes the conditions of tense and mood by an external and internal inflexion, or the addition of auxiliary verbs and suffixes when the stem is not susceptible of inflexion. The conditions which approximate most closely to. our present, perfect, future, sud imperatire are marked either by aspiration of the initial or by one of the five prefix consonants according to the rules of eupliony, and the whole looks like a former system thrown into confusion and disorder by phonetic decay. As to the internal vowel, a or e in tho present teods to bceome o in tlie imperatire, the e chaoging to a in the past and future; i and u are loss liable to change. A final sis also occasionally added. Only a limited number of verlis aro capable of four changes; some cannot assume more than three, some two, and many only onc. This defieiency is mado np by the addition of auxiliaries or suffixes. There are do dumeral auxiliaries or segregatives used in counting, as in many languages of eastera Δ sia, thourh words expressive of a collective or integral aro often used after the tens, sometimes after a snaller number. In scientifie and astrological works, the uumerals, as in Sanskrit, are expressed by symbolical words. In the order of the sentence the substantivo precedes the adjective and the verb stands last; the object and the adverlj precede the verb, and the genitive precedes the noun on which it depeads. An active or causal verb requires before it the instrumental instead of the nominative case, which goes only before a neuter or iotransitive verb. Tha chief differences between the classical language of the Tibetan translaturs of the 9th century and the vernacular, as well as the language of native mords, existed in vocabulary, phrascology, and grammatical structure and arose from the influence of the translated texts.

The Tibetan languare, in its written and spoken forms; has a great interest for philologists, on account of its bearing on the history of the so-called monosyllabic languagea of eastern Asia. Is the Tibetan a monosyllabic language passing to agglutination $f=$ tho reverse \& The latter is the faet, 89 wo shall see further on. The whole question has turned upon the elueidation of the pheoomenon of the silent letters, generally prefixed, which differs itiate the spelling of many words from their pronuaciation, in tho central dialect or eurrent speceh of Lhása As long as the sounds of this dialect only were known, the problem could not be fully grasped. Rémusat rather dubiously suggested, while Schmidt and Schiefoer maintained, that the silent letters mere a devieo of grammarians to distinguish in writing words which nere not distinguished in speech. Eut this convenient opinion was not sufficient for a general explana. tion, being supported by only a few cases. Among these ore- (a) the addition of silent letters to forcign words in anslogy with older termis of the laguage (e.j., the Persian lidjiz was tran-
seribed sluggsig or "timer-leopard," because tho foreign term left untouched would have been meaningless for Tibetan readers) ; (b) the sddlition low the anko of uniformity of prefixed letters to words etymolorically deprived of them; (c) the probable addition of letters by the Buddhist teachers from India to llibetan words in order to make the moro siunlar to Sauskrit expressions (for instance, rjefor "king." witten in initation of raja, though the oliginal worl was je or she, as is shown by cognate languages). On the other land, whilo phonetically the abore explanation was not inconsistent with such cases as rka, dkalh, bkah, bskia, and ngz, rnga, ngag, sngacs, lnga, ngal, and brese, brdzun, dbyar, \&c., where the italicized letters are pronounced 1 m full and the others are left aside, it failed to explain other cases, sucl: as dyra, ingron, slyod, syiy(wh, sbrang, sbrab, b̌ra, k'ri, lirad, k'rims, krus, de., pronomuced da, don, cod or šicod, ěcn, dung, dede, ta, li, lad or tch, t'im, tut, \&c., and many others, where tho spoken forms are obviously the alteration by wear and tear of somads originally similar to the written forms. Csoma de Korös, who was acyuainted with the somewhat archaic sounds of Ladak, was ablo to point to only a few letters as silent. But Major Cunningham, in his book ou the same country (1854), held that the Tibetan writing, wheu first applied to the langusge, was the faithful trenscription of speech, and be gave as a proof that the name of the provinco of U , written DUUs, was the Dcbasse of Ptolemy: Foucaux, in his Grammaire (1858), quoted a fragment from a native work on grammar several ceaturies old, in which tha pronunciation of the oupposed silent letters is carefully described. Since then the problem has been disentangled; and now minor points only remain to be cleared up. Jaesclike deroted special atteation to the dialectica! sounds, ond showed in several papers and by the comparative table prefixed to his dictionary that in the western and easiern dialects these sounds eorrespond more or less elosely to tho written forms. Thus the valuable testimony of these dialects may be added to the evidence furaished by foreiga transcriptions of Tibetan words, loan words in conterminous languages, and words of common descent in kindred tongues. And the whole shows plainly that the written forme of words which are not of later remodelling are really the representatives of the pronunciation of the langugge as it was spoken at the time of the transcription. The concurrence of the evidence indicated above enables us to form the following outline of the evolution of Tibetan. In the 7th century there was oo difference between the spoken and the written language. Soon afterwerds, when the language was extended to the western ralleys, tho prefixed and most of the important consonants vanished from the spoken words. Tho ya-tag and ra-tag or y and r subscript, and the s after vowels and consonants, were etill in force. The next change took place in tho central provinces; the ra-tags were altered into cerebral dentals, and the yatags became x. Later on the superscribed letters and finals a sad s disappeared, except in the east and west. It was at this age that the language spread in Lahul and Spiti, where the superscubed letters were silent, the d and g finels were hardly heard, and $a_{n}, 0,1$ $u s$, were $a i$, oi, ui. . The worr's introduced from Tibet into the border languages at that time differ greatly from those introdnced at an earlier period. The other changes are more recent abd restricted to the provinces of \mathbb{U} and Tsang. The vowel sounds ai, $o i, u \hat{i}$, have become $\vec{e}, \bar{\delta}, \bar{u}$; and α, o, u vefore the finals d and \hat{u} are Dow $\ddot{a}, \ddot{0}$, u. The mediá have become aspirate tenues with a lorv iutonation, which also marks the words having a simple initial consonant; While the former aspirates and tho complex initiels simplified in speech are uttered with a ligh tonc, or, as the Tibetans say, "with a woman's voice," shrill and rapidly. Au inhabitant of Llasa, for example, finds the distinction between sh and $z h$, or between s and z, not in the consonant, but in the tone, pronouncing sh and s with a ligh note and zh and \approx with a low one. Tlie introduction of the important compensation of tones to balanco phovetic losses had begun several centuries beforo, as appears from a Tibetan MS. (No. $462 b$ St Petersburg) partly published by Jaeschks (Monatsber. Akad. Berl., 1867). A few instances will serro to illustrate what hes been said. Iu the bilingual inscriptions, Tibetan and Chinese, set up at Thása in 822, and published by Bushell in 1850, we remark that tho silent letters wers pronounced: Tib. spudgyal, now pugyal, is rondered suh-pot-yc in Chiaese symbols; khri, 口ow $l^{\prime} i$, is kich-li: hbrong is muh-lucing; snyan is sheh-njoh and su-njoh; srong is st, Tun, su-luny, and si-lung. These trangcriptions show by their variety that they were made from the spoken and not from tho written forms, and, considering the limited capacities of Chinese orthoepy, wero the mearest attempt at readering the Tibetan sounds. Sjura or spreu (a monkey), now altered into deu at Lháss, \{ou in Lahul, Spiti, and Tsángo, is still more reegnizable in the Gyarung shepri, and in the following degenerated forms - shrere in Ladak, streu-yo in Khams and in cognato languages, sube in Libıbu, sahere in Lepeha, simai in Tablung Naga, sibch in Abor Mliri, slibe in Sibsagar Miri, sarrha in Kol, sara in Kuri, \&e. Grog-ma (ant), now altered into the spoken loma, is still Ryoma in Bhutan, and, without tho suffix, Rorok in Gyarung, k'oro in Sokpa, k'orok, k'alck in Kiranti, dec. Grane-po (eold), spoken l'ammo, is still grang-mo in Takna, hyam in Bur.
mese $_{2}$ \& $C . \Delta$ respectful word for "hesd " is u, written $d b u$, which finds its cognates in Murmi thobo, Kusunda chipr, Sibsagar Miri itub, \&c. Byut (bird), spoken chya, is still pye in Gyarnng. Brjod (to speak), pronounced jod, is cognate to the Burmese pycuihtso, the Garo brot, \&c. The word for "cowries" is 'gron- in written, rumin spoken Tibetan, and grwa in written Burmese; slop (to learn), spoken lop, is slop in Dielam. "Mloon" is alava in written and dawa in spoken language, in which -va is a suffix ; the word itself is zla-, cognate to the Mongol ssara, Sokpa sara, Gyarung t-sile, Yayu cholo, \&c. The common spoken word for "head" is go, written mgo, to which the Munipuri noko and the Mishmi mkure sre relatod. Sometimes the written forms correspond to double words which have disappeared. For instance, gye (eight), which is written brgyad and still spoken vrgyad in Balti in the west and Ehams in the east, is gyad in Ladak, Lahul, and U. The same word does not appear elsewhere; but we finl its twa parts separately, such as Gurnng pre, Murmi pre, Taksya phre, and 'Cakpa gyet, Serpa gye, Garo chct, sc. Rla (horse) is reduced to ta in speech, but we find ri, rhyi, roh in Sokpa, Horpa, Thochu, Mliniak, and td, tah, teh, t'cy in Lhopa, Serpa, Murmi, Kami, Takpa, \&c., both with the same meaning. Such are the various pieces of evidence obtained from an endlcss number of instances. The cases referred to above do not, owing to the difference of the causes, yield to sny explanstion of this kind. And it must be admitted that there are also many cascs, some of them caused by irregularities of writing, modification of spelling by decay, and by a probable use of prefixes still unascertained, which also resist explanation, though the account just given stands good whatever solution the question of prefixes may receive in future.
Little is known of the non-religious literature of Tibet. The most popular and widely circulated book is called The Hundred Thousand Songs of the Vencrable Milaraspa. Their author Milar. aspa (unless the work should be attributed to his disciples), often called Mila, was a Buldhist ascetic of the 11th century; according to Jaeschke, during the intervals of meditation he travelled through the southern part of mildule Tibet as a mendicant friar, instructing the people by his improvisations in poetry and song, proselytizing, refuting and converting heretica, and working manifold miracles. His legends aro not without wit and poetical merit. A number of poems written in an elevated and special style, dramatic works, and collections of fairy tales and fables are said to be in existence. A very, extensive work, the Djrung yg (Sgruïs yg), regarded as the national epic in Kham, has been partly seen by Desgodius and Baber. It is in prose; lut the dialogue, interspersed with songs, is metrical, and is much wore extensive than the prose framework. Religious discussions and philosophical dissertations alternste with comic episodes. It includes three divisions,-the Djiung ling, which descrites the invasion of part of Tibet hy the Djiung or Hoso ; the Hor ling, which recounts the conquest of the Hor (Turk tribes) by the Tibetans, and conveys much historical information in a tale of magic and marvel; and the Djia ling (Chinese division), which narrates a contest of unknown date between the Tibetans and the Chinese. This work has apparently never been published, and even the manuscripts of the three divisions csnnot, says Raber, be obtained in a complete form. But every Tibetan, or at least overy native of Kham, who possesses any education, is able to recite or to cbant passages of great length. Another Tibctan epic, the

Giyaldrung, praises Dagyolong, a famous warrior who subdued the savage men of Khám. Besides these poems we find allusions to a sgiving, referring to the Yesser Khan. Dramatic works exist, as woll as translations of Galen, also of the Ramayana in the first vol. of the Bstodts'ogs of the Bstan-ngyur. For the religious literature, which is considerable, see LaMaism.

Writing was not introduced until the 7 th ceatury. Notched sticks (shing-chram) and bnotted cords were in current use, but the latter contrivance is only faintly allnded to in the Tibetan records, while of the other thero are numerous examples. No neution is anywhere made of a hieroglyphical writing, but on the eastern frontier the medicine-men or tomba of the Moso have a peculiar pictorial writing, which is known in Europe from two published MSS. (in Jow'n. Roy. As. Soc., 1S85, vol. xvii.) ; though apparently now confined solely to purposes of witcheraft, it perhaps contains survivals of a former cxtensive system superscded by the slphabetic writing introduced from India. According to tradition -a tradition of which the details are open to criticism-the alphahet was introduced from India by 'onmi Sainb'ota, who was sent to India in 632 by King Srong btsan to study the Sanskrit lauguage and Buddhist literature. Tonmi Sambota introduced the socalled "writing in thirty characters" (six of which do not exist in Sanslenit) in two styles, - the "thick letters" ol "letters with heads," now commonly used in priuted books, and the half-cursive "cornered letters," so called from their less reguiar heads. The former are traditionally said to have been derived from the Landza character. The Landza of Nepal, however, is certainly not the origin of the Tibctan letter, but lather an ornamental development of the parent letter. The close resemblance of the Tibetan char. acters " with heads" to the Gnpta inscriptions of Allahahad shows them to have been derived from the mommental writing of the period; and various arguments sppear to show that the other Tibetrn letter came from the same Indian character in the style in which it was used in common life. The Tibetan half-cursive was further developed into the more current "headless" characters of which there are several styles. From the monnmental writing of Tibet was derived, for the special use of the Mongols in the 13th century, the short-lived writing known as Bagspa, from the name of the lama who worked it out.
Bibliography.-The works of Csoma de Körös, Alex. Cunningham, Sarat Chandra Das, Desgodins, Léon Feer, Ed. Fuacaux, A. A. Georgi, Bryad H. Hodgaon, H. A. Jaeschke, Th. II. Levvin, Max Muller, A. Rėnuusat, T. Robin60n, J. J. Schmidt, F. O, O. Schrocter, and A. Schiefner have beca alreacly men. tioued, and those of J. W. Bushell, A. Campbell, T. W. Thhys Davids, Huc and Cabet, Koeppen, C. Markham, Pallas, Ssadadg Ssetsen, Schott, Pundit Nain singb, and others are referred to under lamaisa, Ladax and Balti, and Lrasa (qo.v.). The following also may be dampil: E. Colborne Baber, "Travels and Researches io Western Chida," in Roy. Gcogr. Soc. Suppl. Papers, 1. 1832: C. II. Desgoding, Le Thibet d'apres la corresnondance des Missionaires, Paris, 1885: Th, Duki, Life and Wrork's of Alixnnder Csoma de Korjs, London, 1855; Konrad Ganzermuller, Tibet, Stuttgart, $18 i 8$; Krick, Relntion d'un Voyage ou Thibet en 1555, Paris, 18.54 ; A. Krishna, Explorations in Great Tibet and Afongolic, made in 1si9-S2; Report prepared by J. B. N. Hennessey, Dehra Dun, 188f, fol. ; Terrien de Laconperie, "Beginaings of Writing in and around Tibet is is Journ. Roy. As. Soc., 1885, xvii. ; Id., The Janounges of Chinn-before the Chincse, Londod ISS7: J. R. Locan, in Journal of the Indian Armipelago Enstern Asia, vol. II, Sintapore, 1852 : Wi. Woodville Rockill, "The Early Enstern Asta, vol. II., Singapore, 1ss2. W. Wond ville Rnckill, The Early Histary or Bod-yu, append. to The Lu Die Koenioe van Tibcl Munich 1806 , and Loodoo, 18, Him. Nond
 Tibet ; Trotter, Journ. Roy. Geog. Soc., 187, vol. Xmi., X. Iule, The (T. DE L.)
Marco Polo, 2d ed., Londoo, 187 .

TIBULLUS, Arbius (c. $54-19$ b.c.), was the second in the tetrad of the elegiac poets of Rome. As we learn from Ovid, he was the successor of Cornelius Gallus and the immediate predecessor of Propertius. The information which we possess about him is extremely meagre. Besides the pooms themselves-that is to say, the first and second books-we have only a few references in later anthors and a sho:s. Life of probable but not undoubted genuineness. We do not know his prænomen; and his birthplace is uncertain. It is, however, a plausible conjecture that he came from Gabii. The year of his birth has been variously assigned; bui 54 в.c. may be taken as approximately correct. This would make him about twentyfive when he accompanied Messala on his Aquitanian campaigu in 29, and thirty-five at his untimely death in 19. His station was that of a Roman knight; and he had irherited a very considerable estate. But, like Virgil, Horace, and Propertius, he seems to have lost the greater part of it in 41 amongst the confiscations which Antony and Octavian found expedient to satisfy the rapacity of tieir victorious soldiery. Tibullus, like Propertins, seems to have lost his father carly. He once mentions his mother
and sister ; and, according to Ovid's elegy upon him, they were alive at his death.
Tibnllus's chief friend and patron was M. Valerius Messala Corvinus, himself an orator and poet as well as a statesman and commander. Messala, like Mrenenas, was the centre of a literary circle in Rome; but the bond between its members was that of literature alone. They stood in no relations to the court; and the name of Augustus is never once to be found in the writings of Tibullus. It was doubtless this community of taste which gained the young poet the friendly notice of Messala, who offered him an honourable position on his private staff when he was despatched at the end of 30 by Augustus to quell the Aquitanian revolt. Tibullus distinguished himself in the campaign and was decorated for his services. But this did not rouse in him any military ardour. His tastes lay in quite other directions; and he always speaks of wai with horror and dislike. At tho end of the war in 29 Tibullus returned to Rome, and thenceforward his lifa seems to have been divided between Rome and his country estate, though his own preferences were altogether for the country life. Soon after his return he made the
acquaintance of his first love, Delia. This is what he calls her in his pocms; but we learn from Apuleius that her real name was Plania. Delia seems to bave bcen a woman of middle station. It is impossible to give an exact account of the intimacy. The poems which refer to her are arranged in no chronologica! order. She appears now as single, now as married; but we do not hear anything either of her marriage or of her husband's death. It is clear, however, that it was the absence of her husband on military service in Cilicia which gave Tibullus the opportunity of making or renewing the acquaintance. It was not dropped when he returned, probably with Messala in 27. It was not a difficult task to deceive the simple soldier ; and Delia was an apt pupil in the school of de-ception,--too apt, as Tibullus saw with dismay when he found that he was not the only lover. His entreaties and appeals were of no avail; and after the first book we hear no more of Delia. It was during the earlier period of this attachment and probably in the spring of 28 that, yielding to his friend's earnest and repeated requests, Tibullus left Delia to accompany Messala on a mission to Asia. He fell ill, however, and could not get farther than Corcyra. In the second book the place of Delia is taken by Nemesis, which is also a fictitious name. Nemesis (like the Cynthia of Propertius) was a courtesan of the higher class; and she had other admirers besides Tibullus. He complains bitterly of his bondage, and of her rapacity and hardheartedness. In spite of all, however, she seems to have retained her hold on him until his death. Tibullus died prematurely, probably in 19, and almost immediately after Virgil, in order, as their contemporary Domitius Marsus pathetically puts it,

> 'That none might sing of gentle lovo in elegy's sad lay,

Or gallant march of royal war on epic feet essay."
The character of Tibullus is refected in his poems. Though not an admirable it is certainly an amiable one. He was a man of generous impulsea and a gentle únsel lish disposition. He was loyal to his ifriends to the vergo of self.sacrifice, as is shown by his leaving Delia to accompany Mcssala to Δ sia, and constant to his mistressos with a constaney lut ill deserved. Hia tenderneas towards them is enhanced by a refinement and delicacy of feeling which are very rare amonsst the ancients. Horace and the rest taunt the cruel fair with the retribution that is coraing with the yeara, when they will exult over the decay of the once imperions bearty. If Tibullus refers to such a fate, he does it by way of warning and not in any netty spirit of triumplh or revenge. Cruelly though he may have been treated by his love, he does not invoke curses upon ber head. Ile goes to her little sister's grave, hung so often with his garlands and wet with his teare, and bemoans his fate to the durnb ashes there. Tibullus has no leanings to an active life : his ideal is a quiit retirement in the country with the loved one at his side. He has no ambition and not eveu the troct's yearning for inmortality His muse may go packing if it camot propitiate the fair. As Tibullus loved the country life, its round of simple duties and innocent recreations, so he clung to its faiths, and in an age of crude matcrialisin and the grossest supcrstition he was religious in the old Roman may. A simple, gentle, affectionate nature such as his could not foil to win esteenn ; and his early desth causel deep regret in Rome. Tibullua was remarkable, his biographer tells us, for his good looks and the caro that be bestowed upon his person. As a poct he rominds us in many respects of the English Collins His clear, finished, and yet unaffected style made him a great favourito with his countrymen and placed him, in the judgment of Cuintilian, at the head of tbeir elegiac writers. And certainly within his own range he has no Roman rival. For natural grace and tenderness, for exquisiteness of feeling and expression, he stands alone. He has far fewer faulta than Propertiua, and in particular he never overloads his lines with Alesandrian learning.' But, for all that, his range is limited; and in power and conpass of imagination, in vigour and originality of concention, in richness and variety of poetical treatment, ho is much lisis inferior. The eame differences are perceptible in the way the two poote handle the ir metre. Tibullus is smoother and more nusical but liable to become monotonous; Propertius, with occasional harshnesses, is more vigorous and varied. It need ouly bo added that in many of Tibullus'a poems a symmetrical composition is obrion, although the symmetry must never bo redaced to a fixed and unclastic seheme. it is probable that we have lost somo of the genuino poems of Tibullus. On the other haud, much bas come down to us under
his rame which must certainly be assigned to others. Only the first and second books of the usual order, or about 1240 rerses, can claim his authorship. The first book consists of pooms written at various times hetween 30 and 26. It was probably published about 25 or 24 . The second book seems to have been a posthumous priblication. It is very short, containing only 428 verses, and is cvidently incomplete. In hoth Dooks occur poems which give evidence of internal disorder; but acholara cannot agree upon the remedies to be applied.

The third book, which contains 290 verses, is by a much inferior hand. The writer calla himalf Lygdamus and the fair that lie aings of Nexra. He was born in the same ycar as Ovid, in the consulship of Hirtins and Pansa; hat there is nothing Ovidian about his work. He has very little poetical power, and his style is meagre and jejune. He has a good many reminiscences and imitations of Tibullus and Propertius; and they are not always happy. The separation of the fourth book from the third has no ancient quthority. They form one in the best MSS., and are quoted as one in the anthologies of the Middle Ages. The division dates from the revival of letters, and is due to the ltalian scholars of the 15 th contury. The fourth book consists of poems of very dilferent quality. Tho first is a composition in 211 hexameters on the aehievements of Messala; and very poor stuff it is. The author is unknown; but he was certainly not Tibullus. The poem itself was written in 31, the year of Messala'e consulship. The next eleven poems relate to the loves of Sulpicia and Cerinthus. Sulpicia was a Roman lady of high station and the daugliter of Valeria, Messala's sister. She had fallen violently iu love vith Cerinthus, about whom we know nothing but what the noet tells us; and he soon reciprocated her feelings. The Sulpicis elegies divide into two groups. The first comprises iv. 2-6, containing uinety-four lines, in which the theme of the attachment is worked up into four graceful poems composed for Sulpicia and Cerinthus alteruately. The second, iv. 8.12 (to which seven should be added), consists of Sulpicia's own letters. They are very ahort, only forty lines in all; but thoy have a quite unique interest as being the only love poems by a Romsn woman that have escaped the ravages of time. Their frank aud passionate outpourings remind us of Catullus. The atyle aud metrical handling hetray the novice in pootical writing; and the Latinity is "feminine." The thirtcenth poem (twentyfour lines) claima to be by Tibullus; but it is a miserablo forgery. It is little more than a cento from Tibullus and Propertius. The fourteenth is a little epigram of four lines. There is nothing to determine its authorship. Last of all comes the epigram of Donitius Marsu: already seferred to. To sum up: the third and fourth hooks a ppear in the oldest tradition as a single book; if separated, they mould contain only 290 and 373 lines respectively, as against 812 of the first book and 428 of the incomplete second; and they comprise pieces by different authors and in very different styles, none of which can be assigned to Tihullus with aay certainty. The natural conclusion of this is that we have here a collection of scattered compositions relating to Messala and the members of his circle which has been added as an appendix to the genuine relics of Tihullus. When this collection was made cannot be exactly determined; but it was certainly not till after tho death of Tilullus, and probably not till after Mcssala's. Besides the foregoing, two pieces in tbe collection called Priapea have been attributed to Tibullus; but there is very littlo external and so internal evidence of his euthorabip. The text of Tibullus is, on the whole, better preserved than that of Catullus, and still more oo than that of Propertius. But it still containg many corruptions and eoveral lacunæ, besides the disarrangerments already referred to.

The value of the short Vila Tibulli, which is found at the end of the Ambrosian and Vatican, also of inferior, MSS., has been much discussed. E. Baelrema maintains that it is genuine, and possibly an abstract from the book of Suetonius, De Poctis, - a conjecture supported by the fact that even in so short a piece of writing more than one Suetonian phraso occurs (Baehr., Tibullische Elatl., p. 4 sq.), -while Schulze (Z̈schr.f. d. Gymnasialwocsen, Berlin, $\bar{x} \times \mathrm{xi}$ i. 658) recards it as a mere rifacimento of llorace, Ep, i, 4, and various passages in Tibullus. E. Hiller (Rhein. Mfus., Iviii. 350) thinks it genuine, but assigns it to the late classical period, -a view quite consistent with an ultimato Suctonian origin. It is as follows :- "Albius Tibullus, eques R. o Gabiia [Bachrens's ingenions conjecture for the MS. eques regalis, R. being the customary abhreviatinn for Romanass], insignis forma cultuque corporis observabilis, ante alios Corvinum Messalamob ingenium [so Baehr., M1SS. originem, others oratorem] dilexit, cuius et contuberualis Aquitanico bello militaribus donis donatus est. Hic multorum iudicio priscipem inter elegrographos optinet locum. Epistulx quoquo eins, quam. quam breves, omnino utiles sunt [so the MSS.; Bachrens reads subtiles. The letters referred to aro Sulpicia's]. Obiit adulescens, ut indicat epigramms superseriptum" (i.c., the one ascribed to Domitins Marsus. These words seem to be a later addition to the Life).-Another moot question of some importance is whether our poet should be identified with the Albins of IIorace (Od., i. 33 ; Epist., i. 4), as is done by the commentator Porphyrio (200-250
A.D.) in bis Scholia. In the forner passage Horace tells Albius to moderate his grief at the cruelty of Glycera, nor to descant in piteous elegies on her broken faith and the victory of a younger rival. It is clear that Glycera cannot be Nemesis; for it is a pseudouym, as the context shows, and Horace would, of course, have used the same pseudonym as Tibullus. If, on the other hand, Nemesis were a real name, Horace had no occasion to use a pseudonym. It is possible that Tibullus had another mistress, Glycera, of whom we know nothing further, and that the miserabiles elegi have perished ; but this is a mere supposition. The Albius of the epistle has an estate at Pedun, where Horace conjectures he may be musiag or writing. He is handsome, rich, and knows how to enjoy life. He is wise and has tho gift of speech, popularity, reputation, and good health abunde, -an enviable list of attributes, but certainly one which does not agree very well with what we know from elsewhere of Tibullus. The theory, then, that theso passages refer to Albius Tibullus must be pronotnced, with Baehrens, unproven ; and the forma of Horace's Albius must not be used, as Schulze uses it, to subrert the credit of the insignis forma of the Life-Ovid, Trist., iv. 10,53 sq., "successor fuit bic [Tibullus] tibi, Galle, Propertius illi, quartus ab his serie temporis ipse fui." In the preceding coinplet he had said, "Yergiliuns vidi tantum nec amara Tibullo tempus amicitire fata dedere meæ." Ovid, wbo was born in 43, would he only twenty-four at Tiballus's death if it occurred in 19.-The loss of Tibullus's landed property is attested by himself (i. 1, 19 sq .), "Vos quoque felicis quondam, nnuc pauperis agri custodes, fertis munera vestra, Lares. Tunc vitula inuumeros lustrabat cæsa invencos; nunc agna exigui est hostia parva soli" (comp. 41, 42). Its canse is only an inference, though a very probable one. That be was allorred to retain a portion of his estate with the family mansion is clear from ii. 4, 53 , "Quin etiam sedes iubeat si vendere avitas, ite sub, imperium sub titulumque, Lares." Compare the passages quoted abore and i. 1, 77, 78. Messala composed epigrams (Plin., Ep., V. 3) and bncolic poems (comp. the pseudo-Virgilian Catalepton, ii.) ; but he was more conapicuous as a patron than as a poet. On his circle and that of Mecenas, see Teuffel, Gesch. der römischen Literatur, 4 th ed., p. 431 (vol. i. p. 389 of the Eng. transl.). Other members of the circle were Messala's brother, Pedins Publicola, Emilius Macer (probably the Macer addressed in ii. 6), Valgius Rufus, Lygdamus, Sulpicia, and others, and even Ovid to a certain extent (Ov., Pont., i. 7, 28 sq.; Trist., iv. 4, 27 sq.). Tibullus vas Messala's contubernalis in the Aquitanian war (Vita Tib. and Tib., i 7, 9 sq., a poem composed for IIessala's triumph). It should be stated that the date of the Aquitanian campaign is still undetermined. It has been assigned to 30,29, and 28 . He received militaria dona (Fita); Baehrens unkindly suggests it was for purely poetical services (Tib. Bl., p. 15). Tibullus's dislike of war is al ways coming to the surface (e.g., i. 3; i. 10), and so also his love of quiet and retirement (i. I; ii. $1 ; 3,1 s q$.).-Apuleius (Apol., 10), "saccusent Tibullum . . . quod ei sit Plania in animo, Delia in versu"; this is the most probable form of the name, Delia ($\delta \bar{n}$ dos) being a translation of Plania. As regards her station, it should be noticed that ehe was not entitled to wear the stola, the dress of Roman matrons (i. 6, 68). Her busband is mentioned as absent (i. 2, 67 sq.). She eludes the custodes placed over her (i. 2, 15, and 6,7). Tibullus's suit was faroured by Delia's For Tibnllus's illness at Corcyry affectionate terms (i. $6,57 \mathrm{sq}$.). For Tiballus's illness at Corcyra, see i. $3,1 \mathrm{sq}$., 55 s. 9 . The fifth elegy was written during estraugement (discidium) snd the sixth after the return of the husband and during Delia's double-infidelity. On the difficulty of "harmonizing" the Delia elegies, see F. Leo (in Kiessling and Wilamovitz-Mollendorf's Philol. Unters., ii. pp. 18.23), who is, bowever, too sceptical. Any other attachments that Tibullus formed (such as the supposed one for Glycera) must have fallen between the end of the Delia and the beginning of the Nemesis counexiou. - Ovid, writing at the time of Tibullus's death (Am., iii. 9, 31), says-"Sic Nemess longum, sic Delia, nomen habebunt altera cura recens, altera primus amor." Nemesis is the subject of book ii. 3. 4, 6. The mention of a lena (ii. 6) settles her
position. The connexion had lasted a year when ii. 5 was written position. The connexion had lasted a year when ii. 5 was written (see ver. 109). It is worth noticing that Martial selects Nemesis as Tha sonrce of Tibullus's reputation, "fama est arguti Nemesis lasciva Tijulli" (Epigr., riii. 73, $\boldsymbol{1}$); compare xiv. 193, "ussit amatorem Nemosis lasciva Tibullum, in tota iuvit quem nihil esse domo," कbere, however, the second line is taken from one of the Delia elegries. Orid, Amores, iii. 9,58 , "me tonuit moriens deficiente masu." The point of this can only be seen by reference to Tib., i. 1 , 60, where Delia is addressed, "te teneam moriens deficiente manu." qneque, Vergilio comitem, non æqua, Tibulle, Mors iuvenem campos misit ad Elysios, ne foret aut elegis roolles qui fleret amores aut caneret forti regia bella pede."-Tibullus condemns the rougb handlin which the inamorata often suffered from her Roman iover, e.g., i. 10, 59-60-"A ! lapis est ferrumque, suam quieamyue puellam paraphrased abovo (ii. 6,41) is perbaps unmatcined in ancient poetry. "desino, ne dominæ luctus renoventur acerbi. Non ego sum tanti
ploret ut illa semel. "- His love for a rustic life and rustic wership appears throughout whole poems, as in i. 1 and ii. 1, 2. Of his poetry he says (ii. 4, 19), "Ad dominam faciles aditus per carmina quæro; ite procul, Musæ, si nilil ista valent."-Specimens of Tibullus at his best may be found in i. 1, 3, 89-94; 5, 19-36; 9, 45-68; ii.6. Quintilian says (Inst., x. 1, 93), "Elegia quaque Græcos provocamus, cuius mihi tersus atque elegans maxime ridetur auctor Tibullus; suut qui Propertium malint ; Ovidins utroque lascivior sicut durior Gallus." - Uvid (Am., l.c.) well calls bim cultus, Martial argutus," fine-toned." A short but not inadequate account of Tibullus's prosody is given by L. Mueller in his introduction to Tibullus (Calullus, Tibullus, und Propertius, Leipsic, 1880). Catullus and Tibullus lengthen a short vowel before $s p$ and fr; Propertius always keeps it short in similar conjunctions, eren where s is followed by two consonants, as in striges. Catullus, and in three cases Tibullus, allow a trisyllabic verb to close the pentameter. Propertius never permits hinself this liberty, al. thougb in his earlier poems he bas as many trisyllabic endings as Tibullus. - The chronology of the first book is discussed amongst others by Bachrens (Tib. Bl., . Pp. 12-24). But the data do not admit in all cases of his precise determinations. Baehrens and Hiller (Horones, xviii. 353) agree that the secoud book was posthumous. Ji it bad been known to Oril when lie wrote bis elegy on the poet's death, it seams certain that be would bave quoted from it. Hiller assigns 2 B.C. as au inferior limit, by wbich time Or., Ars Am., iii. 3, $535 \mathrm{sq}$. ., must bare been written. Amongst the "disarranged noems" are i. 1, 4, 6 and ii. 3, 5. Proposed rearrangements of them may be found in Hiller's Tibullus (1.985). Charisius (pp. 66 and 105) qnotes part of a hexameter which is not found in the extant poems of Tibullus.

The Tibullian authorship of book iii. has long agy beeu surrendered by scholars. Its latest defenders bave been Fusi (De Elegg. Libro quem Lygdami esse putant, Münster, 1867) and the English translator, J. Cranstoun. It has been snggested that Lygdamus (৯újos, whito marble) is a Grecizing of Albius, some relation of Tibullus (compare Hiller, Hermes, xviii. 353, n. 2); and this is possible. Gruppe's long.exploded theory that Ovid was the autlor bas been recently revired by J. Kleeman (De Libri III. Carminibus qua Tibulli Nomine circumferuntur, Strasburg, 1876). Considerable difficulty is caused by iii. $5,15-20$, which contains agreements with three passages of Ovid, Ars Ani., ii. 669 sq.; Tr., iv. 10, 6: "cum cecidit fato consul uterque pari" (Lygdamus and Ovid nsing word for word the same expression for the year of their birth, the consulsbip of Hirtius and Pansa); and Am., xi. 14, 23 s\%., which are much too close to be accidental, and in which the theory that Ovid was the imitator is excluded by the fact that the lines are much more appropriate to their surroundings in Ovid than in Lygdamus. In cousequence Baehrens (Tib. Bl., 40) regards the poem as written after 13 A.D., the date of the Tristia, while Hiller (l.c., p. 359) regards the lines as a later addition by Lygdamus himself. In either case it would, be published after 13. The line quoted above may bave obtained proverbin currency before either of the passages was written, as the death of both consuls in one year would have impressed the Roman imagination as powerfully as the coiucident deaths of Adams and Jefferson did the American. In that case no part of book iii. need be later than the Cbristian era. For Lygdamus's imitations of Tiballus, see Gruppe, Die römische Elcgic, i. 112 sq. There are resemblances between the pseudo.Tibullus and the Catalepton (Baehr., op. cit., p. 52).-The view of Baehrens (Tib. Blätt., 49) and others that ifi. and iv. originally formed one book may now be considered established, in spite of Birt'ө objections (Das antike Buchwesen, 426 sq .) ; and Hiller in his edition prints them as one. They were published some time after book ii., probably after the death of Messala (Baehrens, op. cil., 48, adds, "and of his son Dlessalinus"). Further determination of the date is impossible. We do not know when they were added to the genuine poems of Tihullus; but it was probably before the Life was written. - Most scholars since Lachmann (Kl. Schr., ii., 149) hare condemned the "Panegrric on Messala." It is an iuflated and at the same time tasteless declamation, entirely dovoid of poeticab merit. The language is often absurdly exaggerated, e.g., 190 sq. The author himself scems to be conscious of bis own deficiencies ($1 \mathrm{sq} ., 177 \mathrm{sq}$.). All that we know about him is that he, like so many of his contemporaries, had been reduced to poverty by the loss of his estates (181 sq .). The date is fized by 121 sq.-Sulpicia was the daughter of Servius Sulpicius (iv. 10 , 4), and she seems to have been under the tutelage of Mcssala (cf. 14, 5-8), her uncle by marriage (Haupt, Hermes, iv. 33 sq.). Cerinthus is a real name. He was probably a Greek (Eaehr., p. 41 and nots). Eo is not to be identified with the Cornutus addressed in Tib., ii. 2, 3. Gruppe (op. cit., 2 2) and Teuffel (Sudien, 367) attribute iv. 2-6 to Tibullus himself; but the style is different, snd it is best to answer the question as Brehrens does (p. 46) with a non liquct. For Sulpicia's style and its feminine Latinity, compare Gruppe (op. cit., i. 49 sq.).-The direct ascription of iv. 13 (verse 13 - "munc licet e caelo mittatnr amica Tibullo") to Tibullus probably led to its being included in the collection. Later on, it and
the epigram together caused the addition of the pseudo-Tibulliana to the genuine works. Although not suspected till recently, it is unquestionably spurious; see the examination by lostgate (Journ. of I'hil., ix. 280 sq.).-Theauthorship of the two Priapea (one an epigrant and the other a longer piece in iambics) is discussed by Hiller (Hermes, xviii. 343-9). His conclusions are that, as regards tho iambics, the theory that Tibullus was its author, though from the nature of the case ii does not admit of complete disproof, rests upon the slightest of foundations, and, as regards the epimam, that the bypothesjes of a Tibullian autborship is శuite ioaduissible.
The text of:10uHus is inamuch better condition than it was in Lachmana's time, thamks to $\$$. e recent ciscovery of new MSS. by E. Baehrens, Of these tho Ambrosianus (A), of date a bout 1374, and the Vaticanus (S), eod of the luth or becinniag of the 15 th century, agree so closely that they can be referred to nn original extant in the early part of the 13 th or $13 t h$ ccatury but lomg since iost. A third the Guelferbytanus (G), writhen in Lombard characters, but on parchuent "f the baginning of the 1 oth cealury. Baehrens, who athaches great inporta, in to the original readzus, of this codex, coasiders it a faithful copy of a 10 th or 11 th century MS. Buswles these we have a number of extracts fiow Tiluollusin the Florilejiun l'avis:unm, an anthology from various Latin writers which probably dates back to tho 11 th century, and which wo have frosm two MSS. at Paris (TGH7 and 179031: see Meyncke, Nhcin. Nus., Xxv. 3 sy. Bachrens considers that tbese cxcerpta Parisina and G are closely connected, and that their orjcinal and that of A and V were both descended from a more ancient MS., which he calls O, but which was still full of corruptions, Thu so-called Excerpta Frisingensia, preserved is an 11 th-century MS. (zow at Munich), but unfortunately very few in number, are extrncted from a much bettes MS. than O. Still better was tbe Fragmentum Cuiacianum, which we koวw enly from Scaliger's collation (in the library at Leyden), aad which is to be carcfully distinguished from the codex Cuacianns, s late MS. containing Catullus, Tibullus, and Propertios, and still extant. It only contanca from iii. 4, 65 to the end. The codices which Lachnamn used are later thma all the forecoing and full of interpolations. Baehreas's estimate of the M (s, anthoritica for 'libullus has not becn zecepted in sll its dotails. In particular his high estimate of G has been dispoted by Leo, op. cit., p. S; Rothstein, De Tibulli Codicibus, p. 67 sq. (who also endeavours to raise Lachmann'a MSS. to an inde. penuent position again) ; and others. R. Leonhard, in a careful disserta. tion, De Codicious Tibullianis Capita Tria (Munioh, 18S2), agrees with Baehreas it the Main, though lis pedigrec of the MSS. (p.53) is more elaborate.
Editions.-The lirst two editions of Tibullos and tho pseudo-Tibulliana are that with Catullos, Fropertius, and the Silve of Statias by Vindelin de Spira (Yeaice, 1172) and one of Tibullus separately by Floreotins de Argentian, probably priutcd in the same year. Compare IIuschke, Tibullus, Prof, vi, sq., axiii, sq. Amongst others we may nention those by Scaliger (with Catullas and Fropertius, Paris, 1577, 15S2, \&c.), Broukhoys (Amsterdam, 170s), Vulpius (iaiva, J74), lfeyve (Leipsic, 1S17, 4lı ed. by Wunderlich: with supplement
 by Dissen, 1919), Ifuschke (Leipsic. 1819, 2, vols, Lachmant (Berlin, 1829, the first critical edition), Dissen (Gottingen, 1885). The inost important edition With critical apparatus is that of E. Baehreus (Lcipsic, 1sis). The most recent cdition, with critical inlroduction and index, is E. Hiller'a (Leipsic, 1885). Recent texts are those of L. Moeller (Leipsic, 1SSO; also with Catullus and Propertils) and Halupt-Vahlen (Leipsic, 1885). There is no good recent enmmentary on Tibullus; wehave to fall back on Heyne and Dissen. That by B. Fabricius (Berlid, 1881) does not even comprise all the poems. Some contributions are made to the sulject in F. Leo's paper in Kiessling's and WilamowitzAloellendorfs Hhilol. Unters., ii. P. $\$$ sq., and by J. Vablen in the Monalsberichte of the Ucrlin Academy, 1s78, ppo 343-356. For fuller billiographies, seo Engelmentis Dibliothecr Scriptorum Lntinorum (cd. Prenss, 18S2) and J. E. B. Mayor'a Bibliographical Clue to Latin Literalure (1875). For the older editions, see the preface to Husch\&e's. There is an excellent account of Tibullins in W. 8. Teuffel's Gesch. d. römisch. Literatur (4th ed., L. Scbwabe, 18S2). Those in the Eng. tr. and Pauly's Real-Encyhlopadie Rre antiquated. The following translations into English verse are known,-by Dare (Londoa, 2720), Grainger (London, 1789, 2 vols., with Latin texi adad notes, subsequently reprinted), Cranstoun (Edinhurgh and London, 1SEn). An Essay towards a New Edition of the Elegies of Tibullus, with a 'IVanslation and Nopes (London, 1722), tnerely cont.aios i. I and T, $29 \cdot 19$. Sir C. A. Elton, Specimens of the Classic Pocts (Loudon, 1SI 4, vol. xii. 141-171) contains i. $1 ; i 1.4 ;$ iii. $2.4 ;$ 6, 39 to end; iv. 2, 3. To thess ahould probably be added Tibullus, with other Translations from Oviu, Horace, \&ec., by Richard Whiffin, London, 1829 . Cranstoun's is the only comflete version of merit; but it is far inferior to the trauslations by Elton, from

TIBUR. See Tivoli.

tic douloureux. Sce Neuralgia.

TICINO, or Tessis, a canton of Switzerland, ranking as eighteenth in the Confederation, consists of tho upper basin of the river from which it takes its name, -the Val Leventina, with the tributary valleys of Blegno and Maggia -and farther south takes in the districts of Lugano and Mendrisio between Lakes Maggiore and Como. Its total area is $1088 \cdot 2$ square miles, which is exceeded by only four other Swiss cantons, -Graubiinden (Grisons), Bern, Valais, and Yaud. Of this 725.8 squate miles are classed as productive, including 215.3 square miles covered by forcsts and 33.8 by vines; of the uuproductive portion 24.3 zquare miles are occrppied by lakes (most of that of Lugano belouging to the canton) and $13 \cdot 1$ ly glaciers. The highest points in the canton are the Dasodino (10,749 fect) in the north-west and the Talrhein (11,148 feet) in the north-east corners. In 1880 the population was 130,777 (the females cxcecding the males by 10,000 , doubtless owing to the ennigration of tho latter), beily an increase of 11,158 on that of 1870 ; the increaso was particularly marked in the lal Jwontina and is due to the influcuec of the St Gothard Railway, which traverses
the citire canton. Of this population 129,409 speak Italian: 342 of the remainder form the German-speaking hamlet of Bosco or Gurin in the Yal Caverna (in northwest), a colony from the neighbouring valley of Formazza or Pommat, which is politically Italian. In religion 130,017 are Ioman Catholics. Until 1859 Ticino was partly (Yal Leventina, Yal Blegno, and the Riviera) in the metropolitan diocese of Nilan, chiefly in that of Como, and is still practically (though not legally) administered by these two bishops,-all attempts made lietherto to incor. porate them with the see of Chur or to secure the erection of a special see for them haring failed. The chief townare Lugano (6129 inlabhitants), Airolo (367.1), Mendrisic (2749), Locarno (2645), and Bellinzona (2436). Formerly Lugano, Locarno, and Bellinzona were the capital by turns of six years cach; but since 1881 the seat of government has been permanently fixed at Bellinzona. Ticino slands in a conparatively low position as regards moral, educational, agricultural, and commercial matters. It has produced a number of sculptors, painters, and architects. Many of the men migrate during the sunmer in search of work as picture-dealers, waiters in caft́s, climney-sweeps, and especially as masons, plasterers, labourers, and navvies. A large quantity of fruit is grown ; the chicf articles exported are cattle, hay, fish, chestnuts, and earthenware. In manners, customs, and gencral character the inhabitants strongly rescmble their Italian neighbours.
The canton is made up of all the permancht conquests (with one or two trifling exceptions) made by different members of the Swiss League south of the main chain of the Alps. From nu listorical point of view Italian Switzerland falls into three grouns: -(1) Yal Leventina, conquered by Uri in 1440 (previonsly helf from 1403 to 1426); (2) Bellinzona, the Riviera, and Val Bleguo (held from 1419 to 1426), won in 1500 from the duke of Dilain by mens from Uri, Schryz, and Nidwald, and confirmed by Louis XII. of France in 1503 ; (3) Locarno, Yal Maggia, Lugano, and Mendrisio, scized in 1512 by tho Confederates when fighting for the Holy League against France, rulcal by the twelve members then in the League, and confirned by Francis 1 . in the treaty of 1516 . Theso districts' were goverued by bailiff lolding office two ycars and purchasing it from the inembers of the League; each member of group 3 sent annually an envoy, who conjointly constituted tho supremo appeal in all matters. This governnent was very harsh and is one of the darkest pages in Swiss listory. Yet only one open revolt is recorded-that of the Leventina against Uri in 1755. In 1798 the peeplle were distracted hy the Swiss and "Cisalpine republic" partics, but sided with the Swiss. On being freed from their hated inasters, they were formed into two cantons of the 11elvetic republic-Bellinzona ($=1$ and 2 above) and Lugano ($=3$). In 1803 all these districts were formed into one canton-Ticinowhich became a full member of tho Swiss Confederation. From 1810 to 1813 it was occupied by the troops of Napoleon. The roads over the Bernardino (1819-22) and the St Gotthard (1520-30) were mado under the constitution of 1814. But many of the ol. 1 troubles reappeared and were only done away with by the constitution of $23 d$ July 1830, which (with subsequent modifications) prevails at tho presont time. A legislative assembly (112 niembers) chosen by dircet election and an executive (5 mentibers) closen by tho legislaturo are its principal features. Tho "optional referchdum " (pernitting the sulbission of any lavy to a popular vote if asked for by a certain number of citizens) was adopted in 1883. In 18 48 , on religious grounds and owing to feals as to customs duties, the canton yoted in the sainority against the Foderal constitution of that year; but in 1874, though the people yoted against the rerised constitution, the logislature alop ted it, and the canton was counted as one of tho majerity. Since 1830 ticic local listory of the canton has been very disturbed owing to tho fact that, though Rornan Catholicism is the state religion, and all the poppulation are Roman Catholic (tho few Protestants having been expellell from Locarno in 1555), they are divided between the liadical nod Ultrainontane parties. Sinco 1576 tho intervention of Fclcral troops (already known in 1870) has been quite common in consennenco of conflicts of the local authorities inter sc, or agaiust tho Federal assenubly.
Sce Der К゙rndon Tessin, by Stefano Frauscinl (St Gsit, IS33).

Tici. Sec Mite.

TICKELL, Twomas (1686-1740), English man of letters, the son of a clergyman, was born at linidekirk; near Carlisle, in 1686. After a good preliminary sducation be
went to Queen's College, Oxford, where in 1708 he took his degree, and of which college he was two years later elected fellow. He did not take orders, but by a dispensation from the crown was allowed to retain his fellowship until his marriage in 1726. As a poet Tickell displayed very mediocre qualities. His success in literature, as in life, was mainly due to the friendship and patronage of Addison, who pronured for him (1717) the under-secretaryship of state, to the chagrin of Steele, who thenceforth bore Tickell no good will. During the peace negotiations with France Tickell published the Prospect of Peace, which was well spoken of in the Spectator and reached a sixth edition. In 1717 he brought out a translation of the first book of the Iliad contemporaneously with Pope's version. Kensington Gardexs, his longest poem, which appeared in 1722, is inflated and pedantic, and was doomed to oblivion from its birth. Dr Johnson's criticism of it gives it its due meed of praise and blame. The most popular of Tickell's poetical writings was the ballad of "Colin and Lucy," which will bear comparison with somo of the ballad poems of Wordsworth. Whether from fear of Pope's rivalry or from unbiassed choice, Tickell abandoned the translation of the Iliad and set about rendering the Odyssey and Lucan into English. In 1725 he was appointed secretary to the lords justices of Ireland, -a post which he retained until his death, which took place at Bath on 23d April 1740. Tickell rose once above the level of mediocrity, when he wrote his elegy addressed to the earl of Warwick on the death of Addison. Posterity has endorsed Dr Johnson's affirmation that this elegy is equal in sublimity and elegance to any funeral poem which had theretofore appeared, -and this notwithstanding Steele's canstic disparagement, that it was only "prose in rhyme.". Tickell also contributed to the Spectator and the Guardian.
See "T. Tickell," in Johnson's Lives of the Poets; the Spectator ; Anderson's Engtish Poets; Ward's English Poets.
TICKNOR, George (1791-1871), historian of Spanish literature, was born at Boston (Mass.), on 1st August 1791. He received his early education from his father, Elisha Ticknor, who, thongh at that time in business, bad been principal of the local Franklin public school and was the originator both of the system of free primary schools in Boston and of the first New England savings-bank. He studied at Dartmonth College from 1805 to 1807, and on leaving it was placed for nearly three years under Dr Gardiner, a pupil of Dr Parr. In the autumn of 1810 Ticknor entered the office of a leading Massachusetts lawyer, and, though his studies appear to lave been literary rather than legal, he was admitted to the bar in 1813. He at once commenced practice; but a year's experiment convinced him that scholarship and letters would be more congenial to his abilities. In the spring of 1815 be set sail for England. Attractive in appearance, cnltured, vivacions, and sympathetic, he had won many influential friends in America, and his introductions gave him access to most of khe men then worth knowing in Europe. He spent nearly two jears at Göttingen; but he also visited the chief towns on the Continent, meeting Prescott for the first time at Paris, and spending some months in Spain and Portugal, the life and literatures of which had already strong attractions for him. Returning to America in the summer of 1819, he was inducted in the Augnst following to the Smith professorship of French and Spanish literature and to the college professorship of belles-lettres at Harvard. The history and criticism of Spanish literature was in many respects a new subject at that time even in Europe, -the Spaniards themselves having no adequate treatment of their literature as a whole, and both Bouterwek and Sismondi having worked with scanty or second-hand resources. To supply this want, therefore, he gave his most
serious thought, developing in his lectures the scheme of his more permanent work. In June 182.1 his father died, and in Scptember be marriod Anna, daughter of Samuel Eliot, a merchant and founder of the chair of Greek literature at Harvard College. In tho years following 1821 Tickn made a vain effort to irtroduce measures of university reform. The death of his only son in 1834 and the subsequent failure of his wife's health led him to resign his post at Cambridge to Longfellow; and in the spring of 1835 he again went to Europe, where he remained until 1838. From that time till his death he lived chiefly at Boston. Till 1849 he published only occasional reviews and papers, such as his essays on Moore's Anacreon, on Milton's Paradise Lost, and on Thatcher's Sernons, in 1812; on Michael Stiefel, in 1816 ; on Griscom's Tour in Europe and on General La Fayette, in 1824 ; on amusements in Spain and on changes in Harvard College, in 1825 ; on Chateaubriand, in 1827 ; on Daniel Webster, in 1831; and on the best mode of teaching living languages, in 1832. His History of Spanish Literature, the first editions of which appeared inp New York and London in 1849, was welcomed on all hands as the standard work on the subject, and was rapidly translated into Spanisl and other Continental languages. Whatever its defects, it at least reduced to system and clearness a large mass of varied historical material hitherto only vagucly known ; and its copious references to authorities and editions and its loving exploration of the byeways of the literatnre made it as valuable to scholars as its direct and unpretentious style made it popular with general readers. In many respects it was the admirable literary complement of the historical work of Prescott. Like his, the bent of Ticknor's mind was expository rather than critical; and in both cases the standards applied were of a conventional rather than of an advanced nature. As with Prescott the glow of vivid narration often hides rather than reveais the underlying problems of social and philosophic import, so with Ticknor a certain fund of graceful and genial commonplace is apt to gloss over the really vital critical issues of the subject-matter. At crucial moments in place of the keener edge of criticism one is apt to find only the paper-knifo intelligence of the ordinary book-lover. The defect, however, was common to the critical schools of the time. The merits of the work in its accurate survey of comparatively untrodden ground were individual and of an exceedingly high order. Ticknor subsequently took an active part in the establishment of the Boston public library, in the interests of which he paid in 1856 another visit to Europe, and to which he left at his death his fine collection of Spanish and Portuguese works. In 1859, on the death of Prescott, he at once began to collect materials for a life of his friend, which was published in 1864. His death took place at Boston on 26th January 1871.

A Life of Ticknor, with his letters and journals, was edited by George S. Hillard, Boston, 1876.

TICONDEROGA, a village and township of the United States, in Essex county, New York, situated upon the stream connecting Lakes George and Champlain, and cxtending back upon an abrupt promontory which separates the two lakes. Two railroads enter the village,-tho Delaware and Hudson and a branch of the Central Termont. The population in 1880 was 3304.

Coummanding the direct route from the St Lawrence to the Hudson, Ticonderoga was early seized by the French and fortified under the name of Fort Carillon. In July 1758 it was unsuccessfully attacked by Abercrombic. In the same month of the succeeding year it was abandoned by the French upon the approach of an English army under Amherst, who occupied it and greatly strengthened its works. At the beginning of the Revolution, in 1775, the fort was surprised and captured by Ethan Allen and a party of Vermont militia. In 1778 it was retaken by the Engish unde. Burgoyne and was held by them until the close of the war.

TIDES

I. On the Nature of Tides.
§ 1. Definition of Tide.

WTHEN, as occasionally happens, a ship in the open sea meets a short succession of wares of very unusual magnitude, we hear of tidal waves; and the large wave caused by an earthquake is commonly so described. The use of the term "tide" in this connexion is certainly incorrect, but it has perhaps been fostcred by the fact that ouch waves impress their records on automatic tide-gauges, as, for example, when the wave due to the volcanic outbreak at Krakatoa was thus distinctly traceablo in South Africa, and yerhaps even faintly at Brest. We can only adequately define a tide by reference to the cause which produces it. A tide then is a rise and fall of the water of the sea produced by the attraction of the sun and moon. A rise and fall of the sea produced by a regular alternation of day and night breezes, by regular rainfall and evaporation, or by any influence which the moon may have on the weather cannot strictly be called a tide. Such alternations may, it is true, be inextricably involved with the rise and fall of the true astronomical tide, but we shall here distinguish them as meteorological tides. These morements are the result of the action of the sun, as a radiating body, on the earth. Tides in the atmosphere would be shown by a regular rise and fall in the barometer, but such tides are undoubtedly very minute, and wo shall not discuss them in this article, merely referring the reader to the Mécanique Céleste of Laplace, bks. i. and xiii. There are, however, very strongly marked diurnal and semi-diurnal inequalities of the barometer due to atmospheric meteorological tides. Sir William Thomson in an interesting speculation ${ }^{1}$ shows that the interaction of these quasi-tides with the sun is that of a thermodynamic engine, whereby there is caused a minute secular acceleration of the carth's rotation. This matter is, however, beyond the scope of the present article. We shall here extend the term "tide" to denote an elastic or viscous periodic deformation of a solid or riscous globe under the action of tide-generating forces. In the technical part of the article by the term "a sinnple tide" we shall denote a spherical harmonic deformation of the water on the surface of the globe, or of the solid globe itself, multiplied by a simpla harmonic function of the time.

§2. General Description of Tidal Phenomenu. ${ }^{2}$

If we live by the sea or on an estuary, we see that the water rises and falls nearly twice a day; speakiug more exactly, the average interval from high water to high water is about $12^{\text {b }} 25^{\text {m }}$, so that the average retardation from day to day is about 50^{m}. The times of high water are then found to bear an intimate relation with the moon's position. Thus at Ipswich high water occurs wleen the moon is nearly south, at London Bridge when it is southwest, and at Bristol when it is east-south-east. For a very rough determination of the time of ligh water it is ruffrient to add the solar time of high water on the days of new and full moon (called the "establishment of the port") to the time of the moon's passage over the meridian, either visibly abore or invisibly belor the horizon. The interval between the moon's passage orer the meridian and high water varies sensihly with the moou's age. From new moon to first quarter, and from full moon to third quarter (or sather from and to a day later than each of these phases), the interval diminishes from its average to a mini-

[^139]mum, and then increases again to the average; and in the other two quarters it increases from the average to a maximum, and then diminishes again to the average.

The range of the rise and fall of water is also subject to great variability. On the days after new and full moon the range of tide is at its maximum, and on the day after the first and third quarter at its minimum. The maximum is called "spring tide" and the minimum "neap tide," and the range of spring tide is usually between tro and three times as great as that of neap tide. At many ports, howrever, especially non-European ones, two successive high waters are of unequal heights, and the law of variability of the difference is somewhat complex; a statement of that law will be easier when we come to consider tidal theories. In considering any tide we find, especially in estuaries, that the interval from high to low water is longer than that from low to high water, and the difference bctween the intervals is greater at spring than at neap.

In a river the current continues to run up stream for Piver some considerable time after high water is attained and tides to run down similarly after low mater. Much confusion has been occasioned by the indiscriminate use of the term "tide" to denote a tidal current and a rise of water, and it has often been incorrectly inferred that high water must have been attained at the moment of cessation of the upward current. The distinction between "rising and Distinofalling" and "flowing and ebbing" must ve carefully rise and maintained in rivers, whilst it vanishes at the sealoard. fall from If we examine the progress of the tide-wave up a river, ebb.
we find that high water cscurs at the sea earlier than higher up. If, for instance, on a certain day it is high water at Margate at noon, it is high water at Gravesend at a quarter past two, and at London Bridge a few minutes before three. The interval from low to high water diminishes also as we go up the river; and at some distance up certain rivers-as, for example, the Severn-the rising rater spreads over the flat sands in a roaring surf and travels ups the river almost like a wall of water. This kind of sudden rise is called a "bore." s In other cases where the differ. enco between the periods of rising and falling is considerable, there are, in each high water, two or three rises and falls. A double high water exists at Southampton.

When an estuary contracts considerably, the range of tide becones largely magnified ns it narrows ; for ezample, at the entrance of the Bristol Channel the range of spring tides is about 18 feet, and at Chelistow about 50 feet. This augmentation of the height of the tide-wave is due to the concentration of the energy of motion of a large inass of water into a harrow space. At oceanic prorts the tidal phenomena are much less marked, the range of tide being usually only 2 or 3 feet, and the interval from high to low water eensibly equal to that from low to high water. The changes from spriug to neap tide and the relation of the time of high rater to the woon's transit remain. however, the same as in the cace of the river tides.

In long and narrow seas, snch as the English Cfuannel, the tide in mid-channel follows the same law as at a station near the mouth of a river, rising and falling in cqual times; the current runs in the direction analngous to up rtream for three hours before and after high water, and down atream for the same period vefore and after low water. But near the sides of chaunels and near the mouths of bays the changes of the curreuts are very complex; and near the headlands separating two lays there is usually at certain times a very swift current, termed a "race."

[^140] Thomeon, in Hhu, Nig., 1886-87.

In inland seas, such as the Mediterranean, the tides are nearly insensible except at the ends of long bays. Thus at Malta the tides are not noticed by the ordinary observer, whilst at Venice they are conspicuous.
The effect of a strong wind on the height of tide is generally supposed to be very marked, especially in estuaries. In the case of an exceptional gale, when the wind veered round appropriately, Airy states ${ }^{1}$ that the water has been known to depart frem its predicted height at London by as much as 5 feet. The effect of wind will certainly be different at each port. The discrepancy of opinion on this subject appears to be great,-so much so that we zear of some observers cencluding that the effect of the wind is insensible. Variations in barometric pressure also cause departures from the predicted height of rater, high barometer corresponding to decrease of height of water. Roughly speaking, an inch of the mercury column will correspond to something less than a foot of water, but the effect seems to vary much at different perts. ${ }^{2}$

§ 3. General Explanation of the Cause of Tides.

ride-

 zenerat. ing Sorces.The moen attracts every particle of the earth and ocean, and by the law of gravitation the ferce acting on any particle is directed towards the moon's centre, and is jointly propertional to the masses of the particle and of the moon, and inversely proportional to the square of the distance between the particle and the moon's centro. If we imagine the earth. and ocean subdivided into a number of small portions or particles of equal mass, then the average, both as to direction and intensity, of the forces acting on these particles is equal to the ferce acting on that particle which is at the earth's centre. Fer there is symmetry about the line joining the centres of the two bodies, and, if we divide the earth into two portions by an ideal spherical surface passing through the earth's centre and having its centre at the moon, the portion remote from the moon is a little larger than the pertion tewards the moen, but the nearer pertion is under the action of forces which are a little stronger than these acting on the further portion, and the resultant of the weaker forces on the larger portion is exactly equal to the resultant of the stronger forces on the smaller. If every particle of the earth and ocean were being urged by equal and parallel forces, there would be no cause for relative motion between the ocean and the earth. Hence it is the departure of the ferce acting on any particle from the average which constitutes the tidegenerating force. Now it is obvious that on the side of the earth towards the meen the departure from the average is a small force directed towards the moon; and on the side of the earth away from the moon the departure is a small force directed away from the moon. Also these two departures are very nearly equal to one another, that on the near side being so little greater than that on the other that we may negloct the excess. All reund the sides of the earth along a great circie perpendicular to the line poining the moon and earth, the departure is a ferce directed inwards towards the earth's centre. Thus we see that the tidal forces tend to pull the water towards and away from the moon, and to depress the water at right angles to that direction. If we could neglect the rotations of the bodies, and could consider the system as at rest, we should find that the water was in equilibrium when elongated inte a prolate ellipsoid with its long axis directed towards and zway from the moen.

But it must not be assumed that this would be the case When there is motion. Fer, suppose that the ocean consisted of a canal reund the equator, and that an earthquake or any other saluse were to generato a grat wave in the canal, this wave would travel along it with a velocity de-

[^141]pendent on the depth. If the canal were about 13 miles deep, the velocity of the wave would be about 1000 miles an heur, and with depth about equal to the depth of our seas the velocity of the wave would be about half as great. We may conceive the moon's tide-generating force as making a wava in the canal and continually outstripping the wave it generaies, for the moon travels along the equator at the rate of about 1000 miles an hour, and the sea is less than 13 miles deep. The resultant oscillation of the ocean must therefore be the summation of a series of partial waves generated at each instant by the moon and always falling behind her, and the aggregate wave, being the same at each instant, must travcl 1000 miles an hour so as to keep up with the moon.

Now it is a general law of frictionless oscillation that, if a slowly varying periodic force acts on a system which would oscillato quickly if left to itself, the maximum excursion on one side of the cquilibrium position occurs simultaneonsly with the maximum foree in the dircction of the excursion ; but, if a quickly varying periodic force acts on a system which would oscillate slowly if left to itself, the maximum excursion on one side of the equilibrium position occurs simultaneously with the maxinum force in the dircction opposite to that of the excursiou. An example of the first is a ball hanging by a short string, which we push slowly to and fro ; the ball will never quit contact with the hand, and will agree with its excursions. If, however, the ball is hanging by a long string we can play at battledore and shuttlecock with it, and it always meets our blows. The latter is the analogue of the tides, for a free wave in our shallow canal gees slowly, whilst the moon's tide-generating action goes quickly. Hence, Tides inn When the system is left to settle inte steady oscillation, it verted is low water under and opposite to the moon, whilst the ferces are such as to make it high water at those times.

If we consider the moon as revelving round the earth, the water assumes nearly the shape of an oblate spheroid with the minor axis pointed to the moon. The rotation of the earth in the actual case introduces a complexity which it is not easy to unravel by general reasoning. We can see, howverer, that if water moves frem a lewer to a higher latitude it arrives at the higher latitude with mere velocity frem west to cast than is appropriate to its latitude, and it will move accordingly on the earth'e surface. Following out this conception, we see that an oscillation of the water to and fro between south and north must be accompanied by an eddy. Laplace's solution of the difficult problem involved in working out this idea will be given below.
The conclusion at which we have arrived about the tides of an equaterial canal is probably more nearly true of the tides of a glebe partially covered with land than if we were to suppose the ocean at each mement to assume the prelate figure of equilibrium. In fact, observation shows that it is more nearly low water than high water when the moon is on the meridian. If we consider hew the oscillation of the water would appear to an observer carried round with the earth, we see that he will have low water twice in the lunar day, semewhere about the time when the moon is on the meridian, either above or below the horizon, and high water half way between the low waters.

If the sun be now introduced, we have another similar tide of about half the height, and this depends on solar time, giving low water somewhere about noon and midnight. The superposition of the tro, modified by friction and by the interference of land, gives the actually obscrved aggregate tide, and it is clear that about new and full moon we must have spring tides and at quarter moons neap tides, and that (the sum of the lurar and solar tidegenerating forces being about three times their difference)
the range of spring tide will be about three times that of neap tide.
So far we have supposed the luminaries to move on the equator; now let us consider the case where the moon is not on the equator. It is clear in this case that at any place the moon's zenith distance at the upper transit is different from her nadir distance at the lower transit. But the tide-generating force is greater the smaller the zenith or nadir distance, and therefore tho forees are different at successive transits. This was not the caso when the moon was deemed to movo on the equator. Thus there is a tendency for two successive lunar tides to be of unequal heights, and the resulting mequality of height is called a "diurnal tide." This tendency vanishes when the moon is on the equator; and, as this occurs each fortnight, the lunar diurnal tide is evanescent onco a fortuight. Similarly in summer and winter tho successive solar tides are generally of unequal height, whilst in spring and autumn this difference is inconspicuous.

One of the most remarkable conclusions of Laplace's theory of the tides, on a globe corered with ocean to a nniform depth, is that the diumal tide is everywhere nonexistent. But this hypothesis differs much from the reality, and in fact at some ports the diurnal tide is so large that during two portions of each lunation there is only one great high water and one great low water in each twentyiour hours, whilst in other parts of the lunation the usual semi-diurnal tide is observed.

§4. Historical Skelch. ${ }^{1}$

In I687 Newton laid the foundation for all that has since been added to the theory of the tides when he brought his grand generalization of universal gravitation
Kopler. to bear on the subject. Kepler had indeed at an earlier date recognized the tendency of the water of the ocean to move towards the centres of the sun and moon, but he was unable to submit his theory to calculation. Galileo expresses his regret that so acute a man as Kepler should have produced a theory which appeared to him to reintroduce the occult qualities of the ancient philosophers. His own explanation referred tho phenomenon to the rotation and orbital motiou of the earth, and he considered that it afforded a principal proof of the Copernican system.

In the 19th corollary of the 66th proposition of book i . of the Principia, Nerton introduces the conception of a canal circling the earth, and he considers the influence of a satellite on the water in the canal. He remarks that the movement of each molecule of fluid must be accelerated in the conjunction and opposition of the satellite with the molecule, and retarded in the quadrateres, so that the fluid must undergo a tidal oscillation. It is, however, in propositions 26 and 27 of book iii. that ho first determines the tidal force due to the sun and moon. The sea is here supposed to cover the whole earth, and to assume at each instant a figure of equilibrium, and the tide-generating bodies are supposed to move in the cquator. Considering only the action of ihe sun, he assumes that the figure is an ellipsoid of revolution with its major axis directed towards the sun, and he determines the ellipticity of such an ellipsoid. High solar tide then occurs at noon and midnight, and low tide at sunrise and sunset. Tho action of the moon produces a similar ellipsoid, but of greater ellipticity. The superpositiou of these ellipsoids gives the principal variations of tide. He then procceds to consider the influence of latitude on the height of tide, and to discuss other peculiarities of the phenomenon. Observation shows, however, that spring tides occur a day and a half after syzygies, and Newton falsely attributed

[^142]this to the fact that the oscillations nould last for some time if the attractions of the two bodies were to cease.

The Newtonian hypothesis, although it fails in the form wheh he gave to it, may still be mado to represent the "Astrea tides, if the lunar and solar ellipsoids have thetr major fictifs" ares always directed towards a fictitious noon and sun, which are respectively at constant distances fron the true bodies; these distances aro such that the syzygies of the fictitious plancts occur about a day or a day and a lialf later than the true syzygics In fact, the actral tirles may be supposed to be generated directly by the action of the real sun and moon, and the wave may be inagined to take a day and a half to arrive at the port of obsecvation. Thus period has accordingly been called "the age of the tide." In what precedes the planets have been supposed to more in the equator; but the theory of the two ellipsoids cannot bo reconciled with tho truth when they more in orbits inclined to the equator. At equatorial ports the theory of the ellipsoids would sit spring tides give morning and evening high waters of nearly equal height, whatever tho declinations of the bodies. But at a port in any other latitude these high waters mould be of very different heights, and at Brest, for example, when the declinations of the bodies are equal to the obliquity of the elliptic, the evening tide would be eight times as great as the morning tide. Now obscrvation shows that at this port the two tides are nearly equal to one another, and that their greatest difference is not a thirticth of their sum.

Newton here also offered an erroneous explanation of the phenomenon. In fact, we sh II see that by Laplace's dynamical theory the diurnal tid is evanescent when the ocean is of uniform depth over tlo carth. At many nonEuropean ports, however, the diurnal tide is very important, and thus as an actual means of prediction the dynamical theory, whero the ocean is treated as of uniform depth, may be hardly better than the equilibriur. theory.

In 1738 the Λ cademy of Sciences of Paris offered, as a D. Bernsubject for a prize, the theory of the tiles. The authors oulliand of four essays received prizes, viz, Daniel Bernoulli, Euler, Maclaurin, and Cavalleri. The 1 rst three adopted not only the theory of gravitation but also Newton's method of the superposition of tho two ellipsoids. Bernoulli's essay contaiued an extended derelopmeut of the conception of the two ellipsoids, and, under the name of the equilibrium theory, it is commonly associated with his name. Laplace gives an account and critique of th:e essays of Bernoulli and Euler in the Mécanique Céleste. The essay of Maclaurin presented little that was new in tidal theory, but is notable as containing those theorems coneerning the attraction of ellipsoids which we now know by his name. In 1746 D'Alembert wrote a paper in which he treated the tides of the atmosphere; but this work, like Maclaurin's, is chiefly remarkable for the importance of collateral points.

The theory of the tidal movements of an ocean was therefore, as Laplace remarks, alinost untouched when in 1774 he first undertook the subject. In the Mécanique Cefleste ho gives an interesting account of the manner in which he was led to attack the problem. We shall give below the investigation of the tides of an occan covering the whole earth; tho theory is substantially Laplace's, although presented in a somewhat different form. This theory, although very wide, is far from representing the tides of our ports. Observation shows, in fact, that the irregular distribntion of land and water and the variablo depth of the ocean produco an irregularity in the oscillan tions of the sea of sueh complexity that the rigorous solution of the problem is altngether beyond the power of analysis. Laplace, however, rested his discussion of tidal observation on this principle-The state of oscillation of "1 system of borlies in which the primilive conditions of move
ment have disappeared through friction is coperiodic with the forces acting on the system. Hence, if the sea is solicited Dy a periodic force expressed as a coefficient multiplied by the cosine of an angle which increases proportionately with the time, there results a partial tide, also expressed by the cosine of an angle which increases at the same rate; but the phase of the angle and the coefficient of the cosine in the expression for the height may be very different from those occurring in the corresponding term of the equilibrium theory. The coefficients and the constants or epochs of the angles in the expressions for the tide are only derivable from observation. The action of the sun and moon is expressible in a converging series of similar cosines; whence there arise as many partial tides, which by the principle of superposition may be added together to give the total tide at any port. In order to unite the several constants of the partial tides Laplace considers each tide as being produced by a fictitious satellite moving uniformly on the equator. Sir W. Thomson and athers have followed Laplace in this conception; but in the present article we shall not do so. The difference of treatment is in reality only a matter of phrascology, and the proper motion of each one of Laplace's astres fictifs is at once derivable from the argument (or angle under the sign of cosine), which we shall here associate with the partial tides.
Lubbock, Subsequently to Laplace the most important workers in Whewell, this field were Sir John Lubbock (senior), Whewell, and

Airy. The work of Labboek and Whewell (see § 34 below) is chiefly remarkable for the coordination and analysis of enormous masses of data at various ports, and the construction of trustworthy tide-tables and of cotidal maps. Airy contributed an important review of the whole tidal theory. He also studied profoundly the theory of waves in canals, and explained the effects of frictional resistances on the progress of tidal and other waves. Of other authors whose wurk is of great importance we shall speak below.

Amongst all the grand work which has been bestowed on this difficult snbject, Newton, notwithstanding his errors, stands out first, and next to lim we must rank Laplace. However original any future contribution to the science of the tides may be, it would seem as though it must perforce be based on the work of these two.
Biblio. graply.

A complete list of works bearing on the theory of the tides, from the time of Ncwton down to 1881, is contained in vol. ii. of the Bibliographie de l'Astronomie by Houzeau and Lancaster (Brussels, 18S2). This list does not contain papers on the tides of particular ports, and we are not aware of the existence of any catalogue of works on practical observation, reduction of observations, prediction, and tidal instruments. Feferences are, however, given below to several works on these points.

II. Tine-generating Forces.

§ 5. Investigation of Tide-ycncrating Polcnlial and Forecs.

We lave already given a general explanation of the mature of tide-generating forces; we now proced to a rigorous investigation.

If a planct is attended by a single satellite, the motion of any body relatively to the planet's surface is found by the process described as reducing the planet's centro to rest. The planet's centre will be at rest if every body in the system has impressed on it a velocity equal and opposite to that of the planct's centre ; and this is accomplished by impressing on every body an acceleration equal and opposite to that of the planet's centre.

Let $M,, n$ be the masses of the planct and the satellite ; r the radius vector of the satellite, measured from the planct's centre ; P the radius vector, measured fron the sane point, of the particle whose motion we wish to determine; and z the angle between r and ρ. The satellite moves in an elliptic orbit about the planet, and the acceleration relatively to the planct's centre of the satellite is $(M+m) y r^{3}$ towards the planet along the radius rector γ. Now the centre of inertia of the planet and satellite renains fixed in space, and the centre of the planct describes an orbit round that centre of inertia similar to that described by the satellite round the planet, but with linear dimensions reduced in the proportion of m to $M+n$.

Hence the acceleration of the planct's centre is m / r^{2} towavis the centre of inertia of the two bodics. 'Thus, in order to reduce the planet's centro to rest, we apply to crery partucle of the system an acceleration m / r^{2} parallel to r, and directed from satellite to planet.

Now take a set of rectangular axes fixed in tho planct, and let $M_{1} r, M_{2} r, M_{3} r$ bo the coordinates of the satellite referred thereto: and let $\xi, \eta \rho$, $s p$ be the coordinates of the particle P whose radins is ρ. Then the component accelerations for relucing the planet's centro to rest are $-m \mathrm{M}_{1} / r^{2},-m \mathrm{M}_{2} / r^{2},-m \mathrm{M}_{3} / r^{n}$; and since these are the differential coeflicients with respect to $p \xi, p \eta$, ps of the function

$$
-\frac{m \rho}{r^{2}}\left(\mathrm{~N}_{1} \xi+\lambda \mathrm{I}_{2} \eta+\mathrm{N}_{3} \zeta\right)
$$

and since $\cos z=M_{1} \varepsilon+M_{2} \eta+M_{3} 3_{2}$, it follows that tho potential of the forees by which the planet's centre is to be reduced to rest is

$$
-\frac{m \rho}{r^{2}} \cos =
$$

Now let us consider the other forces acting on the particle. Tho planet is spheroidal, and thercfore does not attract equally in all directions ; but in this investization we may mako abstraction of the ellipticity of the planet and of the ellipticity of tho occan due to the planctary rotatiou. This, which we sct asite, is considered in the theories of gravity and of tho figures of plancts. Outsido of its body, then, thic planct contributes forese of which the potential is M/P. Next the direct attraction of the satellite contributes forces of which the potential is the mass of the satellite divided by the distance between the point P and the satellite; this is-

$$
\frac{n}{\sqrt{\left\{r^{2}+p^{\prime}-2 r p \cos z\right\}}}
$$

To determino tho forces from this potential wo regard ρ and $=$ as the variables for differentiation, and we may ald to this potential any constant we pleasc. As we aro sceking to find tho forecs which urge P relatively to M, we add such a constant as will mako the whole potential at tho planet's centre zero, and thus we take as the potential of the forces due to the attraction of the satellite-

$$
\frac{m}{\sqrt{\left\{r^{2}+\rho^{2}-2 r \rho \cos z\right\}}}-\frac{m}{r}
$$

It is obrious that r is very large compared with ρ, and we may thercfore expand this in powers of ρ / r. This expansion gives 14

$$
\frac{m}{r}\left\{\frac{\rho}{r} P_{1}+\frac{\rho^{2}}{r^{2}} P_{2}+\frac{\rho^{3}}{r} P_{3}+\& . \operatorname{c}\right\} \text {, }
$$

where $P_{1}=\cos =, P_{2}=\frac{3}{2} \cos ^{2} z-\frac{1}{2}, P_{3}=\frac{5}{6} \cos ^{3} z-\frac{9}{3} \cos z$, \&c. The reader familiar with spherical harmonic analysis of course recognizes the Legendre's functions; but the result for a few terms, which is all that is necessary, is easily obtainable by simple algebra.

Now, collecting together the various contributions to the potential, and noticing that $\frac{m}{r} \cdot \frac{\rho}{r} P_{1}=\frac{m \rho}{r^{2}} \cos z$, and is therefore equal and opposite to the potential ly which the planet's centre was reduced to rest, we have as the potential of the forces acting on a particle whose coordinates are $\rho \stackrel{5}{5}, p \eta$, $p \zeta$

$$
\begin{equation*}
\frac{M I}{\rho}+\frac{m \rho^{3}}{r^{3}}\left(\frac{1}{2} \cos ^{2} z-\frac{1}{2}\right)+\frac{m \rho^{3}}{r^{4}}\left(\frac{1}{8} \cos ^{3} z-\frac{3}{2} \cos z\right)+ \tag{1}
\end{equation*}
$$

Poteatial,
The first term of (1) is the potential of gravity, and the terns of the scrics, of which two only are written, constitute the tide-generating potential. In all practical applications this serics converges so rapidly that the first term is amply sufficient, and tius we shall generally denote

$$
\begin{equation*}
V=\frac{3 m}{2 r} \rho^{2}\left(\cos ^{2} z-\frac{1}{3}\right) . \tag{2}
\end{equation*}
$$

as the tide-generating potential.
In many mathomatical works the tide-generating force is pre- Moen sented as being due to an artificial statical system, which produces aod antr nearly the same force as the dynamical system considered aborc, nown. This statical systen is as follows. Stopping all the rotations, we divide the satellite into two equal parts, and place them dianceri. cally opposite to one another in the orbit. Then it is clear that, instead of the tern

$$
\frac{m}{\sqrt{\left[r^{2}+\rho^{2}\right.} \frac{m}{-2 r \rho} \cos -1}-\frac{m}{r}
$$

we have

$$
\frac{\frac{1}{\sqrt{2}} m}{\sqrt{\varphi^{2}+\rho^{2}-2 r \rho \cos z^{2}}}+\frac{\frac{1}{2} m}{\sqrt{\left\{r^{2}+\rho^{2}\right.}+2 r \rho \cos =l^{2}}-\frac{n}{r}
$$

And this reduces to

$$
\frac{2 n}{r^{3}} \rho^{n} P_{2}+\frac{m}{r^{5}} \rho^{4} P_{4}+\ldots
$$

The first term is the same as before; hence the statical system produces approximatcly the same tide-generating force as the true systrm. The "moon" and "anti-moon," hovever. produce rigorously the same force on each side of the planet, whereas the true system only satisfies this condition approximately. ${ }^{1}$
${ }^{1}$ The reader mas refer to Thomson and Tait's Natural Philosophy (1883), part ii. §§ 798-821, for further considerations on this and analcous subjects, together with some intercsting examples.

§ 6. Form of Equilibrium.

Let us consider the slape assumed by a layer of fluid of density σ, lying on a globe of mass $3 T$, when acted on by disturbing forces whose potential is

$$
\begin{equation*}
V=\frac{3 m}{2 n^{2}} \rho^{2}\left(\cos ^{2} z-\frac{1}{3}\right) . \tag{3}
\end{equation*}
$$

Suppose the layer to be very thin, and that the mean radius of the layer is α, and let the equation to the boundary of the fluid be

$$
\begin{equation*}
\rho=\alpha\left[1+c\left(\cos ^{2} z-\frac{1}{3}\right)\right] \tag{4}
\end{equation*}
$$

We assume this form, because the theory of larmonic analysia tells us that the departure from sphericity must be represented by a function of the form $\cos ^{2} z-\frac{1}{3}$. That theory also gives us as tho potential of a layer of matter of depth $\varepsilon a\left(\cos ^{2} z-\frac{1}{3}\right)$, and density σ, at an external point the value

$$
\frac{4}{6} \pi \sigma a^{2}\left(\frac{\pi}{\rho}\right)^{3} \mathbf{t}^{\prime}\left(\cos ^{2} z-\frac{1}{2}\right) .
$$

Hence the whole potential, outside of and up to the fluid layer, is $\frac{M}{\rho}+\frac{3 m}{2 r^{3}} \rho^{2}\left(\cos ^{2} z-\frac{1}{3}\right)+\frac{4}{6} \pi \sigma a^{2}\left(\frac{a}{p}\right)^{3} \mathfrak{f}\left(\cos ^{2} z-\frac{1}{2}\right) \ldots \ldots(5)$.
The first term of (5) is the potential of the globe, the second that of the disturbing force, and the third the potential due to departure from sphericity.
Now the fluid must stand in a level surface; hence, if we equato this potential to a constant, we must get back to the cquation (4), which was assumed to be that of the surface. In other words, if wc put $\rho=a\left[1+\varepsilon\left(\cos ^{2} z-\frac{1}{3}\right)\right]$ in (5), the result must be constant, provided the departure from sphericity is small. In effecting the substitution for p, wo may put $p=a$ in the small terms, but in the first term of (5) wo put

$$
\frac{M}{p}=\frac{M I}{a}\left[1-\varepsilon\left(\cos ^{2} z-1\right)\right] .
$$

The whole potential (5) can only be constant if, after this sulstitution, the cocfficient of $\cos ^{2} z-\frac{1}{3}$ vanishes. Thus we must have

$$
-\frac{M}{a} \varepsilon+\frac{3 m a^{2}}{2 r^{3}}+\frac{8}{b} \pi a a^{2} t=0 .
$$

But if s be the mean density of the planet $M={ }_{j} \pi a^{3}{ }^{3}$, and gravity $g=M / a^{2}$. Then we casily find that

$$
\begin{equation*}
\varepsilon=\frac{3 m a}{2 g r^{3}} \frac{1}{1-\frac{3}{6} \sigma / \delta} \tag{6}
\end{equation*}
$$

of Thus the equation to the surface is

$$
\begin{equation*}
r=a\left\{1+\frac{3 m a}{2 g m^{3}} \frac{1}{\left.1-\frac{3}{\sigma}\right\}^{\delta}}\left(\cos ^{2} z-3\right)\right\} \tag{7}
\end{equation*}
$$

if σ be small compared with δ, the ceefficient is $3 \mathrm{ma} / 2 \mathrm{gr} r^{3}$; thus we see that $1 /\left(1-\frac{3}{5} \sigma / 0\right)$ is the coefficient by which the mutual attraction of the fluid angments the deformation of the fluid under the action of the disturbing force. If the density of the fluid be the same as that of the spherc, the angmenting factor becomes $\frac{5}{2}$, and we have $\varepsilon=\frac{1}{4} \mathbf{m a n}^{6} / \mathrm{gr}^{3}$, which gives the form of equilibrium of a fluid sphere under the action of these forces. Since $\frac{3 m}{2 r^{3}}=\frac{g}{\alpha}\left(1-\frac{3 \sigma}{5 \delta}\right) \varepsilon$, it follows that, when the form of equilibrinm ia $\rho=a\left[1+8\left(\cos ^{2} z-\frac{1}{3}\right)\right]$, the potential of the forces is

$$
\begin{equation*}
V=\frac{g}{a}\left(1-\frac{3 \sigma}{5 \delta}\right): \rho_{\rho}\left(\cos ^{2} z-\frac{1}{3}\right) . \tag{8}
\end{equation*}
$$

More generally, if we neglect tho attraction of the fluid on itself, so that $\sigma / \hat{0}$ is treaterl as sinall, and if $\rho=a(1+s)$ be the equation to the surface of the fluid, where sis a function of latitude and longitude, then the potential of the forces under which this is an equilibrimm form is

$$
\begin{equation*}
\mathfrak{r}=\frac{g p^{2}}{a} s \tag{9}
\end{equation*}
$$

It thus appears that wo may specify any tile-generating forces by means of the figure of equilibrium which the fluid wond assume under them, and in the theory of the tides it hae been found practically convenient to specify the forces in this way.

By means of the principle of "forced vibrations" referred to in the historical sketel, we shall pass from the equilibrium form to the actual oscillations of the sea.

§ 7. Development of Tide-gencrating Potential in Terms of Hour-Anglic and Declination.

We now proceed to devclop the tidc-mencrating potential, and inall of course implicitly (\$ 6) detcrmine the equation to the cquilibrium figure.
We have already seen that, if z be the moon's zenith distance at the point P on the eartla's surface, whose coordinates referred to A, B, C, axes fixed in the earth, are $a \xi, a \eta$, $a \zeta$, then
$\cos z=\xi \mathrm{M}_{1}+\eta \mathrm{M}_{2}+\zeta \mathrm{M}_{3}$
where $\mathrm{M}_{3}, \mathrm{M}_{2}, \mathrm{M}_{3}$ are the moon'a direction cosincs referred to the same axes. Then with this valuc of cos $z-$

$$
\begin{align*}
& \cos ^{2} z-\frac{3}{3}=2 \xi \eta M_{1} M_{3}+\varepsilon^{\xi^{2}-\eta^{2}} \\
& 2 \frac{M_{1}{ }^{2}-M_{2}{ }^{2}}{2}+2 \eta \xi M_{2} M_{3}+2 \xi \zeta M_{2} M_{3} \tag{10}\\
&+\frac{3}{2} \cdot \frac{\xi^{2}+\eta^{2}-2 \zeta^{2}}{3} \frac{M_{1}{ }^{3}+3 I_{2}{ }^{2}-2 M_{3}{ }^{2}}{3} \ldots \ldots \ldots(10) .
\end{align*}
$$

Tho axis of C is taken as the prolar axia, and Als is the cquatorial plane, so that the functions of ξ, η, ζ are functions of the latitude and longitude of the point P, at which we wish to find the potential.
The functions of M_{1}, M_{2}, M_{3} depend on the moon's position, and We shall have occasion to develop them in two different ways, first in terms of her hour-angle and declination, and secondly (§ 23) in terms of her longitude and the elements of the orbit.

Now let A be on the equator in the meridian of P, and 1390° east of A on the cquator. Then, if $\$ 1$ be the moon, tho inclination of the plane NIC to the plano CA is the moon's easterly looal honr-angle. Let $h=$ local hont-angle of moon and $\delta=$ moon'a declination : we havo
whence

$$
\mathrm{M}_{1}=\cos \hat{c} \cos \hbar_{,}, \mathrm{M}_{2}=\cos \delta \sin h_{1}, \mathrm{M}_{3}=\sin \delta_{1}
$$

$2 \mathrm{M}_{1} \mathrm{M}_{2}=\cos ^{2} \delta \sin 2 h_{,} \mathrm{M}_{1}{ }^{2}-\mathrm{M}_{2}{ }^{2}=\cos ^{2} \hat{0} \cos 2 h$,
$2 \mathrm{M}_{2} \mathrm{M}_{3}^{2}=2 \sin \hat{\delta} \cos \hat{i} \sin h, 2 \mathrm{M}_{1}^{2} \mathrm{M}_{3}=2 \sin \hat{i} \cos \hat{0} \cos h_{4}$ $\frac{M_{1}{ }^{2}+M_{3}{ }^{2}-2 M_{3}{ }^{2}}{3}=\frac{1}{3}-\sin ^{2} \delta$.
Also, if λ bo the latitude of P,

$$
\xi=\cos \lambda, \eta=0, \zeta=\sin \lambda
$$

and

$$
\xi \eta=0, \frac{\xi^{2}-\eta^{2}}{\frac{2}{1}}=\frac{1}{2} \cos ^{2} \lambda, \xi \zeta=\frac{1}{2} \sin 2 \lambda, \xi \eta=0, ~
$$

Hence (10) becomes

$$
\begin{array}{r}
\cos ^{2} z-\frac{1}{3}=\frac{1}{2} \cos ^{2} \lambda \cos ^{2} \delta \cos 2 h+\sin 2 \lambda \sin \delta \cos \delta \cos h \\
+\frac{\pi}{2}\left(\frac{1}{3}-\sin ^{2} \delta\right)\left(\frac{1}{3}-\sin ^{2} \lambda\right) \ldots \ldots \ldots \ldots \ldots \ldots \tag{11}
\end{array}
$$

The angle h, as defined at present, is the eastward local hour-angle, and therefore diminishes with the time. As, however, this function does not change sign with h, it will be more convenient to regard it as the westward local hour-angle. Also, if h_{0} be the Greenwich westward hour-angle at the monent under consideration, and l bo the west longitude of the place of observation P, we have

$$
\begin{equation*}
h=h_{0}-l . \tag{12}
\end{equation*}
$$

Hence we lave at the point P, whose radins vector is a,

$$
\begin{array}{r}
V=\frac{3 m a^{2}}{2 r^{3}}\left\{\frac{1}{2} \cos ^{2} \lambda \cos ^{2} \delta \cos 2\left(h_{0}-l\right)+\sin 2 \lambda \sin \delta \cos \delta \cos \left(h_{0}-l\right)\right. \\
\left.+\frac{\pi}{2}\left(\frac{1}{2}-\sin ^{2} \delta\right)\left(\frac{1}{3}-\sin ^{2} \lambda\right)\right\} \ldots \ldots \ldots \ldots \ldots .(13) .
\end{array}
$$ for latitude and longitude, and also for radius a, if we care to find oped in the radial disturbing force.

§ 8. Evaluation of Tide-gcnerating Forces, and Lunar Defcxion of Gravily.

The westward component of the tide-gencrating force at the earth's surface, where $\rho=a$, is $d V / a \cos \lambda d l$, and the northward component is $d V / a d \lambda$; the change of apparent level is the ratio of these to gravity g. Therefore, differentiating (13), changing signs, and writing $\frac{3 m}{2 J I}\left(\frac{a}{r}\right)^{3}$ for $\frac{3 m a}{2 g r^{3}}$, we have component clange of level south. ward

$$
\begin{gathered}
=\frac{3 m}{4 M}\left(\frac{a}{r}\right)^{3}\left\{\sin 2 \lambda \cos ^{2} \delta \cos 2\left(h_{0}-\tau\right)-2 \cos 2 \lambda \sin 2 \delta \cos \left(h_{0}-l\right)\right. \\
\left.+\sin 2 \lambda\left(1-3 \sin ^{2} \delta\right)\right\} ;
\end{gathered}
$$

component change of level westward

$$
\begin{align*}
&=\frac{3 m}{2 \lambda}\left(\frac{a}{r}\right)^{3}\left\{\cos \lambda \cos ^{2} \delta \sin 2\left(h_{0}-l\right)\right. \tag{14}\\
&\left.+\sin \lambda \sin 2 \hat{\sin } \sin \left(h_{0}-l\right)\right\} .
\end{align*}
$$

\qquad
The westward component is made up of two periodic terms, one going through its variations twice and the other once a day. The sonthward component has also two similar terms; but it has a third term, which locs not oscillate about a zero value. If Δ be a declination such that the mean value of $\sin ^{2} \hat{s}$ is equal to $\sin ^{2} \Delta$, then, to determine the southward component so that it shall bo a truly periodic function, we must subtract from the above $\sin 2 \lambda\left(1-3 \sin ^{2} \Delta\right)$, and the last term then becomes

$$
3 \sin 2 \lambda\left(\sin ^{2} د-\sin ^{2} \delta\right)
$$

In the case of the moon, Δ rarics a littlc according to the position of the moon's node, but its mean valne is about $10^{\circ} 31^{\prime}$.
The constant portion of the southward component of force has its effect in causing a constant lieaping up of the water at the equator; or, in other words, the moon's attraction has the effect of cansing a small permanent ellipticity of the earth's mean figure. This augmentation of cllipticity is of course very small, lut it is nccessary to mention it in order that the meaning to be attributed to lunar deflexion of gravity may be clearly defined.
If we consider the motion of a pendulum-bob during any one day, We see that, in consequence of the semi-dimrnal changes of level, it twice describes an ellipse with major axis east and west, with ratio of axes equal to the sine of the latitude, and with linear dimensiona pronortional to $\cos ^{2} \hat{\delta}$, and it once describes an cllipse whose north and south aris is proportional to $\sin 2 \delta \cos 2 \lambda$ and whose cast and

West axis is proportional to $\sin 2 \delta \sin \lambda$. Obviously the latter is circular in latitude 30°. When the moon is on the equator, the maximum deflexion occurs when the moon's local hour-angle is 45°, gnd is then equal to

$$
\frac{3 m}{2 M}\left(\frac{a}{r}\right)^{3} \cos \lambda
$$

At Cambridge in latitude $52^{\circ} 43^{\prime}$ this angle is $0^{\prime \prime} 0216$.
1 An attempt, made by George and Jlorace Darwin, ${ }^{1}$ to measure the lumar deflexion of a pendulum failed on account of incessant variability of level occurring in the supports of the pendulum and arising from unknown terrestrial changes. The work done, therefore, was of no avail for the purposes for which it was instituted, but remained as a contribution to an interesting subject now be. ginniug to be studied, viz., the small changes which are always taking place on the upper strata of the carth.

§ 9. Corrcction to Equilibrium Theory for Continents.

In the equilibrium theory as worked out by Newton and Bervoulli it is assumed that the figure of the ocean is at cach instant one of equilibrium under the action of gravity and of the tidegenerating forces. Sir W. Thomson has, however, reasserted ${ }^{2}$ a point which was known to Dernoulh, but has since been overlooked, namely, that this law of risc and fall of water cannot, when portions of the glole are contiactats, be satisficd by a constant volume of water in the ocean. The law would stitl hold if water were appropriately supplied to and exhansted from the ocean; and, if in any confguration of the tide-gencrating body we imagine water to be instantaneously so supplied or cxhausted, the level will every. where risc or fall by the same licight. Now the amount of that rise or fall dejends on the position of the tide-generating body with reference to the continents, and is different for each such position. Conversely, when the volume of the occan remains con. ataut, we have to correct Bernonlli's simple equilibrium theory by an amount which is constant all over the globe at any instant, but which changes in time. Thomson's solation of this problem has aince been redued to a form which is easier to grasp intelligently than in the shape in which ho gavo it, and tho results have aiso been reduced to numbers. ${ }^{3}$ It appears that there are four points on the earth's surlace at which in the corrected theory the semi. diurnal tide is er...-mont, and four others where it is doubled. A similar statement holds for the diurnal tide. As to the tides of lons period, there are two prallels of latitude of evanescent and two of rloubled tida.

Now in Bernoullis theory the semi-diurnal ride vanishes at the poles, the diumal tide at tho poles and the equator, and the tides of long perioul in latitudes $35^{\circ} 16^{\prime}$ north and sonth. The nunnerical solution of the corrected thery shows that the points and lines of doubling and cvancscence in every casc fall close to the points and lines where in tho uncorected theory there is evaneseence. When in passing from the uncorrected to the corrected theory we speak of a doubled tide, the tille doubled may be itself mil, so that the result may still be mit. The conclusion, therefore, is that Thomson's correction, althourth theoretically iuteresting, is practically so small that it may be left out of consicleration.

III. Dǐamical Theory of Tides.

§ 10. Hislorical Eiplanation.

Dyna-

mical

 theory.The problem of tilal oscillation is essentially a dymamical one. Even when. the ocean is taken as covering the whola earth, it presents fommidable difficulties, and this is the only case in which it has been litherto solved. "Laplace gives the solution in bks. i. and iv. of the Mecanique Celcsic ; but his work is mmecessarily complicated by the inappropriate introduction of spherical harmonic analysis, and it is generally admitted that his investigation is difficult. Airy, in his "Tides and W'aves" (in Ency. Mctrop.) presents the solution free from that complication, but lie has made a criticism of Laplace's method which $w \in$ believe to be wrong. Sir W. Thomson has written some interesting papers (in Phil. Alag., 1875) in justification of Laplace, and on these we base the following paragraphs. This portion of the article is given more fully than others, because there exists no complete fresentment of the theory frue from objections of some kind.

§11. Equations of Motion.

Let r, θ, ϕ be the radius vector, co-latitude, and east longitude of a point with reference to an origin, a polar axis, and a zero-meridian rotating with a uniform angular velocity n from west to east. Then, if R, H, Ξ be the radial, co-latitudinal, and longitudinal accelerations of the paint, we liave

${ }^{1}$ Reports to the Britioh $18500_{0} 1851$ (iork) and 1882 (Southampton).
 \% Thomson and Tait, Nat. Phil., \& 807.

arwin and Turner, Proc. Rov. Soc., 1886
Wrer ". Thomson'a paper "On the Gravitational Oacillationa of Rotating Water," in Phil. Mag, August 1850, beara on tho eame subject. It is tha only sttempt which has hitherto been macle to conalder tho effects of the esrth's sutation on the osclilatlons of land-locked aeas.

$$
\left.\begin{array}{l}
R=\frac{d^{2} r}{d t^{2}}-r\binom{d \theta}{d t}^{3}-r \sin ^{2} \theta\left(\frac{d \phi}{d t}+n\right)^{2} \\
\Xi=\frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)^{2}-r \sin \theta \cos \theta\left(\frac{d \phi}{d t}+n\right)^{2} \\
H=\frac{1}{r} \frac{1}{\sin \theta} \frac{d}{d t}\left[r^{2} \sin ^{2} \theta\left(\frac{d \phi}{d l}+n\right)\right]
\end{array}\right\}
$$

Now suppose that the point never moves far from a zero position and that its displasements $\xi, \eta \sin \theta$ co-latitudinally and longitudinally are very large compared with its radial displacement ρ, and that the velocitics are so small that their squarcs and products are negligible compared with $n^{2} r^{2}$; then we have

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{d \rho}{d t^{\prime}} \text { a very small quantity: } \\
\sin \theta \frac{d \phi}{d t} & =\frac{d}{d l}(\eta \sin \theta), \\
r \frac{d \theta}{d t} & =\frac{d \xi}{d t}
\end{aligned}
$$

Hence (15) is approximately

$$
\left.\begin{array}{l}
\mu=-n^{2} \gamma \sin ^{2} \theta \tag{16}\\
\Xi=\frac{d^{\prime} \xi}{d t^{2}}-2 n \sin \theta \cos \theta \frac{d \eta}{d l} \\
H=\sin \theta \frac{d^{2} \eta}{d t^{2}}+2 n \cos \theta \frac{d \xi}{d i}
\end{array}\right\} .
$$

With regard to the first equation of (16), we observe that the time has disapueared, and that I has exactly the same form as if the system were rendered statical by introducing a potential $\frac{1}{2} n^{2} r^{2} \sin ^{2} \theta$ and anmmlling the rotation of the axes. Since inertia plays no sensible part radially, it follows that, if we aprlly these expressions to the formation of equations of motion for the ocean, the radial motion need not be considered. We are left, therefore, with only the last two equations of (16).

We now have to consider the forecs by which an element of the Comocean is urged in the direction of co-latitucic and longitudc. These ponent forces are those due to the extermal disturbing forces and to the forces. pressure of the surrounding fluid, the attraction of the fluid.on itself being supposed regligible. We lrave seen in (9) that, if fluid on a sphere of radius a be under the action of disturbing forces whose potential is $U r^{3}$, and if $r=a+b$ be the equation to the surface, then must $g \boldsymbol{f}_{\mathbf{g}}=U a^{2}$. Hence, if ε be the equilibrinm height of ticle, the potential of the disturbing force is $g \mathrm{gr}^{2} / a^{2}$. But, if the cicvation bo f, the potential under which it wonld be in equilibrium is $g b r^{2} / a^{2}$. Therefore, if b be the elevation of the tide in our dynamical problem, the forces due to hydrostatic pressure on an element of the occan are the samo as would be caused by a potential $-g h r^{2} / a^{2}$. Hence it follows that the whole forces on the clement are those due to a potential $-g(\mathfrak{l})-\mathfrak{f}) r^{2} / a^{2}$. Therefore fiom (16) we see that the equations of motion are

$$
\left.\begin{array}{rl}
\frac{d^{2} \xi}{d t^{2}}-2 n \sin \theta \cos \theta \frac{d \eta}{d t} & =-\frac{g}{a} \frac{d}{d \theta}(\mathrm{I}-\varepsilon) \tag{17}\\
\sin \theta \frac{d^{2} \eta}{d t^{2}}+2 n \cos \theta \frac{d \xi}{d t} & =-\frac{g}{a \sin \theta} \frac{d}{d \phi}(b-t)
\end{array}\right\}
$$

tions" metion

It remains to find the equation of continuity. This may be deduced geometrically from the consideration that the volume of an element of the fluid remains constant; but a shorter way is to derive it from the equation of continuity as it occurs in orclinary hydrodynamical investigations. If V be a velocity potential, the equation of con. tinuity for incompressible fluid is

$$
\begin{gathered}
\delta r \frac{d}{d r}\left(r^{2} \frac{d V}{d r} \sin \theta \delta \theta \delta \phi\right)+\delta \theta \frac{d}{d \theta}\left(r \sin \theta \frac{d V}{r d \theta} \delta r \delta \phi\right) \\
+\delta \phi_{l l \phi}^{d}\left(r-\frac{1}{r \sin \theta}-\frac{r V}{d \phi} \delta r \delta \theta\right)=0 .
\end{gathered}
$$

The element referred to in this equation is defined by r, θ, ϕ, $r+\delta r, \theta+\delta \theta, \phi+\delta \phi$. The co-latiturlinal and longitudinal velocitics are the sane for all the clementary prism defined by θ, ϕ, $\theta+\delta \theta, \phi+\delta \phi$. and the sea bottom. Then $\frac{d V}{d d \theta}-\frac{d \xi}{d t^{\prime}} \frac{d V}{r \sin \theta d \phi}=$ $\sin \theta \frac{d \eta}{d l}$; and, since the radial velocity is $d b / d l$ at the surface of the ocean, where $r=a+\gamma$, and is zero at the sea bottom, where $r=\alpha$, wa have $\frac{d V}{d r}=\frac{r-a}{\gamma} \frac{d J}{d \ell}$. Hence, integrating with respect to from $r=a+\gamma$ to $r=a$, and again with respect to l from the tima c to the time when \mathfrak{b}, ξ, η all vanish, and treating γ and b as small come pared with a, we have

$$
\begin{equation*}
\eta a \sin \theta+\frac{d}{d \theta}(\gamma \xi \sin \theta)+\frac{d}{d \phi}(\gamma \eta \sin \theta)=0 . \tag{18}
\end{equation*}
$$

This is the equation of continuity, and, together with (17), it forms, the system which must be integrated in the general problem of the: tides. The difficulties in the way of a solution are so great thal none has hitherto been found, except on the supposition thal γ, the depth of the ocean, is only a function of latitude. In this case (18) becomes
$b a+\frac{1}{\sin \theta} \frac{d}{d \theta}(\gamma \xi \sin \theta)+\gamma \frac{d \eta}{d \phi}=0$.
§ 12. Adaplation to Forced Oseillations.
Since we may suppose that the free oscillations are annulled by fiction, the soiution required is that corresponding to forced oscillations. Now we have seen fror (13) that ε (which is proportional so V) has terms of three kinds, the first depending on twice the moon's (or sun's) hour-angle, the second on the hour-angle, and the third independent thereof. The coefficients of the first and second terms vary slowly, and the whole of the third varies slowly. Hence r has a semi-dinrnal, a diurnal, and a longe jeriod term. We shall see later that these terms may be expanded in a series of approximately semi-diurnal, diurnal, and slowly varying terms, each of which is a strictly harmonic function of the time. Thus we may essume for t a form $\mathrm{e} \cos (2 n f l+k \phi+a)$, where f and k are numbers, and where e is only a function of co-latitude and of the elements of the orbit of the disturbing body. According to the usual method of treating oscillating systems, we may therefore make the following assumption for the form of zolution

$$
\left.\begin{array}{l}
\varepsilon=0 \cos (2 n f l+k \phi+a) \tag{20}\\
\eta=h \cos (2 n f t+k \phi+a) \\
\xi=x \cos (2 n f+k \phi+a\} \\
\eta=y \sin (2 n f t+k \phi+a)
\end{array}\right\}
$$

Where e, h, x, y are functions of co-latitude θ only. Substituting these values in (19), we have

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \dot{\theta} \theta}(\gamma x \sin \theta)+h \gamma y+h a=0 \tag{21}
\end{equation*}
$$

Then, if we write u for $l_{1}-e$, and put $n=n^{2} a / g$, substitution from (20) in (17) leads at once to

$$
\left.\begin{array}{l}
x f^{2}+y f \sin \theta \cos \theta=\frac{I}{4 m} \frac{d u}{d \theta} \tag{22}\\
y f^{2} \sin \theta+x f \cos \theta=-\frac{\hbar}{4 m \sin \theta}
\end{array}\right\}
$$

Solving (22) for x and y , we have

$$
\left.\begin{array}{rl}
x\left(f^{2}-\cos ^{2} \theta\right) & =\frac{1}{4 m}\left(\frac{d u}{d \theta}+\frac{k}{f} u \frac{\cos \theta}{\sin \theta}\right) \tag{23}\\
y \sin \theta\left(f^{2}-\cos ^{2} \theta\right) & =\frac{-1}{4 m}\left(\frac{\cos \theta}{f} \frac{d u}{d \theta}+\frac{\pi n}{\sin \theta}\right)
\end{array}\right\}
$$

Then substituting from (23) in (21), we hava

$$
\begin{aligned}
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left[\frac{\gamma\left(\sin \theta \frac{d u}{d \theta}+\frac{k}{f} u \cos \theta\right)}{f^{2}-\cos ^{2} \theta}\right]-2 \cdot \frac{\cos \theta}{\frac{\cos }{f} \frac{d u}{d \theta}+\frac{2 u}{\sin \theta} \theta\left(f-\cos ^{2} \theta\right)} \\
& +1 m a(n+e)=0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(24) .
\end{aligned}
$$

This is Laplace's equation for tidal oscillations in an ocean whoso depth is only a function of latitude. When a is found from this equation, its value substituted in (23) will give x and y.

§ 13. Prcparation for Solution.

Prepara- The ocean which is considered in this case is not like that on the tion for carth's surface, and therefore it does not seem desirable to pursue volrtion the integration of (24) except in certain typical cases.

In (13) we have the expansion of the disturbing potential and implicitly of the disturbing forces in three terms, the first of which is variable in half a day, the second in a day, and the third in balf the period of resolution of the tide-raising body. Forestalling the results of chapter iv.- each of these terms nay be expressed as the sum of a series of strictly harmonic functions of the time; the first set of these have all approximately semi-diurnal periods, the second approximately dinrial periods, and the third vary

- slowly in dependence on the pcriodic time of the tide-generating body. The first set involve twice the terrestrial longitude, the second the longituds, and the third set aze independeat of the longitude of the place of observation. From these statements compared with (13) we see that in the semi-diurnal terms f is approximately unity, $k=2$, and $r=F \sin ^{2} \theta$; in the dinrnal terms f is approximately $\frac{1}{2}, k=1$, and $\mathrm{r}=\mathrm{E} \sin \theta \cos \theta$; in the terins of loog period f is a snali, fraction (for the fortnightly tide about ${ }^{\text {r }}$), $t=0, t=\mathrm{E}\left(\frac{1}{3}-\cos ^{2} \theta\right)$. The departure from exactness in the relation $f=1$ for the semi-dinmal, and $f=\frac{1}{2}$ for the diurnal terms is gencrally (except for certain critical depths of ocean) not such as to greatly chavge the nature of the results from those obtained when $f=1$ and $\frac{1}{2}$ rigorously. Hence the integration of (24) will be pursued on these three hypotheses, giving Laplace's three kinds of oscillation. The hypothesis which will be made with regard to γ is that $\gamma=l\left(1-q \cos ^{2} \theta\right)$, and in the caso of the semi-diurnal tides we shall be compelled by mathematical difficnlties to suppose q to be either unity or zero. The tides of zonal seas may be worked out, and mere complex laws of depth may be assumed; but for the discussion of such cases the reader is referred to Thomson's papers in Phil. Mag., 1575.

There might be reason to conjecture that the form of n wonld be aimilar to that of e, and this is in fact the case for the diurnal tides
for any value of q and for the semi-diurnul tides whou q is unity. Before proceeding further it will bo convenient to exhibit twoi purely analytical transformations of the first two terms of (24) ! which hold true for certain values of k and f, and when q has such : a form as that suggested. If we put $k=1, f=\frac{1}{3}, \gamma=l\left(\mathbb{I}-q \cos ^{2} . \theta\right)$ then, if $\theta=A \sin \theta \cos \theta$, it will be found on substitution that

$$
\frac{1}{\sin \theta} \frac{d}{d \theta} \frac{\gamma\left(\sin \theta \frac{d v}{d \theta}+2 v \cos \theta\right)}{\frac{1}{4}-\cos ^{2} \theta}-\gamma \frac{2 \cot \theta \frac{d v}{d \theta}+\frac{v}{\sin ^{2} \theta}}{\frac{1}{2} \cos ^{2} \theta}=-8 l q v \ldots(25)
$$

Again, if we putt $k=2, f=1, q=1, \gamma=l\left(1-\cos ^{2} \theta\right)=l \sin ^{2} \theta$, and if
$v=A \sin ^{2} \theta$. $v=A \sin ^{2} \theta$,

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta} \frac{\gamma\left(\sin \theta \frac{d v}{d \theta}+2 v \cos \theta\right)}{1-\cos ^{2} \theta}-2 \gamma \frac{\cot \theta \frac{d v}{d \theta}+\frac{2 v}{\sin ^{2} \theta}}{1-\cos ^{2} \theta}=-8 l v \tag{26}
\end{equation*}
$$

Another gencral property of (24) is derived from the suppositide that n is expressed in a series proceeding by powers of l; thns

$$
\begin{equation*}
\mathrm{u}=v_{0}+v_{1} \frac{l}{a}+v_{2} \frac{b^{2}}{a^{2}}+\ldots \tag{27}
\end{equation*}
$$

Let $v_{0}, v_{1}, v_{2}, \& c_{\text {., }}$, be so chesen that, when a is substituted in (24), tho coeflicient of each frower of $\{$ vanishes indepentently; then the term independent of l obriously gives $x_{0}=-c$, and the connex. ion between successive v 's is

$$
\left.\frac{1}{\sin \theta d \theta} d \frac{\gamma\left(\sin \theta \frac{d v_{m}}{d \theta}+\frac{k}{f} v_{n} \cos \theta\right)}{f^{2}-\cos ^{2} \theta}\right]-k \gamma \frac{\left(\frac{\cos \theta}{f} \frac{d v_{m}}{d \theta}+\frac{k v_{m}}{\sin \theta}\right)}{+4 m l v_{m+1}}=0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(28) .
$$

We shall suppose below that u is expansible in the form (27), and shall use (28) in conjunction with (25) or (26) for finding the successive values of the r 's.

§ 14. Diurnal Tide.

Let us first consider the diurna! tidés. We have e $=\mathrm{E} \sin \theta \cos 0$, Diurnal $k=1$, and $f=\frac{1}{2}$; then $v_{0}=-\mathrm{E} \sin \theta \cos \theta$. Hence by (28) and (25) tide. $-8 l q v_{0}+4 m l v_{1}=0$ and therefore $v_{1}=\frac{2 q}{m} v_{0}$. Applying the same theorem a second time, $r_{2}=(2 q / m) v_{1}$, and so on ; therefore $n=v_{0}\left\{1+2 l q / m a+(2 l q / m a)^{2}+\ldots\right]$

$$
\begin{equation*}
=\frac{v_{n}}{1-2 l q / m a}=-\frac{e}{1-2 \operatorname{lq} / m a} . \tag{30}
\end{equation*}
$$

But $\mathrm{u}=\mathrm{h}-\mathrm{e}$; bence $\mathrm{h}=-\frac{2 l q / m a}{1-2 l q / m a}$ e
It appears, therefore, that the tide is "inrerted," giving low water where the equilibrium tide gives high water. If $q=0$, so that tho ocean is of uniform deptb, the tide vanishes.
§15. Scmi-Diurnal Tide, with Frariable Depth.
Next ict ns consider the semi-diurnal tide in the case where $q=$? , Semioo that $\gamma=l \sin ^{2} \theta$. Then $e=E \sin ^{2} \theta, k=2, f=1 ; a \operatorname{ls} \theta v_{0}=-e=$ dural $-\mathrm{E} \sin ^{2} \theta$. Hence by (28) and (26) - $8 l v_{0}+4 m l v_{1}=0$, whence $r_{j}=$ tide $2 / m v_{0}$. Applying tho sanve theorem a second time, $v_{3}=(2 / m)^{2} v_{0}$, and so on; therefore $v=v_{0}\left[1+21 / m a+(2 l / m a)^{2}+\ldots\right]$

$$
\begin{equation*}
=\frac{r_{0}}{1-2 l / m a}=-\frac{e}{1-2 l / m a} . \tag{32}
\end{equation*}
$$

Hence $\quad h=u+c=-\frac{2!/ m a}{1-2 l / m a}$
If $2 l / m a=\frac{3}{3}$, the height of tide is equal to the equilibrium height; but it is inverted, giving low water where the equilibrinm theory gives ligh water. In the case of the earth $m=1 / 289$, and therefore this relation is satisfied if $l=a / 1156$. Heoce in a sea 3000 fathoms dcep at the equator, and shallowing to tho poles, we have inverted semi-diurnal tides of the equilibrium height.

§ 16. Scmi-Diurnal Tide, with Uniform Dcpth.

The method of derelopment used above, where we proceed by powers of the depth of the ocean, is not applicable where the depth is uniform, because it leads to a divergent series. We have therefore to resume equation (24). In the case of tbe semi-diurnal tides wo have for the depth $\gamma=l$ (a constant by hypothesis), $k=2, f=1$ approximatel; and $e=E \sin ^{2} \theta$. Now for brevity let $\beta=4 \mathrm{ma} / \mathrm{l}$, $\nu=\sin \theta$, so that $e=E v^{3}$. Then we fiod that on development (24) becomes

$$
\nu^{2}\left(1-\nu^{3}\right) \frac{d^{2} u}{d \nu^{3}}-\nu \frac{d u}{d v}-\left(8-2 \nu^{2}-\beta \nu^{4}\right) u=\cdot \beta E^{3} \ldots \ldots(33)
$$

Let ns now assume as the solution of this equation

$$
\mathrm{u}=\left(K_{2}-\mathrm{E}\right) \nu^{2}+K_{4} \nu^{4}+K_{6} \nu^{6}+\ldots+K_{2} \nu^{2 i}+\ldots \ldots \ldots \text { (34) }
$$

Substituting from (34) in (33), and equating to zero the coefficients of the successive powers of ν, wo find $K_{2}=E \quad K_{8}$ apparently indeterminate, and
$2 i(2 i+6) K_{2 H+4}-2 i(2 i+3) K_{x+2}+\beta K_{2 i}=0$
Sirce $K_{0}=0$, this equation of condition may be beld to apply for all positive integral values of i, beginning with $i=0$. It is obvious that K_{4} is determinable in terms of K_{1}^{\prime} and K_{2}, K_{0} in terms of E.
and K_{4}, \&c., oo that all the K^{\prime} 's are to be found in terms of K_{2}, which is known, and of K_{0}, which is apparently indeternoinate.

The condition for the convergency of the eeries (34) for u and for the series $d u / d \nu$ is that $K_{2 i+2} / K_{2 i}$ shall tend to a limit less than unity. The equation (35) may be written

$$
\begin{equation*}
\frac{K_{2 i+1}}{K_{2 i+2}}=\frac{2 i+3}{2 i+6}-\frac{\beta}{2 i(2 i+6)}-\frac{K_{2 i}}{K_{2 i+2}} \ldots \tag{36}
\end{equation*}
$$

Now K_{2+2} / K_{2} tends to be either infinitely small or mot infinitely small. If it be not infinitely small in the limit, the second term on the right of (36) becomes evancscent when i is very great, and We have in the limit when i is very large-

$$
\frac{K_{2 i+1} \nu^{2 i+4}}{K_{2 t+2} \nu^{2 i+2}}=\frac{2 i+3}{2 i+6} \nu^{2}=\left[1-\frac{3}{2(i+3)}\right] \nu^{2}=\left[1-\frac{3}{2 i}\right] \nu^{9} .
$$

But the ratio of successive terms of $\sqrt{ }\left(1-\nu^{2}\right)$ tends to become ($\left.1-\frac{s}{2} / i\right) \nu^{2}$. Hence, if $K_{2 i+2} / K_{21}$ does not tend to become infinitely small, $u=A+B \sqrt{1-\nu^{2}}$, where A and B axe finite for all values of ν. Again, under the same circumstances we lave in the limit when i is very large-

$$
\begin{gathered}
\frac{(2 i+4) K_{2 i+4^{2}}}{(2 i+2) K_{24+2} \nu^{2 i+2}}=\frac{2 i+4}{2 i+2} \cdot \frac{2 i+3}{2 i+6} \nu^{2}=\left(1+\frac{1}{i+1}\right)\left(1-\frac{3}{2(i+3)}\right) \nu^{2} \\
=(1-1 / 2 i) \nu^{2} .
\end{gathered}
$$

But the ratio of successive terms of $\left(1-\nu^{2}\right)^{-\frac{2}{2}}$ teads to $\left(1-\frac{1}{2} / 2\right) \nu^{2}$. Hence, if $K_{2 i+2} / K_{2 t}$ does not tend to become infinitely omall, $d u / d \nu=\mathrm{C}+\mathrm{D}\left(1-\nu^{2}\right)^{-\frac{1}{2}}$, where C and D are fiuite for all values of ν.
Now

$$
\frac{d u}{d \theta}=\frac{d u}{d \nu} \sqrt{1-\nu^{2}}=\mathrm{C} \sqrt{1-\nu^{2}}+\mathrm{D} .
$$

Therefore at the equator, where $\nu=1, d \mathrm{u} / d \theta=\mathrm{D}$, a finite quantity. Hence the hypothesis that $K_{2 f+2} / K_{2 a}$ tende to be not infinitely amall leads to the conclusion that u and $d n / d \theta$ are finite at the equator. But on scconnt of the symmetry of the syatem the co-latitudinal displacement. ξ must vanish at the equator, and therefore x also. $\mathrm{By}(23)$, when $f=1, k=2, \nu=\sin \theta$,

$$
\nu^{2} x=\frac{1}{4 \ln }\left(\frac{d u}{d \theta}+2 u \cos \theta\right)
$$

Bat we have jnst eeen that this hypotheais makes u finite when $=1$ or $\theta=90^{\circ}$, and therefore at the equator

$$
\mathrm{x}=\frac{1}{4 m} \frac{d \mathrm{u}}{d \bar{\theta}}, \text { s finite quantity. }
$$

Now eymmetry necessitates a ranishing valne of $d u / d \theta$ at the equator. Thus the bypotlicsis that $K_{2 i+2} / K_{21}$ tends to be not infinitely small is negatived, and we conclude that, on account of the aymmetry of the notion, it is infinitely amall for infinitely great values of i. This being eatablished, let us write (36) in the form

$$
\begin{equation*}
\frac{K_{2 i \div 2}}{K_{2 d}}=\frac{\frac{1}{2} \beta}{2 i^{2}+3 i-\left(2 i^{3}+6 i\right) K_{2 t+\sqrt{2}} K_{2 b+2}} \tag{36a}
\end{equation*}
$$

Mathod
Hence by repeated application of (36a) we have

$$
\frac{K_{2 t+2}}{K_{2 i}}=\frac{\frac{1}{2} \beta}{2 i^{2}+3 i}-\frac{\left(i^{2}+3 i\right) \beta}{2(i+1)^{2}+3(i+1)}-\frac{\left[(i+1)^{2}+3(i+1)\right] \beta}{2(i+2)^{2}+3(i+2)-\& c . ~(37) . ~}
$$

And we know that this is a continuous approximation to $K_{2 t+2} / K_{21}$, which must hold in order that the latitudinal velocity may vanish at the equator. Writing $N_{i}=K_{2 i+2} / K_{2 i}$, oll the N^{\prime} 's may be computed from the continued fraction (37). Then
$K_{2}=\mathrm{E}, K_{4} / \mathrm{E}=N_{1}, K_{6} / \mathrm{E}=N_{1} N_{3}, K_{8} / \mathrm{E}=N_{1} N_{2} N_{2}$ \&c.
We cannot compute \bar{K}_{8} from K_{4}, K_{8} from K_{6} and eo on; for, if we do, then, short of infinite accuracy in the gumerical values, we shall be gradually led to successive values of the $\overrightarrow{K^{\prime}}$ s which tend to equelity. ${ }^{2}$
This process was followed by Laplace withont explanation. It Was attacked hy Airy in his "Tides and Waves" (in Ency. Metrop.) and by Ferrel in his Tidal Researches (U.S. Coast Survey, 1873), but was justified by Sir W. Thomson in the Phil. Mag. (1875, p. 230). The investigation given here is substantially Thomson's.

Laplace gives numerical oolutions for three different depths of the sea, गे these correspond respectively to the cases of $\beta=40,10,5$, and the solutions are
$\beta=40, \mathrm{~h}=\mathrm{E}\left\{\nu^{2}+20 \cdot 1862 \nu^{4}+10 \cdot 1164 \nu^{8}-13 \cdot 1047 \nu^{9}-15 \cdot 4488 \nu^{10}\right.$
$-7.4581 \nu^{12}-2 \cdot 1975 \nu^{14}-0.4501 \nu^{16}-0.0687 \nu^{18}$
$\left.-0.0082 \nu^{20}-0.0008 \nu^{23}-0.0001 \nu^{24} \ldots\right\}$
$\beta=10, \mathrm{~h}=\mathrm{E}\left\{\nu^{2}+6 \cdot 1960 \nu^{4}+3.2474 \nu^{0}+0.7238 \nu^{\theta}+0.0919 \nu^{10}\right.$ $\left.+0.0076 \nu^{12}+0.0004 \nu^{16} \ldots\right\}$
$\beta=5, \mathrm{~h}=\mathrm{E}\left\{\nu^{2}+0.7504 \nu^{4}+0.1566 \nu^{6}+0.0157 \nu^{8}+0.0009 \nu^{10}+\ldots\right\}$

[^143]Since h vanishes when $\nu=0$, there is no rise and fall of water at the poles. When $\nu=1$ at the equator, we find

$$
\begin{aligned}
& \beta=40, \mathrm{~h}=-7 \cdot 434 \mathrm{E} \\
& \beta=10, \mathrm{~h}=11 \cdot 267 \mathrm{E} \\
& \beta=5, \mathrm{~h}=1.924 \mathrm{E} .
\end{aligned}
$$

The negative sign in the first case shows that the tide is inverted at the equator, giving low water when the disturbing body is on the meridian. Near the pole, however, that is, for small values of ν, the tides are direct. In latitude 18° (approximately) there is a nodal line of evanescent semi-diurnal tide. In the second and third cases the tides are everywhere direct, increasing in magnitude from pole to oquator. Ao β diminishes the tides teud to assume their equilibrium value, because all the terma, save the first, become evaneaceut. When $\beta=1$ (depth r of redius) the tide at the equater etill exceeds its equilibrium value by 11 per cent. As β diminishes from 40 to 10 the nodal line of evanescent tide contracts round the pole, and when it is infinitely small the tidea are infinitely great. The particular value of β for which this occurs is that where the free oscillation of the ocean has the same period as the forced oscillation. The values chosen by Laplare were not well adspted for the illustration of the regults, because in the cases of $\beta=40$ and $\beta=10$ the depth of the acean is not much different from that velue which would give infinite aemi-diurnal tide. For values of β greater than 40 we olould find other nodal liues dividing the sphere inte regions of direct and inverted tides. We refer the reader to Sir W. Thomson's papere for further details on this interestiug point.

§ 17. Tides of Long Period; Laplace's Arguneent froin Friction.

In treating these oscilletions Laplace remarks that a very omall Laplace"k amount of friction will be sufficieut to cause the surface of the arguocean to assume at each instant its form of equilibriom, and hement sdduces in proof of lis conclusiou the considerations given below. from The friction here coutemplsted is such that the integral effect is frintion represented by a retarding force proportional to the velocity of the unsoasd water relatively to the bottom. Although proportionality to the square of the velocity would probsbly be nearer to the truth, yet Laplace's hypothesis suffices for the preaent discussion.

In oscillations of this class the water moves for half a period north, and then for half a period soutl. In ascillating systems, where the resiatances are proportional to the velocities, it is usual to epecify the resistance by a modulus of decay, namely, that period in which a velocity is reduced to e^{-1} of its initial value by friction. Now the friction contemplated by Laplace is such that the modulus of decay is short compsred with the semi-period of oscillation. I'he quickest of the important tidea of long period is the fortnightly (see chapter iv.) ; hence, for the applicability of Laplace's conclusion, the modulus of decay must be short compared with a week. Now it seems practically certain that the friction of the bed of the ocean would not materially affect the velocity of a elow ocean current in a day or two. Hence we cannot accept Laplace'e discussion as satiafactory. However this may be, we now give what is oubstantially his argument.

Let us write 6 for the reciprocal of the modulus of decay. Then the frictional forces introduced on the left-hand side of (17) are $+6 d \xi / d t$ in the first and $\sin \theta 6 d \eta / d t$ in the second. Laplace's hypothesis with regard to the magnitude of the frictional forces enables us to neglect the terms $d^{2} \xi / d t^{3}$ and $\sin \theta d^{2} \eta / d t^{2}$ compared with the frictional forces. Then, if we observe that in oscillations of this class the motion is entirely latitudinal, cquations (17) and (19) become

$$
\begin{aligned}
& 6 \frac{d \xi}{d t}-2 n \sin \theta \cos \theta \frac{d \eta}{d t}=-\frac{g}{a} \frac{d}{d \theta}(\mathrm{D}-t) \\
& \sin \theta \in \frac{d \eta}{d t}+2 n \cos \theta \frac{d \xi}{d t}=0 \\
& b a \sin \theta+\frac{d}{d \theta}(\gamma \xi \sin \theta)=0
\end{aligned}
$$

From the first two of these we easily obtain

$$
\begin{equation*}
\left(\xi+\frac{4 n^{2}}{g^{2}} \cos ^{2} \theta\right)^{d \xi}=-\frac{g}{a} \frac{d}{d \theta}(\xi-\ell) \tag{39}
\end{equation*}
$$

Ae a first epproximetion we treat $d \xi / d t$ ss zero, and obtain $\boldsymbol{b}=\boldsymbol{e}$, or the height of water satisfies the equilibrium theory. In these
 equation of (38) re can obtain a firat approximstion to ξ; then, substituting in (39), we obtain on integration a second epproximation to b. Laplace, however, considers as adequate the firat approxime tion, which is simply the conclasion of the equilibrium theory.
§ 18. Tides of Long Period in an Ocean of Uniform Depth.
As it seems certain that these tides do not estisfy even epprox.. mately the equilibrium law, we now procsed to find the solution where there is no friction. In the case of these tides $k=0, f$ a small fraction, and $\theta=\mathrm{E}\left(\frac{1}{3}-\cos ^{2} \theta\right)$. The equation (24) then becomes

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\frac{\gamma \sin \theta \frac{d \mathrm{u}}{d \theta}}{f^{2}-\cos ^{2} \theta}\right)+4 m a(\mathrm{n}+\mathrm{c})=v \vdots
$$

σ_{3} writing μ for $\cos \theta$ and $\theta=E\left(\frac{1}{3}-\mu^{2}\right)$,

$$
\begin{equation*}
\frac{d}{d \mu}\left(\gamma \frac{1-\mu^{2}}{\mu^{2}-f^{2}} \frac{d u}{d \mu}\right)=4 m a(u+e) . \tag{40}
\end{equation*}
$$

,We shall confine the investigation to the case where $\gamma=l$, a con stant, and where the sea covers the whole eurface of the globe. The symmetry of the motion in this case demands thet u when expended in a series of powers of μ ahall only involve even powers. Lot us assume, therefor θ, thet

Then $\begin{aligned} \quad \frac{\mu^{2}-f^{2}}{} \overline{d \mu}= & \mathrm{B}_{1} \mu+\mathrm{B}_{3} \mu^{3}+\ldots \\ \frac{1-\mu^{2}}{\mu^{2}-f^{2}} \overline{d \mu} & =\mathrm{B}_{1} \mu+\left(\mathrm{B}_{3}-\mathrm{B}_{1}\right) \mu^{3}+\ldots+\left(\mathrm{B}_{2 i+1}-\mathrm{B}_{2 i-1}\right) \mu^{2 i+1}+\ldots \\ \frac{d}{d \mu}\left(\frac{1-\mu^{2}}{\mu^{2}-f^{2}} \frac{d \mathrm{u}}{d \mu}\right)= & \mathrm{B}_{1}+3\left(\mathrm{~B}_{3}-\mathrm{B}_{1}\right) \mu^{2}+\ldots \\ & +(2 i+1)\left(\mathrm{B}_{2 i+1}-\mathrm{B}_{2 i-1} j \mu^{23}+\ldots . \ldots . .(42) .\right.\end{aligned}$
Again,
$\frac{d u}{d \mu}=-f^{2} \mathrm{~B}_{2} \mu+\left(\mathrm{B}_{1}-f^{2} \mathrm{~B}_{3}\right) \mu^{3}+\ldots+\left(\mathrm{B}_{2 i-1}-f^{2} \mathrm{~B}_{2 i+1}\right) \mu^{2 i+1}+\ldots \ldots(43)$
$\mathrm{u}=\mathrm{C}-\frac{1}{2} f^{2} \mathrm{~B}_{1} \mu^{2}+\left\{\left(\mathrm{B}_{1}-f^{2} \mathrm{~B}_{3}\right) \mu^{4}+\ldots+\frac{1}{2 i}\left(\mathrm{~B}_{21-3}-f^{2} \mathrm{~B}_{2 i-1}\right) \mu^{2 i}+(44)\right.$,
where C is a constant. Then, writing β for 4 ma/l, as in the case of the aemi-diurnel tide, eubatituting from (42), (43), and (44) in (40), end equating to zero the successive coefficients of the powers of $\mu_{\text {, }}$ me find

$$
\begin{equation*}
\mathrm{B}_{3}-\mathrm{B}_{1}\left(1-\frac{1}{2.3} f^{2} \beta\right)+\frac{1}{3} \beta \mathrm{E}=0 \tag{45}
\end{equation*}
$$

$B_{2 i+1}-B_{2 i-1}\left(1-\frac{1}{2 i(2 i+1)} f^{2} \beta\right)-\frac{\beta}{2 i(2 i+1)} B_{23-3}=0$
Thus the constant C and $\mathrm{B}_{3}, \mathrm{~B}_{5}, \& \mathrm{c}$., are all expressible in terms of B_{1}, and B_{1} ia apparently indeterminate. We may remark that, if

$$
-\frac{\beta}{2.3} \mathbf{B}_{-1}=\frac{1}{3} \beta \mathbf{E}^{2} \text {, or } \mathrm{B}_{-1}=-2 \mathbf{E} \text {, }
$$

the equation of condition (45) may be held to apply for all values of i, from ono to infinity. Let us write (45) in the form

$$
\begin{equation*}
\frac{\mathrm{B}_{2 i+1}}{\mathrm{~B}_{2 i-1}}=1-\frac{1}{2 i(2 i+1)} f^{2} \beta+\frac{\beta}{2 i(2 i+1)} \frac{\mathrm{B}_{2 i-3}}{\mathrm{~B}_{2 i-1}} \ldots \ldots \ldots \tag{46}
\end{equation*}
$$

When i is large $B_{2 i+1} / B_{2 i-1}$ either tends to become infinitely small or it does not do so. Let us suppose that it does not tend to become infinitely small. Then it is obvious that the successive B's tend to become equal to one another, and so also do the values of $\left(\mathrm{B}_{2 i-2}-f^{2} \mathrm{~B}_{2 i-i}\right) / 2 i$ and the coefficients of $d \mathrm{u} / d \mu$. Hence we havo $d u / d \mu=L+M /\left(1-\mu^{b}\right)$, for all values of μ, where L and M are finite. Hence this hypothesis gives infinite velocity to the fluid at the pole, where $\mu=1$. But with a water-covered globe this infinite velocity is impossible, and therefore the bypothesia is negatired, and $B_{2 i+1} / B_{2 i-1}$ must tend to become infinitely small. This being established, let us write (46) in the form

$$
\begin{equation*}
\frac{\mathrm{B}_{2 i-1}}{\mathrm{~B}_{2 i-3}}=\frac{-\frac{f}{2 i(2 i+1)}}{1-\frac{f^{2} \beta}{2 i(2 i+1)}}-\frac{\mathrm{B}_{2 i+1}}{\mathrm{~B}_{2 i-1}} \tag{47}
\end{equation*}
$$

By repeated applications of (47), we have in the form of a continued fraction

$$
\begin{equation*}
\frac{\mathrm{B}_{2 i-1}}{\mathrm{~B}_{2 i-3}}=\frac{-\frac{\beta}{2 i(2 i+1)}}{1-\frac{f^{2} \beta}{2 i(2 i+1)}}+\frac{\frac{\beta}{(2 i+2)(2 i+3)}}{1-\frac{f \cdot \beta}{(2 i+2)(2 i+3)}}+\frac{\beta}{1-\frac{\beta}{(2 i+4)(2 i+5)}} \frac{f^{2} \beta}{(2 \dot{i}+4)(2 i+5)}+\& c . \tag{48}
\end{equation*}
$$

And we know that this is a continuous approximation, which must hold in order to satisfy the condition that the water covers the whole globe. Let us denote this continued fraction by $-N_{i}$. Then, if we remember that $\mathrm{B}_{-1}=-2 \mathrm{E}$, we hare

$$
\mathrm{B}_{1}=2 \mathrm{E} \lambda_{1}, \mathrm{~B}_{3} / \mathrm{B}_{1}=-\lambda_{2}^{-}, \mathrm{B}_{3} / \mathrm{B}_{3}=-N_{3}, \mathrm{~B}_{-} / \mathrm{B}_{6}=-\lambda_{4}, \& \mathrm{c}
$$

60 that

$$
\mathrm{B}_{3}=-2 \mathrm{E} N_{2} N_{2}, \mathrm{~B}_{5}=2 \mathrm{E} \Lambda_{1} \nu_{2} \mathrm{~N}_{3}, \mathrm{~B}_{7}=-2 \mathrm{E} N_{1} \Lambda_{2} N_{3} N_{4} \text { sec. }
$$ and

$$
\left.\mathrm{C}=-\frac{1}{3} \mathrm{E}+2 \mathrm{E}\right\rangle_{2} / \beta
$$

Then $h=u+0$

$$
\begin{align*}
= & \mathrm{C}+\frac{1}{3} \mathrm{E}-\left(\mathrm{E}+\frac{1}{2} f^{2} \mathrm{~B}_{1}\right) \mu^{2}+\frac{1}{4}\left(\mathrm{~B}_{1}-f^{2} \mathrm{~B}_{3}\right) \mu^{4}+\frac{1}{8}\left(\mathrm{~B}_{3}-f^{2} \mathrm{~B}_{5}\right) \mu^{6}+\ldots \\
= & \mathrm{E}\left\{2 N_{2} / \beta-\left(1+f^{2} N_{1}\right) \mu^{2}+\frac{1}{2} N_{3}\left(1+f^{2} N_{2}^{6}\right) / \mu^{4}\right. \tag{49}\\
& \left.\quad-\frac{1}{N_{1}} N_{2}\left(1+f^{2} N_{3}\right) \mu^{6}+\ldots\right\} \ldots \ldots \ldots \ldots \ldots(49) .
\end{align*}
$$

Now wo find that, when $\beta=40$, which makes the depth of the eea 3000 fathoms or $\frac{1}{8} 0 \mathrm{o}$ the radius of the earth, and with $f=.0365012$, which is the value for the fortnightly tide (see chap. iv.),
$N_{1}=3 \cdot 040692, N_{2}=1 \cdot 20137, N_{3}=\cdot 66744, N_{4}=\cdot 12819, N_{3}=\cdot 29819$, $N_{6}=21950, \lambda_{7}=\cdot 16814, N_{8}={ }^{\circ} 13257, \lambda_{9}=107, \lambda_{10}={ }^{\circ} 1$.
These valuea give
$2 N_{1} / \beta=\cdot 15203,1+f^{2} N_{1}=1 \cdot 0041, \frac{1}{2} N_{1}\left(I+f^{2} N_{3}\right)=1 \cdot 5228$,
$\frac{1}{3} N_{1} N_{2}\left(1+f^{2} N_{3}^{r}\right)=1 \cdot 2187, \quad 1 N_{1} V_{2} N_{3}\left(I+f^{2} N_{4}\right)=60989$,
$\frac{1}{6} N_{2} \ldots N_{4}\left(1+f^{2} N_{5}^{5}\right)=20888, \frac{1}{6} N_{1} \ldots N_{8}\left(1+f^{2} N_{6}^{6}\right)=005190$,
$\left.\$ N_{1} \ldots N_{6}^{\prime} 1+f_{1}^{2} N_{7}\right)=00976, \frac{1}{6} N_{1} \ldots N_{7}\left(I+f^{2} N_{8}^{*}\right)=.0014_{1}$ $\frac{1}{8} N_{2} \ldots N_{5}\left(1+f^{2} N_{g}\right)=\cdot 00017$.
So tlat
$h / e=\left\{\cdot 1520-1 \cdot 0041 \mu^{2}+1 \cdot 5228 \mu^{6}-1 \cdot 2187 \mu^{6}+6099 \mu^{8}-\cdot 2089 \mu^{10}\right.$ $\left.+.0519 \mu^{12}-0098 \mu^{14}+.0014 \mu^{16}-.0002 \mu^{18}\right\} \div\left(1-\mu^{2}\right)(50)$. At the pole, where $\mu=1, \mathrm{~h}=-\mathrm{E} \times \cdot 1037=\mathrm{e} \times \cdot 1556$ and at the equator, where $\mu=0, \mathrm{~h}=+\mathrm{E} \times \cdot 1520=\mathrm{e} \times 4561)$ (51).

Now let us take a second-case, where $\beta=10$, which was also one of thoso solved for the caste of tho gemi-diurnal tide by Leplace, and we find
$\mathrm{h} / \mathrm{E}=\cdot 2363-1.0016 \mu^{2}+.5910 \mu^{6}-\cdot 1627 \mu^{6}+.0258 \mu^{8}-.0026 \mu^{20}$ $+{ }^{\circ} 0002 \mu^{1 ?}$.
At the pole, where $\mu=1$, we find $h=-\mathrm{E} \times 3137=\mathrm{e} \times 471$, and at the equator $\mathrm{l}=+\mathrm{E} \times 2303=\mathrm{e} \times \cdot 709$. With a deeper ocean wc should soon arrive at tha equilibrium value for the tide, for N_{1}, N_{2}. \& c., become very small, and $2 N_{1} / \beta$ becomes equal to $\frac{1}{3}$. In this case, with such oceans as those with which we have to deal, the tides of long period are considerably smaller than the equilibrium value.

§ 19. Stabitily of the Oceen.

Imagine a globe of density δ, surrounded by a spherical layer of Stability water of deusity σ. Then, still maintaining the spherical figure, and of the with water still covering the nuclena, let the layer be displaced ocean. sidewaye. The force on any part of the water distant r from the centre of the weter and r from the centre of the nucleus is $\frac{4}{3} \pi r^{\prime}$ towards the centre of the fluid sphere and $f \pi(\delta-\sigma) r$ towards the centre of the nucleus. If δ be greater than σ there is a force tend. ing to carry the water from placea where it is deeper to places where it is shallower; and therefore the equilibrimm, thus arbitrarily dis. turbed, is stable. If, lowever, δ is less than σ (or the nucleus lighter than water) the force is such that it tenda to carry the water from where it is shallower to where it is deeper, ond therefore the equilibrium of a layer of fluid distributed over a nucleus lighter then itself is unstable. As Sir William Thomson has remarked, ${ }^{1}$ if the nucleus is lighter than the ocean, it will foat in the occan Stabilitics with part of its surface dry. Suppose, again, that the fluid layer of various be disturbed, so that its equation is $r=a\left(1+s_{1}\right)$, where s_{1} is a sur. orders. face harmonic of degree i; then the potential due to this deformation is $\frac{4 \pi \sigma}{2 i+1} \frac{a^{i+3}}{r^{i}+1} s_{i}$, and the whole potential is

$$
\frac{4 \pi \partial i^{3}}{3 r}+\frac{4 \pi \sigma}{2 i+1} \frac{a^{i}+3}{r^{i+1}} s_{k} .
$$

If, the efore, $\sigma /(2 i+1)$ is greater than $\frac{1}{3} \delta$, the potential of the forces due to deformation is greater than that due to the nucleus. But we liave seen that a deformation tends to increase itself by mutual attraction, and thercfore the forces are such as to increase the deformation. If, therefore, $\sigma=\frac{1}{3}(2 i+1) \delta$, all the deformations up to the ith are unstable, but the $i+1$ th is stable. ${ }^{2}$ If, however, σ be less than δ, then all the deformations of any order are such that there are positire forces of restitution. For our present purpose it suffices that this equilibrium is stable when the ruid is lighter than the nuclens.

§ 20. Precession and lutation.

Suppose we have a planet covered with a shallow ocean, and that Freces. the ocean is set into oscillation. Then, if there are no external dis- sion and turbing forces, so that the oscillations arc "frec," not "forced," nutation the resultant moment of momentum of the planet and ocean remains constent. And, since each particle of the occan excentes periodic oscillations about a mean position, it follows that the ascillation of the ocean imparts to the solid carth oscillations such that the resultant moment of momentum of the whole system remains constant. But the mass of the ocean being very small compared with that of the planet, the component angular relocities of the planet necessary to counterbalance the moment of momentum of the oscillations of the sea are very small compared with the component angular velocities of the sea, and therefore the disturbance of planetary rotation due to oceanic reaction is negligible. If now an external disturbing force, such as that of the moon, acts on the system, the resultant moment of momentum of sea and certh is unaffected by the interaction between them, and tho precessional and mutational c, uples are tho same as if sea and earth were rigidly connected together. Thercfore tho additions to theso couples on account of tidal oscillation are the couples due to the attraction of the moon on the excess or deficiency of water above or below mean sea.lcrel. The tidal oscillationa are very small in height compared with the equatorial protuberance of the earth, and the density of water is fiths of that of surface rock; lience the additional conples are very amall compared with the conples due to the noon's action on the

1 Thomson and Talt, Niat. Nhil. $\$ 816$.
2 Compare an Important paper by Poincaré. In Ack . Afath. (1985), 7; 3, 4.
solid equatorial protuberance. Thereforo precession and nutation take place sensibly as though the sea were congealed iu its mean position. If the ocean be rogarded as frictionlcss, the principles of energy show us that these insensible additional couples must be periodic in time, and thus the corrections to nutation must consist of semi-diurnal, diurnal, sod fortnightly nutations of absolutely insensible raagnitude. We shall have much to say belorv on the results of the introduction of friction into the conception of tidal oscillations as a branch of speculative astronomy.

§ 21. Some Prenomena of Tides in Rivers.

- In § 2 we have given a description of some of the phenomens of the tide-wepe in rivers. As a considerable part of our practicel knowledge of tides is derived from observations in estuaries and rivers; we give an investigation of two of the most important features of the tide-wave in these cases. It must be premised that when the profile of wave does not present the simple harmonic form it is convenient to analyse ita shape into a series of partial wayes superposed on a fundamental waye; and generally the prin. ciple of harmonic analysis is adopted, in which the actual ware is regarded as the sum of a number of simple harmonic waves.

The tide-wave in a river is a "long" wave in which the vertical motion of the water is very small compared with the horizontal, the river very shallow compared with the wave-length, and the water which is at any moment in a vertical plade always remains so throughont the oscillation.
Suppose that the water is contained in a straight and shallow canal of uniform depth; then take an origin of coordiostes at the bottom, with the x axis horizontal in the direction of the canel, and the y axis vertical; let h be the undisturbed depth of water; let $h+\eta$ be the ordinate of the surface correspondiog to that fluid whose undisturbed abscissa is x and disturbed abscissa $x+\xi$; and let g be gravity. The equations of motion and continuity ${ }^{2}$ are

$$
\left.\begin{array}{rl}
\frac{d^{2} \xi}{d t^{2}} & =g h \frac{d^{2} \xi / d x^{2}}{(1+d \xi / d x)^{3}} \\
\eta & =\frac{-h d \xi / d x}{1+d \xi / d x} \tag{52}
\end{array}\right\}
$$

For krevity we shall write $v^{2}=g h$ and $u=v t-x$. Since for "long " waves $d \xi / d x$ is small, the equations (52) become approximately

$$
\left.\begin{array}{c}
\frac{d^{2} \xi}{d t^{2}}=v^{2} \frac{d^{2} \xi}{d x^{2}}\left(1-3 \frac{d \xi}{d x}\right) \tag{53}\\
\cdot \frac{\eta}{\hbar}=-\frac{d \xi}{d x}+\left(\frac{d \xi}{d x}\right)^{2}
\end{array}\right\}
$$

For finding a first approximation we neglect the second term on the right of each of (53). The solation is obvious! 3

$$
\left.\begin{array}{l}
\xi=a \cos m(u t-x)=a \cos m u \\
\eta=-m a b \sin m u
\end{array}\right\}
$$

54) gives the lieight of the water whose undisturbed abscissa is x_{3} and since ξ is small this is approximately the height at the point on the bank whose abscissa is x. But now suppose that at the origin (the mouth of the river) the canal communicates with a basin in which there is a forced oscillation of water-level given by $\eta=\Pi \sin n \ell$.
.....(55).

This represents the oceanic tide, and n is that which we coll below, ($£ 23$) the speed of the tide. Then obviously $m=n / v$, so that at any point x up the river

$$
\begin{equation*}
\eta=H \sin n\left(t-\frac{x}{\sqrt{g h}}\right) \tag{56}
\end{equation*}
$$

(56) gives the first approximation to the forced tide-wave, and it is clear that any number of oscillations mey be propagated indopendently up the river with tho velocity $\sqrt{g h}$ due te the depth of Over the river. In passing to the second approximation wo must seoarate tices. the investigation into two branches.
(i.) Over-Tides (se日 $\$ 24$).-We now suppose that the tide at the river mouth is simply (55). On substituting the approximato values (54) in (53) our equations berome

$$
\left.\begin{array}{l}
\frac{d^{2} \xi}{d l^{3}}=v^{2} \frac{d^{2} \xi}{d x^{3}}+\frac{3}{2} v^{2} a^{2} m^{3} \sin 2 m v \tag{57}\\
\frac{\eta}{h}=-\frac{d \xi}{d x}+\frac{1}{2} m^{2} a^{2}-\frac{1}{2} m^{2} a^{2} \cos 2 m u
\end{array}\right\}
$$

We have now to assume an appropriate form for the solution of (57), such as $\quad \xi=a \cos m u+A x \cos 2 m u+B \sin 2 n u \varepsilon$.........(58). We have here in effect assumed that the second and third terins of (58) are small compared with the first. It is clear, however, that at a distance from the origin the term in A will become large. This dificulty may be eluded by taking the camal of finite length, and supposing that, where the canal debouches into a second basin, a second appropriate forced oseillation is maintained. The length of the canal romains arbitrary, save that the second term of (58) shall still be small compared with the first. On substituting from (58) in (57) we have B indeterninate and $A=-\frac{5}{8} \pi^{2} m^{2}$; hence $\eta / h=\frac{1}{2} m^{2} a^{2}-m a \sin m u+\frac{3}{4} m^{3} a^{2} x \sin 2 m u+\left(2 m \mathrm{~B}-\frac{1}{6} n v^{2} \alpha^{2}\right) \cos 2 m u(59)$. This gives the elevation of the water whose undisturbed abscissa is x, that is to say, at the point whose abscissa along the bank is $X=x+\xi$. If we put $x=X-\xi$ in the largest term of (59), and treat ξ as small, and put $x=X$ in the small terms, (59) becomes
$\eta / h=-m a \sin m(v t-X)+m^{3} a^{2} X \sin 2 m(v t-X)$
$+\left(2 m \mathrm{~B}-\boldsymbol{s}^{2} m^{2} a^{2}\right) \cos 2 m(v t-X)$.
But at tho origin (55) holds true, tberefore $\mathrm{B}=\mathrm{I}_{18} \mathrm{~s}^{3} m a^{3},-m a h=H$, end $m v=n$. Thus the solution is

$$
\begin{equation*}
\eta=H \sin n\left(t-\frac{X}{\sqrt{y h}}\right)+\frac{3 H^{2} n}{4 h \sqrt{g h}} X \sin 2 n\left(t-\frac{X}{\sqrt{g h}}\right) \tag{60}
\end{equation*}
$$

From (60) we can see what the proper forced oscillation at the Solution further end of the canal must be ; but this matter has no present giviog interest. The first term of ($\delta 0)$ being called the fundamental, tho first second gives what is called the first over-tide; and by further over-tids approximation we can get the second, third, \&c. The over-tide travels up the river at the same rate as the fundamental, but it has double frequency or "speed," and the ratio of its amplitude to that of the fundamental is $\frac{3 H}{4 h} \frac{n X}{\sqrt{g h}}$.
As a numerical example, let the range of tide at the river mouth be 20 feet and the depth of river 50° feet. The "specd" of the semi-diurnal tide is about $1 / 1.9$ radians por hour ; $\sqrt{g h}=27$ miles per hour ; hence $\frac{3 H}{4 h} \frac{n X}{\sqrt{g h}}=\frac{1}{342} X$. Therefore 34 miles up the river

Fig. 1
the over-tide is roth of the fundariental and has a range of 2 feet. If the river shallows very gradually, the formula will still hold, and we see that the height of over-tide varies as (depth) ${ }^{-3}$.

Fig. 1^{2} read from left to right exhibits the progressive change of shape. The steepress of the advancing crest shows that it is a shorter time from low to high water than vice versa. The law of the ebb and flow of currents mentioned in $\$ 2$ may also be easily determined from the above investigation. We leave the reader to determine the effect of friction, which is giveu by inserting a term $-\mu d \xi / d t$ on the right-hand side of (57).
(ii.) Compound Tides (see § 24). We shall now consider the mutual influence of two waves of different periods travelling up the river together. In the first approximation they are quite independeut, and we may assume
$\xi=a \cos m(v t-x)+b \cos [n(v t-x)+\varepsilon]$ \qquad
In proceeding to the second approximation, we only take notice of those terms which result from the interaction of the two, and omit all others, writing for the sake of brevity

$$
\left\{\begin{array}{l}
\{n-n\}=(m-n)(v t-x)-\epsilon, \\
\{n+n\}=(m+n)(v t-x)+\epsilon .
\end{array}\right.
$$

With the value of ξ assumed in (61), we find, on substituting in (53) and only retaining terms depending on mutual influence, that the equations for the second approxintation are

1 See, for crample, Lamb's Hydrodynamics, chap. vii.
2 Froin Airy, "Tides and Waves."
$\left.\begin{array}{l}\frac{d^{2} \xi}{d l^{2}}=v^{2} \frac{d \xi \xi}{d x^{2}}+\frac{3}{2} v^{2} \alpha b m n[(m+n) \sin \{m+n\}-(m-n) \sin \{n t-n\}] \\ \eta / h=-a b m n[\cos \{m+n\}-\cos \{m-n\}]-d \xi / d \dot{x}\end{array}\right\}(62$. $\eta / h=-a b m n[\cos \{m+n\}-\cos \{m$
Now let us assume as the solution
$\left.\begin{array}{rl}\xi= & a \cos m(v t-x)+\mathrm{A} x \cos \{m+n\}+\mathrm{B} \sin \{m+n\} \\ & +b \cos [n(v \ell-x)+\epsilon]+\mathrm{C} x \cos \{m-n\}+\mathrm{D} \sin \{m-n\}\end{array}\right\} \ldots(63) ;$
and let us elude the difficulty about the increasing. magnitude of the second term in the same way as before. Substitutino in tho equation of motion, we have for all time,
$2(m+n) A \sin \{n+n\}+2(m-n) C \sin \{m-n\}$
$+\frac{3}{2} \alpha b m n[\{n+n) \sin \{m+n\}-(m-n) \sin \{m-n\}]=0$.
This gives $\mathrm{A}=-\frac{8}{3}$ abmn and $\mathrm{C}=+\frac{3}{3} \alpha b n n$. B and D remain arbitrary as beforc. and will be droppel, because they are to bo determined by the condition that at the origin the terms of $d E / d x$ in $\cos \{n+n\}, \cos \{n-n\}$ are to vanish, whence
$\eta / h=-a n \sin n(v t-x)-h n \sin [n(v f-x)+\epsilon]$
$+\frac{3}{4} a b m n[(n z+n) x \sin \{m+n\}-(m-n) x \sin \{m-n\}]$

+ terms in $\cos \{m+n\}$ and $\cos \{m-n\}$.
Then wo pass from x to X as in the last section, and make tho terms in cos $\{m+n\}$ and $\cos \{m-n\}$ vanish by proper values of B and D, and we have

$$
\eta=a m h \sin m(v t-x)-b n h \sin [n(v t-x)+\epsilon]
$$

$+{ }^{3} a \ln n x X[(n+n) \sin \{n+n\}-(m-n) \sin \{m-n\}]$ (64).
Now at the river's mouth, where $x=0$, suppose that the oceanic tide is represeuted by $\eta=H_{3} \sin n_{2} t+H_{9} \sin \left(n_{2} t+\epsilon\right)$.

Then

$$
-a m=H_{1} / h,-\delta n=H_{2} / h, h a b m n=H_{1} H_{2} / h,
$$

$$
m v=n_{3}, \quad n v=n_{2}, v=\sqrt{g h}, \quad m \pm n=\frac{n_{1} \pm n_{2}}{\sqrt{g h}},
$$

so that (64) becomes

$$
\begin{align*}
\eta= & H_{1} \sin n_{2}\left(t-\frac{X}{\sqrt{g h}}\right)+H_{2} \sin \left[n_{2}\left(t-\frac{X}{\sqrt{g h}}\right)+\epsilon\right] \\
& +\frac{3 H_{1} H_{2} n_{1}+n_{2}}{4 h} \sqrt{\overline{g h}} \sin \left[\left(n_{1}+n_{2}\right)\left(t-\frac{X}{\sqrt{g h}}\right)+\epsilon\right] \\
& -\frac{3 H_{1} H_{2}}{4 h} \frac{n_{1}-n_{3}}{\sqrt{g h}} \boldsymbol{x} \sin \left[\left(n_{1}-n_{2}\right)\left(t-\frac{X}{\sqrt{g h}}\right)-\epsilon\right] . . \tag{65}
\end{align*}
$$

As a numerical example, suppose at the mouth of a river 50 fect decp that the solar semi-diurnal tide has a range $2 H_{1}=4$ feet, and thelunsr $2 H_{2}=12$ feet; then $n_{1}+n_{2}=$ bit $_{6}$ radians per bour, $n_{1}-n_{2}=r^{2}$, radians per hour, and as before $\sqrt{g h}=27$ miles per hour. With these figurea

$$
\frac{3 H_{1} H_{2}}{4 h} \frac{n_{1}+n_{2}}{\sqrt{g h}} X=\frac{1}{170} X .
$$

Thus 15 miles up the river the quater-diurnal tido (in $\$ 24$ below, called MS) has a semi-range of an inch. But the luni-soiar fort nightly tide (callod MSSf in § 24) would have a scmi-range of z^{\prime} th of an inch. Where the two interacting tides are of nearly equal epeed, the sumnation compound tide is very large compared with the differential tide. As before, when the river shallows gradually this formula will still hold.
It is interesting to note the kind of effect produced by these compound tides. When the primary tides are in the same phase
Then $\quad\left(n_{1}+n_{2}\right)\left(t-\frac{X}{\sqrt{g h}}\right)+\varepsilon=2 n_{1} t-\left(n_{1}+n_{2}\right) \frac{X}{\sqrt{g h}}$;

$$
\left(n_{1}-n_{2}\right)\left(t-\frac{X}{\sqrt{g h}}\right)-\varepsilon=\quad \cdot\left(n_{1}-n_{3}\right) \frac{X}{\sqrt{g h}} ;
$$

snd
$\begin{gathered}\eta=\left(\Pi_{1}+\dot{H}_{2}\right) \sin n_{1}\left(l-\frac{X}{\sqrt{g h}}\right)+\frac{3 H_{1} H_{2}}{4 h} \frac{n_{1}+n_{2}}{\sqrt{g h}} \sin \left[2 n_{1} t-\left(n_{1}{ }^{\prime}+n_{2}\right) \frac{X}{\sqrt{g h}}\right] \\ -\frac{3 H_{1} H_{2}}{4 h} \frac{n_{3}-n_{2}}{\sqrt{g h}} \sin \frac{\left(n_{1}-n_{2}\right)}{\sqrt{g h}} x .\end{gathered}$
Hence the front slope of the tide-wave is steeper at spring than at neap tide, and the componnd tide shows itself in the form of $8 n$ augmentation of the first over-tide; and the converse statements hold of neap tide. Also mean-water mark is lower and higher alternately up the river at spring tide, and higher and lower alternately at. neap tide, by a small amount which depends on the differential tide. With the river which we were considering, the slternation would be so long that it would in actuality be either all lower or all higher.

IL. The Harmomic Analysts.

§ 22.
The comparison between tidal observations and tidal theories, and the formation of tables predicting the tidal oscillations of the sea, have been carricd out in two different ways, which may be called the "synthetic" and the "analytic."
The semi-diurnal rise end fall of tide with the weekly alternation of spring snd neap would naturally suggest to the investigator to make his formula conform to the apparent simplicity of the phenomenon. He would seek to represent the height of water by either one or two periodic functions with a variable amplitude; euch a representation is the aim of the synthetic method. That method has been followed by all the great investigators of the past, -Newton, Bernoulli, Maclaurin, Laplace, Lubbock, Whewell, Airy. Since at European ports the two tides which follow one another on any one day are nearly equal, or, in other words, there is scarcely a sensible diurnal tide, these investigators bestowed comparatively little attention to the diurnal tides. If these aro neglected, the oynthetic method is simple, for a single function suffices to repreaent the tide. In nou-Europeau ports, however, the diurnal tide is sometimes so large as to mask the semi-diurnal, snd to make only a single instesd of a double high water in twenty-four liours. To represent this diurnal tide in tha syothetic method we are compelled to introduce at least ono more function. There should alao be a third-function representing the tides of long period; hut until the last few years these tides have scarcely been considered, and there. fore we shall have little to say of them in explaining the synthetic method. The expression for the tile-generating forces due to either oun or moon consists of three terms, involving the declinations and hour-angles of the planet. One of these terms for each goes through its periad approximatelyotwico a day, a second onee a day, sud the third varies slowly ($\$ 7$). The mathematical basis of the synthetic method consists of a synthesis of the mathematical formula. The semi-diurnal term for the moon is fused with that for the sun, and the samo process is carricd out for the diurnal and slowly varying terms. A. mass of tidal observation at a place where the diurnal tide is small, even if, as in sll tha older observations, it consists merely
of neignts and times of high and low water, soon shows that the fusion of two simplo harmonic or reriodic functions is insufficient to represent the state of tide; and the beight and time of high water are found to need corrections for the variations of declination, of mation in right ascension, and of the parallaxes of both bodies.

But when continuons tidc-gauges were set up far more extanded data than those of the older ollservations became accessihle to the investigator, and more and more corrections were found to be expedient to adapt the formule to the facts. A systematic method of utilizing all the data became also a desidcratum. This state of matters led Sir W. Thomson to suggest the analytic method. ${ }^{1}$ It is true that the dynamical foundations of that method have always lain below the surface of the synthetic method, and have constantly been appealed to for the thicoretical deternination of corrections; nevertheless, we must regard the explicit adoption of the analytic method as a great advanice. In this method we conceive the tidal forces or potential duo to each disturbing lody to be developed into a series of terms each consisting of a constant (determined by the elements of the planet's orbit and the obliquity of the ecliptic) multiplied by a simple harmonic function of the time. Thus in place of the terms of the synthctic method for the three classes of tides we have an indefinitely long serica of erms for each of tho three classes. The loss of simplicity in the expression for the forces is far more than counterbalanced by the gain of facility for the discussion of the oscillations of the water. This facility arises from the great dynamical principle of forced oscillations, which we have explained in the hiatorical sketch. Aprlying this principle, we seo that each individual term of the harmonic development of the tidegenerating forces corresponds to an oscillation of the sea of the same period, but the amplitude and phase of that oscillation must depend on a netrork of causes of almost inextricsble complication. The analytic method, then, represents tho tide at any port by a series of simple harmonic terms whose period is determined from theoretical considerations, but whose amplitude and phase ara found from observation. Fortunately the serics representing the tidal forces converges with sufficient rspidity to permit us to consider only a moderate number of harmonic terma in the series.

Now it seems likely that the corrections which have been applied in the use of the synthetic method right have heen clothed in a more satisfactory and succinct mathematical form had investigatora first carried out the harmonic development. In this article we shall therefore invert history and come back on the synthetic method from the analytic, and shall show how the formulæ of correction stated in harmonic language may be made comparable with them in synthetic language. One explanation is expedient before pro- Fusion of ceeding with the hermonic development. Thera ara certain terms terma in the tide-generating forces of the moon, depending on the longi- affected tude of the moon's nodes, which complete their revolution in 18.6 by moyears. Now it has heen found practically convenient, in the appli- tion of cation of the harmonic method, to follow the synthetic plan to the moon's extent of classifying together terma whose speed differs only in node. consequence of the morement of the mon's node, and at the same time to conceive that there is a small rariability in the intensity of the generating forces.

§ 23. Development of Equilibrium Theory of Tides in Terms

 of the Elements of the Orbits.Within the limits at our disposal we cannot ao more than in. Equilidicate the processes to be followed in this development.
We have already seen in (3) that the expression for the moou's tide-generating potential is

$$
\mathrm{V}=\frac{3 m}{2 r^{2}} \rho^{2}\left(\cos ^{2} z-\frac{1}{2}\right),
$$

$$
\begin{aligned}
& \text { and in (10) that } \\
& \cos ^{2} z-\frac{1}{2}=2 \xi \eta M_{1} M_{2}+2 \frac{\xi^{2}-\eta^{2}}{2} \cdot \frac{M_{1}^{2}-M_{2}^{2}}{2}+2 \eta \xi \Delta M_{2} 3 M_{3}+2 \xi \xi M_{1} M_{3} \\
& +\frac{3 \xi^{2}+\eta^{2}-2 \xi^{2}}{3} \cdot \frac{\mathrm{Mr}_{1}{ }^{2}+\mathrm{Mr}_{2}{ }^{2}-2 \mathrm{M}_{3}{ }^{2}}{3}, \\
& \text { Where } \mathrm{M}_{1}, \mathrm{M}_{2} \mathrm{M}_{3} \text { are the dircction cosines of the moon referred to }
\end{aligned}
$$ axes fixed in the earth. We require to find the functions $M_{1} M_{2}, \frac{1}{3}\left(M_{1}{ }^{2}-M_{2}{ }^{2}\right)_{2}$ 8 c ., of the moon's direction cosines. ${ }^{2}$ Let A, B C (fig. 2) be the axes fixed in the earth, C being the north polo and $A B$ the equator; let X, X, Z be a second set of axes, XY being tle plane of the moon's orbit; M the projection of the moon in her orbit; $I=2 \mathrm{C}$, the obliquity of the lunar orbit to the equator; $\chi=A X=B C Y ; l=M X$, tho

${ }^{1}$ Alry and after him Clazallon, appear to have been amongst the frrst to nse a kind of harmonic analysis for reducing tudal observations; bat, as Airy did ant emancrpate himsclf from the use of hour-ancles, decll astions, sc., his work can hardty be considered as an exarople of the analyt' ' method; aeo his "Tides and Wiaves," and Hatt's I'henomene des Marces, Paris, 1835.
${ }^{2}$ For further details of the analyais of this section, sce the Report "On Marmonic Analysis, \&c.," fur 1683 to the Britush Association (Southport).

Moon＇s moon＇s longitude in her orbit measured from \mathbf{X} ，the intersection of longitude the equator with the lunar orbit，hereafter called the＂interscction．＂ ad obli．Then
quity of
orbit in－ troduced．

日ystem for the whole earth，and to regard high tide and high water as coneentaneous in the equatorial belt，and of oprosite meanings． outside of the critical latitudes．We here conceive the function alwaye to be written $f-\sin ^{2} \lambda$ ，so that outside of the critical lati－ tuder high tide is low water．We may in continuing the develop－ ment write the \mathfrak{X}－ $\mathrm{j}-\tilde{Z}$ functions in the form appropriato to the equilibrium thcory，with water covering the whole earth；for the actual case it is only then necessary to multiply by the reducing factor，and to subtract the phase alteration к．As these are mn－ known constante for cach place，they would only occur in the development as oymbols of quantities to be deduced from observa－ tion．It will be understood，therefore，that in the following schedules the＂argument＂is that part of the argument which is derived from theory，the true complete argument being the＂argu－ ment＂$-\kappa$ ，where κ is derived from observation．
Up to this point we have supposed the moon＇s longitude and the earth＇s position to bo measured from the intersection；but in order to pass to the ordinary astronomical formula we must measure the longitude and the earth＇s position from the vernal equinor．Henco we determine the longitude and right ascension of the intersection in terms of the longitude of the moon＇e node and the inclination of the lunar orbit，and introduce them into our formale for the $\overline{\text { 玉道－}} \mathfrak{Z}$ functions．The expressions for the functiona corresponding to solar tides may be written down by symmetry，and in this cese the intersection is actually the vernal equinox．

The final result of the process oketched is to obtain a series of Explane terms each of which is a function of the elements of the moon＇s or tion of eun＇s orbit，and a function of the terrestrial latitude of the place of achednles observatiou，multiplied by the cosine of an angle which increases below． uniformly with the time．We shall now write down the result in the form of a schedule；but we must first state the notation eni－ ployed ：－e，$e,=$ ecceatricities of lunar and solar orbita；$I, \omega=0$ b． liquities of equator to lunar orbit and ecliptic ；$p, p_{,}=$longitudes of lunar and solar perigees ；$\varpi, \varpi,=$ hourly incromente of $p, p_{i} ; s, h=$ moon＇s and sun＇s mean longitudes；$\sigma, \eta=$ hourly increments of s ， $h ; t=$ local mean solar time reduced to angle ；$\gamma-\eta=15^{\circ}$ per hour ； $\lambda=$ latitude oi place of observation；$\xi, \nu=$ longitude ia lunar orbit， and R．A．of the intersection ；$N=$ longitade of moon＇s node ；$i=$ inclination of lunar orbit．The speed of any tide is defined as the Speed rate of increase of ita argument，zad is expressible，therefore，as lefined a linear function of $\gamma, \eta, \sigma, \bar{w} ; f, s$ we may neglect \bar{w} ，as being very sinall．

The following schedulea，tben，give b the height of tide．The arrangement is as follows．First，there is a universal coefficient $\frac{3 m}{21}\left(\frac{a}{c}\right)^{3} a$ ，which multiplies every term of all the schedules．Secondly， there are general coefficients，one for each schedule，viz．， $\cos ^{2} \lambda$ for the semi－diurnal terms， $\sin 2 \lambda$ for the diurnal，and $\frac{1}{2}-\frac{3}{2} \sin ^{2} \lambda$ for the terms of long period．In each schedule the third column， headed＂coefficient，＂gives the functions of I and e（and in two cases also of p ）．In the fourth column is given the mean semi－range of the corresponding term in numbers，which is approximately the value of the coeflicient in the first column when $I=\omega$ ；but we pass over the explanation of the mode of computing the values．The fifth columin contains arguments，linear functions of t, h, s, p, v, ξ ．In ［A ，i．$] 2 t+2(h-\nu)$ and in $[A, i i] t+.(h-\nu)$ are common to all the arguments．The arguments are grouped in a manner convenient for subsequent computation．Lastly，the sixth is a column of specds，being the hourly increase of the arguments in the preceding column，estimated in degrees per hour．It has been found practi－ cally convenient to denote eacli of these partial tides by an initial letter，arbitrarily chosen．In the first column we give a descriptive name for the tide，and in the second the arbitrarily chosen initial． In some cases no initial has been chosen，and here wo indicate the tide by the analytical expression for its specd，or hourly increase of argument．
The schedule for the solar tides is drawn up in prectsely the same manner，the oniy difference being that the coefficients aro absolute constants．The eccentricity of the solar orbit is so small that the elliptic tides may be omitted，except the largor elliptic semi－ diurnal tide．In order that the comnarison of the importance of the solar tides with the lunar may bo complete，the same noiversal coefficient $\frac{3 m}{2 M}\left(\frac{a}{c}\right)^{3} a$ is retained，and the special coefficient for cach
 sun＇s mass．With

$$
\frac{M}{m}=81 \cdot 5, \frac{\tau}{\tau}=\cdot 46035=\frac{1}{2 \cdot 17226^{\circ}}
$$

To write down any term，take the universal coefficient，the general coefficient for the class of tides，the spccial coefficient，and multiply by the cosine of the argument．The result，taken with the positive sign，is a term in the equilibrium tide，with water covering the whole earth．The transition to the actual case by the introduction of a factor and a delay of phase（to bs derived from observation）has been already explained．The sum of all the terms is the complete expression for the height of tide h ．

Schedulc of Lunar Tides.

[A, i.]-Universal Coefficient $=\frac{3}{2} \frac{m}{M}\left(\frac{a}{c}\right)^{3} a_{0}$
Sermi-diurnal Tides ; General Coefficient $=\cos ^{2} \lambda$.

Descriptive Name.	$\frac{\dot{g}}{3}$	Coefficient.		Aroument $2 t+2\left(h-v_{0}\right)$	Speed in Degrees per m.s. IIVHr.
Principal	M_{3}	$\underline{1}\left(1-c^{2}\right) \cos ^{4} \frac{1}{3} I$	45420	-2(s-	012
$\|$Lumi-solar (luyar portion).	$1 \mathrm{~K}_{2}$	$\left.\frac{1}{2}{ }^{2}{ }^{2} c^{2}\right) \sin ^{2} I$	03920		1372
Larger elliptic.	N	$\frac{1}{2} \cdot 2 e \cos ^{1} \frac{1}{2} I$. 08796	$-2(s-\xi)-(s-p)$	$\div 327200$
Smaller elliptic.?	L	$\begin{gathered} \frac{2 \cdot \operatorname{tec} \cos 4}{} I x \\ \left.\left\{1-12 \tan ^{2} \frac{I}{2} \cos (2 p-2 \xi)\right\}\right\} \end{gathered}$. 01257	$\left\{\begin{array}{l} -2(s-\xi)+(s-p)-R+\pi \\ \text { where } \\ \tan R=\frac{6 \sin 2(p-\xi)}{\cot ^{2} \frac{1}{2} L-6 \cos s(p-\xi)} \end{array}\right.$	20'.5284788
Elliptic, second arder.	2 S		20113	. $-2(s-\xi)-2(s-p)$	345
Larger pevectional:-	v	me $\cos ^{4} 11$	$\left\|\begin{array}{l} -0123.43 \\ -01706 \end{array}\right\|$	$-2(s-5)+(s-p)+2 h-2 s$	$25^{\circ} \cdot 6125530$
sinaller evectfona.	1	$\frac{1}{5}+\mathrm{mecos} 4 \frac{1}{2}$	$\left\|\begin{array}{c} 001763 \\ 00330 \end{array}\right\|$	$-2(s-\xi)-(s-p)-2 h+2 s+\pi$	550251
Varia. tional. 4	μ		$\left\|\begin{array}{l} 00736^{3} \\ 01094 \end{array}\right\|$	$-2(s-\xi)+2 h-2 s$	27*-9¢52084

From the fourth columns wo see that the coefficients in de- Seate of sccuding order of magnituilo are M_{2}, K_{1} (both combined), S_{2}, import$0, K_{1}$ (lunar), N, P, K_{5} (solar), K_{2} (both combinced), K_{2} (lunar), Mf, ance of
[A, ii.]-Diurnal Tides ; General Cooffient $=\sin 2 \lambda$.

$\begin{aligned} & \text { Descrip- } \\ & \text { twe Name. } \end{aligned}$	Initial.	Coefficient.		Argument $\ell+(h-\nu)$	Speed in Degrees perm.s. Ilour.
Lunar djuraz.	0	$\left(1-\left(c^{2}\right)\right\} \sin I \cos ^{2} \frac{3}{3} T$	-18856	-2	$13^{*} \cdot 2430356$
$\gamma+2 \sigma$.	00	$\left(1-8 c^{2}\right) \frac{1}{5} \sin 1$	00812	$+2(s-\xi)-\frac{1}{2} \pi$	$6^{*} \cdot 1391016$
Luni-solar (ludarpor. tion).	K_{1}	(1)	'18115	π	410686
Larger elliptic.	Q	$\frac{1}{2} c \cdot \frac{1}{1} \sin I \cos ^{2} \frac{1}{\frac{1}{2} I}$	-08651	$\begin{gathered} -2(s-\xi)-(s-p) \\ +15 \end{gathered}$	$13^{\circ} \cdot 3986609$
Smaller elliptic. ${ }^{5}$	M_{1}	$\begin{array}{r} \text { e. } \frac{1}{2} \sin I \cos ^{2} I I x \\ \left.\sqrt{\{I+}+\frac{\cos 2}{2}(p-\xi)\right\} \end{array}$	$\begin{gathered} 005296 \\ .01649 \end{gathered}$	$\begin{gathered} -(s-\xi)+Q-1 \pi \\ \text { where } \tan Q \\ =\frac{1}{2} \tan (p-\xi) \end{gathered}$	$14^{\circ} \cdot 4920521$
$\gamma+\sigma$ - \quad ¢	J	$\dot{4} \cdot \frac{1}{1} \sin I \cos I$	01485	$+(s-p)-\frac{1}{2} \pi$	433
Elliptic, second order.	γ	$\frac{1}{2} \cdot e^{2} \cdot \frac{1}{2} \sin I \cos ^{2} \frac{1}{2} I$	00487	$\begin{gathered} -2(s-5)-2(s) \\ +12 \pi \end{gathered}$	62
Evectionsl.	$\gamma-3 \sigma-\bar{\omega}+2 \eta$	98me. $\frac{1}{2} \sin 7 \cos ^{2} \frac{1}{3} I$	$1 \left\lvert\, \begin{aligned} & 005127 \\ & 000708 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} -2(s-\xi)+(s-p) \\ +2 h-2 s+j \pi \end{gathered}\right.$	$13^{*} \cdot 4715144$

[A, iii.]-Long Period Tides; General Coefficient $\frac{1}{2}-\frac{3}{2} \sin ^{2} \lambda$.

Descriptive Jiame.	Initial.	Coefficieat.		Argument.	Speed in Degrees per in.s. Hour.
Change of mean level.		$\left(1+\frac{1}{4} e^{2}\right) \delta\left(1-\frac{1}{} \sin ^{2} n\right)$	5224^{8}	Of variable part is N, the long. of norle	34 per anoum
Monthly.	Mm	3.. $f\left(1-\frac{3}{\sin } 2=I\right)$	-04136	s-p	0* 5443747
Evectional monthly.	$\sigma-2 \eta+\bar{\omega}$		$\begin{gathered} -60580^{\circ} \\ -00755 \end{gathered}$	$\left\{\begin{array}{l} -(s-p) \\ +2 s-2 h \end{array}\right.$	$0 \cdot 415211$
$\begin{aligned} & \text { Luni-solar } \\ & \text { fort } \\ & \text { nigintly. } 10 \end{aligned}$	MSf	$3 m^{2} 3\left(1-\frac{9}{3} \sin ^{2} n\right)$	$\begin{aligned} & .004229 \\ & .00621 \end{aligned}$	$2(s-h)$	1*.0155958
Fort nightly:	MIf	$\left(1-2 c^{2}\right) \frac{1}{\sin } \sin ^{2} I$	07827	$2(s-5)$	1'0050330
Ter- inensual.	$3 \sigma-\omega$	ie. $\frac{1}{2} \sin ^{2} T$	-01516	$(s-p)+8(s-\xi)$	1*64240\%7

[^144]Q, $\mathrm{Mm}, \mathrm{K}_{2}$ (solar), Ssa, $\nu, \mathrm{MI}_{1}, \mathrm{~J}, \mathrm{~L}, \mathrm{~T}, 2 \mathrm{~N}, \mu, \mathrm{OO}, 3 \sigma-\varpi$, tides. $\gamma-3 \sigma-\pi+2 \eta, \gamma-4 \sigma+2 \sigma, \sigma-2 \eta+\sigma, 2(\sigma-\eta), \lambda$.
The tides depentimor on the fourth power of the moon's parallax arise from the potential $V^{r}=\frac{m}{j^{4}} \rho^{n}\left(\frac{5}{3} \cos ^{3} z-\bar{z} \cos z\right)$. They give a iso to a small dinrnal tide M_{1}, and to a small ter-diurnal tide M_{3}; but we shall not give the analytical ievelopment.

§ 24. Mctcorological Tiles, Orer-Tides, and Coinpound Tides.

All tides whose period is an cxact multiple or submultiple of a Meteoro mean solar day, or of a tropical year, aro affected by meteorological locical conditions. Thus all the tides of the pincipal solar astronomical tidea. serieg S, with speeds $\gamma-\eta, 2(\gamma-\eta), 3(\gamma-\eta)$, \&c, arc subject to more or less metcorolorical paturbation. An ammal inequality in the diurual metcorological tith S_{1} will also give riso to a tido $\gamma-2 \eta$, and this will be fuscel with and indistinguishablo from tho astronomical P; it will also give rivo to a tide will speed γ, which will be indistinguishablo from the astronomical lart of k_{1}. Similarly the astronomical tide K_{2} maj bo perturbed by a scmi-ammal inequality in tho scmi-diumal astronomical tide of speed $2(\gamma-\eta)$. Although the diurnal elliptic tude S_{1} or $\gamma-\eta$ and the semi-amenal and annual tides of speeds 2η and η are all probahly quite insensiblo as arising from astronomical canses, fot they have been found of sufficient importance to be considered. Tho anminal and scmiannolal tides are of enormous importanco in some rivers, representing in fact the yearly flooding in tho rainy season. In the reduction of theso tides the armumenta of the S srries are $l, 2 l, 3 l, \& c$., and of the anmual, scmi-ammal, ter-annual tides $h, 2 h, 3 h$. As far as can be foreseen, tho magnitudes of theso tides are constant from year to year.

We have in $\S 21$ considered the dymamical theory of over-tides. Over The onlysides of this kind in which it has hitherto been though: tiden. necessary to represent the change of form in slabllow water lelong to the principal lunar and principal solar scrics. Thus, besides the fundamental astronomical tites M_{2} and S_{E}, the over-fides $\mathrm{M}_{8}, \mathrm{NI}_{6}, \mathrm{H}_{8}$ and S_{4}, S_{6} lare heen dedned by harmonic analysis. The height of the fundamontal tide M_{2} varics from jear to juar, according to the variation in tise obliquity of the lunar orbit, and this variabulity is represented by the coeflicient $\cos ^{5} \frac{11}{2}$. It is probable that tho variability of $\mathrm{M}_{4}, \mathrm{M}_{6}, \mathrm{M}_{3}$ will bo represented by the square, culie, and fourth power of that coclficiont, amd theory (\$ 21) indicates that we should make the argument of tho over title a luntiple of tho argument of the fundamental, with a constant subtracted.
Compound tides have been aloo considered dymamically in $\$ 21$. Dy combining the speecls of the in portani tidex, it will be foum that there is in many cases a componnd tido which lias itself a specel. identical with that of an astronomical or metcorological tide. Wo thos find that the tides $Q, K_{1}, \lambda m, P, M_{2}, M f, O_{1}, M_{1}, L$ are liablo to perturbation in shallow watur. If cither or both the component titles are of lumar origin, tho heisht of the compound tide will chango from yoar to ycar, and will probably vars proportionally to the product of the coefficients of the component tid's. For tho purpose of properly reducing the muncrical value of the compound lides, wo require not merely the specd, but also the argument. The following schalule gives the adopted initials, argument, and speed of the principal componnd tides. The cocflicicuta are the produets of those of the two tides to be compounded.
[C.]-Schedule of Compound Tidcs.

[nitials.	Arguments conbined.	Speed.	Speed in Degrees per in.s. Huur.
ME	$\mathrm{M}_{2}+\mathrm{K}_{2}$ $\mathrm{M}_{1}-\mathrm{O}$	${ }^{3} \gamma-2 \sigma$	$44^{\circ} 0251728$
MS	$\mathrm{M}_{4}+\mathrm{S}_{3}$	${ }^{4} \gamma-2 \sigma-20$ \%	$68^{\circ} \cdot 9541012$
MSt	$\mathrm{S}_{2}-\mathrm{M}_{2}$	$2 \sigma-2 \eta$	-1.0158958
2MK	$\mathrm{M}_{2}+\mathrm{O}^{2}$	$3 \gamma-4 \sigma$	$42^{\circ} \cdot 0271898$
214.	$M_{4}-K_{1}$ $\mathrm{~S}_{2}+\mathrm{K}_{1}$	${ }^{8} \gamma-2 \eta$	$45^{\circ} \cdot 0410686$
$\stackrel{-}{\mathrm{M}}$	$\mathrm{M}_{2}+\mathrm{N}^{\text {N }}$	$4 \gamma-5 \sigma+\sigma$	$57^{\circ} \mathrm{C} 4288338$
	$\mathrm{S}_{2}+0$	$3 \gamma-2 \sigma-2 \eta$	$48^{*} \cdot 9430356$
	$\mathrm{S}_{2}-0$	$\gamma+2 \sigma-2 \eta$	$16^{\circ} \cdot 0569644$
2SM	$\mathrm{S}_{4}-\mathrm{M}_{2}$	$2 \gamma+2 \sigma-4 \eta$	$81^{\circ} 0155958$
	$\mathrm{H}_{2}+\mathrm{S}_{4}$	$6 \gamma-2 \sigma-4 \eta$	$88^{\circ} \cdot 9841042$
2MS	$\mathrm{M}_{4}-\mathrm{S}_{2}$	$2 \gamma-4 \sigma+2 \eta$	$27^{\circ} \cdot 9682084$
,	$\mathrm{Mr}_{4}+\mathrm{S}_{2}$	$6 \gamma-4 \sigma-2 \eta$	$87^{*} \cdot 9682084$

§ 25. On the Form of Presentation of Resulls of Tidal Observations.

1mu*

diato re

suilt of

pualysis

Supposing n to be the speed of any tide in degrees per mean solar hour, and t to be mean solar time elapsing since 0^{b} of the first day of (say) a year of continuons obserration, then the immediate result of harmonic aaalysis is to obtaia A and B, two heights (estimater in feet and tenths) such that the heirgt of this tide at the time is given $L y A \cos n t+B$ sin n. If we put $R=\sqrt{ }\left(A^{2}+B^{2}\right)$ and $t a .2 \xi=B / A$, then the tide is represeated by

$$
\mathrm{R} \cos (n t-5)
$$

In this form R is the semi-range of the tide in British feet, and ζ is an angle such that ζ / n is the time elapsing after 0^{b} of the first day uatil it is ligh water of this particular tide. It is obvious that ζ may have any value from 0° to 360°, and that the results of the aaalysis of successive years of observation will not be com. parable with one another when presenterl in this form.
But let us suppose that the results of the analysis are presented in a number of terms of the form

$$
\mathrm{f} \mathrm{H} \cos (V+u-\mathrm{k})
$$

where V is a ligear function of the moon's and sun's mean lorgitudes, the mean loagitude of the moon's and sua's perigees, and the local mean solar time at the place of observation, reduced to angle at 15° per hour. V iacreascs uniformly with the tiae, a ad its rate of increase per mean solar hour is the n of the first method, and is called the speed of the tide. It is supposed that u stands for a certain function of the longitude of the node of the lunar orbit at an epoch half a year later thau $0^{\text {b }}$ of the first day. Strictly speakiag, u should be taken as tho samo function of the longitide of the mooa's node, parying as the norle moves; Lut, as the variation is but small io the course of a year, u may be treated as a constant and put equal to an average ralne for the year, which average ralue is taken as the true value of u at exactly mid year. Together $V+u$ constitute that function which has been tabulated as the "argument" in the schedules of $\S 23$. Since $V+u$ are together the whole argument according to the equilibrium theory of tides, with sea covering the whole earth, it follows that κ / n is the lagging of the tide which arises from kinetic action, friction of the water, inperfect clasticity of the earth, and the distribution of land. It is supposed that H is the mean value ia British feet of the semi-range of the particular tide in question; f is a numerical factor of augmentation or climinution, due to the variability of the obliquity of the lunar orbit. The valne of f is the ratio of the "coefficient" in the third column of the precediag schedules to the mear value of the same term. For example, for all the solar tides f is mnity, ard for the principal lunar tide N_{2} it is equal to $\cos ^{4} \frac{1}{2} I \div \cos ^{4} \frac{1}{2} \omega \cos ^{4} \frac{1}{2} i$; for the mean value of this term has a coefticient $\cos ^{4} \frac{1}{2} \omega \cos ^{4} \frac{1}{3} i_{0}$. It is obvious, then, that, if the tida] observations are consisteat from jear to year, H and x should come out the same from each year's reductions. It is only when the results are presented ia such a ferm as this that it will be possible to julge whether the harmonic analysis is yielding satisfactory results. , This mode of giving the ticlal results is also essential for the use of a tide-predicting machine (see § 3S).

We must now show how to determine H and κ from R and ξ. It is clear that $H=R / f$, and the determination of f from the schedules depends on the evaluation of the mean value of each of the terms ia the schedules, into which we shall not enter. If V_{0} be the ralue of V at 0^{h} of the first day, then clearly

$$
\begin{aligned}
& \zeta=V_{0}+\imath-\kappa, \\
& \kappa=\zeta+V_{0}+u .
\end{aligned}
$$

so that
Thus the rnle for the determination of π is: Add to the value of

The value of the argument at on of the first day.
The results of harmoaic analysis are usually tabulated by giving H, κ under the initial letter of each tide; the results are thus comparable from year to year. ${ }^{1}$ For the purpose of using the tidepredicting machine the process of determining H and κ froal R and
${ }_{1}$ See, for example, a collection of results bs Baird and Darwin, Proc, Roy. Soc., No. 230,1855 .
ζ has simply to be reversed, with the difference that the instant of time to which to refer the argument is 0^{h} of the first day of the new year, and we must take note of tbe different value of u and f for the new year. 'l"abies" have becn computed for f and u for all longitudes of the moon's node and for each kind of tide, and the mear longitudes of moon, sur, and lunar periges may bo ex. tracted from any ephemeris. Thus when the mean eemi-range H and retardation κ of any tide are known its lieight may be com: puted for any instant. Thosun of the heights for all the piacipai tides of course gives the actual height of water.

§ 26. Nitmerieal Harmonic Analysis for Tides of Short Period.

The tide-gange (described below, §36) furnishcs us with a continums graphical record of the beight of the water above some known datuin mark for every instant of ,time. The first operation performed on the tidal record is the measurement in feet and decimals of the height of water above the datum at cvery mean solar hour. The period chosen for analysis is about oue year and the first measurement corresponds to noon.

If T be the period of any one of the dinrnal tites, or the double period of any one of the semi-diurnal tides, it approximates moro or less nearly to $2 \frac{5}{2} \mathrm{~m} . \mathrm{s}$. licurs, and, if we divide it into thentyfour equal parts, we may speak of each as a T-hour. We sliall for brevity refer to meau solar time as S-time. Suppose, now, that we have two clocks, each marked with 360°, or 24 hours, and that the hand of the first, or S-clock, gocs round once in 24 S -hours, and that of the secoud, or T.clock, goes round once in twenty-four T-hours, and sulpiose that the two clocks are started at 0° or $0^{\text {b }}$ at noon of the initial day. For the sake of distinctness, let us imagine that a T-hour is longer thau an S-hour, so that the T-clock goes slower thaa the S-clock. The measarements of the tide curve give us the height of water exactly at each S-hour ; and it is required frorn these data to determine the height of water at each T-hour. For this end we are, in fact, instructed to count T-time, hut are only allowed to do so by reference to S-time, and, moreover, the time is always to be specified as an integral number of hours. Commearing with $0^{\text {b }}$ of the first day, we begin counting $0,1,2$, \&c., as the T-land comes up to its hour-marks. But, as the S-hand gains on the T-haud, there will conse a time when, tho T-hand being exactly at the p hour-mark, the S-laad is nearly as far as $y+\frac{1}{2}$. When, however, the T-hand has advanced to the $p+1$ hourlaark, the S -hand will bo a little beyond $p+1+\frac{1}{2}$, - that is to say, a little less than half an hour before $p+2$. Counting, then, in T-time by reference to S-time, we jump from p to $p+2$. The counting will go on continuously for a number of hours nearly equal to $2 p$, and then another number will be dropped, and so on througlout the whole year. If it had been the T-hand which nent faster than the S-liand, it is obvious that one number would be repeated at two successive hours instead of one being dropped. Wo may describe each such process as a "change."

Now, if we have a sheet marked for entry of lieights of water Method according to T-hours from results measured at S-hours, we must of ansly. enter the S-measurements continuously ap to p, and we then comesis. to a change ; dropping one of the S -scries, we go on agaia contiauously until another change, when another is dropped; and so on. Since a clange occurs at the time when a T-liour falls almost exactly lialf.way between two S.hours, it will be more accurate at a chaage to insert the two S-cntries which fall on each side of the truth. If this be done the whole of the S-scries of measurements is eatered on the T-sheet. Similarly, if it we the T-hand which goes faster than the S-hand, wo may leave a gap in the T-series instead of duplicating an entry. For the analysis of the T-tide there is therefore prepared a sheet arranged in rows and columns; each row corresponds to one T-day, and the columns are marked $0^{h}, 1^{\text {b }}, \ldots 23^{h}$; the 0 's may be called T-noons. A dot is put in each space for cutry, and where there is a change two dots are phit if there is to be a doulule catry, and a bar if there is to be no entry. ${ }^{3}$ The numbers eutered ia cach column are summed; the results are then divided, cach by the proper divisor for its column, and thus the mean value for that colnmn is obtained. In this way 24 numbers are found which give the mean height of water at each of the 24 special hours. It is obvious that if this process were con. tinued over a very long time we should in the cnd extract the tide under analysis from amongst all the others; but, as the procesa only extends over abont a year, the elimination of the others is not quite complete. The elimination of the effects of the other tides may be improred by choosing the period for analysis not exactly equal to onc year.

Let us now return to our general notation, and consider the 24 mean values, each pertaining to the 24 T-hours. We supposo that all the tides except the T-tide are adequately eliminated, aad, in fact, a computation of the necessary corrections for the abscnce of complete elimination, which is giren in the Tidal Report to the British Association in 1872, shows that this is the case. It is
${ }^{2}$ Report ou Jiarmonic Analysis to Brit. Assoc., 1583 , and more extended table in Baird's Munual of Tidal Observation, London, 1 ssi.
s A sample page is given in the Report to the Brit. Assoc., 1883.

Neces-

 sity for sugmen ug fac ors.obvieus that any one of the 24 ralnes does not give the true height of the T-tide at that T-hour, but gives the average height of the water, as due to the T-tide, estimated over half a T-hour before and half a ' $[$-hour after that hour. A consideration of this point shows that certain augmenting factors, differing slightly from unity, must be applied. In the reduction of the S-series of tides, the numbers treated are the actual heights of the water exactly at the S-honrs, and therefore no angmenting factor is requisite.

We must now explain how the larmenic analysis, which the use of these factors presupposes, is carried out.

If t denetes T-tinue expresserl in T-hours, and π is 15°, we express the height h, as given by the averaging process above explained, by the formula
$\mathrm{h}=\Delta_{0}+\mathrm{A}_{1} \cos n t+\mathrm{E}_{1} \sin n t+\mathrm{A}_{2} \cos 2 n t+\mathrm{B}_{2} \sin 2 n t+\ldots$,
Where t is $0,1,2, \ldots 23$. Then, if Σ denotes summation of the scriea of 24 terms fouad by attributing to t its 21 values, it is obvious that

$$
\begin{aligned}
& A_{0}=\frac{2}{2} \Sigma \mathrm{~h} ; \mathrm{A}_{1}=\frac{1}{2} \Sigma \text { hoos } n t ; \mathrm{B}_{1}=\mathrm{T}_{\mathrm{T}}^{2} \Sigma \mathrm{~h} \sin n t \text { : } \\
& \Lambda_{2}=\frac{⿺^{2}}{2} \Sigma \text { hocos } 2 n t ; B_{2}=\frac{1}{2} \Sigma \Sigma h \sin 2 n t \text {; \&c., \&c. }
\end{aligned}
$$

Since r is 15° and ℓ is an integer, it follows that all the cosines and sines involved in these series are equal to one of the following, viz., $0, \pm \sin 15^{\circ}, \pm \sin 30^{\circ}, \pm \sin 45^{\circ}, \pm \sin 60^{\circ}, \pm \sin 75^{\circ}, \pm 1$. It is found courenient to denote these sines by $0, \pm S_{1}, \pm S_{2}, \pm S_{3}, \pm S_{4}$, $\pm \mathrm{S}_{5^{*}} \pm 1$. The multiplication of the 24 h 's by the various $\mathrm{S}^{\prime} \mathrm{s}$ and the subsequent additions may be arranged in a very neat tobular form, like that given in a Report to the British Association in 1883. The A's and B's having been thus deduced, we have $\mathrm{R}=$ $\sqrt{ }\left(A^{2}+B^{2}\right) . ~ R$ minst theu be unltiplied by the angmenting factor. We thus have the augmented R. Next the angle whose tangent is B/A gives ζ. The alditiou to ζ of the appropriate $V_{0}+u$ gives κ, and the multiplication of R by the appropriate $1 / \mathrm{f}$ gives \mathbf{H}. The reduction is then complete. An actual numerical example of harmooic analysis is given in the Admirally Scientific Manual (1886) In the article "Tides"; but the process there employed is clightly different from the abuve, because the series of observations is supposed to be a short ooe.

§ 27. ITurmonic Anulysis for Tines of Lang Perior.

For the purpose of determining the tides of long prerion we have to climinats the oscillations of water-level arising lrom the tides of short peried. As the quickest of these tides has a period of inany lays, the height of mean water at one instant for each day gives sufficient data. Thus thers will in a year's olservatious be 365 heights to be submitted to harmonic analysis. To find the daily meau for any day we take the arithmetic mean of 24 consecutive hourly valucs, beginniug with the beight at noon. This height will then apply to the middle iostant of the period from 0^{h} to 23^{h}, -that is to say, to $11^{\mathrm{h}} 30^{\mathrm{m}}$ at night. The formation of a daily mean does not obliterate the tidal oscillations of short period, becatuse none of the tides, except these of the priucipal solar series, have commensurable periods in mean selar time. A small correction, or "clearauce of the daily mean," has therefore to be applied for all the important tides of short period, except for the solar tides. Passing by tlis clearance, we next tako the 365 daily means, and find their mean value. This gives the mean height of water for the year. We next subtract the mean height from each of the 365 values, and fod 305 quantities δ h, giving the daily height of water above the nean height. These quantitios are to be the suluject of the harmonie analysis, and the tides chosen for evaluation are those which have been denoted ahove as Mm, Mf, MSf, Sa, Ssa.

$$
\text { Let } \left.\begin{array}{rl}
\delta \mathrm{h}= & \mathrm{A} \cos (\sigma-\sigma) t+\mathrm{B} \sin (\sigma-\varpi) t \\
& +\mathrm{C} \cos 2 \sigma t+\mathrm{D} \sin 2 \sigma t \tag{73}\\
& +\mathrm{C} \cos 2(\sigma-\eta) t+\mathrm{D} \sin 2(\sigma-\eta) t \\
& +\mathrm{E} \cos \eta t \\
& +\mathrm{C} \cos 2 \eta t+\mathrm{sin} \eta t \\
\hline \mathrm{H} \sin 2 \eta t
\end{array}\right\}
$$

declinations and parallares of cun and moon, the analytical expressions of the following sectious are necessary.

In chapter iv. the mean semi-range and angle of retardation or lag of any one of the tiles have been denoted by H and κ. We shall here, however, refuire to iatrodnce several of the 11 's and κ 'a into the same exjuression, and they must therefore be distinguished from one another. This may ingeneral be conveniently done Ly writing as a subscript letter the initial of the correspending tide; for example $H_{m}, \kappa_{1,2}$ will bo taken to rlenote the H and k of the principal lunar tide ΔI_{2}. This notation does not suit the K_{2} and K_{1} tides, and we shall therefore write $\mathrm{II}^{\prime \prime}, \kappa^{\prime \prime}$ for the semi-diuraal K_{21} and H^{\prime}, κ^{\prime} for the diurnal K_{1} tide. Theso two tides preced according to sillercal tine aud arise from the sun and moon jointly, and a syathesis of the two parts of each is effected in the harmonic methed, although that gynthesis is not explained in chapter iv. The ratio of the solar to the lunar part of the total K_{2} tide is 46407 ; hence $683 \mathrm{H}^{\prime \prime}$ is the lunar portion of the total K_{2}. There will be no occasion to separate the t wo portions of K_{1}, and we shall retain the synthesis which is effected in the harmonic method.

§ 29. Seini-Diurnal Tides.

The precess adupter is to replace the mean longitudes and ele- Mean ments of the orbit in each term of the harmonic development of the longischedules of $\S 23$ by hour-8ugles, declinations, and parallazes. tude and

At the time t (nean solar time of port reduced to angle) let elementa a, δ, ψ be D's R. A., declination, and hour-angle, and l D's longitude replaced measured from the "intersection." These and other symbols when by hour. written with subscript accent are to apply to the sun. Then ν angle, being the R.A. of the intersection, we have from the right-angled declinaspherical triangle of which the sides are $l, \delta, a-v$ the relations tion, and $\tan (\alpha-v)=\cos I \tan l, \quad \sin \delta=\sin I \sin l \ldots \ldots . .(74) . \quad$ parallaz.
Now $s-\xi$ is the D 's nean loagitude measured from the intersection aod $s-p$ is the mean anomaly; hence approximately

$$
\begin{equation*}
l=s-\xi+2 e \sin (s-p) \tag{75}
\end{equation*}
$$

From (74) and (75) we have appreximately

$$
a=s+(\nu-\xi)+2 e \sin (s-p)-\tan ^{2} \frac{1}{2} I \sin 2(s-\xi)
$$

Now, h being the \odot 's mean longitude, $t+h$ is the sidereal hourangle, and
Hence

$$
\ell+h-s-(\nu-\xi)=\psi+2 e \sin (s-p)-\tan ^{2} \frac{1}{2} I \sin 2(s-\xi)(76) .
$$

Again, if we put

$$
\begin{equation*}
\cos ^{2} \Delta=1-\frac{1}{2} \sin ^{2} I \tag{77}
\end{equation*}
$$

we have approximately from (74) and (75)

$$
\left.\begin{array}{ll}
\text { Whence } \quad & \frac{\cos ^{2} \delta-\cos ^{2} \Delta}{\sin ^{2} \Delta}=\cos 2(s-\xi) \\
\frac{\sin \delta \cos \delta}{\sigma \sin ^{2} \Delta} \frac{d \delta}{d t}=\sin 2(s-\xi) \tag{78}
\end{array}\right\}
$$

Obviously Δ is such a declination that $\operatorname{ain}^{2} \Delta$ is the mean value of $\sin ^{2} \delta$ during a lnuar month. Again, if P be the ratio of the D ' θ parallax to her meau parallax, the equation to the ellipse described
gives
whence $\left.\quad-\frac{1}{c(\sigma-\sigma)} \frac{d P}{d t}=\sin (s-p)\right\}$
Now it appears in schedule A of $\S 23$ that the arguments of all the lunar semi-diurnal tides are of the form $2(\ell+h-\nu) \pm 2(\rho-\xi)$ or $\pm(s-p)$. It is clear, therefore, that the cosines of sach angles mayLy the relations (76), (78), (79) be expressed in terms of hour-angles, declinations, and parallaxes. Also by means of (77) we may introduce Δ in place of I in the coefficienta of each term. An approximate formula for Δ is $16^{\circ} \cdot 51+3^{\circ} \cdot 44 \cos N-0^{\circ} 19 \cos 2 N$. In the licport to the British Association for 1885, the details of the processes indicated cro given.

Before giving the formnls it must be remarked that the resuin is expressed more auccinctly by the introduction of the symbol δ to denete the D'e declination at a time earlier than that of observa tion by au interval which may be called the "age of the declinas tional inequality," and is computed from the formnla $\tan \left(\kappa^{\prime \prime}-\kappa_{m}\right) / 2 \dot{\alpha}$ or $52^{h} \cdot 2 \tan \left(\kappa^{\prime \prime}-\kappa_{m}\right)$. Similarly, it is conventent to introduce to denote the vaine of P at a time earlier than that of observatio! by the "age of the parallactic inequality," to be computed from $\tan \left(\kappa_{m}-\kappa_{n}\right) /(\sigma-\varpi)$ or $105^{\mathrm{b}} \cdot 3 \tan \left(\kappa_{m}-\kappa_{n}\right)$. These two "ages" probably do not differ in general much from a third period, computed from $\left(\kappa_{t}-\kappa_{m}\right) / 2(\sigma-\eta)$, which is called the "agg of the tide."

The similar series of transformatious when amplied to the selar tides leads to simpler results, bceanse Δ, is a constant, being $16^{\circ} \cdot 33$, and the "ages" may be treated as zero; besides the terme depending on $d \delta_{1} / d l$ and $d P_{\|} / d l$ are negligible. If now we denote by h_{2} the height of water with reference to mesn water-mark, in so far as the height is affected by the harioonic tides $\mathrm{MI}_{2}, \mathrm{~S}_{2}, \mathrm{~K}_{2}, \mathrm{~N}, \mathrm{~L}$, $\mathrm{T}, \mathbf{R},{ }^{1}$ the harmonic expression is transformed into

IR is the emaller solar elliptio tide beariog the samo relation to T thet L does to N amongat the lunar tidea. It was otritted as unluaportant in ached nly [B. i.] of 829

$$
\begin{align*}
& \mathrm{h}_{2}=\frac{\cos ^{2} \Delta}{\cos ^{2} \Delta} \mathrm{H}_{m} \cos \left(2 \psi-\kappa_{m}\right)+\mathrm{H}_{2} \cos \left(2 \psi_{1}-\kappa_{4}\right) \\
& +\frac{\cos ^{2} \delta-\cos ^{2} \Delta}{\sin ^{2} \Delta} \cdot 683 \mathrm{H}^{\prime \prime} \cos \left(2 \psi-\kappa^{\prime \prime}\right) \\
& +\frac{\cos ^{2} \delta_{s}-\cos ^{2} \Delta_{1}}{\sin ^{2} \Delta_{1}} \cdot 317 \mathrm{H}^{\prime \prime} \cos \left(2 \psi_{1}-\kappa^{\prime \prime}\right) \\
& -\frac{\operatorname{\theta in} \delta \cos \delta}{\sigma \sin ^{2} \Delta,} \frac{d \delta}{d t}\left[\frac{6 \delta^{n} \Sigma^{n}}{\cos \left(\kappa^{i n}-\kappa_{m}\right)}-\mathrm{H}_{m} \operatorname{tgn} n^{3} \Delta,\right] \sin \left(2 \psi-\kappa_{m n}\right) \\
& +\frac{\cos ^{2} \Delta}{\cos ^{2} \Delta_{k}}\left(P^{\prime}-1\right) \frac{\mathrm{H}_{n} \cos \kappa_{n}-\mathrm{H}_{l}}{\epsilon \cos \epsilon} \frac{\cos \kappa_{t}}{\square} \cos (2 \psi-\epsilon) \\
& +(P,-1) \frac{I I_{z}-H_{r}}{e_{6}} \cos \left(2 \psi_{t}-k_{4}\right) \\
& +\frac{\cos ^{3} \Delta}{\ell \cos ^{2} \Delta,(\sigma-\sigma)} \frac{d P \mid d l}{\left(\sigma H_{m} e-\frac{\mathrm{H}_{n}}{\cos \left(\kappa_{m}-\kappa_{n}\right)}-\frac{\mathrm{H}_{l}}{\left.\cos \kappa_{l}-\kappa_{m}\right)}\right] \sin \left(2 \psi-\kappa_{m}\right)(80), ~} \\
& \text { where } \epsilon \text { is an anxiliary angle defned by } \\
& \tan \epsilon=\frac{\mathrm{H}_{n} \sin \kappa_{n}-\Pi_{l} \sin \kappa_{l}}{\mathrm{H}_{n} \cos \kappa_{n}-\mathrm{H}_{6} \cos \kappa_{l}} \tag{81}
\end{align*}
$$

The first two terms are the principal tides, and the physical origin of the remaining small terms is indicated by their involving δ^{\prime}, δ, यंJ/dt, $P, P^{P}, d P / d t$. The terms in $d \delta / d t$ and $d P / d t$ are generally smaller than the others.
The approximation may easily be carried furthei. But the above is in some respects a closer spproximation than the expression from which it is derived, since the hour-sngles, declinations, and parallases necessarily involve all the lunar and solar ineonalitics.
§ 30. Syntheses of Solur und of Lunar Portions of the Semi-Diumal Tide.
Com.
mence-
want of aynthesis.

$$
\begin{align*}
& \text { Let us write } \\
& \mathrm{HI}=\frac{\cos ^{2} \Delta}{\cos ^{2} \Delta}-\mathrm{H}_{m,}+\frac{\cos ^{2} \delta^{\prime}-\cos ^{2} \Delta}{\sin ^{2} \Delta} \cdot 683 \mathrm{H}^{\prime \prime} \cos \left(\kappa^{\prime \prime}-\kappa_{1 n}\right) \\
& \text { : } \frac{\cos ^{2} \Delta}{\cos ^{2} \Delta}(P-1) \frac{I I_{n} \cos \kappa_{n}-H_{l} \cos \kappa_{l}}{-2 s} \cos \left(\epsilon-\kappa_{m}\right), \\
& s \mu=\kappa_{m}+\frac{\cos ^{2} \delta^{\prime}-\cos ^{2} \Delta}{\sin ^{2} \Delta} \cdot 683 \mathrm{H}^{\prime \prime} \sin \left(\kappa^{\prime \prime}-\kappa_{m}\right) \\
& +\frac{\cos ^{2} \Delta}{\cos ^{2} \Delta}\left(P^{\prime}-1\right) \frac{\mathrm{II}_{n} \cos \kappa_{n}-\mathrm{H}_{l} \cos \kappa_{l}}{e \cos \epsilon} \rho \operatorname{in}\left(\epsilon-\kappa_{n_{d}}\right) \\
& -\frac{\sin \delta \cos \delta}{\sigma \sin ^{2} \Delta_{j}} \frac{d \delta}{d l}\left[\frac{683 I I^{\prime \prime}}{\cos \left(\kappa^{\prime \prime}-\kappa_{m}\right)}-\mathrm{H}_{4} \tan ^{2} \cos ^{2}\right] \\
& \text { e } \cos ^{2} \Delta \frac{d P / d t}{} \cos ^{2} \Delta, \frac{\mathcal{J}}{}-\sigma \quad\left[4 \mathrm{H}_{m} e-\frac{H_{n}}{\cos \left(\kappa_{m}-\kappa_{n}\right)}-\frac{H_{l}}{\cos \left(\kappa_{l}-\kappa_{m}\right)}\right] \text {; } \\
& \mathrm{M}_{3}=\mathrm{H}_{s}+\frac{\cos ^{2} \delta_{1}-\cos ^{2} \Delta_{1}}{\sin ^{2} \Delta} \cdot 317 \mathrm{H}^{\prime \prime}+(P,-1) \frac{\mathrm{H}_{t}-\mathrm{H}_{r}}{e_{s}} ; \\
& 2 \mu_{1}=\kappa_{\text {, }} \tag{82}\\
& \sin ^{2} \Delta
\end{align*}
$$

Since observation and theory agree in showing that $\kappa^{\prime \prime}$ is geperslly very nearly equal to κ_{n}, we are justified in substituting κ_{n} for $\kappa^{\prime \prime}$ in the bmall solar declinational term of (80) involving " $317 \mathrm{H}^{\prime \prime}$. Then, using (82) in (80),
Que bols:

lunar
term.
If the equilibrium theory of tides were true, eacb H would be proportional to the corresponding term in the harmonicsily developed potential. This proportionality holds nesrly between tides of almost the same speed; hence, using the expressions in tho column of coefficients in schedule [B, i.] § 23 (with the additicaal tide R there omitted, but having a coeflicient $(\tau, / \tau) \frac{1}{3} \cdot \frac{1}{2} e, \cos ^{\frac{1}{2}} \frac{2}{2} \omega$, found by sym motry with the lunar tide L), and introducing $\bar{\Delta}$, in place of ω in the solar tides, we may assume the truth of the proportion

$$
\frac{\cos ^{2} \Delta_{t}}{\sin ^{2} \Delta_{t}} \cdot 317 \mathrm{H}^{\prime \prime}=\frac{1}{3} \frac{\mathrm{II}_{t}-\mathrm{H}_{r}}{e_{t}}=\mathrm{H}_{i}
$$

With this assumption, M , reduces to

$$
\begin{equation*}
\mathrm{M}_{6}=\frac{\cos ^{2} \delta_{t}}{\cos ^{2} \Delta_{t}} \mathrm{H}_{4}+3\left(P_{4}-1\right) \mathrm{H}_{4}=\frac{\cos ^{2} \delta_{t}}{\cos ^{2} \Delta_{t}} \mathrm{H}_{6}\left[1+3\left(P_{4}-1\right)\right] . \tag{84}
\end{equation*}
$$

Hence $\mathrm{M}_{1}=P_{3} \frac{\cos ^{2} \delta_{1}}{\cos ^{2} \Delta_{1}} \mathrm{H}_{0}$
This is the lsw which we should have derived directly from the equilibrium theory, with the hypathesis that all salsr semi-diurnal tides suffer nearly equal retardation. Save for meteorological inflnences, this must certainly be true.

A similsr synthesis of M cannot be carried out, hecause the considerable diversity of speed smongst the luar tides makes a similar appeal to the equilibrium theory incorrect. It may be seen, however, that it would be more correct to write $\cos ^{2} \delta^{\circ}$ instend of $\cos ^{2} \Delta$ in the coefficient of the prosllactic ternis in M sud 2μ.

The three terms of M in (82) give the height of luner tide with its aeclinational and parallactic corrections, and similarly the formula for μ in (82) gives its value and corrections.

If now τ denotes the mean salar time elapsing sinice the moon's upper tranait and γ the angular velocity of the earth's rotation, it is clear that the moon's hour-angle

$$
\psi=(\gamma-d \alpha / d t)_{r}:
$$

and, since $\mathrm{M} \cos 2(\psi-\mu)$ is ρ maximum when $\psi=\mu$ or differs from μ by ${ }^{-8} 80^{\circ}$, it follows thst $\mu /(\gamma-d \alpha / d \ell)$ is the "interval" from the moon's upper or lower transit to high water of the lunsr tide. Since τ is necessarily less than $12^{\text {h }}$, we may during the interval from transit to high water take as an spproximation $d a / d t=\sigma$, the moon's mean motion. ${ }^{1}$ Hence that interval is $\mu /(\gamma-\sigma)$, or $\frac{\gamma}{\frac{7}{\beta} \mu} \mu$ houra nesrly, when μ is expressed in degrees. Thus (82) for μ gives by its firsi term the mean interval for the lunar tide, and by the suhsequent terns the declinational and parallactic corrections.

We have said that the synthesis of M cannot be carried out as in the case of $M_{\text {, }}$, brit the partial synthesis below will give fairly good results. The proposed formula is

$$
\begin{align*}
& \mathrm{M}=P_{1}{ }^{3} \frac{\cos ^{2} \Delta}{\cos ^{2} \Delta_{1}} \mathrm{H}_{m}+\frac{\cos ^{2} \delta^{\prime}-\cos ^{2} \Delta}{\sin ^{2} \Delta_{1}} \cdot 683 \mathrm{H}^{\prime \prime} \cos \left(\kappa^{\prime \prime}-\kappa_{m}\right) ; \\
& 2 \mu=\kappa_{m}+\frac{\cos ^{2} \delta^{\prime}-\cos ^{2} \Delta}{\sin ^{2} \Delta_{i}}: 683 \mathrm{H}^{\prime \prime} \sin \left(\kappa^{\prime \prime}-\kappa_{m}\right) \text {; } \\
& \mathrm{M}_{.}=P_{,}, \frac{\cos ^{2} \delta}{\cos ^{2} \Delta_{1}} \mathrm{H}_{4} ; \\
& 2 \mu_{i}=\kappa_{k} \tag{85}
\end{align*}
$$

These formulr liave been used in the example of the computatior of a tide-table given in the Adinirallu Scientifie Mfanual (1886).

§ 31. Synthesis of Litnar and Solar Semi-Diurnal Tides.

Let A be the excess of D's over O 's R.A., so that
sud $\left.\quad \begin{array}{l}\psi_{1}=\psi+A, \\ h_{2}=M I \cos 2(\psi-\mu)+M, \cos 2\left(\psi+A-\mu_{0}\right)\end{array}\right\}$
The syathesis is then completed by writing

$$
\begin{array}{r}
I \cos 2(\mu-\phi)=M+M, \cos 2\left(A-\mu_{i}+\mu\right), \\
H \sin 2(\mu-\phi)=\quad M_{i} \sin 2(A-\mu,+\mu), \\
h_{2}=H \cos 2(\psi-\phi) \ldots \ldots \ldots \ldots \tag{87}
\end{array}
$$

so that
Syntho-
eia to
obtain
Then H is the or $\phi /(\gamma-\sigma)$ or ${ }^{2} \frac{2}{2} \phi$, when ϕ is given in degreos, is the "intervsl" from the moon's transit to bigh water.

The formule for H and ϕ may be written

$$
\left.\begin{array}{rl}
H & =\sqrt{ }\left\{L^{2}+M I_{1}^{2}+2 M M_{1} \cos 2\left(A-\mu_{1}+\mu\right)\right\} \tag{88}\\
\tan 2(\mu-\phi) & =\frac{M I_{1} \sin 2\left(A-\mu_{t}+\mu\right)}{M+M, \cos 2\left(A-\mu_{1}+\mu\right)}
\end{array}\right\}
$$

They may be reduced to a form adapted for logarithmic calculation. FortSince A goes through its period in a lunation, it follows that H nightly and ϕ have inequalitics with a period of half a lunation. These inequal-. are called the "fortnightly or semi-meustrual inequslities" in the ity. height sud interval.

Spring tide obiously occure when $A=\mu,-\mu$. Since, the mean value of A is $s-h$ (the difference of the mean longitudes), and eince the mean values of μ and μ_{α} are $\frac{1}{3} x_{m}, \frac{1}{2} x_{2}$, it follows that the mesu value of the period elapsing after full moon and change of moon up to spring tide is $\left(\kappa_{s}-\kappa_{m}\right) / 2(\sigma-\eta)$. The association of spring tide with full sand change is obvious, and a fiction hss been adopted by Which it is held that epring tide is generated in those configura. tions of the moon and sun, but takes some time to resch the port of observation. Accordingly $\left(\kappa_{1}-\kappa_{m}\right) / 2(\sigma-\eta)$ has been csilled the "sge of the tide." The average sige is about 36 liours $8 s$ far as Age of observations have yet been made. The age of the tide appears not tide. in general to differ very much from the sges of the declinational and parallactic inequslities.

In computing a tide-table it is found practically convenient not to use A , which is the difference of R.A.s st the wuknown time of high water, but to refer the tide to A_{0}, the difference of R.A.'s at the time of the moon's transit. It is clear that A_{0} is the apparent time of the moon's transit reduced to angle at 15° per hour. We have already remarked that $\phi /(\gamma-d a / d t)$ is the interval from transit to high water, and hence st high water

$$
\begin{equation*}
A=A_{0}+\frac{d a / d t-d \alpha_{1} / d l}{\gamma-d \alpha / d t} \phi \tag{89}
\end{equation*}
$$

As an spproximation we may attribute to all the quantities in. the second term their mean valucs, and we then have

$$
\begin{equation*}
A=A_{0}+\frac{\sigma-\eta}{\gamma-\sigma} \mu \tag{90}
\end{equation*}
$$

and $\quad A-\mu_{1}+\mu=A_{0}-\mu_{1}+\frac{\gamma-\eta}{\gamma-\sigma} \mu=A_{0}-\mu_{1}+\frac{88}{8} \mu$
This approximate formula (90) may be used in computing from (88) the fortnightly inequality in the "height" and "interval."

In this investigation we have supposed that the declinational snd parallactic corrections are applied to the lunar and solar tides be fore their synthesis; but it is obvious that the procens might be reverscd, and that we may form a table of the fortnightly inequslity based on mean values H_{m} and II_{n} and afterwards apply corrections. This is the process usually adopted, but it is less exact. The labour of computing the fortnightly inequality, cspecially by graphical methods, is not grest, sud the plan here suggested seems preferable.

[^145]
§ 32. Diumal Tides.

These tides have not been usually treated with completeness in the synthetic method. In the tide-tables of the British A dmiralty we find that the tides at some ports are "affected by diuraal inequality"; such s statement may be interpreted as meaning that the tides are aot to be predicted by the information given in the so-called tide-table. The diurnal tides are indeed complex, and do mot lend themsclves easily to a complete synthesis. In the hatmonic notation the three important tides are $\mathrm{K}_{1}, \mathrm{O}, \mathrm{P}$, and the lunar portion of K_{1} is ucarly equal to O in height, whilst the solar portion is acarly equal to.P. Λ complete synthesis may be carried out on tho lines adopted in treating the semi-diurnal tides, but the advantage of the plan is lost in coasequence of large oscillations of the amplitude through the value zero, so that the tide is often represented by a ncgative quantity multiplicd by a circular fuaction. It is best, then, only to sttempt a partial synthesis, and to admit the existence of two diurnal tides.

Wo sec from schelules [A, ii.] and [B, i.], § 23, that the principal diurnal tldes are those lettered $\mathrm{O}, \mathrm{P}, \mathrm{K}_{1}$. Of these K_{1} occurs both for tho moon and the sua. The synthesis of the two parts of K_{1} is effected without dillirulty, and the result is a formula for the total \mathcal{K}_{1} tide like that in [A, ii.], but with the ν which occurs in the argunent replaced by a different anglodenoted as ν^{\prime}. If, then, we write

$$
\left.\begin{array}{l}
V_{0}=t+h-2 s-\nu+2 \xi+\frac{1}{2} \pi \\
\mathrm{~V}^{t}=t+h-\nu^{\prime}-\frac{1}{2} \pi
\end{array}\right\}
$$

the three tides $\mathrm{O}, \mathrm{K}_{1}, \mathrm{P}$ are writtcy as follows:-

$$
\begin{aligned}
& 0=f_{0} H_{0} \cos \left(V_{0}-\kappa_{0}\right), \\
& K_{1}=f H^{\prime} \cos \left(V^{\prime}-\kappa^{\prime}\right)_{,} \\
& \left.I^{\prime}=-H_{p} \cos \left[V^{\prime}-\kappa^{\prime}-\left(2 h-\nu^{\prime}\right)+\kappa^{\prime}-\kappa_{\mu}\right)\right] \ldots \ldots(92) .
\end{aligned}
$$

The last two tilcs lave very pcarly the same speed, so that wo may assumo $\kappa^{\prime}=\kappa_{p}$, ami that H_{p} las the same ratio to H^{\prime} es in the equilibrium theory. Now, in schednles [A, ii.], [B, ii.], § 23 , the coeflicient of K_{1}, viz., H^{\prime} (the sumu of the lunar and solar parts), is -26522, and tho cocflicient of P_{3} viz., $\mathrm{H}_{p,}$ is 087:25, so that H $=3.023 \mathrm{H}_{p \text { p }}$ or say $=3 \mathrm{H}_{p} \quad$ Hence to have

Partial

$$
\mathrm{K}_{1}+\mathrm{P}=\mathrm{H}^{\prime}\left[\mathrm{r}^{\prime}-3 \cos \left(2 h-\nu^{\prime}\right)\right] \cos \left(\mathrm{V}^{\prime}-\kappa^{\prime}\right)
$$

$$
-\mathrm{H}^{\prime} \frac{j}{} \sin \left(2 h-\nu^{\prime}\right) \sin \left(\mathrm{V}^{\prime}-\kappa^{\prime}\right) .
$$

IS thercforo, wo put

$$
\left.\begin{array}{rl}
\mathrm{R}^{\prime} \cos \psi & =\mathrm{H}^{\prime}\left[\mathrm{f}^{\prime}-\frac{1}{3} \cos \left(2 h-\nu^{\prime}\right)\right] \tag{93}\\
\Gamma^{\prime} \sin \psi & =\left\{11^{\prime} \sin \left(2 h-\nu^{\prime}\right)\right. \\
K_{2}+L^{\prime} & =l^{\prime} \cos \left(V^{\prime}+\psi-\kappa^{\prime}\right) .
\end{array}\right\}
$$

It is clear that ψ and R' have a semi-annual inequality, and thereforo for sereral wecks together R^{\prime} and ψ may lo treated as constant.

Now supposo that wo compute V_{0} and V^{\prime} at the cpoch-that is, at tho initial noon of the period duriag which we wish to predict the tides-and with theso values put

$$
\zeta_{0}=\kappa_{0}-V_{0} \text { at cpoch, } \zeta^{\circ}=\kappa^{\prime}-V^{\prime} \text { at epoch }-\psi \text {. }
$$

Then tha specd of V_{0} is $\gamma-20$, or $13^{\circ} 91303$ par hour, or $360^{\circ}-25^{\circ} \cdot 3673$ per day; and the apecd of V^{\prime} is γ, or $15^{\circ} .0410686$ per hour, or $360^{\circ} \cdot 9856$ per day. Hence, if the the mean solar time on the ($n+1$) th day sinco tho initial moment or epoch,

$$
V_{0}-\kappa_{0}=360^{\circ} n+13^{\circ} \cdot 943 \mathrm{t}-\zeta_{0}-25^{\circ} \cdot 307 n_{1}
$$

$V^{\prime \prime}+\psi-\kappa^{\prime}=360^{\circ} n+15^{\circ} \cdot 041 t-\zeta^{\prime}+0^{\circ} \cdot 986 n$.
Diarnal Thercforo tho diurnal tilles at time t of tho $(n+1)$ th day are given by
$\mathrm{O}=\mathrm{f}_{\mathrm{n}} 1 \mathrm{~T}_{\mathrm{o}} \cos \left[13^{\circ} \cdot 943 \mathrm{t}-\zeta_{8}-25^{\circ} \cdot 367 \mathrm{n}\right]$. $\}$
$\left.\mathrm{K}_{1}+\mathrm{P}^{2}=11^{\prime} \cos \left[15^{\circ} 0.011 \mathrm{t}-\zeta^{5}+0^{\circ} \cdot 986 n\right]\right]$
If too substitute for t tho timo of hinh or lor wator as computed simply from the scmi-diunal tisle, it is clear that the sum of theso two expressions will give the diurnal corrction for height of tida at high or low water, provided tho diurnal tides are not very large. If wo consider the maximum of a function

$$
A \cos 2(t-a)+B \cos n(t-\beta),
$$

where B is arnall compared with A and n is nearly unity, wo sce that the time of maximum is given approsimately by $t=a$, with a correction it determincd frem

$$
\begin{gathered}
-2.1 \sin (2 \dot{\circ} \hat{\prime})-n \Delta \sin n(\alpha-\beta)=0 ; \\
\quad \delta t=-\frac{180^{\circ}}{\pi} \cdot \frac{n B}{4} \sin n(a-\beta) .
\end{gathered}
$$

In this ray we find that the corrections to the time of high weter from O and $\mathrm{K}_{1}+\Gamma$ aro

$$
\left.\begin{array}{l}
\delta t_{6}=-0 \mathrm{~h} \cdot 988\left(1-\frac{\sigma}{\gamma-\sigma}\right) \frac{\mathrm{f}_{0} H_{0}}{H} \operatorname{bin}\left[13^{\circ} \cdot 843 \mathrm{t}-\zeta_{0}-25^{\circ} \cdot 367 n\right] \\
\delta t^{\prime}=-0 \mathrm{~h} \cdot 988\left(1+\frac{\sigma}{\gamma-\sigma}\right) \frac{R^{\prime}}{\bar{H}} \sin \left[15^{\circ} .041 t-\zeta^{\prime}+0^{\circ} .986 n\right]
\end{array}\right\}
$$

H lenoting the height and the timo of high water es computed from the ocmi-diurnal tide. If t next denotes tho time of low water the same corrections with opposito sigu give the corrections for low water.
If tha diurnal tides aro largo a secona approximation mill be necessary. Theso formulre havo beón used in computing a tide-table in the example given in the Admirally Sciculfife Lanual (1886).
§ 33. Explanation of Tidal Torms in corımon use ; Datum Letcls.,
The meas beight at epring tide between ligh and low rater is called the spring rise, and is equal to $2\left(\mathrm{H}_{\mathrm{m}}+\mathrm{H}_{\mathrm{h}}\right)$. Tho height between mean high-water mark of neap tide and mean low-nater mark at spring tide is callod the neap rise, and is equal to $21 I_{\text {man }}$ The mean height at neap tide between high and low water is called the neap range ; this is equal to $2\left(\mathrm{H}_{m}-\mathrm{H}_{1}\right)$. Neap range in nsually about one-third of spring range. The mean period betwecn full or chaage of moon and spriag tido is called the age of the tide; this is equal to $\left(\kappa_{1}-\kappa_{m}\right) / 2(\sigma-\eta)$, or, if $\kappa_{s}-\kappa_{m}$ bo expressed in degrees, $0 \mathrm{~b} .984 \times\left(\kappa_{s}-\kappa_{m}\right) ; \kappa_{s}-\kappa_{m}$ is commonly about 36°, and the age abont 36h. The period elapsing from the moon's upper or lower transit until it is high water is called the interval or the hinitidal interval. The interval at full moon or change of moon is callcd the cstallish ment of the port or the vulgar cslablishment. The interval at spring tide is called the corrected or mean cstablishment.
The mean establishment may he found from the vulgar cstablishment by means of tho spring and weap rise and the age of tho tide, as follows.
Let a be the ago of the tide reduced to angle at the rato of 1°.016 to the hour. Then the mean establishment in hours is equal to the vulgar establishment in hours, diminished by a period expressed in hours numerically equal to ${ }^{\text {n }}$, of the angle whose tangent is $H_{s} \sin a /\left(H_{m}+H_{s} \cos a\right)$, expressed in degrees. Also H_{y} / H_{m} is equal to the ratio of the excess of spring rise over neap rise to neap riso.
The French have called a quantity which sppears to be identical with $\mathrm{H}_{m}+\mathrm{H}_{\nu}$ or half the spring rise, the unit of height, and then defino tho height of any other tide by a tidal coefficient. ${ }^{1}$

Tho practice of the British Admiralty is to refer their soundings and tide-tables to "mean low.water mark of ordinary spring tides." This datum is found by taking the mean of the low-water marks of such obseryations at spring tide as are available, or, if the observatious are very cxteasive, by excluding from the mean such spriog tides as appear to be aboormal, owing to the largeness of the moon's parallax at the timo or any other cause. The Admiralty datum is not, then, susceptiblo of exact scientific definition; but, when it has once been fixed with refcrence to a bench mark ashore, it is expedient to adbere to it, lyy whatever process it was first fixed.
It is now proposed to adopt for any new Indian tidal stations a Indian low-water datum for the tide-table to be called "Indian low-water dateas. mark," " and to be defined as $\mathrm{H}_{\mathrm{m}}+\mathrm{H}_{4}+\mathrm{H}^{\prime}+\mathrm{H}_{0}$ below mean.water level. Although such a datum is not chosen from any precise scientific considcrations, it is susceptible of exact definition, is low enough to cxelude alnost all negativo entries from the table (a sine qua non for a good dstum), and will dificr bat little from tho Admiralty deturn, however that may be detormined. A valuahle list of datum levels is given by Mr J. Shoolbred in a Reporl to tho British Association in 1879.
§ 34. On the Reduction of Observalions of High and Low Wrater.'
A continuous register of the tide or obscryation at fixed intervals Oberva of time, such as cach honr, is certainly the best; but for the tions at adequate use of such a accord semo plan enalogous to harmonic H.W. analysis is necessary. Observations of high and low water only andLw have, al lcast until recently, been more usual. Some cere has to bo taken with respect to these obscrvations, for about high and low water an irregularity in the rise and fall becomes very noticeable, especially if the place of obscrvation is hadly chosen. ${ }^{4}$ Observations should therefore be taken every five or ten minutes for half an hour or an hour, embracing the time of high and low water. The time and height of high and low water chould then be loand by plotting down a curve of heights, and by taking as the trae tide-curve a line which presents a streeping curvature and smoothes away the minor irregularities. A similar but less elaborate process rould render hourly observations more perfect. In the reduction the immediate object is to connect the times and heights of high and low water with the moon's transits by means of the cstablishment, age, and fortnightly inequality in the interval and beight. The reference of the tide to the establishment is not, bowever, scientifically desirable, end it is botter to determine the mean establishment, which is the mean interval from the moon's transit to high water at spring tide, and the sgo of the tide, which is the nean period from full moon and change of moon to spring tide.

For these purposes the observations mey be conveniently treated graphically. ${ }^{\circ}$ An equally divided borizontal scalo is taken to represent the twelve hours of the clock of civil time, regulated to the time of the port, or-more accurately-arraaged slyays to show

[^146]apparent tirse by being fast or slow by the equation of time; this time-scale represents the time-of-clock of the moon's transit, either uppar or lower. The scale is perbaps most conveniently arranged in the ordes V, VI, . . ., XII, I . . . IIII. Then esch interval of time from transit to high water is set off as an ordinate above the corresponding time-of-clock of the moon'a transit. A swceping carve is drawn nearly through the tops of the ordinates, so as to cut off minor irregularities. Next along the same ordinates are set off lengtha corresponding to the height of water at each high water. A second similar figure may be made for the interval and height at low water. ${ }^{1}$ In the curve of high-water intervals the ordinate corresponding to XII is the establishment, siace it gives the time of high water at full moon and change of moon. That ordinate of high-water intervals which is coincident with the greatest ordinate of ligh-water haights gives the mean establishmant. Since the moon'o transit falls about fifty minutes later on each day, in setting off a fortaight's observations there will be about five days for each four times-of-clock of the upper transit. Hence in these figures we may regard each divisicn of the time-acale 1 to II, 11 to III, \&c., as representing twenty-five hours instead of one hour Then the distance from the greatest ordinate of high-water heights to XII is called the age of the tide. From these two figures the times and leights of high and low water may in general be predicted with
fair approximation. We find the time-of-clock of the moon's upper or lower transit on the day, correct by the equation of time, read off the corresponding heiglits of high and low water from the figures, end the iatervala being also read off are added to the time of the moon's tranait and give the times of high'and low water. At all porta there is, however, an irregularity of heights and intervals between successive tides, and in consaqueuce of this the curves present more or less of a zigzag appcarance. Where the zigzag is perceptible to the eye, the curves must be smoothed by drawing them so as to bisect the zigzags, because these diuraal inequalities will not present themselves similarly in the future. When, as in some equatorial ports, the diurnal tides are large, this method of tidal prediction fails.
This method of working out observations of high and low water was not the earlicst. In the Mécanique Celestc, bks. i aud v., Laplace treats a large mass of tidal observations by dividing them into classes depending on the configurations of the tide-generating bodies Thus he separates the two syzygial tides at full moon and change of moon and divides them into equiboctial and solstitial tides. He takes into consideration the tides of several days embracing these configurations. He goes through the tides at quadratures on the same general plan. The effects of declination and parallax and the diurnal inequalities are similarly treated. Lubbock (Phil

Trans., I83I sq.) improved the method of Laplace by takiug into account all the obscrved tides, and not merely those sppertaining to certain configurations. He divided the observations into a number of classes. First, the tides are separated into parcels, ona for each month; then cach parcel is sorted according to the hour of the moon's transit. Another classification is made according to declination; snother according to parallax; add a last for the diurbal inequalities. This plan was followed in treatiog the tides of London, Breat, St Helena, Plymouth, Portamouth, and Shecrness. Whewell (Phil. Trans., 1834 sq.) did much to ri'ace Lubbock'a scsults to a mathematical form, and made a hirhly important advance by the introduction of graplical methods by meana of curves. The method explained above is due to him. Airy remarks of Whewcll's papers that they appear to ba "the best specimens of reduction of new observations that we have ever sean.'

Yi. Tidal Instruments and Tidal Prediction.

§35. Gencral Remarks.
Practical tidal work is divisible into the three stages of observavation, reduction of observationa, and prediction.
The simplest observation is that of the height of water on a

[^147]graduated staff fixed in the eea, with such sllowsnce as 1s possible made for wave-motion. It is far better, however, to sink a tube into the ses, into which the water penetrates through small holes. The wave-motion is thus sanulled. In this calm water there lies a float, to which is attached a cord passing over a pulley and counterpoised at the end. The motion of the counterpoise against a scale is observed. In either case the observations may be made every haur, which is preferable, or the times and heiglits of bigh and low water may be noted. We have explained in § 34 the methods of reducing the latter kind of obscrvation. Although more appropriate for rough observations, this method is susecptible of great accuracy when carefully used. It has been largely super seded by the harmonie method, but is still adhered to by the British Admiralty. In more careful obseryations than those of which we are speaking the tidal racord is automatic and continuous; the reduction may be, and probably at some future time will be, mechanical ; and the prediction is so already. We shall therefore devote some apace to general descriptions of the three classes of instrument. The harmonic reductions are at preseat (1887) actually done numerically, and in chapter iv we have indicated the nature of the arithmetical processes.

§ 36. The Tide-Gange.

The site for the erection of a tide-gauge depeas on local circure stances. It ohould be placed so as to present a fair representation of the tidal oscillations of the surrounding area. A tank is generally provided, communicating by a channel with the sea at about 10 feet (more or less according to the prevalent surf) below the Iowest low-water mark. In many cases on open coasta and fre-
quently in estuaries the tank may be dispensed with. At any rete we suppese that water is provided rising ond falling with the tide, without much weve-motion. The netare of the installation depends entirely on the circumstances of the case. . A verticsl pipe is fixed in the water in such a way as to admit it only through holes small enough to annul wave motion and large enough to make no sensible retardation of its rise and fall in the pipe. The diamcter of the pipe differs greatly in differcut instruments: sometimes that which we have described as the tank serves as the pipe, and sometimes the pipe alone dips into the sea. A cylindrical float, usually a hoilow metallic box or a block of green-licart mood, hangs and floats in the pipe, and is of such density as just to sink vithout sapport. In Sir W. Thomson's gauge the float hengs by a fine platinum wire, in Newman's (nsed in India) by a metallic ribbon. In the latter a chain hangs at the bottom of the flost of ench weight that, whether the water be high or low, there is the same upward force on the float. It is necessary that the pull on the float should be constant, otherwise a systematic error is introdnced between rising and falling water. The suspension wire is wrapped round a wheel, and imparts to it rotation proportinnel to the rise and fall of tide. By a simple gearing this wheel drives another, by which the range is reduced to ony convenient extent. A fine wire wound on the final wheel of the train drags a pencil or pen up and down or to and fro proportionately to the tidal oscillations. The pencil is lightly pressed against a drum, which is driven by clockwork so as to make one revolution per day. The pen leaves its trace or tide:curve on paper wrapped round the Jrum. Generally, bowever, the paper is fixed to the drum, and the record of a fortnight may be taken without change of paper. An example of a tide-curve for Apollo Bunder, Bombay, from 1st to 15 th January 1884, is shown in fig. 3. Sometimes the paper is in a long band, which the drum picks off from one coil and delivers on to enother. The contact of the pen inust be such that the work done in dragging it over the paper is amall, otherwise a varying tension is thrown on to the float wire. Hence, if the friction is considerable, the float mast be lerge.

The conditions necessary for a good tide-gange appeer to be better satisfied by Sir W. Thomson's then by any other; but, as his in. strument is recent, other forms have been much more extensively used, and heve worked well. The peculiarity of Thomson's tide. gauge is that, by giving the drum en inclination to the vertical, the pressure of the pen on the paper and on its gnides is very deli. cately regulated to the minimom necessary for effecting the purpose. In other gauges the drum has been either vertical or horizontal, and the amount of friction has necessarily been considerably greater. ${ }^{\text {a }}$

§ 37. The Harmonic Analyser.

Bat. If s function H be expressed as a series of harmonic terms, and monio if one pair of these terme be $\mathrm{A} \cos n t+\mathrm{B}$ sin $n t$, tben, if T be a iLalyser. multinle of the complete Deriod $2 \pi / n$, we have

$$
\mathrm{A}=\frac{2}{T} \int_{0}^{T} H \cos n t d t, \mathrm{~B}=\frac{2}{T} \int_{0}^{T} H \sin n t d t
$$

Thns a machine which will effect these integrations will give A and B. Snch a machine has been invented by Prof. Jemes Thomson and perfected by Sir W. Thomson. In fig. 4 let TT^{\prime} be a circular table, capable of rotation about the inclined ghaft s. Let 3 be a spbere tonching the table anywhere along its horizontal diameter. Let C be a cylinder, of somewhat smaller diameter then the sphere, capable of rotation about a horizontal axis parallel to the table, and touching the sphere so that CS is parallel to TT'. Suppose that the point of contact of the sphere with the table is distant x

Fio. 4.-Harmonic analyser. from the centre of the table, and nearer to us than the shaft; then, when the ghaft s and the table $T T^{\prime}$ turn in snch a direction that T rises from the paper and T goes below it, the sphere will turn in the direction of its errow. If the radius of the sphere is a, and that of the cylinder b, then, when the table turns through a small angle $\delta \theta$, the sphere turns through $r \delta \theta / a$ and the cylinder through $x \delta \theta / \bar{n}$. This augle venishes if S touches the table at the centre, aul is reversed if the epliere be moved across to the other side of the centre. Also rhilst the table is turning the sphere may be rolled backwards and forwarde without rubbing, and thus transmits motion flom the table to the cylinder without slipping. Now ollppose the turning of the table is so conatrained that $\delta \theta=\pi \cos \psi d \psi$, whilst x is constrained to be equal to the arbitrarily varjing qnentity H. Then the total angle turned through by the cylinder, as the machine rans, is nroportional to $\int H \cos \psi d \psi$. If we impart to the table a simple

1 For further details concerning the establsorment of tide cro pres, see Major Brald's Man al of Tidal Observation, Londou, 1857, sud Sir W Tbonison, "On Tidal Instruments," in Iist. Civ. Eng., rol Lx. p. 10.
harmonic oscilletory motion, with e period proportioual to the anar half-day, whilst the aphere moves, relatively to the centre of the table, proportionately to the tide-beights or the same time-scale, then, at the end of a sufficient number of Iunar days, we shall find that the total angie turned through by the cylinder is proportional to either the A or B component of the luner semi-diurnal tide. An index, Which points to a dial, may be fixed to the cylinder, so that the required result may be read off.

In the harmonic analyser the tide-curve diacram is wrapped on a dram, which is turued by one hand, whilst with tho other a pointer is guided to follow the tide-curve. As the drum turns proportionatoly to mean solar time, appropriate gearing causes two tables to execute harmonic oscillationa in phases at right angles, with lunar semi-diurnal period. At the same timo a fork attached to the pointer guides the two spheres so that their distances from the centres of their tables are equal to the tide-hcight in the diagram. The indexes attached to the two cylinders give the two components of the lunar semi-diurnal tide, and the approximation improves the longer the tide-curve which is passed through the machine. Corresponding to each of the principal lunar and solar tides there are a pair of tables, spheres with guiding forks, and cylinders similarly geared, and there is enother sphere and another table, which last always turns the same way and at the sams rate as tho drum, from which the mean height of water is determined. Such an lnstrument has been constructed under the supervision of Sir W. Thonson, but has not yet been put into practical nse, so that we cannot say how it will compete with the arithmetical harmonic analysis. A similar, but less complex machine for the analysis of metcorological observations is in constant use in the Meteorological Offico in London, and is found to work well. ${ }^{2}$

§ 38. The Tide-Prcdicting Instrument.

The first suggestion for instrumental prediction of tides was given, Tidewe believe, by Sir W. Thomson in 1872, and the instruments since predich. made heve been fonnded on the principles which he then laid down. ing ivMr Edward Roberts bore a very important part in the first practical strument realization of such a machine, and a tide-predicter was constructed by Légé for the Indian Government under his direction. Thomson's is the only instrument in Europe es yet in regular practical use for navigational purposes. It requires much skill and care in manipulation, and it has been ably worked by Mr Foberts for the production of the Indian tide-tables ever eince its completion. We refer the reader to Sir W. Thomson's paper on "Tidal Instruments," in Inst. C.E., vol. $1 \times v_{0}$, and to the subsequent discussion, for a full acconnt of the aeveral instruments, and for details of the share borne by the various persons concerned in the realization of the idea.

Fig. 5 illustrates diagrammstically the nature of the instrument. Δ cord passes over and under a succession of pulle ${ }^{\bullet \bullet a}$, being fixed at one end and baving at the other a pen which touches a revolving drum. If all the pulleys but one be fixed, and if that one executes a simple harmonic motion up and down, the pen will execute the ssme motion with balf amplitude. If a second pulley be now given an harmonic motion, the pen takes it up also with half amplitude. The game is true if all the pulleys are in harmoric motion. Thus the per sums them all up, and leaves a trece on the revolving drum. When the drum and pulleys are so geared that the angular motion of the drum is proportional to mean solar time, whilst the har
 monic motions of the pulleys correspond in range and phase to all Fio. 5.-Tide-predicting instrament. the importent lunar and solar tides, the trace on the drum is a tide-curre, from which a tide-table may be constructed The harmonic motion of the pulley is given by an arrangement indicated only in the case of the lower pulley in the figure. The pulley frame has attached to its vertical portion a horizontal slot, in which slides a pin fixed to a wheel. Suppose that whilst the drum turns through 15° the whed turis through $25^{\circ} 984$. Now a lunar day is 24.842 mean solar hours; hence as tho drum turns throngh $15^{\circ} \times 24.842$ the whee] turns through $24.842 \times 28^{\circ} .884$ or 720°. Thus, if the drum turns with an angular velocity proportional to colar time, the whicel turns with twice the angulas velocity proportionel to lunar time, and the pulleygeared to the wheel execntes lnnar semi-diurnal harmonic oscillations. When the throw of the pin end its engular position on its wheel aro adjusted so as to correspond with the range and phase of the observed lunar aemidiurnal tide, the oscillation of the pulley remains rigoronsly ac curate for that tide for all future time, if the gearing be rigorously accurate, and with all needful eccuracy for somo ten years of tide
${ }^{2}$ For forther detalls, seo Appendixes fil., Iv., F., to Thonson and Tait's Nat Phil., 18i9, vol. 1., part 1.; Jaines Thomson, Proc. Roy. Soc., vol. xxivo, 15% p 202, and (Sir W. Thomeod) pp. 208, 271; Sir W. Thomson, Pron Lust. C.E. pul Lev.
with gearing as practically constructed. Tho upper pulleys have to be carefully counterpoised as indicated. It lass not becn found that any apprcciable disturbance is caused by the inertia of the moving parts, even when the speed of working is high. The predicter of the India Offico takes about four hours to rnn off a year'a tides, but greater apeed seems attainable by modification in the gearing. The Indian instrument, in the store department at Lambeth, has puilleys for the following tides (see chap. iv.): $-\mathrm{M}_{2}, \mathrm{M}_{4}$ $M_{\omega}, K_{1}, S_{1}, S_{2} O, N, P_{2} K_{2}, Q, \nu, J_{,} \quad \lambda, 2 M S, 2 S \Delta I$, MIS, Saa, Sa.

§ 39. Numerical Harmonic Anuoysis and Prediction.

In chapter iv. we have discussed the application of the numerical harmonic method to a long series of hourly observations. An actual numerical example of this analysis, with modifications to render it applicalle to a short aeries, such as a fortnight, is given in the Admiralty Scientific Manual, 1886 , where also an example of the numerical and graphical prediction of the tides may be found. The formulo used are those given in chapter v.

Vil. Progress of the Tide. Wave ofer the Sea, and the Tides of tee British Seas.
§ 40. Meaning of Cotidal Lines.
Sufficient tidal data would of course give the state of the tide at every part of the world at the same instant of time, and if we were
to follow the successive changes we should be able to picturs mentally the motion of the wave over tho ocean and the successive changes in its height. The data are, however, as yct very incomplete and only a rou-h scheme is possible. A map purporting to give the progress of tho tide-wave is called a map of cotical lines. For a perfect representation three series of maps would be required, one for the semi-diurnal tides, a sccond for the diurnal tides, and a third for the tides of long period. Each class of map would then show the progress of the wave for each configuration of the tidegenerators. But as yet the only cotidal maps made are those for the mean semi-diurnal tide, and only for the configuration of new and full moon. The knowledge of the tides is not very accurato throughout the world, and therefore in the maps which we give it is assumed that the same interval elapses at all places between new and full moon and spring tile.
Δt spring tide, as wo hare seen in (87) and (88),
$h_{2}=(M+M,) \cos 2(\psi-\mu)$,
aince $A-\mu$, becomes then cqual to $-\mu$. As a rough approximation spring tide ocenrs wheu the moon's transit is at one oclock at night or in the day. We only assume, however, that it occurs simultaneously everywhere. Now let τ be tho Greenwich mean time of high water, and l the E. long. in hours of the place of observation, then, the local time of high water being the time of tho moon'a transit plus the interval, and local time being Greenwich time plus E. long., we liare

Fic. 6.-Cotidal lines of the world.
where μ is in degrees. Therefore, if we draw over the occan a succession of lines defined by equidistant integral values of the Greenwich time of high wafer, and if we neglect the separation of the moon from the sun in longitude in twelve hours, the successive lines will give the motion of the semi-diurnal tide-wave in one hour.

§ 41. Cotidal Lines of the World.

No recent revisal of cotidal lines has been made with the aid of the great mass of tidal data which is now being accumulated, and Fe therefore reproduce (fig. 6) the chart of the world prepared by Sir George Airy for his arricle on "Tides and Waves." The parts of the world for which data are wanting are onitted. The Roman numerals upon the cotidal lines denote tho hour in Greenwich time of high water on the day of new or full moon. Airy remarks ($\$ 5$ 575.581) that the cotidal lines of the North Atlantic are accurately drawn, that those of the South Atlantic are douhtful, and in the Pacific east of New Zealand are almost conjectural. The cmbodiment of recent observations in a cotidal chart would necessitate some modification of these statements.

When a free ware runs into shallow water it travels with less velocity and its height is increascd. This is observable in the flexure and crowding of the cotidal lines near continents and oceanic islands, as, for example, about the Azores, the Bermudas, and the coast of South America. The velocity of the tide-wave gives good information as to the depth of the sea. In the North Sea it appears to travel at about 45 miles an hour, which corresponds to a depth
of 140 feet, and wo know that the depth aloug the decper channe is greater and along the sides less than this. In the Atlantic the wave passes over 90° of latitude, from the southern to the northern ouo o'clock line, in twelve hours, that is at the rate of 520 miles an hour. If the Atlantic tide could bo considered as a free wave generated by the Pacific tide, this velocity would correspond to a depth of 18,000 feet. Airy considers, haverer, that the Atlantic forms too large a basin to permit the neglect of the rlirect tidal action, and thinks that the tides of this ocean derive extremely little of their character from the Pacific.
"There is ancther consideration," he says, "which must not he left out of sight. It is that, supposing the cotidal lines to be accurately what they profess to be-namely, the lines counecting all tho points at which high water is simultaneous-they may, nevertheless, with a compound series of tide-waves, not at all represent tho ridgo of the tide-wave which actually runs over the ocean. Thus an eyo at a great distance, capable of observing the swells of the tide-waves, might see one huge longitudinal ridge extending from the mouth of the Amazon to the sea beyond Iceland, making high water at one time from Cape de Verde to the North Cape, and at another time from Florida to Greenland, and another ridge transversal to the former, travelling from the coast of Guiana to the northern sea; and the cotidal lines which we have traced nay depend simply on the combination of these waves. It does not appear likely that we can ever ascertain whether it is so or not ; but it is certainly possible that the original waves may have these or similar forms:
and if so it is rain for us to attempt entirely to explain the tices of the Atlantic.

IIe sums up the discussion of the chart by saying:-
"Upon the whole, thercfore, we are driven to the conclnsion that we eannot at all explain the cause of the form of the cotidal lines in the ocean, so far as they bave been traced with any probability. And, supposing us to know with tolerable certainty those corresponding to the semb-diumal tide, we cannot at all predict those which should hold for the diurnal tide."

§ 42. Cotidal Lines of the British Scas.,

Fig. 7 shows the cotidal lines in the seas surrounding the British Islands. Here the lines refer to full moon and chango of moon and not to spring tide. The small figures along different parts of the coast denote the extreme range of the tide in yards. This figure is from the same source as the preceding one, and wo again reproduce a portion of Airy's remarks.
'The tides in the English Channel claim notice as having been the aubject of careful examination by many persons, English and

Fio. 7.-Cotiual lines of British scas.
Frencl. It appears that in the upper part of the Channel the water fors up the Channel nearly three hours after high water and runs down nearly three hours after low water (this continuanee of the current after high water, if it last three hours, is ealled by sailors tide-and-half-tide; if it last one hour and a half, it is called (ide-and-quarter-tide). On the Euglish side of the Channel, espeeially opposite the entrance of bays, the directions of the currents turn in twolve hours in the same direction as the hands of a watch; on the French side they turn in the opposito dircetion. This is catirely in confermity with thcory. The samo laws are recognized as holding in tho British [Bristol ?] Clannel, and in the German or North Sea near the Scotch and English coasts.
"With regard to the Irish Channel wo lhave only to remark that there is a wery great differenco in the heimht of tho tide on the different sides, the tide on the east sile being considerably the greater. They are also greater in the northem part (nerth of Wicklow on one side, and of Bardsey Jsland on the other side) than in the southern part. Betreen Wexford and Wicklow they are very small.
"The tides of the German Sea present a very remarkable pecoliarity. Along the eastern coast of England, as far as the month of the Thames, the tide-wave, coming from the Atlautic round the Orkney Islands, fors towards the south. Thus, on a certain day, it is high water in the Mnrray [Moray] Firth at eleren o'clock, at Eerwick at two o'clock, at Flamborough Head at five o'clock, ond so on to the entrance of the Thames. Put on the Belgian and Dutch coasts immediately opposite, the tide-wave flows frem the sonth tonards the north. Thus, on the day that wo havo supposed, it will be bigh water off the Thames at eleven o'eloek (the tile having travelled in trelve hours from the Murray Firth) anal at Calais ncarly at the same time ; hut at Ostend it will be at twelve, of The IIague at two, of the Ilelder at six, and so on.
"We believe that a completc explanation may bo fonnd in the arrangement of the great sheals of the North Sea. It most be remarked that (exeept nithin a very small distance of Norway) the North Sca is considerably deeper on the English side than on the German sido ; so much so that the tide-ware coming from the north runs into a deep bay of dcep water, bounded on the west side by the Scoch and English coasts as far as Newcastle, and on the east side by the great Dogger Dank. As far as the latitude of Hull, the English side is still tho deep one ; and, though a species of channel through tho shoal there allows an opening to the east, yet immediately on the south of it is the Wells Bank, which agrait contracts the dcep channel to the English side. After this (that is, in the latitude of Yarmouth) tho decp clannel expands cqually
to both sides. It seems reasonable to to both sides. It seems reasonable to conclude from this that the great set of north tide is on tho English sillo of tho North Sea, both between the Dogger Bank and Encland and between the Wells Bank and Englaud (a branch streaus of tide having been given of to the east between theso two banks), and that any passage of tide wave orer these banks may be neglected. Now this view is supported in a remarkable degree by the tidal observations on two dangerous shoals called the Ower and Leman, Jying between Cromer and the Wells Rank, but nearer to the latter. It appears that on theso sheals the direction of the tide-current revolves in the same nanner as the lands of a match, prowing conclusively that the Orer and Leman are on the left hand of the main stream of tide (supposing the face turned in tho direction in which the tide proceeds), or aro on its eastern border, and therefore that the central stream is still nearer to the coast of Norfolk. From a point not far south of this wo may suppose the tide to diverge in a fan-shaped form over the uniformly decp Lelgian Sea. Along tho English coast the wave mill flow to the sonth; but it will reach the whole of tho Belgian and Dutch coast at the samo instant; and, if this tide alone existed, wo doubt not that the time of high water would be sensibly the same along the whole of that coast.
" But there is another tide of great magnitude, namely, that which comes from the English Channel through tho Straits of Dover. This also diverges, wo conccive, in a fain form, affecting the whole Belgian Sea : the western part turns into the estuary of the Thames; the castern part runs along the Dutch coast, producing at successive times high water (even as coubined with the North Sea tide) along successivo points of that coast from Calais towards the Helder. And this we believe to be the complete cxplanation of tho apparently opposite tido-currents. The hranch tide of the North Sea rumuing between the Dogger Bank and the Wells Bank will assist in propagating the tide along the Gcrman coast from the Hellder towards tho mouth of the Ellue. We have gone into seme detail in this explanation for the purposo of showing the importance of considering the form of the bottom in explanations of speeific tides.
"A sct of observations has been mado by Captain Hewett (at the point Λ, fig. 7) on the depth and motion of tho water at a strictly definite point a fiv milcs south of tho Wells Bank, near the middle of the Belgian Sca. The resulf was that tho change of clevation of the surface was insensible, lunt that there was a considerable stream of tide alternately north-east and south-west (magnetic). T1.e point in question correspends pretty well to the intersection of the cotidal lines of nino o'clock of the Nerth Sea tide and three 0° clock of the English Channcl tide (orlinary establishment), and these tides would thercfore wholly or partially destroy eaeh other as regards elevation. As regards the compound tide-strcam, the greatest positive current from one tido will be conabined with the greatest negative current of the other, and this will produce a strcam, whose direction agrees well with observation. At 3^{h} en the day of new moon, the North Sca tido would bo running north (magnetic): and the English Channcl tido rould bo ruming east, and therefore the compound current would bo mnning north-east ; at 9^{b} it would be running south-west. Both currents, and conscquently the com: pound current, would ceaso at about $0^{\mathrm{h}}, 6^{\mathrm{b}}, \& \mathrm{c}$., on the day of nemy moon; and, as the observations wero mado rather more than a day befere new moon, tho slack water would oceur an hour on mors befere noon. The whole of this agrees well with the obscrvations."

Vili. Tidal Deformation of tize Solim Earth.

§ 43. Elastic Tides.

The tide-gencrating potential varics as the square of the distance from the eartli's centre, and tho corresponding forces act at cerery roint throughout its mess. No solid matter possesses the property of absolute rigidity, and wo must therefore admit the probable existence of tidal elastic deformation of the solid carth. The problem of finding tho state of strain of an clastic splere under given stresses was first solved by Lame $;^{1}$ he made, however, but ferl flyysieal deductions from lis salution. An independent solution was found by sir W. Thomson, ${ }^{3}$ who drew some interesting conclu: sions concerning the earth.

[^148]His problem, in as far as it is now material, is as follows." Let a sphere, of radius a sad density w, be made of elastic material whose bulk and rigidity moduli are k and n, aad let it be subjected to forces due to a potential $w r^{2} S_{2}$ per uait volume, where S_{3} is a surface epherical harmonic of the secend order. Then it is required to find the strain of the sphere. We refer the reader to the original sonrces for the methods of solution applicable to apherical shells and to eolid epheres. In order to write Thomson's solution we put r, λ, l for radius vector, latitude, and longitude, and ρ, μ, ν for the corresponding displacements. Then the solution is as followe :-

$$
\left.\begin{array}{l}
\rho=\frac{w}{\left(19 k+\frac{1}{3} n\right) n}\left[\left(8 a^{2}-3 r^{2}\right) k+\frac{2}{3} a^{2} n\right] r S_{2} \tag{96}\\
\mu=\frac{w}{2\left(19 k+\frac{4}{3} n\right) n}\left[\left(8 a^{8}-5 r^{2}\right) k+\frac{2}{3}\left(a^{2}-r^{2}\right) n\right] r \frac{d S_{2}}{d \lambda} \\
\nu=\frac{w}{2\left(19 k+\frac{4}{3} n\right) n}\left[\left(8 a^{2}-5 r^{2}\right) k+\frac{2}{3}\left(a^{2}-r^{3}\right) n\right] \frac{r}{\cos \lambda} \frac{d S_{2}}{d l}
\end{array}\right\}
$$

For either tidal or rotational stresses

$$
S_{2}=\tau\left(\sin ^{2} \lambda-\frac{1}{3}\right)
$$

in the case of tides $\tau=\frac{8}{2} m / c^{3}, m$ sud c being the moon's mass and Bistance, cad in the case of rotation $\tau=-\frac{1}{2} \omega^{2}$, ω being the sngular velocity about the polar axis. The equation to the eurface is found by putting $r=a+\rho$, where in the expression for p we put $r=a_{n}$ Hence from (95) the form of surface is given by

$$
\begin{equation*}
: a\left\{1+\frac{15 w a^{2}}{19 n}\left[1+\frac{\frac{6}{8} n / k}{1+\frac{4}{57} n / k}\right] r\left(6 \sin ^{2} \lambda-3\right)\right\} \tag{97}
\end{equation*}
$$

In most solids the bulk modulus is coasidersbly larger than the rigidity modulus, sad in thio discussion it is onfficient to neglect n compared with k. With this approximation, the ellipticity e of the ourface becomes

$$
\begin{equation*}
e=\frac{5 w a^{2}}{19 n} \tau \tag{98}
\end{equation*}
$$

Now euppose the sphere to be endued with the dower of gravitation, and write

$$
\begin{equation*}
\mathrm{r}=\frac{19 n}{6 w a^{2}}, \mathrm{~g}=\frac{2}{\sigma} \frac{g}{a} \tag{99}
\end{equation*}
$$

where g is gravity at the ourface of the glohe. Then, if there were ho elasticity, the ellipticity wonld be given by $e=\tau / g$, and without gravitation by $c=\tau / r$. And it may be proved in geveral ways that, gravity and elasticity co-operating,

$$
e=\frac{T}{r+g}=\frac{T}{g} \cdot \frac{1}{1+T / G}
$$

(100).

If n be the rigidity of steel, and if the globe have the size and mean density of the earth, $r / g=2$, sad with the rigidity of glass $r / g=3$. Hence the ellipticity of an earth of steel under tide-generating force would be $\frac{1}{8}$ of that of a fluid earth, and the similar fraction for glass would be $\frac{3}{3}$. If an ocean be euperposed on the globe, then, if the globe rises and falls with the tide es thongh it were fluid, there will obviously be no tide visible to an observer carriod ap and down with the solid; and with any degree of rigidity the visible tide will be the excess of the fluid tide ahove the colid tide. Hence on an earth with rigidity of eteel the oceanic tides would be reduced to $\frac{3}{3}$, and with rigidity of glass to $\frac{?}{5}$ of the tides on a rigid earth.

§ 44. Rigidity of the Earth.

Althongh the computation of oceanic tides is as yet impossible, it canaot be odmitted that perfect rigidity in the earth would aug. ment the tides in the proportion of 5 to 2 , although they might perhaps be augmented in the propertion 4 to 3 . Thus Thomson concludes that the earth's mass must have an effective rigidity at least as great as that of steel. If it were true, ss was held until recently, that the earth is a fluid ball coated with a crust, that crust must be of fabulous rigidity to resist the tidal sargings of subjacent fluid. Heace we sre led to the coaclueion that far the garger nortion of the earth's mass, if not all of it, is a solid of great tigidity. Un in the present mae the argument by which the tides of long period were proved to inve approximately their equilibrium hoight has generally doun accepred without much doubt, but we have (§ 17) shown good cause for rejecting Laplace's argument, at least for a fortnightly tide. It appeared formerly that, from aumerical data as to the heights of the tidee of long period, we ehould be able to compute the actual effective rigidity of the earth's mass. Bat from $\S 18$ we see that, slthough these tides remain incalculable, Fet with such oceans as ours the tides of long period must conform much more mearly to the equilibrium laws than do the tides of short period. Thus a comparison of the observed heights of the tides of long period with the equilibrium law still remains of interest, although the ovaluation of the earth's rigidity appears with present data unsttainable. Acting on the old belief, Mr G. H. Derwin has compared the lunar fortaightly and monthly tides, as observed for thirty-three years at various Indian and European ports, with the equilibrium theory, and has found that tho tideheights were about two-thirds of the equilibrium height. ${ }^{1}$ From this the coaclusion was drawn that the effective rigidity of the earth wes as great as that of steel. Whilst, then, this precise com-

[^149]parison with the rigidity of steel falls to the ground, the investise:tion remains as an important confirmation of 'l'homson's concinsuan as to the great efiective rigidity of the earth. When extensive and accurate knowledge of the tides has been attaiued, the sttempted evaluation of the rigidity may coaceivably be possible, becausb there is a minute tide with a period of 18.6 year's ($\$ 23$, scheculs [A, iii.]) of which Laplace's argument must hold good. Great accu. racy will, however, be necessary, becsuse the height of the tiderit the equator only amounts to ooe-third of an inch, a ad a preliminary inquiry eeeme to show that there are othce relatively considerapio Variations of eea-level arisiag from naexplajaed causcs. ${ }^{2}$

Sir W. Thomsen's selution of the strain of an elastic ephere bias been slso used to determine what degree of streagth the materiais of the esrth must have in order that the great coatinental plateaus and mountains may not sink in. ${ }^{3}$ In another investigation it has been ehown that lacsl elastic yielding on the coast-lines of continents may produce an augmentation of apparent tide in certain, places on account of the flexure of the upper strata, when a great weight of water is added and subtracted from tho adjaceat oceanio srea at high and low tide. ${ }^{4}$ There is reason to believe that ouch flezure bas actually jeen observed by a delicate form of level on the coast of the Bay of Biscay. ${ }^{\circ}$

§45. Viscous and Elastico-Viscous Tides.

It might be oupposed thst the earth is composed of a viscous fluid of great stiffess, or that it possesses an elasticity whica breaks down under continued stress. Both these hypothescs have been considcred, sad the resulte sre confirmstory of the coaclusion that the earth is made of very stiff material. These problems appear to have been worthy of attack, although the existence of measurable oceanic tides of loug period negatives the adoption of the hypothesis of true viscosity, at least under stresses comparable with tide-generating forces.

If a sphere of radius a, density 20 , viscosity modulus v, be under the action of forces due to a potential per anit volume $\operatorname{vor}^{2} S_{2} \cos n t, s 0$ that n is the speed of the tide, the solution of the problem showe that the tide of the ephere is expressed by

$$
\frac{a S_{2}}{\mathrm{~g}} \operatorname{coseco\theta }(n t-\epsilon) \ldots \ldots
$$

where

$$
\tan \epsilon=n \frac{r}{g}, \quad r=\frac{19 v}{520 x^{2}}, \quad g=\frac{9}{5} \frac{g}{a} .
$$

Thns the tides of the viscous globe are to the equilibrinm tides of \& fluid globe as $\cos \epsilon$ to uaity, and there is a rotardation ϵ / n of the time of high tide after the passage of the tide-generator over the meridian. Further, by arguments similar to that applied in the case of elastic tides, it is found that oceanic tides are redaced by the yielding in the proportion of sin ϵ to unity, and that there is an apparent acceleration of the timo of high water by $\left(\frac{1}{2} \pi-e\right) / n_{0}{ }^{-}$ It sppears by aumerical calculation that, in order that the oceaaio eemi-diurnal tide may have a value equal to two-thirds of the full smeunt on a rigid globe, the stiffness of the globe must be about twenty thoussad times as great as that of pitch et freezing tempersture, when it is hard and brittle. We must here pass by the results of the bypothesis of an elasticity degrading under the influence of continued stress.

IX. Tidal Feiotion.

§ 46. General Explanation.

The investigation of the tides of a viscous ophere has led us to the consideration of a frictionally retarded tide. The effects of tidsl friction are of euch general interest that we give a sketch of the principal results without the aid of mathematical symbols. In fig. 8 the peper is euppesed to be the plape of the orbit of a satellite Il revolving in the direction of the arrow abont the olaaet C. which. rotates in the direction of the arrow ahoat an ans peryenuicalar tol the paper. The rotation of the planet is suppesed to be more rapid, then that of the satellite, so that the day is shorter then the month. Let us suppose that the planet is either entiroly fluid, or has an ocesa of such depth that it is high water under or nearly nader the satellite. When there is no friction, with the gatellite at m, the planet is eloagated into the ellipsoidal shape shown, cutting the mean sphere, whech is dotted. But, when there is friction in the fluid motion, the tide is retarded, and high tide occurs after tina 6atellite has passed the meridian. Then, if we keep the same figu: to represent the tidal elongation, the satellite must be at M, instes, of at m. If we aumber the four quadrants as shown, the satellit. mast be in quadrant 1. The protuberance P is nearer to the satellite than P^{\prime}, and the deficiency Q is further away than the deficioncy

[^150] Oscillatione of a Viscous spherold," Proc. Lond. Mfath. Soc., Nov. 1881, p. 6L.
Q. Hence the resultant action of the planet on the satellite mast be in some such direction as MN. The action of the satellite on the planet is equal and opposite, and the force in NK, not being through the planet's centre, must prodnce a retarding couple on the planet'e rotation, the msgnitude of which depends on the length of the arm CN. This tidal frictional eouple varies as the height of the tide, and also depends on the eatellite's distance ; its intensity in fact varies as the equare of the tide. generating force, and Fg. \& therefore as the inverso aixth power of the aatellite's distance. Thas tidal friction miat retard the planetary rotation. Let ns now consider ite effect cu the eatellite. If the force acting on M be resolved along and perpendicular to the direction CM, the perpendicular component tends to accelerate the satellite's velocity. It alone would carry the satellite further from C then it would be dragged beck by the central force towarda C. The ratellite would describe a spirsl, the coils of which would be very nearly circular and very nearly coincident. If now we resolve the central component force along CM tangentially and perpendicnlar to the spiral, the tangential component tends to retard ths velocity of the satellite, whereas the distarbing force, already considered, tends to accelerate it. With the erg forco, already considered, teads to accelerate ito With tion must prevail over the acceleration. ${ }^{1}$ The moment of momentum of the whole syatem remains unchanged, and that of the planetary rotation diminishes, so that the orhital momert of momentum mast increase; now orbital moment of momentum increase日 with increasing distauce and diminishing linear and angular velocity of the satellite. The action of tidal friction may appear eomewhat paradoxical, hut it is the exact converse of the accelera. tion of the linear and angular velocity and the dimination of distance of a satellite moving throngh a resisting mediun. The latter result is generally more familiar than the action of tidal friction, and it may help the reader to realize the result in the present case. Tidal friction theu diminishes planetary rotation, increases the aatellito's distance, and diminishes the orbital angular velocity. The comparative rate of diminution of the two angular velocities is geuerally very diferent. If the satellite be close to the planet the rate of iucrease of the eatellite's periodic time or month is large compared with the rate of increase of the period of planatary rotation or day; but if the satellite is far off the converse is true. Hence, if the satellite starta very near the planet, with the month a little longer than the day, as the satellite recedes the month aoon increases, 8 that it contains many days. The number of days in the month attains a maximum and then dimioishes. Finally the two angular relocities anbside to a second identity, the day and month being identical and both very long.

We beve supposed that the ocean is of anch depth that the tides are direct ; if, however, they are inverted, with low water under or nearly under the eatellite, friction, instead of retarding, accelerates the tide; and it would be easy by drawing another figure to sce that the whole of the above conclusions hold equally true with inverted tides

847. Exact Investigation of the Semular Effects of Tidal Friction.

The general conclusions of the last acction are of auch wide in. terest that me proceed to a rigorous discussion of the principal effects of tidal friction in the elementary case of the circular orbit. In order, however, to abridge the iavestigation wo shall only consider the case when the planetary rotation is more rapid than the aatellito's orbital motion.

Supposa an attractire particle or astellite of mass m to be moving in a circular orbit, with an angular velocity Ω, round a planet of mass 35 , and suppose the planet to he rotating about on axis perpendicular to the plane of the orbit, with an angular velocity ; 6urpose, also, the mass of the planct to be partially or wholly imperfectly elastic or viscous, or that there are oceaus on the surface of the planet ; then the attraction of the satcllite must produce a relative motion in the parts of the planes, and that motion must be subject to friction, or, in other words, there must bo frictional tides of some cort or other. The system must accordingly be losiag energy by friction, and its configuration must change in such a may that its whole energy diminishes. Such a system does not differ much from those of actual plancts and satellites, and, therefore, the results deduced in this hypothetical case must agree pretty closely with the actual course of evolution, provided that time enough has

[^151]been and will be given for such changes. Let C be the moment of inertis of the pladet about its axis of rotation, r the distance of the catellite from the centre of the plamet, h the resultant moment of momeatum of the whole bystem, e the whole energy, both kinetic and potential, of the syotem. It is assumed that the figure of the planet and the distribution of its internal density are such that the attraction of the satellite causcs no couple about any axis perpendicular to that of rotation. A epecial aystem of units of mass, length, and time will now be adopted such that the analytical reaulta are reduced to their simplest forms. Let the unit of mass, be $M(m / \mu+m)$. Let the unit of leagth γ be such a cistance thst the moment of inertia of the planet about its axis of rotatiou may be equal to the moment of inertia of the planet and satellite, treated es particles, about their centra of inertia, when distant γ spart frum one another. This condition gres
whence
$$
M\left(\frac{m \gamma}{M+m}\right)^{2}+m\left(\frac{M \gamma}{M+M}\right)^{2}=C ;
$$

Let the nnit of rimer $\mu / m\}$
time r be the time in which the sacellite rovolves . 3 ahout the planet, when the satellito's radins vector is equal to γ. In this case $1 / \tau$ is the satellite's orbital angular velocity, and by the law of periodic times we have

$$
\tau^{-2} \gamma^{3}=\mu(\Delta \Gamma+m)
$$

where μ is the attraction betwecn unit masses at anit distanca Then by cubstitution for γ

$$
\tau=\left\{\frac{C^{3}(M L+m)}{\mu^{2}(M / m)^{3}}\right\}^{\frac{1}{4}}
$$

This aybtem of nnits will be found to make the three following Spect functions each equal to unity, viz, $\mu^{3} J I n,(M+m)^{-\frac{1}{2}}, \mu M m$, sad C. vich The units are in fact derived from the consideration that these functions are each to be unity. In the case of the earth and noon, if we take the moon'a mass as हr马 ${ }^{1}$ d of the earth's and the earth'a moment of inertia as $\quad 1 M_{a^{2}}$ (as is very uearly the case), it may easily be shown that the unit of mass is so 3 of the earth'e mass, the unit of length 5.26 earth's radii or 33,506 kilomêtres (20,807 miles), and the unit of time 2 hrs. 41 minutes. In these units the present angular velocity of the earth's diurnal rotation is expressed by 7044 , and the moon'e present radius vector by $11 \cdot 454$. The two Monent bodies being supposed to revalve in circles sbout their common of me. centre of inertis with an angular velocity Ω, the moment of nomen - menticus tum of orbital motion is

$$
M\left(\frac{m r}{M+m}\right)^{2} \Omega+\lambda I\left(\frac{M I r}{M r+m}\right)^{2} \Omega=\frac{\lambda I m}{M I+n L} r^{*} \Omega
$$

Then, by the law of periodic times in a circular orbit,

$$
\begin{aligned}
& \Omega^{2} r^{3}=\mu(M+2 n) \\
& \Omega r^{2}=\mu^{3}(M+m)^{\frac{1}{2}} r^{3}
\end{aligned}
$$

whence $\quad \Omega r^{2}=\mu^{\frac{3}{2}}(M+m)^{\frac{1}{2}} r^{\frac{2}{3}}$.
The moment of momentum of orbital motion

$$
=\mu^{\frac{2}{2}} \operatorname{SI}(M+m)^{-\frac{1}{2}} r^{\frac{1}{2}},
$$

and in the special units this is equal to $r^{\frac{2}{3}}$. The moment of momentum of the planet's rotation is $C r$, and $C=1$ in the apecial nnits. Therefore
$h=n+r^{\frac{1}{2}}$
(102r
Since the moou's present radius vector is $11 \cdot 454$, it follors that the orbital momentuin of the moon is $3: 384$. Adding to this she rotational momentum of the earth, which is $\% 04$, we obtain 4.088 for the total moment of momentum of tho moon and earth. The ratio of the orbital to the rotational nomentun is $4 \cdot 80$, so that the total momeot of momeutum of the system would, but for the oblipuity of the ecliptic, be $5 \cdot 50$ times that of the earth's rotation. Again, the kintic energy of orbital motion is

$$
\frac{1}{2} M\left(\frac{m r}{M+m}\right) \Omega^{2}+\frac{1}{2} \ln \left(\frac{M I r}{M+m}\right)^{2} \Omega^{2}=\frac{1}{2} \frac{M / n}{M+m} r^{2} \Omega^{2}=\frac{1}{2} \frac{\mu M I m}{r}
$$

The kinetic eaergy of the plavet's rotation is $\frac{1}{3} \mathrm{Cn}^{2}$. The potential energy of the system is $-\mu 3 / \mathrm{in} / \mathrm{r}$. Adding the tlirce ewergies to gether, and transforming in to the special units, we have

$$
\begin{equation*}
2 e=u^{2}-1 / r \tag{103}
\end{equation*}
$$

Now let $\quad x=r^{\frac{2}{3}}, \quad y=n, \quad Y=2 e$
It will be noticed that x, the monent of momentum of orbital rootion, is equal to the square root of the satellite's distance from the planut. Then equations (102) and (103) become $h=y+z$.
(104) is the equation of conservation of moment of momnatum, or, shortly, the equation of momentum ; (105) is the equation of coergy.

Now consider a system started with given positive moment of momentum h; and we have all sorts of ways in which it may be started. If the two rotations he of opposite kinds, it is clear that we may start the system with any amount of energy however grest, but the true maxima and minima of energy compatible with tha given moment of momentun are supplicd by $d \Sigma / d x=0$, | or | $x-h+1 / x^{3}=0$, |
| :--- | :--- |
| $-h-h x^{3}+1=0$ | |

that is to say, $\quad x^{3}-h x^{3}+1=0$.
. (106)
Wre shall presently see that this quartic has cither tro real roots
and tro imaginary, or all imaginary roots. The quartic may be derived from quite s different cousiderstion, viz., by finding the conditiou puder which the satellite may move round the planet so that the planet shall always show the same face to the satellite, -in fact, so that they move ss parts of one rigid body. The condition is simply that the satellite's orbital angular velocity $\Omega=n$, the planet' θ sngular velacity of ratation, or $y=1 / x^{3}$, since $s=y$ and $r^{\frac{1}{2}}=\Omega^{-\frac{1}{8}}=x$, By substitutiag this value of y in the equation of momentum (104), tre get as before
$x^{4}-l x^{3}+1=0$
At present we have only obtained one result, viz., that, if with given moment of momentum it is possible to set the satellite and planet moving as a rigid body, it is possible to do so in two ways, aud one of these ways requires a maximum amonat of energy and the other a minimum ; from this it is clear that one must be a rapid rotation with the sstellite near the planet and the other a slow one with the satellite remote from the planet. In the three equations

$$
\begin{aligned}
& h=y+x \\
& \begin{aligned}
Y & =(h-x)^{2}-1 / x^{3} \\
3 y & =1
\end{aligned} \\
& \text { (107), } \\
& x^{3} y=1 \\
& \text { (108), }
\end{aligned}
$$

107) is the equation of momentum (108) that of (107) is the equation of momentum, (108) that of caergy, and (109) may be called the equation of rigidity, since it indicates that the two bodies move as thongh parts of one rigid body. Io illustrate these equations geometrically, we may take as abscissa x, which is the moment of momentum of orbital motion, 60 that the sxis of x may be called the axis of orbital momentum. Also, for eqnations (107) and (109) we may take as ordinate y, which is the moment of momentum of the planet's rotation, so that the axis of y may be called the axis of rotational momentum. For (108) we may take as ordinate Y, which is twice the energy of the system, so that the axis of Y may be called the axis of energy. Then, as it will be couvenient to exhibit all three curves in the same figure, with a parallel sxis of x, we must have the axis of energy identical with that of rotational momentum. It will not be necessary to consider the case where the resultant moment of momentum h is negative, because this would only he equivalent to reversing all the rotations; h is therefore to be taken as essentially positive. Then the line of momentum whose equation is (107) is a straight line inclined at 45° to either axis, having positive intercepts on both axes. The curve of rigidity whose equation is (109) is clearly of the same nature as a rectangular hyperbola, but it has a much more rapid rate of apprasch to the axis of orbital momentum than to that of rotational momentum. The intersections (if any) of the curve of rigidity with the line of momentum have abssissm which are the two roots of the quartic $x^{4}-h x^{3}+1=0$. The quartic has, therefore, two real roots or all imaginary roots. Then, eince $x=\sqrt{ } r$, the intersection which is moro remoto from the origin indicates s configuration where the satellite is remote from the planet; the other gives the configuration where the satellite is closer to the planet. We have already learnt that these two correapond respectively to minimum and maximum energy. When x is very large, the eqnation to the curve of energy is $Y=(h-x)^{2}$, which is the equation to a parabols with a vertical axis parallel to Y and distant h from the origin, so that the axis of the pars: bola passes through the intersection of tha line of momentuna with the axis of orbital momertum. When x is very emall, the equation becomes $Y=-1 / x^{2}$. Hence the axis of \bar{F} is ssymptotic on both sides to the curve of energy. Then, if the line of momentum intersects the curve of rigidity, the curve of energy has a maximum verticslly undernesth the point of intersection nearer the origin and a minimam andernesth the point more remote. But, if there are no intersections, it has no maximum or ninimum.

Fig. 9 shows these curves when drawn to scale for the case of the earth and moon, that is to say, with $h=4$. The points a and b,

sarily remains indistinguishable from B. As the zero of energy is quite arbitraly, the origin for the energy curve is displaced domnWarda, and this prevents the two curves from crossing one another in a confusing manner. On account of the limitation imposed we
neglect the case where the quartic has no real roots. Evory point of the line of momentum gives by its abscissa and ardinate the squaro rooc of the eatellite's distance and the rotation of the planet, and the ordinate of the energy curve gives the energy correspouding to each distance of the satellite. Part of the figure has no physical meaniog, for it is impossible for the aatellite to move round the planet at a distence less than the sum of the radif of the planet and eatellite. For exsmple, the moon's diameter being about 2200 rmles, and the earth's sbout 8000 , the moon'e distance cannot be less then 5100 miles. Accordingly a strip is marked off and shaded on each side of the vertical axis within which the figere has no physical mesning, The point P indicates the present configuration of the earth and moon. The curve of rigidity $x^{3} y=1$ is tha same for all values of h, and by moring the line of momentum parallel to itself pearer to or further from the origin, wo may represeat all possible moments of momentum of the whole system. The smallest amount of moment of momentum with which it is possible to set the system moving as a rigid body, with ceutrifugal force enough to balance the mutual attraction, is when the line of momentum touches the curve of rigidity. The condition for this is clearly that the equation $x^{4}-h x^{3}+1=0$ should have equal roots. If it has equal roots, each root must he $\frac{3}{4} h$, and therefore

$$
\left.\left(\frac{3}{2} h\right)^{4}-h^{\left(\frac{3}{2}\right.} h\right)^{3}+1=0
$$

whence $h^{4}=4^{4 / 3} / 3^{3}$ or $h=4 / 3^{\frac{3}{2}}=1 \cdot 75$. The actual value of h for the moon sud earth is shout 4 ; hence, if the moon-earth system were started with less than $\frac{7}{15}$ of its actual moment of momentum, it would not be possible for the two bodies to move so that the earth Mar should always show the same face to the moon. Again, if we trarel mum along the liae of momentum, there must be oome point for which number $y x^{3}$ is a maximum, and since $y x^{3}=n / \Omega$ there must be some point of day u a for which the number of plapetary rotations is greatest during one mont revolution of the satellite; or, ghortly, there must be some configuration for which there is s maximum number of days in the month. Now $y x^{3}$ is equal to $x^{3}(h-x)$, and this is s maximun when $x=\frac{3}{4} h$ and the maximum number of days in the month is $\left(\frac{9}{4} h\right)^{3}\left(h-\frac{9}{4} h\right)$ or $3^{3} h^{4} / 4^{4}$; if h is equal to 4 , , is nearly the case for the earth and moou, this becomes 27. Hence it follows that we now have very nearly the maximum number of days in the month. A more accurate investigation is a paper on the "Precession of a Viscous Spheroid" in Phil. Trans., part i., 1879, showed that, taking account of solar tidal friction and of the obliquity to the ecliptic, the maximum number of dajs is about 29 , and that we have already passed through the phase of maximum. We will now consider the Disensphysical meaning of the figure. It is assumed that the resultant sion of moment of momentum of the whole system corresponds to s positive figare. rotation. Now imsgine two points with the same abscissa, one on the momentum line and the other on the energy curve, and snppose the one on the energy curve to guide that on the momentum line. Then, eince we are eupposing frictional tides to be rsised on the planet, the energy must degrade, and however the two points are set initially the point on the energy curve must alwags slide down \& slope, carrying with it the other poiut. Looking at the figure, we bee that there are four slopes in the energy curve, two running down to the planet and two down to the minimum. There are thercfore four waye in which the oystem msy degrade, according to the way it was started; but we shall only consider one, that corresponding to the portion $A B b a$ of the figure. For the part of the line of momentum $A B$ the month is longer than the day, snd this is the case with all known satellites except the nearer one of Mars. Now, if a satellite be placed in the condition A-thst is to asy, moving rapidly round a planet which slways shows the same foce to the satellite-the condition is clearly dynamically unstable, for the least disturbance will determine whether the'system shall degrade down the slopes $a c$ or $a b$-ihat is to ssy, whether it falls into or recedes from the planet. If the equilibrium breaks domn by the satellite receding, the recession will go on until the syatem has reached the state corresponding to B. It is clear that, if the intersection of the edge of the shaded strip with the line of momentum be identical with the point A, which indicates that the satellite is just touching the planet, then the two bodies are in effect parts of a single body in an unstable configuration. If, therofore, the moon was originally part of the earth, we shoold expect to find this identity. Now in fig. 9 , drawn to scale to represent the earth and moon, there is so close an spproach between the edge of the shaded band and the intersection of the line of momentum and curve of rigidity that it would be scarcely possible to distinguish them. Hence, there seems a probsbility that tho two bodies once formed parts of a single one, which broke np in consequencs of some kind of instability. This view is coufirmed by the more detailed consideration of the case in the paper on the "Precession of a Viscous Spheroid," alfeady referred to, and subsęquent papers in the Fhilosophical Transactions of the Royal Society.

1 Fnifurther consideration of this snbject gee a series of papers by $8 f r Q$. R Darwin, in Froceed. and Trans. of thedioyal Bociety from 1sis to 1881, and

§ 48. Amount of Tidal Relardation of Earth's Rotation.
With respect to the actual smount of retardation of the earth's rotation, we quate the following from Thomson and Tait's Nat. Phil. (1883), § 830.

In observational astronomy the earth's rotation serves as a time keeper, and thus a retardation of terrestrial rotation will appear astronomically as an scceleration of the motion of the heavenly bodies. It is only in the case of the moan's motion that such sn apparent scceleration can be possibly detected. Now, as Laplace first pointed ont, thero must bo a slow variation in the moon's mean motion arising from the secular changes in the eccentricity of the earth's orbit around the sun. At the present time, and for scveral thousand years in the future, the variation in the moon's motion is sud will bo sn soceleration. Laplace's theoretical calculation of the smount of that acceleration sppesred to sgreo well with the results which were in his day accepted as representing the facts of observation. But in 1853 Adams showed that Laplace's reasoning was at fault, snd that the aumerical results of Damoiseau's and Plana's theories with refcrence to it cousequently require to be sensibly altered Hansen's theory of the secular acceleration is vitiated by an error of principlo similar to that which affects the theories of Damoiseau and Plans; but, the mathematical process which he followed being different from theirs, he arrived st somewhat different results. From the erroneous theory Hsasen found the value of $12^{\prime \prime} 18$ for the coefficient of the term in the moon's mean longitude depending on the square of the time, the unit of time being a century - in a lster computation given in his Darlegung he found tho coefficient to be $12^{\prime \prime} 5 \mathrm{C}^{2}$
"Io 1859 Adams commanicated to Delaunay bis final result, namely, that the caefficient of this term appears from a correctly conducted iovestigation to be $5^{\prime \prime} 7$, so that Bt the end of a century the moon is $5^{n} \cdot 7$ before the position it would heve had at the same time if its mean angular velocity had remaired the same as at the beginning of the century. Delaunay verified this result, and added some further small terms which increased the coefficient from $\delta^{\prime \prime} 7$ to $6^{\prime \prime} \cdot 1$.
"Niaw, according to Airy, Hanscn's palue of the 'adrance' represents very well the circumstances of the eclipses of Agathoclos, Larissa, and Thales, but is if angthing too emall. Newcomb, on the other hand, is inclined from an elaborate discussion of the socient eclipses to beliere llansen's ralue to be too large, snd gives tro competing values, viz., $8^{\prime \prime} 4$ and $10^{\prime \prime} 9.9$
"In any case it follows that the value of the sdrance as theoretically deduced from sll the canses, known up to the present time to be opcrative, is smaller than that which agrees with observation. In what follows $12^{\prime \prime}$ is taken ss the observational value of the adrance, and $6^{\prime \prime}$ as the explained part of t is phenomenon. About the beginning of 1866 Dolaunay suggested that the true explanation of the discrepancy might be a retardation of the earth's rotation by tidal friction. Using this hypotheais, and allowing for the consequent retardation of the moon's mean motion by tilal reaction, Numeri- Alams, in an estimato which he has communicated to us, founded cal result on the rough assumption thst the parts of the carth's retardation as to earth' θ ation. due to solar and lunar tides are as the squares of the respective tide.generating forces, finds 22 sec , as the error by which the eartb, regarded as a time-keeper, wonld in a century get belind a perfect clock rated at the beginning of the ceutury. Thus at the cnd of a century a meridian of tho carth is $230^{\prime \prime}$ behind the position in which it would have been if the earth had continucd to rotata with the same angular relocity which it had at the beginning of the century.

Whatever be the valne of the retardstion of the carth's rotation it is necessarly the result of several caused, of which tiflal friction is almost certainly preponderant. If we accept Adams's estimate ss applicable to the outcome of the parious cascurring causes, then, if the rate of retardation giving the integral effect were uniform, the earth as a time-keeper would be going slower by 22 of a second per jear in the middle, and by ' 41 of a second per jear st the end, than at the beginning of the century. The latter is $\frac{1}{71.7 \times 10^{\circ}}$ of the preseot sngular velocity ; and, if the rate of retardation had been nuiform during ten million centurics past, the earth must havo beca rotating faster by abont one-gerenth than at prescut, and the centri-

[^152]fugal force must hare been greater in the proportion of 817^{9} to 717^{2} or of 67^{\prime} to 51 . If the consolidation took place then or earlier, the ellipticity of the upper layers must have been $\frac{1}{3} \frac{1}{\sigma}$ instead of sbout $8 \frac{1}{80}$, as it is at present. It must necessarily remain uncertain whether the earth would from time to tine sdjust itself completely to a figure of equilibrium adapted to the rotation. Bot it is clear that a want of completo adjustment would leavo traces in a propooderance of land in equatorial regions. The existence of large continents sod the grcat effective rigidity of the earth's mass reader it improbable that the adjustments, if sny, to the appropriste figure of equilibrium would bo complete. The fact then that the continents are arranged slong meridians rather than in sn cquatorial belt affords como degreo of proof that the consolidation of the earth took placo at a timo when the diurnal rotation differed but little from its present value. It is probsble, therefore, that the date of consalidation is considerably more receut than a thouGaud million jears ago. It is proper, however, to add that Adams lays but little stress on the actual uumerical values which hara been used in this computation, and is of opinion that the amount of tidal retardation of the earth's rotation is quito uucertain."

§49. Effects of Tidal Friction on the Elcments of the Moon's

 Orbil and on the Earth's Rotation.It wonld be impossille within the limits of the present srticle to discuss completely the effects of tidal friction; we therefore confone ourselves to certain general considerations fihich throw light on the nature of those effects. Te lave in tha preceding sections sapposed that the plenct's sxis is perpendicular to the arbit of tha satellite, and thst the lsttcr is circular ; we shall now suppose the orbit to be oblique to the equator and eccentric, snd shall slso consider some of the effects of the solar perturbation of the moon. earth system. For the sake of brevity the planct will be called the earth, and the eatellite the moon. The complete investigation was carried out on the hypothesis that the planet was a viscous spheroid, because this mas the only theory of frictionally resisted tides which had been norked out. Although the results would bo practicaliy the same for any system of frictionally resisted tides, we ehall speak below of tho planet or earth ss a viscous body."

We shall show that if the tidal retardation be small the obliquity oull of the ecliptic increases, the earth's ratation is retarded, and the quity of moon's distance and periodic time are incrcased. Fig 10 represents the the earth ss scen from above the soutls pole, so that S is the pola and tha onter circla tho equator. The earth's rotatlon is in the direction of the curved srrow st S. The half of the inner circle Which is drawn with a full line is C a scmi-small-circlo of south latitudo, and the datted semicircle is a semi-small-circlo in the eame worth latitude. Generslly dotted lines Indicate psrts of the figure Which are bclow the plane of the
 paper. It will make tho explanation somewhat eimpler if we suppose the tides to be raised by a moon and anti-moon diametrically opposite to one snother. Let II sad IN^{\prime} bo the projections of tho moon snd sati-moon on to the terrestrial sphere. If tho fluid in which the tides are raised were perfectly frictionless, ${ }^{6}$ or if the earth were a perfect fluid or per. fectly elastic, the apices of the tidal spheroid would be at M and ΔI^{\prime}. If, however, there is interal friction, due to any cort of viscosity, the tides will lag, snd we may suppose the tidal apices to be at T snd T'. Now suppose the tidal mrotuberances to bo replaced by two equal heavy particles st T and T, which ere in stantancously rigidly connected with the earth. Then the aftraction of the moon on T is greater than on T^{v}, and that of the antimoon on T^{*} is greater than on T . The resultant of these forces is clearly s pair of forces actiog on the earth in the dircction TM, T'A'. These forces clearly canso a couplo about the axis in the equator, which lies in the same meridian os the inoon and sutimoon. The direction of tho couple is shown by the curved srrows st L, L '. If the effecta of this couple loe compounded with the existing rotation of the earth according to the principle of the eyroscope, tho couth pole S tends to approach M sad the north pole to approsch M'. Hence, supposing the moon to more in the ecliptic, the inclination of the earth's axis to the ecliptic diminishes, or the obliquity increases. Next the forces TM, T'M1' clearly produce, as in the simpler case considered above, a couple about the earth's polar asis, which tende to retard tho diurnal rotation.

This gencral explanation remains a fair represcatation of the state of the case ao long as tho differeni barmonic constitucnts of tho aggregate tide-wave do mot suffer rery different smounts of re-
-Thean explanations, together with other remarks, are to be fonnd in the abstracts of Mr G. II. Darwiu's mennolrs in Proc. Roy. Soc., 18.8 to $18 s 1$.
of Wo here sappose tho tides not to bo Inverted If they are inverted the cunclusion is precisely the same.

XXIIL - 4^{8}
tardation; and this is the csae so long as the viscosity is not grest. The rigorous result for a viscous planet ahows that in general the obliquity will increase, and it sppears that, with small viscosity of the planet, if the period of the satellite be longer than two periods of rotation of the planet, the ohliquity increases, and vice versa. Hence zero obliquity is only dynsmically stable when the period of the eatellite is less than two periods of the planet's rotation.

Suppose the motions of the planet and of its solitary satellite to be referred to the invarisble plane of the system. The axis of resultant moment of momentum is normal to this plana, and the component rotations are that of the planet about its axis of figura and the orbital motion of the planet and catellite round their common centre of inertis; the sxis of this lstter rotation is clearly the pormal to the satellite's orbit. Heace the normal to the orbit, the axis of resultant moment of momentum, snd the planet's axis of rotation must alweys lie in one plane. From this it follows that the orhit and the planet's equator mnst necessarily hava a common node on the invariable plane. If either of the component rotations alters in amonnt or direction, a corresponding change must take place in the other, auch as will kecp the resultant moment of momentum constant in direction and magnitude. It has been shown that the effect of tidal friction is to increase the distance of the satellite from the planet, and to transfer moment of momentum from that of planetary rotation to that of orbitsl motion If, then, the direction of the planet'a axis of rotation does not change, it fullows that the normal to the lunar orbit must approach the axis of resultant moment of momentum. By drawing e eeries of parallelograms on the came diameter and keeping one aide constaut in direction, this may he easily seen to be true. Thia is equivalent to saying thest the inclination of the sstellite's orbit will decrease. But this decrease of inclination does not always nacessarnly take place, for the previous investigations show that another effect of tidal friction may ho to increase the obliquity of the planet's equator to the invariable plane, or, in other words, to increase the inclination of the planet's axis to the axis of resultant moment of momentum. Now, if a parallelogram be drawn with a conatant diameter, it is aeen that by increasing the inclination of one of the sides to the diameter (and even decreasing its length) the in ingation of the other sidp to the diameter may also be increased. The most farourabls case for such a change is when the side whose inclinstion is increased is nearly as long as the diameter. From this it follows that the inclination of the satellite's orbit to the invariable plane may increase, and that it is most likely to increase, when the moment of momentum of planetary rotation is large compared with that of the orbital motion. The analytical solution of the problem agrees with these results, for it showa that if the viscosity of the planet he emall the inclination of the orhit alwaya diminishes, but if the viscosity, be large, and if the satellite moves with a short periodic time (as estimated in rotationa of the planet), the inclinstion of the orbit will increase. These results coavey aome idea of the physical canses which may lave given rise to the present inclination of the lunar orbit to the ecliptic. For the analytical investigation shows that the inclination of the lunar orbit to a certain plane, which replaces the invarishle plane when the solar attraction is introduced, was initially small, that it then increased to a maximum, and that it finally diminished and is atill dimiaishing.

But the lows above referred to would, by themselves, afford a very ansatisfactory explanation of the inclination of the lnnar orbit, beeanse the sun's attraction is a matter of moch importance. It has been found that, if the viscosity of the planet be small, the inclination of the orbit of the solitary satellita to the invariable plane will always diminish; but, when solar influence is introduced, the corresponding etatement is not true with regard to the inclination of the lunar orbit to the proper plame, for during one part of the moon'e bistory the inclination to the proper plane would have increased even if the viscosity of the earth had been small.

Consider a aatellite revolving abont a planet in an elliptic orbit, with a periodic time which is long compared with the period of rotation of the planet; and auppose that frictional tides are raised on the planet. The major axis of the tidal spheroid alwsye points in advance of the satellite, and exercises on it a forcou which tends to accelerate its linear velocity. When the satellite is in perigee the tides are higher, and this disturbing force is greater than when the satellite is in apogee. The disturbing force may therefore be represented as a constant force, slwaya tending to accelerate the motion of the satellite, and as a periodic force which accelerates in perigee and retards in apoges. The constant force causes a secular increase of the satellite's moan distance and a retardation of its mean motion. The accslerating force in perigee canses the satellite to 6 wing out further than it would otherwise have donc, so that when it comes round to apogee it is more remote from the planet. The retarding force in apogee acts exactly inversely, and diminishes the perigean distrnce. Tbus, the apogean distance increases and the perigean distance diminishes, or, in other words, the eccentricity of the orbit increases. Now consider another case, and suppose the satellite's periodic tima to ba identical with that of the planet's rotation.

Then, when the satellita is in perigee, it is moving faster than the planet rotates, and when in spogee it ia moving slower; hence at apogee the thdes lag, and st perigee they are accelerated. Now the lagging spogean tides give rise to au accelerating force on the batellite, and increase the perigean distance, whilst the acceleratod perigean tides give rise to a retarding force, snd decrease the apogean distance. Hence in this case the eccentricity of the orbit will diminish. It follows from these two results that there must he sonse intermediate periodic time of the sstellite for which the eccentricity does not tend to vary.

But the precediug general explanation is in reality somewhat less sstisfactory than it eeems, because it does not make clear the existence of certain antagonistic influences, to which, however, we ahall not refer. The rigorous result, for a viscons planet, shows that in genersl the eccentricity of the orbit will increase; but, if the obliquity of the planet'e equator he nearly 90°, or if the viscosity be so great as to approach perfect rigidity, or if the jeriodic time of the satellite (messured in rotations of the planet) be short, the eccentricity will slowly dtminish. When the viscosity is small the law of variation of eccentricity is very aimple: if eleven periods of the satellite occupy a longer time than elghteen rotstions of the plsnet, the eccentricity increases, nnd vice versa. Hence in the case of small viscosity a circular orbit is only dynamically stable if the eleven periods are ehorter than the eighteen rotations

X. Cosmooonio Spectlations founded on Tidal Friction.

§ 50. History of the Earth and Mroon.

We shall not attempt to discnss the mathematical methods by which the complete history of a planet, attended by one or more 6atellites, is to he traced. The laws indicated in the preceding sections show that there is such, a problem, and that it may be solved, and we refer to Mr Darwin's papers for details (Phil. Trans., 1879-81). It may be interesting, however, to give the various resulta of the investigation in the form of a sketch of the possible evolution of the earth and noon, followed by remarks on the other planetary systems and on the solar system as a whole.

Wa begin with a planet not very much more than 8000 miles in Conjee - dismeter, and probably partly solid, partly fluid, and partly gaseoua. tural It is rotating about an axis inclined at about 11° or 12° to the nor-genesis of mal to the ecliptic, with a period of from two to four houra, and is moon revolving about the sun with a period not much shortcr than onr from present year. The rapidity of the planet's rotation causes so great earth. a compression of ita figure that it camuot continue to exist in an ellipsoidal form with stability; or else it is so nearly. nonstable that complete instability is induced by the solar tides. The planet then separates into two masses, the larger heing the earth and the smaller the moon. It is not attempted to define the mode of separation, or to say whether the moon was initially a chain of meteorites. Lt any rate it must be assumed that the smaller mass became more or less'conglomerated and finally fused into a spheroid, perhaps in. consequence of impacta between its constituent motoorites, which were once part of the primeval planet. Up to this point the bistory is largely speculative, for the conditions of instability of a rotating mass of flid have not yet been fully investigated. We now have the earth and moon nearly in contact with one Earth another, and rotating nearly as though they were parts of one rigid and body.t This is the system which was the subject of dynamical moon investigation. As the two masses are not rigid, the attraction of subject each distorta the other; and, if they do not move rigorously with of inver the same periodic time, each raises a tide in the other. Also the tigatios. sua raises tides in both. In consequence of the frictional resistance to these tidal motions, such a system is dynamically unstsble. If the moon had moved orbitally a little faster then the earth rotated she must have fallen back.into the earth; thus the existence of the moon compels ua to believe that the equilibrium broke down by the moon revolving orbitally a little slower than the earth rotates. In consequence of the tidal friction the periodic times both of the moon (or the month) and of the earth's rotation (or the day) iacrease; but the month increases in length at a much greater rate than the day. At some early stage in the history of the aystem the moon was conglomerated into a spberoidal form, and acquired a rotation about an axis nearly parallel to that of the earth.
The axial rotation of the moon is retarded by the attraction of the earth on the tides raised in the moon, and this retardation takce place at a far greater rate than the similar retardstion of the earth's rotation. As soon as the moon rotates round ber axis with twice the angular velocity with which ohe revolves in her orbit, the position of ber axis of rotstion (parallel witly the earth's axis) becomes dynamically unstable. The ohliquity of the lunar equator to the plane of the orbit increases, attains a maximum, snd then diminishes. Mesowhile the lunar sxial rotation is being reduced towards identity with the orbital motion. Finally, her equator is nearly coincident with the plane of the orbit, and the attraction of the earth on a tide, which degenerates into a permanent ellipticity

1 See criticisms by Mr Nolan, Genesis of Moon, Melbourne, I885; aino Nature 18th Frebuarg 1886.
of the lunar equator, causee ber always to show the same face to the earth.
r sil thie mast have taken place early in tho history of the earth, to which wo now return. As the month increases in length the lowar orbit becomes eccentric, and the eccentricity resches a maximam when the month occupiss about a rotation and a half of the earth. The maximnm of eccentricity is probably not large. After this the cccentricity diminisishes. The piano of the lunar orbit is at first practically identical with the earth'e eqnator, but es tho moon reecdes from the carth the sun's attrection begins to maka itself felt Wo must thercfore introduce the co.rception of two idesl planes (here called tho proper planes), to which the motion of the earth and moon must be referred. The lunar proper plane is at first inclined at a very snall angle to the earth'e proper plane, and the orbit and equator coincide with their respective proper planes. As soon as tho earth rotates with twico the aogular velocity with which the moon revolves in her orbit, \& new instability sets in. The month is then about twelvo of our present hours, and the dsy ebout eix such hours in leugth. The inclinations of the lurar orbit sod of the equator to their respective proper planes increase. That of the lunar orbit to its proper plezie increasss to - maximom of 6° or 7°, and ever after diminishes, that of the oguator to its proper plano increases to a meximum of about ${ }_{2}{ }^{4} 45^{\prime}$, and ever after dimioishes. The masimam inclination of the lunar orbit to its proper plene takes place when the day is a littlo less than nioo of our present hours, and the month a littlo less than six of our present days. The maximum inclination of the equator to its proper plane tal:es placo carlier than this. Whilst these changes have been foing on the proner planes have boen themselves changing in thcir positions relatively to one another and to tho ccliptic. At first they wcro ncarly cuinciueni with oie snother and with tho earth's equator, but they then open out, and tho inchnation of the lunar propser plano to the ecliptic continually diminishes, whilst that of tho terrestrial proper plane rent:nually iocrcases. At somo stago the earth became more rigid, and oceans wcro formod, so that occanic tidal friction probably came to play a more imporlant part than bocily tidal friction. If this bo the case, tho cccentricity of the orbit, after passing through a stationary phase, begins to increase agaio. We lave now traced the sjstem to a stato in which the dey and modth are incrcasing, but at anequal rates, the inclination of the lunar proper plane to the ecliptic and of the orlit to the propor plana ara diminishing, the inclination of the terrestrial proper plane to the ccliptic is increasing and of tho equator to its proper plane is diminishing, and the eccentricity of the orbit is increasiog. No new phase now aupervence snd at length we have the systerm in its present configuration. The minimum time in whinh the changes from first to last can have taken placo is $54,000,000$ years
There sire other colleteral results which must arise from a supposed primitive viscosity or plasticity of the eartha mass. Foduriog this course of evolution the earth's mass must hava suffered a scre wing motion, so that tho polar regions hava travelled a little from west to east relatively to the equator. This aflords a possible explanation of the north and sonth trend of our great contiosnts. Also s largo amonnt of heat hes been. generated by friction deep down in tho carth; and gomo very small part of the observed increase of temperature in nnderground boriogs may bo attributalile to this canss. The preceding Listory might vary a little in detail according to the degree of viscosity which we attribato to the earth's raas, and according as oceanic tidal friction is or is not, now and in the more receat past, a more powerful causo of change than bodily tidal friction. The argument reposes on the imperfect rigidity of solids and on the internal friction of semi-solide and Guids; these ara nere causse. Thus changes of the kind here disussed must be going on, and must have gone on in tho past. And for this history of the earth and moon to bo true throughout, it is only necessary to postulate a sufficient lepse of time, and that there is not enough matter diffused through space to materially resist the motions of the moon and earth in perh 3 s $200,000,000$ years. It eesms hardly too mach to say that, granting theso two postulates, and tho existence of a primevel' planet, such ns that above described, a system would nccessarily ha devoloped which would bear astrong resemblance to our owna. A theory, reposing on reres causw, which brings into quantitative correlation tho leog ths of tho present day and month, the obliquity of the eeliptic, and the incl!ination and eccentricity of the loazar orbit should have claims to acceptance.

§ 51. The Other Planelary Suborstems.

If this has been the erolution of the earth and moon, a simuar process must have beea roieg on elsewhere. So far we havo only considered a single satelite and the suo, but the theory may of courso bo extended, with modifications, to plonets attended by several satellites. We will now, thereforo, consider some of tho other members of tho solar system. A largo planet has mach more energy of rotation to bo destroyed, und moment of mormentum to bo redistributed, than a small ono, and thercforo a largo planet ought to aroceod in its evolution moro slowly then is omall one.

Therefore wo ought to find tho larger plenets less sdvanced than the smaller ones. The masses of such of the planets as havo satellites are, in terms of the earth's mass, as follows :- Marse $\frac{1}{7}$; Jupiter $=340 ;$ Satur $=100:$ Uranus ~ 17; Neptupe $=20$.
Mars ahould therefore be furthest advanced in its e rolution, and it is here alone in tho wholo syster that we find a satellite moring orbitally faster than tho planet rotates. This will also be the ultimate fato of cur moon, because, after its orbital motion has been redoced to identity with that of the cartli's rotation, solar tidal friction will further reduce the earth's angular velocity; tho tidal reaction on tho meon will then be reversed, and the moon's orhital velocity will iocrease and her distance from the earth diminish. But, since tha moon's mass is very large, she mast recedo to an enorinous distaces from the earth befora this reversal takes placa. Now the estollites of Mars ara very small, and thereforo they need only recede a very short distanco from the planet befiore the reversal of tidal reaction. The periodic time of tho satcllito Deimos is $30^{\mathrm{b}} 18 \mathrm{~m}$, and, as the period of rotation of Mars is $24^{\mathrm{b}} 37 \mathrm{~m}$, Deimos must be still recediog from Mars, bat very slowly. The periodic time of the gatellita l'hobos is 7 7 39 mm ; therefore it must be approaching Mars. It does not seern ninely that it has ever been remote from the planct. ${ }^{1}$ The eccentricities of tho orbits of both satellitee are small: that of Deimos is 0057 and that of Phobos .0066. If tho viscosity of the planet be small, or if occanic tidal friction be the principal cansa of change, both eccentricities are diminishing; but, if the viscosity bo large, both a-八 increasing. As wo have no means of knowing whether tho occentricities aro increasing or diminishing, the larger eccentricity of tho orbit of Plobos cannot be a fact of much impertance either for or against the present viows. But it nust be sadmitted that it io 5 slightly unfavouralle indication. The position of the proper plano of a satcllite is determined by the periodic time of the satellite, the oblatenass of the planet, and the sun's distance. The inclination of the orbit of a estellite to the proper plano is not determined by anything in toe gysten. Heace it is only the inclination of the orbit which can affor any argument for or ogaiost the thesiz. Tho proper planes ,f both satcllitea are necessarily yenrly coincident with the equatior of the planet; bat it is in aicordace with the theory that tho inclioations of the orbits to their respective proper planes should bo small. Any change in the obliquity of the equator of دlars to the plane of his orbit must be eatirely due to soler tides. The present oblignity is sbout 30°, and this points also to au advanced stage of evolution, at least if the axis of tho planet was primitively at all nearly perpendicular to the ecliptic.

We now come to the syatem of Jupiter. This enormens planet is still rotating in about ten hoors; its axis is nearly perpendicular to the ecliptic; and three of its eatellites revolva io screan days or less, whilst tha foarth has a period of $16^{\mathrm{d}} 16^{\mathrm{h}}$. This systsm is obviously far less adranced than our own. Tha igelinations of the proper planes to Jupiter's equator are necessarily small, bot the inclinations of the orbits to the proper planes appear to bs very interesting from a theoretical point of view. They are in the caso of the frrst aatellite $0^{\circ} 0^{\prime} 0^{\prime \prime}$, in the caso of the second $0^{\circ} 27^{\prime} 50^{\circ}$, in that of the third $0^{\circ} 12^{\prime} 20^{\prime \prime}$, and in that of the fourth $0^{\circ} 14^{\prime} \mathrm{E} 8^{\prime \prime}$. Wo have shown abore that the orhit of a satellito is first coincident with its proper plane, and that the inclination afterwards rises to a maximum and fidally declioes. If then wa may assume, as seems reasooable, that the satellites are in stages of evolution correspooding to their distances from tho plauct, theso in. $\%$; ${ }^{2}$ ationa accord well with the theory. The eccentricities of tha orbits of the two inner satelifites are insensible, those of the outer two amnll This doca not tell strongly pither for or agziost the theory, because the history of the eccentricity depends considerably on the nature of the friction to which the tides are subject. Yet it on the whole agrees witl the theory that the ecceatricity abould be greater in the more remote satellites. It appears that the satellites of Jupiter almaya present tho same facs to the plapet, just as does our moon. This was to be expected.
Tho case of Saturn is not altogether so farourable to the theory. The extremely rafid rotation, the ring, and the allort periodic tine of the inner satellites point to an early atoge of developoent; whilst the longer periodic time of the three outer satellites and the high obliquity of the equator indicato a later stage. Perhaps Loth ricwa may he more or less correct, for successive ohedding of salellites would impart a modern appearance to tho gystem. It has probably beea praviously remarbed that the Saturnian system bears a strong analogy to the golar system, Titan being analogous to Jupiter, Hyperion and Iapetus to Uranas and Neptune, and the inaer satalhites to the ioner plancts. Thusanything which aids us io forming a theory of the ono gystem will throw light on the other. The details of tho Saturnian aystem seem to bo more or less favourablo to the theory. The proper planes of the orbits (except that of lapetus) are noarly in the plane of tha ring, and tho iacliaations of all the orbits iereto appear not to ho large. As the result of a Mr Nolan compiders thatheory inapplicable to the caso of Mara ; soe Nafurce $29 t h \mathrm{Julj} 1580$

B carefal series of obsarvations made at Washagton in 1873 , Prof. Assph Hall ${ }^{1}$ finds that the eccentricities of the orbits of Mimas, Encaladus, Tethys, Dione, and Rhea are insensible, that of Titan is ${ }^{\circ} 0284$, of Hyperiod $\cdot 1000$, and that of Iapetus $\cdot 0278$. The satellite lapetas appears always to present the same face to the planet. Concerning Uranus and Neptune there is not nuch to he said, as their systems are very littla known; but their masses are much larger than that of the earth, and their satellites revolve with a short periodic time The retrograde motion and high inclination of the satellites of Uranus ara very ramarkahle. The theory of tha inclination of the orbit has been based on an assumed smallness of inclination, and it is net very easy to sea to what results investigatior might lead if the inclination were large. It must be admitted, hewever, that the Uramian system points to the probability of the existence of a primitive planet, with ratrograde rotation, or at least with a very large obliquity of equator.
It appears from this review that tha other members of the selar system present some phenemena which are strikingly favourabla to the tidal theory of evolution, and nona which are absolutely condemnatery. We shall show in the following section that there ara reasons why the tidal friction arising in the planetary systems cannot hava had so much effect as in the casa of ths earth and moon. That the indications which we hare just noted were not more marked, but jet seemed to exist, agrees well with this concluaion.
§52. Influence of Tidal Friction on the Evolution of the Sola. System.
According to tha nebular hypothesis, the planets and the satellites are pertions detached from contracting nebulous masses. In the following discussion that hypethesis will ba accepted in its main cutlina, and we shall examine what modifications are necessitatad by the influence of tidal friction. It may be shown that the reaction of the tides raised iu tha sun by the planats must have had a very small influence in changing the dimensiens of the planetary orbits round the sun. Frem a censideration of mumarical data with regard to the solar system and the planetary subsystems, it appears improbabla that the planetary orbits hare been reasibly enlarged by tidal friction since tha origin of the saveral planets. But it is possible that seme very small part of tha eccentricitias of the planetary orbits is dus to this cause. From arguments similar to those advanced with regard to the selar system as a whole, it appears unlikely that the satellites of Mars, Jupiter, and Saturn originated very much nearer tha present surfaces of the planets than wa now obserre them. But, tha data being insufficient, wa cannot feel sure that the alteration in tha dimensions of the orbits of these satellites has not been considerable. It remains, however, nearly certain that they cannot hare first originated almest in contact with the present surfaces of the planets, in the same way as in the preceding sketch ($\$ 50$) has been ahown to ba probahla with regard to the moon and earth. Numerical data concarning the distribution of moment of momentum in tha aeveral planetary aub-systems cxhibit so striking a differenca betreen tha terrestrial system and those of tha other planets that wa ahould from this alone hare grocnds for beliaving that tha modes of evolution have bean considerably different. The differenca appears to lie in the genesis of the moon close to the present surface of the planet, and wa slall sea below that solar tidal friction may he asoigned as a reason to axplain how it has happaned that the terrestrial planet had contracted to nearly its present dimensions befere tha genesis of a satellite; but that this was not tha casa with the exterior planets. The efficiency of solar tidel friction is very much greater in its action on the nearer planets than on the further ones. Tha time, howaver, during which solar tidal friction has been pperatiog on the external planets is probably much longer than the peried of its efficiancy for tha interior ones, and a serias of numbers proportional to the total amount of rotation destroyed in the several planets would present a far lass rapid decreasa as ma receda from the sun than numbers simp'y expressive of the efficiency of tidal friction at the several planets. Navertheless it must be admitted that the effect produced by solar tidal friction on Jupiter and Saturn bas not been nearly so great as on the interior planets. And, as already stated, it is very improbabla that so large an amount of momentum should have heen destroyed as to materially affect the orbits of the planets round the sun.

We will now examina how the differences of distance frem the sun would ba likely to affact the histories of the several planetary masses. According to the nebular hypothesis, a planetary nebula contracts, and rotates quicker as it contracts. The rapidity of the revolution causes it to hecoma unstabla, or perhaps an equatorial belt gradually detaches itsalf; it is immaterial which of these.two seally takes place. In either case the separation of that part of the mass which before the changa had tha greatest angular momentum permits the central portien to resuma a planetary shapa. Tha contraciou and the increase of rotation proceed continually until another nortion is detached. and so on. There this recur at interrals a series of epechs of instabinty or of abnormal changa. Now
tidal friction most diminish the rate of inerease of sotation due te contraction, and therefore if tidal friction and contraction are at work tegethar the epochs of inatability must racur more rarely than if contraction alons acted. If the tidal retardation ia suffo ciently great, the increase of retation due to centraction will be SC far countaracted as never to permit an ejoch of instability to occur. Since the rate of retardation due to solar tidal friction decreases rapidly as we recele from the sun, these considerstions accerd witb What we observe in the solar gretem. For Mercury and Venus have no satellites, and there is a progressive increase in the number of satellites as me recede from the sun. Moreover, the number of satellites is not directly connected with the mass of the planet, for Venus has nearly the aana mass as the earth and has no satellite, and the earth has relatively by far the largest satellite of tha whole system. Whether this be the trua causa of the obsarved distribution of astellites amorgst the planets or not, it is remarkabla that the aame canze alse afferds an explanation, as we shall now show, of that diffarence between the earth with the moon and tha, other plauets with their satellites rhich has caused tidal friction to be the priacipal agent of change with the fermer but not with the latter. In tl.s caso of tha coatracting terrestrial mass wa may suppose that there was for a lang time nearly a balauca batween tha retardation due to selar tidal friction and tha acceleration due to cortraction, and that it was net until the plagetary mass had contracted to nearly its present dimensions that an epoch of instability could occur. It may also be noted that if thera be two equal planotary masses which generate satellites, but under very different conditions as to the degres of condensation of the masses, the two satellites will be likely to differ in mase; we cannet of course tell which of the two planets would generata the larger satellite. Thus, if tha genesis of, the moou was deferred until a late epoch in the histery of the terrestrial mass, the mase of the zeon relativaly to the earth moald ba likely to differ from the mass of other satellites relatively to their planets. If tha contraction of the planetary mass he almost complated befors tha genesis of the satellite, tidal friction, due jointly to the satellite and to the cun, will thereafter ho the great cause ef change in the system; and thus the bypothesis that it is the sole cause of change will giva an approximately accurate explanation of tha motion of tha planet and satellite at any aubsequent time. We have already seen that the theory that tidal friction has been the ruling power in the evolution of the earth and moon coordinates the present motions of the two bodies and carries us back to an initial state When the moon first had a separate existence as a satellite; and the initial configuration of the two hedies is such that we are led to bclieve that tha moon is a portion of the primitira earth detached by rapid rotation or other causes. There seems to be some reason to suppose that the earljest form in which the moen had a separate existence ras as a ring or chaiu of meteorites; but this condition precedes that to which the dymamical inrestigation leads back.
Lat us now furn to the other planetary sub-systems. Tha satellites of tha larger planets revolre with short periodic times; this admits of a simpla explanation, for the sinallness of their masses would have prevented tidal friction from being a very efficient causa of change in the dimencions of their orbits, and tha largeness of the planet's masses would have caused them to proceed slowly in their ovolution. If the planets be formed from chains of meteorites or of nebulous matter, their rotation has arisen from the excess of orbital momantum of the exterior over that of the interior matter. As π ra hava no means of knowing how broad the chain may hava heen in any casa, nor hom much it may have clesed in on the sun in coursa of concentration, we ara unabla to computa the primitive angular moraentum of a planet. A rigoreus methou of comparison of the primitive rotations of the several planets is thus wanting. we should expect to find wera formed under similar conditions, then rapidly than the interior ones. On making allowance for the mora ent degrees of concentration of tha planets, this is the cass differtha inner satellita of Mars ravolves with a period third of the planet's rotation is perhaps the most remarkable fact in tha solar eystem. The theory of tidal friction explains this perfectly ; and this will be the ultimate fate of all satellites, because the solar tidal friction retaris the planetary ratation rithont directly affecting the satellite's orbital motion. Numerical comparison shows that the efficiency of solar tidal friction in retarding the terrestrial and martian rotations is of about the same degrea of importance, notwithstanding the much greater distance of the planet Mars. In tha abova discussion it will have been apparent that the earth and moon de actually differ from the other planets to such an extent as to permit tidal friction to have been the most impertant factor in their history.

By an examination of the prohable effects of selar tidal friction onl $\%$ contracting planetary mass, we hava been led to assign a causa for tha observed distribution of satellites in tha solar system, and this again has itself aforded an explanation of how it happened tides in moon so originated that the tidal friction of the lunar tides in the earth should have been abla to exerciss 60 larga ar
infnence. Wo have enceavoured not only to sot forth the in Guence which tidal friction may have, and probably has, had in che history of the ejatem, if sufficient timo be granted, but also to point out what effects it cannot have produced. These investigationa afford no grounds for the rejection of tha nabular hypothess; but, while they present evidence in favour of the main outlines of that theory, thay introduce modifications of considerable importance. Tidal friction is a cause of change of which Laplaces a theory trok no account; and, although the activity of that causo may bo regarded as mainly helonging to a later period than the ovents described in the nabular hypothesis, yet it seems that its influence has beeu of great, and in one instance of oven
paramount importance in determining the present condition of thè planote and thoir satollites. Throughout the whole of this discussion it has been supposed that sufficient time is at our disposal ; Sir W. Thomson and others have, howover, aduuced reasoning which goes to show that the history of the solar ayetem muat be comprised within a period considerably less than a hundred million years ${ }^{1}$ It would porhaps be pramaturo to accept this as the final and definite conclusion of aclanco. If, however, it be confrmed, wa aball only be permitted to accept the doctrine that tidal friction has effected considerable modification in the configuration of the moon and earth, and must reject the carlier portion of the history aketched above.
(G. H. D.)

Table of Contents.

Ceap. 1.-On the Nature op Tides.
s I Defintion of tids.
${ }_{8}^{2} 2$. General deacription of tidel pheno mens
13. General sxplanation of the cause . of tides.
34. Historical akstch.

Calp. II.-Tide.Generatno Forcte
85. Investigation of tids-generating potential and forces.
88. Derelopment of tide-gancrating potential in terms of hoar-angla and declination.
8 \& E Ealoationof tide-generating forces sud lunar deflexion of gravity.
0. Correction to equillbrium theory for continents.
Ceap. ILL-Drnamical Theory of Twes.
810. Historical explanation.
811. Eqnations of motion.
${ }_{8}$ 12. Adaptation to forced oaclllations.
113. Preparstion for solftion.
814. Diurnal tide.

Cuar. V.-Sfintaetio Methoo.
28. On the method and notation. 829. Semi-diarmal tidea.
§ $\$ 0$. Syntheaia of aolar and of Janar portions of the semf-diumal tide.
3 Sl. Syntheals of lanar sod aolar asmsdiurnal tides.
89. Explenation of tudsl terms in common use; datum lavela.
34. On rednction of observstions of high and low water.
Cenf. Vi.-Tmal. Instroments and Tidal Prediction.
35. Gemeral remarks
§ 56 . The tide gange.
87. Tha harmonic analyaer.

SS. Tha tide-predicting instrameato
89. Numerical harmonic analyals snd prediction.
Cgap. VIL. - Prooress of the Tide Wave over the sea and the
Tioes of tee britise seas.
40. Mesoling of cotidal. Hnas,

8 41. Cotldal Hinea of the world. 842. Cotidal linea of the Britiah seas

Chap. Vill.-Tidal Deformation op the solid. Earte.
84. Elaatic tides.
84. Rigidity of the earth.
45. Viscous and elastico-Tiscous tidea.
Chap. IX.-Tidal Friction.
86. Oeneral explanatlon.
84. Exact laveatigation of the secular effocta of tidal friction.
848. Amount of tidal retariation of earth'a rotation.
840. Effecta of tidsl mition on the elements of the moon's orblb and on the earth's rotation.
Cgap. X.-Cobudaonio Spectlatione rounded on Tidal Feictiox.
850. Hlatory of the earth and moon. 8 51. The other plsuetary sub-syatems. 852. Infigenca of tidsl friction on the svolution of the solar aystem.

TIDOR, or Tmore, an island $\left(0^{\circ} 39^{\prime} \mathrm{N}\right.$, lat. and 127° 23^{\prime} E. long.) of the East Indian Archipelago, off the west coast of Jilolo (q.v.) and south of Ternate, is nearly circular in form, and has an area of about 58 square miles. A volcano (5900 feet), now quiescent, rises in the centre and occupies nearly the whole of the island; its sides are densely covered with forests. The principal productions are sago, rice, cocoa-nuts, and bananas. The capital, Tidor, on the east coast, is a walled town ar, d the seat of a sultan tributary to the Dutch. The population is estimated at 7500. Tidor, which is included in the residency of Ternate, is administered by a "controleur."
TIECK, LODwIG (1773-1853), the most conspicnous figure of the German romantic school of literature, was born at Berlin on 31st May 1773. His father, a ropemaker, was dry, sarcastic, and matter-of-fact; his mother, gentle and pious, with a leaning to mysticism. Tieck partook of both characteristics: half his work and half his genius seem a sceptical commentary on the other half. He cmancipated himself from the prosaic influence of his father's house by a passionate study of Shakespeare. After a brilliant career at school he repaired in 1792 to the university at Halle, and, returning to Berlin in 1794, devoted himself to authorship, in which he had already made experiments. As is so commonly the caso with young writers of genius, his first tales (Abdallah, William Lovell) partook too largely of the melodramatic, and have little permanent value. But the romantic school of Germany, a movement comparable to the Lake school of England, was already in the air, and Tieck was deeply sensitive to its influence. He was strongly fascinated by two of its aspects in particular-the reaction in favour of German medixval art and the revived interest in fairy tales and folk-lore in general. Inspired by his friend Wackenroder, a youth of pions ardour and most pious simplicity, ho wrote his unfortunately unfinished romance Sternbald's Travels, a rers gospel for the artist, at once the complement and the antitype of Wilhelm Meister. His studies in pepular literature resulted in the entertaining adaptation
of Blue Beard entitled Peter Leorecht and several kindred works. Fair Eckbert, his masterpiece, and the masterpiece of all romantic fiction, came to him, he said, by inspiration. He may well be believed: no artifice could have crcated the pervading sensation of dreamy solitude or the intense thrill of the catastrophe. The happy idea of dramatizing popular legend led to the production of a greatly improved Blue Beard, and subsequently of Puss in Boots, a satire on Kotzebue and Iffland, such an alliance of broad bumour and dainty irony as we might expect to find in the lost Middle Comedy of Athens.

It might almost have been better if Tieck had continued to walk in his own way. His was a susceptible nature, too sensitive for perfect independence. In 1798 ho mado the acquaintance of the Schlegels, and was drewn in to their circle. Novalis, undoubtedly the greatest genius of the romantic school, was for a time a compensation to him for the death of Wackenroder, whose essays on art he edited with additions of his own. But Novalis himself soon died, and the intuence of the Schlegel circle, with its bickerings and its "chopping and changing of ribs," was not wholly salutary either in a moral or a literary point of view. August Schlegel inspired Ticck with a passion for the Spanish drama. He also spent much time on a translation of Don Quixote, certainly a masterpiece, and rendered Ben Jonson's Silent IToman, having previously adapted Volpore. One important production of his own nevertheless belongs to this period, the romantic drama of Genoveva, enthusiastically admired by so clear-headed and impartial a judgo as Bishop Thirlwall. He also produced his delightful miniature drama of Little Red Riaing Hood, and was working with great spirit on The Emperor Octavian when ho was suddenly attacked by rheumatic gout, which tormented him more or less for the remainder of his life. Betreen pain and unpleasant literary disputes his activity was long greatly impeded. The narrowness of his means also troubled him. "He had married the
${ }^{3}$ Thozoson and Tait's Nat. Phil., App. E ; Noture, 27th Janasy 1887; Wolf, Theorics Cosmogoniques, 1886.
danghter of Pastor Alberti, and, although he was an amiable man and nothing is alleged against his wife, his bousehold does not seem to have been entirely comfortable. He lived alternately in Jena, Berlin, and Dresden, where he became very intimate with Steffens, and wrote his powerful but dismal tale, The Runenberg. The Emperor Octarian was completed in 1804 , with less success than had been hoped. In the following year Tieck repaired to Italy, nominally to visit the baths of Pisa; but he made this medical injunction the plea for a long stay in the country. The effect of Italian scenery, plastic art, and new impressions in general was to wean him from much of the mysticism in which be had hitherto indulged, and to direct him to the criticism of life. The transition to his new manner is indicated by the additions to his former tales and dramas, which, after several years spent in wandering and in sickness, he published in 1812. The Elves, The Philtre, and The Goblet are tales, distinguished, the last two more especially, by brilliant colouring and elaborate art. Fortunatus, a drama in two parts, added in 1816, wants the spirit of its predecessors, but is pervaded by a quiet sarcastic humour exceedingly enjoyable. Plays and stories were set in a framework of æsthetic conversation, and the entire collection was entitled Phantasus. By this publication Tieck settled accounts with the romantic school, and could no more be regarded as its leader.
Tieck's power of original composition failed him for some years. He devoted himself especially to antiquarian and dramatic studies. In pursuance of the latter he visited England, saw Kemble and Kean on the stage, and renewed acquaintance with Coleridge, whom he had known in Italy': The friendship of Solger was highly important to him, and helped him to the clear definite principles of composition and criticism in which he had proviously been deficient. The period of reflexion gradually worked itself into a period of productiveness, beginning with his charming novelette of The Pictures, translated by Thirlwall. It was followed by a series of similar works extending over nearly twenty years, very unequal in value, but in their best examples belonging to a very high class of art. Their great peculiarity is the blending of narrative with disquisition and comment, so thoughtful and ingenious that, interesting as the action commonly is, the interruption is not resented. They have usually a strongly marked ironical element, as though the writer were only half in earnest, a self-criticism of which a great creative genius would have been incapable, but which bestows unusual piquancy on productions of the second order. The Pictures, already mentioned, is a fine instance of the masterly conduct of a story, and contains a very original figure, the shrewd, sottish, graceless old painter Eulenböck, who, with talent enough to have made a name and a fortune, gains a precarious livelihood by forging old masters. The Betrothal, also translated by Thirlwall, is a severe satire on hypocritical pietism. Among the best of the other novelettes in this style may be mentioned The Travellers, one of the most perfect specimens of the author's irony; Luck brings Brains, a fine study of the power of a weak character to rise to its opportunities when elevated by a sense of responsibility; and The Superfuities of Life, an anecdote delightfully told. The Old Book and The Scarecrow, two of the most fantastically imaginative, resolve themselves into literary satire. The motive of the latter was borrowed by Hawthorne in his Mother Rigby's Pipe. Of fictions with an historical basis, the most popular are those derived from the lives of poets-A Poet's Life, of which Shakespeare is the hero, and A Poet's Death, relating the sad history of Camoens. The Revolt in the Cevennes is an historical romance of considerable compass; but Tieck's musterpiece in this department is his Witches' Sabbath, a
tale almost unparalleled in literature for its delineation of heart-breaking, hopeless misery. The Young Carpenter (1836, but commenced much earlier) can hardly be as signed to any of these classes. It has a strong affinity to Wilhelm Meister, and may be compared with Sternbald, both for its resemblance and its contrast. Finally, in Vittoria Accorambona (1840) Tieck takes yet another new departure, indicating affinities with the modern French school of fiction. The novel has been translated into English, but is probably best known to English readers by Mrs Carlyle's half-earnest half-mocking admiration of the hero Bracciano, a Blue Beard on the highest principles, and her wish that she could have lived two hundred years before, "to have been-his mistress, not his wife."

These novels were all written at Dresden, where Tieck had settled in 1819. He enjoyed especial favour at court, took an active part in the direction of the royal theatre, and gained a new description of celebrity by his semipublic readings from dramatic poets in the court circle. According to the almost unanimous testimony of his hearers, he was the finest dramatic reader of his age. His daughter Dorothea, who united her father's literary talent to her grandmother's mystic piety, was of great assistance to him, especially in the translation of Shakespeare which passes under his name. Schlegel had translated seventeen plays. Tieck had undertaken to translate the remainder, and it has been generally supposed that be kept his word. In fact the translation was almost entirely executed by Dorothea Tieck and Count Wolf Baudissin, Tieck contributing hardly anything but his advice and his name. The truth slips out -quite innocently in the pages of his biographer Köpke, and is fully told by Gustav Freytag (Im Neuen Reich, January 1880). During his residence at Dresden he collected his critical writings, produced his excellent translation of the English' dramatists anterior to Shakespeare, and edited the works of Novalis, Kleist, Lenz, and other contemporaries. In 1842 he accepted the invitation of Frederick William IV. to settle in Berlin, where he had already been to conduct the representation of the Antigone with Mendelssohn's music. He found himself but little in his element in the city of his birth, and the dramatic representations directed by him, including revivals of some of his own plays, were rarely successful. In 1851 his health failed entirely, and he withdrew altogether from the world. He died on 28th April 1853.

Though not a writer of the highest rank, Tieck is nevertheless a most original genius, very unjustly neglected by his countrymen. The best of his compositions in the taste of the romsntic school are absolute masterpieces; and his later productions, if imperfect, occupy a unique position in literature. He may be compared to Wieland, whom he decidedly surpasses, and to Ariosto, whom he would have more than rivalled if he had been capable of a great sustained effort. His eusceptibility and self-distrust checked his genius, but at the same time gave it that peculiar ironic flavour which constitutes its special distinction. H_{θ} is like an exquisite side dish, not sufficiently substantisl for a full meal. The attempte to extract a moral sigoificance from the stories in Phantasus seeni entirely thrown away; the purpose ol his later writings, when there is any, is always definite. Perhaps the soundast criticism upon him, at hottom, is Heine's in his Fomantic School, though written at a time when it was his cue to ehow the works of that echool as little quarter as possible. Carlyle's criticism is excellent. but ooly refers to the Phantasus.

The pridcipal contribution to Tieck's biography is the delightful book of Rudolf Köpke (Leipsic, 1855), chiefly drawn from his oral communications and containinghis opinions on a number of subjects. Particulars of his residence at Dresden, more especially of his connexion with the theatre, are given in the memoirs of Friescn (Weimer, 1871). Tales from Phantasus havo been translated in Carlyle's Specimens of German Romance, and are reprinted in his miscellanies. A greatly inferior version, ius some places unscrupulously altered from Carlyle, was published in 1845 with au elaborate preface signed by J. A. F., who does not, however, appear to havo been the translator Several of Tieck's other works have been translated into English, but the only remarkable rendering is Bishop Thirlwall's of The Pictures and The Betrothal. A com-
pleta chronological hast of his mritiogs is apponded to Eöpkc's work.
(R. G.)

TIEDEMANN, Friedrich (1781-1861), German anstomist and physiologist, the son of a philosopher and psychologist of considerable repute, was born at Cassel on 23d August 1781. He graduated in medicine at Marburg in 1804 , but $800 n$ abandoned practice owing to disappointment st his failure to check his father's last illsess. Repelled. on the one hand by tise brilliant but unsubstantial discourses of Schelling on the "Naturphilosophie," and attracted on the other hand by the practical skill and inteligence of the surgical snatomist Sommering, he returned to the -study of natural science. He betook himself to Peris, and became an ardent follower of Ccvier. On his return to Germany he maintained the claims of patient ad sober anatomical research against the prevalent specu. lations of the school of Oken (see Oeen and Morphology), whose foremost antagonist he was long reckoned. His manifold labours in the field of Cuvierian anatomy cannot Se recorded here; but his remarkable studies of the development of the human brain, es correlated with his father's studies on the development of intelligence, maj be mentioned. He spent most of his life (from 1816) as professor of anatomy and physiology at Heidelberg, and died at Munich on 22d January 1861.

TIENTSIN is the largest commercial city in Chih-li, the metropolitan province of China. It is situated in $39^{\circ} 7^{\circ}$ N. lat. and $117^{\circ} 11^{\prime}$ E. long., at the junction of the Peiho and the Wan-ho, which is connected by the Grand Cadal with the Yang-tsze-kiang. It is a prefectural city, and the residence of the viceroy of the province during a great pertion of the year. The town is buiit on a vast slluvial plain, which extends from the mountains beyond Peking to the sea, and through which the Peiho runs a circuitous course, making the distance by water from T'ientsin to the coast about 70 miles, as against 35 miles by road. The soil of the surrounding country being strongly impreguated with sods and nitre is not fertile, but produces sorghum and other coarse grains. The city walls are well built, though not always kept in good order, and measure about three quarters of a mile each way. As in all Chinese cities, the more wealthy inhabitants live in the suburbs, but even their houses have a mean appearance, being built mainly of mud or dried bricks. The streets are for the most part unpaved, and in wet weather are little better than quagmires. Some improvements have, however, been made in this respect of late. The city has always been a great commercial depôt. In 1885 the foreign imports amounted to $£ 3,226,972$ and the exports to $£ 980,852$, and 375 foreign vessels of 279,829 tons visited the port, tes to the value of about $£ 904,496$ being landed for carriage overland, via Kalgan and Kiachta, to Siberia. During the winter the river is frozen, so that communication has to be carried on overland to Chin-kiang on the Yang-tsze-kiang, to which point slso a line of telegraph (now extended to Peking) was opened in 1881. The principal articles of import are shirtings, drills, T-cloths, jeans and twills, opium, woollens, steel, lead, needles, Japanese sea-weed, and sugar; sad of export, skins, beans and pease, straw braid, coal, detes, wool, tobacco, and rhubarb. The coal exported is brought from the Kaiping colliery to the east of T'ientsin ; its output in 1885 was 181,039 tons, 54,976 tons more than in 1884. An experimental railway nearly two miles long has lately been constructed at T"ientsin.

In 1853 T"ientsin was hesieged by an army of Taiping rebels, which had been detached from the main force at Nauking for the capture of Pcking. Ths defences of T'ientsin, however, saved tho capital, and the rebels were forced to retreat. Fiva years later Lord Elgio, accorp panied by the representative of France, steamed up the Peiho, after having forced the barriers at Takn, and took peaceabla
possession of tha tomn. Ilcre the traty of 1858 was signed. Two ycars later, in consequenca of tha treacheroua attack mada on the Engirsh pleapotentiary tha procediug gear at Taku, the city and suburbs wara occupied by an allied English and Freach forco, and wero beld for two yeara. Tha city was constituted aa opea fort. On the astablishmont of Roman Catholic orphanages soms yoars later the pretensions of the priests eo irritated the people that on the occurrence of an enideruic io the achools they attacked tha French and Kussian establishments and murdered tweaty of tha foreign inmates, besides numbers of their nativo followers. The Chiuesa Goreramont at once suppressed the riot, and sent a reprasedtative to Europo to apologize for the outbreak.

TIERNEY, Georoe (1761-1830), an English Whig politician, was born et Gibraltar on 20th March 1761 , being the son of a wealthy merchant resident in Spain. Ho was sent to Peternuase, Cambridge, where he took the degree of LL.D. in 1:E4, and was called to tho bar; but, having inherited an ample fortune, he sbandoned law and plunged into politics. Ee contested Colchester in 1788 , when both candidates received tho aamo number of votes, but Tierney was declared elected. Ilo was, however, dofeated in 1790. He sat for Southwark from 1796 to 1806, and then represented in turn Athtone (1806.7), Bandon (1807-12), Appleby (1812-18), and Knaresborough (181830). When Fox seceded from the House of Commons, Tierney becamo a prominent, if not the leading, opponent of Pitt's policy. It was perbaps for this reason that ho was disliked by Fox. In 1797-such was the height of political passion at this epoch-Wilberforce noted in his diary that Tierney's conduct was "truly Jacobinical"; and in May 1798 Pitt accused him of mant of patriotism. As the words were not withdrawn, a duel ensued at Putney Heath on Sunday, 27th May 1798; but neither combatant was injured. In 1803 Tierney, partly through gratitudo for the peace which had been ratified with France and partly because Pitt wes out of office, joined the ministry of Addington as treasurer of the navy, and was created a privy councillor; but this ill-advised step alienated many of his supporters among the middle classes, and offended most of the influential Whige. On the death of Fox he joined (1806) the Grenville ministry as president of the board of control, with a seat in the cabiuet, and thus brought himself once more into line with the Whigs After the death of Ponsonby in 1817 Tierney became the recognized leader of the opposition in the House of Commons. In the neutral ministry of Canning, the place of master of the mint was held by him, and when Lord Goderich succeeded to the lead Tierney was admitted to the cabinet; but he was already suffering from ill-health and took little part in its deliberations. He died suddenly at Savile Row, London, on 25 th January 1830.
Tierney was a ehrewd man nf tho world, with a natural aptitudo for business. His powers of sarcasm wera a causo of terror to his adversaries, and his presence in debate was much dreaded. His arguments wera felicitous, and, though he nover aimed at tha high. est flights of eloquence, his choice of language was the thema of constant admiration. Lord Lytton, in his peem of St Stephen'a, alludes to "Tierney'a airy tread," and yraises his "light anci yet vigorous " attack, in which he inflicted, "with a placid smails," a fatal wound on his opponent.

TIERRA DEL FUEGO, B large archipelago at the southern extremity of South America, from which it is separated by Magelian Strait, at the Narrows and other points scarcely a mile wide. The group. lies hetween $52^{\circ} 40^{\circ}$ and $55^{\circ} 59^{\prime} \mathrm{S}$. lat. and $63^{\circ} 30^{\circ}$ and $74^{\circ} 35^{\wedge} \mathrm{W}$. long. stretching nearly in a line with the Patagonian Andes for over 400 miles north-west and south-east, between Capes Pillar and Horn,-and for about 270 miles west and east from Cape Pillar to Cape Espiritu Santo (Catherine Point) in the north; southwards it tapers to 120 miles between Capes Horn and St Diego, the latter being continued castwards to Staten Islend, phich is not usually included in the group. Although on ordinary maps this region proseats to the eve a hopelessly confused aggregato of islands,
channels, and fjord-like inlets, as if it had been submerged sufficiently to convert its deep valleys and gorges into

Map of Tierra del Fuego.
marine passages, bays, and bights, it is nevertheless clearly disposed in three main sections, which may be convenient!ly named East, West, and South Fuegia.
East Fuegia consists of the single island of King Charles's South Land (eastern Tierra del Fuego), which is very much larger than all the rest of the group together, being considerably over 200 .miles long from north to south. It obviously forms a southern extension of the Patagonian pampas, which it greatly resembles in its physical constitution, climate, flora, and fauna. The lowJying, flat or slightly rolling plains are covered with a rich growth of tall herbage, which is frequented by the rhea, guanaco, and other animals common to the adjoining mainland, and also peopled by a branch of the same Tehuelche (Patagonian) family. In the south a long peninsula projects westwards to the Pacific. This western limb assumes a mountainous character, Mount Darwin (6800 feet) being situated about midway on its south side and Mount Sarmiento (6900, or perhaps 7000 feet), the culminating point of the archipelago, much nearer the Pacific. Although generally supposed to be volcanic, this peak presents such extremely precipitous, in fact, almost vertical flanks that John Ball considers it more probably "a portion of the original rock skeleton that formed the axis of the Andean chain during the long ages that preceded the great volcanic outbursts that have covered the framework of the western side of South America." This is altogether an alpine region with numerous snow-clad summits and glaciers descending down to the sea (Darwin).

Along the south side of East Fuegia flows Beagle Channel, about $55^{\circ} \mathrm{S}$. lat., separating it from South Fuegia, which comprises the islands of Hoste, ZJavarin, Gordon, Londonderry, Stewart, Wollaston, and numerous islets, disposed in triangular form with the base ou Beagle Channel and the apex at the rocky headland of Cape Horn. At its western end Beagle Channel takes the name of Darwin Sound, which leads to the Pacific at Londonderry and Stewart Islands. North of these lies Brecknock Peninsula, the westernmost extension of East Fuegia, cutting off South Fuegia from Clarence Island and Desolation Land, which with Dawson Island and numerous rocks and islets constitute West Fuegia. Desolation Land, so named by Cook, who supposed it to form a coutinuous mass stretching from the western entrance of Magellan Strait to Cockburn Channel, really consists of at least three, and possibly more islands, separated from each other by very narrow channels flowing between the Pacific and the westeru branch of Magellan Strait. The name Desolation has been reserved for the northern member of the group terminating at Cape Pillar; the one next to it

[^153]has been called Santa Inez; the other or others are stili unuamed. When Dall passed through the strait, he wes shown one of the narrow sounds "which have lately been ascertained to penetrate entirely through what used to be considered a single island" (op. cit., p. 241).
Lying almost in \& line with the main Andean axis, both West and South Fuegin are essentially highland regions, conforming in their general characteristics to the interveuing, wastern oxtension of East Fuegia. As compared with the great mass of the latter, they are evarywhere extremely rugged and mountainons, having a mesn elevation of not less than 3000 feet, a much moister climate, and arboreal instead of grassy vegetation. The isothermals of $32^{\circ} \mathrm{Fshr}$. for July (winter) sad 50° Fahr. for January (summer), with a mean anuual temperature of 42° Fahr., show that tolersbly mild winters are followed by cool summers, both seasons being accompanicd by overcast skies, constant and sudden changes from fair to foul weather; whilst fogs, mists, rains, snowe, and high winds (prevailing througnout the year) endanger the navigation of the intricate inland channels, and reuder the archipelago one of the dreariest regions on the globe.

A botanical parting line seems to be constituted by the renge of hills running back of Punta Arenas along the east side of Brunswick Peninsula (which, although attached by a narrow nack of land to Patagonia, belongs physically to the insular domain), and terminating at Cspe Froward ($53^{\circ} 54^{\prime} \mathrm{S}$. Iat.), the southernmost point of the American mainland. West and south of thia line the pampas are replsced by lofty mountains clothed with a dense forest vegetrition from the water's edge to heights of 1000 and 1200 feet, above which stretches a zone of peaty soil with stunted alpine plants as far as the snow line (3000 to 3500 feet). The forest apecies are chielly an evergreen beech (Fagus antarctica, S.) and the winter bark (Winleria aromatica), also evergreen, with tall smooth stem and glossy leaves like the laurel. Wild celery, cress, cochlearia, and other anti-scorbutic plants accur on both sides of Magellan Strait, and the beech nourishes a large yellow mushroom, whicb, with the berries of a dwarf shrub, is the only vegetable food of the natives.

In West and South Fuegia the fauna is restricted mainly to two species of fox, a bat, rats, mice, the sea otter, the penguin and other aquatic birds, and various cetaceans in the surrounding watcrs.

To the three geographical divisions correspond three well-marked ethnical groups, - the Onas of East, the Yaghans of South, snd the Alacalufs of West Fuegia. The first are estimated to number 2000 , the others 3000 each, making a total population of some 8000 for the whole archipelago. The Onas are Patagonians who have crossed the strait. The Alacalufs are also immigrants from the mainland, but probably they came at an earlier date, and from the westarn uplands, being apparently a branch of the Auca (Araucanian) race of the Patagonian and Chilian Cerdilleras. They differ altogether in speech both from the Onas, with whom they come scarcely anywhere in contact, and from the Yaligans, who are the true aborigines of the archipelago. These last are in exclusive possession of South Fuegia, and also occupy the north side of Beagle Channel about Drount Darwin and furtber west. To them alone missionary enterprise has hitherto been cxtended, and the English station of Ushiwaya on Beagle Channel has for some years been the only centro of civilizing influences in the archipelago. As Lieutemant Bove of the. Italian Antarctic expedition has made a special study of this branch, ${ }^{1}$ they are much better known then either of the neighbouring races. If they represent an earlier Araucamian immigration than that of the Alacalufs, their extremely low social state, on which all observers are unanimous, may be regarded as the resuit of degradation from a higher condition during their long sojourn in their present inhospitable environment. But it seems more probable that they are the direct descendants of the primitive race by which the archipelago hss been occnpied from in vastly remote period, as is shown by the very grest number of kitchen-middens recently discovered on the coast. Although taller than the Negritoes of the eastern hemisphere (4 feet 10 inches to 5 feet 4 inches), the Yahgans present in some respects a more debased type, charscterized by low brows, prominent zygomatic arches, large tumid lips, flat nose, loose wrinkled skin (" pelle grinzosa a cadente," says Bove), black restless eyes very wide apart, coarse black unkempt hair, and head and chest disproportionstely large compared with the extremely slender and outwardly curved legs, conveying an impression of top-heaviness like that of the Akkas of equatorial Africa. Their mental qualities are on the same low level, as is indicated by the almost total absence of clething under such inclement skies, by the brutal treatment of their women, who when old and useless are often eaten, by the lack of human affections or love of offspring; who in rough weather are thrown overboard (Dr Fenton), either as a peace offering to the spirits of the storm or to lighten the eanoe, and by many repulsive practices connected with their food and social habits. The tribal organiza=
tion has not jet been reachecl, each family circlo living apart and combining only in sinall groups against some common cnemy, but recognizing uo hereditary chief or even any temporary leader. Yet the inissonaries, who have reduced the language to writing (Gospel of S: Luke, London, 1881), assert that it contains no less than 30,000 words, although the numerals stop at five, alrendy a compound form (cu-pash-pa), and althouglh the same mord expresscs both hand and finger. But thay have obviously failed to distinguish between distinct terma and the endless grammatical intricacies in which this, like so many other rude forms of speecl, is still involved.

Since 1881 tha eastern portion of Fuegia (with Staten Island) has belonged to the Argentino Repullic and the western to Chili. The boundary line, which is purcly conventional, runs from Capo Espiritu Santo Jue south to Beaglo Channel. Neither power has hitherto occupied any part of I'uegia, except Punta Arenas (Sandy Point) on the Patagonian sille of Jfagellan Strait, where tho Clilians heve for some years maintained a convict and conling station.

Fuecia was discorered ly Magellan in 1520, when ho sailed throught tho strait named after him, and cailed this region the "Land of Fire," either from now extinct volcanic flames, or much more prolably from the fires kindled by tho natives along parts of his course. In 1578 Drake first sighted the point which in 1616 was ramed Capo Hoorn (Anglicized Horn) by the Dutch navigators Lemaire and Schouten. In 1619 the urothers Nolal firet circumnavigated the archipelago, which wos afterwards visited at intervals by Wood and Narborough (1670), Gennes and Froger (1696), Byron (1764), Wallis and Cartaret (1767), Cook (1763), and Weldell (1822). But no aystematic exploration was attempted antil the British Aduiralty nndertook a thorough survey of tha whole group loy King (1826-28) anl Fitzroy (1831-36). The latter oxpedition (Voyage of the "Beagle") was accompanied by Charles Darwin, then a joung man. To these admirahle surveys ia dne most of the present geographical terminology of the archipelago. Since then the work of exploration has becn continued end nearly completed by Dumont d'Urvilla (1837), Charles Wilkes (1839), Parker Snow (1855), Bove (1883), and various English. American, and Roman Catholic missionaries.
Bibliography. - De Drosses, If istoire cies Nuvturtions cur Terres Australe, Parts, 1758 : J. Bunley, IIislory of Voynves atrat Discorevies in the South Sea, Loudon, 1803-17; J. Treddell, A Voyage town'ls the South Pole and to Therru del Furgo. London, 1825 ; Charics Darwin, lournut of Rescorches, \&o., durity the Voyngs of the "Beagle" round the Horld, London, 1845 ; W, Paiker Snow, 4 Two Yeuri' Cruise of Tieviu del Fuego, London, 185 ; G. Marruin, "La Terro do Feu," in Bull. de lus Soc. de Gégrv., November 1675; J. G. Kohl, Gesch. 1. Eitideckungs* raisen, \&C, eur Mapellur's Strasse, Berlin, 1877; "La Terso de Fen et ses
 Aprunti Etnogrufici con Accenti Geologici mulla Tcavu del Fuoca, Tuin, 188s: John Ball, Notes of "N Nrturolist in South America, London, 1 ss7: R. 7 . Copplnger, Cruise of the "Alert," London, ther, 1685 ; G, Bergi, Antiopologia Fisien lello Fueyia, Rane, 1 SSi; ; Ramon Llsta, "East 'juegia" in Petermann's MWicturger, MBy 1887 ; and the works sheady menlloned. (A. J. K.)
TIFFIN, a city of the United States, in Seneca county (of which it is the county seat), Ohio, stands upon the Sandusky river, in $41^{\circ} 7^{\prime} \mathrm{N}$. lat., $83^{\circ} 11^{\prime} \mathrm{W}$. long., 42 miles south-east of Toledo. The city is situaled in the midst of an agricultural region, for which it serves as a shipping and supply point, and has three railroads - the Baltimore and Ohio, the Indiana, Bloomington, nnd Western, and the North-TVestern Ohio. It is the seat of Heidelberg College, one of the minor educational institutions of the State. Tiffin had in 1880 a population of 7879 , an inereaso of 2231 over that in 1870.
TLFLIS, sapital of the province of the same name and of Russian Caucasia, is picturesquely situated ($44^{\circ} 48^{\circ} \mathrm{E}$. long., $41^{\circ} 42^{\prime} \mathrm{N}$. Jat.) at the foot of high mountains, on both banks of the river Kür, some 500 feet above the level of the Black Sca. The heat in summer is excessive, owing to the confined position; but the surrounding hills (1350 to 2400 feet) shelter the town effectively from the cold winds of a generally severe winter. A large square, the cathedral, one or more handsome streets, gardens, bridges, many fine or neat buildings-among them the grand-ducal palace, the opera-house, and the museum-European shops, the club or circle, hotels, and public offices are evidenco that Western cirilization has not only penetrated but has long provailed in this geographically remote town. Of its 54 churches 26 are Armenian, 2 Lutheran, and 1 Catholic. The (Sion) cathedral traces back its origin to the 5 th century; but in the interval it has suffered much and often. Other churches date from the 14 th and 15 th centuries, the Armenian cathedral of Vank from $1 \not 480$, and the Catholic church from the 14 th century. Tiflis has two
gymassia and pro-gymmasha for boys and two for girls, and a number of other schools; several scientific societies, of which the Caucasian kranelı of the geographical socicty is well kuown; an astronomical and a plysical observatory ; and a public library. The manufactures of tho place are limited to a few cotton and silk factories, tanncries, soapworks, and brick-works. But the petty trades are largely developed; and the artisaus of Tillis (about S000) aro renowned as silrersmiths, gunsmiths, and sword-makers. Since 1883 Tifis has been in milway connexion with Poti and Batum on tlie Plack Sea and with Baku ou the Caspian; but the line from Iinssia to Vladikavkaz has not Jet crossed the inain chain of the Caucasus The trado is of great importance, as Tiflis is the chief centre for tho import of raw silk and silkelu goods, raw cotton, carpets, and dried fruits from Persia, as well as from trans-Caneasia, while a rariety of manufactured wares are imported from Iussia. The foreign trade of trans-Caucasia with Asia, mostly carried on from Tiflis, in 1884 reached the value of $£ 1,729,800$ for exports, and $£ 857,070$ for imports. In 1883 the populatiou nunibered 104,024, as against 71,051 in summer 1865 and 60,085 in winter, exclusive of a garrison of 6800 . Etlnologically, the numbers are-Armenians 31,180, Georgians 14,787, and Russians 12,142, with an admixture of about 1200 Gerınans, 7150 Persians (in summer), 1500 'ratars, and some Jews and Greeks.

Many chroniclers and travellers have written alout Tillis. Perhaps one of the fullest accounts is contained in Brosset's edition of the Descripution Geogrupheque ale la Géorgic (St Petersurg, 1842), Dy the illegitimate son of Wakhtang VI., king of liathli, who Lecame a pensioner of Peter tho Great. English travellera sinco 1849 deacribe Tiflis in its main features zauch in the samo terins. Lady Sheil, writing in 1849, calls it "must thriving, active, and Lastling." Edward Eastrick (1860), cstimating its population at 40,000 and the height of the mountains overlanging it at 3000 feet, ic presents the plain in which the city is situated to bo so barien that "even the Kír . . . inparts to it but a limiten fettility." Mounsey (1866) apesks in warin terms of its social clarms ond tho great hospilality of its inhabivants, and notes it as the seat of guvernment for tho "Caucasian provinces of Russia, heodquaiters of an army of 150,000 men, and the residence of tho govenhor.general." In the old division of 'liflis three distinct townswere inclurled,-Tifis, Kal'a (the fort), and Isni; subscquently Tiflis scens to lara become known as Sảiyidábid, Rala as 'liflis, and Isni as Aulabár. İal'a and Isni possessed citadels; that of the former contained the church of St Nicholas and a royal palace, that of 1lo !atter tha church of the Holy Virgin and the residenco of the archimandrite. The town is now divided into quarters:- the Russian (the finest of all), the Gernan, the Armenian, and that in which are congregated Jows, Jiohammedans, and tho mass of Orientals. Tilis cari lay claim to a very considerablo antiquity. In 455° tho chicftain of Georgia, Wakhtang, transfersed his capital from Mhtset to the warm springs of Tpilisi, where he erected eoveral churches and a fort. In 570 the Persians took the place and mado it the residenco of their rulers, but retained it only for ten yeare. Tillis anderwent suceessive plunderings and dovastationa at the hords of the Grecks in 626 , of ope of the commendera of Omar in 731, of the Khazars in 828 , and of the Saracons in 851 . The Georgians, however, always managed to roturn to it and to keop it in their permanent posses. sion. In tho courea of the succocding conturies Tinis fell ropeatedly into Persian hande; and it was plundered by Timur about tho end of tho 14 th century. Afterwards the Turks scized it soveral times, and towards the end of the 17 th century the Lesghians mode attacks upon it. In 1795, when the shah of Persia pluadered Tiflis, Kussia acnt troops to its protection, and the Russian occupation became pormanent in 1799.
TIGER. Although this name is often applied by settlers and sportsmen to soveral of tho larger lielidx, as the leopard of Africa and the jaguar of Ancerica, it should properly be restricted to the well-known striped species of Asia, Felis figris of Linnæus, an animal which is only rivalled by the lion in size, strength, and ferocity among the cat-like beasta of prey. It is a true cat on a large scale, snd possesses all tio esscntial characters of tha genus as defined in the articlo Mamalala (vol. xy. p. 434). It belongs to the section in which the pupil of the eyo contracts under the stimulus of light into a round spot and not a vertical slit, and in which the hyoid bone is con-
nected loosely with the skull by a long ligament, instead of by a continuous chain of bones. In these points it agrees with the lion and the leopard and differs from the common cat. Almost everything that is said in the article Lion (vol. ziv. pp. 680-681) of the structure of the skeleton, teeth, and claws of that animal will apply equally well to the tiger, the difference between the two lying mainly in the skin and its coverings. There are, however, slight distinctions in the proportionate size of the lower teeth, the general form of the cranium, and the relative length of the nasal bones and ascending processes of the maxilaries by which the skull of the lion and tiger can be casily discriminated by the practised observer.

Although examples of both species present considerable variations in siza, and reliance cannot always be placed upon alleged dimensions, especially when taken from skins

Tiger (Felis tigris, Linu.).
stripped from the body, it seems well ascertained that the length of the largest-sized Bengal tiger may exceed that of any lion, Larger specimens are certainly recorded, but 10 feet from the tip of the nose to the end of the tail is, according to Jerdon, an unusual length for a large male tiger. The female is somewhat smaller and has a lighter and narrower head. The tiger has no mane, but in old males the halr of the cheeks is rather long and spreading. The ground colour of the .upper and outer parts of the head, body, limbs, and tail is a bright rufous fawn, and these parts are beautifully marked with transverse stripes of a dark, almost black colour. The markings vary much in different individuals, and even on the two sides of the same individual. The under parts of the body, the inside of the limbs, the cheeks, and a large spot over each eye are nearly white. The tigers which inhabit hotter regions, as Bengal and the south Asiatic islands, have shorter and smoother bair, and are more richly coloured and distinctly striped than those of northern China and Siberia, in which the fur is longer, softer, and lighter colourcd.

The tiger is exclusively Asiatic, but has a very wide range in that cuntinent, having been found in almost all suitable localities south, of a line drawn from tho river Euphrates, passing along the southern shores of the Caspian and Sea of Aral by Lake Baikal to the Sea of Okhotsk. Its most northern range is the territory of the Amur, its most southern the islands of Sumatra, Java, and Bali. Westward it reaches to Turkish Georgia and eastward to the island of Saghalin. It is abseut, however, from the great elevated plateau of Central Asia, nor does it inhabit

Ceylon, Borneo, or the cther islands of the Indo-Malayam Archipelago, except those named.

The principal food of the tiger in India is cattle, deer, wild hog, and pea-fowl, and occasionally human beings. The regular "man-eater" is generally an old tiger whose vigour is passed, and whose teeth are worn and defective; it takes up its abode in the neighbourhood of a village, the population of which it finds an easier prey than the larger or wilder animals named abore. Though chiefly affecting grassy plains or swamps, it is also found in forests, and seems to be fond of haunting the neighbourhood of old ruins. As a rule, tigers do not climb trees ; but when pressed by fear, as during an inundation, they have been known to doso. They take to the water readily and are good swimmers. The tigers of the Sundarbans (Gal ges delta) continually swim from one island to the other to change their hunting-grounds for deer. The following extract from Sir J. Fayrer's Royal Tiger of Bengal (1875) may complete this notice of the tiger's habits.
"The tigress gives birth to from two to five, even six cubs; but three is a frequent number. She is a most affectionate and attacher! mother, and generally guards and tains ber young with the most watchful solicitude. They remain with her until nearly full-grown, or about the second year, when they are able to kill for themselves and begin life on their own account. Whilst they remain with her she is peculiarly vicious and aggressive, defending them with the greatest courage and energy, and when robbed of them is terrible in her rage; but she has been known to descrt them when pressed, and even to eat them when starved. As soon as they begin to require ather food than her milk, she kills for them, teaching thens to do so for themselves by practising on small animals, such as deer and young calves or pigs. At these times she is manton and extravagant in her cruelty, killing apparently for the gratification of her ierocious and bloodthirsty nature, and perhaps to excite aud instruct the young ones, and it is not until they are thoroughly capable of killing their own food that she separates from them. The young tigers are far more destructive than the old. They will kill three or four cows at a time, whilst the older and more experienced rarely kill more than one, and this at intervals of from three or four days to a week. For this purpose the tiger will leara its retreat in the dense jungle, proceed to the neighbourhood of a village or gowrie, where cattle feed, and during the night will steal on and strike down a buhlock, drag it inte a secluded place, and then remain near the "murrie," or "kill," for several days, until it has eaten it, when it will proceed in search of a further supply, and, baving found good huntirg ground in the vicinity of a rillago or gowrie, continne its ravages, destroying one or two cows or buffaloes a week. It is very fnd of the ordinary domestic cattle, which in the plains of India arg generally weak, balf-starved, under-sized creatures. One of these is easily struck down and carried or dragged off. The smaller buffaloes are also easily disposed of ; but the bufalo bulls, and especially the wild oues, are formidable antagonists, and have often been known to beat the tiger off, and even to wound him seriously."
(W. H. F.)

TIGER CAT. See Ocelot.
TIGRANES, or Dikran, a name borne by several kings of ancient Armenia. According to the legend of the Armenians, the first of these kings was the Tigranes who in Xenoohon's romance appears as the schoolfellow of Cyrus, and to him they ascribe the foundation of Tisfanocerta (Dikranagerdj on the Tigris. But in reality, as classical writers relate, this city was built by the first historical Tigranes of Armenia, variously known as Tigranes IL. and Tigranes $I_{\text {., for whose history see Persia, vol aviii. }}^{\text {whe }}$ p. 595 sq. His son Tigranes is knowu by his rebellion against his father (Persia, ut supra). Tigranes III. (II.), grandson of Tigranes II. (I.), had a short reign which he owed to a revolution at home and the favour of Augustus. He came to the throne in 20 b.c., having previously been as exile at Rome. Tigranes IV. (III.) was seated on the throne by the Parthians (Persta, p. 600). For Tigranes V. (c. 60 A.D.), a great-grandson on his mother's side of Herod the Great, see Persia, vol. sviii. p. 602.

TIGRIS, ${ }^{1}$ the shorter of the two large rivers rising in
${ }^{1}$ The Tigris is the Hiddekel of the Bible, the Diklat or Idiklat of the cuneiform inourments. The old Persian form Tigrì ("swift as an arrow"), whence Tigris, seems to be councoted etymologically with
the highlands of Armenia and Kurdistan, and (when turned southward) running each its own independent course to the Persian Gulf. Like the Euphrates, the Tigris rises from two principal sources, of which the western and more distant-in $38^{\circ} 10^{\prime} \mathrm{N}$. lat. and about $39^{\circ} 20^{\prime} \mathrm{E}$. long-is a little south of Lake Giuljek, in a peninsula formed by the Eupbrates, and some 2 or 3 miles only from the channel of that river. The names and sources of the different streams forming the Western Tigris-or that part of the upper river which runs, roughly speaking, from Diarbekr to the junction with the Eastern Tigris, about 50 miles north-north-west from Jezíra lbn Omar-are given by Consul Taylor as the Arganeb M'adan and the Dibeneh Su, uniting at Ammaneh castle; the Ambar Su , rising at Heyni ; the Batman Su, formed by the Kulp, the Kaushan, and the Sarum, rising north and north-west of Nerjiki; and the Khuzu or Huzu and the Arzen-Redhwan or Yezid Khaneh Su. Of the Eastern Tigris the chief tributaries are the Bohtan Su and its feeder the Bitlis (which receives tho Keyzer or Shirwan), the Möx, the Shattak, the Chamkari, and the Sarhal Su. Of these the most northerly points may be found on the Kulp or Dibeneh Su about 38° $40^{\prime} \mathrm{N}$. lat. and the most easterly on the Shattak in $42^{\circ} 50^{\prime}$ E. long.

After the Junction of the eastern and western branches (see the accompanying map) the river pursues a winding

Map showing the tributaries of the Tigris.
course, generally south-east, for about 800 miles, via Mosul and Baghdad, to the point of union with the Eupbrates at Kurna, whence it becomes known as the Shattu 'l-Arat, and falls into the sea some 70 miles farther down. Between Mosul and Baghdad the Tigris receives from its left the Great and the Little Zab and other tributaries from the Kurdish Mountains. Below the confluaice of the latter it is joined by the Diyala, alse from the left, while on the right canals and watercourses connect it more or less directly with the Euphrates, which in the vicinity of Baghdad it approaches to within 30 or 35 miles. The Tigris is navigable for light freight-bearing steamers up to Baghdad, and for vessels of lighter draught to 20 miles below Mosul, but thence to Diarbekr only for rafts. "But owing to the rapidity of the current the traffic is all down stream, carried-on mainly by a primitive style of craft, which is troken up at Baghdad and transported by camels back to Mosul. The journey between theso points occupies three or four days during the fivods and from twelve to fourteen at other-times."

TILBURG, or Tilborg, a town ol Golland, in the

[^154] Dīglā)
pronnce of North Brabant, 13 miles to the east-soath-east of Breda, contains numerous and extensire woollen-factories, employing from 5000 to 6000 persons, and also some calico-printing establishments. It has the usual public buildings, including four Roman Catholic churches, a Reformed church, and a synagogne, but none of architectural or historical interest. The population in 1879 was 28,390 and in 1887 32,016.

TILDEN, Samuel Jones (1814-1886), American statesman, was born at New Lebanon, New York, on the 9th of February 1814. He studied at Yale and at the university of New York, but ill-health prevented him from finishing his course. He studied law and rose rapidly to the first rank at the New York bar. From boyhood he had had a fondness for politics, but had sacrificed it to the practice of law. After 1860 be drifted into New York Stato politics, and became chairman of the Democratic State Committee in 1866. The Tweed "ring" in New York city dreaded $\mathrm{b}-\mathrm{m}$, and in 1869 attempted to remove him from his chairmanship. Tilden then becume the soul of the legal attacks upon the "ring," and worked for the removal of the corrupt judges who were their tools; and in the "ring trials" he accomplished the mathematical feat of 'ascertaining and demonstrating from bank-books the principle on which the spoils had been divided. In 1874 he was elected governor of the State by the Democrats. For years another "ring" had been making money out of the Sfate canals. This, too, Tilden succeeded in breaking up. In 1876 the National Democratic Convention nominated him for the presidency, the Republicans nominating Governor Hayes of Ohio. The result was the disputed election of 1876-77, when each party secured about the same number of electors outside of the three Southern states of Florida, South Carolina, and Louisiana. The Democrats had a majority in these States; but the returning boards, by rejecting votes which they believed bad been obtained by fraud or intimidation, gave their States to the Republicans. Two sets of certificates were therefore sent to Washington, and as no provision had been made in the United States constitution for a dispute of this kind there was no power authorized to dccide between the two parties. In this emergency Tilden consented to the appointment of an extra-constitutional body, an "electoral commission," to decide disputed cases, the decisions of Thich were to hold good unless rèversed by concuirrent vote of the two houses. The commission decided all the cases in favour of the Republican candidates, and Tilden was defeated. He continued in retirement until his death, which took place at Greystone, New York, on 4th August 1886.

TILES (Saxon tigel, connected with Lat. tegula) are used for a great variety of architectural purposes, such as covering roofs, floors, and walls, and are made of many different materials.

1. Roofing Tiles. ${ }^{1}$-In the most important temples of ancient Greece the roof was covered with tiles of white marble, fitted together in the most perfect way so as to exclude the rain. In most cases, as in the Athenian Parthenon aud the existing temple at Egina, the tiles were large slabs of marble, with a Hange along each side, over which joint-tiles (íproi) were accuratcly fitted (see Á in fig. 1): In the temple of Apollo at Rasse, though the main building was of limestone, the roof was corered with very beautiful tiles of Parian marble, which are specially mentioned by Pausanias as being one of the chicf beauties of the temple. Some of these were found by Mr Cockerell during his excarations at Basse carly in the 19th century. ${ }^{2}$ In design they resemble the other examples mentioned

[^155]above, but are peculiar in having the joint-piece worked out of the same slab of marble as the adjacent tiles (see B in fig. 1), at a great additional cost of both material and labour, in order to secure a more perfect fit. Fig. 2

Fro. 1.-Examples of roofing tiles from Greek temples. A, B, marble tiles from Exing snd Bassw, showing two methods of working the joint.tiles. C, C, clay tiles from Olympia. D, sketch ehowing method of jointing at the lower edge. E, longltudinal nection of a clay joint-tile (d̀p $\mu \mathrm{s}$). F F, joint-tile with peg to fix it.
shows the way in which they were set on the roof. Great splendour of effect must have been gained by continuing the gleaming white of the columns and walls on to the roof. All along the eaves each end of a row of joint-tiles was usually covered by an antefixa, an oval-topped piece

Fio. 2.-Perspective akatch abowng the arrangement of tiles B in Ag. "1, at Bassw. B, B, Dowels to fix the joint-tiles C, tilting oiece. a, a, flat eurface of tiles.
of marble with honeysuckle or some other conventional pattern carved in relief. ${ }^{2}$ In most cases the Greeks used terra-cotta roofing tiles, shaped like the marble ones of fig. I, A. Others were without a flange, being formed with a concave upper surface to prevent the rain getting under the joint-tiles. The lower edge of the tile, whether of marble or of clay, was usually half-lapped and fitted into a corresponding rebate in the upper edge of the next tile (see D in fig. 1). The dipuoi also were half-lapped at the joints (see E in fig. 1). All these were usually fastened with bronze nails to the rafters of the roof. In some cases each joint-tile had a projecting peg to fix it to the next $\dot{\alpha} \rho \mu{ }^{\prime} \mathrm{s}$, as shown at F . In the temples of imperial Rome marble roofing tiles were used like those shown at fig. 1. These were copied from the Greeks along with most other architectural features. For domestic and pther less important work clay tiles (tegulx) were employed, of the form shown in A, fig. 3. These are narrower

[^156]at the lower edge, so as to fit in to the upper edge of the nest tile, and the joints were covered with a semicircular joint-tile (imbrex). Rows of terra-cotta antefixæ were set along the eares of the roof, and were often moulded with very beautiful reliefs. In localities which supplied laminated stone, such as Gloucestershire and Hampshire in

Fig. 3.-A, section and elevation of the clay tiles commonly used in ancient Rome. B, Roman atone tiles, each fixed with one iron nail at the tov angle. C, pan-tilea usad in medimal and modern timea.
Britain, the Romans often roofed their buildings with stone tiles, fastened with iron nails. Fig. 3, B, shows an example from a Roman villa at Fifehead Neville in Dorset, England. Each slab had a lap of about 2 inches over the row of tiles below it ; many large iron nails were found with these stone tiles. In a few cases, in the most magnificent temples of ancient Rome, as in those of Capitoline Jupiter and of Venus and Rome, and also the small circular temple of Vesta, ${ }^{2}$ tiles of thickly gilded bronze were used, which must have had the most magnificent effect. Those of the last-named building are specially mentioned by Pliny ($H . N .$, xxxiv. 7) as having been made of Syracusan bronze, ${ }^{5}$ -an alloy in great repute among the Romans. The bronze tiles from the temples of Jupiter Capitolinus and of Venus and Rome were taken by Pope Honorius I. (625-638) to cover the basilica of St Peter, whence they were stolen by the Saracens during their invasion of the Leonine city in 846.4

In medixval times lead or copper ${ }^{5}$ in large sheets was. used for the chief churches and palaces of Europe; but in more ordinary work clay tiles of very simple form were employed. One variety, still very common in Italy, is shown in C, fig. 3. In this form of so-called "pan-tule" each tile has a double curve, forming a tegula and imbrex both in one. Stone tiles were also very common throughout the Middle Ages. Another kind of roofing tile, largely used in pre-Norman times and for some centuries later for certain purposes, was made of thin pieces of split wood, generally oak; these are called "shingles." They stand the weather fairly well, and many old examples still exist, especially on the wooden towers and spires of East Anglia. At the present day, when slate is not used, tiles of burnt clay are the ordinary roofing material, and many complicated forms have been invented to exclude rain. Most of these are, however, costly and do not answer better than a plain rectangular tile about 9 by 6 inches, fastened with two copper or even stout zinc nails, and well bedded on mortar mixed with hair. For additional security clay tiles are usually made with two small projections at the

[^157]apper edge, which hook on to the battens to which they are nailei. Broseley (Shropshire) is one of the chief places in England for the manufacture of roofing tiles of the better sort. The common kinds are made wherever good clay exists. In some places pan-tiles are still used and have a very picturesque effect; but they are liable to let in the rain, as they cannot be securely nailed or well bedded in mortar. In Gloucestershire, Yorkshire, and other counties of England, stone tiles are still employed, but are rapidly going out of use, as they require very strong roof-timbers to support them, and the great extension of railways has made the common purvle slates cheap in nearly every district.

Some of the mosques and palaces of Persia are roofed with the most magnificent enamelled lustred tues, decorated with elaborate painting, so that they shine like gold in the sun. They were specially used from the 13th to the 15th century. In style and method of manufacture the finest of them resemble the frieze shown in fig. 5 .
2. Wall Tiles.-These have been partly described under Mural Decoration (voL x vii. p. 35). ${ }^{1}$ In most Oriental countries tiles were used in the most magnificent way throughout the Middle Ages, especially in Damascus, Cairo, Moorish Spain, and in the chief towns of Persia. Fig. 4 shows a fine example from a mosque in Damas${ }^{c} 143$. From the 12th to the 16 th century a special kind of lustred tile was largely employed for dadoes, friezes, and other wall sarfaces, being frequently made in large slabs and modelled boldly in relief, with sen-
 tences from sacred books or the uames and dates of reigning caliphs. The whole was picked out in colour, usually dark or turquoise blue, on a ground of cream-white enamel, and in the last firing minute ornaments in copper lustre were added over the whole design, giving the utmost splendour of effect (see fig. 5). Great skill and taste are shown by the way in which the delicate painted enrichments are made to contrast with the bold decoration in relief. . These lustred tiles zometimos line the prayer-niche in houses and mosques; in such cases the slabs usually have a conventional representation of the kaaba at Mecca, with a lamp hangiug in front of it and a border of sentences from the Koran. ${ }^{2}$ The mosques of Persia are specially rich in this method of decoration, magnificent examples existing at Natenz, Seljuk, Tabriz, Ispahan, and other places. ${ }^{3}$ In the 16 th and 15 th centuries tiles of a coarse kind of majolica were used for wall decoration in southern Spain; some rich examples still exist in Seville. These appear to be the work of Italian potters who had settled in Spain. The azulejos (wall tiles) in the Alhambra and

[^158]other buildings in Spain are among the most beautiful productions of Hispano-Moorish art.4 In technique they resemble majolica; but the finest kinds, dating from the

Fia. 5.-Persian lustred tiles of the 13th ceutury, forming
part of a friezo. (South Kensington Museum.)
14 th and 15 th centuries, have designs taken from mosaic patterns, with complicated lines of geometrical interlacings. ${ }^{5}$
3. Floor Tiles.-From the 12th to the 16th century floor tiles in most northera countries of Europe were made by filling up with clay of a different colour patterns sunk in elabs of clay (see Encaustio Tries). In Italy, during the latter part of the 15 th and the first half of the 16 th century, majolica tiles, rich both in pattern and in colour, were used for parements in many places. Comparatively fow examples now cxist ; the majolica enamel was too soft to stand the wear of feet. One of the small south chapels in the church of S. Maria del Popolo in Rome has a very fine pavement of these tiles, executed, probably at Forli, about 1480 for Cardinal della Rovere (Julius II.), whose arms-an oak tree-are repeated frequently among the rich decorations. A still more magnificent tile floor in the uppermost of Raphael's Vatican loggie is mentioned under Robris (vol. xx. p. 591). The same article (p. 589) describes the exquisite majolica tiles which Luca della

Fic. 6. Xajolica paving tiles from Siens, made in 1509. (South Kensington Museum.)
Robbia made as a border for the tomb of Bishop Federighi at Florence. Fine examples of tile paving of 1487 exist in the basilica of S . Petronio at Bologna, and others of

[^159]rather earlier date in S. Paolo at Parma. The chapel of St Catherine at Siena and the church of S. Sebastiano at Venice have majolica paving of about 1510. Fig. 6 shows an example of about this date from the Petrucci Palace in Siena, now in the South Kensington Museum. ${ }^{1}$ In the early part of the 16 th century majolica tiles from Spain were occasionally imported into England. At the south-east of the eajoz'e chapel at Bristol there exists, though much worn, a fine pavement of Spanish tiles dating from about 1520. Others have bepn found in London, at Newington Butts, and in other plac`s. At the present time imitations of the unfortunately named "encaustic tiles" are almost the only sort employed in England and other northera countries. Very coarse and poorly designed majolica tiles are still made and used for paving in Italy and Spain.
(J. H. м.)

TilLemont, Sébastien le Nain de (1637-1698), ecclesiastical historian, was born at Paris on 30th November 1637 , and received his education in the "petites écoles" of the Port Royalists, Nicolo being his principal master. At an early age he became an admiring student of Livy and Baronius and began to accumulate those vast collcctions which form the basis of his monumental works. He continued to carry on his studies in the seminary at Beauvais, where the bishop was a warm patron; but it was not until 1676, two or three years after his return to Paris, that, under the influence of Isaac de Sacy, he entered the priesthood. He took up his abode in a humble dwelling at Port Royal des Champs, where he remained till the dispersion of the "solitaires" in 1679, after which event he spent the remainder of his life (with the exception of a visit to Arnauld in Holland in 1685) at Tillemont, between Montrenil and Vincennes. He died on 28th January 1698 and was buried at Port Royal ; in 1711 his remains were removed to the church of St André des Arcs, Paris.
His great work, At'moircs pour servir ab'histoire ecclesiastique des six premiers siecles to 513 A.D. ($1693-1712,16$ vols., 4 to), is a model of patient, exhaustive, and what Gibbon has called "xare-footell" erudition (see yol. v. .f. $\overline{765}$). Of his equally learned Histoire dce empereurs st des auttres princes qui ont regac dhirant les six premicrs riecles de CEglise ($1690-1738,4$ to) no more than four volumes were published. Tillemont also gave valuablo assistance to Hermant, Dub Fosse, and other Port Royalists in their historical work
TILLOTSON, John (1630-1694), archbishop of Canterbury, was the son of a Puritan clothier in Sowerby, Yorkshire, where he was born in October 1630. He entered as a pensioner of Clare Hall, Cambridge, in 1647, graduated in 1650 , and was made fellow of his college in 1651. Chillingworth's Religion of Protestantism biassed his mind against Puritanism, and the bias was further confirmed by intercourse with Cudworth and others at Cambridge. In 1656 be became tutor to the son of Edward Prideaux, attorney-general to Cromwell. In what year be took orders is unknown, but, according to the Life published in 1717, the person who ordained him was Dr T. Sydserf, a Scottish bishop. Tillotson was present at the Savoy Conference in 1661, and remained identified with the Preshyterians till the passing of the Act of Uniformity in 1662. Shortly aftervards he became curate of Cheshunt, Herts, and in June 1663 rector of Keddington, Suffolk. For several years after his ordination he devoted himself to an exact study of the Scriptures, ancient ethics, and the writings of the early fathers, especially Basil and Chrysostom. The result was seen in the general tone of his preaching, which was practical rather than theological, and, though regarded by some as latitudinarian, was characterized by the earnestness of sincere conviction and the balanced wisdori gained by thoughtful refexion. He was, moreorer, a man of the world as well as a divine, and in

[^160]his sermons be exhilited a certain indefinable tact which enabled him at once to win the ear of his audience. His style is chiefly remarkable for its simplicity and clearness, and in this respect it mirrored his own candour and sincerity. The qualities above mentioned won him in his lifetime the reputation of "having brought preacling to perfection"; and probably it was because he was neither brilliant, original, nor profound that his preaching was so universally admircd. "His sermons," says Burnet, "were so well heard and liked, and so much read, that all the nation proposed him as a pattern and studied to copy after him." In 1664 he became preacher at Lincoln's Inn. The same year he married Niss French, daughter of the canon of Christ Church, Oxford, and niece of Oliver Cromwell; and he also became Tuesday lecturer at St Lawrence, Jewry. Tillotson employed his controversial weapons with some skill against "atheism" and "Popery." In 1663 he published a characteristic sermon on "The Wisdon of being Religious," and in 1666 replied to Scrgcant's Sure Footing in Christiunity by a pamphlet on the Rule of Faith. The same year he received the degree of D.D. In 1670 he became prebendary and in 1672 dean of Canterbury. Through his wife Tillotson became connected with Dr Wilkins, the second husband of her mother. In 1675 he edited Wilkins's Principles of Natura? Rcligion, completing what was left unfinished of it, and in 1682 his Scrmons, with a preface in which he vindicated Willins from certain misrepresentations of Wood in his History and Antiquities of the University of Oxford, In 1680 he brought out Barrow's Treatise of the Pope's Supremacy, and in 1683 his Sernons. On 5th November 1678 Tillotson preached a sermon against Popery before the House of Commons, in whick ho maintained that it was their duty to make provision against the propagation of a religion more mischievous than irreligion itself; but in a sermon on the Protestant religion in 1680 before the king he propounded the proposition that Catholics could enjoy their own faith, but not openly drav men off from the profcssion of the established religion. Along with Burnet, Tillotson attended Lord Russell on the senfold in 1683, and after the publication of Lord Russell's speech was appointed to appear before the privy council ; but his explanations were regarded as satisfactory, the chief suspicions in connexion with the speech resting on Burnet. Tillotson afterwards enjoyed the friendship of Jady Russell, and it was partly through her that he obtained so much influence with Princess Anne, who followed his advice in regard to the settlement of the crown on William of Orange. He possessed the special confidence of William and Mary, and was made clerk of the closet to the king, 27 th March 1689. It was chiefly through his advice that the king appointed an ecclesiastical commission for the reconciliation of the Dissenters, and he was regarded as the representative in the commission of the views of the king and queen. In August of this year he was appointed by the chapter of his cathedral to exercise the archiepiscopal jurisdiction of the province of Canterhury during the suspension of Sancroft. He was also about the same time named dean of St Paul's. Soon afterwards he was elected to succeed Sancroft; but he accepted the promotion with extreme reluctance; and it was deferred from time to time at his request till April 1691. His attempts to reform certain abuses of the church, especially that of non-residence among the clergy, awakened against him much ill-will, and of this the Jacobites took every possible advantage and pursued him to the end of his life with insult and reproach. "This," Burnet says, "could neither provoke him, nor fright him from his duty; but it affected his mind so much that this was thonght to have shortened his days." He died of palsy on 24 th November 1694.

Por his manuscript sermons Tillotson's mido received 2500 guineas, then an unexampled sum, and for many years their popaherity remained anrivalled. During his lifetime he published Serzons on Several Occasions, 1671, republished with a second voluma addel in 1678 ; Fifty Sermons and the Rule of Faith, 1691 ; Four Sermons concerning the Divinity and Incarnation of our Blessed Saviour, 1693 ; Six Sermons on Several Occasions, 1694. His Postdumous Sernons, edited by Dr Ralph Baker, appeared in 14 vols, 1694; third edition, 1704. His Works were published in 17071710, and wera frequently reprinted. In 1752 an edition appeared in 8 , vols. with Life by Thomas Birch, D.D., compiled from Tillotson's original papers and letters. Of the many subsequent editions the best is that, with Life by Birch, of 1820,10 vols Various selections from his sermons and works have been published eeparately.
See in sddition to Birch's LUVe, Welford's Memortals, Barnet's Own Times, and Macanay's History of England.
tilly, Johann Tserclafs, Count of (1559-1632), a famous general, was bern in February 1559 at the chateau of Tilly in Brabant. It was originally intended that he should become a priest, and he was strictly educated by the Jesuits. He preferred, however, the life of a soldier, and began his military career in the Netherlands, under Alessandro Farnese, in the Spanish service. Aftermards he joined the imperial army, and as lieutenant-colonel ander Duke Philip Emmanuel of Lorraine greatly distinguished himself in Hungary in the war against the Turks. For his brilliant achievements he was raised to the rank of field-marshal. In 1610 he was put by Maximilian I. at the head of his Bavarian army; and soon after the outbreak of the Thirty Years' War he was made commander-in-chief of the troops of the Catholic League. In this position he displayed qualities which placed him among the foremost generals of the age. After the battle of Prague (the White Hill) in 1620 te theroughly subdued Bohemia, and in 1622 conquered the Palatinate, -a service for which Ferdinand II. gare him the title of count. In 1623 he defeated Christian of Brunswick at Stadtlohn in Westphalia, and in 1626 Christian IV. of Denmark at Lutter in Brunswick. The consequence of the latter victory was that Tilly and Wallenstein were able to cross the Elbe; but, as Tilly was wounded before Pinneberg in Schleswig-Holstein, the task of finally compelling the king of Denmark to accept terms of peace had to be left to Wallenstein alone. When Wallenstein was obliged in 1630 to withdraw for a while into private life, Tilly added to the functions he already discharged those of commander of the imperial forces. From this time the only important success achieved by him was the storming of Magdeburg (May 1631), a success accompanied by frightful cruelties, for Which he was at least in part responsible. Gustarus Adolphus had now come forward as the champion of Protestantism, and Tilly, with all his genius and tenacity, was not a match for the Swedish king. Four months after the capture of Magdeburg Tilly was defeated at Breitenfeld in Saxony, and was himself so severely wounded that he escaped from the field with difficulty. In March 1632 he drove the Swedes from Bamberg and placed himself in an entrenched camp at Rain to prevent them from passing over the Lech. Gustavus Adelphus crossed the stream, and in the fight which ensued Tilly was nortally wounded. He died in April 1632 at Ingolstadt, and was buried at Alt-Octting in Bavaria.
Tilly was of medium height, reserved in manner, and wholly indifferont to extornal marks of honour. The Roman Church never had a mora devoted eervant, and ha gave aridence of the essential simplicity of his character by decliniug tha offer of tha emperor to sake him a prince and to grant to him the principality of Calenberg. As ha was not married, his titlo and estates descended to his nephew.
See iilopp, Tilly fird dreistgidarigen Erege, Stuttgart, 1881, and villemmont, Tiuy, Tournag, 1558 .
TLLSIT, a commercial town of East Prussia and the capital of Prussian Lithuania, is situated on the left bank of the Memel or Niemen, 52 miles south-east of the town of Memel and 60 north-east of Künigsberg. The town
is spacious, and has a number of handsome modern buildoings, including a town-bouse, post-office, law-courts, and a large hospital. It contains three Protestant churches, a Roman Catholic chnrch, and a Jewish synagogue. The manufactures include soap, leather, shoes, glass, and other articles, and there are iron-feundries and steam flour and saw mills. Tilsit carries on trade in timber, grain, hemp, flax, herrings, and other nerthern produce; but its trade with Russia, at one time considerable, has fallen off since the.construction of the railway from Künigsberg via Insterburg and Gumbinnen to Kovno. The river is navigable beyond the town. The market-gardening of the neighbourhood deserves mention, and the annual horse-fair and markets are of considerable local i tportance. In 1783 the population was 8060 ; in 188 , it had increased to 21,400 , and in 1885 to $22,42 \mathrm{~s}$.
Tilsit, which received town-rights in 1552, grew up around a castle of the Teutonic order, known as the "Schalauner Haus," founded in 1288. It owes most of its interest to the peace signed here on 9 th July 1807, the preliminaries of which were settled by the emperors Alexander and Napoleon on a raft monred in the Momel. The peace of Tilsit, which constituted the kingdom of Westphalia and the duchy of Wars2m, registers the nadir of Prussia's humiliation under Napoleon (see Prossla, vol. xx. p. 11). The poet Max von Schenkendorf (1784-1817) was born at 'Tilsit.
TIMBER. See Building, Forests, and Strexata or Materials ; also Fir, Oak, Pine, Teak, \&c.

TIMBUKTU, or TinBuctoo (Sonrhai, Timbutu ; Berber. Tumbutku; Arab, Tin-buktu), a city of the Sahara, on the southern verge of the desert, in $18^{\circ} 4^{\prime} \mathrm{N}$. lat. and $1^{\circ} 45^{\prime}$ W. long., at the nerth-east extremity of the Fulah state of Moassina (Massina), 9 miles north of its riverine pert Kabara, on the left bank of the Niger, at the confuence of the numerous branches of the Joliba (upper Niger) where it trends eastwards, and at the converging point of the main trade routes from the Gulf of Guinea and from the Mediterranean across the western Sahara. Timbuktu lies on a terrace formed by the southern scarp of the desert, about 800 feet above sea-level, and overlooking a chain of dhayas or marshy hollows, fringed here and there with a few mimosas and palm thickets, amid the surrounding sandy wastes. These dhayas, which are flooded every three or four years, converting the lowland tracts between the terrace and the main stream into a labyrinth of channels and backwaters, mark the bed of a navigable creek which formerly branched from the Niger northwards to the foot of the scarp, and which in 1640 inundated a low-lying quarter of the city. According to Pouyanne and Sabatier, the main stream followed this course before it took its present easterly curve to Burum, where it bends southwards to the coast. Here also it was probably jeined at some remote period by the now dried up Wady lifessaura from the Tuat oases south of Algeria, although the rough levels taken by Oscar Lenz and others make it uncertain whether the flow through this depression was northwards or southwards. In any case Timbuktu has been left, so to say, high and dry by the general process of desiccation going on throughout the Saharian region. It was founded, or more probably captured, by the Tuareg Berbers abou! the 11th century, and under the Mandingo kings of Mali (Mallé) was a noted mart for gold and salt in the 14th century, mention of "Timboutch" occurring on a Catalan map dated 1373. Under Askia, founder of the extensive but shert-lived Sonrbai empire (1492), it rose to great splendour and became with Gogo a chief centre of Mohammedan culture for the peoples of western Sudan. But since the overthrow (1591) of the Sorrhai dynasty by the Morecco captain, the Andalusian Jodar with his Ruma fellowers, Timbuktu has continued to be the prey of the surrounding unruly populations-Tuarega, Arabs or Arabizerl Berbers, Fulahs (1800), and Toucouleurs (1865). Being thus nt the mercy of all, it has ceased to rebuild its
arsmantled walls, heing content to pay tribute to each in turn and sometimes to more than one simultaneously, for which it indemnifies itself by peaceful intervals of trade whenever the land routes are open and the upper and lower reaches of the Niger are clear of pirates. But at times even the short tract separating it from Kabara is so beset with marauders that it bears the ominous name of "Ur-immandess," that is, "He (God) hears not." Recently, however, it has enjoyed a considerable interval of peace, and the population, estimated by Barth at 11,000 in 1853, had risen to 20,000 in 1880 (Lenz). These form a motley group of Sonrhais, Tuaregs, Mandingoes, Arabs from Minorocco, Berabish Arabs, Bambaras, Fulahs, and since 1850 a few Jewish traders. Apart from some Curistian captives, the place was reached during the 19th century by only four Europeans-Laing from Tripolitana (1826), who was mardered on his return journey, Caillie from the north (1828), Barth from central Sudan (1853), and Lenz from Morocco (1880). Since 1884, however, regular relations have been opened with the French on the upper Niger.
From the ruins covering extensive tracts on the north and west sides, it is ovident that Timhuktu was formerly a mnch larger place than at present. Even the great mosque, which must at one time bave stood in the centre, now lies near the outskirts, where its high but unsightly earth tower forms a striking landmark. The aggregate of mean hovels or mud houses of which the place consists is only relieved by a few etructures of a better class. As in former times, a great staple of trade is salt from Tandeni and other parts of the Sahara, here exchanged with gold dust for kola nuts from the sonth, Manchester goods, and bome other European wares, which with tea are imported from Marocco or penetrate from the British protected territories along the lower Niger. Cowries, slowly yielding to European moneys, are the chief currency. The local industries are mainly confined to some fancy and other leatherwork prepared by the Tuareg women. The local administration is in the hands of an hereditary kahia, a kind of mayor, descended from one of the Ruma farilies. The kahia is himself more or less under the control of a neighbonring Taareg chief and of the powerful Bakhai family, who, as "sherifs" and marabouts, are revered throughout the westorn Sahara. Timbuktu, which possesses some valuable Arabic manuscripts and is still a centre of Moslem teaching, is a converging point of the chief west Sudanese and Saharan races-Arabs or Arabized Berbers to the west; Sonrhais in the immediate ricinity, and thence south-eastwards along the Niger; Ireghenaten or "mixed" Tuaregs oouthwards across the Niger as far as the Hombori Hills and in the fertile Libbako plains beyond them; Fulahs, Mandingoes, and Bambaras in and about the city ; and Imóbag or Imósbarh Tuaregs belonging to the Awellimiden confederation mainly to the porth and east.
tinie, Measurement of. Time is measured by successive phenomena recurring at regular intervals. The only astronomical phenomenon which rigorously fulfils this condition, and the most striking one,--the apparent daily revolution of the celestial sphere caused by the rotation of the earth, -has from the remotest antiquity been employed as a measure of time. The interval between two successive returns of a fixed point on the sphere to the meridian is called the sidereal day; and sidereal time is reckoned from the moment when the "first point of Aries" (the vernal equinox) passes the meridian, the hours being counted from 0 to 24. Clocks and chronometers regulated to sidereal time are only used by astrozomers, to whom they are indispensable, as the sidereal time at any moment is equal to the right ascension of any star just then passing the meridian. For ordinary purposes solar time is used. In the article Astronomy (vol. ii. p. 771) it is shown that the solar day, as defined by the successive returns of the sun to the meridian, does not furnish a uniform measure of time, owing to the slightly variable velocity of the sun's motion and the inclination of its orbit to the equator, во that it becomes necossary to introduce an imaginary mean sun moving in the equator with uniform velocity. Tho equation of time (loc. cit., pp. 772-773) is tho difference between apparont (or true) solar tine and mean solar time. The latter is
that shown by clocks ana watches used for ordinary purposes. Mean time is converted into apparent time by applying the equation of time with its proper sign, as given in the Nautical Almanac and other ephemerides for every day at noon. As the equation varies from day to day, it is necessary to take this into account, if the apparent time is required for any moment different from noon. The ephemerides also give the sidereal time at mean noon, from which it is easy to find the sidereal time at any moment, as 24 hours of mean solar tins are equal to $24^{\mathrm{a}} 3^{\mathrm{m}} 56^{1.5} 554$ of sidereal time. About 21st March of each year a sidereal clock agrees with a mean-time clock, but it gains on the latter $3^{\text {a }} 56^{\circ} 5$ every day, so that in the course of a year it has gained a whole day. For a place not on the meridian of Greenwich the sidereal time at noon must be corrected by the addition or subtraction of $9 \cdot 8565$ for each hour of longitude, according as the place is west or east of Greenwich.

While it has for obvious reasons become customary in all civilized countries to commence, the ordinary or civil day at midnight, astronomers count the day from noon, being the transit of the mean sun across the meridian, in strict conformity with the rule ae to the beginning of the sidereal day. The hours of the astronomical day are also counted from 0 to 24. An international conference which met in the autumn of 1884 at Washington, to consider the question of introducing a universal day (see below), has recommended that the astronomical day should commence at midnight, to make it coincide with the civil day. The great majority of American and Continental astronomers have, however, expressed themselves very strongly against this change; and, even if it should be made in the British Nautical Almanac, it appears very doubtful whether the other great ephemerides will adopt it, the more so as astronomers have hitherto felt no inconvenience from the difference between the astronomical and the civil day.
Determination of Time.-The problem of determining the exact time at any moment is practically identical with that of determining the apparent position of any known point on the celestial sphere with regard to one of the fixed (imaginary) great circles appertaining to the observer's station, the meridian or the horizon. The point selected is either the sun or one of the standard stars, the places of which are accurately determined and given for every tenth day in the modern ephemerides. The time thus determined furnishes the error of the clock, chronometer, or watch employed, and a second determination of time after an interval gives a new value of the error and thereby the rate of the timekeeper.

The ancient astronomers, although they have left ns very ample information about their dials, water or sand clocks (clepsydra), and similar timekeepers, are very reticent as to how these were controlled. Ptolemy, in his Almagest, states nothing whatever as to how the time was found when the numerous astronomical phenomena which he records took place; but Hipparchus in the only book we possess from his hand gives a list of forty-four stars scattered over the sky at intervals of right ascension equal to exactly one hour, bo that one or more of them would be on the meridian at the commencement of every sidereal hour. In a very valuable paper ${ }^{1}$ Schjellerup has shown that the right ascensions assumed by Hipparchus agree within about $15^{\prime \prime}$ or one minute of time with those calculated back to the year 140 b.c. from modern star-places and proper motions. The accuracy which, it thus appears, could be attained by the ancients in their determinations of time

[^161]was far beyond what they seem to have considered necessary, as they only record astronomical phenomena (e.g., eclipses, occultations) as having occurred "towards the middle of the third hour," or "about $8 \frac{1}{3}$ hours of the night," without ever giving minutes. ${ }^{1}$ The Arabians had a clearer perception of the importance of knowing the accurate time of phenomena, and in the year 829 we find it stated that at the commencement of the solar eclipse on 30 th November the altitude of the sun was 7° and at the end 24°, as observed at Baghdad by Ahmed ibn Abdallah, called Habash. ${ }^{2}$ This seems to be the earliest determinar tion of time by an altitude; and this method then came into general use among the Arabians, who on observing lunar eclipses never failed to measure the altitude of some bright star at the beginning and end of the eclipse. In Europe this method was adopted by Purbach and Regiomontanus, apparently for the first time in 1457. Bernhard Walther, a pupil of the latter, seems to have been the first to use for scientific purposes clocks drivèn by weights : he states that on 16 th January 1484 he observed the rising of the planet Mercury and immediately attached the weight to a clock having an hour-whee! with fifty-six teeth; at sunrise one hour and thirty-five teeth had passed, so that the interval was an hour and thirty-seven minutes. For nearly two hundred years, until the application of the pendulum to clocks became general, astronomers could place little or no reliance on their clocks, and consequently it was always necessary to fix the moment of an observation by a simulteneous time determination. For this purpose Tycho Brahe employed altitudes observed with quadrants; but he remarks that they are not always of value, for if the star is taken too near the meridian the altitude varies too slowly, and if too near the horizon the refraction (which at that time was very imperfectly known) introduces an élement of uncertainty. He therefore preferred azimuths, or with the large "armillary spheres" which played so important a part among his instruments he measured hour-2agles or distances from the meridian along the equator. ${ }^{3}$ Transits of stars across the mcridian were also observed with the meridian quadrant, an instrument which is alluded to by Ptolemy and was certainly in use at the Marágha (Persia) observatory in the 13 th century, but of which Tycho was the first to make extensive use. It appears, however, that he chicfly employed it for determining star-places, having obtained the clock error by the methods already described.
In addition to these rothods, that of "equal altitudes" was much in use during the 17 th century. That equal distances east and west of the meridian correspond to equal altitudes had of course been known as long as sun-dials had been used, but, now that quadrants, cross-staves, and parallactic rules * were commonly employed for measuring altitudes more accurately, the idea naturally suggested itself to determine the time of a star's or the nun's meridian passage by noting the moments when it reached any particular altitude on both sides of the meridian. But Tycho's plan of an instrument fixed in the meridian was not forgotten, and from tho end of the 17 th century, when Roemer invented the transit instrument, the observation of transits across the meridian became the principal means of determining time at fixed observatories, while the observation of altitudes, frst by portable quadraints, aftcrwards by rofiecting sextants, and during the 19 th century by portable alt-azimuths or theodolites, has beon used on journeys.

[^162]During the last fifty years the small transit instrument, with what is known as a "broken telescope," has also been much employed on scientific expeditions; but great caution is necessary in using it, as the difficulties of getting a perfectly rigid mounting for the prism or mirror which reflects the rays from the object-glass through the axis to the eyepiece appear to be very great, for strange discrepancies in the results have often been noticed. The gradual devclopment of astronomical instruments has been accompanied by a corresponding development in timekeepers. From being very untrustworthy, astronomical clocks are now made to great perfection by the application of the pendulum and by its compensation, while the invention of chronometers has placed a portable and equally trustworthy timekeeper in the hands of travellers.

We shall now give a sketch of the principal methods of determining time.

In the spherical trianglo ZPS between the zenith, the pole, and a star the side $Z P=90^{\circ}-\phi\left(\phi\right.$ bcing the latitude), $P S=90^{\circ}-\delta(\delta$ being the declination), end $Z S$ or $Z=90^{\circ}$ minus the observed altitude. The angle $Z P S=\ell$ is the star's hour-angle or, in time, the interpal between the moment of observation and the meridian passage of the etar. We have then

$$
\cos t=\frac{\cos Z-\sin \phi \sin \delta}{\cos \phi \cos \delta}
$$

- which formala can be made more convenient for the use of logaritnms by putting $Z+\phi+\delta=2 S$, which gives

$$
\tan ^{2} \frac{1}{2} t=\frac{\sin (S-\phi) \sin (S-\delta)}{\cos S \cos (S-Z)}
$$

Accoraing as the star was observed west or east of the meridian, t will be positive or negatire. If a be the right ascension of the star,'the sidereal time $=t+a, a$ as well as δ being taken from an epbemeris. If the sum had been observed, the hour-anglo ℓ would be the apparent soler time. The altitude observed must be corrected for refraction, and in the case of the sun also for parallax, while the sun's semi-diameter must be added or subtracted, according as the lower or upper limb was observed. The declination of the sun being variable, and being given in the ephemerides for hoon of each day, allowance must be made for this by interpolating with an epproximate value of tbe timc. As the altitude changes very slowly near the meridian, this method is most advantageous if the star be taken ncar the primo vertical, while it is elso easy to sce that the greater the latitude the more uncertain the result. If a number of altitudes of the same object are ooserved, it is not necessary to deduce tho ciock error separately from esch observetion, but a correction may bo applice to the mean of the zenith distances. Supposing n observatious to be taken at the moments $T_{1}, T_{2} \dot{T}_{3}^{\prime}, \ldots$, the racan of all being T_{0}, atd calling the \approx correeponding to this Z, we have

$$
\begin{aligned}
& z_{1}=Z+\frac{d Z}{d t}\left(T_{1}-T_{0}\right)+\frac{1}{2} \frac{d^{2} Z}{d t^{2}}\left(T_{1}-T_{0}\right)^{2} \\
& \approx_{2}=Z+\frac{d Z}{d t}\left(T_{2}-T_{0}\right)+\frac{1}{2} \frac{d^{2} Z}{d t^{2}}\left(T_{3}-T_{0}\right)^{2}
\end{aligned}
$$

and so on, l being the hour-angle answering to T_{3}. As $\Sigma\left(T-T_{0}\right)$ $=0$, theso equations give

$$
\begin{aligned}
Z & =\frac{z_{1}+z_{2}+z_{3}+\ldots}{n}-\frac{1}{2} \frac{d^{2} Z}{d t^{2}} \frac{\left(T_{1}-T_{0}\right)^{2}+\left(T_{2}-T_{0}\right)^{3}+\ldots}{n} \\
& =\frac{z_{1}+z_{2}+z_{3}+\ldots}{n}-\frac{d^{2} Z}{d \iota^{2}} \frac{\Sigma 2 \sin ^{2} \frac{1}{2}\left(T-T_{0}\right)}{n}
\end{aligned}
$$

But, if in the abore-mentioned trangle wo designste the angles at Z and S by $180^{\circ} \rightarrow A$ and p, we havo

$$
\begin{aligned}
& \sin z \sin A=\cos \delta \sin t ; \\
& \sin z \cos A=-\cos \phi \sin \delta+\sin \phi \cos \delta \cos \ell
\end{aligned}
$$

and by differentiation

$$
\frac{d^{2} Z}{d \delta^{3}}=\frac{\cos \phi \cos \delta \cos A \cos p}{\sin Z}
$$

in which A and p a:e determined by

$$
\sin A=\frac{\sin \ell}{\sin Z} \cos \delta \text { and } \sin p=\frac{\sin \ell}{\sin Z} \cos \phi
$$

With this corrected mean of the obscrved zenith distances the houranglo and time arodetermined, and by comparison with T_{a} the crrol of the timekeeper.

The method of equal sltitudes gives ?cry simply the clock error cqual to the right ascersion minus lialf tho sum of the clock times corresponding to the observed equal altitudes on both sides of the meridian. When the sun is observed, a correction has to be applied for the change of decliastion in tho interval between the obserrations Calling this iuterval $2 t$, tho cormetion to the apparent noon
XXIII. - 50
given by the observations x, the change of declination in half the interval $\Delta \delta$, and the observed altitude h, we have
$\sin h=\sin \phi \sin (\partial-\Delta \delta)+\cos \phi \cos (\delta-\Delta \delta) \cos (t+x)$
and $\quad \sin h=\sin \phi \sin (\delta+\Delta \delta)+\cos \phi \cos (\delta+\Delta \delta) \cos (\ell-x)$
whence, as $\cos x$ may be put $=1, \sin x=x$, and $\tan \Delta \delta=\Delta \delta$,

$$
x=-\left(\frac{\tan \phi}{\sin t}-\frac{\tan \delta}{\tan t}\right) \Delta \delta,
$$

which, divided by 15, gives the required correction in seconds of time. Similarly an afternoon observation may he combined with an observation made the following morning to find the time of apparent midnight.

The observation of the time when a star has a certain azimuth may also ba used for determining the clock error, as the hour-angle can be found from the declination, the latitude, and the azimuth. As the azimuth changes most rapidly at the meridian, the observation is most advantageous there, besides which it is neither necessary to know the latituda nor tha declination accurately. In the article Geonesy (rol. z. p. 166) it has been showu how the observed time of transit over the meridian is corrected for the deviations of the instrument in azimuth, level, and collimation. This corrected time of transit, expressed in sidereal tima, should theu be equal to the right asceusion of the ohject observed, and tha differenco is the clock error. In obsarvatories the determination of a clock's arror (a necessary operation during a night's work with a transit circla) is generally founded on obscrvations of four or five "clock otars," these being standard stars not near the pole, of which the absolute right ascensions have been determined with great care, besides observation of a close circumpolar star for fiuding the error of saimuth and determination of level and collimation error. ${ }^{1}$

Observers in the field with portable instrumenta often find it inconvenient to wait for the meridian transits of one of the fow close circumpolar stars given in the ephennerides. In that case they have recourse to what is known as the method of time determinetion in the vertical of a pola star. The alt-azimuth is first directed to one of the standard stars near the pole, auch as a or δ Ursæ Minoris, using whichever is nearest to the meridian at tbe time. The instrument is set so that the star in a few minutes will cross the middle vertical wire in the field. The spirit-level is in the meantime put on the axis and the inclination of the latter measured. The time of the transit of che star is then observed, after which the instrument, remaining clamped in azimuth, is turned to a clack star and tha transit of this over all the wirea is observed. The level is applied again, and the mean of the two results is used in the reductions. In case tha collimation error of the instrument is not accurately knorra, the instrument should be raversed and another observation of the sams kind taken. The observations made in each position of the instrument are separately reduced with an assumed approximate value of the error of collimation, and two equations are thus derived from which the clock error and correction to the assumed collimation error are found. This use of the transit or alt-azimuth out of the meridian throws considerably more work on the computer than the meridian observations do, and it is therefore never resorted to except when an observer during field operations is pressed for time. The formulæ of reduction as developed by Hansen in the Astronomische Nachrichten (vol. xlviii. p. 113 sq.) are given by Chauvenet in his Spherical and Practical Astronomy (vol. ii. pp. 216 sq., 4th ed., Philadelphia, 1873). The subject has also been treated at great length by Dollen in two mernoirs, Dic Zcitbcstimmung vcrmittclst des iragbaren Durcigangsinstrument im Verticale des Polarsterns (St Petersburg, 1863 and 1874, 4 to).

Longitude.-Hitherto we hare only spoken of the determination of local time. But in order to compare observations made at different places on the surface of the earth a knowledge of their difference of longitude becomes necessary, as the local time varies proportionally with the longitude, one hour corresponding to 15°. Longitude can be determined either geodetically or astronomically. The first method supposes the earth to be a spheroid of known dimensions. Starting from a point of departure of which the latitude has been determined, the azimuth from the meridian (as determined astronomically) and the distance of some other station are measured. This second station then serves as a point of departure to a third, and by repeating this process the longitude and latitude of places at a considerable distance from the original starting-point may be found. Referring for this method to the articles Earti (Figure of the), Geodesy, and Surveying, we

[^163]shall here only deal with astronomical methods of deter mining longitude.

The earliest astronomer who deternined longitude by astronomical observations seems to have been Hipparchus, who chose for a first meridian that of Rhodes, where ho observed; but P'toleny adopted a meridian laid through the "Insulæ Fortunatie" as being the farthest known place towards the west. ${ }^{\text {a }}$ "When the yoyages of discovery began the peak of Teneriffe was frequently used as a first meridian, until a scientific congress, assembled by Richelieu at Paris in 1630, selected the island of Ferro for this purpose. Although various other meridians (e.g., that of Uranienburg and that of San Miguel, one of the Azores, $29^{\circ} 25^{\prime}$ west of Paris) continued to be used for a long time, that of Ferro, which received the authorization of Louis X1II. on 25ilh April 1634, gradually superseded the others. In 1724 the longitude of Paris from the west coast of Ferro was found by Louis Feuillée, who had been sent there by the Paris Academy, to be $20^{\circ} 1^{\prime} 45^{\prime \prime}$; but on the proposal of Guillaume de Lisle ($1675-1726$) the meridian of Ferro was assumed to be exactly 20° west of the Paris observatory. Modern maps and charts generally give the longitude from the observatory of either Paris or Greenwich according to the nationality of the constructor; the Washington meridian couference of 1884 has recommended the exclusive use of the meridian of Grcenwich. On the same occasion it was also recommended to introduce tho use of a "uni versal day," beginuing for the whole earth at Greenwich midnight, without, however, interfering with the use of local time. ${ }^{3}$

The simplest method for determining difference of longitude consists in observing at the two stations some celestial phenomenon which occurs at the same absolute moment for the whole earth. Hipparchus pointed out how observations of lunar eclipses could be used in this way, and for about fifteen hundred years this was the only method available. When Regiomontanus (q.v.) began to publish his ephemerides towards the end of the 15 th century, they furnished other means of determining the longitude. Thus Amerigo Vespucci observed on 23 d August 1499, somewhere on the coast of Venezuela, that the moon at $7^{\text {b }} 30^{\mathbf{m}}$ P.M. was 1°, at midnight $5 \frac{1}{2}^{\circ}$ cast of Mars; from this be concluded that they must have been in conjunction at $6^{\mathrm{m}} 30^{\mathrm{m}}$, whereas the Nuremberg ephemeris announced this to take place at midnight. This gave the longitude of his station as roughly equal to $5 \frac{1}{2}$ hours west of Nuremberg The instruments and the lunar tables at that time being very imperfect, the longitudes determined were very erroneous; see Navigation (vol. xvii. p. 251), to which article we may also refer for a history of the long-discussed problem of finding the longitude at sea. The invention of the telescope early in the 17 th century made it possible to observe eclipses of Jupiter's satellites; but there is to a great extent the same drawback attached to these as to lunar eclipses, that it is impossible to observe with sufficient accuracy the moments at which they occur.

Eclipses of the sun and occultations of stars by the moon were also much used for determining longitude before the invention of chronometers and the clectric telegraph offered better means for fixing the longitude of observatories. These methods are now hardly ever employed except by travellers, as they are very inferior as regards accuracy. For the necessary formulæ see Chan-

[^164]venet's.Spherical and Practical Astronomy, vol. i. pp. 518. 542 and $550-557$.

We now proceed to consider the four"methods-for finding the longitudes of fixed observatories, viz., by (1) moon culminalions; (2) rockets or other signals, (3) transport of chronometers, and (4) transmission aftime by the electric telegraph.

1. Moon Culminutions - Oritg to the rapid orbital motion of the moon the sidereal time of its culmiation is different for differeut meridians. If, therefore, the rate of the moon's change ef right ascension is kuown, it is easy from the observed time of culmine. tion at two stations to deduce their difference of longitude. Lat the right ascension of the moon a and its differential coefficieuta he computed for the Greeuwich time T, aud let the culmination be observed nt two plaecs whose longitudes from Greeuwich are λ and \therefore, the time of observation being $T+t$ and $T+t^{\prime}$ Greenwich time, 1.1° in local time $T+t+\lambda=\theta$ and $T+t^{\prime}+\lambda^{\prime}=\theta^{\prime}$; wo have then

$$
\theta=\theta=\left(t^{\prime}=t\right) \frac{d a}{d t}+\frac{1}{2}\left(l^{\prime 3}-t^{2}\right) \frac{d^{2} a}{d t^{2}}+\ldots
$$

alid, as the difference of longitide is $\left.\lambda^{\prime}-\lambda=\left(\theta^{\prime}-\theta\right)-(t)-t\right)$, we have ouly to determine $t^{t}-t$ from the first equation. This is simply done by a auitalle selection of T. Calling $T+\frac{1}{2}\left(t+t^{\prime}\right)=T$, we bave to put $T^{v}-\frac{1}{2}\left(t^{\prime}-t\right)$ sud $T^{v}+\frac{1}{2}\left(t^{\prime}-l\right)$ for $T+t$ and $T+t^{\prime}$. It is then easy to see that

$$
\theta^{\prime}-\theta=\left(t^{\prime}-t\right) \frac{d a}{d t}+\frac{1}{2 t}\left(t^{\prime}-t\right)^{3} \frac{d^{2} a}{d t^{3}}
$$

and, solving this equation by frrst neglecting tho second term on tho right side sand then substituting the value of $t^{\prime}-t_{1}$ thur sotasis in that term, $\quad t^{\prime}-t=\frac{\theta^{\prime}-\theta}{\overline{d a j} d t}-\frac{1}{24}\left[\frac{\theta^{\prime}-\theta}{\overline{d a} / d t}\right]^{8} \frac{d^{3} a}{\overline{d l^{3}}}$
In order to be ss much as possible independent of instrumental errors, 60 me standard atars hearly on the parallel of the moon are observed at the two stations; these "nıon-culminating stars" are given in the ephemerides in order to secure that both observers take the same stars. As eitlier the preceding or the following liosb, not the centre, of the moon is observed, allorrance must be made for the time the seni-diameter takes to pass the meridian and for the change of right ascension during this time. This metbod was proposed by Yigott towards the end of the 18 tl. century, aud has been much used; but, though it may be very serviceable on journeys and cxpeditions to distant places where the chronometric aud telegraphic methods cannot be employed, it is not accurate enough. for hixed olservatories. This is due, not only to the difficulties attending the observation (the differeace of personal error in observing the moon and stars, the different apparent enlargement of the moon by irraliation in different telescopes and under differeat atmo. spheric circumstances, \& c.), but chiefly to the large coefficient with which $\theta^{\prime}-\theta$ has to be multiplied in the final equation for $\lambda^{\prime}-\lambda$. Errors of four to six seconds of time have tharefore frequently been noticed in !ongitudes obtained by this method from a limitcd number of observations : the longitude of the Madras olscrvatory fras for many years assumed to be $5 \mathrm{~h} 21 \mathrm{~m} 3 \mathrm{~m} \cdot \frac{77}{}$, but aubsequently by a telegraphic deteriniuation this was found to he $4^{s \cdot 37}$ too great.
2. Signals. - In 1671 Picard determined the difference of longitude between Copenhagen and the site of Tycho Brale'a observa. tory by matching from the latter the covering and uncovering of in aire lighted on the top of the observatory torier at Copenhagen. Powder or rocket signals have been in use since the midule of the ISth century; they are nowadays never used for this rurpese, ilthough ssreral of the principal observatories of Europe nicre cenmected in this manner early in the 19 th century $^{-1}$
3. Trenoport of Chronomelers. - This merns of determining langicude wras first tried in cases where the cnronometers could be tiought tho whole way by sea, but the impraved measis of rommunication on land led to its adontion in 1828 between the Gbservatories at Greenwich and Cambrilge, aud in the following years between many other observatories. A few of the more extencive expeditions undertaken for this object deserve to be meutioned. In 1843 more than sixty chrononeters ware acnt sixteen times backwards and iorrards between Altona and Pulkowa, aud in 1844 forty chronometers were sent the same number of times betreeu Altona and Greenwich. ${ }^{2}$ In 1844 the longitude of Valentia on the southwest coast of Ireland was determined hy transporting thirty pocket chronometers via Livernool and kingstown and having an intermediata station at the latter place. The longitude of tho United Statea noval olservatory has bacn frequently determiued from Greenwich Tho foliowing results will mive in ides of tha accuracy of the suthod.

[^165]Trovious to 1840,973 chronometera
Tixpelition of 1840 , Boad a diacuesion
Wolker'a
, Bon'l'a accoad reanls
1855, 62 chrooometera, 6 trips, Bond ...
84124.52
134.52
113.20
$12 \cdot-06$
$12 \cdot 20 \pm 0=20$
13.40士 0 - 10

The value now accepted from tha telegraphic determination is $5^{\text {b }} 8^{m a} 12^{8.09}$. Tha probable errors of the results for Pulkowa Altona and Altona-Creenwich mara supposed to be ± 0.039 and $\pm 0.04 \mathrm{~A}$. It is of course only uatural that the uncertainty of tho results for the trans. Atlantic lougitude should be much greater, considering the length of time which elapsed betweea the rating of the chronometers at the observatories of Boston (Cambridge, Massachusctts) and Liverpool. The difficulty of the method con sista in determining the "travelling rate." Each time a chrono meter leaves the station A and returus to it the error is determined, and consequently the rate for the tiure occupied by the journeys from A to B and from B to A aud by the sojourn ot B. Similarly a rate is found by each departure from and return to B, and the time of rest at A and B is also utilized for deteroiuing the atationary rate. In this way a series of rates for overlapping intervals of time are found, frem which the travelling rates may be interpolated. It is owing to the uncertainty which necessarily attaches to tho rate of a chronometer during long journays, eapecially by land, where they are exposed to shaking and more or less violeut motion, that it is desirable to employ a great number. It is scarcely neressary to mention that the temperature correction for each chronometer muat bo carefully investigated, and the local time rigorously deternined at each atation duriug the entire period of the operations.
4. Telegraphic Deterninution of Lotginhde. -This ras first suggeated by the Americau astronomer S. C. Walker, and owed its dorelopment to the United States Coast Survey, whera it was employcd irom about 1849. Nearly all the more important public olsarvatories ou the contiuent of Europ have now been connected in this Way, chiefly at the instigation of the "Europaische Gradmessung," while the determinations io connexion with the transits of Venus and those carried out in recent years by the American and French Governments have completed the circuit of the greater part of lise giobe. The telegraphic method compores the local time at one station with that at the other by means of electric siguals. If a aignal is sent from the eastern station A at the local time T, and received at the western atation B at the local time T_{1}, then, if the time taken by tha current to pass thiough the wire is called x_{3} the difference of longituda is

$$
\lambda=T-T_{1}+x,
$$

and similarly, if a signal is reut from B at the time 1, sua received st A at T_{2}, we lave $\quad \lambda=T_{3}-T_{3}-\lambda_{1}$
from which the unknown quantity x can be eliminated
The operations of a telegraphic longitude determination can be arranged in two ways. Either the locol time is Ifetermised at both stations and the clocks are compared by tclegraph, or the time determinations are marked simultaneously on the two chronograjhs at the two stations, so that further signals for clock comparison are uunecessary. The first method has to bo used when the telegraph is ouly for a limited time each night at the disposal of the observers, of when the clinatic conditions at the two atations are 60 differeat that clear meather cannot often be expected to occur at both simultaneonsly, also whea the difference of longitude is so considerable thot too much tine would be lost at the eastern station waiting for the arrival of the transit rccord of one star from the westera station before observing auother star. The independent time determinatiou also offers the advantaga that the obscruntions may be taken cithcr ly cyo and ear or by the chronograph, and that the aignals may be either audible beats of a rclay or clironor graphic argnala, the rule belug to have observations and signals made by samilar operations. The best way of using audiluo beat of a relay is to let tho circuit pass through an auxiliary clock. whiclt from aecourl to second alternately makes and breaks this current, the making of the current being rendered audible by thi tapning of the relayy at both stations. If. now, the auxiliary and the observing clocks are regulated to a different rata, the coioci dences of the beats of the relay with those of the observing clock can be noted with great accuracy, from which the difference bet ween the two obscrving clocks is found. It has been proved by experience that the degree of accuracy with which the clock comparison cau bo made by one ceincidence is exactly cqual to that of ona chrono. graph signal, the probable error beiog in hoth cases about $\pm 0^{3} 015$ It should, however, be mentioned that the interval betuten twe cousecutire coincideuces canmot be mada less than two minutes, Whereas the chronograph signals may be given every secoml, ond, as the cusarvationa made with the chronograph are also somewhat more accurate than those made by eye and car, the chronograph ahould ho used wherever possible. The other method, that of simultaiceous registration at both stations of trausits of the sa.no stara, has alao its advantages. Each trensit obserred at both stations furnisles a value of the difference of longitule, so that the final result is less dependent on the clock rate than in the arst method, which oecessitates the comlinetion of a serics of clock
errors determined during the night to form a value of the clock error for the time when the exchange of signals took place. When using this method it is advisable to select the stars in such a manner that only one station at a time is at work, so that the intensity of the current can be readjusted (by means of a rheostat) between every despatch and receipt of aignals. This attention to the intensity of the current is necessary whatever method is employed, as the constancy of the transmission time (x in the ahove equations) chiefly depends on the constancy of the current. The probable error of a diference of longitude deduced from one star appears to be ${ }^{1}$

> for eyc and ear transits $\pm 0^{5} \cdot 08$,
> for chronograph transits $\pm 0^{5} \cdot 07$
while the probable error of the final result of a carefully planned and well executed series of telegrâphic longitude operations is generally between $\pm 0^{5: 015}$ and $\pm 0^{5} 025$.
It is evident that the success of a deternination of longitude depends to a very great extent on the accurate determination of time at the two stations, and great care must therefore be taken to determine the instrumental errors repeatedly during a night's work. But, in addition to the uncertainty which enters into the results from the ordinary errors of observation, there is another source of error which becomes of special importance in longitude work, viz., the so-called personal error. The discovery of the fact that all observers differ more or less in their estimation of the time when a star crosses one of the spider lines in the transit instrument was made by Bessel in 1820^{2}; and, as he happened to differ fully a second of time from several other observers, this remarkably large error naturally caused the phenomenon to be carefully examined. Bessel also suggested what appears to be the right explanatiou, riz., the co-operation of two senses in observing transits by eye and ear, the ear having to count the beats of the clock while the cye compares the distance of the star from the spider line at the last beat before the transit with the distance at the first beat after it, thus estimating the fraction of second at which the transit took place. It can easily be conceived that one person may first hear and then ser, while to amother these sensations take place in the reverse order ; and to this possible source of error may be added tho sensible time required by the transmission of sensations through the nerves to the brain and for the latter to act upon them. As the chronographic method of olserving dispenses with one sense (that of hearing) and merely requires the watching of the star's motion and the pressing of an electric key at the moment when the star is bisected by the thread, the personal errors should in this case be much smaller than when the eye and ear method is employed. And it is a fact that in the former method there have never occurred errors of between half and a whole second such as have not unfrequently appeared in the latter method.

In astronomical observations generally this personal error does not cause eny inconvenience, so long as only one observer is employed at a time, and unless the amount of the error varies with the declination or the magnitude of the star; but when absolute time has to be determined, as in longitude work, the full amount of the personal equation between the two observers must be carefully ascertained and taken into account. And an observer's error has often been found to vary very considerably not only from year to year but eveu within much shorter intervals ; the use of a new iustrument, though perhaps not differing in construction from the accustorned one, has also been known to affect the personal error. For a number of years this latter circumstance was coupled with another which seemed perfectly incomprehensible, tho personal error appearing to vary with the reversal of the instrument, that is, with the position of the illuminating lamp east or west. But in 1869.70 Hirsch noticed during the longitude operations in Switzerland that this was caused by a shifting of the rellector inside the telescope, by means of which the field is illuminatel, which produced an apparent shifting of the inage of the spider lines, unless the eye-piece was very accurately frcused for the observer's sight. The simplest and best way to find the equation between two observers is to let one observe the transits of stars over half the wires in the telescope, and the other observe the transits over the remainder, eacla taking care to refocus the eye-piece for himself in order to aroid the abovementioned source of error. The single transits reduced to the middle wire give immediately the equation; and, in order to eliminate errors in the assumed wire-intervals, each observer uses alternately the first and the second half of the wires. Another mathod is in vogue af Greenwich, where each observer with the transit circle from a series of stars determines the clock error and reduces this to a common epoch (00^{b} sid. time) by means of a clock rate found independently of personal error. The differences between the clock

[^166]errors thus found are equal to the personal equations. This method cannot, however, be recommended, as the systematic errors in the right ascensions of the stars and any slight variation of the clock rate would affect the personal equation ; the first method is therefore generally used in longitude work. It is advisable to let the observers compare themselves at the beginning, middle, and end of the operations and, if possible, at both the instrmments employed. A useful check on the results is afforded by simultaneous experiments with one of the instruments contrived by C. Wolf, Kaiser, and others (sometimes called "time collimators"), by which the absolute personal error of an observer can be cetermined. Though differing much in detail, these instruments are all constructed on the same principle: an artificial star (a lamp shining through a minute hole in a screen mounted on a small carriege moved by clockwork) passes in succession across a number of lines drawn on oiled paper, while an electric contact is made at the precise moment when the star is biscated on each line by the carriage passing a number of adjustable contact makers. The carrents thus made register the transits automatically on a chronograph, while the observer, viewing the apparatus through his telescope, can observe the transits in the usual manncr either by eye and car or by chronograph, thus immediately finding his personal error. On the Continent these contrivances have frequently been used to educate pupils learning to observe, and experience has repeatedly slown that a considerable personal error can be generally somewhat diminished through practice.
Literalure-General trestiaes on spherical astronomy, such as Briinnow's Lehrbuch der spharischen Astronomie (3d ed., Berlin. 1871 ; translated into English and вeveral other laoguages) and Chauvenet'a Manual, treat very fully of the and berous methods of deternining time by combination of altitudea or azunuths of several atars. The best handbook of telegraphic longitude work is Alhrecht's alresdy mentioned ; but any one engaging in practical work of this kind should coosult the accounta of the numerous longitude determinationa carried out
 duriog recent years, particularly tha pilan of des hon. preussischer

 tuces in actico, Central ame ington, 1885), the Keports or the United states exast aod Georetic (irvey
 of Dun Echt observatory Publications. A A discussion of in Proc. R. Irish Acad. on persoaal errors up to 1875 was published by, Dreyer in Proc. R. Irish Acad.
2d aeries, vol. ii., 18i6, pp. $434-525$.
(J. L. ©. D.)

TIMOLEON. The life of Timoleon, one of the noblest and most interesting of the men of old Greece, is closely bound up with the history of Sicily (q.v.), and more particularly of Syracuse (q.v.), in the latter half of the 4 th century b.c. It is as the champion of Greece against Carthage, and of constitutional government against violence and oppression, that he stands out as such a grand figure. His early carecr in his native Corinth was shaped by a tragie incident. Timoleon had saved the life of his brother, Timophanes, on the field of battle; but, when that same brother, at the head of a band of mercenary soldiers, took possession of the acropolis and made himself practically a military despot and master of the city, Timoleon, after an ineffectual protest, let him be struck down by his brother-in-law and one or two other friends who had joined in his remonstrance. By the public opinion of Corinth generally his conduct was approved as patriotic ; but the curses of his mother and the cold looks of some of his kinsfolk and acquaintances drove him from the city into the solitude of the fields, and there, it would seem, for some years he pined away, hating life and even bent on ending it by voluntary starvation. He must have reached middle life when, in 344 r.c., envoys came from Syracuse to Corinth to appeal to the mother-city for relief from the intestine feuds and foreign mercenartes under which the Syracusans, and all the Greeks of Sicily, suffered. Carthage too, their old and bitter foe, after scme jears of quiet, was again bestirring berself and intriguing with the local despots. Corinth could not refuse her help, though her chief citizens declined the responsibility of attempting to establish a settled government in the factious and turbulent Syracuse. By a sort of Divine inspiration, says Plutarch (Tim., 3), Timoleon, being named by an unknown roice in the popular assembly, was chosen by a unanimous vote to undertake the mission. He sailed for Sicily with a few of the leading citizeus of Corinth and a small troop of Greek mercenaries. On arriving at Rhegium he found that his movements were watched by a Carthaginian squadron, acting under the advice of a Syracusan. Hicetas. who had
made himself master of Leontini and aimed at supplanting with Carthaginian aid the younger Dionysius, still nominally tyrant of Syracuse, but actually in possession only of the island citadel. Hicetas, whilst seeming to favour Corinthian intervention, was really working with Carthage on behalf of the tyrants. Timoleon, however, slipped away from the Carthaginian watch and landed at Tauromenium (Taormina), where he had a very friendly reception. At Adranum, an inland town, to which he came by invitation from a party among the citizens, he surprised Hicetas, and drove him back, with his troops utterly defeated, to Syracuse. The Sicilian Greeks now rallied round him, and the following year (343) saw the surrender of Dionysius and Timoleon master of the entire city. Hailed'by the citizens as a heaven-sent deliverer, he at once began the work of restoration, bringing in a multitude of new settlers from the mother-city and from Greece generally, and establishing a popular government on the basis of the laws of Diocles, which had been forgotten under the Dionysian régime. The impress of Timoleon's reforms seems to have lasted to the days of Augustus. The tyrants, too, in the other Sicilian cities were put down, and his old enemy Hicetas went back to Leontini, where he lived as a private though powerful citizen. He made one more attempt to overthrow Timoleon, and induced Carthage to send (340-339) a great army, which landed at Lilybæum (Marsala). The Syracusans could hardly be.brought to face the invader; but with a miscellaneous levy of about 12,000 men, most of them mercenaries, Timoleor marched westwards across the island into the neighbourhood of Selinus and won a great and decisive victory on the Crimisus. The Carthaginian host is said to have outnumbered Timoleon's army in the proportion of seven to one. The general himself led on his infantry in person (Plut., Tim., 27), and their enemy's discomfiturs was completed by a blinding storm of rain and hail driven straight in their faces (Diod., xvi. 79). This victory gave the Greeks of Sicily many years of peace and safety from Carthage. Carthage made, however, one more effort and despatched some mercenaries to prolong the conflict between Timoleon and the tyrants. But it soon ended (338 в.c.) in the defeat of Hicetas, who was taken prisoner and put to death, and in a treaty which confined the dominion of Carthage in Sicily to the west of the Halycus (Platani). Timoleon, having put down the despots and given freedom to the Greek cities of Sicily, retired into private life, though he remained practically supreme not only at Syracuse but throughout Sicily. This island, notwithstanding the many elements of discord which political revolution, with the return of exiles and the influx of new settlers, must have brought in, seems to have been during Timoleon's lifetime tranquil and contented. There are some characteristic stories told of his last days. Although blind, le used to come in his car into the assembly in the theatre and give his opinion, which was commonly accepted by a unanimous vote. An officious person once insisted on his giving the ordinary bail in a lawsuit; but he replied that he had himself always been the consistent champion of law and of legal righta for them all. Again, when his military strategy was unfavourably criticized, he expressed his gratitude to beaven that he had won for the Syracusans the privilege of liberty of speech. He died in 337; and was baried at the cost of the citizens of Syracuse, who erected a grand monument to his memory in their market-place.

Platarch's Life of Timoleon and portions of Diodorus Siculus are our chief sonrces of original information. There is an admirable and most interesting account of his life and work in chap. kxxv. of Grota's History of Grecece.
TIMON of Athens, a noted misanthrope, lived during the Peloponnesian War. He is more than once alluded to by Aristophanes and other comedians of the Attic stage.

Plutarch takes occasion to introdnce a short account of his life in the biography of Mark Antony (ch. 70), and he gives his name to one of Lucian's dialogues. Shakespeare probably derived his knowledge of Timon mainly from Plutarch; but the Timon of Shakespeare resembles the Timon of Lucian in so many points that some critics think Shakespeare (or whoever wrote the first sketch of the play) must bave had access to the dialogue in question.

TIMON of Phlius, the well-known sillograph and sceptic philosopher, flourished about 280 b.c. He studied philosophy under Stilpo the Megarian and Pyrrho of Elis, the famous sceptic. . Thereafter he spent some time in Cbalcedon, where he made a fortune by teaching and lecturing. The rest of his life was passed chiefly at Athens, where he died at an advanced age.
The writings of Timon, if we may trust Diogenes Laertius (ix) ch. 12), were exccedingly numerous both in prose and in verse: besides the EANot, he is asserted to have written epic poems, tragadies, comedies, satyric dramas, and other varieties. But he is best known as the author of the sindo or sarcastic hexameter verses written sgainst the Greek philosophers. They were divided into three books; in the first the author spoke in his own person, while in the second and third Xencphanes of Colophon replied to inquiriea addressed to him by Timon about early and late plilosophera. From the fragnents that remain (about 140 lines or parts of lines, printed in Mullach, Frag. Phil. Grac., i pp. 84.98) we see that Timon possessed some of the qualities of a greab satirist together with a thorough command of the hexameter ; but there is no trace of any loftier ain than to awaken derisive langhter. Philosophers are "excessively cunaing murderera of many mise saws " (ver. 96) ; the only two whom he spares are Xenophanes, "the modest censor of Homer's lies" (r .29), and Pyrrho, against whom "no other mortal dare contend" (F . 126). Besides the £ $n \lambda 0 t$ te have some lines preserved from the 'Ivoan $\mu 0$, a poem in elegiac verse, which appears to have inculcated the tenets of scepticism, and one or two lines or parts of lines which cannot be with certainty assigned to either poem.

TMMOR, an island of the East Indian Archipelago, the easternmost and largest of the lesser Sundanese group, stretching south-west and north-east for 300 miles between $8^{\circ} 40^{\prime}$ and $10^{\circ} 40^{\circ}$ S. lat. and $123^{\circ} 30^{\prime}$ and 127° E. long. It has a mean breadth of 60 miles, an area of over 11.000 square miles, and a population roughly estimated at about 500,000 . Timor lies in deep water a little to the west of the hundred fathom line, which marks in this direction the proper limit of the shallow Arafura Sea, flowing between it and northern Australia. It differs considerably from the other members of the Sundanese group both in the lie of its main axis (south-west and north-east instead of west and east), and in the great prevalence of old rocks, such as schists, slates, sandstones, carboniferous limestones, and other more recent sedimentary formations, and in its correspondingly slighter volcanic character. It comes, howover, within the great volcanic zone which sweeps in a vast curve from the northern extremity of Sunatra, throu fo Java and the other Sundanese islands, round to Amboina, Tidor, Ternate, Jilolo, and the Philippines. Tnere appear to be at least two quiescent and other extinct cones, and the surface is everywhere extremely rugged and mountainous, with numerous irregular ridges from 4000 to 8000 feet high, formang alogether a very confused orographic system. Mount Kabaiaki in the eastern district of Manufahi rises above 10,000 feet (H. O. Forbes) ; the culminating point appcars to be Mount Allas (11,500 feet) near the south coast. Owing to the prevalent dry easterly winds from the arid plains of North Australia, Timor, like Ombay, Flores, and other neighbouring islands, has a much drier climate, with a correspondingly poorer vegetation, than Java, and bas few pcrennial streams and no considerable rivers. Hacce, apart from almost untouched and unsurveyed stores of mineral wealth, such as iron, copper, and gold, which occur apparent.y in considerable quantities at several points, tho island is poor in patu:al respurces. The uplands, however.

Vheld good wheat and potatoes, while the woodtands, which nowhere form veritable forests, contain much excellent sandalwood. This and a noted breed of hardy ponies form the clief articles of export. Owing doubtless to the zone of deep water flowing letween Timor and the Arafura Sea, the fauna of Timor presents, beyond a marsupial cuscus, scarcely any Australian types. The few mammals, such as a deer, a civet, a pig, a shrew, and monkeys, as well as the birds and insects, resemble ordinary Malayan forms as met with in Java and mose especially in Celebes and the Moluccas. In its natural history, as well as its physical constitution and oceanic surroundings, Timor is thus eutirely separated from Australia and should perhaps be grouped with Celebes, Buru, Ceram, and Jilolo as the surviving fragments of a Miocene continent intervening between Asia and Australia, but at no time connected with either.
The bulk of the popnistion is certainly Papan, hut intermingled in the most varied proportions with Malayan, Indonesian, and other elements ; heace it presents an extraordinary diversity of physical types, as is clearly ehown by the portraits figured in H. O. Forbes's Naturalist's Wenderings in the Eastern Archipeclago. The natives, still mainly indepeadeat of their nominal Dutch aad Portuguese rulers, are divided into a large number of more or less hostile tribes, speaking as many as forty distinct Papuan and Malayan languages or dialects Some are extremely rude and still eddicted to head-hnnting, at least duriag war, and to other barbarous practices. In their uma-luli, or sacred (tabooed) enclosures, rites are performed resembling those of the Pacific islanders.
Politically Timor is divided between Holland and Portugal, the Dutch claiming the westera section of 4500 square miles and 200,000 in halitants, the Portuguess the eastern of nearly 6500 equare miles and 300,000 inhabitants; the respective capitals, centres of goverament, and outports are Kupang st the western extremity and Deli on the north-east coast. But there are a large number of practically iddependent petty states, as masy as forty-seven in the Portuguese territory alone, where they take the name of "renos," or kingdoms, under absolute "leoreis" or kinglets. The Dntch section forms with Sumba, Savu, Rotti, and the surronnding islets a residency administered by a Dutch resident stationed at Kupaug, which has a population of 8000 .
TIMOR LAUT ("Seaward Timor"), called also Teninger, an insular group in the East Indian Archipelago, forming the central and largest link in a double chain of islands which strit ches from Timor through Kel and Aru to New Guinea. it lies nearly midway between Timor and Aru, and forms, hot one continuous mass, as used to be supposed, but a group of three large islands, -Yamdena in the centre, separated by Wallace Channel from Larat in the north and by Egeron Strait from Selarn in the south, besides a cluster or chain of islets on the rest and north sides. From one of these the name Tenimber appears to have been extended to the whole group, which stretches for about 100 miles south-west and north-east, nearly parallel with Timor, from which, however, it differs altogether in its physical constitution. H. O. Forbes, who surveyed Wallace Channel and the northern districts in 1882, describes it as a low coralline group seldom rising above 100 feet, except at Egeron Strait, where the cliffis are 400 feet high, and at Laibobar, apparently a volcanic islet on the west side, which has an extinct crater 2000 feet high. There are no streams, and the poor soil, covered with a typically coral island flora, yields little beyond maize-the staple food-manioc, sweet potatoes, tobacco, some sugar-cane, cotton, and a little rice. The fauna includes buffaloes in a wild state, a marsupial cuscus, some bats, the beautiful scarlet lory, new or rare varieties of the ground-thrush, honey-eater, and oriole. The birds seem to have come mainly from New Guinea, the insects from Timor, and a few of both from Australia.
The aborigines are eridently Papuans, with a ienguage like that of the Kei Islanders ; but there is a large intermingling of Malayau and perhaps Indonesian elements. They are a fine race, often ever 6 feet, and, like all Papuans, noted for their artistic sense, which is shown especially in their wood and ivory carviags. In other respects they are pagans in a low atato of culture, mostly
divided into hostile communities and addicted to piracy. The group belongs to the Dutch, who have a "post-holder" stationcl at Ritabel on the west coast of Larat, a trading station of the Bughis from Celebes.

ThMOTHEUS, a distinguished Athenian general, was a son of Conon, who restored the walls of Athens. To the military qualities of his father he added a love of letters, which found scope in his friendship with Isocrates. The considerable fortune which he inherited from his father seems to have been exhausted by him in the public service. In 375 b.c. the Athenians, then at war with Sparta, sent Timotheus with a fleet to the Ionian Sea, where he gained over Cephalonia and secured the friendship of the Acarnanians and of Alcetas, king of the Molossians. He also made himself master of Corcyra, but used his victory with a moderation which won the goodwill of the conquered. At the same time he defeated a Spartan fleet at Alyria on the Acarnanian coast. In 373 he was appointed to the command of a fleet destined for the relief of Corcyra, then beleaguered by the Spartans. But his ships were not fully manned, and to recruit their strength he first cruised in the Egean. The delay excited the indignation of the Athenians, who brought him to trial ; but, thanks to the exertions of his friends, Jason, tyrant of Pheræ, and A1cetas, king of the Molossians, both of whom came to Athens personally to plead his cause, he was acquitted, but removed from the command, Iphicrates being appointed in his room. Being reduced to great poverty-for he had pledged his private property in order to put the fleet in an efficient state-he left Athens and took service with the king of Persia. We next hear of him in 367 or 366 , when he was sent by the Athenians with an armament to support Ariobarzanes, satrap of Phrygia. But, finding that the satrap was in open revolt against Persia, Timotheus abstained from helping him and turned his arms against Samos, which was occupied by a Persian 'garrison. Ho took it after a ten months' siege (365 B.c.). Sailing north, he then captured Sestus, Crithote, Torone, Potidæa, Methone, Pydna, and many more cities. In 358 or 357 , when Eubcea was in danger of falling into the lands of Thebes, the Athenians, in response to a spirited appeal of Timotheus, crossed over into the island and expelled the Thebans in three days. In the course of the Social War, which broke out shortly afterwards, Timotheus was despatched with Iphicrates, Menestheus, son of Iphicrates, and Chares to put down the revolt. The hostile fleets sighted each other in the Hellespont ; but a gale was blowing, and Iphicrates and Timotheus decided not to engage. Chares, disregarding their opposition, lost many ships, and in his despatches he incriminated his colleagues so bitterly that the Athenians recalled them and put them on their trial for having taken bribes from the enemy to betray the fleet. The accusers were Chares and Aristophon. The former was an officer of notoriously bad character; the latter had himself stood in the dock no less than seventyfive times. Iphicrates was not above browbeating the jury, who accordingly acquitted him and his son. Timatheus, who condescended to no such means of securing an acquittal, was condemned to pay a very heary fine. Being unable to pay, he withdrew to Chalcis. The time and place of his death are not mentioned by ancient writers. The Athenians afterwards did what they could to repair the wrong they had done to Timotheus by remitting the greater part of the fine to his son Conon, by burying his remains in the Ceramicus, and by raising statues to his memory in the agora and the acropolis.
Our materials for the life of Timotheus are very imperfect, and the chronology is in eome points nncertain. The chief anthoritics are Isocrates, $\mathrm{r}_{\mathrm{C}, \mathrm{I}} \mathrm{\Sigma} \mathrm{\nabla} ;$; Xenophon, Hellenica, $\mathrm{\nabla}$. and iv. ; Diodorus, xv. and xvi.; Cornelius Nepos, Vit. Tim.; and Polyenns, , Strat, iii. 10. Other scraps are to be gleaned from the orators, Plutarch, Sce The sneech Aaainst Timotheus which has come down to as
nider the name of Démosthenes is probably not by the orator. It is chiefly interesting as illustrating the straits to which Timotheus whas reduced by his aacrifices in tho public causc.

TIMOTHEUS, a celebrated Greek musician and poet, was a native of Miletus, and died, according to the Parian marble, in 357 or 356 B.C., at the age of ninety. He added one or more strings (the number is uncertain) to the lyre, whereby he incurred the displeasure of the conservative Spartans. The few fragments of his poems are collected by Bergk in his Poetx Lyrici Graci.

TLMOTHY, or Tinothecs (Acts xvi. 1, xvii. 14, dec.), a Lycaonian, the son of Centile father but of a Jewish mother, Eunice (2 Tim. i. 5), became a disciple of Paul at the time of his visit to Derbe and I vstra, and in deference to Jewish fecling was circumcised. Ife accompanied the apostle on many of his journeys, and was employed by him on important missions (1 Thess. iii. 2 ; 1 Cor. iv 17, xvi. 10). His name is associated with that of Paul in the opening salutations of both epistles to the Thessalonians, the second epistle to the Corinthians, and those to the Philippians and Colossians. He was therefore with Paul at Rome. At a later date he is mentioned in Heb. xiii. 23 as having undergone imprisonment but been released. For the epistles of Paul to Timothy, sec Pastoral Epistles (rol. xviii. p. 348). On the basis of them he is traditionally represented as bishop of Ephesns, and tradition also tells that he suffered under Domitian. His martyrdom is celebrated on 24th Jannary. The apocryphal Acta Timothei (Greek and Latin) have been edited by Usener (Bonn, 187^{7}) ; compare Lipsius, Apokr. Apostclgeschichten, ii. 2 (1884).

TijićR. Timúr Bey or Tmúr Lang (Tiinur i Leng), "the lame Timur"-vulgarized into Tamerlane-the renowned Oriental conqueror, was born in 1336 at Kesh, better known as Shahr-i-Sabz, "the green city," situated some 50 miles south of Samarkand in Transoxiana. His father Teragai was head of the tribe of Berlas. Greatgrandson of Karachar Nevian (minister of Jagatai, son of Jenghiz Khan, and commander-in-chief of his forees), and distinguished among his fellot-clansmen as the first convert to Islamism, Teragai might have assumed the high military rank which fell to him by right of inheritance; but like his father Burkul he preferred a life of retirement and study. Under the paterial ege the education of young Timur was such that at the age of twenty he had not only become an adept in manly outdoor exercises but had earned the reputation of being an attentive reader of the Koran. At this period, if we may credit the Memoirs (Malfuzat), he exhibited proofs of a tender and sympathetic nature.

About 1358, however, he came before the world as a leader of armies. His cafeer for the next ten or eleven years may be thus briefly summarized from tho Memoirs. Allying himself both in cause and by family connexion with Kurgan, the dethroner and destroyer of Kczan, chicf of the Jagatai, he was deputed to invade Khorasan at the head of a thousand horse. This was the second warlike expedition in which he was the chief actor, and the accomplishment of its objects led to fuither operations, among them the subjection of Khwarizm and Urganj. After the murder of Kurgan the contentions which arose among the many claimants to sovereign power wero arrested by the invasion of Tughlak Timúr of Kashgar, a descendant of Jenghiz. Iimúr was despatched on a mission to the invader's camp, the result of which was his own appointment to the government of Mámarálnalir (Transoxiana). By the death of his father he was also left hereditary head of tho Berlas. The exigencies of his quasi-sovereign position compelled him to have recourse to his formidable patron, whose reappearance on the banks of the Sihon
crcated a consternation not easily allaycd. Máwarálnahı was taken from Timúr and entrusted to a son of Tughlak; but he was defeated in battle by tho bold warrior he had replaced at the head of a numerically far inferior force. Tughlak's death facilitated the mork of reconquest, and a few years of perseverance and energy sufficed for its accomplishment, as well as for the addition of a rast extent of territory. During this period Timur and his brother-in-law, Hosain-at first fellow-fugitives and wanderers in joint adventures iull of interest and romancebecame rivals and antagonists. At the close of 1369 Hosain was assassinated and Timúr, having been formally proclaimed sovereign at Balkh, nounted the throne at Samarkand, the capital of his dominions.

The next thirty years or so wero spent in varıous wars and expeditions. He not only consolidated his rule at home by the subjection of intestine foes, but sought extension of territory by encroachments upon the lands of contemporary potentates. His concpuests to the west and north-west led him among the Mongols of the Caspian, and to the banks of the C'ral and the Volga; those to the south and south-west comprehended almost every province in Persia, including Baghdad, Kerbela, and Kurdistan. To this time belong the vestiges of his presence that still remain, such as the ruined monastery at Keghut near the Aras (Araxes), the eleft stone in the church at Dayiru 'l-- Omar (M'ar Jibrail) near Mardin, and the ruinless sites of such ancient cities as Zaranj in Sistan. In 1398, when Timúr was more than sixty years of age, Farishta tells us that, "informed of the commotions and civil wars of India," he "began his expedition into that country," and on 12 th September "arrived on the banks of the Indus." His passage of the river and upward march along the left bank, the reinforcement he provided for his grandson Pir Mohammed (who was invested in Multann), the capture of towns or villages accompanied, it might be, with destruction of the houses and the massacre of the inhabitants, the battle before Delhi and the easy victory, the triumphal entry into the doomed city, with its outcome of borrors, all these circumstances belong to the annals of India. In April 1399, some three months after quitting the capital of Mahmúd Tughlak, Timúr was back in his own capital beyond the Oxus. It need scarcely be added that an immense quantity of spoil was conreyed array. According to Clavijo, ninety captured elephants were employed merely to carry stones from certain quarries to enable the conqueror to erect a mosque at Samarkand. The war with the Turks which succeeded the roturn from India was rendered notable by the capture of Baghdad, Aleppo, and Damascus, and especially by the defeat and imprisonment of Sultan Bayazid. Chis was Timur's last campaign. Another was projected against China, but the old warrior was attacked by fever and ague when encamped on the further side of the Sihon (Syr-Daria) and died at Atrar (Otrar) on the 17th February 1405. Markham, in his introduction to the narrative of Clavijo's cmbassy, states that his body "was embalmed with musk and rose rater, wrapped in linen, laid in an ebony coffin, and sent to Samarkand, where it was buried." Timur had carried his victorious arms on one side from the Irtish and the Volga to the Persian Gull and on the other from the Hellespont to the Ganges.
Timúr's generally recomized biographers are-'Ali Yazdi, commouly called Sharifu d-Din, author of the Persian Zafarnama, translated by Petis do ls Croix in 1722 , and from French Mohamged by J. Darby iu tho 1ollowng year; and Ahmed inn Ibn 'Arabshăh, anthor of tho Aralic 'A juibu 'l Alakhinkal', called lated by the Dutch Orientalist Golius in 1636 . In tho work of the former, as Sir William Jones remarks, "the Tartarian conqueror is represented as a libers), benevolent, and illustrious prince " in that of the latter ho is "deformed and impious, of a low birth and that of the latter he is "deformed and latuphe favourable account was mriten
a.ader the personal supervision of Timúr's grandson, Ibrihim, while the other was the production of his direst enemy. Few indeed, if any, original annals of this class are written otherwise than to order, under patronage, or to serve a purpose to which truth is secondary. Among less reputed biographies or materials for biography may be mentioned a second Zafarndma, by Maulána Nizamn "d-Din Shanab Gházȧni (Nizám Shámi), stated to be "the earliest known history of Timur, and the only one written in his lifetime"; and vol \dot{i}. of the Malln'u's-Sa'dain-a choice Persian MS. work of 1495--introduced to Orientalists in Europe by Hammer, Jahrbücher, Dorn, and (notably) Quatremère. There are also the Memoirs (Mfalfüoki) and Institutes (Tuzukát), of which an important section is styled Designs and Enterprises (Tadbirdt wa Kangdshahd). Upon the genuineness of these doubt has been thrown. The circumstance of their alleged discovery and presentatiou to Shah Jahan in 1037 was of itself open to suspicion. Alhazen, quoted by Purchas in his quaint notice of Timur, and referred to by Sir John Malcolm, can hardly be accepted as a serious anthority. His assumed memoir mas printed for English readers in 1597 by William. Ponsonby under the title of a Historie of the Great Emperor Tamerlan, drawn from the ancient monuments by Messire Jean du Bec, Abbot of Mfortimer; and another version of the same book is to be fonnd in the Histoire du Grand Tamerlan, by De Sainctyon, published at Amsterdam in, 167s. Bnt, althongh the existence of this Alhazen of Jean de Bec has been believed by many, the more trustworthy critics consider the history and historian to be equally fictitious.

Reference may be made to two more sourees of information. i1) Supposed likenesses of Timúr are to be found in books and in the spleudid collection of Oriental manuseripts and drawings in the British Mnsenm. One contained in the Shah Jahin Nama-s gorgeous specimen of illuminated Persian msnuscript and exquisito caligraphy - represents a most ordinary, middle-aged Oriental, with narrow black whisker fringing the cheek and meeting the tip of the chin.in a scanty, pointed beard; a thin moustache sweeps in-a semicircle from above the upper lip; the eyebrow over the almond-shaped eje is marked but not bushy. But it were vain to seek for an expression of genius in the comntenance. Another portrait is included in a set of sketches by native artists, some of which, taken probsbly from life, show great care and cleverness. Timúr is here displayed as a stoutish, long-bodied man, below the middle-height, in age and feature not unlike the first portrait, but with thicker and more straggling hair, and distincter, though not more agreeable character in the facial expression, yet not a sign of power, genius, or any elements of grandeur or celebrity. The uncomfortable figure in the Rodleian Library does not give much help. Sir John Malcolm has been at some pains to invest his portrait of Timúr with individuality. But an analysis of his results leares the reader in more perplexity than satisfaction at the kind of information imparted, and he reverts insensibly to the sources from which his instructor has himself been instructed. (2) As regards plays, in Marlowe's Tamburlaine Timur is described as taill of stature, straightly fashioned, large of limb, having joints strongly knit, long and sinewy anns, a breadth of shoulders to " bear old Atlas's burden," pale of complexion, and with "amber hair Frapp"d in curls." The outline of this description might be from Sharifu 'd-Dín, while the colours are the poet's own. A Lstin memoir of Tamerlane by Perondiuns, printed in 1600: entitled Magni Tamerlauis Scythamum Imperatoris Vita, deescribes Timúr as tall and bearded, broad-chested and broadshouldered, well-built but lame, of a fierce conntenance, sud with receding eye3, which express cruelty and strike terror into the lookers-on. But Jean du Bec's account of 'Timúr's appearance is quite different. Now Tamburlaine was written in 1586. The first English trsuslation of Jean du Bec is dated in 1595 , the Life by Perondinus in 1600 , snd Petis de la Croiz did not introduce Sharifu 'd-Din or 'Ali Yazdi to European readers till 1722. The dramatist must hare heard of Timur in other quarters, equslly reliable it may be with those available in the present stage of Oriental research. At the beginning of the 18 th century Timir was represented in Rowe's Tamerlane as a model of valour and virtue. The plot, however, has little to do with history, and is jmprobable and void of interest. By Mstthew Gregory Lewis again "Timour" is depicted as the conventionsl tyrant of a gorgeous melodrama, slaying, burning, slsughtering, snd commitfing every possible atrocity until checked by violent death and a poetical climax.
Apart from modern European savants and historians, and the more strictly Oriental chroniclers who have written in Persisn, Turkish, or Arabic, the following anthorities may be cited-Laonicus Chalcondylas, Joannes Leunclavius, Joachimus Camerarius, Petrus Perondinus, Lazàro Soranzo, Simon Mairlus, Matthew Michiovins. A score or so of other names are given by Samuel Purchas. See also Clements Markham's Clarijo, in the Hakluyt Society's pablications; White's edition of Dary's translation of the Institutes (1783) ; Stewart's trsnslation of the Malfirdi; Mslcolm's History of Persia; sid Trans. Roy. Soc., 1885.
'F, J. G.)

TIN (Lat. stannum, whence the chemical symbol "Sn"; atomic weight $=117 \cdot 6,0=16$), being a component of bronze, was used as a metal thousands of years prior to the dawn of history. But it does not follow that prehistoric bronzes were made of metallic tin. When the unalloyed metal was first introduced cannot be ascertained with certainty. All we know is that about the 1st century the Greek word кa夫бitcpos designated tin, and that tin was imported from Cornwall into Italy after, if not before, the invasion of Britain by Julius Cæsar. From Pliny's writings it appears that the Romans in his time did not realize the distinction between tin and lead: the former was called plumbum album or candidunt to distinguish it from plumbum nigrum (lead proper). The word stannum definitely assumed its present meaning in the 4 th century (H. Kopp).

Grains of metallic tin occur as a subordinate admixture in the gold ores of Siberia, Guiana, and \cdot Bolivia Of tin mineral compounds (which are not numerous) tinstone, SnO_{2}, is the most important; besides it only tin pyrites, which, according to Rammelsberg, exists in two varieties, $\mathrm{FeCu}_{2} \mathrm{SnS}_{4}$ and $\mathrm{ZnFeCu}_{4} \mathrm{Sn}_{2} \mathrm{~S}_{8}$, need be named here.

Tinstone or Cassiterite. - This native oxide of tin, SnO_{2}, forms very hard quadratic crystals of specific gravity 6.8 . The pure mineral is colourless, and it is very scarce; most specimens are brown owing to the presence of ferric or manganic oxide. The faces of the crystals exhibit diamond lustre. There is also another native form, known as " wood tin, ${ }^{\nu}$ occurring in roundish masses with a fibrous radiating fracture. The ore is found in veins or layers within the older crystalline rocks and slates. Being much more highly proof against the action of water and carbonic acid than its matrix, the ore often presents itself in loose crystals as part of the sand of rivers (stream tin). The oldest known deposit of tinstone is that of Cornwall, where it occurs in granite and in the "killas" (a kind of metamorphic clayish slate), associated with wolframite, apatite, topaz, mica, tourmaline, arsenide of iron, and other minerals. Cornish tin ure is characteristically rich in arsenic. Minor European deposits occur in the Erzgebirge, in Brittany, and in Galicia (Spain). A very considerable deposit of pure ore (chielly stream tin) exists in the island of Banca; and in Malacca tinstone is found. Other relatively abundant deposits occur in Bolivia and Pern, and in Queensland and New South Wales (lately discovered).

Retallurgy. - In the extraction of tin frum tinstone ore the first step is to pound the crude ore and wash away the lighter gangue with water (see Metalidrgy, vol. xti. p. 59). The washed ore is "roasted" to burn away the arsenic and sulphur and to convert the iron, originally present in the heary and compact form of pyrites or arsenide, into light friable oxide, which is removed by a second washing process. If much oride of copper is contained in the product, it is extracted with dilute sulphuric acid, and from the solution is recovered by precipitation with metallic iron (see Copper, vol. vi. p. 347). The purified ore, knorrn as "black tin," goes to the smelting furnace. During the roasting process the ore must be constantly agitated to prevent caking, and to bring the arseniferous, dec., parts to the surface. To save manual labour, Oxland and Hocking have constructed a mechanical roaster. It consists of a slanting tube of boiler-iron, coated inside with fire-brick. The lower end opens into the fire-place; the upper communicates with a set of chambers for the condensation of the white arsenic produced. The washed ore, after being dried on the top of the chamber, is run thence by a funnel into the pipe, which is made to rotate about its axis from three to eight times per minute. Before the ore has travelled far down the arsenic and sulphur catch fire, and by the time it reaches the bottom it is fully roasted. It falls into a receptecle below the level of the
fire. Of the impurities of the ore the wolframite (tungstate of iron and manganese) is the most troublesome, because on account of its high specific gravity it cannot be washed away as gangue. To remove it, Oxland fuses the ore with a certain proportion of carbonate of soda, which suffices to convert the tungsten into soluble alkaline tungstate, without producing noteworthy quantitics of soluble stannate from the oxide of tin; the tungstate is easily removed by treatment with water.

Smeling.-The purified ore is mixed with about onefifth of its weight of anthracite smalls, the misture being moistened to prevent it from being blown off by the draught, and is then fused on the sole of a reverberatory furnace for five or six hours. The slag and metal produced are then run off and the latter is cast into bars; these are in general contaminated with iron, arsenic, copper, and other impurities. To refine them, the bars are heated cautiously on an inclined hearth, when relatively pure tin runs off, while a skeleton of impure metal remains. The metal run off is further purified by poling, i.e., by stirring it with the branch of a tree, -the apple tree being preferred traditionally. This operation is no doubt intended to remore the oxygen difflused throughout the metal as oxide, part of it perhaps chemically by reduction of the oxide to metal the rest by conveying the finely diffused oxide to the surface and causing it to unite there with the oxide scum. After this the metal is allowed to rest for a time in the pot at a temperature above its freezing point and is then ladled out into ingot forms, care being taken at each stage to ladle of the top stratum. The original top stratum is the purest, and each succeeding lower stratum has a greater proportion of impurities; the lowest consists largely of a solid or semi-solid alloy of tin and iron.

To test the purity of the metal, the tin-smelter heats the bars to a certain temperature just below the fusing point, and then strikes them with a hammer or lets them fall on a stone floor from a given height. If the tin is pure it splits into a mass of granular strings. Tin which has been thus manipulated and proved incidentally to be very pure is sold as grain tin. A lower quality goes by the name of block tin. Of the several commercial varieties Banca tin is the purest; it is indeed almost chemically pure. Next comes English grain tin. For the preparation of chemically pure tin two methods are employed. (1) Commercially pure tin is treated with nitric acid, which converts the tin proper into an insoluble hydrate of SnO_{2}, while the copper, iron, \&c., become nitrates; the oxide is washed first with dilute nitric acid, then with water, and is lastly dried and reduced by fusion with black flux or cyanide of potassium (2) A solution of pure stannous chloride in very dilute bydrochloric acid is rcduced with a galvanic current. According to Stolba, beautiful crystals of pure tin can bo obtained as follows. A piutinum basin, coated over with wax or paraffin outside, except a small circle at the very lowest point, is placed on a plate of amalgamated zinc, lying on the bottom of a beaker, and is filled with a solution of pure stannous chloride. The beakcr also is cautiously filled with acidulated water up to a point beyond the edge of the platinum basin. The whole is then left to itself, when crystals of tin gradually scparate out on the bottom of the basin.
Properties of Pure Tin. - Au ingot of pure tin is pure white (except for a slight tinge of blne); it exhibits conside abable lustre and is not subject to tarishing on exposure to normal sir. The metal is pretty soft and easily flattened out under the hammer, but almost devoid of tenscity. That it is elastic, within narrow limits, is proved by its clesr ring when struck with a hard body nader circumstances permitting of free vibration. The specific gravity of iogot tin is 7.293 at $13^{\circ} \mathrm{C}$. (Mathiesson). A tin ingot thoogh semingly amor. phous, has a crystalline structure, consisting of an aggregate of ${ }_{q}$ quaudratic octahdedra; hence tha chsracteristic crackling noiso which
a bar of tin givee out when being bent. This stracture can be readered visible by superficisl etching with dilate acid. As the minuter cryetals dissolve more quickly than the larger ones, the eurface assumes a frosted sppearance (moirée métallique), not nalike that of 2 frozen window-pane in winter time. Its cryatalline structure must account for the otriking fact that the ingot, when exposed for a sufficient time to very low tomperstures (to $-39^{\circ} \mathrm{C}$. for 14 hours), becomes so brittle that it falls into powder under a pestle or hammer; it indeed sometimes crumbles into powder epontadeously. At ordinary temperatures tin proves fairly ductile under the hammer, and its ductility eeems to increaso as the temperature rises up to about $100^{\circ} \mathrm{C}$. At some temperature near its fusing point it becomes brittle (vide supra), and still more brittle from $-14^{\circ} \mathrm{C}$. downwards. This behaviour of the metal msy probably be explained by assuming that in any tin crystal the coefticient of thermic expansion has ane value in the direction of the priacipal axis and soother in that of either of the eubsidiary axes. From 0° to 100° th two caefficients are practically identical; below -14° and from somewhere above 100° C. upwards they assunie different values; and, as the sevaral crystals are oriented in a lawless fashion, this must tead to disintegrate the mass. Tin fuses at $232^{\circ} \cdot 7$ (Persoz); at a red heat it begins to volatilize elamly ; at 1600° to $1808^{\circ} \mathrm{C}$. (Carnelley and Williams) it boils. The hot vapour produced combines with the oxygen of the air into white oxide, SaO_{2}

Industrial Applications. - Commercially pura tin is used (principally in Germany) for the making of pharmaceutical apparatus, buch as evsporating basins for extracts, infusion pats, etills, \&c. It is also employed for making two varieties of tin-foil,-one for the eilvering of mirrars (see MIrror, vol. xvi. p. 500), the other for wrapping up chocolate, toilet soap, tobacco, \&c The mirror foil must contain some copper to prevent it from being too readily amalgamated by the mercury. For making tin-foil the metal is ralled into thin sheets, pieces of which are beaten out with s wooden mallet. As pure tin does not tarnish in the air and is proof against acid liquids, such as vinegar, lime juice, \&c., it is utilized for culinary and domestic vessels. But it is expensive, sad tin vessela have to be made very heavy to give them sufficient atability of form ; hence it is generally employed merely as a protecting coating for utensils msde essentially of copper or iron. The tinning of a copper basin is an easy operation. The basin, made acrupulously clean, is heated over a charcoal fire to beyond the fusing point of tin. Molten tin is then ponred in, a littla powdered sal-ammoniac added, and the tin epread over the inside with a bunch of tow. The salammoniac remores the last unsvoidable film of oxide, leaving a purely metallic surface, to which the tin sdheres firmly. For tinning emall objects of copper or brass (i.e., pins, hooks, \&c.) a wet-way process is followed. One part of cream of tartar, two of slum, and two of comman salt are dissolved in boiling water, and the solution is boiled with granulated metallic tin (or, better, mized with a little stannous chloride) to produce a tin aolution ; and icto this the srticles are put at a boiling leat. In the absence of metallic tin there is no visible cluange; but, ss soom as the metal is introduced, a galvanic action sets in and the articles get coated aver with a firmly adhering film of tin. Tinning wrought irou is effected by immersion. The most important form of the operation is masing tinned from ordinary sheet iron (making what is called "sheet tin "). The iron plates, having been carefully cleaned with sand and muriatic or sulphuric acid, and lastly with weter, are plunged into heated tallow to drive away the water withou't oxidation of the metal. They are next steeped in a bath, first of molten ferrugioous, then of pure tin. They are then taken out sad kept suspended in hot tallow to enable the surplus tin to rin off. The tin of the second bach dissolves iron gradnally and becomes fit for the first bath. To tin cast-iron articles they must be decarburetted superficially by ignition within a bath of ferric oxide (powdered hrmatite or similar material), then cleaned with acid, and tinned by immersion, as explained above. By far the greater part of the tin produced metallargically is used for msking tin alloye, the majority of which bave been treated of in preceding articles; see Lead, vol. xiv. p. 378 ; Pewter, rol. xviii. p. 725 ; Bronze, vol. iv. p. 366°; PHosphorus, vol. xviii. p. 817.

Tin Compounds. - The most important of these may be arranged into two classes, mamely, otannous compounds, $\mathrm{Sn} \mathrm{X}_{2}$, and stannic componads, SnX , where X stands for $\mathrm{Cl}, \mathrm{Br}, \frac{1}{2} \mathrm{O}$, \&cc. Stannous compounds are, in general at least, characteristically prone to pass into the stannic form by taking up additional X_{2} in the form of oxyged, chlorine, sc.

Stannows Chloride, SnCl_{3}. -This can be obtained pure only by heating pure tin in a current of pure dry hydrochloric acid gas. It is a white solid, fusing at $250^{\circ} \mathrm{C}$. and volatilizing at a red heat in nitrogen, a vacuum, or bydrochloric acid, without decomposition. The vapour density below $700^{\circ} \mathrm{C}$. corresponds to $\mathrm{Sn}_{2} \mathrm{Cl}$, a bove $800^{\circ} \mathrm{C}$. to nearly SnCl_{2} (Von Moyer snd Zuiblin). The chlorido readily combines with water into an easily soluble cryatallizs ble bydrate ("tin crystals"). This is made without diffculty by dissolving tin in atrong bydrochloric acid and allowing it to crystallize. For its industrial preparation Nöllner passes sufficiently bydrated hydro-
chloric acid gas over granulated tin contained in stoueware bottles and evaporates the concentrated solution produced in tin basins over granulated tin. The basin itself is not attacked. The crystals contain one $\mathrm{H}_{2} \mathrm{O}$ according to Berzelius, while Marignac finds two; probably both are right. The crystals are very soluble in cold water, and if the salt is really pure a small proportion of water forms a clear solution; but on adding much water most of the salt is decomposed, with the formation of a precipitate of oxy-chloride$2 \mathrm{SuCl}_{2}+3 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{HCl}+\mathrm{Sn}_{3} \mathrm{OCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
According to Michel and Kraft, one litre of cold saturated solution of tin crystals weighs 1827 grammes and contaios 1333 grammes of SnCl_{2}. The same oxy-chloride is produced when the moist crystals, or their solution, are exposed to the air ; by the action of the atmospheric oxjgen

$$
\mathrm{O}+3 \mathrm{SnCl}_{2}=\mathrm{Sn}_{2} \mathrm{Cl}_{2} \mathrm{O}+\mathrm{SnCl}_{5}
$$

Hence all tin crystals as kept in the laboratory give with water a turbid solution, which contains stannic in addition to stannous chloride. The complete conversion of stannous into stannic chloride may be effected by a great many reagents, - for iostance, by chlorine (bromine, iodine) readily; by mercuric chloride, HgCl_{5} in the heat, with precipitation of calonel, $\mathrm{HgCl}_{\text {, or metallic mercury ; by ferric }}$ chlowide in the lecat, with formation of ferrous salt, FeCl_{2}; by arsenions chloride in strongly hydrochloric solutious, with precipitation of chocolate-brown metallic arsenic. All these reactions are available as tests for stannesum or the respective agents. In opposition to stannous chloride, even sulphurous acid (solution) behares as au oxidizing agent. If the tro reagents are mixed, a precipitato of yellow stannic sulphide is produced. By first intention

$$
\mathrm{SO}_{3} \mathrm{H}_{2}+3 \mathrm{Su}^{11} \mathrm{Cl}_{2}=3 \mathrm{Sn}^{I \mathrm{~V}} \mathrm{Cl}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~L}
$$

The stannic oxy-chloride readily exchanges its O for Cl_{3} at the expense of the hydrochloric acid, which is always present, and the $\mathrm{H}_{2} \mathrm{~S}$ decomposes, one-half of a molecule of SnCl_{5} with formation of SnS_{2}. A strip of metallic zinc when placed in a solution of stanDous chloride precipitates the tin in crystals and tales its place iu the solution. Stannous chloride is largely used in tho laboratory is a reducing agent, in dyeiug as a mordant.
Stannous Oxide.-Thia as a hydrate is obtained from a solution of stannous chloride by addition of carbonate of soda; it forms a white precipitate, which can be washed with air-free water and dried at $80^{\circ} \mathrm{C}$. without much change by oxidation. If the hydrate is heated in carbouic acid, the black anhydride SnO remains (Otto). Precipitated stannous hydrato dissolves readily in caustic potasla ley; if the solution is evaporated quickly, it suffers decomposition, with formation of metal and stannate,

$$
2 \mathrm{SnO}+\mathrm{K}_{2} \mathrm{O}=\mathrm{SnO}_{2} \mathrm{~K}_{2} \mathrm{O}+\mathrm{Sn}
$$

If it is evaporated slowly, anlydrous stannous oxide cryatallizes out at a certain stage (Otto). Dry stannous oxide, if touched with a glowing body, catches fire and burns into binoxide, SnO_{2}. Stan. nous oxalate when heated by itself in a tulue leares stannous oxide (Liebig).

Stannic chloride, SnCl_{4} is obtained by passing dry chlorine over granulated tin contained in a retori; the tetrachloride distils over as a heary liquid, from which the excess of chlorine is easily remored by shaking with a simall quantity of tin filings and re-distilling. It is a colourless fuming liquid of specific gravity 2.269 at 0° (Pierre) and 2.234 at $15^{\circ} \mathrm{C}$. (Gerlach), is fluid at $-29^{\circ} \mathrm{C}$., and boila at $115^{\circ} \cdot 4 \mathrm{C}$. under 753.1 mm . pressure (Pierre). The chloride uuites energetically with water into crystalline hydrates (ex. $\mathrm{SnCl}_{4}, 3 \mathrm{H}_{2} \mathrm{O}$), easily soluble in water. It combines readily with alkaline and other chlorides into double salts: thus $\mathrm{SuCl}_{4}+2 \mathrm{KCl}=\mathrm{SnCl}_{8} \mathrm{~K}_{3}$ avalogous to the chloro-platinate; another example is the salt $\mathrm{SnCl}_{6}\left(\mathrm{NH}_{4}\right)_{3}$, known industrially as "pink aalt," because it is used as mordant to produce a pink colour. The plain chloride solution ia similarly used. It is usually prepared by dissolving the metal is aqua regis.
Stannic Oxide, SnO_{2}.-This, if the term is taken to include the bydrates, exists in a pariety of forms. (1) Tinslone (see above) is proof against all acids. Its disintegration for analytical purposes can bs effected by fusior with caustic alkali in silver, with the formation of soluble stamnate, or by fusion with sulphur and car. honate of soda, with the formatiou of a soluble thio-stannate, $\mathrm{Sn}_{2} \mathrm{~S}_{2}+\mathrm{XNa}_{2} \mathrm{~S}$. (2) A similar oxide is produced by burning tin in air at high temperatures or exposing any of the hydrates to a strong red heat. Such tin-ash, as it is called, is used for the polishing of optical glasses. (3) Metu-stannic acid $\left(\mathrm{H}_{3} \mathrm{OSnO}_{2}\right.$, generally written $\mathrm{H}_{10} \mathrm{Si}_{5} \mathrm{O}_{151}$ to account for the complicated composition of nietastannates, e.g., the soda salt $\mathrm{H}_{8} \mathrm{Na}_{3} \mathrm{Sn}_{5} \mathrm{O}_{15}$) is the white hydrate produced from the metal by means of nitric acid. It is insolnble inwater and in nitric acid aod apparently so in hydrochloric acid; but if heated with this last for somo time it passes into a hydro. chlorate, which, after the acid mother liquor has been decanted off, dissolves in water. The solution when subjected to distillation behares pretty much like a physlcal solution of the oxide in hydrochloric acid, whils a solution of ortho-stannic acid in hydrochloric ocid behaves like a solution of SnCl_{3} in water, i.e., gives of no bsdrochloric acid and no precipitats of hydrated SnO_{2}. (4) Ortho.
stannic acid is obtained as a white precipitate on the addition of carbonate of soda or the exact quantity of precipitated carbona ${ }^{+} e$ of lime to a solution of the chloride. This hydrate, $\mathrm{SnO}_{2} \mathrm{H}_{2} \mathrm{O}$, is readily soluble in acids forming stannic salts, and in caustic potash and soda, with the formation of ortho-stannatea. Of these stannate of sodium, $\mathrm{N}_{2} \mathrm{SnO}_{2}$, is produced industrially by heating tin with Chili saltpetre and caustic soda, or by fusing very finely powdered tinstone with caustic soda in iron vessels. A solution of the puro salt yielda fine prisms of the composition $\mathrm{Na}_{2} \mathrm{SnO}_{3}+10 \mathrm{H}_{2} \mathrm{O}$, which eflloresce in tho air. The salt is much used as a mordant in dyeing and calico-printing. Alkaline and other stanates when treated with aqueous hydrofuoric acid are converted into fluo-stannates (c.g., $\mathrm{K}_{2} \mathrm{SnO}_{3}$ into $\mathrm{K}_{2} \mathrm{Sn}_{n}$), which are closely analogous to, and isomorphous with, tho-silicates.
Sulphides. - If tin is heated with sulphur the two unite very readily into stannous sulphide, SnS, a lead-grey mass, which under the circumstances reluses to take up more sulphur. But, if a mixture of tin (or, better, tin amalgan), sulphur, and sal-ammoniag in proper proportions be heated, stamnic sulphide, SaS_{2}, is produced is the beautiful form of aurum musirum (mosaic gold), -a solid consisting of golden yellow, metallic lustrous scales. 1t is used chiefly as a yellow "bronze" for plaster-of-Paris statuettes, \&c.

Arulysis.-Tin compounds when heated on charcoal with carbonate of sods in the reducing blowpips flame yield metal and a scanty ring of white SnO_{2}. The reduction, however, succeeds better with cyanide of potassium as a flux. Stannous salt solutions yield a bromn precipitato of SDS with sulphuretted hydrogen, which is insoluble in cold dilute acids and in real sulplide of ammonium, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$; but the yellow, or the colourless reagent on addition of sulphur, dissolves the precipitate as SuS_{3} salt. The solution on acidification yields a yellow precipitate of this sulphide. Stannic salt, SnCl_{4}, solutions give a yellow precipitate of SnS_{2} with sulphuretted hydrogen, which is insoluble in cold dilute acids but readily soluble is sulphido of ammonium, and is re-precipitated therefrom as SnS_{2} on acidification. Only stannous salta (not stannic) give a precipitate of calomel in mercuric chloride solution. A mixture of stannous and stannic chlorido when added to a sufficient quantity of solution of chloride of gold, gives an inteasely purple precipitate of gold purple (purple of Cassius), -a compound which, although kDown for centuries, is to this day little understood chemically. It lehaves on the whole like a compound of $\mathrm{SD}_{2} \mathrm{O}_{3}$ with $\mathrm{Au}_{2} \mathrm{O}$. The test is very delicate, although the colour is not in all cases a pure purple.
(W. D.)

TINAMOU, the name given in Guiana to a certain bird as stated in 1741 by Barrere (France Equinoxiale, p. 138), from whom it was taken and used in a more general sense by Buffon (Hist. Nat. Oiseaux, iv. p. 502). In 1783 Latham (Synopsis, ii. p. 724) adopted it as Englich, and in 1790 (Index, ii. p. 633) Latinized it Tinamus, as the name of a new and distinct genus. The "Tinamou" of Earrere has been identifed with the "Macucagua" described and figured by Marcgrave in 1648, and is the Tinamus majos of modern authors. ${ }^{1}$
Buffor and his successors saw that the Tinamous, though passing araong the European colonists of South America as "Partridges," could not be associated with those birds, and Latham's step, abore mentioned, was generally approred. The genns he had founded was usually placed among the Gallinx, and by many writers was held to be allied to the Bustards, which, it must be remembered, were then thought to be "Struthious." Indeed the likeness of the Tinamou's bill to that of the Raed (vol. xx. p. 506) was remarked in 1811 by Illiger. On the other hand L' Herminier in 1827 saw features in the Tinamou's sternum that in his judgment linked the bird to the Rallidx. In 1830 Wagler (Nat. Syst. Amphibien, \&c., p. 127) placed the Tinamous in the same Order as the Ostrich and its allies; and, though be did this on very insufficient grounds, his assignment has turned out to be not far from tho mark, as in 1862 the great affinity of these groups was shown by Prof. Parker's researches, which were afterwards printed in the Zoological Transactions (r. pp. 205-232, 236-238, pls. xxxix.-xli.), and was further substantiated by him in the Philosophical Transactions (1866, pp. 174-178, pl. xv.). Shortly after this Prof. Huxley in his often-quoted paper in the Zoological Proceedings (1867, pp. 425, 426)
${ }^{1}$ Brisson and after him Linnæus confounded this bird, which they had never seed, with the Trumpeter (q.v.).
was enabled to place the whole matter in a clear light, urging that the Tinamous formed a very distinct group of birds which, though not to be removed from the Carinatæ, presented so much resemblance to the Ratite as to indicate them to be the bond of union between those two great divisions. ${ }^{1}$ The gromp from the resemblance of its palatal characters to those of the Eare (rol. viii. p. 171), Dramæus, he called Dromæognathx, and his decision, if not his name, has since been widely accepted.

The Tinamous thus-by whatever name we call them, Dromao. amathe, Tinami, or Crypturi-will be seen to be of great impertance from a taxonomer's point of riew, thongh in regard to numbers they are comparatively insignificant. In 1873 Messrs. Sclater and Salvin in their Nomenclator (pp. 152, 153) recognized nine genera and thirty-nine species, siace which time about half a dozen other species zaay have been described ; but in 1880 Schlegel (Mrus. PaysBus, viii., Mlonegr. 41, pp. 1-51) would only admit five genera and thirty-one species-the latter because it was the number possessed by the Leyden museum. They are peculiar to the Neotropical Region-four species only finding their way into southern Mexico and none beyond. Some of them inhabit forests and others the nore open conntry ; but sctting aside size (which in this group varies from that of a Quail to that of a large common Fowl) there is an unmistakable uniformity of appearance among them as a whole, so that almost anybody having seen one species of the group would always recognize anether. Yet in minor characters there is considerable difference among them; and first of all the group may be divided into two sub-families, the first, Tinaminex, having four toes, and the second, Tinamutidine, haviog but three-the latter containing, so far as is known, but two genera, Calopcius and Tinamolis, each consisting of a single species, while the former, according to Messrs. Sclater and Salvin (ut supra), may be separated into seven genera, two being Tinamus and Nothoccreus, characterized by the roughness of their posterior tarsal scales, the others, Crypturus, Rhynchotus, Nothoproda, Nothura, and Taoniscus, having smooth legs.
To the ordinary spectator Tinamous have much the look of Partridges, but the more attentive observer will

Rufous tinamou (Rhynchotus rufescens).
notice that their elongated bill, their "small head and slender neck, clothed with very short feathers, give them a different air. The plumage is generally inconspicuous: some tint of brown, ranging from rufous to slaty, and often more or less closely barred with a darker shade or black, is the usual style of coloration; but some species are characterized by a white throat or a bay breast. The wings are short and rounded, and in some forms the feathers of the tail, which in all are Lidden by their corerts, are soft. In bearing and gait the birds show some resemblance to their distant relatives the Ratitx, and Mr

[^167]Bartlett shows (Proc. Zool. Soicty, 1868, p. 115, pl. xii.) that this is especially seen in the newly-hatched young. He also notices the still stronger Ratite character, that the male takes on bimself the duty of incubation. The eggs are very remarkable objects, curiously unlike those of other birds; and, as before stated (Birds, vol. iii. p. 775), their shell ${ }^{2}$ looks as if it were of highly-burnished metal or glazed porcelain, presenting also various colours, which secm to be constant in the particular species, from pale primrose to sage-green or light indigo, or from chocolatebrown to pinkish orange. All who bave eaten it declare the flesh of the Tinamou to have a most delicate taste, as it has a most inviting appearance, the pectoral muscles being semi-opaque. Of their habits not much has been told. Darwin (Journal, chap. iii.) has remarked upon the silliness they show in allowing themselves to be taken, and this is wholly in accordance with what Prof. Parker observes of their brain capacity, and is an additional testimony to their low morphological rank. At least one species of Tinamou has bred not unfrequently in confinement, and an interesting account of what would bave been a successful attempt by Mr John Bateman to naturalize this species, Rhynchotus rufescens, in England, at Brightlingsea in Essex, appeared in The Field (23d Feb. 1884 and 12th Sept. 1885). The experiment unfortunately failed owing to the destruction of the birds by fores.
(A. N.)

TINDAL, MÁtteew (1656-1733), one of the ablest and most popular of the English deists, the son of a clergyman, was born at Beer Ferris, Devonshire, in 1656. He studied law at Lincoln College, Oxford, where he came under the iofluence of the High Churchman George Hickes, dean of Worcester; and in his twenty-second year he was elected fellow of All Souls Collcge, and held his fellorship till his death. About 1685 he saw "that upon his High Church notions a separation from the Church of Rome could not be justified," and accordingly he joined the latter. But, discerning the baselessness and absurdity of Rome's claims, he returned to the Church of England at Easter 1688. In 1694 he published an Essay of Obedience ta the Supreme Powers, in which ho justified the Revolution against notions of passive obedience and jus divinum ; in 1697 an Essay on the Power of t? Magistrate and the Rights of Mankind in Matlers of Meligion, an able vindication of liberty of conscience, though he allows no right of toleration to "atheists"; and in 1698 an essay on The Liberty of the Press, a rigorous exposuro of the proposal to appoint licensers of the press and a porrerful plea for the free discussion of religion. The first of his two larger works, The Rights of the Christian Church associated against the Romish and all other priests who claim an independent power over it, part i., appeared anonymously in 1706 (2 d ed., 1706; 3d, 1707 ; 4th, 1709). The book was regarded in its day as an extremely forcible defence of the Erastian theory of the supremacy of the state over the charch, and at once provoked a storm of counter-argument and abuso on the part of those who maintained the independent rights and authority of the church. The law also was invoked against it, and, after several attempts to proscribe the work had failed, one against the author, publisher, and printer succeeded on 12 th December 1707 , and another against a bookseller for selling a copy tho next day. The prosecution did not prevent the issue of a fourth edition and gave the author the opportunity of issuing A Defence of the Rights of the Christian Church, in two parts (2d ed., 1709). The book continued to be the subject of denunciation for ycars, and Tindal believed he was charged by Dr Gibson, bishop of London, in a Pastoral Letter, with having undermined religion and promoted atheisin and infidelity, - a
${ }^{2}$ Hert ron Nathusius has described its microscopic structure (Jour. fur wissensch. Zoologie, 1871, I'p. 330.355).
charge to which he replied in an anonymous tract, $A n$ Address to the Irihabitants of London and Westminster, a second and larger edition of which appeared in 1730. In this tract ${ }^{1}$ he makes a valiant defence of the deists and of the use of reason in•religious matters, and anticipates here and there his Christianity as Old as the Creation; or the Gospel a Republication of the Religion of Nature, London, 1730 (2d ed., 1731 ; 3d, 1732 ; 4th, 1733), which was regarded by friends and foes alike as the "Bible" of deism. It was really only the first part of the whole work, and the second, though written and entrusted in manuscript to a friend, never saw the light. It was said that Dr Gibson prevented its publication. The first part made a great noise, and the answers to it were numerous, the most able being by Dr James Foster (1730), Dr John Conybeare (1732), Dr John Leland (1733), and Bishop Butler (1736). It was translated into German by J. Lorenz Schmidt (1741), and from it dates the influence of English deism on German theology. It is by this book that Tindal is now chiefly remembered; but he had probably adopted substantially the principles it expounds before he wrote his essay of 1697. He objected to be called a simple deist, and claimed the name of "Christian deist," as he held that true Christianity is identical with the eternal religion of nature. He died at Oxford on 16th August 1733.

The religious system expounded in Tindal's Christianity as Old as the Creation, unlike the earlier system of Lord Herbert of Cherbury, was based on the empirical principles of Locke's philosophy. It assumed the traditional deistic antitheses of external and in. ternal, positive and natural, revelations and religions, and perpetusted at the same time the prevalent misconceptions as to the nature of religion snd revelation. The system was, moreover, worked out by the purely a priori mothod, with all but a total disregard of the facts of religious history. It starts from the tremendous assump. tions that true religion must, both from the nature of God and the natuŕe of things, be eternal, universal, simple, and perfect; it maintains that this religion can consist of nothing but the simple and nniversal duties towards God and man, the first consisting in the fulfilment of the second,-in other words, the practice of morality. The suthor's moral system is somewhat confused and inconsistent, but is essentia!ly utilitarian. From such principles it follows necessarily that the true revealed religion can be nothing more nor less than a republication of the religion of nature or reason, and that, if Christianity is the perfect religion, it can only be that republica. tion, and must be as old as the creation. The special mission of Christianity, therefore, was simply to deliver men from the superstition which had in course of time got mixed up with the religion of nature. True Christianity consequently must be a perfectly "reasonable service"; arbitrary and positive precepts can form no true part of it; revelation and reason can never disagree; reason mnst be supreme, and the Scriptures as well as all religious doctrines must submit to ifs tests ; and only auch writings can be regarded as Divine Scripture which tend to the honour of God and the good of man. Thus tested, much in the Old and the New Testaments must be rejected as defective in morality or erroneous in fact and principle. The atrength of Tindal's position was tho underlying conviction of the essential harmony betrrecn man's religicus and rational nature, and consequently of the rationality of Christianity. Its weakness was that, like the whole religicus philoscphy of the time, it was founded on a total misconception of the nature of religion and of revelation, and on as complate a disregard of the course of man's religicus development. Weak points in it were ably exposed by Foster, Conybeare, Butler, and others; but its radical errors needed for their complete exposure the higher conceptions of religion and religious history which were originated by Lessing, Schleiermacher, and Hegel.
See Leland, View of the Principal Deistical Writers (London, 1798): Lechler, Geschtchte des Englischen Deismus (Stutt tart, 1841); Theological Fieview, November 1854: Eunt, Religious Thought in England from the Reformation to the End of Lost Century (London, 1870.73); Leslie Stephen, History of English Thought in the Eighteenth Century (London, 1876-80); A. S. Farrar, Bampton Lecture (1862), lect. iv.

TINGHAE. See CHUSAN.

TINNE, Alexandrine (1839-1869), African traveller, born at The Hague on 17 th October 1839, was the daughter of an English merchant and his wife, Baroness van Steen-gracht-Capellen. Her father died when she was fivd years

[^168]old, leaving her the richest heiress in the Netherlands' After travelling in Norway, Italy, and the East, and visiting Egypt, when she ascended the Nile to near the equator, Mademoiselle Tinné left Europe again in 1861 for a prolonged sojourn in the Nile regions. Accompanied by her mother and her aunt, she set out from Cairo on 9th January 1862. After a short stay at Khartoum, the party ascended the White Nile as far as Gondokoro and explored a part of the Sobat, returning to Khartoum in November. Baron ron Heuglin and Dr Steudner having meantime joined the ladies at Khartoum, the whole party set out in February 1863 to explore the Bahr-el-Ghazal. The limit of navigation at the Bahr-el-Homr was reached on 10th March. From Lake Rek a journey was made overland, across the Bahr Jur and south-west by the Bahr Kosango, to Jebel Kosango, on the borders of the Niam-Niam country. During the journey all the travellers suffered severely. Steudner died in April and Madame Tinné in June, and after many fatigues and dangers the remainder of the party reached Khartoum in July 1864. Mademoiselle Tinné returned to Cairo by Berber and Suakim. The geographical and scientific results of the expedition, largely into a new country, were highly important, as will be seen in Heuglin's narrative in Petermann's Mittheilungen (Erg-hft, Nov. 15, 1865), and in his own Travels in the Region of the White Nile (1869). At Cairo Mademoiselle Tinné lived in somewhat Oriental stẏle during the next four years, visiting Algeria, Tunis, and other parts of the Mediterranean. In January 1869 she started from Tripolis with a caravan, intending to proceed to Lake Tchad, and thence by Wadai, Darfur, and Kordofan to the Upper Nile. In July, however, on the route from Murzuk to Rhat, she was murdered by her escort.

Besides the references slready given, eee John A. Tinnés Geographical Notes of an Expedition in Central Africa by three Dutch Ladies, Liverpool, 1864.

TINNEVELLI, or Tliavelex, a district of British India, in the Madras presidency, lying between $8^{\circ} 9^{\prime}$ and $9^{\circ} 56^{\prime} \mathrm{N}$. lat. and $77^{\circ} 16^{\prime}$ and $78^{\circ} 27^{\prime}$ E. long. It has an area of 5381 square miles, and a coast-line of nearly 100 miles. Madura district bounds it on the N. and N.E., on the S. and S.E. the Gulf of Mannár, and on the W. the southern Ghats. Tinnevelli is a large plain, with an average elevation of 200 feet, sloping to the east with slight undulations. Along the western boundary the mountains rise to 4000 feet; but they send out no spurs into the district, nor are there any isolated bills. The district is watered by numerous short streams, the principal being the Tambraparnf (length 80 miles). In the north the scenery is unattractive and the soil poor; in the south red sandy soil prevails, in which little save the Palmyra palm will grow. But along the banks of the rivers are rice-fields and a variety of trees and crops. Many shoals occur near the shore, and in the north-east numerous rocks and reefs. The bills which divide Tinnevelli from Travancore are chiefly granite and gneiss; and along the coast stretches the broad belt of alluvium common to the whole east coast of India, and in it are many salt marshes, divided by sand-dunes from the sea. Several veins of calc spar cross the district from east to west, and the beds of all the rivers are more or less encrusted with a deposit of lime. The district contains many ancient and magnificent buildings; but the most interesting antiquities are the large sepulchral earthen urns of prehistoric races which have been found at several places, especially along the course of the Tambrapanf, and which contain bones, pottery of all sorts, beads and bronze ornaments, iron weapons, implements, \&c. As the seat of Dravidian civilization Tinnevelli possesses more antiquarian interest than any other part of Madras. The climate is very hot and dry except at
the season of the monsoons; the average annual rainfall throughout the district is less than 25 inches. Tinnevelli possesses several roads, but no canals. The South Indian Railway enters the district five miles north of Virudupatti and runs to Tuticorin (77 miles) ; a branch line (18 miles) connects this last town with Tinnevelli.
In 1881 the population numbered $1,699,747$ (males 825,887 , females 873,860), of whom $1,468,977$ ware Hindus, 89,767 Mohammedans, and 140,946 Christians. Tinnevelli has twelve towns with over 10,000 inhabitants each, riz., Tinnevelli (see below) ; Srivilliputur, 18,256; Palamcotta, 17,964; Tuticorin, 16,281; Kulase Kharapatnam, 14,972; Sivagiri, 13,632; Víravanallur, 12,318; Rajapalayam, 12,021; Tenkasi, 11,987; Káyalpatnam, 11,806; Kalladakúrchi, 10,936 ; and Sivakasisi, 10,833 . Out of the total area of 5381 square miles 1403 are uncultivablo waste. In $1885-86$ cereals, chicfly rice and spiked millet or kambu, the ataple food of the district, occupied 842,741 acres, pulses 192,341, oil seeds 78,127 , and cotton 206,717. The total area of forest is roughly estimated at 1500 squaro miles. Tuticorin is the ouly port of any importance. The chief exports are cotton, coffee, jaggery, chillies, \&c.; sheep, horses, cattle, and poultry are also sent to Ceylon. There is a considerable inland trade with Travancore. The pearl fishery on the coast is now unimpertant. Coastal narigation is dangerous. In 1885-86 the total revenue of the district was $£ 365,744$, of which the land-tax yielded $£ 305,850$.
The early history of Tinnevelli is mixed up with that of Madura and Travancore. Down to 1781 it is a confused tale of anarchy and bloodshed. In that year the nawab of Arcot assigned the revenues to the East India Company, whose officers then undertook the internal administration of affairs. Several risings subsequently took place, aud in 1801 the whole Carnatic, including Tinnevelli, was ceded to the British. Tinnevelli is now the most Christian district of all India, both Roman Cathelic and Protestant.

TINNEVELLI, chief and largest town of the above district, is situated $1 \frac{1}{2}$ miles from the left bank of the Tambraparnf in $8^{\circ} 43^{\prime \prime} 47^{\prime \prime} \mathrm{N}$. lat. and $77^{\circ} 43^{\prime} 49^{\prime \prime} \mathrm{E}$. long. The town was rebuilt about 1560 by Visvanátha, the founder of the Nayakkan dynasty of Madura, who erected many temples, \&cc., among them the great Siva temple. Tinnevelli is an active centre of Protestant missions in south India. In 1881 the pepulation was 23,221 (10,963 males and 12,258 females).

TINTORETTO. See Robusti.
TIPPERAH, a district of British India, in the Chittagong division of the lieutenant-governorship of Bengal, situated between $23^{\circ} 0^{\prime}$ and $24^{\circ} 16^{\prime} \mathrm{N}$. lat. and $90^{\circ} 36^{\prime}$ and $91^{\circ} 39^{\prime}$ E. long., with an area of 2491 square miles. It is bounded on the N. by Maimansinh and Sylhet, on the S. by Noakháli, on the W. by the river Meghna, separating it from Maimansinh, Dacca, and Bakarganj, and on the E. by the state of Hill Tipperah. The district presents a continuous flat and open surface, with the exception of the isolated Lalmái range (100 feet), and is for the most part laid out in well-cultivated fields, intersected in all directions by rivers and khals (creeks), which are partially affected by ${ }^{\circ}$ the tides. In the lowlands the soil is uniformly light and sandy; but in the bigher parts a deep alluvial soil alternates with bands of clay and sand. The principal rivers are the Meghna, which is navigable throughout the year for boats of 4 tons burden, and the Gumti, Dákátiá, and Titás, which are also navigable for craft of 4 tons for a considerable portion of their course. There are many marshes or bhils. The principal road is the grand trunk (63 miles), which traverses the district from east to west. The wild animals include elephants, tigers, leopards, wild boars, jackals, and buffaloes. The climate is mild, agreeable, and healthy.
The pepulation of the district in 1881 was $1,510,388$ (male9 770,893 , femalé 748,445); of theas Hindus numbered 511,025, Mohammed. ans 1,007,740, and Christians 199. Thare are only two tomne with more than 10,000 inhabitants each, viz, Comillah (13,372) àd Bráhmánbária $(17,438)$. Comillah is the chief town of the district and is situated on the south bank of the Gumti, in $23^{\circ} 28^{\circ}$ N. Lat. and $91^{\circ} 14^{\prime}$ E. long. Rice is the ataple crop of the district ; wheat and berlay, Indian corn and millet, pease, gram, and aavaral othar pulses are clso cultivated, as well as botel-leaf and betal-nut, engar-cana, tobecco, \&c. Tha chief exporte are rice, jute, and betel.
nuts; and the principal imperts sugar, timber, cotton goods, cocos nut oil, bamboos, spices, salt, tobacco, \&c. In 1885-86 the net revenue of the district amounted to £181,481, the laud-tax contributing. £102,866. Tipperah came under the Fast India Company in 1765 ; but more than a fifth of its present area was under the immediate rule of the raja of Hill Tipperah, who paid a tribute of ivory and elephants. At that time Tipperah formed part of Jalal. pur; but in 1822 it was separated, and sinca then great changes have been made in its boundaries. With the exception of a serious raid in 1860 by the Kukis or Lushais, nothing has disturbed the peace of the district.

TIPPERARY, an inland county of Ireland, in the province of Munster, is bounded N.W. by Galway, N.E. by King's county, E. by Queen's County and Kilkenny, S. by Waterford, and W. by Cork, Limerick, Clare, and Galway. Its greatest length north to south, from the confluence of the Little Brosna and the Shannon to the Knockmealdown Mountains, is 70 miles, and its greatest breadth west and east 40. The area is $1,061,731$ acres, or about 1659 square miles.

The surface is extremely varied and picturesque. " The Knockmealdown Mountains on the southern border (2609 feet) are principally of clay slate formation. To the north of this range are the picturesque Galtees, composed of Silurian strata overlaid by Old Red Sandstone (Galtymore 3015 feet). To the east, bordering Kilkenny, are the Slieveardagh Hills, composed of coalstone shales and sandstones, and near Templemore the Devil's Bit Mountains, with a curious gap on the summit. In the north-west there is a Silurian and sandstone group (Keeper Hill 2265 feet). The greater part of the county is a gently undulating plain, belonging to the central Carboniferous limestone plain of Ireland. From the rich level country the rock of Cashel, also composed of limestone, rises with great boldness and abruptness. Tipperary has only one river, the Suir, which has its scarce in the Devil's Bit Mountains, and flows southwards by Templemore, Thnrles, Caher, and Clonmel. The Nore, which also rises in the Devil's Bit Mountains, soon passes into Queen's county, and the Shannon forms part of the western border. A spur of the Leinster coal-field, the most important in Ireland, runs into Tipperary, extending to Cashel, a distance of 20 miles with an average breadth of 5 miles. All the measures are represented. The productive portion of the field is at Killenaule. It consists of a narrow trough ranging in a north-east direction, the beds dipping towards the axis at a high angle. The coal is anthracite and the seams are thin, the workable portion being of limited extent. In the lower measures are marine fossils, and plant impressions are numerous. Copper is obtainable at Lackamore and at Hollyford near Thurles, but only in small quantities. There is a vein of lead at Shallee, and zinc has recently been dug in considerable quantities at Silvermines on the north side of the Keeper Mountains. Manganese, malachite, galena, and barytes are also obtaimable. There are slate quarries at Killaloe. Between Caher and Clonmel are extensive deposits of fine pipe-clay. The Mitchelstown stalactite carerns, discovered accidentally in 1833, attract a large number of visitors.

Agriculture.-Tipperary ranka ameng the best agricultural districts of Ireland. The aubsoil in the lower greunda is limestene, which is overlaid by a rich calcareous loam, capable of yielding the finest cropa. The centre of the county is occupied by the Golden Vale, the most fertile diatriot in Ireland, which atretches from Cashel to the town of Limerick. On the higher diatricts the soil ia light and thin, partaking much of the character of the clay alate and sands on which it rests. Detached pertions of the Bog of Allen encrosch on the north-eastern parts of the county. The total number of holdings in 1885 wa 23,763, oi which 14,969 wera under 30 acres in extent, 4841 between 15 and 30 acres, 4444 betreen 5 and 15, 2861 between 1 and 5 , and 2223 leas than 1 acre. Of the total area 24.8 per cent. Was under crope, including meadow and cloter, 57.8 under graas, 1 fallow, 2.5 plantations, 4.9 bog and marah, 64 barren mountain land, and 3.4 water, roads, fences, \&c. Tha area under corn crops decreased from 85,888 acres in 1876 to

73,753 in 1885, the decrease havisg taken place eince 1882, the areas in the provious years having been remarkably uniform. The area under what decreased from 13,423 acres in 1882 to 5474 in 1885 , and that of oats from 57,332 to 50,196 . But the area under barley, for which distillation causes a steady demand, rose from 13,551 acres in 1876 to 17,993 in 1885. The area under green crops manifests also a tendeacy to decrease ; : e total area in 1885 was 58,833 acres, 33,042 being under potatoes, 19,196 turnips, 2096 mangolds and bectroot, and 4499 other green crops. The area under meadow and clover has been steadily increasing, being 114,149 in 1876 and 127,478 in 1855. The total number of horses in 1855 was 27,365 , of which 17,173 were used for agriculture ; the number of cattlo 254,488 , of which 80,508 were milch cows, the manufacture of butter occupying considerablo attention ; of sheep 203,798, pigs 50,475 , goats 13,011 , and poultry 681,239 . According to tho latest landowners' Return (1870°), the county was divided amoug 3372 proprietors omning 1,042,457 acres of an annual value of $£ 676,693$, the avarage value of the land being uearly 13 s . per acre. The following possessed upwards of 10,000 acres each:-Viscount Lismore, 34,945; Lord Dunalley, 21,081; G. K. S. M. Dawsod, 19,093; Lady Margaret Charteris, 16,617 ; marquis of Ormonde, 15,765 ; Viscount Hawarden, 15,272 ; N. Buckley, 13,260 ; earl of Clonmel, 11,098 ; and A. Moore, $10,200$.

Manufachures.-A few persons are employed iu mining, but the occupation of the inhabitants is chiefly agricultural. There are a considerable sumber of meal aud four mills.
Railways.-The county is remarkably well supplied with railways. A branch of the Great Southern and Western runs from Roscrea to Nenagh, where it joios a brsnch of the Limerick and Waterford, which in its progress south-eastwards from Limerick crosses t'ie southera corner of the county by Limerick Juaction, Tipperary, Caher, and Clonmel. The main line of the Great Southern and Western to Cork and Fillaroey crosses the centre of the cornty by Templemore, Thurles, and Limerick Junction. A branch of the Limerick and Waterford connects Thurles with Clonrael.

Administration and Population.-Tipperary is divided into a north and south riding, each consisting of six baronies. For parliamentary purposes it is separated into four divisions-East, Mid, North, and South-each returning one member. It contains 193 parishes and 3253 tomn lands. It is in the Leinster circuit. Assizes for the north riding are held in Nenagh and for the south riding in Clòmel. Quarter sessions are held at Cashel, Clonmel, Nenagh, Roscrea, Thurles, and Tipperary. There are twenty-four petty sessions districts and parts of six others. The county is within the Cork pailitary district. Ecclesiastically it belongs to the dioceses of Cashel, Emly, Killaloe, and Lismore. Since 1841 the popalation has decreased moro than one-half. From 435,553 in that year it fell to 216,718 in 1871 and to 199,612 in 1881. The following towns in 1881 possessed over 4000 inhabitants each, viz. -Clonmel (partly in Waterford), 9325 ; Tipperary, 7274 ; Carrick-on-Suir (partly in Waterford), 6583; Nenagh, 5422; and Thurles, 4850. Tha number of persons who couid read and write was 115,185 , who could read only, 24,386 ; the remainder- 60,041 -were unable to read or write. Thare were 248 persons who spoke Irish only and 23,558 able to speak Irish as well as Eagiish.

History and Antiquilies.-Anciently Tipperary was included in the territory of the Tuatha Dé Danann, and afterwards probably of the clan of Degaid. Hensy II., who landed at Waterford in October 1172, received at Cashel the homage of Donald O'Brien, king of Thomond. It was made a conaty by King John in 1210 ; in 1323 Edward III. made it a county palatine in favour of the earl of Ormonde ; and, though the king shortly afterwards resumed his regal prerogative, the connty was regranted in 1337. In 1372 the grant was confirmed to James, second earl of Ormonde, the lands belonging to the church retaining, however, a separate jurisdiction, -a division which continued till the Restoration. In 1617 James I. took the conoty palatine into his own hands. It was, however, restored in 1661 to James, twelfth earl and first duke, whose regalities were further made to include the portions of the county formerly under ecclesiastical jurisdiction. On the-attainder of $\mathrm{J}_{\text {ames, }}$ second duke, in 1715 tho jurisdiction reverted to the crown. There are two round towers within the county, -one at Roscrea and the other on the rock of Cashel. Of the old castles there are few important examples. That built by the first earl of Ormonde at Thurles has now disappeared. On the rock of Cashel there are a massive guand tower and some remains of the ancient wall. The atronghold of Caher, now occopied as a barrack, is still in good preservation. At Roscrea one of the towers of the castle built by King John still remains, and the stronghold of the Ormandes, erected in the reign of Henry VIII., forms the depôt attached to the barracks. The ecclesias ical ruins on the rock of Cashel are among the most remarkable in Ireland. They consist of a cathedral in the Pointed style of the 13th century, partly destroyed by fire in 1495 ; a curious Saxon chapel, ascribed to Cormac MacCullinan, archbishop of Cashel (b. 831); the bishop's palace; the "vicar's choral-house," sill on the summit of the rock ; and Hore abbey at its foot, founded
for Benedictines in 1272. The abbey of Holy Cross was founded in 1182 for Cistercian monks, and is one of the finest monastic ruins in Ireland. The relic of the true cross, from which the abbey takes its Dame, is in possession of the Catholic hierarchy of the district. The other principal ecclesiastical ruius are the priory of Athassel, founded for Augustinian monks about 1200; Fethard abbey, founded in the 14th century, now used as a chapel; the gable and porch of the abbey of Roscrea, founded by St'Cronan in the 7th century ; and a portion of the Franciscan friary founded in the same town in 1490 .

TIPPERARY, a market town in the above county, is beautifully situated near the base of the Slieve-na-muck or Tipperary Hills, a branch of the Galteo range, on the Waterford and Limerick Railway, 3 miles, south-east of Limerick junction and 110 south-west of Dublin. It contains a handsome Protestant church, a Catholic chapel, an endowed grammar-school, a town-hall, and a new corn and butter market. Owing to its situation in the centre of a fine agricultural district, it enjoys considerable prosperity, and its butter market ranks next to that of Cork. The town is of great antiquity, but first acquired importance by the erection of a castle by King John, of which there are now no remains. A monastery founded for Augustinians by Henry III., which has also disappeared, gave a second impulse to its growth. Formerly it was a corporation from a grant made in 1310 by Edward II., but is now governed by commissioners under provision of the Town Improvement Act of 1854 . The population in 1871 was 6638 , and in 1881 it was 7274.

TIPPOO SAHIB (1749-1799), sultan of Mysore, was the son of Hyder Ali (q.v.), and was born in 1749. He received a careful Mohammedan education, and was instructed in military tactics by the I'rench officers in the employment of his father. In 1767 in the invasion of tho Carnatic he commanded a corps of caralry, and he subsequently distinguished himself in the Mahratta War of 1775-79. On the outbreak of the first Mysore War in 1780 he mas put at the head of a large body of troops, with which be achieved several successes; in particular he entirely defeated Brathwaite on the banks of the Colerun in February 1782. He succeeded his father in December 1782, and in 1784 concluded a treaty of peace with the English. In the same year ho assumed the title of sultan. In 1787-88 he subjugated the Nairs of Malabar, and in 1789 provoked English invasion by ravaging the territories of the rajah of Travancore. When the English entered Mysore in 1790, he retaliated by a counter-inrasion, but he was ultimately compelled by Cornwallis's victory at Aribera, near Seringapatam; , to purchase peace by the cession of the half of his dominions (16th March 1792). The English having deemed it necessary to rener hostilities in March 1799, be was in less than two montls shut up in Seringapatam and accidentally killed during the sjege (4th May 1799). See Indis, rol. xii. pp. 803-4.

TIPTON, a town of England, in Staffordshire, is situated in the valley of the Stour, on the London and NorthWestern Railway, $4 \frac{1}{2}$ miles south-east of Wolverhampton and 121 north-west of London. It is built in a somewhat scattered and irregular manner, with coal-pits and iron and other works interspersed. Branches of the Birmingham Canal supply it with water communication. It depends chiefly on its iron manufactures, especially of a heary kind, and has numerous large furnaces and rollingmills. Its principal goods are rails, engine-boilevt tabes, fenders, and fire-irons. It alse possesses morts for making iron bridges and stations, cement-works, brick-works, and maltings. There are no public buildings of importance Tipton has six churches. The parish church is of very ancient date, and its registers go back to the year 1513. Formerly the town was sometimes called Tibbington. It is under the government of a local board formed in 1866. The population of the urban sanitary districi
(area, 2697 acres) in 1871 was 29,445 , and in 1881 it vas 30,013 .

TIRABOSCHI, Gtrolaso (1731-1794), the first, historian of Italian literature, was born at Bergamo on 18th December 1731. Fio studied at the Jesuit college at Monza, entered the order, and was appointed in 1755 professor of eioquence in the university of Milan. Here be produced (1766-68) Vetera Humiliatorum Mfonumenta (3 vols.), a history of the extinct order of the Uniliati, which gave him, at once a distinguished place in literature. Nominated in 1770 librarisn to Francis III., duke of Modena, he turned to account the copious materials there accumulated for the composition of his Storia della Letteratura Italiana. This rast work, in which the progress of Italian literature from the time of the Etruscans to the end of the 17th century is traced in detail, occupied eleven assiduous years, 177182 , and the thirteen quarto volumes embodying it appeared successively at Modena during that period. A second enlarged edition (16 vols.) was issued from 1787 to 1794, and was succeeded by many others, besides abridgments in German, French, and English. Tiraboschi died at Modena on 3d June 1794, leaving a high reputation for virtue, learning, and piety.

Tiraboschi wroto besides Bibliotece Modenese (6 vols., 1781-86); Notizie de' Pittori, Scultori, Incisori, ed Arihitetti Modenesi (1786); Memorie Storiche Modenesi (5 vols., 1793-94), and many minor works. He edited tho Nuovo Giomale dei Letterati d' Ltalia (177390), and left materials for a work of great research entitled Diaionario Topogrufico-Storico degli Stati L'stensi (2 vols. 4to, Modena, 1824-25).

TIRESIAS, a famous Theban seèr of Greek legend, was a son of Everes and Chariclo, and a descendant of Udæus, one of the men who had sprung up from the serpent's teeth sown by Cadmus. He was blind, for which various causes were alleged. Some said that the gods had blinded him because he had revealed to men what they ought not to know. Others said that Athene (or Artemis) blinded him because he had seen her naked; when his mother prayed Athene to restore his sight, the goddess instead purged his ears so that he could understand the speech of birds and gave him a staff wherewith to guide his steps. Auother story was that on Mount Cyllene (or on Cythærum) he saw two snakes coupling; he killed the female and became himself a woman. Seven years afterwards he saw the same sight, and killing the male became himself a man again. When Zeus and Hera disputed whether more pleasure was enjoyed by the male or the female sex, they referred the question to 'Tiresias, as be had experience of hoth. He decided in favour of the female sex, and Hera in her anger blinded him ; but Zous gifted him with long life and infallible divination. He lived for seven or, according to others, nine gencrations. In the war of the Seven against Thebes he foretold to the Thebans that they would be victorious if Menceceus offered himself in sacrifice. In the war of the Epigoni he advised the Thobans to flee. They fled, and he with them ; but coming to the Tilphusian well he drank of it and died. According to others, Tiresias was taken prisoner by the victorious Argives and died while they were taking him to Delphi. The Argives took his daughter Manto (or Daphue) prisoner and sent her to Apollo at Delphi, where, being as skilled a seer as her father, she gave oracles. A different version of the legend of Tiresias was given by the elcgiac poet Sostratus (reported by Eustathius on Od., x. 492). According to him, Tiresias was originally a girl, but had been changed into a boy by Apollo at the age of seven; after undergoing several more transformations from one sex to the other, she for the final sex was feminiue) was turned into a mouse and her lover Arachnus into a weascl. Tiresias's grave was at the Tilphusian spring; but there was a cenotaph of him at Thebes, whers also in later times his "observatory," or
place for watching for omens, was pointed out. He had an oracle at Orchomenus, but during a plague it became silent and remained so in Plutarch's time. According to Homer, Tiresias was the only person in the world of the dead whom Proserpine allowed to retain intelligence. He figured in the great paintings by Polygnotus in the Lesche at Delphi. The story of his transformation into a woman is periaps to be explained by the custom of medicine-men dressing like women, which prevails in Borneo, Patagonia, Kadiak (off Alaska), and probably elsowhere. ${ }^{2}$
TIRHUT, or Tirhoot, a district of British India, was formerly the largest and most populous in Bengal. On 1st January 1885 it was divided into the two districts of Darbhangah and Muzafiarpur. For the latter, see MuzafFARPUR. The former, with an area of 3335 square miles, lies betrreen $25^{\circ} 30^{\prime}$ and $26^{\circ} 40^{\circ} \mathrm{N}$. lat. and $85^{\circ} 34^{\prime}$ and $86^{\circ} 46^{\prime}$ E. long., and is bounded on the N. by Nepal, on the E. by Bhagalpur, on the S. by Monghyr, and on the W. by Muzaffarpur. The population of Darbhangah in 1881 was $2,633,44$ (males $1,295,788$, females $1,337,659$); of these Hindus numbered 2,323,979, Nohanmedans 308,985, and Christians 325. Its chief towns are Darbhangah, the capital, with 65,955 inhabitants; Madlubani, 11,911; and Rusera, 11,578. The total revenue of Darblangah district in 1885-86 amounted to $£ 157,037$, of which the land revenue yielded $£ 80,442$.

The alluvial tract of country formerly known as Tirhut is varied by undulations, with groves, orchards, and woods. The priucipal rivers are the Ganges, Gendak, Bághmati, Tiljugá, and liaråi, which aro rerely navigable, except during the rainy season, when they are mostly rapid and dangerons. Tirhut produces all sorts of crops, rice boing tho principal; others are wheat, barley, maize, oil-seeds, \&c. ; opium and tobacco are largely grown for cxport. Tha chief industries include the manufacture of indigo, altpetre, coarse cloth, pottery, end inats. Tha Tirhut Stato Railway runs from Mokameh on the Jeft bank of the Ganges through Darbhangah and Muzaffarpur districts north-west into Champaran district as far as Bettia. A ferry over the Ganges at Mokamch connects it with the East Indian Railway. Thero are two branches, one extending from Muzaffarpur oouth-west to Hajipur (to be connected with the Bengal and North-Western Railway at Sonapur by a bridgo over the Gandak), the other (226 miles open for tranlic in March 1886) from Samastipur via Darbhangah to Janjarpur, from which it will ox. tend eastwards to Partabganj, a mart upou the Kosi river near the Nepal fronticr.
TIRLEMONT (Flem. 7hienen), a town of Belgium, in the province of Brabant, $29 \frac{1}{2}$ milcs by rail to the cast of Brussels, on the Great Gecte. The old walls, dismantled since 1804, are nearly 6 milcs in circuit, but enclose a large extent of arable and garden ground. The streets are regular, and there are some spacious squares; the market-place contains tho town-hall, rccently restored, and the church of Notre Dame du Lac, founded in 1298, enlarged in the 15th century, but still unfinished. The church of St Gcrmain dates partly from the 9th century. The industrics of the place include the making of steamengines, brewing, distilling, soap-making, tanuing, and various woollen and cotton manufacturcs. The population in 1876 was 13,296 .
Tirlemont was once a much larger and moro flouristing town rnan it now is; it lias suffered much in war and was taken by tho French in 1635 , by Marlborough in 1705 , and. again by the French in 1793. John Bolland, the famous editor of the Acth Sanctorum, was born hero iu 1596 .
TIRY'NS, the T'puys Teixi6ecou of Iomer (Il., ii. 559), was a small Peloponnesian city, in the prehistoric period of the Achoean race, long before the Dorian immigration. It stood on a small rock in the marshy plain of Argolis, about 3 miles from the sea, and was fabled to have

[^169]been founded by King Proetus, the brother of Acrisius, who was succeeded by the hero Perseus. It was the scene of the early life of Heracles, who is henre called Tirynthius. The massive walls were said to have been the work of Cyclopean masons. Its period of greatest splendour was during the 11th and 10th centuries s.c.; but the oity continued to exist till about 468 B.c., when it was destroyed through the jealousy of the inhabitants of the neighbouring Argos, ${ }^{3}$ who had not assisted in the final defeat of the Persians at Platre. ${ }^{2}$
Excavations made in 1884-85 by Schliemann and Dörpfeld over part of the rock on which Tiryns atood have exposed a most interesting building, quite unique as an example of a Greek palace of the 11 th or 10th century b.C., and of special interest from the way in which it closely illostrates the Homeric palaces of Alcinous and Odysseus, and throws a new light on scenes such as the slaughter of the suitors ($0 d$. ., xxi. and x xii.).

Fro. 1.-Plan of the palsee in the uppar part of IIryng. 1. Maln gate In the onter wall. 2. Ioder gate, spproachad between masalve walls. 8. Msin propylzum. 4. Inuer propylanm. S. Court ($\alpha \hat{v} \lambda \eta$) of the man, aurroanded by a colounade on three aidea; the altar to Zaua Herceas is by the entrance.
 Mea'a megaroo, with roof a apported on foar columns, ad tha circular hearth In the middle. 9. Bath-room and amall $\theta a \lambda d \mu o{ }^{2}$. 10, 10. Chambars roond the great court 11, 11. Guard chambers by the main propylemm. 12. Passage (λ aúpy) from the main propylmum to tha women'a part. $18,18$. Courts of the women. 14. Womed'a megaron. 16. Chambers ($\theta \alpha \lambda \alpha \mu 0 t$) In the women'e part. 16. Passage from womea's part to the rock-cnt otaira. 17. Small postarn door in the aemicircular bastion, approached by flight of rock-cot ateps. 18, 13. Masive outer wall of city. 19. Ioner Nall to guard the eutrance passaga. 20. Part of outer wall, with intermediate passago and rows of chembers as ahown in fig. 2.
The rock on which Tiryas is built is of an irregular oval shape, sbout 330 yards long by 112 st the widest part, and is surrounded
${ }^{1}$ Horaer ($1 l$. , ii. 559) speaka of the Tirynthisns as eobject to Argos.

- See Diod., iv. 10 ; Paus., ii. 25 ; and Herod., vi. 83, iz 28. Schlie. mann (Tiryns, Londou, 1886) and Mahaffy (in Hermathena, Dublin), however, deoy the truth of this atatement, believing that Tiryns ceased to exiat aome centories eerlier, in epite of the atrong evidence given by the inscription on the bronze colomn (now in Constantinople), formed by three twiated serpenta, which once oupported the golden "tripod dediasted to Apollo ont of the apoila from Platea. Tiryna occars in the list of sllied atates present at that battle; moreover, recent diecoveries have brought to light remains of an Important boilding of aboat 600 B. 0 .
by \& very mascive wall, varying fiom 30 to 40 feet in thicknens and aversging when complete about 60 feet in height, measuring from its buse outside. Insid, the wall was probably not more then 10 or 12 feet high above the ground, so the masonry scts as s retaining wall to s considerable depth of earth which covers the rock (8e日 fig. 2 below). The wall is built of very large hammer. dressed blocks, some as much as 10 feet loag by 3 feet 3 inches or 3 feet 6 inches wide, with smaller ones to fill up the interstices. The whole was bedded, not in n brtar, but in clay, which has mostly been washed out of the joints; originally the surface was probably protected with a coating of atucco. The only important gateway, which wes on the east side, sway from the sea, probsbly resembled the "lion gate" at Mycenæ. The other entrances are mere slite in the wall. One of these and the chief gate sre shown in fig. 1. Internally the srea of the city was divided by cross walls into three parts at successive levels. The lowest snd middle divisions have not yet been excsisted; the upper part st the south end of the rock was completely exposed in 1884-85 by Schliemsnn and Dörpfeld, sad the slmost complete plan of the various atructures clearly msde out. This division contains the palace of the ruler of Tiryns, a building which shows careful snd skilful construction, olaborato decoration, snd a well-arranged plan, suitahle to the wants of 8 wealthy sutocratic chief, who lived in s manner which partly recalls the luxury of sn Orientsl ling, and slso resembled the feudal state of a mediæval baron, surrounded by a crowd of vassals. From the main gate, which was defended by a tower, a strong passage led between the outer wall snd sn inner one to an inner gate, thence to a propyleum or double porch, with two wooden columns on each aide, adjoining which were chambers for guards. Then came another rimilar, but emaller propyleum, and opposite to that was the entrance to the great court (avi入y) nearly 53 by 70 feet, in which stands the sltar to Zeus Herceus, with a circular pit benesth it to catch the victims' blood. This conrt was surrounded by wooden columns supporting s roof, like s mediærsl cloister; on the south side sre chambers for attend. snts ($\theta a \lambda d \mu 06$). On the north side is the
 with an outer portico supported by two columns (a\&0ovaa) and an inner vestibule (\quad ро $\delta 0 \mu 0 s$) with three doors. ${ }^{\text {. The }}$ hall is sbout 40 by 30 feet, with a circular hearth-stone in the centro (Earia or é χ ápa). Four columns supported the roof, the central part of which probably rose sbove the rest like a medimval "lantern"; and in this there was probably a door leading out to the flat roof round it-possibly the spootupm of Homer (Od., xxii. 126), through which one of the suitres escaped and so got

Fio. 2.-Section through the outer wall of the city at 20 In fg . 1 . A. Outer base of wsil. B. Inalda levell of city. C. Intermediate platform for the garrison. D. Chambers opeaing on to it, with rool formed of projactlag coursea of atons in large blocks. E. Top of malo wall, paved with clay, level with the insids. F. Woodea columnas on anisting atone bssas, formIng a portlcus or coversd walk along the top of the wall. G. Outar wall of tha colonaade brilt of brick, now mlaalng. H. Probable roof of the colonnado of wood, covered with beaten clay.
arms from the treasury or armoury, which was on an npper floor (see Od., xxii. 142 and xxi. 5). On the west side of the hall are s number of amall chambers ($\theta a \lambda$ á $\mu 0$) for the unmsrried men, snd a bath-room about 12 by 10 feet, with its floor formed of one grest slab of stone, sloped so as to drain out at one side through \& pipe Which passes through the wall. The women's part of the house is of equal importance to that of the men, and has its hall and two open courts with pillars. It is approsohed in s very circuitons way, either by a passage ($\lambda a u u^{\prime} \eta$) leading from s side

- The arrowa in fig. 1 show the wey from the city gate to the palace court and hall.

6 The womon'e ball is also called the megeron; see Od., xviii. 198.

- The apboojos is meutioned by Homer (Il., ix. 473, and Od., iv. 302); but in the palace of Odyaseus the allovea seems to have been the only vestibole to the megaron. In several resperts the palace of Tiryns is more magnificent then that of Odyaseus, whose hall was paved with clay, not concrete as at Tiryдa; see Od., xxi. 122, where Telemachas

- The way to the hsram in a modern Oriental house is similsriy medo as circuitous as poseible, for the eaks of grivacy.
door in the main propylæum or br another long passage which winds round the lack of the men's hall, and so leads by a long filght of steps, cut in the rock, to the little postern door in the semicircular bastion. The many small rooms in this part of the palace were probably the bedrooms of the women and married couples of the chiefe family. A staircaso at 16 led to an upper floor, like the $\kappa \lambda i \mu a \xi$ iffmin of $O d$. xxi. 5. The circuit wall round the palace is more strongly constructed than the rest. On the south eide it is bailt in two offsets, forming a level platform for the garrison halfway up. In the upper and thinner part of the wall two narrow passages at different levels are formed in its thickness. They are roofed by projecting coursee of atone in large blocks. The wall on the east side has a similar intermediate platform, on to which open a series of emall chambers formed in the mass of the opper wall (see fig. 2). At the top level the wall was covered by a colonnade of wood pillars resting on circular stone blocks. This supported a flat roof and was open to the inside of the city. The back of the colonnade was built of brick, and is now missing, as are all the brick parts of the city, owing to the bricks having been anly sun-dried.
The methods of constraction employed in the Tiryns palace are of the highest interest. The foundations and about 3 feet of the walls sbove the ground are made of large blocks of stone bedded in chay; above this the wall was of brick, sun-dried, and covered with stucco. The upper story was probably of wood. Some of the thresholds of the doors were massive blocks of stone (גdïvos oü $\delta 6$ s); others were of wood (δ pưivos oúôbs). Woad was also used for all the columng, doorposts, and antz (π apaotádes), snd in some cases the walle of the rooms were lined with wood, carefully fixed by dowels, the boles for which still exist. ${ }^{3}$ The doors had pivots of bronze re. volving in well-fitted bronze cap-like sockets let into the thresholds. In the megaron and other rooms the floors are of good concrete, decorated with a simple series of incised linea, coloured blue and red. The stucco of the internal wall is decorated with bold and very effective patterns-birls and scroll-work of gemi. Oriental style ; in many cases the motives are obviously taken frow textile ornaments, as in the most archaic style of vase painting. One example of rich and costly decoration remains,-part of a frieze of white alabsater, sculptured in relief with rosettee and interlacing patterna, and atudded with jewel-like pieces of blue glass or enamel, the θ pryкds кudyoro of Od. vii. $87 .{ }^{3}$ Further excavations in the lower parts of the city will probably bring to light the dwellings of the citizens who garrisoned the place. The great bulk of the Tirynthians must have lived in houses outside the citadel, but ander the shelter of its protection, just as in medirval Italy villages grew up round the castles of any powerful lord. ${ }^{3}$
(J. H. M.)

TISCHENDORF,4 Lobegott Friedrich Konstantin (1815-1874), an eminent Biblical critic, the son of a physician, was born on 18 th January 1815 at Lengenfeld, near Plauen, in the Saxon Voigtland. From the gymnasium at Plauen he passed in 1834 to the university of Leipsic, where he was mainly influenced by Winer, and began to take special interest in New Testament criticism. In 1840 he qualified as university lecturer in theology with a dissertation on the recensions of the New Testa ment text, the main part of which reappeared in the following year in the prolegomena to his first edition of the New Testament. The importance of these early textual studies was that they convinced him of the absolute necessity of new and exacter collations of MSS., and to this work he now gave himself. Above all he desired to go to Rome; but lack of help and money compelled him to turn first towards Paris, where he remainta from October 1840 till January 1843, busy with the treasures of the great library, eking out his scanty means by making collations for other scholars, and producing for Didot several editions of the Greek New Testament, one of them exhibiting the form of the text corresponding most closely to the Vulgate. The great triumph of these laborious months was the decipherment of the palimpsest Codex Ephracmi Rescriptus, of which the New Testament part was printed before he left Paris and the Old Testament in 1845. His success in dealing with a MS. much of which had been illegible

[^170]to earlier collators brought him into note and gainea public and private support for more extended critical expeditione. From Paris he had paid short visits to Holland (1841) and England (1842). In 1843 he visited Italy, and after a stay of thirteen months went on to Egypt, Sinai, Palestine, and the Levant, returning by Vienna and Munich. ${ }^{5}$ From Sinai he brought a great treasure, forty-three leaves of what is now known as the Codex Sinaiticue ($\kappa \lambda$ For the time he kept the place of discovery a secret, hoping to return and procure the rest of the book, and the fragments were published in 1846 as the Codex Friderico-Augustanus, a name given in honour of the king of Saxony. He now became professor in Leipsic and married (1845). His teaching was apparently not very remarkable; but his vacations were often occupied by fruitful critical journeys, and in 1853 and 1859 he made a second and a third voyage to the East. In the last of these, in which he had the active aid of the Russian Government, he at length got access to the remainder of the precious Sinaitic codex, and persuaded the monks to present it to the czar, at whose cost it was published in 1862. To gain for critical study a manuscript in point of age second only to the famons Vatican Bible was a splendid triumph; but Tischendorf's Eastern journeys were rich enough in other less sensational discoveries to deserve the highest praise. ${ }^{6}$ Side by side with his industry in collecting and collating MSS., Tischendorf pursued a constant course of editorial labours, mainly on the New Testament, until he was broken down by overwork in 1873. He died on 7th December 1874 at Leipsic.

The grest edition, of which the text and apparatos appeared in 1869 and $1872,{ }^{7}$ was called by himself editio viti.; but this number is raised to twenty or twenty-one if mere reprints from stereotype plates and the minor editions of his great critical texts are included; postbumons prints bring up the total to forty-one. Four main recensions of Tischendorffs text may be distinguished, dating respectively from his editions of $1841,1849,1859$ (ed. vii), $1869-72$ (ed. viii.) The edition of 1849 mas be regarded sa bistorically the most important from the mass of new critical material it used; that of 1859 is distinguished from Tischendorf's other editions by coming nearer to the received tert; in the eighth edition the testimony of the Sinaitic MS. received great (probably too great) weight. The readings of the Vatican MS. were given with more exactness snd certainty than bad been possible in the earlier editions, and the editor had also the adrantage of wing the published labours of Tregelles. Wbatever judgment may be passed on Tischendorfs criticai tact and power, the apparatus of this final edition will not soon be superseded, and oums up a vast series of most important services to Biblical etudy.

Much less important was Tischendorfe work on the Greek "Old Testameat. His edition of the Roman text. with the variants of the Alsiandrien MS., the Codex Ephraemi, and the FridericoAngustanus, was of service when it appeared in 1850, but being stereotyped was not greatly improved in subseqnent issuesi It imperfections, even within the limited feld it covers, may be jndged of by the aid of Nestle's appendix to the sixth issue (1880). Besiden this may be mentioned editions of the Now Testament Apocrypha (Acts of Apostles, 1851 ; Gospels, 1853, 2d ed. 1876 ; Apocalypses, 1866), and varions minor writings, in part of an apologetic character, such as Wann wurden unsere Evangetien verfasst? (1865) and Haben wir den echlen Schriftlext der Evangelisten und Apostel) (1873).

TISIO, or Tisi, Benvenoto (1481-1559), commonly called Il Garofalo, a painter of the Ferrarese school He was born in 1481 at Garofolo, in the Ferrarese terrid tory, and constantly used the gillyflower (garofalo) as a symbol with which to sign his pictures. He took to draw: ing in childhood, and was put to study under Domenico Panetti (or Laneto), and afterwards at Cremona under his maternal uncle, Niccold Soriani, a painter of credit, who died in 1499; he also frequented the school of Boccaccio

[^171]XXIII. - 5^{2}

Boccaccino. Removing to Rome, he stayed fifteen months with Ciovanni Baldini, acquiring a solid style of draughtsmanship, and finally to Manto., where he remained two years with Lorenzo Costa. Ee then entered the service of the marquis Francesco Gonzaga. Afterwards he went to Ferrara, and worked there four years, showing diligence and delicacy without much severity or elevation of style. Attracted by Raphael's fame, and invited by a Ferrarese gentleman, Geronimo Sagrato, he again removed to Rome, and found the great painter very amicable ; here he stayed two years, rendering some assistance in the Vatican frescos. From Rome family affairs recalled him to Ferrara; there Duke Alphonso I. commissioned him to execute paintings, along with the Dossi, in the Villa di Belriguardo and in other palaces. Thus the style of Tisio partakes of the Lombard, the Roman, and the Venetian modes. He painted extensively in Ferrara, both in oil and in fresco, two of his principal works being the Massacre of the Innocents (1519), in the church of S. Francesco, and the Betrayal of Christ (1524), accounted his masterpiece. For the former he made clay models for study and a lay figure, and executed everything from nature. Both in the Ferrarese territory and in Rome his pictures of small dimensions are very numerous. He continued constantly at work until in 1550 blindness overtook him,-an affliction which he bore with patience, being a man of pleasant friendly disposition and of derout feeling. In the later years of his work he painted on all feast-days in monasteries for the love of God. He had married at the age of forty-eight and died at Ferrara on 6 th (or 16th) September 1559, leaving two children.
Garofalo combined sacred inventions with eome very familiar details. A cortain archaism of style, along with a strong glow of colour, suffices to distinguish from the true method of Rapheel even those pictures in which he most closely resembles the grest master, end this is sometimes very closely. Ho was a friend of Giulio Romanoo, Giorgione, Titian, and Ariosto ; in a picture of Persdise he painted this poet between St Cethetine and St Sebastian. In youth he was fond of lute-playing and also of fencing. He ranks as the best of the Ferrarese painters; his leeding pupil was Girolemo Carpi. The Adoration of the Magi, in the church of St Goorge near Ferrara, and a Peter Martyr, in the Dorininican charch, Ferrara (sometimos assumed to have been done in rivalry of Titian), are among his principal morks not already mentioned. The Palazzo Chigi end the Palazzo Borghese contain numerous examples, and the London National Gallery four, one of them being a Madoma and Christ enthroned, with St Francis and three other eaints.

TITANIUM (atomic weight ${ }^{1}=48 \cdot 08,0=16$), designates in chemistry a relatively rare element, which is customarily classed sith the metals, although it comes nearer in its character to silicon than to any of the ordinary metals. Its discovery as an element was due to William Gregor, who found in the mineral menaccanite a new earth, which was regarded as the oxide of a new metal, menachin. Independently of him Klaproth in 1793 discovered a new metal in rutile and called it titanium; he subsequently found that it was identical with Gregor's element. The latter name was, however, retained. Titanium, although pretty widely diffused throughout the mineral kingdom, is not found in abundance. The commonest titanium mineral is rutile $\left(\mathrm{TiO}_{2}\right)$; anatase and brookite, though mineralogically different from rutile and each other, are forms of the same binoxide.
Metallic titunnium is little known. In 1822 Wolleston examined a specimen of those beentiful copper-like crystals which are occsaionally met with in iron-furnsce elags, and declared them to be metallic titazium. This view had currency until 1849, whon Wöhler showed thet the crystals ere a compound, $\mathrm{Ti}(\mathrm{NC})_{2}+3 \mathrm{Ti}_{3} \mathrm{~N}_{2}$, of B cyanide and a nitride of the metal. Reel titanium was made by Wohler and Doville in 1857 by heating to redness fuo-titenate of potassium (see belowi) in rapour of sodium in an atmosphere of dry hydrogen, and extractiog the alkeline fluoride formed by water. The metal thus produced hed the appearence of iron as obtained by the reduction of its oxide in hydrogen. When hested in sir, it burns brilliantly, with the formation of binoxide. Its most cari-
${ }^{2}$ According to T. I. Thorpe'o researcher published in 1883,
ous property is the readiness with which it unites with nitrogen gas into a nitride. The exect composition of this nitriae is not known ; but when heated in hydrogen it loses part of its nitrogen as ammonia, and becomes $\mathrm{Ti}_{8} \mathrm{~N}_{6}$ a metallic-looking yellow solid, and this when heated in nitrogen gas passes into higher nitrides, which are again available for the production of emmonia. . Tessié du Mothay in 1872 proposed to utilize these reactions for the production of ammonis from atros heric nitrogen. Of other titanium compounds the most important are those formed on the type of TiX_{4} when $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or $\frac{1}{2} \mathrm{O}$, \&c.

The binoxide TiO_{2} exists as rutile. One method of preparing a pnrer oxide from the mineral is to fuse it, very finely powdered, with six times its weight of bisulphete of potash in platinum, then extract the fuse with cold water, end boil the filtered solution for a long tirne. Titanic oxide separates out 8 s a white hydrete, which, however, is generaliy contaminated with farric hydrate and often with oxide of tin, SnO_{2}. A better method is Wöler's. He fuses the finely powdered mineral with twice its weight of carhonate of potash in a platinum crucible, pounds the fuse, and treats it in a platinum basin with squeous hydrofluoric acid. The alkaline titanste first produced is converted into crystalline flue-titanste, $\mathrm{TiF}_{6} \mathrm{~K}_{3}$ which is with difficulty soluble, sad is extracted with hot water end filtered off. The filtrate, which may be collected in glass vessels if an excess of hydrofluoric scid has been avoided, deposits the greater part of the salt on cooling. The crystals are collected, weshed, pressed, and recrystallized, whereby the impurities are easily removed. The pure ealt is dissolved in hot water sad decomposed with smmonis to produce a slightly smmoniacal hydrated oxide ; this, when ignited in platinum, leaves pure TiO_{3} in the form of brownish lumps, the apecific gravity of which varies from 3.9 to $4 \cdot 25$, Bccording to the temperature at which it was kept in igniting. The more intense the hest the denser the product. The oxide is fusible only in the oxy-hydrogen fleme. It is insoluble in all acids, except in hot concentrated sulphuric, when finely powdered. Supposing the excess of vitriol to have been hoiled away, the residue, after cooling, dissolves in cold water. The solution, if boiled, deposits its titanic oxide as a hydrate called mota-titanic acid, be. ceuse it differs in its properties from ortho-titanic acid, obtained by decomposing a solution of the chloride in cold water with alka. lies. The ortho-body dissolves in cold dilute acids; the meta-body does pot. If titanic oxide is fused with excess of alkeline carbonate it expels CO_{2} parts of carbonic acid for TiO_{3} parts of itself. The aalt $\mathrm{R}_{2} \mathrm{OTiO}_{2}$ is decomposed by water with the formation of a solu. tion of alkali free of titanium, sad a residue of an scid titanate, which is insoluble in water but soluble in cold equeous mineral acids.
The chloride $T_{i} C_{4}$ is obtained 89 a distillate by heating to dull redness an intimate dry yoixture of the binoxide and ignited lamp. black in dry chlorine. The reaction may be carried out in a hard glass tube. For methods of puricication we refer to the hendbooks of chemistry. The pure chloride is a colourless liquid of $1 \cdot 7604$ specific rravity at $0^{\circ} \mathrm{C}$., boiling st $130^{\circ} \cdot 4$ under 753.3 mm . pressure ('S. E. Thorpe). It furnes strongly in moist sir. When dropped very cautiously into cold water it dissolves into a clear solution, which, however, when boiled, deposits most of its oxide in the meta-bydrate form. There are at least, two lower chlorides of titaniam, - one of the composition $\mathrm{Ti}_{2} \mathrm{Cl}_{8}$ and another of the composition TiCl_{3} both solids and both extremely prone to pass into titanic compounds. A solution of the tetrachloride in weter, as well as of the-soluble hydroxide in dilute ecid generally, when kept in contact with metallic zinc, is reduced to one of the lower chlorides with development of a violet colour. With regard to the detection of titanium we need not add much to what we have alreedy given incidentally. Acid solutions of TiO_{2} are not precipitated by sul. phuretted hydrogen; but snlphide of smononium acts on them as if it were ammouia, the $\mathrm{H}_{2} \mathrm{~S}$ keing liberated. Oxide of titanium when fused with microcosmic salt (i.e., NaPO_{3}) in the oxidizing fiane yields a besd which is yellowish in the heat bat colourless after cooling. In the reducing flame the bead becomes violet, more readily on the addition of tin; in the preseace of iron it becomes blood-red. Titanic oxides when fused on charcoal, oven with cyeuide of potassium, yield po metal.

TITANS, powerful beings of Greek mythology, the children of Sky and Earth. According to Hesiod, the male Titans were Oceanus, Cous, Crius, Hyperion, Iapetus, and Cronus; the female were Thea, Rhea, Themis, Mnemosyne, Phœbe, and Tethys, to whom Apollodorus adds Dione. For the rebellion of the Titans against their father Sky (Uranus), the success and raign of Cronus, and the final consignment of the Titans to Tartarus by Zens, see Mrfiology, vol. xvii. p. 155, and Saturn, vol. xxi. p. 320 sq.

TITHES. It has been explained in Sacrifice (vol. xxi, p. 133) that among ancient peoples sacrificial gifts frequently assume the character of a tribute in kind, paid
to the deity in acknowledgment of the fruits of the land, or the increase of flocks attributed to his blessing. At first this tribute is not measured or onforced by law: the gift is a voluntary one, the magnitude of which may be faxed by a vow, or influenced by public opinion as to what is reasonable, but is not prescribed by any stated authority baving power to exact what is prescribed. In the oldest Hebrew legislation sacrificial gifts to Jehovah (Grstlings and first-fruits) are demanded; but apart from the consecration of the firstlings, which is imperative (Exod. zxii, 29 sq., zxxiv. 19 sq .), the amount is not fixed. In Deuteronomy (xiv. 22 s q q.), on the other hand, the tithe or tenth of corn, wine, and oil is required irr addition to the firstlings of the flock and the herd. This precept, written down in the 7 th century b.c., is plainly no innovation, but rests on older usage (cp. Gen. xxviii. 22; Amos iv. 4); the new point emphasized is not that tithes must be paid, but that they must bo consumed at the central, instead of a local, sanctuary (Deut. xii. 6, 11, xiv. 23 sqq.), apparently at the great autumn feast or Feast of Tabernacles ($q . v$. .). ${ }^{1}$ Such a tithe is still nothing more than the old offering of first-fruits (bikkū̄im) made definite as regards quantity, and it was only natural that as time went on there should be some fixed standard of the due amount of the annual sacred tribate. ${ }^{2}$ The establishment of such a standard does not necessarily imply that full payment was exacted ; in Gen. xxviii. 22 Jacob vows of his own free will to pay tithes, just as the Arabs used to vow the tithe of the increase of the flock (schol. on Hárith, Moall., 1. 69, ed. Arnold). The Arab did not always fulfil his row, and there was no force to make him do so. But, however inexactly it may often have been paid, the proportion of one part in ten seems to have been accepted in many ancient nations as the normal measure of aacred tribute paid from the gains of husbandry, trade, or even of war. ${ }^{\text {s }}$ The tithe, in fact, appears to have been a common form of tas upon the produce of land or other revenues, for civil as well as for sacred purposes. We find it in Creece (as at Athens), and in Sicily and Asia, under the Roman empire; but its special home was in the East. It was exacted on agricultural products and flocks by Hebrew kings (1 Sam . viii. 15, 17), and on imports by the monarchs of Babylon (Aristotle, Cicon., ed. Berlin, p.1352b). Aristotlo gives the tithe on fruits of the soil the first place among the revenues of satraps (Tlid., p. 1345b), and it still forms an important element in the fiscal system of Mohammedan states. It will bo observed that the proportion of one in ten has been applied in the East, and in antiquity generally, to imports of very diferent kinds, and in Mohammedan taxation te find the name retained in cases where much less than a tenth is actually taken. In like manner Aristotle (ut supra) makes סcќ́rך a mere symoaym of érфóptov, or tax on produce ; the proportiou of one to ten, it would seem, was so commonly taken in antiquity as the basis of ad vaiorem taxes that any such tax or tribute might bo called a tithe. As regards the sacred tithe of the Hebrews, a distinction is drawn in Deuteronomy between the ordinary annual tithe, which may not have becn a full tenth, end the "whole" or "full tithe," paid once in three years

[^172](Deut. xiv. 28, xxvi. 12), which the legislator directs to be stored at home, and spent in feeding the poor.

From Amos iv. 4 it is sometimes inferred that in the 8th centurs B. O. the sacrificial tithe, presented at a sanctuary, was triennial Bat when the prophet, mocking the false zeal of the peoplo, says "Bring your sacrifices every morning and your tithes every three daye" (not "years," as E. V.), he Lerdly implies more then thet occasions of aacrifice were three times as frequent as tithe-day, and fo alludes to the fact that there were by old usage three annnal feasts and one annual tithe. A triennial sacrificial tithe is inconceivable when it is remembered that the tithe is only an extension of the first-fruits. The triennial tithe in Deuteronomy seema to be rather an innovation necessary in the interests of the poor, when sacrificial feasts were transferred to the central sanctuary, and ceased to benefit the neighbours of the offerer, who had a prpacrip: tive claim to be considered on ouch occasions (comp. $1 \mathrm{Sam} . \operatorname{xrv}$. ε sqq. ; Noh. viii. 10 ; Luke xiv. 13).

The priests of the sanctuaries had of old a share in the sacrificial feasts, and among those who are to share in the triennial tithe Denteronomy includes the Levites, i.e., the priests of the local sanctuaries who had lost their old perquisites by the centralization of rorship. After the return, and before the work of Ezra, when Deateronomy was still the law of the ncw Israel, bnt the Levites had become subordinate ministers of the temple, and requircd a more regular provision, the "whole tithe" was naturally fixed on for this purpose; but, instead of remaining in the hands of the tithe-payers to be doled out in charity, it was stored in the temple. Such, at least, wes the plan proposed, though from Mal. iii. 8 sqq. it appears that it was very imperfectly carried out. As Malachi speaks in Dcuteronomic phrase of the "whole tithe," the payment to the Levites was perhaps still only triennial ; and, if even this was difficult to collect, we may be sure that the minor sacrificial tithe had very nearly disappeared. The indifference complained of in Mal. i. Tras in great part due to the fundamental changes in the religion of Israel, which made private altar gifts and feasts almost meaningless. On the other band, the provision of regular support for the priests and Leritos, the ministers of the public ritual, was now all important, and received special attention from Ezra and Nehemiah (Neh. x. 37 sqq., xiii. 10 sqq.). They effected it by enforcing the nem law of the priestly code (Num. zviii. 21 sqq.), in which it is formally laid down that the tithe is a tribute paid to the Lerites, who in turn pay a tithe of it to tho priests. The plain intention of the priestly code is to allow the old tithe of Deuteronomy to drop; but the harmonistic interpretation of the later scribes was to the effect that two tithes wcre to be paid every year, and a third tithe, for the poor, on every third year (Tob. i. 7 sq.; Jos., Ant., ir. 8, \& 22). The last change in the system was the appropriation of the Levitical tithe by the priests, which apparently was effected by John Hyrcanus, though a tradition glariagly inconsistent with Nehemiah ascribes it to Ezra (Mishnah, "Ma'aser Sh.," ${ }^{\text {. }}$. 15 ; "Sota," ir. 10, and Wagcnseil's note).4 (T. R. \&)

Tithes in Lavo.

Tithes Trere gencrally regarded up to the 17 th contury as existing jure divino, and as having been payablo to the support of the church ever ainco the earliest daye of Christianity. History, as Selden ohowed in his learned and exhaustive treatise (Hislomy of Tithes, 1618), does Dot bear out thia view. In the words of Hallan, "the alore and gradual manner in which parochial churches becatne independent appears to bo of itself a sufficient answer to those who ascribe a great entiquity to tho universal payment of tithea." \&

- A cattle tithe is demanded in Lovit. xyviL 32, and apoken of in 2 Chron axxi. 6. It is doubtful if this was erer acknowledged in practice. See Kuenen, Godsdienst, ii. 269 sq., and Wellhausen, op. cil., v. 1, 52 (Eng. tr., P. 155 sq.), who ergue thai the pasaage in Leviticus is a Later addition. The tendeacy of the Pharisees was to pay tithe on everything, end to make a self-righteous boast of this (Matt. xxiii., 23 ; Luko rviii. 121
- It was bis denial of the divine right of tithes that brooght down tho wrath of the Star Chamber apon the anthor. Ie was forced to retract an opinion too liberal for tho time. See Skcose.
6 Hallam, Mixille Alps. it. 205.

Long before the 8th century payment of tithes was enjoined by ecclesiastical writers and by councils of the church; but the earliest suthentic example of anything like a law of the state enforcing payment appears to occur in the Capitularics of Charlemagne at the pud of the 8 th or beginuing of the 9 th century. Tithes were by that enactment to be applied to the maintenance of the bishop and clergy, the poor, ${ }^{1}$ and the fabric of the church. In course of time the principle of payment of tithes was extended far beyond its original intention. Thus they became transferable to laymen and saleable like ordinary property, in spite of the injunctions of the third Lateran council, and they became payable out of sources of income which were not originally tithable. The canon law contains numerons and minute provisions on the subject of titbes. 'I'he Decrelum forbade their alienation to lay proprietors, denounced excommunication against those who refused to pay, and based the right of the church upon Scriptural precedents. ${ }^{2}$ The Decretals contained provisions as to what was and what was not tithable property, as to those privileged from payment, as to sale or hypo. thecation to laymen, as to priority over state taxes, \&c." Varions ruestions which arose later were settled by Boniface VIII. ${ }^{4}$ The council of Trent enjoined due payment of tithes, and cxcommunicated those who withheld them, ${ }^{5}$
In England the earliest example of legal recognition of tithes is, according to Selden, a decree of a synod in $786 .{ }^{6}$ Other examples before the Conquest occur in the Fodus. Elfredi et Guthrumi and the laws of Athelstan, Edgar, and Canutc. ${ }^{7}$ The tripartite division of tithes does not appear to have been recognized in England by any genuine legal enactuent except as what Mr. Freeman calls "a counsel of perfection." 8 The earliest mention of tithes in statute law proper is in the Statute of Westminster the Second in 1285, c. 5 (f which deals with the patron's writ de advocalione decimarum. From that date until the present year (1887) there have been a large number of Acts dealing with tithes,-the earliest which is still law being 2 Hen. IV. c. 4 , making it an offence to purchase a bull from tha pape for the discharge of land from tithes. The law has only nttained its present condition by slow degrees. and by the combined effect of statutes and judicial decisions. The effect of the Tithe Commutation Act of 1836 has been to make most of the bid lav of merely historical interest, as in the course of the commutation all the questions of Iaw as to prescription, exemption, dic., would have been duly considered by the commissioners before the rentcharge was fiaally apportioned.
Tithes in English law are of 3 kinds,-predial, arising immediately from the soil, as of corn; mixed, arising from thinge nourished by the soil, as of milk or wool ; personal, as of the profits of manual occupations or trades. The right to the last was considerably restricted by 2 and 3 Eilw. VII. c. 13. They ere also divided from other points of view into ordinary and exlraordinary,-the latter being a tithe at a heavier rate charged on hop and market gardens, -and into great and small, as a rule tlose which go to the rector and vicar respectively. Iu general great tithes are predial, small are mixed and personal. It is not everything that is titlable; exemptions are claimable either from the nature of the property or the privilege of the owner. Stone, lime, and such other subatances as are not of annual increase are exempt. So are creatures form nature. Exempt by privilega are the cromn by its prerogative, and spiritual corporations in accordance with the maxim recognized equally by canon and cominon law, ecclesia dccimas non solrit ccclesix. Thus a rector pays no tithes to his vicar, or a vicar to his rector. On the same principle it is a ground of exemution that lands were snciently the property of the privileged orders (at the time of the dissolution of monasteries, the Cistercians and Hospitallers), or ware lands of the greater monasteries discharged from tithe by 31 Hen. VIII. c. 13. Exemption may also be claimed by redemption, by substilution of a rent-charge, by a real composition (that is, an agreement between the incuinbent and the landowner, with the consent of the ordinary and patron, for the discliarge from payment of tithe by means of satisfaction by giving of land or some other real recompense), by a madics (that is, a partial discharge owing to some cristomary inethod of titling or modus decimandi), or by prescription under 2 and 3 Will. IV.c. 100°. Tithes in extraparochial places belonged st common law to the crown, except by custom. Tithes are incorporeal hereditaments (see Real Estate), and may be dealt with like any other real estate of that nature. I'lus they are, if in lay hands, tenements which may be entailed or leased, are subject to dower and curtesy, are assets for the pay. ment of debts, and are (whether in lay hands or not) within the Statute of Limitations. They do not, however, issue out of the land like rents, but are collateral to it. Accordingly tithes are always freehold, even though they are chsrged on copyhold lands. Tithee

[^173]are presumed to go to the person of the parish. This presumption may be rebutted by proof that some or all the tithes go to tha vicar, where the rector is in holy orders, or to a lsy insproprintor. It is ssid that about a third part of the tithes in England is in the bands of laymen. At one time arbitrary consecration of tithes was allowed,-that is, payment to any priest at the will of the tithe. payer. This was forbidden by a decretal epistle of Innocaut IlI., about 1200. "This epistle decretall," says Coke, "bound not the subjects of this realm, but the same being just and reasoneble tiney allowed the same, and so became lex terre." ${ }^{\prime \prime}$ A vestige of the arbitrary consecration perhaps exists in the rarely occurriog rignt of the parson of oue parish to a portion of the tithes of another. Tithes are nayable by all persons alike, whether members of the Church of England or not. Special enactments desl with their recovery from Roman Cathdlics aud Quskers. Up to 1836 tilhes were pald in kind, unless where any other method of payment applied in a particular case, such as a modus in the costure of a pecuniary compensation, or a pecuniary payment under the terms of a public or private Act, as in the city of Loudon ioy 37 Hen . VIII. c. 12, 22 and 23 Car. II. c. 15, and other Acts. Even before 1836, however, the bulk of the tithes had been comintited, but such comniutation was in ordinary cases good ouly diaing the tenure of a particular jncumbency, and did not bind the iucumbent's suc. cessors. The Act of 1836 merely completed nud gave legislativo sanction to a tendency which had been long on the inerease.

The effect of the Tithe Commutation Act, 1836 (6 and 7 Will.) IV. c. 71, frequently amended sincel, was to sulistitute for the tithe paid in kind or the fluctuating commuted tithe a rent-charge-commonly called the tithe selt-charge-equivalent to the market value from time to tine on a septenaial sverage of the exact quantities of wheat, barles, and oats which made up the legal tithes by the estinate in 1830 . Excepted from the operation of the Act are (unless where there is a apecial provision approved by the commissioners) tithes of fisl or of fishing, or any personal tithes other than those of mills, or any mineral tithes, or payments or rent-charges in lien of tithes in London sud other places, resting on the authority of local Acts. The Act has not been wholly successful in its working. By the transfer of estates, and by changes in local agriculture, the old estimates are no longer fairly applicable in all cases. The commutation has been, on the whole, to the advantage of the landowners, for the tithe remains fixed while the rental of land since 1836 has risen, according to Sir James Caird, from 33 millions to 52 millions per annum. Commutation under the Act is either by a voluntary agreement, confimed by the tithe commissioners. ${ }^{10}$ or hy an award of the commissioners. The machiners for determiniag the tithe for any given jear is as follows:-the Board of Tiade is to cause the average-pricos per imperial bushel of each sort of British corn to be computed from the summaries sent by the inspectors of corn returns, obtained from the arerages stated by the jaspectors, and published in the London Gazette weekly, quarterly, and yearly, 6nd a septennial ererage is to be obtained from the sum of the annual sverages áivided by seven (45 and 46 Vict. c. 37 , enperseding scet. 56 of the Act of 1836). The rent-charge is computed on the basis of one-third for wheat, one-third for barley, snd one-third for oats. The respectire prices were originally fixed by 7 Will. IV. and 1 Yict. c. 69, s. 7 (as altered by the London Gazette of 9th December 1837), at 76. $1 \frac{1}{4} \mathrm{~d}$. for wheat, 3 s . $11 \frac{1}{2} \mathrm{~d}$. for barley, and 2s. 9d. for oats per bushel. The prices for 1887 were 4 s . 11d., 3 s . $10 \mathrm{~d} .$, sud $2 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. respectively. Owing to this fall in prices, tithe reat-charge which stood at $£ 100$ in 1836 was worth in 1887 only $£ 87,8 \mathrm{~s} .10 \mathrm{~d}$.

After the coming into force of the Act of 1836 all lands wera discharged from tithe, and the tithe rent-charge wae substituted, payable by equal half-yearly payments, each lst of July and Ist of January. A tenant paying the reat-charge is to be allowed the same in sccount with his landlord. The charge thus ultimately falls upon the landlord, whether or not ho pays it in the first instance to the tithe-owner. Land may begiven instead of a rentcharge where the tithe-owner is an ecclesiastical person. Gardens or small tenements may be exempt from titha by 3 and 4 Vict. c. 15. Later Acts give a power of redemption of rent-charge in the case of land required for public purposes, aettled land, scc. (9 and 10 Vict. c. 73 ; 23 and 24 Vict. c. 93 ; 41 and 42 Vict. c. 42 ; 45 and 46 Viet. c. 38). Merger of the rent-charge is allowed by tenants in fee or in tail under the Act of 1836, and by persons heving powers of appointment, tenants for life, and owners of glebes nuder 1 and 2 Vict. c. 64 and 2 and 3 Vict. c. 62 . The mode of recovery of srrears provided by the Act of 1836 was a new one. Up to that time srrears could not be distrained for, unless ia exceptional cases. The remedy of the parson was a suit for sulatraction of tithee, which, by 2 and 3 Edw. VI. c. 13 , could only be brought in a spiritual court. The remedy of tha lay holder was s suit or action in any temporal court by 32 Hen . VIII.

[^174]c. 7. It is provided by the Act of 1836 that, if the rent-charge be in arrear for twenty-one days, the person entitled to it may, after ten dayg rotice in writing, distra:n upon the lands liable to the payment of it. If it be in arrear for forty days, and there be no sufficient distress on the premises, a writ of habere facias possessionem may issue, directing the sheriff to summon a jury to assess arrears. Not more than two years' arreara can be recovered by either means. It appears from these eections of the Act that the chargo binds the land alone, and that there is no personal lizbility of either landlord or tenant. Though the charge is on the land, it is not on the inheritance, and it has been recently decided that erreare are not recoverable by sale of the lands out of which the rent-charge issues. The assessincot of the rent-charge on wastes. coinmon or Lamnias lands, coppice ẇood, turnips, cattle agisted, \&c., and the commutation of coru reats created by local Acts, are the sabject of epecial provisions. The Act of 1836 and later Acts provided for the division of the cliarge upon hop grounds, orchards, fruit plantations, and market gardens into the ordinary and extraordinary charge, the latter to be a rate per acre in addition to the ordinary chargo. The extroordinary titho applies only whilo the land is cultivated as a hop ground, \&c., and in case of new cultivation contes into operation gradually, the full rate not being lovied atence. The incidence of the extraordinary tithe having been found an impediment to agriculture, especially in Keat, the Extraordinary Tithe Commutation Act, 1886 (49 aud 50 Vict. c. 54), was passed as a rechedy. It provides-thatno extraordinary tithe is to be charged apon any land newly cultivated after the passing of the Act. With regard to land subject at the passing of the Act to extraordinary tithe, the Act enables the land commissioners to certify the capital value of the extraordinery tithe on each farm or parcel of land, the land to be charged in lien of the tithe with the payment of an sunasl rent-clarge equal to 4 per cent. on the capital value. The owner or any other person intereated in the land may redcem the charge at its cepital ralue. Tithe rent-charge is subject by the Act of 1836 to all parliamentary, parochial, and county rates, and is an hereditament within the Poor Rate Act of the same year (6 and 7 Will. IV. c. 96). The latter Act further enacts that in estimating the net snnual value of rateable hereditaments, the rent is to be cstimated free, inter alia, of tithe commutation rent-charge, if any.

Scolland. -The terms" tithes" and "teinds" are both in usc, but the latter is the more common. Teinds are either drawn in kind, valued, or redeemed. Originally they were all drawn in kind, as in England, hut their commutation or redemption was the subject of many Acts of the Scottish parlisment, especislly thoso passed in 1633, the practical effect of which has been to make a fixed burden on the land take the place of a fluctuating payment, and to subatitute a payment of one-fifth of the rent for one-tenth of the produce. In the first instance all teinds weat to the church; but, when at the Reformation the crown became proprietor of the church lands, grants were made by it to the lords of erection or titulars of the tithes, laymen holding of the crown. The Act 1587, c. 29, snnexed the church lands to the crown, with certain exceptions in favour of lay holders and others. All bishops' teinds and those formerly part of the revenue of the chapel royal are now crown property. The Church Patronsge Act of 1874 does not affect the right to teinds of a patron or titular. Teinds in lay hands are sub. ject to the burden of providing a suitable provision for the minister, the etipend being fired Ly the Court of Teinds. All lands are subject to teinds except those which before the Reformation were feued eum decinis inclusis el munguam cnlea separatis, so that the grantee held lards and teinde together. In order to prove such an exemption, the person claiming under a decimæ inclusæ title must ahow that the lands and teinds belonged to monestery, that the lands were never teindable, that they were novalia, or reclaimed by the monks themselves, that the title bears that the lande are held curn decimis inelusis, \&c., and that it is previous to 1587 The judges of the Court of Session sit es commissioners of teinde, - a.jurisdiction epecially preseryed by art. xix. of the Act of Uniod, -and exercise wider powere than any existing body in England, as they possess at once the juriadiction of a court of justice and of the English land commissionere. The constitution and procedure of the Court of Teinds is regulated by 48 Geo. III. c. 138 and subsequent Acts. ${ }^{2}$
Ireland.- Many Acts of the Irish parliament desl with tithes, both generally and locally, the earliest being 33 IIen. VIII. c. 12, based upon the English Act, 28 Hen. VIII. c. 20 . After the "tithe war" at the beginning of the 19th century, a tithe composition payable by the occupier was fixed by 4 Geo. 1V.c. 99 . In 1838 an annual rent-charge equal in smount to three-fourths of the tithe

[^175]composition was substituted for the latter by I and 2 Vict. c. 109. The rent-charge is rccoverable by distrcss where the person lisblc is the occupier, in other cases by action in the High Court of Justice, or by civil bill in claims under $£ 20$. Tho Irish Church Act, 1869 (32 and 33 Vict. c. 42), vests all tithe rent-charge then belonging to clergy of the Irish Church in the commissioners of church temporalities in Ireland. By that Act and the amending Act, 35 and 36 Vict. c. 90 , the commissioners aro enabled to purchase the surrenderor assignment of any subsistiog lease of tithe reat-charge made by an ecclesiastical person or corporation, and to sell any reat-charge vested in them to the owner of the land charged therewith for a sum equal to twenty-two and a half years' purclase.
(J. Wt.)

TITHONUS, a character of Greek mythology, a son or, according to others, a brother of Laomedon, king of Troy. He was beloved by Eos (tha Morning), who carricd him a way and dwelt with him at the limit of the world, by the Ocean stream. Eos begged of Zeus, that her lover might live for ever, and her request was granted; but she forgot to ask immortal youth for him, so he shrivelled up into a hideous old man, whom Eos kept shut up in a chamber. At last Tithonus prayed to be rid of the burden of old age and was turned into a grasshopper. Eos had two sons by him-Memnon, king of 在thiopia, and Emathion. Memnon was killed before Troy by Achilles; but the legend is later than the Iliad, which does not mention it. As to Eos herself, her name is etymologically identical with the Sanskrit ush and the Latin ourrora, both meaning "morning." According to Hesiod, Eos was a daughter of Hyperion and Thea, and sister of the Sun and Moon. Homer represents her arising every morning from the couch of Tithonus to carry light to gods and men, drawn in a chariot up the sky by her swift steeds Lanpus and Phaethon. Her common epithet in Homer is "rosy-fingered," the meaning of which is disputed. Besides Tithonus she loved Orion, till Artemis shot hinn with an arrow in Ortygia. She also loved and carried off the youthful hunter Cephalus ; ho was already married to Procris, to whom, in spite of lis infidelity, he was afterwards reconciled. A peculiar form of the Cephalus legend is given by Apollodorus (iii. 14, 3): Cephalus, a son of Hermes and Herse, was carried off by Eos, and from their union in Syria sprang Phaethon. By Astreus, Eos became the mother of the Morning Star and all the starry host.

With regard to representations in art, the combat between Achilles and Memnon was figured on the chest of Cypselus (Pansanias, v. 19, 1), and it appears on early Greek vases of Melos, Corinth, and Chaleis. There was a group of Eos carrying off Cephalus on the rool of the Stos Basileios at Athens, and the ssme bcere was reproo eented on the throne at Amyclo (Pans., i. 3, 1; iii. 18, 12). It also appears on yases, and formed an acrolerion group on the templo at Delos. Eos in her cheriot is represented on rases.
See Roscher, Ausfihrliches Lexikon der griech. u. rōm. M, Mhologie, p. 1282 sq.
TITIAN (1477-1576). Tiziano Vecellio, or Vecelli, one of the greatest painters of the world, and in especial the typical representative of the Venetian school, was commonly callcd during his lifetine "Da Cadore," from the place of his birth, and has also been designated "It Divino." The country of Cadore, in the Friuli, barren and poor, is watered by the Piavo torrent poured forth from the Carnic Alps, and is at no great distance from Tyrol. Titian, therefore, was not in any sense a Venetian of the lagoons and Adriatic, but was native to a country, and a range of association, perception, and observation, of a directly different kind. Venice conquered Friuli at a date not very remote from the birth of Titian; end Cadore, baving to choose between Venetian and imparial allegiance, declared for the former. Approaching the castle of Cadore from the village Sotto Castello, ons passes on the right a cottage of humble pretensions, inscribed as Titian's birthplace; the precise locality is named Arsenale. The near mountain-all this range of hills being of dolomite for-mation-is called Marmarolo. At the neighbouring village of Valle was fought in Titián's lifetime the battle of

Cadore, a Venetian victory which he recorded in a painting. In the 12 th century the count of Camino became count also of Cadore. He was called Guecello; and this name descended in 1321 to the podesta (or mayor) of Cadore, to the stock to which the painter belonged. Titian, one of a family of four, and son of Gregorio Vecelli, a distinguished councillor and soldier, and of his wife Lucia, was born in 1477.
It used to be said that Titian, when a child, painted upon the wall of the Casa Sampieri, with flower-juice, a Madonna and Infant with a boy-angel; but modern connoisseurs say that the picture is a common work, of a date later than Titian's decease. He was still a child when sent by his parents to Venice, to an uncle's house. There he was placed under in art-teacher, who may perhaps have been Sebastiano Zuccato, a mosaicist and painter now forgotten. He next became a pupil of Centile Bellini, whom he left after a while, because the master considered him too offhand in work. Here ho had the opportunity of studying many fine antiques. . His last instructor was Giovanni Bellini ; but Titian was not altogether satisfied with his tutoring. Tho youth was a contemporary of Giorgione and Palma (Vecchio); when his period 'of pupilage expired, he is surmised to bave entered into a sort of partnership with Giorgione. A fresco of Hercules on the Morosini Palace is said to have been one of his earliest works; others were the Virgin and Child, in the Vienna Belvedere, and the Visitation of Mary and Elizabeth (from the convent of S. Andrea), now in the Venetian academy. In 1507-8 Giorgione was commissioned by the state to execute frescos on the re-erected Fondaco de' Tedeschi. Titian and Morto da Feltre worked along with him, and some fragments of Titian's paintings, which are reputed to have surpassed Giorgione's, are still discernible. According to one account, Giorgione was nettled at this superiority, and denied Titian admittance to his houso thenceforth. Stories of jealousies between painters are rife in all regions, and in none more than in the Venetian,-various statements of this kind applying to Titian himself. One should neither accept nor reject them uninquiringly ; counter-evidence of some weight can be cited for Vecelli's vindication in relation to Moroni, Correggio, Lotto, and Coello. Towards 1511, after the cossation of the League of Cambrai-which had endeavoured to shatter the power of the Venetian republic, and had at any rate succeeded in clipping the wings of the lion of St Mark-Vecelli went to Padua, and painted in the Scnola di S. Antonio a series of frescos, which continue to bo an object of high curiosity to the students of his genius, although they cannot be matched against his finest achievements in oil painting. Another fresco, dated 1503 , is St Christopher carrying the Infant Christ, at the foot of the coose's stops in the ducal palace of Venica. From Padna. Titiar in 1512 returned to Venice; and in 1513 he obtained a broker's patent in the Fondaco de' Tedeschi, termed "La Sanseria " oi "Senseria" (a privilege much coveted by rising or risen artists), and became superintendent of the Government works, being cspecially charged to complete the paintings left unfinished by Giovanni Bellini in the hall of the great council in the ducal palace. He set up an atelier on the Grand Canal, at S. Samuele,-the precise site being now unknown. It was not until 1516, upon the death of Bellini, that he came into actual enjoyment of his patent; at the same date an arrangement for painting was entered into with Titian alone, to the exclusion of other artists who had heretofore been assnciated with him. The patent yielded him a good annuity - 120 crowns-and exempted him from certain taxes, -he being bound in return to paint likenesses of the successive doges of his time at the fixed price of eight
crowns each. The actual number which he executed was five. Titian, it may be well.to note as a landmark in-this all but centenarian lifo of incessant artistic labour and productiveness, was now in the forticth year of his age. The same year, 1516, witnessed his first journey to Ferrara. Two years later was produced, for the high altar of the church of the Frari, one of his most world-renowned masterpieces, the Assumption of the Madonna, now in the Venetian academy. It excited a vast sensation, being indeed the most extraordinary picce of colourist execution on a great scale which Italy had yet seen. The signoria took note of the facts, and did not fail to observe that Titian was neglecting his work in the ball of the great council.
Vecelli was now at the height of his fame; and towards 1521, following the production of a figure of St Sebastian for the papal legate in Brescia (a work of which there are numerous replicas), purchasers bccame extremely urgent for his productions. It may have been about 1523, after some irregular living and a consequent fever, that he married a lady of whom only the Christian name, Cecilia, has come down to us; her first child, Pomponio, was born in 1525, and two (or perhaps three) others followed. Towards 1526 he became acquainted, and soon exceedingly intimate, with Pietro Aretino, the literary bravo, of influence and audacity hitherto unexampled, who figures so strangely in the chronicles of the time. Titian sent a portrait of him to Gonzaga, duke of Mantua. A great affliction befell him in August 1530, in the death of his wife. He then, with his three children-one of them being the infant Lavinia, whose wirth had been fatal to the mother-removed to a new home, and got his sister Orsa to come from Cadore and take charge of the houschold. The mansion, difficult now to find, is in the Biri Grande, then a fashionable suburb, being in the extreme end of Venice on the sea, with beautiful gardens and a look-out towards Murano. In 1532 he painted in Bologna a portrait of the emperor Charles V., and was created a count palatine and knight of the Golden Spur, his children also being made nobles of the empire,-for a painter, honours of an unexampled kind.
The Venetian Government, dissatisfied at Titian's neg. lect of the work for the ducal palace, ordered him in 1538 to refund the money which he had received for time unemployed; and Pordenone, his formidable rival of recent years, was installed in his place. At the end of a year, however, Pordenone died; and Titian, who had meanwhile applied himself diligently to painting in the hall the battle of Cadore, was reinstated. This great picture, which was burned with several others in 1577, represented in life-size the moment at which the Venetian captain, D'Alviano, fronted the enemy, with horses and men crashing down into the stream. Fontana's engraving, and a sketch by Titian himself in the gallery of the Ufizi in Florence, record the energetic composition. As a matter of professional and worldly success, his position from abous this time may be regarded as higher than that of any other painter known to history, except Raphael, Michelangelo, and at a latcr date Rubens. In 1540 he received a pen. sion from D'Avalos, Marquis del Vasto, and an annuity of 200 crowns (which was afterwards doubled) from Charles, V. on the treasury of Milan. Another source of profitfor he was always sufficiently keen after money-was a contract, obtained in 1542, for supplying grain to Cadore, which he visited with regularity almost every year, and where he was both generous and influential. This reminds us of Shakespeare and his relations to his birthplace, Stratford-on-Avon; and indeed the great Venetian and the greater Englishman had something akin in the essentially natural tone of their inspiration and performance,
and in the personal tendency of each to look after practical success and "'the main chance ${ }^{\text {s }}$ rather than to work out aspirations and pursue ideals. Titian had a favourite villa on the neighbouring Manza Hill, from which (it may be inferred) be made his chief observations of landscape form and effect. The so-called Titian's mill, constantly discernible in his studics, is at Collontola, near Belluno. A visit was paid to Rome in 1546, when he obtained the freedom of the city, his immediate predecessor in that honour having been Michelangelo in 1537. He could at the same time have succeeded the painter Fra Sebastiano in his lucrative office of the piombo, and he made no scruple of becoming a friar for the purpose; but this project lapsed through his being summoned away from Venice in 1547 to paint Charles V. and others in Augsburg. He was there again in 1550 , and executed the portrait of Philip II., which was sent to England and proved a potent auxiliary in the suit of the prince for the hand of Queen Mary. In the preceding year Vecelli had affianced his daughter Lavinia, the beautiful girl whom be loved deeply and painted various times, to Cornelio Sarcinelli of Serravalle; she had succeeded lee aunt Orsa, now deceased, as the manager of the lousehold, which, with the lordly income that Titian made by this time, was placed on a corresponding footing. The marriage took place in 1554. She died in childbirth in 1560. The years 1551 and 1552 were among those in which Titian worked least assiduously, - a circumstance which need excite no surprise in the case of a man aged about serenty-five. He was at the council of Trent towards 1555 , of which bis admirable picture or finished sketch in the Louvre bears record. He was never in Spain, notwithstanding the many statements mhich have been made in the affirmative. Titian's friend Aretino died suddenly in 1556 , and another close intimate, the sculptor and architect Sansovino, in 1570. With his European fame, and many sources of wealth, Vecelli is the last man one would suppose to have been under the necessity of writing querulous and dunning letters for payment, especially when the defaulter addressed was lord of Spain and of the American Indies; yet he bad constantly to complain that his pictures remained unpaid for and his pensions in arrear, and in the very year of his death (February) he recites the many pictures which he had sent withia the preceding twenty years without recciving their price. In fact, there is ground for thinking that all his pensions and privileges, large as they were nominally, brought in but precarious returns. It has been pointed out that in the summer of 1566 (when he was elected into the Florentine academy) he made an official declaration of his.income, and put down the various iteras apparently below their value, not naming at all his salary or pensions. Possibly there was but too much reason for the omission.

In September 1565 Titian went to Cadore and designed the decorations for the church at Pieve, partly executed by his pupils. One of these is a Transfiguration, another en Annunciation (norr in S. Salvatore, Venice), inscribed "Titianus fecit fecit," by way of protest (it is said) against the disparagement of some persons who cavilled at the veteran's failing handicraft. He continued to accept commissions to the last. He had selected as the place for his burial the chapel of the Crucifix in the church of the Frari; and, in return for a grave, he offered the Franciscans a picture of the Pieta, representing himself and his son Orazio before the Saviour, another figure in the composition being a sibyl. This worl he nearly finisbed; but some differences arose regarding it, and ho then settled to be interred in his native Pieve. Titian was ninety-nine years of age (more or less) when the plague, ${ }^{1}$ which was then raging in

Out of a total population of 190,000 there perished at this time 50,000.

Venice, seized him, and carried him off on 27 th August 1576. He was buried in the church of the Frari, as at first intended, and bis Picta was finished by Palma Giorane. He lies near his own famous painting, the Madonna di Casa Pesero. No memorial marked his grave, until by Austrian command Canova executed the monument so well known to sightseers. Immediately after Titian's own death, his son and pictorial assistant Orazio died of the same epidemic. His suraptuous mansion was plundered during the plague by thieres, who provled about, scarce controllec.
Titian was a man of correct. features and handsorne persen, with an uncommon air of penetrating observation and self-possessed composure, - a Tenetian presence worthy to pair with any of those "most potent, grave, and reverend signors" whom bis pencil has transmitted to posterity. He was highly distinguished, courteons, and winning iu society, personally unassuming, and a fine speaker, enjoying (as is said by Vasari, who savy himo in the spring of 1566) health and prosperity unequalled. The numcrous heads curreatly named Titian's Mistress might dispose us to regard the painter as a man of more than usually relaxed morals; the fact is, however, that these titles are mere fancy-names, and no inference one way or the other cad be drawn from them. He gave splendid entertain. ments at times; and it is related that, when Henry 11L of Fraace passed through Venice on his war from Poland to take the Freach throse, he called on Citian with a train of nobles, and the painter presented him as a gift with all the pictures of which he inquired the price. He was not a man of universal genius or varied faculty and accoroplishment, like Leonardo da Vinci and Michelaggelo; his one great and supreme endowment was that of painting.

Ever since Titian rose into celebrity the general verdict has been that ho is the greatest of painters, considered technically. In the first place Deither the method of fresco painting nor work of the colossal scale to which fresco painting ministers is here in question. Titian's province is that of oil painting, and of painting on a scalo which, though often large and grand, is pot colossal either in dimension or in inspiration. Titian may properly bo regarded as the greatest manipulator of paint in relation to colour, tone, luminosity, richncss, texture, surface, and harmony, and with a view to the proluction of a pictorial whole conveying to the eye a true, dignificd, and beautiful impression of its general subjectmatter and of the objects of sense which form its constitueat parts. In this sease Titian has never becn deposed from his sovereigaty in painting, nor can one forecast the time in which he will be deposed. For the complex of qualities which we sum up in the words colour, handling, and general force and harmony of effect, he stands unmatched, although in particular items of forcible or impressive execution- Dot to speak of creative invention - some painters, one in one respect and another in another, may indisputably be preferred to him. He carried to its acme that great colourist conception of the Venetian school of which the first masterpieces ere due to the two Rellini, to Carpaccio, aad, with more fully developed suavity of manner, to Giorgione. Pre-eminent invertive power or sublimity of intellect he never evinced. Eved in eaergy of action sDd more especially in majesty or affuence of composition the palm is zot his; it is (so far as concerns the Venetian sclrool) assignablo to. Tintoretto. Titiad is a painter who by wondrous magic of genius and of art satisfies the eye, and through the eye the feeling ${ }^{3}$,-sometinies the mind.
Titian's pictures abound with memories of his home-conntry sod of the region which led from the hill-summits of Cadore to the queed-city of the Adristic. He wes almost the first painter to ezhibit an appreciation of moontains, mainly those of a turreted type, exemplified in the Dolomites. Indeed ho gave to landscapo generally a Dew and oripinal vitelity, expressing the quality of the - bjects of rature and their control over the seatiments and imsgination with a force that bad never before been approached. The carliest Italian picture expressly designated as "Isndscape" was one which Vecelli sent in 1552 to Philip II. His prodoctivo facolty was immense, even when we ollow for tho aboormal length of bǐa professional career. In Italy, England, and elsowhere zoere than A thousand picturcs figure as Titian's ; of these about 250 may be regarded as dubious or spurious. There are, for instance, 2 pictures in the Londod National Gallery, 18 in the Lourre, 16 in the Pitit, 18 in the Udizi, 7 in the Naplcs museum, 8 in the Venetisd occ:demy (besides the series in the private meetiog.hall), and 41 in the Medrid museum.

Naturally a good deal of attontion has boen gived by artists, connoisseurs, and experts to probing the secret of how Tition mavaged to obtain soch astonishing results in colonr and sorfaca The upshet of this research is but mesgra; the socret seems to be not so much ode of workonenship as of faculty. His fgures ware put io with the brnsh dipped in a brown selotion, and theo alterel and worked up as bis intuntion doveloped. The later picturws were
touched off rapidly, telling well from a distant view. He himself averred that after his visit to Rome in 1546 he had greatly improved in art; and in his very last days he said-certainly with the modesty of genius, perhaps also with some of the tenacity of old age modesty of was then beginning to understand what painting meant. In his earlier pictures the gamut of colour rests mainly upon red arid green, in the later ones upon decp yellow and blue. The pigments which he used were nothing unusual; indeed they were both fev and common. Palma Giovane records that Vecelli would set pictures aside for months, and afterwards, examining them with a stern countenance as if they were his mortal enemies, would set to work upon them like a man possessed ; also that he kept many pictures in progress at the same time, turning from one to the other, and that in his final operations he worked far more with finger than with brush. It has been said, and probably with truth, that he tried to emulate Palma Vecchio in softness as well as Giorgione in richness. Michelangelo's verdict after inspecting the picture of Danae in the Rain of Gold, executed in 15 46 , has often been quoted. He said, "That man would have lad no equal if art had done as much for him as nature." He was thinking princinally of severity and najesty of draughtsmanship, for ho "dded, "lity that in Venice they don't learn how to draw well." As a draughtsman of the human figure Titian was not only competent but good and fine, and he is reported to have studied anatomy deeply; but one can easily uncerstand that he fell not a hittle short of the standard of Michelangelo, and even of other leading Florentines. He was wont to paint in a nude figure with Venetian red, supplemented by a little lake in the contour and towards the extremities. He observed that a colourist ought to manipulate white, black, and red, and that the carnations cannot be done in a first painting, but by replicating various tints and mingling the colours. He distanced all predecessors in the study of colour as applied to draperies,-working on the principle (in which Giorgione may perhaps have forestalled him) that red comes forward to the eye, yellow retains the rays of light, and blue assimilates to shadow. In his subject-pictures the figures are not very numerous, and the attitudes are mostly reserved; even in bacchanals or battles the athletic display has more of facility than of furor. His architectural scenes were sometimes executed by other persons, especially the Rosas of Brescia. The glow of late afternoon, or the passionate ardonr of early sundown, was much affected by Titian in the lighting of his pictures. Gencrally it may be said that he took great pains in completing his works, and paius also in concealing the traces of labour. He appears to have had little liking for teaching, partly from distaste of the trouble, and partly (if we are to believe biographers) from jealonsy. He was quite willing, however, to turn to some account the work of his scholars: it is related that on going out-of-doors he would leave his studio open, so that the pupils had a clandestine opportunity of copying his works, and if the copies prored of saleable quality he would buy them cheap, touch them up, and resell them.
Titian's family relations appear to have been happy, except as regards his eldest son Pomponio. This youth, at the age of six, was launched upon the ecclesiastical career; but he proved wasteful and worthless, and Titian at last got so disgusted with him that he obtained the transfer to a nephew of a benefice destined for Pomponio. The fortune which he left was, after his decease, squaudered by the tonsured prodigal. The other son Orazio, born towards 1528, who (as we have seen) assisted Titian professionally, became a portrait-painter of mark,-some of his likenesses, almost comparable with Titian's own, being often confounded with his by owners and connoisseurs. He executed an important picture in the hall of the great council, Acstroyed by fire. He gave to alchemy some of the time which might have been bestowed upon painting. Several other artists of the Vecelli family followed in the wake of Titian. Francesco Vecelli, his elder brother, was introduced to painting by Titian (it is said at the age of twelre, but chronology will hardly admit of this), and painted in the church of S . Vito in Cadore a picture of the titular saint armed. This was a noteworthy performance, of which Titian (the usual atory) became jealous; so Francesco was diverted from painting to ooldiering, and afterwards to mercantile life. Marco Vecelli, called Marco di Tiziano, Titian's nephew, horn in 1545, was constantly with the master in his old age, and learned his methods of work. He has left some able productions, - in the ducal palace, the Meeting of Charles V. and Clement VII. in 1529; in S. Giacomo di Rialto, an Annunciation ; in SS. Giovanni e Paolo, Christ Fulminant. A son of Marco, nanued Tiziano (or Tizianello), painted early in the 17th century. From a different branch of the family came Fabrizio di Ettore, a painter who died in 1580 . His brother Cesare, who also left some pictures, is well known by his book of engraved costumes, Abiti Antichi e Moderni. Tommaso Vecelli, also a paintex, died in 1620. There was another relative, Girolamo Dante, who, being a scholar and assistant of Titian, was called Girolamo di Tiziano. Various pictures of his were touched up by the master, and are difficult to distinguish from originals. Apart from members of his family, the scholars of Titian were not numerous;

Paris Bordone and Bonifazio were the two of superior excellense, Domenico Troscopoli (or Domenico Greco) was employed by the master to engrave from his works. It is said that Titian himself engraved on copper and on wood, but this may well be questioned.
We must now briefly advert to Titian's individual works, taking them in approximato order of time, and merely dividing portraits from other pictures. Details already given indicate that he did not exhibit any extreme precocity; the earliest works which we procced to mention may date towards 1505 . In the clapel of S . Rocco, Venice, is his Christ Carrying the Cross, now greatly dilapidated, which was an object of so much popular devotion as to produco offerings which formed the first funds for building the Scuola di S. Rocco ; in the scuola itself is his Man of Sorrows. The singularly beantiful picture (sce Schools of Paintino, vol. xxi. p. 436, fig. 16) in the Borghese Palace in Rome, commonly named Divine and Human Love (by some, Artless and Sated Love), bears some obvious relation to the style of Palma Vecchio. The story goes that Titian was enamoured of Palma's daughter; but nothing distinct on this point is forthcoming. The Tribute Money (Christ and the Pharisee), now in the Dresden gallery, dates towards 1508; Titian is said to have painted this highly fnished yet not "niggling" picture in order to prove to some Germans that the effect of detail could be produced without those extreme minutix which mark the style of Albert Dürer. The St Mark in the church of the Salute-the evangelist enthroned, along with SS. Sebastian, Roch, Cosmo, and Damiano-a picture much in the atyle of Giorgione, belongs to 1512. Towards 1518 was printed, also in the same class of style, the Three Ages, now in Bridecwater House,-a woman guiding the fingers of a shepherd on a rood-pipe, two sleeping children, a cupid. an old man with two sknlls, and a second shepherd in the distance, -one of the most poetically imprcssive among all Titian's works. Another work of approximate date was the Worship of Venus, in the Madrid musenun, showing a statue of Venus, two nymplis, numerous cupids hunting a hare, and other figures. Tiwo of the London National Galiery pictures-the Holy Family and St Catherine and the Noli Me Tangere-were going on at much the same time as the great Assumption of the Madonna. In 1521 Vecelli fnished a painting which had long been due to Duke Alphonso of Ferrara, probably the Bacchanal, with Ariadne dozing orer her wine-cup, which is now in Madrid. The famous Bacchus and Ariadne in the National Gallery was produced for the same patrón. in 1523. The Flora of the Uffizi, the Venus of Darmstadt, and the lovely Venus Anadyomene of the Bridgewater Gallery may date a year or so earlier. Another work of 1523 is the stupendous En. tombnent of Christ in the Louvre, whose depth of colour and of shadow stands as the pictorial equivalent of individual facial expression; the same composition, a less admirable work, appears in the Manfrini Gallery. The I ouvre picture concs from the Gonzaga collection and from the gallery of Charles 1 . in Whitehall. In 1530 Titian completed the St Peter Martyr for the church of SS. Giovanni e Paolo ; for this work he bore of the prize in competition with Palma Vecchio and Pordenone. Of all his pictures this was the most daring in design of action, while it yielded to none in general power of workmanship and of feelin,: It showed the influence of Michelangelo, who was in Venice while Vecelli was engaged upon it. A calamitous fire destroyed it in 1867; the copy of it which has taken its place is the handiwork of Cardí da Cigoli. To 1530 belongs also the Madonna del Coniglio (Lourre), painted for Gonzaga; to 1536 the Venus of Floreuce; to 1538 the portraits of the Twelve Cæsars, for Gonzaga; and to 1539 the Presentation of the Virgin in the Temple,-one of the conspicuous examples in the Venetian academy, yet not of the first interest or importance. About 1540 were done the forcible but rather uninspired paintings for S. Spirito, Venice, now in the church of the Salute-Cain Killing Abel, the Sacrifice of Abraham, and David and Goliath; in 1543 the Ecce Homo of the Vienna gallery, where Aretino figures as Pilate. The Venus and Cupid of Floreace, the Venus of Madrid, and the Supper of Emmaus in the Lonrre were still in hand, or just completed, when Titian was summoned to Augsburg in 1547. In 1554 he sent to Philip 1I. in England a second Danae and a Venus and Adonis. About the same time he sent to Charles V. a Trinity (or, as Titian himself termed it, Last Judgment), which represented the entperor, with his family and othcrs, all in shrouds, praying to the God. liead; Moses and rarious other personages are also portrayed. This was the object upon which Charles continued to keep his eyes fixed until the film of death closed on them. Later pictures, from 1558 onwards, are the Martyrdom of St Lawrence, Christ Crowned with Thorns (Louvre), Diana and Actæon, Diana and Callisto, Jupiter and Antiope, the Magdalene, Christ in the Garden, and Europa, - the last six, for Philip II.; of the two Diana subjects there are duplicates in London and in Vienna. Philip, it will be observed, was equally ar fait with nudities and with sanctities. The Jupiter and Antiope, now much resiored, is commonly called La Vénus del Pardo, having at first been in the Pardo Palace. The Magdalene here spoken of (1561) seems to be the picture now in the Uffzi of Florence; Titian, in one of his letters, said that it was the most
popular picture he had evar painted. In 1563 Vecelli offered to Philip II. his Last Suppsr, which had been in hand for aix years: it wea cut down in the Escorial to buit a particular epacs, and offers now little noticeable beyond the fine grouping. T'es St Jerome of the Brea Gallery in Milan, a work of wonderfui energy, apirit, and force, sspecially for a more than octoganarian hand, wes probably rather earlier than this ; there is a rerica of it in the Escorial. Ons of the master's latest pictures (i574-75) is in Madrid, and commemorates the Battle of Lepanto; it.is a work of failing powsr-but still the power of a Titian. Two of the mosaics in St Mark's church, Vanice, - the Mark ia pontificala, and the eword-sheathing angel on the right of the high altar,-are ater Vecolii's deaigos ; but they are ccntrary to the trus spirit of mosaic work, and the JIark in especial ia a decided ejesore.

We now turn to the portraits,-rorks ao great in style, so atately, and in the hest sense so simp's in perception and feeling that, after allowing everything which can be said on behalf of some other nassters of the craft, such as Raphael, Velazquez, Rubens, and Rembrandt, ons is atill compolled to say that Titian stands on the whels supreme. Annong the highest examples are-Alphonso, duke of Ferrara (Madrić) ; the same duke and his aecond wife Laura Dianti (Louvre), comanonly called Titian and his Mistress; Francis I. (Louvrs), painted towards 1536, but not from direct sittings, for Titian never saw the French king; various likenessea of himself, ons of about 1542, and another of 1562 ; Paul III., also the same pona with his grandsons Cardinal Alessaudro and Duke Ottavio (Naples), -the former, done in about four weeks, was presented to the pontiff in May 1543, and cost two gold ducats; Pietro Aretino (Pitti) : Titian'a daugliter Lavinia (with a fan in the Dresden gallery, with a jewelled casket in Lord Cowper's collection) ; the Cornaro Family (Alnwick Castle); L'Honme all Gant (Louvre), an unknown personaga, youthful and handsome, the ne plus ullea of portraiture ; Sansovino, Eleogora duchess of Urbino, Francesco duke of Urbino, Catherine Cornaro queen of Cyprus (these four are in the Uffizi) ; Charles V. on horseback (Madrid) ; Cardinal Bembo (Naple9), discovered in an uncared-for coudition in 1878, very unlike the pertrait is the Barberini Gallery. The female portraits done by Titian are few, and are almast invariably of women of exalted rank. Of Ariosto, with whom Titian was intimate in Ferrara, though there may probably have been nothing approaching to a romantic friendship between then, the painter is said to hava done three portraits. SIuch uncertainty, however, besets this matter. One of the three appears as a woodcut in an edition of the Oriando Furioso. A aecond, now at Colham Hall, comresponds with the woodcut likenss, and is signed "Titianus F." The third, a work of admir ble heauty, and a most fitting likeness of a poet, is in the National Gallery of London. It is difficult, homaver, to reconcile tho featurcs here with the other portraits, and some conneisseura do not admit that the worls is really a Titian.
Authorities. - For Laghlsh readera, the Life and Times of Titian by Crowe and Cavalcaselle ($\mathbf{8 8} \mathrm{BiF}^{7}$) has auperseded all previous works, aucb sa thoss of 5 ir Abrallani Hume (1829) and Northcole (1830). Mr Josiah Gilbert's boolk, Codore, or Tilian's Country (1869), supplies zany Interesting side-lights on the anbject. Mr R. F. Heath' mosogrepla (1885) is founded nnalily on Crowe and Cavalcaselie and on Gillert, and forms a very conventent compendinm. Ic ItaMan, kee tbe canal sulhorities-Ticozzi, Ridota, Lanzl, ice (W. M. R.)

TITLES OF HONOUR are wards and phrases used for marking and distinguishing the rank or station of the persons to whom they are assigned and appropriated. Whatever may have been their actual or verbal origin, it is certain that among nations which have made any considerable progress in civilization their immediate derivation has been in the great majority of cases from some kind of public office or employment. As Mr Freeman has pointed out, ${ }^{1}$ the principal exceptions to this rule are the merely complimentary additions which it is usual to accord in Europe and America to persons who have no ascertained place or precedence in the social scalc. Among ourselves "mister" or "master" (magister) and its feminine equiralents, and on the Continent signor, señor, and sieur (senior) and their feminime equivalents, are the leading examples. They are cmployed simply to aroid the necessity of calling those to whom they are applied by their proper names only, and are not indicative of any special rank or station. In France, howewcr, maite, which answers to our mister or master, is the professional designation of an avocat, and in England "sir," which answers to signor, senor, and sieur, is the appropriate prefix to the Christian name and surnama of a baronet or a knight. Of the derivatives of dominus-don, donne, and dame-the last in French compounded like sieur with the possessive pro-
noun in ordinary speech and appearing in madame as the feminine equivalent of monsieur, much the same may be said as of the derivatives of magister and senior. And, although our word "lord " has a special reference to the House of Lords, as the German Herr has to the Horrenhaus in certain of its uses, it largely partakes of the cbaracter which belonge to them. Its derivation is anklogous to theirs, and within somewhat narrower limits it is alnost as indiscriminately employed. More strictly lord and lady are the equivalents of baron and baroness, the fifth grade of the British peerage. ${ }^{2}$ But colloquially it is applied to all grades of the peerage except the first; and, though duchesses are not called ladies in society, dukes are unquestionably lords in their capacity as members of the second chamber of the legislature. Certain of the sons and daughters of peers are lords and ladies by courtesy, while the wives of baronets are legally and the wives of knights are conventionally called ladies, although the wives of knights are more accurately described as dames. But besides this we have our lord the king and our lady the queen, lord bishops, lord lieutenants, lord justices, lord advocates, lord mayors, lord provosts, lords of the council, lords of the treasury, lords of the admiralty, lords of manors, and a variety of other lords who have no necessary connexion with the nobility. Lord and lady in fact are among the titles of honour which have never been historically associated with any particular function. Lord was originally in Anglo-Saxon hlaford, probably a corruption of hlafweard, "the warden of bread." Lady in Anglo-Saxon is hlsefdige, and has also some connection with hlaf. Neither name acquired by means of official association any definite signification beyond the more or less general ascription of superiority. ${ }^{9}$

It is exceedingly difficult to distribute titles of honour into rigidly distinct catcgories. The following is as near an approximation as we are able to make.
I. Supreme Sovercign Tilles.-A nong titles implying sovereignty the first place is occupied by "enrperor" and "king." Under existing international arrangemeats the crowned heads of Europe take precedence according to the dato of their accession, add their rank is precisely the same, whether their style is imperial or royal. But tho proper meaning of emperor is the chief of a confederation of states of which kinga are members. The German emperor is an emperor in this sense, and he of courss has precedeace of the kings of Saxony, Bavaria, and Würtanberg, whose dominions are incladed in his empire. But neither he nor the emperors of Russia and Austria bave any precedence as such of the queca of the United Liugdom or the kings of Italy and Spain. Originally the title of king was superior to that of emperor, and it was to avoid the assumption of the superior title of rex that the chief magistrates of Rome adopted the names of Casar, imperalor, and princeps to sigualize their authority. As imperalor was the distinctive title of the ruler of the Western empire, so β arideus was the distinctive title of the ruler of the Eastern empire, and the Greek Bagiles is the exact equivelent of the Latin ricx. The emperor of the Enst was called cürokpátup as well as β 人aohleús. But Baotheús came to mean the same as imperator in so special a way that the word p指was borrowed to express what had grown to lie the inferior dignity of king.* Uader Charlemagne the imperi3l style of Rome and the royal style of German) wcre united. ${ }^{3}$ It was official, except ao far as peerago itsolf is an office. His title rather marks a raak or class thau an office; it does not at once print out oren the memory of distiact fuactions like those of the duke, the marquis, or the earl " (Lorigman's AKog., vol. it. p. 433).
${ }^{2}$ Miller, Leet. Sci. Lang, 2 d ser., p. 255.
4 Freeman, Comparatirs Poltics, Dp. 161-162.
5 "The great triumph in the lifo of Charles the Great was when the ambasadore of the Eastern emperor Michael addressed Lim according to the full, inperial style (Eginhard, Annals, 812), 'Aquisgrani, u bi ail Imperatorem vencruat . . . more auo, id est, Grees lingua, laudes cí dixeruat, Inperatarem rum et Basilom, aypellantes "" (Freeruad, Comparalite Politics, p. 353). Mr Freemaa notices also tho greal coatroversy coaceroiog the imperial titles, especially the word β achicis, which arose three geaerations later hetween the cmperors Basil the Macedoatay and Lewis the Sccoad. Sea also John Lydus, De Magzerdibus, 1, 3, ou the distinction between fúpayvor, β aaideús, and aïroxodiop, discussed in Frecmaj, Comn, Pol., P. 445.
however, from Casar, which was common to the Western and the Eastern emperers alike, that the Teutonic word for emperorkaiser - was derived. Until recent times, in fact, no sovereign thought of calling himself emperor unless lie claimed in some way to represent the Roman Cxesars. Dowa to the beginning of the 19th century a German emperor who was not Roman cmperor would have been an anemaly. At remote periods more than one of the West-Saxon kings called himself emperor of Britain, and more than one king of Castilo called himself emperor of the Spains. But these assumptions appear to have been merely intended as protests against tho assertion of superiority over them by tho Roman emperors, German or Greek. Later on the kings of Portugal called themselves eniperor of the Indies. But that title, like the queen of the United Kingdenn's title of empress of India, was secondary only and did not affect their official designation in the hierarchy of European sovereigns.

The title of king does not suggest any of the questions which have been raised by that of emperor. "There is," as Mr Freeman says, "a common idea of kingship which is at once recognized, however hard it may be to define it. This is shown among other things by the fact that no difficulty is ever felt as to translating the word king and the words which answer to it in other languages." Etymologically indeed the Romanco and Teutonic words for king have quite distinct origins. Tlie Latin rex corresponds to the Sanskrit rajah, and meant originally steersman. The Teutonic king on the contrary corresponds to the Sanskrit ganaka, and "simply meant father, the father of a family, tho king of his own kin, the father of a clan, the father of a people."2 In English there is no feminine form of king like königin, the feminine form of könig in German. As the feminine equivalent of king, queen is used, which Prof. Max Dluller says is "the old word for mother." He also cites the translation of the Bible by Ulfilas in the 4 th century to preve its meaning at that early period as wife or woman. The queen was in fact in a special sense "the woman," or "the wife, "the highest of women and the lighest of wives in the kingdom.' King should properly describe the head of a nation in distinction from the head of a tribe, as emperor should properly describe the head of a confederation in distinction from the hend of a nation. The idea of territorial sovereignty, of kingship over a land instead of over a people, grew up under the feudal system. In Britain it was unknown until long after the Norman Conquest. William the Conqueror, like Harold or Edward, was king of the English, and it was only from the reign of Henry II. that his successors were transformed into kings of England. The Eastern titles of sultan and shah are accepted as equivalent to those of em. peror and king in the West. The sovereigns of China and Japan are called emperors both in common and in diplomatic parlance.
II. Honorary Religious Tilles of Sovercigns. -The Gerinan emperors were formery styled "defenders of the church," while the kings of France were called "very christian majesty" and "eldest sons of the church." The queen of England is "defender of the fith," the emperor of Austria as king of Hungary "apostolic unajesty," the emperor of Russia as king of Poland "orthodox majesty," the ling of Spain "catholic majesty," aud the king of Fortugal "very faithful majesty." All these titles were originally conferred by the popes. But the queen of the United Kingdom
${ }^{1}$ Freeman, Comp. Pol., p. 138.
2 Max Mitler, Lect. Sci. Lang., 2d ser., p. 255. "All people, save those who fancy that the name ling has something to do with a Tartar than or with a "canning" or "cunning" msn, are agreed that the English cyuing and the Sanskrit ganaka both come from the same root, from that widely spread root whence comes our own cyn or kin and the Grieek yevos. The only question is whether there is any connexion between cyning and ganalia closer than that which is implied in their both coming from the same original root. That is to say, are we to suppose that cyning and ganaka are strictly the some word common to Sanskrit and Teutonic, or is it enough to think that cyning is an independent formation mado after the Teutons had separated themsolves from the common stock? . . . The difference between the two derivations is not very remote, as the cyaz is the ruling idea in any case; but if we make the word immediately cognate with ganaka we bring in a notion about 'the father of his people' which has no place if we simply derive cyning from cyn" (Freeman, Comp. Pol., pp. $450-451$; sec also his Norm. Conq., vol. i p. 583, and Growth of the Engtish Constitution, p. 171).
"The king's wife was called regina in Latin from the beginning; but there is no English word answering to regina: we have not and never had aיay word like the German königin. The queen is simply queen (cwe n), woman, wife, the highest of wives in her hushand's dominions. So the earl's wife was aimply the earl's wife; the Norman style of countess now came in to fill up what was thorght a defect. \$o with all strictly Eaglish titles, knight, sheriff, portreeve, alderman : they have no feminines; in most cases the wife does not share her husband's dignity. But the mayor, being a French title, has his mayoress, just as the duke has his duchess" (Freeman on "'Titles,' 'in Longman's Magazine, vol. ii. p. 489).
and the emperor of Austria alnne omploy them as part of their official description.
III. Infcrior Titles of Sovereignty.-Grand-dukes rank next to kings. Grand-duke was the original title of the czars and was introduced into western Europe by Pope Pius V., who created Cosimo de' Medici grand-luke of 'luscany in the last half of the 16th century. There are now seven reigning frand-dukes in Germany. Prince and duke are titles also borne by the reicning chiefs of minor Germanic states. There are rcigning princes of Monace and Montenegro. The Eastern equivalents for these subordinate titles are khedive, emir, khan, and bcy.
IV. Tillcs of Nobility.-The titles of the greater nolility are prince, duke, marquis, carl or count, viscount, and baron, aud most of them exist in all European empires and kingdoms. In the United hingdon tliere are no princes outside tho royal family. In Russia there are no dukes except the imperial grand-dukes and.neither inarquises nor viscounts. In Germany there are no viscounts. Among the titles of the lesser nobility or gentry baronet and esiguire are peculiar to the United Kingdom. Knight, chevalier, and ritter are rccoguized throughout Europe, and as far as Persia and Japan. Of old time in Scotland baron, now represented by laird, wias not a title of the gfeater nobility, and the same may bo said of freiherr in Germany. Tho peculiar designations of the chiefs of some of the Scottish clans and Irish septs, as Th ${ }_{3}$ Chisholm, The O'Donoghme, Cameron of Lochicl, Nacgillicuddy of the Rceks, and others must also be included among titles of honour. It would be improper to prefix "mister," or to affix "csquire," to their names in addressing them either orally or in writing, and their wivcs are always called madam. Pasha, bey, and effendi aro the most familiar of the Eastern titles of nobility. The ecclesiastical titlcs of arellbishop, bishop, dean, \&c., and tho military and naval titles of field-marshal, admiral, general, colonel, major, captain, \&u, aro common to all the countries of Europe, and are expressed by words in their several langnages which are the precise equivalents of each other. But their incidentally dignificd character is so overshadowed by their essentially administrative character that they can be regarded as titles of honour only in tho same sense as the titles of officers of stato or justice.
To the foregoing titles of honour may be added the large assortment of complimentary cpithets which are attendant on then, and which are used as alternatively descriptive of the persons by whom they are borne. The Roman Cesars were by decree of the senate called in Latin augustus, or sacred, which was rendered in Greek by $\sigma \epsilon \beta a \sigma \tau \delta s$, or adorable. They were also habitually styled divi, pius and felix, clemevs, tranquillus, and sanctissimus. Augnstalis majestas and ária paoineia were among the styles of the Western and Eastern emperors respectively. Majesty, sacred majesty, or Cæsarean majesty, was the peculiar titlc of the emperors, and it was not assumed by any of the other sovercigns of Europe until comparatively modern titacs. But it is said to have been adopted in France as carly as the reigut of Louis X1. ; in England the first king who used it was Henry VIII. Before that the kings of England had been called grace and highness, and sometimes excellent grace and kingly highness. All emperors are now imperial majes. ties, and all kings majesties, while grand-dukes, royal highnesses, and all inferior reigning potentates are highnesses of one sort or another. Imperial or royal highness is the proper title of the sons and claughters of emperors and kings, serene highness, or highness merely, being that of the members of princely families. The German hoheil, although it is commonly employed as tho equivalent of highness or allcsse, has a special signification of its own. It holds an intermediate rank between altesse royal or royal highness and allesse serénissime or serene highness, unless it is qualified by the adjectives kaiserliche or königliche. For many years, however, it has been appropriated to the less important reigning and the mediatized princely houses, to distinguish them from tho priucely houses of new creation and the mediatized countly houses, to whom the titles of durchlaucht and crlaucht are severally assigned. In the United Kingdom grace is the title of dukes and duchesses, and lordship and ladyship of all other grades of the peerage and the bearers of courtesy titles of superior rank to any one of them. Dukes and duchesses are styled most noble, marquises and mar. chionesses most honourable, and all other peers and peeresses, lords and ladies by courtesy; privy conncillors and the lord mayor of London are styled right honowrable. Hononrable is the title of the younger sons of earls, the sons and daughters of viscounts and barons, and the judges of the High Cenrt of Justice. Archbisbops are most reverend, bishops right roverend, deans very revcrend, archdeacous venerable, and all clergymen reverend. The pope is his holiness, and cardinals are eminences Viceroys, ambassadors, and governors are excellencies. But we have not yet rivalled the nice gradations in the descending scale of illustres, spectabiles, clarissimi, perfectissimi, and egregii which cbaracterized the official or administrative hierarchy of the later Roman empire. (F. DR.)

TITMOUSE (Anglo-Saxon Mase and Tytmase, German Meise, Swedish Mes, Dutch Mees, French Mrésange), tho'
name ${ }^{1}$ long in use for several species of small English birds, wibich are further distinguished from one another by some characteristic appellation. These go to make up the genus Parzs of Linnxus, and with a very uncertain number of othcr genera form the Family Paridse of modern ornithology. Its limits are, however, very illdefined; and here only the species best known to English readers can be noticed.
The first to be mentioncd is that called from its comparstively largo size the Great Titropuso, P. major, but known also in many parts ss the Oxeye. ${ }^{2}$ conspicuous by its black hesd, white cbeeks, and yellew breast, down which runs a hlack line, while in spring the cock makes himself hesrd by a loud love-pote that resembles the neise made in sharpaning a eaw. It is widely distributed throughout the British lslands, and over neasly the whole of Europa and northern Asia. Thio next is the Blue Titrnouse, Bluecap, or Nnn, P. cerrulecus, smaller than the last and more common. Its nsmes are so charractoristic zs to make any description needless. A third commons species, but not so numorrus as sither of the foregoing, is the Coal-Titanouse, P. ater, distingnishod by its black cap, white cheeks, and white nape. Some interest attaches to this species becanse of the difference observable between the raco inbabiting the scanty remnants of the sncient Scottigh forests and that which nccurs throughout ths rest of Britain. Tho former is more brightly tinted theo the lattor, having 3 clear bluish gray mantle and the lower part of the back grecnigh, hardly either of which colours are to be seen in the same parts of more southrn examples, which last hars been doscribed as forming a distinct species, P. britannicus. But it is to be observed that the denizens of the old Scotch fir-woods arg nearly midway in coloration between the dingy southern birds anditbose which prevail over the greater part of the Continent. It would therefore seem urreasonable to speak of two species oaly : rhere should le either ihree or one, and the latter altornative is to be preferred, provided the exiatence of the locs1 races bo duly recognized. Much the same thing is to bs noticed in the next species to be mentioned, the Marsh. Titruouss, P. palustris, which, sombre as is its plumarge, is subject to considerable local variation in its very cxtensiver range, and has been called P. borcalis in Scandinavis, P. alpestris in the Alps, snd P. bugubris in sonth-enstera Europe, to say nothing of forms like P. baicalensis, P. cermchatiensis, snd others, whose names denotg its local variations in northern Asia, while ua great violenee is oxercised if to tocse bo tacked on P. utricapilla with seversa gcographical races which inhahit Nortb America. A fifth British species is the rare Crested Titmouse, P. cristatus, only found in limited districts in Scatland, though common onough, especially in pine-wonds, in many parts of Earops.
It is impossible to state how many species of Parus exist, tbecir recoguition st present being wholly suljective to the viaw taken by thi iuvestipator of the group. Its latest monographer is Dr Gadow (Cat. B. Br. A Muscum, viii. pr. 3-53), who recognizes fortyeight, beside9 8 serersl sub-spccies. North-American orpithnologists include seme fifteen as inhabitants of Canada and the United States ; hut scarcoly two writers agree on this point, owing to the existence of se many local forms. Of the epecies inhabiting the Indian and Ethiepian Regiens there is no space hore to trest, and for the aame reason the presumahly sllied forms of Australia snd New Zealand mnst be left unnoticed. During the greater part of the year the various species of the genus Pamis asseciato in fsmily parties in a way that has becn alresdy descriled (BIRD日, vol. iii, p. 766), and only break up into pairs at the hegirning of tha breeding-saason. The nests are nearly slways placed in a hollow stump, and consist of 8 msss of moss, feathicrs, sind hsir, the liset being workea almost into a kind of felt. Thereen the eggs, often to the number of eight or nine, aro lxid, and these havo 8 trenssucent white shell, freckled or spotted with mist-colour. The first piumage of the young zlosely rcsembles that of the parents ; lint, 80 for 89 is knewn, it hos alwsys \& jellower tinge, very epparent nu the parts, if there bs such, which in tho sdult are whito. Fcw lirds are more restlogs it dispnsition, ond if "irritability" bo tho test of high organization, as a much beprised systematist asserts, the Paridee should stand rery near tha top of the list. Moat of the Furciman species and some of the North-American become familiar, hanlting the neighbourbood of houses, especially in winter, and readily availing

1 The prefix "Tit," by heodless writers often used alone, though equally proper to the Titlerk (cf. PiPIT, val. xis. p. 112), is perbaps eognate with tho Greek ritts, which originally meant a amall ehirping bird (Atun. Nat. Ilistory, ser. 4, x p. 227), and has a diminntiva fortn in the Ieclandic Titlingor-the English or at least Sentish Tillirg. It is by false analngy that the p!aral of Titmouse is made Titmice; it abould be Tiemmuses. A miekname is rery oiten added, as with many ther familiar English birds, sud in this case it is "Tom."
${ }^{2}$ The aignification of this dame is olseure. It may perbapa be correlated with a Swedish name for the bird-Talgoxe.
themsalves of such ecraps of foon, sbout the neturs of whinh they ars not particular, as they can get. ${ }^{3}$ By gardeners cyery Tit mouse is generally regarded as 8 a enemy, for it is suppeserl to. do infinite damage to the buds of fruit-trees sud bushes; but the sccusstion is wholly false, for the buda destreyed are always fonad to bo those to which a grub-the bird's real object-has got access, so that there can bo littlo doubt thot the Titmouse is a great benefactor to the horticultorist, and hardly over moro so than when the careless epectator of its dceds is supposing it to be bent on mischief.

Akin to the genas Parus, bnt in msny respecte differing from it, is Acrcaulct, containirg that curians-looking bird the Long-tailed or Buttlo-Titmouse, with its many local races or species, which must bo here nassed over without a word. The bird itself, having its tail longer than its body, is unilke any other found in the northern hemisphere, whils its nest is a perfect marvel of construction, being in ahspe rearly oval with a small hole in one side. The exterior is studded with pieces of lichen, worked into a firm texture of moas, wool, and apiders' nasts, sad the insido is profusely lined with soft feathsrs- 2379 having been, says Macgillvray, counted in one example. Not inforior in beauty or ingenvity is the nest built by the Pendulins Titmouse, SEgithalus pendulinus, of the south of Europa, which differs, bowever, not merely in composition but in bcing suspanded to a bough, whils the farmer is nearly slways placed between two or more brancacs.

The so-called Bearded Titmouse, Panurus Liarmicus, has habits wholly unlike those of any of the foregoing, and certainly does not belong to the Family Paride, though its real affinity has not jet been clearly shown. It was formerly found in many parts of England, cspecially in the eastern countics, where it bore the name of Reed. Pheasant ${ }^{4}$; but through the draining of meres, the destruc. tion of reed-beds, and (it must be added) the rapacity ol collectors it now only exists as a native in a very few localitics. It is a beautiful litile bird of a bright tawny colour, variegated with black and white, while t..i cock is further distinguished by a bluish grey head and a black tuft of feathers on each side of the chin. Its chief food sceme to be the smaller kinds of freshwater mollusks, which it finds among the reed-beds it seldom quits.

The general afinities of the Paride seem to lie rather with the Sittidas (rf. Nuthatch, vol. xvii. p. 665) and the Tree-Creepers; and those systematists who would ally them to the Laniide (Surikr, vol. xxi. p. 845), or still more interpose the last between the former Families, have yet to find grounds for so doing.

TITUS. By this, his Roman prænomen, is usually known the eleventh of the Twelve Cæsars, Titus Flavive Sabinus Vespastanus, emperor from it to 81 a.d. With his father Vespasin, who rose to empire from the camp, began the Flavion line of emperors, the last three Cæsars. Titus was born in 40 , the year of the assassination of the fourth Cessar, Caius Caligula, and was brought up in the household of Claudius, with that emperor's son, Britanni. cus. There was a story that he was dining at Nero's table when Britannicus was poisoned, and that he himself tazted the fatal cup, and lad in consequence a serious illness. Some time afterwards he erected two statues to tho Joung prince's memory. Educated in the imperial court, he was thorougbly trained in all elegant accomplishments: he could speak Greek fluently, and could compose verses; he was a proficient in music; be could write shorthand, and could imitate landwriting so skil. fuily that ho used to say tbat ho might have been a most

[^176] tooble provide a plasing apectacls by adopting the plan, practised by the late Mr Λ. F. Knos, of hanging s lomp of suct ar tallow by a abort string to the end of a flexible rod stack aslant into the gronnd cloge to tho window of a aitting-room. It is seldom long before a Titmonee of some kind finds the dainty, and ance fand visits are mado to it nuril cuery morsel is picked off. The attitudes of ths birde as they cliag to the awinging lare are very diverting, and nore but a Titmansa can sueceed in keeping a footlonld upon itw

4 The common names given to this bird are so very jnapplieabla that it is a pity tbat "Silerella" (from siler, as osier) bestowed apon it by Sir T. Browne, its original discoverer, cannot be rasiarel.
successful forger. He was very handsome, with a fine commanding expression, and a vigorous frame, well trained in all the exercises of a soldier. As a young man he served with credit in Germany and in Britain, and ho practised at the bar. Soon he had the command of a legion, and joined his father in Syria; he took an active part in the Jewish war, capturing several important fortresses, among them Tarichææ and Gamala. In 68 he went at his father's bidding on a visit of congratulation to the newly proclaimed emperor, Galba; but, hearing of Galba's death and of the general confusion in the Roman world, be returned to his father in Palestine, having in the peantime consulted the oracle of the Paphian Venus as to his prospects and received a favourable answer. In the following year Vespasian, who, through his son's pleasing manner and adroit management, had made a friend of Mucianus, the governor of Syria, became emperor, and left Titus to finally settle the Jewish war by the capture of Jerusalem. Titus conducted the siege of the city, which for some months was defended amid incredible horrors, with signal ability, and took and destroyed it in September 70. The army saluted their victorious general by the title of "imperator"; in the East Titus was now supreme, and practically emperor.. On his return to Italy by way of Alexandria he fell in with that strange professor of mystical philosophy and magic, Apollonius of Tyana, and listened, it is said, to his pedantic talk and advice. As soon as he arrived at Rome there was the usual triumph for a decisive victory, and both father and son shared it. On the arch of Titus, as it is called, erected some few years afterwards (see vol. xx. p. 830), may still be seen sculptured representations of Jewish captives and of the captured trophics. Titus was now formally associated with his father in the government, with the title of Cæsar, and during the nine remaining years of Vespasian's reign he controlled the administration, and was in fact emperor. He was anything but popular; he had the character of being luxurious, self-indulgent, profligate, and cruel. Summary execution of obnoxions persons seems to have been not uncommon. There was a bad scandal too about his connexion with the shameless Jewish beauty Berenice, the sister of the Agrippa of the Acts of the Apostles; both brother and sister followed Titus to Rome, and were allowed to reside in the imperial palace. Public opinion at Rome was outraged, and Titus, though he had promised Berenice marriage, felt obliged to send her back to the East. Vespasian died in 79, leaving his son a safe throne and a well-filled treasury. The forebodings of the people were agreeably disappointed, for Titus, who, it was feared, would be a second Nero, was known as the "love and delight of mankind." It is possible that his popularity was in some degree due to the fears which the depravity of his brother Domitian, who, it was known, was to succeed him, had begun to excite; but he had the tact to make himself liked by all. He seems to have been thoroughly kindly and goodnatured; he delighted in giving splendid presents, and his memorable saying, "I have lost a day," is said to have been uttered one evening at the dinner table when he suddenly remembered that he had not bestowed a gift on any one that day.

Titus, like his father, spent money on great public workz and in adding to the magnificence of Rome. The Colosseum was completed and dedicated in l is reign, with combats of gladiators, shows of wild beasts, and sham sea-fights and representations of some of the great Greek naval battles. He gave the city what we should now call "a people's palace" in his splendid baths, which surpassed those of Agrippa and of Nero, and supplied the mob with every luxurious appliance free of cost.

During his reign, in 79, occurred the memorable eruption of Vesuvius which destroyed Herculaneum and Pompeii. The emperor visited the scenes of desolatiun and contributed liberally to the relief of the distressed inhabitants.' During his absence a fire raged for threc days at Rome, in which the Capitol was burnt; then followed a pestilence, and again Titus not only helped freely with his purse, but took pains to acquaint himself with the sufferers and gave them his personal sympathy. Italy and the Roman world generally were quiet and peaceful during this brief reign. The only fighting was in Britain under Agricola, who in the year 80 carried the Roman arms into Scotland as far as the Tay. In the following September Titus died, being in his fortieth year, after a reign of two years and rather more than two months. On his deathbed he said, so the story went, that there was but one thing of which he repented: this was commonly supposed to point to his having spared to punish his brother Domitian, who had more than once plotted against his life, and whose succession to empire he must have felt would be a calamity for Rome. The verdict of history is on the whole favourable to Titus, and perhaps deservedly so ; but the general feeling throughout the Roman world after his death was that he had been fortunate in the briefness of his reign.

An admirable account of this emperor will be found in Merivale's History of the Romans under the Empirc, ch. $60 . \quad$ (W. J. B.)

TITUS, one of the companions of St Paul, was of Greek origin (Gal. ii. 3), and appears to have been among the apostle's earliest converts; he is first mentioned (Gal. ii. 1) as having accompanied Paul, then in the course of his second missionary journey, from Antioch to Jerusalem. Here the Judaizing brethren desired that be should be circumcised; but the liberty of the gospel was successfully maintained. He was afterwards sent by Paul from Ephesus to Corinth, with, it would seem, a letter, no longer extant, more than once referred to in 2 Corinthians (ii. 3, vii. 8 ; comp. vol. vi. p. 401). He rejoined the apostle with favourable reports from Corinth in Macedonia, and was again sent (from Philippi) with another epistle, probably what is now known as the second, to the Corinthians, and charged with the further duty of promoting the proposed collection for poor Christians in Judxa. This is practically all that is known of him from the undisputed Pauline epistles. He is nowhere mentioned in the Acts. In the pastoral epistle with which his name is associated he is represented (Tit. i. 5) as having been left by Paul in Crete to "set in order the things that arc wanting, and ordain elders in every city." He is expected afterwards to join Paul at Nicopolis (iii. 12). In 2 Tim. iv. 10 he is spoken of as having gone to Dalmatia. Tradition, obviously resting on the Epistle to Titus, has it that he died in Crete as bishop at an advanced age.

TITUS, Epistle to. See Pastoral Epistles. vol. zviii. p. 348 sq.

TITUSVILLE, a city of the United States, in Crawford county, Pennsylvania, in $41^{\circ} 38^{\prime} \mathrm{N}$. lat. and 79° 42^{\prime} W. long., stands upon Oil Creek, in the midst of the oil region of north-western Pennsylvania. Its predominant industries have reference to the production, refining, and transportation of petroleum. It has two railroadsthe Dunkirk, Allegheny, and Pittsburg, and the Buffalo, New York, and Philadelphia. The city had a population of 8639 in 1870 and of 9046 in 1880.

Titusville, originally a small lumbering town, began its careet of prosperity in 1859, when oil was discovered in this region, and during the succeeding years it was the scene of very great activity. It was chartered in 1867 , when at the zenith of its prosperity. Since that time it has settled down to a less feverish and more healthy growth.

TIUMEN. See Tydmed.

TIVERTON, a borough of Devonshire, England, is finely situated in the midst of beautiful scenery at the conIuence of the Lowman and the Exe, $14 \frac{1}{2}$ miles north of Exeter and 184 west-south-west of London. A branch line connects it with the Great Western, and the Exe Valley Railway with Exeter and Dulverton. The greater part of the town is on the left bank of the Exe; the four principal streets are wide and regular. Since 1262, when Amicia, countess of Devon, caused a stream of water to be directed from Norwood to Tiverton, a distance of 5 miles, every street has had a constantly flowing supply. At points now spanned by bridges there were formerly two fords, one over the Exe and the other over the Lowman; hence Twofordton and Twyfordton the former names of the town. There still remain the principal gateway and an octagonal turret of the ancient castle (now a private residence), built in 1106 by Richard de Riparus or Redvers, first earl of Devon, and the chief residence of the Redvers till the execution of Henry Courtenay, marquis of Exeter, in 1539. The kost ancient part of the church of St Peter is the Norman Coorway; the embattled western tower is 120 feet in feight. For Blundell's free grammar-school (1604) new buildings have recently been erected in the Tudor style. Among other educational establishments are the school of science and art, the blue coat charity school (1714; reastablished as a middle boys' and middle girls' school in 1876), and the Chilcott free school (1611). The other principal public buildings are the market-house (1830-31), the infirmary (1852), the town-hall (1864), and several almshouses. Tiverton was formerly famed for its woollen manufacture, introduced in the 14 th century ; its annual returns in 1612 were estimated at $£ 300,000$, about 8000 persons being employed in the industry. It is now chiefly noted for its lace manufacture, established by John Heathcoat, the inventor of the bobbin net frame. The poprilation of the municipal borough (area, 17,491 acres) in 1871 was 10,024 , and in 1881 it was $10,462$.
The towu existed iu Saxon times. In the reign of Edward the Confessor it was beld by vassals or servants, and in Domesday it is entered as terra regis. In 1200 it had a market and three annual fairs. After the introduction of the woollen trade in 1353 it rapidly increased, and Camden atates that the trado had brought it "much gain and glory." The town and castlo were taken by Fairfax in 1045. Tiverton auffered from the plague in 1591 (whea it had 5000 inhabitants), and from fire in 1598, 1612 , and 1731 . It was incorporated by James I. in I615; hut in 1732 its chartor was forfeited, and a second was not bestowed till 1737. The borongh was deprived of parliamentary representation in 1885.
Sea Harding'a Histery of Twerton, 2 vols., 1845.
TIVOLI (Lat. Tibur), a town of Italy, situated 17 miles east-north-east of Rome on one of the spurs of Monte Ripoli, 830 feet above the sea. Its position is very striking and beautiful ; it stands partly at the edge of the lofty cliff over which the river Anio falls in a most imposing mass of water. The present aspect of the fall is very different from what it was in ancient times, as the water has undermined and carried away great masses of the rock. In 1881 the population of the town was 9730 , and of the commune 10,297 .

Ancieut Tibur was founded, according to the legend adopted by the Roman poots, many conturies before Rome, by the Siculi. ${ }^{1}$ They were expelled by a Greek named Tiburtus, the son of Catil. las, who became the eponymous hero of Tibur. ${ }^{2}$ During the early historic period Tibur, which atood on the bordere of the Sabine territory, was alwaya a bitter enomy of Rome, and on many occasions allied itself to various peoples, even the Gaula, in their attacks on the city. With the rest of Latiun, Tibur was finally conquered by Rome in 335 b. C., a ad on account of ita constant enmity was treated with mach aeverity, not being admitted to the Roman franchise till towards the close of the republican period. Almost no mention of Tihur occurs duriog the time of the empire; but the town is recorded to have auffored severely during the Gothic in rasion in the 6th cantury

[^177]Remains of its city wall stull exist, built of equared blocks of rufa; but the wholo circuit is not clearly determinable. Even the site of the large and wealthy tefuple of Hercules is doubtful, which atood in an extensive temenos, containing libraries and a porticus, where Augustus aometimes administered justice. ${ }^{3}$ At the edge of the cliff still atands a small circular temple, of doubtful dedication, which once had eighteen columns, and closely reaembled that in the Forum Boarium of Rome. Its celle walls are of concrete faced with opus reticulatum, aod ita columns of travertine; it dates from sbout the tinie of Christ. Its popular name is the "temple of the Sibyl." Close hy is another small prostyle-tetrastyle temple resembling that (so called) of Fortuna Virilis in Rome. Remaios of the circuit wall of the forum also exist, with a largo apsidal projection, as well as an extensive crypto-porticus, faced with blank areading and divided internally by a row of twenty-eight columns. Tibur was a favourite summer residence of many wealthy Romans under the enupire, aod especially of Horace and Mrecenas. ${ }^{6}$ One of the chief aqueducts of Rome, "Auio vctus," started froln the Anio at Tibur. The ancient "lapis Tiburtiuus" (modern travcrtine) was ao called from its chief quarries at Tilur, where it has heen during long agea deposited by the water of the river Anio.
Hadrian's villa, which stands at the foot of the Tibur spur of hill ahout 2 miles distant, is one of the most important Roman remains in the world. Between 1870 and 1882 the greater part of its immense area was excavated ; the whole circuit was once no less thau 8 milea. The acheme of this wonderful group of buildings was the fancy of the rich and highly educated emperor Hadrian, who desired to reproduce, within a short distanco of Rome, a nu:nber of the chief Greek sites and buildiags which be had visited in different parts of the world. Besides his own palace be built a large stoa peecile, copied from that at Athens, an odenm, a lyceum, an academy (with its gardens, halls, and porticus), libraries, Latin and Greek theatres, s stadium, palæstra, hippodrome, baths, and many temples. Large gardens, divided into an articicial "Vale of Tempe," "Elysian Tields," and "Tartarus," were watered by a winding etream named the "Euripus." In another place stood a y serapeum," copied from that at Alexandria, and filled with psoudo-Egyptian statues and reliefs, many of which have been recently unearthed. Barracks for the pretorian guard and rows of dwellings for slaves completed this magnificent group of huildings. In many parts the cxisting remains are well preeorved and in some cases the uses of the different buildings can be determioed. ${ }^{8}$ The main walls are of concrete faced with mixad brick and opus reticulatum, once wholly covered with ragnificent Oriental marbles and crowdou with fine Greek and Greco-Roman aculpture ; mosaic of marble and glass w़्!ā iavisbly used for floors, walls, aud vaults, together mith the most elaborate paiated decorations. A large number of fine worka of art have heen discovered hero, auch as the mosaic of "Pliny'a doves" and the Faun in rosso antico now in the Capitol. It is probable that the Venus des Medici came from this villa, together with many other statuea found in the 16 th century whose provenance is now forgoten.
TLAXCALA (Tlascala, i.e., "House of Bread"), an historical city of Mexico, capital of the state of Tlaxcala, which nearly coincides with the old native republi:: of Tlaxcala, occupying the easternmost of the four sections into which the Anahnac plateau is here divided by ranges of hills, between 19° and $20^{\circ} \mathrm{N}$. lat. The modern town, standing on the site of the old Indian capital, lies (in $19^{\circ} 19^{\prime} \mathrm{N}$. lat., $98^{\circ} 6^{\prime} \mathrm{W}$. long.) on the little river Papagallo (Atoyac, formerly Zahuatl), which flows between two hills at an altitude of considerably over 7000 fcet, some 30 miles north of La Pucbla and 170 by rail from Vera Cruz. Tlaxcala was founded probably about the close of the 13th century, when the Tlaxcaltecs, a branch of the Nahuatl race closely akio to the Aztecs, withdrew from the western side of the central lacustrine district and established a powerful democratic state in a somewhat secluded, hill-encircled, but highly productive tract, 90 miles in length by 70 in breadth, with a total area of over 1550 square miles. The Tlaxcaltecs, hereditary foes of the Aztecs, became, after a short resistance (September 1519), the firm allies of tho Spaniards, their co-operation contributing largely, if not. mainly, to the overtbrow of

[^178]- It has also been called the temple of Vesta, but the real aite of tbia lest was oo tha otbar aida of tba river.
, Hor., Od., i, 7, 10, aad ii. 6, 5.
- Nany of the oanses given to diferent perts by the Roman and queries are baaed on mere convectura,
the Mexican cmpirc. But the result was the enslavement of Tlaxcala itself, the general decay of the country, and ihe dispersion of most of the inhabitants by Cortes. Althnugh now reduced to a population of a little over $50 C 0$, or, including the commune, to 36,000 , and with no inonuments beyond a fine church, an old episcopal palace, and a town-hall, the city at the time of the conquest was a very large place, containing nearly as many inbabitants as the whole of the modern state $(130,000)$. When occupied by the Spaniards, its size and spiendour excited the admiration of Cortes, who describes it in somewhat exaggerated language as " much larger and much stronger than Granada, with as fine buildings and much more pcople than Granada had at the time it was captured, also much better supplied with the things of the earth" (Cartas, 67). It was disposed in four distinct quarters separated by high stone walls, each with a palace for the ruling chief, besides temples, and stone buildings for the nobles. But most of the other houses wero low mind or adobe structures. In the daily market, which was said to be frequented by 30,000 people, were exposed for sale the products of the surrounding conutry,-maize, maguey (extracted from the aloe), and chilli pepper; to these are naw addcd wheat, barley, pease, lentils, and a great rariety of fruits.
Δ prominent feature of the landscape is the Sierra de Malintzi, or Malinche, that is, "Lord of Marina," a namo given to Cortes after his alliance with the "heroine of the conquest." Tbe Sierra (originally Matlacuezatt), which rises grandly (more than 16,000 feet) above the plateau, takes a prominent placo in Tlaxcaltecan mythology, owing to the peculiar shape of its summit, represcating ia rough outline the body of a nativo woman lying at full length in its grave snd partly wrapped in its cerements. There are some woollen manufactures, centred chicfly in tho capital, and also a few silver, copper, lead, and coal mines in the San Ambrosio and San Matco ranges; but the state is essentially agricultural, yielding larye annusl crops of maize and wheat, the total produce being valued at over $£ 1,000,000$.

TLEMCEN, or Tilinss:r, a town of Algeria, chef-lieu of an arrondissement in the department of Oran, lies 86 miles S.W. of Oran, 2625 feet alove the sea, on a terrace on the northern slope of a range of rocky hills (3430 feet). Its white minarets, towers, and battlements rise picturesquely above the surrounding verdure, which is nourished by numerons springs, and even in ancient days gave rise to the Roman name Pomarin. The various quarters are grouped around the principal mosque,--the Jewish to the southwest, the Moorish to the south-east, that of the macrchants to the north-east, while tho new lown with the civic buildings lies to the north-west. Of the sixty-four mosques which existed at the period of tbe French ennquest, several have disappeared. The great mosquo has a minaret adorned with marble columns, and cased with mosaic of the most varied designs; a fountain of alabaster stauds in the alabaster-paved inuer court; and seventy-two columns support the pointed arches of the interior. The mosque of Abul Hasan, now used as a French and Arab school, has two series of arches, which rest on alabaster pillars, and the conrts aro ornamented by sculptures of great beauty and richness; the delicately carved cedar ceiling bears traces of polychromatic painting. The mosque of El-Halawi is specially interesting for the sculptured capitals of its magnificent alabaster columns. Tlemcen, besides numerous other mosques; possesses a fine modern Roman Catholic church in the Byzantine style and five synagogues. The military authorities occupy the Mehuar or citadel, built in 1145, which separates the Jewish and Moorish quarters, and was formerly the palace of the rulers of Tlemcen. Only the mosque and the battlemented wall, flanked by two towers, remain of its former magnificence. Among the antiquities preserved in the museum is the epitaph of Boahdil, the last king of Granada, who died at Tlemcen in 1494. The rast basin under the old
walls, now nsed as a reservoir (720 feet in length, 490 in width, and 10 in depth), was appreutly made for naval exhibitions by the surercigns of Tlemcen. The barracks of the Spalis occupy all that remains of Kissaria, a settlement of European merchants from Pisa, Genoa, Catalonia, and l'rovenco. Leather, saddles, Turkish slippers, arms, and woollen goods are manufactured in Tlemcen; the production of oil and flour and market gardening occupy Europeans and natives; good tobacco is also grown. There is an active trade in cattle, wool, grain, and fruit. A railway (37 miles) is being built (1887) to connect Tlemcen with Raligun, its port. In 1886 the population (natives, Europeans, and Jews) was 19,745 (26,395 in the commune).
The tomn was oriminally at Agadir (Pomarin), to tho east of the present site, where foman inscriptions have been found. At the time of tho A rab invasion the district was held by the Bení Ifren tribe of Zenita Berbers, who ultiinately founded here the sovereignty of the Bení Ya'lá (1002-1080). In 1080 the Almoravid king, alter besicging and sacking the place, built a new town on the site of his canip. Ilis successors reigned sixty-five ycars, when, after holding Arailir four years agsinst the enemy, they were overcome by the Almohades, who massacred the inla bitants, rebuilt, enlarged, and repeopled the ruincd town, and surrounded Tleascon anll Agadir with a common wall. Tlemeen now nomished greatly under the 'Abd al-Wad, also a Zenata dynasty, who ruled hist for the Almohades and after 1242 as nominal vassaly of the Hafsites of Tunis. In 1337 their power was temporarily extinguished by tie Merinids, who built the town of Mensura, west of Tlemeca. They left some fine menuments of the period of their ascendeacy, whicli lasted twcuty-two years. Once more, under the 'Abd al-W'ad, trom 1359 to 1553 , Tlemcen enjoyed prosperity, whea it had a population of 125,000 , an extensise trade, a brilliant court, a powerful army, and its finest buildings were reared. The Spanish occupation of Oran struck a fatal blow at the European comarerco of the town, which gradually lost ell its territory to tho Turks after they had seized Algiers. When the French entered Algeria the sultans of Morocco were worsted by the Kuluglis in their attempt to bold the town. In 1834, and again in 1837, Abd el-Kader sought to re-establish the ancicnt empire of Tlemcen, but tho Freach defiaitely took possession in January 1842.

TOAD. This animal belongs to the Anurous division of the Amphilia, aud toads and frogs are the only representatives of the Anura or Batrachec indigenous to Britain. To an ordinary observer the toad is proved to be an amphibian by its moist soft skin, an anuran or tailless amphibian by the want of a scparate tail. The toad differs from the frog in the following points :-1t has no teeth on either of its jaws or on the roof of its mouth, while the frog has a series of fine tecth on the upper jaw and also teeth on the pralate; the tongue in both animals is attached in front and free behind, but that of the frog is forked at its freo extremity, that of tho toad is not ; the skin of the toad is rongh with large protuberant warts, while that of the frog is smooth; the body of the toad is more globular and pufly than that of the frog; the hind legs in the toad are shorter, and the posterior digits not so completely webbed, tho animal leing moro terrestrial in its habits than the frog. In the toad, as in the frog, there are four digits anteriorly, five posteriorly. The warts of the toad's skin contain large cutaneous glands, which secrete a thick yellowish fluid witb acrid properties, capable of irritating and producing slight inflanmation on the human skin. The use of this secreticn is probably to protect the toad from being devoured by carnivorous anmals. Liko other A mphibia, it has a large membranous bladder communicating with the terminal part of the intestine-the allantoic bladder, - in which fluid accumulates, probably from the kidneys, though the ureters do not open directly into the bladder. The toad, when handled or alarmed in any way, ejects the contents of its bladder. Owing to these peculiarities and its appearance, the animal is commonly regarded with loathing, and credited with far more poisonous properties than it possesses. In its breeding babits the toad resembles the frog: its eggs are fertilized externally at the'
moment of extrusion, as in the frog, the parents resorting to the water for the purpose of reproduction. The ova are laid in spring, and are arranged, not in shapeless masses, but in a string containing a double series of eggs adhering by their gelatinous envelopes; the string extends to a length of three or four fect. The tadpoles are similar to those of the frog, but blacker ; their metamorphosis takes place in the same manner, the three pairs of external gills being first absorbed and replaced for a time by internal gills, which are in their turn lost, the branchial slits being closed by the coalescence of the opercular membrane with the skin. The metamorphosis is complete in autumn. The toad is carnivorous, feeding on flies and other insects and worms. It hibernates in winter, passing its period of torpidity in holes or burrows in the earth. The finding of toads in a state of hibernation has given rise to stories of their being found in the centre of trunks of trees or imbedded in solid rock. The myth of the jervel in the head (Shakespeare) is probably founded on the brightness of the eyes, in which the iris is fiame-coloured.

There are two kinds of toad in Britain,-the Common Toad, which is almost black in colour, and the Natter-jack Toad, which is lighter, smaller, and bas a bright yellow line along the middle of the back. The length of the common toad is $3 \frac{1}{2}$ inches, of the natterjack $2 \frac{3}{4}$ inches. The male natter-jack possesses a bladder or vocal sack beneath the throat communicating with the mouth, which acts as a resonator to its voice ; its cry is "gluck-gluck." The vocal sack is absent in the common toad, and only incompletely developed in the Green Toad of the Continent.
In zoological classification the toad belongs to the genus Bufo, first constituted by Leureuti in the Synopsis lieptilium, of which the following diagnosis is given in the Brit. Mus. Cat. Batr. Sal., 1882:-

Papil horizontal. Tongue elliptical or pyriform, entiro and freo behind. Vomerine and maxillary teeth none. Tympanam dis. tinct or hidden, seldom absent. Fingers free; toes more or less webbed; the tips simple or dilated into small disks. Outer metatarsals united. Omosternum generally missing; if present cartilaginous; sternum a cartilaginous plate, sometimes more or less ossified along the median line. Diapophyses of sacral vertebras more or less dilated. Terminal phalanges obtuse or triangular. Distribution cosmopolitan, except Australis.

Bujo vulgaris, Laurenti, the Common Tosd, is thns distinguished. Crown without bony ridges. First finger as loag as or longer than the second. Parotids distinct. Tympanum staaller than the eye. Toes half π ebbed; jo tarsal fold; subarticular tubercles of toes double. The species is widcly distributed, occarring throughout Eurono, Asia, and north-west Africa.

Bufo calamita, Laventi, the Natter-jack Toad, shows the following differences from B. vulgaris:-toes not half wobbed; tympanum rather indistinct; a tarsal fold. It is distributed throughout Europo.

According to Boutenger there are 77 epecies of Bufo knowu, of which 35 are confined to the Old World, the rest to the American continent. No species is counmon to the two great continents. The only other species occurring in Europe besides the two which are fonnd in Britain is Bufo viridis, Lausenti, which ranses throughout Europe, Asia, and North Africa.
TOBACCO consists of the learees of several species of Nicoliana (nat. ord. Solanacex), variously prepared for uso as a narcotic. While it is principally manufactured fcr smoking, a large amount is also prepared for chewing, and to a more limited extent it is taken in the form of snuff. Under one or other of these forms the uso of tobacco is more widely spread than is that of any other narcotic or stimulant.

Although the fact bas been controverted, there cannot be a doubt that the knowledge of tobacco and its uses came to the rest of the world from America. In November 1492 a party sent out by Columbus from the vessels of his first expedition to explore the island of Cuba brought back information that they had seen people who carried a lighted firebrand to kindle fire, and perfumed themselves with certain herbs which they carried along with them. The habit of snuff-taking was observed and
described by Ramon Pane, a Franciscan, who accompanied Columbus on his second voyage (1494-6), and the practice of tobacco-cherving was first seen by the Spaniards on the coast of South America in 1502. As the continent of America was opened up and explored, it became evident that the consumption of tobacco, especially by smoking, was a universal and immemorial usage, in many cases bond up with the most significant and solemn tribal ceremones.

The term tobacco appears nut to have been a commonly used original name for the plant, and it bas come to us from a peculiar instrument used for inhaling its smoke by the inhabitants of Hispaniola (San Domingo). The instrument, described by Oviedo (Historia de las Indias Occidentales, Salamanca, 1535), consisted of a small hollow wooden tube shaped like a Y, the two points of which being inserted in the nose of the smoker, the other end was held into the smoke of burning tobacco, and thus the fumes were inhaled. This apparatus the natives called "tabace"; but it must bo said that the smoking pipe of the continental tribes was entirely different from the imperfect tabrco of the Caribees. Benzoni, on the other hand, whose Travels in America (1542-56) were published in 1565, says that the Mexican name of the herb was "tabacco."

The tobacco plant itself was first brought to Europe in 1558 by Francisco Fernandes, a physician who had been sent by Philip 1I. of Spain to investigate the products of Mexico. By the French ambassador to Portugal, Jean Nicot, seeds were seat from the Peninsula to the queen, Catherine de' Medici. The services rendered by Nicot in spreading a knowledge of the plant hare been commemorated in the scientific namo of the genns Aicotiana. At first the plant was supposed to possess almost miraculous healing porrers, and was designated "herba panacea," "berba santa," "sana sancta Indorum"; "divine tobacco" it is called by Spenser, and "our holy herb nicotian" by William Lilly. While the plant came to Europe through Spain, the labit of smoking it was initiated and spread through English example. Kalph Lane, the first governor of Virginia, and Sir Francis Drake brought with them in 1586, from that first American possession of the English crown, the implements and materials of tobacco smoking, which they handed over to Sir Walter Raleigh. Lane is credited with having been the first English smoker, and through the influence and example of the illustrious lialeigh, who "tooke a pipe of tobacco a little before he went to the scaffolde," the habit became rooted among Elizabethan courticrs. During the 17th century the indulgenco in tobacco spread with marvellous rapidity througbout all nations, and that in the face of the most resolute opposition of statesmen and priests, the "counterblaste " of a great monarch, penal caactments of the most severe description, the knout, excommunication, and cavital punishment.
The species of Nicotiana number about fifty, but those of which the leaves are used as eources of tobacco aro fers. With tho exception of two species, one native of New Caledonis, the other proper to Australia, they aro all of American origin. They form twe well-defincd groups, the first of which is characterized by the possession of an elongated corolla tube, red in colour, the plante having a eingle unbrazconed etalk which attains a height of from 5 to 7 fect; while to the second group belong such es lusve o arrollen corolla tube of a greeniah-yellow colour, and a muchbranched stem reaching a height of only from 2 to 5 feet. The type of the first group is the Virginian Tobscco, N. Tabaeun, while the best known representative of the second is the Green Tobacco, N. rustica. Tbese two species, together will their numerous varicties, and with the Persian Tobacco, A. pirsica,--ite source of the fameve Tumbeki or Shiraz tobacce,-are the sole sources of commercial tobacco. N. Tabacum is the species from which the tobaccos of Cuba, the Unitod Statea, and the Phil? ppine Islasds, and the Latakia of Turkey, are derived, and it is thus the source of not only the greater proportion of the tobacco of commerce but also the most highly prized and valuable of tos rarictics. N. mestica, originally a native of Brazil, is cultivated
to a considerable extent in South Germany, Hangary, and the East Indies.
The Virginisn tobacco-plant, N. Tabacum, is a coarse rankgrowing annual, with a simple unbranched cylindrical stem which attuins a height of 6 feet and upwards, terminating in a panicle of pink flowers. It has alternate simple oblong lanceolate leavee,

Fia. 1.-Flowerlng Top of N. Tabacum
those at the lower part of the stem being slightly stalked, and of large size, reaching to two feet in length, while the upper are semiamplexicaul and of variable outline. The seeds are brown in colour, with a rongh surface, of minute size, and exceedingly numerous, as many as 40,000 having been counted on a single plant. The whole of the green parts of the plant are covered with long soft hairs which exude a viscid juice, giviag the surface a moist glutinous feeling. The hairs are multicellular, and of two kinde, one branching and ending in a fine point, while the other, unbranched, terminates in a clump of gmall cells. Stomata occur on both aurfaces of the leaves, and, with the peculiar hair structure, render the microscopic appearance of the plant highly characteristic.

Fio. 2.-Milczoscople Structure of Tobacco Leaf.
Tobacce will flourish over wide areas and in , very dissimilar climates, but it is best suited for regions having a mean temperature of not less than $40^{\circ} \mathrm{F}$. and where early autumn frosts do not occur. It develops the most highly appreciated qualities in tropical lands possessed of a comparatively dry climate. Tobacco is a most exhausting crop, and requires rich ans abundant manuring. the character of which exercises a distinct infuence on the quality of the product. A crop grown under such widely different conditions of climate and agriculture as is the case with tobacen must of necessity be subject to varied treatraent beth in cultivation and in curing, and here we can refer only to the general features of the growing and securing of the crop.

In European cultivation, the tobacco-seed is sown in a hotbed about the end of March. The sced-beds are kept covered with. damp straw or withered leaves till the seedlings appear above the grouud, after wnich the cevcring is removed, and, to pretect the young plants from frost, to which they are cxtremely sensitive, tho
beds are covered at night with mats. So $\bar{\theta} 00 \mathrm{n}$ as the plants can be handled, they are picked out in rows in a garden bed, where they remain protected from night frost till they have developed five or eix leaves and have a height of 3 to 4 inches. They are then ready for transplanting, by preference in moist weather, into prepared drilis 20 to 25 inches apart in the field. The transplanting is done about the end of May, or earlier in localities free from night frosts, a ad in dry weather the field is plentifully soused with liquid manure. The plants are carefully weeded and attended to, and the soil is frequently stirred with narrow hoes until the period when they show symptoms of flowering. This may be when they are only 3 feet high, or not until they have reached their proper height of 6 or 8 fect; but the flowers must not be allowed to form, except in the case of a few plants left purpesely for seed. To obtain fies and strong leaves on the plant is the great object of the cultivator, and a fine tobacco plant ought to liave from cight to twelve large succulent lcaves. Cultivators commonly diminish the number of leaves by "topping" or breaking off the top, under the idea that the remaining ones will afford the strengest tobacco. Suckers or shoots near the root are carefully removed, and everything is done to concentrate the strength of the plant in the leaves. Every leaf iojured by insects is removed, and the crop is watched until the leaves have a yellowish tint and begin to droop, when they are fit to be gathered. This is usually in September, so that the plasts, from the time of their insertion on the mounds, have occupied the ground four months, during which time they have been subject to many vicissitudes, -from the attacks of insects, from a disesse called "friag," caused by the long continuance of very wet or very dry meather, and from the occurrence of auturan frosts while the crop is yet in the field.
la the harvesting of the tobacco crop several distinct methods are followed. In ordinary European cultivation the ripe leaves aro separated from the standing stalks in the field. The three lower root-leaves are first stripped off and laid, face downward, around the root to wilt, alter which they are bundled and carried to the barn. Afterwards the remainder of the leaves are separated, working frour the top downwards, and, similarly, they are spread on the ground till by wiltigg they lose their brittleness. They are then bundled and packed, tops upward, closely on the floor of the barn for some time to sweat, by which the uniform ripening and oubsequent favourable drying are promated. The bundles are carefully watched to prevent overhcating, which would blacken and injure the leaves. In the tobacco-growing districts of the United States the entire plant is cut down in the field close to the graund, then the atalks are spitted on long rods or laths, care heing taken to keop the leaves from touching each other, and on these rods they are carried and hung in the barn or curing-house for drying.

The curing of the leaves which follows has for its olfjects the drying and preservation of the tobacco, and, by a pracess of slow fermentation, the modification of certaia of the leaf constituents, and the develepment of the characteristic aroma of the substance. Subject to various minor morlifications, the process of curing io carried out either slowly by the air-cure process or rapidly by firecuring. The European cultivators, who geacrally cure by the slow process, either spit the leaves through the middle ou a long rod or string them on a cord, taking care to keep each leaf from touchingits neighbour. These rods or cords of leaves are auspended in a barn or curing-shed in a way which allows the free circulation of the air, and at the same time brings the whole contents of the ahed equally under the drying influence of the air currents. When the weather is clear and dry, free circulation of the air is in every way promoted, but on humid days the meist air is excluded and sometimes artificial heat is required to prevent mildew and rottiag of the leaves. Under favourable circumstances the tobacco will be dry and ready for further treatment in from six to eight weeks, and the leaves should then have a fine bright warm brewn colour.

In the United States the quick-drying process by artificial heat is empleyed principally lor the preparation of export tebacco. Formerly the beat was obtained by means of aa open charceal firo within the cuing-bara, but now the structure is beated by a system of flues which permits of the burning of any kiad of fuel. For dark shipping tobaceo, the entire plants, cut down close to the ground, are immediately housed, and at once dried off. Red sbipping qualities are prepared by leaving the cut stems either in the field or hung on scaffelds in the barns for a few days to wilt and wither in the air, after which they are dried by artificial heat. In the treatment of both dark and red kinds the temperature withiu the barn is gradually raised till it reaches $170^{\circ} \mathrm{F}$., and the drying is complete in from four to five days.

By whichever way treated, the tobacco-leaf at this stage is brittle, and eannot be haadled without crumbling to powder. The contents of the barn are therefore left till moist weather occurs, and then by the admission of atmospleric air the leaf blades absorb moisture and become soft and pliant. In this condition the leaves are stripped from the stems, sorted into qualities, such as "lugs," or lower leaves, "firsts," and "seconds." These are made up into
[" hands," or small hundles of from six to twelve leaves. Each bnndle is tied round with a separate leaf, and in this condition the tobacco is ready for bulking for fermentatiou.

For fermentation the tobacco, whether in bendles, hands, or separate leaves, is piled up or bulked on the floor in a barn into a solid atack to the beight of 5 or 6 feet. Within this stack a process of fermentation is quickly sct up, and the temperature of the mass rises steadily till it reaches obout $130^{\circ} \mathrm{F}$. Great caro ia now taken to prevent overheatiug, and to secure the uniform fermentation of all the tohacco. The pile is front time to time taken down and rehuilt, the tobacco from the top geing to the botton, and that exposed et the edges being turned in to the centre. In froin three to five weeks the fermentation shauld be aufficiently carried out, and the leaves then have a nice uoiform brown colour. The curcd stack may in this cendition be piled up iu store without fcar of further fermentative sctivity, till, with increasing smmer hent, it is subject to the May oweat, which renders further watchfulness neccssary.
'The componcars of tolacco, like those of all vegetable matters, arrage themselves under the three heads of water, mineral acids ond bascs (which pass into the ash on combustion), and organic substances. According to au investigation carried out by Beauchef in Gay-Lussac's 1storatory, the ameunt of ash from 100 parts of mitter dried at $100^{\circ} \mathrm{C}$. is in the roots 6 to 8 , in the stems 10 to 13 , and in the ribs oud leaves 18 to 22 per cent. The greater part of the ash consists of insolublo salts, miucipslly carbonate of line. Thie soluble part consists largely of potash salts ($\mathrm{KCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{K}_{n} \mathrm{SO}_{4}$), which may amount to from 5 to 35 per cent., and it is ranarkable that tobacco contains no soda. In addition to the mincral salts proper, tobacco contaius solts of anımonia end nitrates. Is the leaf the proportion of nitrates is greater iu the rila than in the laminx. In the former it may amount to as much as 10 per cent. (calculating the nitric acid as KNO_{3}). According to Schloesing (Ann. Chim. Phys., [3], x1. 479), the proqurtion of (combined) uitric acid in tobecco has nothing to do with its combustibility, that is, the length of tine a lighted cigar will glow spontaneously. This quality is a function chiefly of the patash present in combinatiou with organic acids. Δn incombustible tobacco, i.e., a tobacco which does not keep a glowing ash, coatains its organic ecids in the form of lime and magnesia salts. The explanation is that, while organic potash salts, being fusible, yield when heated a porous charcoal which glows readily, the corresponding infusible liune alts yield a compact charcoal which is far less combustiole. A combustible tobacco can be rendered incombustible by the incorporation of sulphate or chloride of calcium or magnesiun. By cultivation experiments in a potash-free aoil, it has been ascertained that chloride of potassium used as a manure does not add to the erganic potash salts in the leaves, but the sulphate, carbonete, and nitrate do give up their potash for the formation of organic salts.

Subjoined is an enumeration oit the proximate orgauic components of tobacco leaves, and their relative proportions in 100 parts, according to the Dumerous adalyses made in the leboratories of the Freuch atate tobacco factories:-

Nicatine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$, a liquid volatile alkeloid, from 1.5 to 9 per cent.
Essential oil,-accordiug to Schloesing, an inportant element in the flavour of tobacco, although its proportion is exceeding!y small.
Nicotianine, a aolid camphor-like body to which, according to other authorities, the odour of tobacco is principally due.
Malic end citric acids, togcther 10-14 per cent., calculated as onhydrides.
Acctic acid, very little in fresh leaves, but increasing in their fermentation. In snuff it may rise to 3 jer cent.
Oxalic acid, 1 to 2 per cent.
Pectic acid, about 5 per cent.
Resins, fats, and other bodies extractable by etter, 4 to 6 per cent.
Bugar, little in the leavea, more in the stems; in the fermentation it disappears.
Cellulose, 7 to 8 per cent.
Albuminoids, calculated from the nitrogen pot present as nicotine, nitrates, or ε mmonia, about 25 per cent.
Excepting the nicutine, the several organic components of the leaves deve!op, roughly speaking, pari passu until fructification, when certain components are attracted to the fruit, suffering ctemical changes while eo moving. The nicotine determines the itrength of a tobacco, but not its flavour or arome. The mannre snpplied to a tobacco f.eld does not increase the proportion of sicotinc, but affects only the weight of the crop. The percentage X nicotine iu the leaves may to some extent be modified in cultivawoon, -plants wido apart developing fow leaves, but these thick, flesly, and rich in micotine, while closely packed plants throw out numerous but thin and membranous leaves having little nicotine. The proportion of nicotine present increases with the age of the plant. Schloesing found in leaves ot various stagea of growth the plant. Schloesing found in lesves ot various stages of growth the
0.79; July 18, $1 \cdot 21$: Aug. 6, $1 \cdot \Omega 3$; Aug. 27, 2.27; Scut. ${ }^{-}$8, 3.36 ; Sopth 25, 4.32.
Regarding the changes which take place iu the manufuctured leaf, we take the case of snuff, because with it the chenical chaures are carried fat thest, and yet, qualitatively speaking, they bre of tha same uature as those which amoking tobacco unitergoes. In tho fermentation begun iu curing aud continued in the sauced Jcuf, the malic and citric acids and the nicotine undergo partial oxilation. The oxalate of lime and the pectates remain almost unchauged, and there are formed, of intormediate (not fully oxidized) bodies, ammonia, acetic acid, sod black humic acil, the last giving to snulf its dark celour. A litfle methyl-alcohol is also at the same time formed. At this stage the tobacco-leaf is acid io reaction; but aftcr it is powderod, and again sulmitted for a prolouged period to a alow fermentation in air-tight loxes, it becoues decidedly alkalive by the ammouia, bccause, while acctic acil coutinues to be formed and the ammenia and nicotine remain what thoy are, the malic aud citric scids are progressivcly destroyed. Uoless auulf contaius free emmonis it is " llat," and destitute of pungency.
As to the compesition of tebseco smoke, nomerous investigationa have heeu made. Kissling (Ding. Polyt. Jour., ccliv. 234-246), experimenting on cigara, found that a large proportion of the nicotiue passes unaltered into the smoke. Dealing with a tobacco containing 3.75 per cent. of nicotine, he recovered from the smoke 52.02 per cent. of the total nicotine consumed, while in the uycoasuned remains of the telacco the proportion of nicotine was iocreesed to 503 per cent. With a second ample of tobacco, having likewise 3.75 per cent. of nicotine, the smoke yielded only $27: 83$ per cent. of the total nicotine conaumed, and the percentage in the unconsuoned remaios was raised to 451 . Front a tobacco containiug only 0.30 of nicotins he recovered 84.23 of nicotiue in the smoke. The composition of tobacco smake is highly complex, hat beyond nicotine the only aubstances found in apprecisble quantities are the lower members of the picoline series.
The commercial varietics and the sources of supply of leef-Commer tobseco are exceedingly numerous. Special qualitics of tobacco, as cial vane of wiues, \& c., belong to particular localities, outside of which they ties. caonot be cultivated. These tobaccos are therefore natural monopolies. Moreover, as is also the case with wines, the crops vary in richness and delicacy of flavour with the seasons of their growth, so that in certain years the produce is of much greater value than in others. Further, the properties of certain classes of tobacco render them specially suitable for cigar-making. Others are best fitted for amokiug in pipes; and there are numerous qualities which are valuable for snuff-making. National tastes and habits again freqnently determine the destinstion of tobecco. Thus beavy, strong, and full-flavoured cigars and tobaccos are in favour in thr United Kinglom, while on the Continent lighter and more hriskburning qualities are sought after, and the materials consumed ia the kalians of Persin and the East are not suitable for use in the sbort pipes of the Western nations.

Of cigar tobaccos the most valnable qualities in the world are cultivated in the north-west portions of the islank of Cuha The district of Vuelta Abajo is the source of the highest quality, after which comes the produce of Partidas and Vuelta Arribs. A large portion of the tolacco is inade into cigars in the islaod, but considerablo quantities ale also exported to Europe aod the United States for mixiog with commoner qualities to give Havana character to the home-made cigars. In recent years a large export of tobacco from Brazil, especislly from the province of Bahia, has sprung up, most cs which goes to Germany and Austria for cigar-niaking. The "seeu-leaf" tobacco of Pennsylvania, Connecticut, and Ohio, growu from Havana seed, is devoted to cigar-making ia the Uuited States. In the East the most important cigar-tobacco region is the Philippine Islands, from which come the well-known Manila cheroots aud cigars and a largo quantity of leaf-tobacco of diatinctive aroma Immense quautities of cigar tobacco are also exported frons Jave and Sumatra, most of which passes through the markets of Amsterdam and Rotterdam. In the Madras presidency and in Burmah cigar tobscco is largely cultivated, the strong heavy qualities of which are well known to the British public in the Burmese, Lunka, and Dindigul chcroots.

Of ordinary smoking tobacco, among the most esteened quali ties are Varinas or kanaster, grown in the districts of Varinss, Merida, Margarita, \&e., in Venezuela. The usme kanaster, which covers several varicties of tobacco from South Anserica, is given on account of the wicker baskets (Span. kanastra) in which the material is packed for export. The tobncco refions of the United States-Kentucky, Maryland, Virginia, and Ohio-seud great sulplies of smol:ing leaf of various qualities into the Europeau market, eapecially in to the United Kingulom, Which is almost exclusively eupplied froin thicse sources. Smokiag tulaccos of the bighest quality, rivalling indeed the cigar tobacco of Cuba in flavour ave value, are frown in Turker, and apecially in the provinco of Salonica. The farmons Latakia of the Englisl amokers is produced in the province of Saide, in the worthtra pirt of Syria. (sed
XXII. - a_{4}

Latakia), and thoughout Asiatic Turkoy there is an extensive cultivation and export of smoking tobacco.
In the manufacture of tobacco for smoking, we lave to do with tha numerous forms of tobacco used for smoking in pipes, cinbracing cut smoking mixtures, cake or plug, and roll or epun tobacco. Under this beading come also the cigar and cigarette manufacture.

The raw material in the warehouses is of varions qualities : some is strong, rough, and larsh, aud 60 is unfit for ordinary smoking ; other samples are mild sud fine, with aromatic and pleasant flavour, but devoid of strength. By a proper mixing and bleuding the manufacturer is enabled to prepare the smoking mixture which is desirable for his purpose; but certaiu of the rough, bitter qualities cannot be manufactured without a preliminary treatmant by which their intense disagrceable taste is modified. The storing of such tobacco for a lengthened period matures and deprives it of harshness, and the samo result may be artificially hisstened by macerating the leaves in water acidulated with hydrochloric acid, and washing them out with pure water. The nost efficient means, however, ot improving strong, itl-tasting tobacco is by renewed fermentation artificially induced by uoisture and lieat.
The manufacturer having prepared his mixture of leares, procecde to damp them, pure water aloao being used in the United Kingdom, whereas on the Continent and in America certain "sauces" are enployed, which consist of mixturcs of aromatic substances, sugar, liquorice, common salt, and saltpetre, \&c., dissolved in water. The primary object is to render the leaves soft and pliant; the use of the sauces is to improro the llavour and burning qualities of the leaves used. When uniformly damped, the leaves are separately opened out and sinonthed, tho midrib, if not already removed, is torn ont, except when "bird's eye" cat is to be made, in which mixture the midrib gives the pecullar "bird's eyo" appearance. The prepared tobacco, while still moist and pliant, is pressed hetween cylinders into a light cake, and cut juto fine uniform shreds by a machine analogous to tho chatf-cutter. The cut tobacco is now roasted, partly with the view of driving off moisture and bringing the material into a condition for keeping, but also partly to improve its smoking quality. The roasting is most simply effected by spreading it on heated alabs, on which it is constantly turned. but such a metbod does not yield uniform results, and it exposee the workers to a inost deleterious atmosphere and noxious fumes. A roasting machine is in use, which consists of a revolving drum in which the tobacco is rotated, gradually passing from one end to the other, and all the time under the influesce of a current of heated air passing through it.

For roll, twist, or pigtail tobacco the raw material is damped or aauced as in the case of cut tobacco. The interior of the roll consists of small and broken leaf of various kinds, called "fillers"; and this is enclosed withiu an external covering of large whole leaf of bright quality, such leaves being called "covers." The material is aupplied to the twisting nachinery by an attendant, and formed into a cord of uniform thickness, iristed, and wound on a drum hy mechanism analogous to that used in rope-spinaing. From the drum of tha twisting machine tho epun tobacco is rolled into cylinders of various sizes. These aro enclosed in canras, and around the surface of each stout hempen cord is tigutly and closely coiled. In this form a large number, after being cooked or stored in moist heat for about twenty-four hours, are piled batween plates in an hydraulic press, and subjected to great pressure for a month or six weeks, during which time a slow fermentation takes place, and a considerable exudation of juice results from the severe pressure. The juice is collected for use as a sheep-dip.

Cake or plag tobacco is made by enveloping the desired amount of fillers within covering leares of a fine bright colour. A large number of such packnges are placed in moulds, and submitted to powerful pressure in an hydraulic press, by which they are moulded into solid cakes. Batl cake and roll tobaceo are equally used for omoking and chewing; for the latter purpose the cake is frequently sweetened with liquorice, and sold as honey-dew or sweet cavendish.

For cigar-making the finest and most delicately flavoured qualities of tobacco are generally selected. A cigar consists of a core or central mass of fillers envcloped in an inner and an onter cover or robe. The fillers or inner contents of the cigar must be of uniform quality, and so packed and distributed in a lougitudinal direction that the tobacco may burn uniformly and the smoke can be freely drawn from ead to end. For the inner cover whole leaf of the same quality as the fillers is nsed, but for the onter cover ouly selected leaves of the finest quality and colour, free from all injury, are employed. The covers are carefully cut to the proper size and shape with a sharp knife, and, being damped, a pile of them smoothed out are placed together. In making cigars by the hand, the operator rolls together a sufficient quantity of material to form the filling of one cigar, and experience enables him or her to selcet very unjform quantities. This quantity is wrapped in the inner cover, an oblong piece of leaf the length of the cigar to be made, and of width sufficient to enclose the whole material. The cigar is then rolled in the hand to consoliuate the tabacco and bring it into proper slape, after which it is wrapped in the outer cover. a
alapod piece made to caclose the whole in a spiral manner, oegin. ning at the thick end of the cigar and working down to the pointed end, where it is dexterously finished by twisting to a fino point between the fingers. The finished cigars aro either spreacl out in the smalight to be dricd, or, where that is impracticalle, they uro -exposel to a geotle lieat. They are then nortel into qualitics according to their colour, packed and pressed in boxes, in whith they are storel for sale. Machinery is now entloyed for forming and moulling the fillings of cigars.

Havana cigara are, as regards form, classification, method of putting up, and nowenclature, the models followed lyy mannfacturers of all classes of the goouls. Genuine ("legitinuas") Havana cirours are such ouly as are made in the island; and the cigars mado in Europe and elsewhere from genume Cuban tobacco ore classed as "1lavanas." Other brands of home manufacture contain some proportion of Cuban tolacco; aul rery good cigars may be made in which the onme only of that lighly-prized leaf is employed. When we come to the infcrior classes of cigars, it can ouly be said that they may be made from any kiud of leaf, the more ambitious imitations being treated with various satuces designed to give them a IIarana flavour. The hirhest class of Cubara-made cigars, cailed "vegueras," are preparcd from the very fiacst Vuelta Abajo leaf, rolled when it is just lalf diy, and consequently mever damped with water et all. Next como tho "regalias " similarly made of the best Vuclta Abajo tobacco; and it is only the lower qualities, "ordinary regaliss," which are commonly found in commerce, the finer, along with the "regucras," being exccedingly high-priced. The cigars, when dry, are carcfully sorted according to strength, which is estimated by their colour, and classed in a ecala of increasing strength as claro, colorado claro, maduro, and ascuro. They are pressed ioto tha cigar toxes for sale, and branded with the name or trade maris of their makers. Cheroots differ from ordinary cigars only in shape, being either in the form of a trun. catcd cone, or of nuiform thickness throughout, but always having both ends open and sharply cut across. Cheroots come principally from Mlanila, but there are now lareo quantities imported into the United lingdem from the East Indica aud Burmah.

Cigarettes consist of sinall rolls of fine cut tobacco wrapped in a covering of thia tough paper specially mads for such use Originally cigarettes were entirely prepared by tho smoker himself; but, now that tho consumption of cigarettes las attained gigantic proportions, especially in France, they are very largely inade with the aid of an elaborate system of antomatic machinery. The machines cut the paper, gam its edge, measure out the proper quantity of tobacco, wrap it up, make the gummed edge adhere, cut the ends, and pack the cigarettes iu boxes.
The manufacture of snuff is the most complex, tedious, and difficult undertaking of the tobacco mavufacturer; but it is an art now of relatively little and of decreasing importance. The tobacco best suited for snuff-makinz is thick fleshy leaf of a dark colour the finest qualities of snuff being made with dark Virginin leaf and the Amersfoort leaf of Hollaad; but manufacturers work up many kiods with fragments from the making of ernoking tobacco, midribs, \&c. The varieties and qualities of spuff are many, the differences being dependent on tho material employed, the sauces with which it is treated, and the method of manulacture. The sauces for souff consist of solutions of common salt, with various aromatic substances according to the flayour desired in the finished snuff, and with occasional additions of potash, sal ammoniac, and other salts. The following is an ontline of the method adopted in making snuff on the great scale in the state manufacture of France. The tobacco leaves are moistened with about one-fifth of their weight of salt and water (sp. gr. 1.089), made up into blocka, and piled in large rectangular lieaps, in quantities of 40 or 50 tons. The temperature gradnally rises to $140^{\circ} \mathrm{F}$., and sometimes reaches 170°; but the heat must be regulated, or parts of the mass would become blarl as if rharred. The beaps are mode up in spring and antumu, and the fermentation is continued for fire or six monthel when the temperature remains stationary or begins to decline The heap is then opened, and the tobacco is ground, by which means a pale brown dryish powder (rape sec) is obtained. This is mixed with sbout four-tenths of its weight of a solution of commousalt. and is passed through a siese, that the powder may be uniformly moistened. It is then packed in large open chests in quantities of from 25 to 50 tons, where it remains for ning or ten months, and undergoes another fermentation, the temperature "rising in the coutre of the mass to 120° or 130°. During this process the snuff acquires its dark colour and develops its aroma. But it is not uniform in quality througlout, and is removed to a second cliest, in such a way es thoroughly to mix all the different parts together, and, after the lspso of two months, it is again turned over; and the process is sometimes repeated a third time. When the souff is ripe, the contents of the various chests are mixed together in a large room cipable of holding 350 tons of snuff, where it is left for abont six weeks, and the whole mass beiog uniform in quality is sifted into barrels for the market. The process of manufacture occupies in all from eighteen to twenty months. During thesr
repeated fermentations about two thirds of the nicotine is destroyea, the acidity of tho snulf lisappears, and the mass becomes distinetly alkaline, notwithstanding that acetic aeid is continnonsly evolved. The destruction of malic and citric aeids continues, and the bases thercby sot free saturato the aectic acid formed, leaving free ammonia in the snuff. The properties of snuff ara dependent on the presence of free nicotine, frea ammonia, and the pecular aromatic priaciple developed in the fermentation.

The reduction of tobaceo-lasf to a snuff powler is a task of considerable difficulty, owing to the gummy natura of the substance, which tonds to coat and clog grinding surfaces. In early times tho duly sauced and fermented leaves were made up into "carottes," -tightly tied up spindle-formed bundles, from the end of which the smulier, by means of a "sonff rasp," rasped off his own supply, and hence the name "rape," which we have still as "rappee," to indicate a partieular class of snulf. The practice of tying up the leaves in tho form of carottes is atill followed by makers of fine snulf, es the very slow fermentation which goes on within the bundles is favourable to the development of a rich aroma. For pulverization, the leaves are first ent to shreds with a revolving kaife, and theu powdered either by a kind of mortar and jostle mill, or by falling stampers supplied with knife eutting edgis, or mora commonly they are treated in a conical mill, iu which both the revolving cone and the sides have sharp eutting edges, so that the material undergoes a cutting rather than a grinding action. Tho sualf from the mill is sifted, and that whim remaios on the sieve is returnel to the mill, the remainder beiug passed on as rapy sec for further treatineat as deseribed above.

In nearly all eivilized countries the cultivation of tobacco and its manfacture are conducted under state supervision, and forman impartant sourec of public revenue. In France, Austria-IIungary, Italy, and Spain the cultivation is a state monopoly, and in other countries the crop is subject to heavy exeise duties. Sinco the tima of Charles II. the growth of tobseeo in England has been practically prohibited, the original legislative exactment to that effeet having been passed with the view of encouragiag trade with the young colony of Virginia. When that motive ceased to lave force the supposed diffieulties of collectiog the internal taxation etill influenced the legislature to contivue their prolibition, and consequently a penalty or prolubitive tax equal to sixteca hundred pounds per acre is exigible on the eultivation of tobucco in the United lingdom. In Ireland the duty on the cultiration of tobacco was abandoued between 1822 and 1830 , and in that interval the cultivation grow till about a thousand acres were under the crop. In 1886 the Government permitted the experimantal cultivation of tobacco in England, under certain precautions and restrictions for the security of the revenue. Several proprictors in Kent, Norfolk, and other colnties grew experinental paches with such success as to warraut the continuance of the experiment and to prove tbe entire practicability of cultivating tobaree as an English agricultural crop. The climata is, however, so variable that, were all restrictions removed, and tobaceo grown snbject only to exeise supervision for collecting an equitable tax, it is more than donbttul whether its growth would be a safe and profitable undertaking.
The influence of tobacco on health and morals has, ever since its introduction into Emrope, been a fruitful subject of controversy. On all grounds, except as a medicine, it met the most uncompromisiag opposition when it first became known; but it was precisely the expectations entertained regarding its mediciual virtues which were completely disappointed. Burton, in the Anatomy of Melancholy, gives atrong expression to the two views "Tobacce, divine, rare, superexcellent tobaceo, whieh goes far beyond all the panaceas, potable gold, and philosopher's atones, is a sovereign remedy in all diseases. A good wonit, I coufess, a virtuous herb if it be well qualified, opportunely taken, and medicinally used ; but, as it is commonly abused by most men, which take it as tinkers domale, 'tis a plague, a misehief, a violent purge of goods, lands, health, -hellish, devilish, and damned tobacco, the ruia and overthrow of bedy and soul."' Burton's meaningthat tobaceo in moderation is a good thing, while its excessive use causes many physical zud other evils-has many sympathizers; but the difficulty is to define moderation and exccss. Among nodern autherities, Dr Jonathan Pereira says, "I am not acquainted with any well-aseartained ill effects resu'ung from the habitual practice of smoking.". Similarly Sir Robert Uhristison concludes, "Iu meny individuals who use it habitually, the smoke has so extra. ordioary power in removing oxhaustion, listlessness, , ind restlessness, especially when brought on by bodily or mental fatigue, and this property is the basis of its gencral use as an article of luxury." Dr E. A. Parkes sums up his observations thus: "I confess myself Quito uncertaiu. I can find nothing lika good evidence io booka; too ofter a foregone conelusion, without any endence to hack it, is given. I think we must decidedly admit injury from excess; from moderate use I can seo no harm, except it may be in youth." On the other hand, it is asserted by the oppozents of tobreco, and by the anti-tobaceo soeicties, that the habitual uso of this narcotic leads, especially in the young, to decrease of bodily and mental
vigour, and specially prodnces symptoms of anemia, palpitations intermittent prise, and other affections of tho hem and circula tion. It is an admitted fact that a disense of the vision-tobaceo amblyopia-is contrected ly smokers, and is not uncommon among those nsiag stroog heavy preprations, snch as black trist, Allowing that such incidental cyils may arise from even comparatively moderate intulgenco in tohacco, they are after all as nothiog compared to the vast atgregato of gentle exbilaration, soothing, and social coufort, extracted from the Virginian weed.

With the almost universal prevalecuce of the use of tobaceo, it must be obvicus that tho amount consuned yearly is very great. In the United Kiagdom, which is muel less a tobaceo consumina country than the Uaited States or mary Europoan countries, tho consumption per head has steadily increased, as is shown in the accompanying table.
The custons duty derived from imports of tohacco smounted in

	Total Consumptlen.	Per Head.
1821	$\underset{15,598,152}{\text { 96 }}$	${ }_{11} 02.71$
1831	19,533,541	12.80
1841	22,309,360	$13 \cdot 21$
15.51	28,062,978	16.87
1871	42,775, 334	21.49
1851	49,520,493	22'60

For T'obacco Pipe, sce Pipe.
The ilterature of tobacco is very extensive. The late Mr Willam Braggo of Birmingham published in $1=80$ a revised bibljugraphy of the subject, Bibliotheea A'icotsana, extending to 218 quarto pages. Fiom such a mass of authoritles it wuld be vain here to make actections, but mention may be made of Farholt' capital bossiping work, Tubaceo, ths llistory and Associations (2d ed., 1876). Aa modero standard works there may ulso bo quoted Tiedernann"s Oeschichie des Tabals (1856) and Wagner's Tabikcultur. Tubat- und Cigarren-F'abricalion (1884). In tha Tenth Census Jieports of the United States (1883), vol. Jiln, thela are a serle of elaborato papers on the cultivatlon, manufactare, and atatistics of American
totacce.
(J. l'A.-W. D.)

TOBAGO, the most southerly of the Windward group of British West Indian Islands ($11^{\circ} 9^{\prime} \mathrm{N}$. Jat., $60^{\circ} 12^{\prime} \mathrm{W}$. long.), 20 milcs north-east from Trinidad, is 26 miles in length and $7 \frac{1}{2}$ at its greatest breadth, with an area of 114 square miles (73,313 acres). Its formation is rolcanic, and the physical aspect irregular and picturesque, with conical hills and ridges; the main ridge is 1800 feet high and 18 miles long. There are several excellent harbours. The products are sugar, rum, molasses, and fruits of various kinds, only the low ground being cultivated. production is not increasing. In 1885 the rovenue was $£ 10,826$ and the expeuditure $£ 12,031$, while the imports were $£ 30,758$ and the exports $£ 26,414$. The population in 1885 was 19,363 (9368 males and 9995 females), principally of African race, the whites being very few. Tobago has a small legislative council and an administrator under the Government of the Windward Islands. Its capital is Scarborough (1200 inhabitants), on the sonth-cast coast.

Tobago was discovercd by Columbus in 1498, and the British flag was first plauted in 1580, the island being then occupied by Caribs. It has subsequently been beld by tho Dutch and the French, but ultimately was ceded to tha British crown iu 1814

TOBIT, The Book of, one of the Old Testament apocrypha, relates with many marvellous circumstances the virtues, trials, and final deliverance of Tobit, a pious Istaclito who was carried to Nincveh iu the captivity of the ten tribes, and, after rising into favour and wealth as a trader at the royal court, was reduced to porerty because he habitually buried those of his nation whem the tyrant slew and ordered to he cast forth unburied. Besides this be lost his eyesight through an accident. Reduced almost to despair, like Job, and taunted like Job by his wife ("where are thy alms and righteous deeds ""), he yet puts his faith in Cod and prepares to die, but first resolves to send his son Tobias to Ihage (Rai), in Media, to reclaim an old loan Now his prasers are leard and his righteóus-
ness rewarded, for Raphael, one of the seven angels that present the prayers of the saints before God, is sent in buman form to conduct Tobias on his journey. Thus aided, Tobias not only recovers his father's money, but by killing a fish which attacks him as he washes his feet in the Tigris, becomes possessed of two invaluable drugs, its liver with the heart and its gall. By famigation with the former ho drives away the demon Asmodeus, who had slain the seven bridegrooms of a virtnous Jewish maiden, Sara of Ecbatana, his own kinswoman, aud so wins a good wife, and with the gall he heals his father's eyes. In spite of the absurd machinery and other puerilities, the story is ingeniously constructed, and the picture of Tobit's piety is natural and touching, so that the whole is a very good exhibition of the weakness and the strength of Judaism as it was among the Israelites of the dispersion.

The date of the book cannot be precisely determined. It was written before the destruction of the temple (xiv. 5), and is cited by early Christian writers. On the other hand, it is in the highest degree probable that the Greek text is original, ${ }^{1}$ in which case ths book can hardly be earlier than the $2 d$ century b.c. A date about the middle of this century, or a little earlier, at the tine of bitter contlict with the Grecks, seems to accord best with the tono of the book. The sympathy shown for the rictims of tyranny, to whom burial was denied, acquires fresh meaning when compared with such a passage as 2 Mac. v. 10 , and the prominence given to eschatological hopes in the closing verses fits a time when interest in the prophecies of Israel's future glory was resived by the struggle for national independence in Judra.

That Tobit was written by a Jew of the Eastern dispersion (so, e.g., Ewald, Gesch., iv. 269) will hardly bo maintained by any one who accepts the Greek text as original. The book remained almost unknown to the Syriac church, a fact which tells strongly against the hypothesis of an Eastern origin; and at the period to which the work can be best referred EgJpt is the only probable place for a Jewish-Greek compositicn. The Writer knows nothing about the geography of the East beyond a few names which every Jew must have heard, the Tigris, which, by an error common among the Greeks but hardly possible to an Oriental Jew, he regards as flowing between Nineveh and Media; Rhagæ, which was a royal residence of the Parthians; the famous city of Ecbatana; and Elymais (ii. 10), which was associated with the disaster of Antiochus Epiphanes. And in both forms of the Greek text (ri. 9 in the common text, and จ. 6 in the longer) Phagm is falsely represented as quite near Echatana. ${ }^{2}$ Nöldeke surmises, as others have done befure him, that the "fish" which attacked Tobias was the Egyptian crocodile, and this conjecture is raised almost to certainty when we read ia Kazwini i. 132 that the smell of the smoke of crocodile's liver cures epilepsy and that its dung and gall cure leucoma, which was the cause of Tobit's blindness. ${ }^{3}$ Thus the cures of Sara and Tobit are natural (f f. the longer Greek text, vi. 4 sq.) ; the angel's help is necessary only to secure the medicaments and explain their use.

But though the story may have been written in Egypt it contains Pcrsian elements. There is no inconsistency in

[^179]this, for the authois of Jewish Haggada generally borrowed the themes which they embellished, and that from very various quarters. In fact, at the close of our book there is a brief allusion to another story, ${ }^{4}$ quite unknown to us, which the anthor evidently did not invent. The proof of a Persian element in the tale lies, not in the localities, but in the angelology and demprology. Asmodeus is the Iranian evil spirit Aeshmâ Daevâ, and Raphael, as the guardian of Tobias, has a strong resemblance to the Iraniaa Çraosha Such precise adaptations of Zoroastrian ideas were hardly the common property of Judaism at so early a date; they lead us to conjecture that the writer borrowed from an Iranian story.s And only in this way can we explain the appearance of the dog who goes out and retnrns with Tobias and Raphael. This trait is so inconsistent with Jewish feelings towards the unclean animal that it is omitted in the Hebrew and Chaldee versions. But to the Irauians the dog was not only a sacred animal, the protector of herds and homes, but was the companion of the protecting spirit Craosha (Bundrhesh, chap. xix.), to whom Raphael in our tale corresponds.

The Greek text of Tobit is fouad in a shorter recension (the usual text) and in a longer form preserved in the Codex Sinaiticus (published by F. H. Reusch, 4 to, Bonn, 1870). Thero are fragmeuts of acother form of the longer text ln several cursivcs. All the forms are given in Fritzsche's Libri Apocyyphi, Leipsic, 1871. The shorter text, in the judgment of Fritzsche and Nöldeke, is the earlier. The longer text is also represented by the Latin versions, the second part of the rase Syriac version (the first part is from the hexarlar Greek), and two closely allied Jewish versions, the Aramaic (published by Xeubauer, from a uaique Midrask in the Bodlcian, Oxf., 1878) and the Hebrew, first printed in Constantin. ople (1518), reprinted by Miinster in 1542 (whenco its common Dame Hicbreus Munstcri) and included in Neubaucr's cdition. The Aramaic seems to be a late form of the text known to Jerome, and of which he inade use for the Vulgate Latin; it is certainly a translation from the Greek. There are recent comidentaries on Tobit by Fritzsche (Kurzgef. Handb. zu den Apocr., ii., Leipsic, 1853), Reusch (Freiburg, 1857), Sengelmann (Hamburg, 1857), and Gutberlet (Theissing, 1877). Nöldeke's paper already quoted is indispensable. For other litcrature, eee Schurer, NTliche Zeit. gesch., ii. 608.
(W, R. S.)
TOBOLSK, a government of Western Siberia, having the Arctic Ocean ou the N., Archangel, Vologda, Perm, and Orenburg on the W., Akmolinsk and Semipalatinsk on the S., and Tomsk and Yeniseisk on the E., is one of the largest provinces of tho Russian empire, occupying nearly 7 per cent. (531,980 square miles) of its total area. It borders on the Arctic Ocean, from the river Kara to the Bay of the Ghida, the broad peninsula of Fałmat projecting betweec the Kara Sea on the west and the Bay of the Ob; this last penetrates into the continent for more than 550 miles, with a width of from 60 to 70 miles, and receives another long and wide outlet-the bay of the Taz (Tazorskaya). Another wide bay of the Kara Sea-the Baidaratsk, or Kara Bay-runs up into the Yatmal peninsula from the north-west. The islands bolonging to the government are few; Byelyi, at the extremity of Yalmat, and a few small ones along the west coast of the peninsula, as also in the Obi Bay, are for the most part ice-bound. This extensive province occupies the greater part of the lowlands of north-western Asia, which extend eastward from the Urals, and only in the far porth does it include the eastern slopes of these mountains. .The Pai-ho coast-ridge only touches Tobolsk with its southeastern extremity. The Urals proper, which run southwest from the Kara Sea as far as to the Tell-pöss group (5540 feet), and thence take a southerly direction, form the boundary between Tobolsk and Vologda as far as the

[^180]pources of the Petchora ($61^{\circ} 30^{\prime} \mathrm{N}$. lat.), but farther south their eastern slopes are included in the Russian government of Perm, and only their lowest spurs, 200 miles from the main ridge, belong to Tobolsk. The average height of the northern Urals is about 3000 feet, and several of their summits range from 3300 to 4000 and even 4370 feet (Net-yu, in $68^{\circ} \mathrm{N}$. lat.). The remainder of the gevernment is of lowland character, hardly at any point rising above the sea by more than a few hundred feet, but these lowlands vary greatly in their different parts. They assume the character of grassy steppes or prairies in the south, of immense marshes sparsely covered with forest in the north, and of treeless tundras as the shores of the Arctic Ocean are approached. The southern steppes, in their turn, may be subdivided into two distinct portions, -the Tobot and -Ishim steppe in the west, and the Baraba in the east. The former, nearly 43,000 square miles in area, is one of the most fertile parts of the empire. One-third is under forest, and the remainder has a soil of very fertile black earth, which has the further advantage of being sufficiently watered. The climate, indeed, is very severe, the mean annual temperature (30° to 34° F.) being such as is found only in the north of Sweden and in Archangel; but the warm summer (65° to 63° in July) and the amount of light received from a bright sky combine to make vegetation develop with a rapidity quite unknown to western Europe. This region now bas a pepulation of more than 800,000 , almost all Russians (only 14,000 aborigines), so that it may he said to be more thoroughly Russian than the Volga provinces. The areaw under crops every year is $3 \frac{1}{3}$ million acres, and the region promises to become a regular granary fer Siberia and north-eastern Russia. The second portion of the southern plains, which might be called the Baraba region, being mostly occupied by the Baraba steppe, covers about $55,000^{\circ}$ square miles. Only its western borders belong to Tobolsk. It also is perfectly flat, and covered with recent deposits; but, as there is no definite slope, the surface waters move slowly, and accumulate into a very large number of lakes and marshes. The climate is moister and the summer still shorter and less bot than in the preceding region. Forests, consisting chiefly of birch, are spread in clusters over its surface. The soil of this region also is very productive, but the fertile patches are separated by marshy grounds, and the dense clouds of mosquitees which fioat over it in summer are a positive pague to beth man and beast. The population pumbers only 250,000 , also almost all Russians (ooly 4000 aberigines), and the area annually under crops is about $1,350,000$ acres. To the north of the regions just specified is that occupied by the administrative districts of Tura, Tobolsk, and Tara, with an area of about 110,000 square miles; this may be described as the taiga region. It is covered throughout with impenetrable forests and quivering inarshes-the dreadful urmans, which are penetrated by man only for some 20 to 50 miles around the widely separated settlements. Immense cedartrees, larches, firs, pines, birches, and maples grow very densely, and the underwood is so thick that a passage can be forced only with the aid of the batchet, the difficulties being further increased by the layers of decayed rood and by the marshes. To cross these, which are treacherously concealed under a swaying layer of grassy vegetation, a kind of snow-shoe must be used even in the summer, and many can be crossed only in winter. Immense arcas of the urmans, especially on the Vasyngan, bave never been visited by man ; but still, from time to time a Russian settlement arises in the forests, mostly founded by Nonconformists in hiding, who frecly receive all serts of fugitives. The south-western parts of this region are crossed by the Siberian highway, and to this circumstance
alone is it indebted for its population of nearly 450,000 (32,000 aborigines). Only 2 per cent. of this area is under culture. Farther north extend the tundras, where the average temperature rapidly decreases from the $25^{\circ} \mathrm{F}$. found in the preceding region to $15^{\circ}, 10^{\circ}$, and 7°. The frozen soil during the lettest part of the summer thaws only for a few inches beneath the surface. The frost sets in early, and a thick envelope of snow lowers the spring temperature. Forests cover the southern parts, but the trees become poorer, shorter, and thinner, and buddle into impenetrable thickets; while, farther north, only the creeping variety of birch and the dwarf varieties of willow hold their ground. Within the Arctic Circle the last traces of arboreal vegetation disappear, their northera limit being pushed south by the double bay of the Ob and the Taz and by the proximity of the Kara Sea.

Apart from the Urals, there are no traces of hard rock anywhere in Tobolsk. Down to its southern borders it is covered with Post-Pliocene deposits, which are met with as far as the waterparting between the Irtish and the Aral-Casplan depression. This range of flat hills rises a fem hundred feet a Tore the sea-lovel, and it aeems to mark the limit of extension of the Post-Glacial gulf of the Arctic Occan which covered western Tobolsk during tho Glacial period. Contrary to Humboldt's hypothesis, it remains, however, doubtful whether it was connected in Post-Glacial times with the Aral-Caspian Sea otherwise than by means of narrow straits, which disappcared at any rato at an early stage in that grological period.
The climate of Tobolsk is one of great extremes, the differences between the averages for the hottest and coldest months reaching as much as $70^{\circ} \mathrm{F}$. The average temperatures at Berezoff, Narym, Tobolsk, and Ishim respectively are $24^{\circ}, 28^{\circ}, 31^{\circ} 8$, and 32° (January, $-8^{\circ} \cdot 3,-8^{\circ},-2^{\circ}$, and -4°; July from 62° to 67°). Only 194 days at Ishim and 153 at Borezoff have a temperatnre above 32°; and the Ob at Obdersk continues ice-bound for 219 daye (the Irtish 176 days at Tobolsk).
The government is watered by the Ob , which traverses it for more than 1300 miles, and is navigable throughonit. It receives many tributaries, seme of which are 200 to 350 miles long, but flow through quite uninhabited regions. The Irtish, a left-hand tributary of the Ob, covers all the southern part of Tobolsk with its numerons tributaries. It waters Tobolsk for 760 miles, and is navigable for the whole of its length; it receives the great Tobot, abont 420 miles long, also navigable, the lshim, and a number of less important streams; while the Tura, a tributary of the Tobot, is also a channel for navigation. The navigation lasts for nearly six monthe in the south. The first steamer on the Ob system was launched in 1845 and the second in 1860; since the latter date steam narigation has steadily devoloped.

Lakes, some of them salt, occur in great numbers on the waterparting between the Irtiah and the Aral-Caspian, and averywhere in South Tobolsk. Lake Tchany, the largest, covers 1265 square miles. All are being rapidly dried up, and even within the last hundred years they have nudergone great changes. Thus, in the group of lakes of Tchany, in the Baraba steppe, whole villages have arisen on gronnd that was under water in the earlier years of this century. ${ }^{1}$ Immense marshes cover Tobolsk beyond $57^{\circ} \mathrm{N}$. lat., - the Vasyingan marshes in the east, the Koudinsk and Berezovsk marslies in the west, both joining farther nerth the tundras of the Arctic ahorcs.
The pepulation reached $1,283,000$ in 1882 . Althongh recent immigrants, the Russians already constitute 94 per cent. of the aggregato population, and their numbers are ateadily increasing by inmigration, and partly also by the arrival of exiles. No, fewer than 43,750 immigrants from Russia sottlell at Tobolak betiveen 1846 and 1878, but of late this figure has greatly increased. In 1879 as many as 59,134 exiles were on the registers, but of these more than 20,000 had left their abodes and disappeared. As a rule the exiles belong to the poorest class of population. According to M. Yadrintseff, ${ }^{2}$ the native population of Tobolsk was represcnted in 1879 by 29,150 Tartars and 8730 other Turkish inhabit ants, chiefly in the sonth, 22,350 Ostiaks, chiefly on the Ob, 6920 Samoyeles in the north, and 6100 Voguls in the north-west; the tetal amennted to 74,220 , -that is, 6.1 per cont. of tho aggregate population ($1,206,000$ in 1878). The Ostiaks (q.v.) are in a very misoroble condition, having come under heavy obligations to the Russian merchants, and being compeiled to haud over to thern nearly all the produco of their huatlag and fishing. Tho Tartar settlements in the sonth are prosperous, but not in the Tobolsk district, wbere their lands bove been appropristed for the Russiar
${ }^{\text { }}$ Ses Yodrintseff in Ierestia Russ. Geogr. Soc., 1880.
${ }^{2}$ Siberia us a Colcriy (Russian).
settlers. Of the Rnssians neally 85,000 are Nouconlormists, according to official figures, but the number is greatly narderstated. Many of the Samoyedes,-Ostiaks, and Voguls are nominaliy Christians. The Russians aud the Tartars, who chiefly inhabit South Tobolsk, mostly live by agriculture. Of the total area of land regarded as suitable for cultivation ($28,400,000$ acres), $15,000,000$ are owned by the peasont communities. Summer wheat, rye, oats, barley, aod some buckwheat are raised. Flax and hemp and tobacco are cnltivated in the south, where rattle-breeding also is extensively carried on. The ravages of anthrax, however (see Murnain, vol. avii. p. 68), are very severe, especially in the marshy parts of the province. The indigenous iuhabitants of the north haul, ia the samo year, nore than 100,000 reindeer. Dogs are used in sledges in the far north. In the forest region the chief means of existence are found in the forests. The pursuit of bears, wolves, foxes, squirrels, ermines, stags, elks, as a!so of sables and beavers (rapidly disappearing), is a regular occupation with the Russiar peasants as well as with the indigenous inhabitauts: sledges aad cars, mats, sieves, wooden vessels, and pitch and tar are also manufactured to a coosiderable extent in the villages (ralued at about $£ 150,000$). Cedar-nuts (from 5000 to 8000 cwrts. every year) are gathered, partly for the sako of their oil. The fisherjes of the Ob aud the soutlicra lakes are important; no fewer than 1700 Ostiaks are eagaged in theat on the Ob . No less than $200,000 \mathrm{cw}$ ts of fish are annually canght in tho district of Tara aloce, aud Surgut exports it to the value of $£ 10,000$, whle in the Narym region $10,000 \mathrm{cwts}$. of salt are used for preserving the fish

The iudustries are iusignificant (chichy tanajag, distilliag, and tallow-melting); iroa-works and noollen-cloth mills are still in their infancy. The export of cattle, hides, tallow, corn, flour, fish, and furs to Russia, both from Tobolsk and from the Kirghiz steppe, is of some importance. Spirits are sent fartler east, to Tolosk; while all kinds of manufactured wares are imported from Russia. The fairs of Irbit aud Ishin are the chief centres for trade.

The educational institutions are few. It is worthy of remark that of "secondary achools" (gimnasia and pro-gymanasia) there were in 1883 eirght for girls, with 1065 scholars, and only four for boys, with 711 scholars; of primary schools there wese 250 , with 5844 boys and 1403 gids.

Tobelsk is divided into ten districts (ahrugs), the clief towns (with populations in 1883) being Tunolsk (20,130), Berezoff (1990), Ishim (7100), Kurgau (8570), Surgut (1460), Tara (8640), Turinsk (4650), Tyukatiusk (3000), Tyumeû (14,300), and Yalutororsk (4500). Of these tonns, ouls Tobolsk and Tyumeñ (g.v.) are really entitled to the desiguation, the others being nacre villages, of less importance than many others on the great Siberian highway which crosses the govermoeni from Tyumen to Todisk.
(P. A. K.)

TOBOLSK, capital of the above goveınment, is situated on the right bank of the Irtish, near its junction with the Tobot. It is 1535 miles from Moscow, and since the alteration of the course of the great Siberian highroad from Tyumeñ to Tomsk it has become an out-of-the-way place, and is no longer either capital of Western Siberia or even an admimistrative centre for exiles, as it was formerly. Viewed from the Irtish, the town has a picturesque aspect, with its kreml, or stone walls, built on a crag 200 feet high, its twenty-one churches, and several elegant buildings. The kreml, built under Peter I. by Swedish prisoners, in imitation of the kreml of Moscow, is 430 yards long by 200 yards in breadth, and contains two cathedrals erected towards the end of the 17th century. Tbe bell of Uglitch, which rang the alarm when the czarevitch Dmitri was assassinated by order of Boris Godunoff, and therefore had its "ear torn away," and was exiled to Siberia, stands close by. The palace of the governor, the administrative offices, the seminary where the historian of Siberia, Slovtsoff, reccived Lis education, the gymnasium where Mendelefff the chemist was trained, and the Marie school for girls, which now supplies Siberia with so many teachers, are in the upper part of the town, where broad grassy spaces separate the wide streets paved with thick planks. A monument to Yermak, the rebel Cossack who conquered Siberia, stands in a prominent place; and one of the sides of the large square on the crag is occupied by the immense prison, where more than 2000 exiles are gathered during the period of navigation. The löwer part of the town stands on a sandy beach of the Irtish, and of ten suffers from floods. Its sanitary condition is very bad. The merchants of Tobolsk carry on a fairly brisk
trade in coru from the south, salt from Semipalatinsk timber and nish from the lower Ob The population, is almost stationary (20,130 in 1883 , as against 15,500 is 1839 and 15,200 in 1772). Some 12 miles to the south east are the ruins of the "fort of Kutchum,"-the seat o the capital of Siburia, Isker, before the Russian conquest

Tobolsk was founded in 1587 by 500 Cossacks who left Tyumef noder Tchulkoff, and built a wooder fort at the month of the Old Tobol. During the noxt fifteen ycars sevcral other forts, were erected on the territory now occupicd by Tobolsk. - The Ostiaks and Sanoyedes soon submitted to Russian rule, but the Tartars and Bashkirs nade heequent raids, so that a line of forts had, to obe built in the 17 th century from Otenburg to Ishim, In 1752 a new line of forts was erected some 150 miles farthes sonth, and since that time Russian settlers have veen ah!e qquictlvato colonizes thy rost fertile parts to the south of Tobsisk

ToCQueville, 'Alexis Henry Chárles Chérex Comte de (1805-1859), was born at Verneuil ton 'July 29, 1805. His family on the fathers side twere of goor descent, and distinguished both in the lew and in arms while his mother was the grauddaughter of Malesherbee Alexis de Tocqueville was brought up for the bar, or, rather. according to the division of that proftssion in France, for the bench, and became an assistant nagistrate in 1830 . A year later he obtained from the Goverament of July a mission to examine prisons and penitentiaries in Anerica, and proceeded thither with his lifelong friend Gustave de Beaumont. He returned in somewhat less than two years, and prablished a report on the subject of bis mission, but the real result of hio tour was the famous De la Démocratio en A mérique, which appeared in 1835 , and very soon made his repatation. It was at once caught up by influential members of the Liberal party in England, which country Tocqueville soon after visited, and where he married an Englishwoman. Returning to France, and beginning life as a country gentleman at Tocqueville, be thought to carry out the English ideal completely by standing for the chamber of depnties. Dint, with a scruple which illustrated his character, he refused Government nomination from Molé, and was defeated. Later he was successful, and sat for several years both before and after the revolus tion of February, beconing in 1849 vice-uresident of the assembly, and for a few months minister of foreign affairs He was a warm supporter of the Roman expedition. but an equally warm opponent of Louis Napoleon, and after being one of the deputies who were arrested at the coulp détet he retired from public life. Twenty years" after his first, he produced another book, De l'Ancien Régime, which almost, if" not quite, equalled its success., His' health was never very strong, and in 1858 be broke a blood-vessel. He was ordered to the south, and, taking up his residence at Carncs, died there on the 16 th of April 1859. Ile bad published sowe minor pieces during his lifetime, and his complete works, including much unpublished correspondence, were produced after his death in uniform shape by De Beaumont.
During the last twenty years of his life, and for perhaps hall that time after bis death, Tocqueville had an increasing European fame, which for the last ten or fiftecu years has been stationary il not diminishing. Both phenomeaa are susceptible of cxplanation.' Although he lias been accused by some of his own countrymen of haviag "le stylo triste," hls manner, which is partly imitated from Montesquieu, has considerable charm; and be was the first and has remained the chief writer to put the orthedox liberal ideas which goremed European polities during the first half or twothirds of tbe 19th century into an orderly and attractive shape He was, mereover, as las been said, much taken , بp by influen, tial persons iu England,-Senior, Johu" Stuait Minl, and others, and he had the great advantage of writing absolutely the lirst book of reasoned palitics on the facts of democratic goveroment as observed in America. Besides all this he was, if not an entirely impartial $\begin{array}{r}\text { riter, neither a fanatical devotee of democracy nor a }\end{array}$ fanatical opponeat of it. All this gave bim a very great advaucago which be has oot yet wholly lost. At the sarue time he bad defeets which were certain to make themselves felt as time went on, even

Wathont the alteration of the centre of liberal opinnon which has taken place of late years. The chief of these rias a certain weakness which can hardly bo described in English by any word more dig. oified than the familiar term "priggishness." His correspondence with Mole above alluded to is an iostance of this, and it was also reflected on in various epigrams by conntrymen and contemporaries; one of these accuses him of having unluckily "begun to thiok before he had begun to learn," while another, with more real tban appareat inconsistency, declares that ho "avait l'air do saroir de toute éternité ce qu'il venait d'apprendre." His book on America, though andoubtedly a very remarkable piece of political deduction, has the drawback of proceeding on rery insufficient premisses and of trying to be too systematic. His book on the. Ancion Régime is also wanting in solid information, and commits the great crror of assuming rather than proving that the Revolution of 1789 was a procecd. ing of unmixed good, which deliyered France from a state (not of unmized evil, fur Tocqueville was too careful a student to imagine that, but) of eril exclusirely caused by the existence of monarchical and aristocratic institutions. In fact, the fault of both books is that their author is not a practical politician, a fault which is constantly illustrated and exhibited in his correspondence. Ic appears both in reading bistory and in conduccing actual political business (of which, as has been seen, he had some experieace) to have been constantly surprised and disgusted that men and uations did not bchare as he expected them to behave. This excess of the deductive spirit explains at once both the merits and the defects of his two great works, which will probably remain to some extent potitical classics, though they are less and less likely to be used as practical guides.

TODAS. Sce Nfleiri Hills, vol. xiii. p. 509.
TODLEBEN, or Totleben, Eduard Ivavovich (18181884), Russian general, was born at Mittau, in Courland, on May 20, 1818. His parents, who seem to have been of German descent, were of the mercantile class, and he himself was intended for commerce, but a strong instinct led him to scek the career of a military engineer. He entered the school of engineers at St Petersburg in 1835, and passed from that into the army in 1838. In 1847 and the two following years he was employed, as captain of engineers, in the carpaigns against Schamy! in the Caucasus, where he directed the siege operations against the principal mountain fortresser. $\mathrm{O}=$ the outbreak of war between Russia and the Porte in 1853, he was placed at the head of the staff of General Schilder-Scheldner, by whom Silistria was besieged. This general being wounded, Todleben acted in his place until the siege was raised. He was then transferred to the Crimea. Sebastopol, while strongly fortified toward the sea, was almost unprotected on the lard side. Todleben, though still only of colenel's rank, became the animating genius of the defence. By his advice the fleet was sunk, in order to blockade the mouth of the harbour, and the deficiency of fortifications on the land side was mado grood before the allies could take advantage of it. The construction of earthworks and redoubts was carried on with extreme rapidity, and to these was transferred, in great part, the artillery that had belonged to the fleet. In whatever direction the besiegers drew their lines, there Todleben met them with counterworks, until, with the arrival of heavy liussian reinforcements, the besiegers alnost became the besieged. It was in these improvised operations by means of earthworks that Todleben's peculiar power and originality showed itself; he was not a great military leader in the rider sense, nor was be the creator of a great permanent system of defence like Vauban. But for the special problems of Russian marfare, both in 1854 and at a later epoch, he was exactly the man wanted. Until June 1855 he conducted the operations of defeace et Sebastopel in person; he was then mounded in the foot, and at the operations which immediately preeeded the fall of the fortress he was not present. When he recovered from his wounds be was employed in strengthening the fortifeations at the mouth of tha Dniepor, and also those of Cronstadt. In 1856 he visited England, whero his merits mere well noderstocd. In 1860 he was appointed assistant to the grand-duke Nicholas, and he becamo
subsequently chief of the department of engineers. For reasons which aro not known he was given no command when war with Turkey began in 1877. It was not until tho disasters before Plevna had heaped discredit upon the incompetent leaders of the Russian army that the soldier of Sebastopol was called to the front. Todleben saw that Plevna could not be taken by assault, and that it would be necessary to reduce it by drawing works round Osman Pasha, and cutting him off froni communication with the other Turkish commanders. In due time Plevna fell. Todleben then nndertool: the siege of the Bulgarian fortresses. After the conclusion of preliminarics of peace, he was placed in command of the whole Rassian army, and becane responsible for the government and administration of the occupied districts. In the disclarge of these duties he is said to have distinguished himself by his combined firmness and good temper in dealing both with Turkish authorities and with the native population. IIe received the highest military honours and commands when the war was over, and became governor of Odessa. But his health was broken; and after much suffering he died at a German watering-place in June 18S4. He was buried with great solemnity at Sebastopol.

TODMORDEN, a raarket-town of England, partly in Lancashire but cliefly in the West Riding of Iorksiore, stands on the Calder, on the Rochdale Canal, and on tlie Lancashire and Yorkshire Railway, 13 miles west of Halifax, 9 eorth of Rochdale, and $207 \frac{1}{4}$ north-north-west of London. It lies in three ralleys amidst scenery originally romantic, and still in part retaining that characteristic. The townhall (1875) bridges the counties boundary, the Calder, enabling the magistrates to exercise jurisdict in in both counties Of the other buildings, the Unitarian church, the markethall, the freo endowed school, and the Unito. rian free school may be mentioned. A bronze statue has been erected to John Fielden, to whose energy in developing the cotton manufactore the town owes much of its prosperity. The staple industry is the spinning and wearing of cotton, and there are also foumdries and machineworks. The population of the township of Todmoruen and Walsden (area 7007 acres) in 1871 was 9353 , and in 1881 it was 9237 . In addition to this (situated wholy in Iorkshire), tho wrbau sanitary district includes parts of Langfield and Stansfield in Lorkshire, and of Cliviger in Lancashire, the total area boing 15,690 acres, with a population in 1871 of 21,764 , and in 1881 of 23,862 .

As early as the reign of Edward III. Todmorden was in the possession of the Radclices, a branch of the Radcliftes of Radclif? Tower, but it was sold by them about the close of tbe loth cestury. Toduorden Hall is an interesting old building of various dates.

TODY, Pennant's rendering (Gen. Birds, pp. 15, 61) through the French Todier of Brisson (Ornithologi, ir. p. 528) of the somewhat obscure Latin word Todus, ${ }^{1}$ not unhappily applied in 1756 by Patrick Browne (Civ. and Nat. Hist. Jamaica, p. l^{76}) to a little bird remarkable for its slender legs and small feet, the "Green Sparrow " or

[^181]"Green Humming-Bird" of Sloane (Voyage, ii. p. 306). The name, having been taken up by Brisson (loc. cit.) in 1760, was adopted by Linnæus, and has since been recoguized by ornithologists as that of a valid genus, thongh many species have been referred to it which are now known to have no affinity to the type, the Torlus viridis of Jamaica, and accordingly have since been removed from it. The genus Todus was at one time placed among the Mfuscicupide (cf. Flycatcher, vol. ix. p. 351); but Dr Murie's investigations (Proc. Zool. Society, 1872, pp. 664-6S0, pl. lv.) have conclusively proved that it is not Passerine, and is nearly allied to the Momotidx (cf. Motmot, vol. xvii. p. 3) and Alcedinidæ '(cf. Kingeisuer, val. xiv. p. 81), though it should be regarded as forming a distinct Family Todidx, peculiar to the Greater Antilles, each of which islands has its own species, all of small size, the largest not exceeding four inches and a half in length.

Of the species already named, T. vividis, Mr Gosse (B. Jainaica, pp. 72-80) gives an iateresting account. "Always conspicuous from its bright grass-green coat aad crinson-vclvet gorget, it is atill a very tame bird; yet this secms rather the tameness of

Tody (Todus viridis). (After Gosse.)
Indifference than of confidence; it will allow a person to approach very near, aud, if disturbel, alight on another twig a few yards distant. . . . commonly it is seen sitting patiently on a twig, with the head drawn in, the beak pointing upwards, the loose plumage puffed out, when it appears much larger tinan it is. It certainly has an air of stupidity when thus seen. Bnt this abstraction is more apparent than feal; if we watch it, we shall see that the oddlooking grey eyes are glancing hither and thither, and that ever and anon the bird sallies out upon a short feeble flight, snaps at something in the air, and returns to his twig to swallow it." Mr Gosso goes on to describe the elgaging habits of oae that he for a short time kept iu caplivity, which, when turned into a room, immediately began ratching oll the insects it could, at the rate of about one a minute. Tho birds of this Fanily also shew their affinity to the Kingfishers, Motmots, and Bee-eaters by burrowing holes in the ground ${ }^{1}$ in which to make their nest, and therein laying eggs mith a white translucent shell. The sexes differ littlo in plunage.

All the four species of Todus, as now restricted, present a general similarity of appearance, and, it may be presumed, possess very similar habits. The genus has been monographed by Mr Sharpe (Ibis, 1874, pp. 344-355) ; but he was unfortunately misled by an exceptionally bright-

[^182]coloured specinen to add a fifth and bad spectes to those that exist-and even these, by some ornithologists, migit be regarded as geographical races. The Cnban form is T. mullicolor; that of Hispaniola is T. subulatus or dominicensis; and that of Porto Rico, originally named in error T. wexicanus, has since been called hypochondriacus. Apart from their structural peculiarities; one of the chief points of interest attaching to the Todidx is their limitation, not only to the Antillean Sub-region, but, as is now believed, to its greater islands.
(A. N.)

TOGA. See Costume, vol. vi. p. 456.
TOCO-LAND, one of the portions of the African continent uuder the protection of the German empire. It forms part of the territory on the west coast formerly distinguished as the Slave Coast, and is bounded on the E. by Little Popo, on the S.W. by the British Gold Coast Colony, and on the N.W. by the still independent territory of the Anlo tribes. The coast-line is only 22 miles in length, and with an area of about 500 square miles Togo-land is estimated to have a population of 40,000 souls. The great physical fcature of the country is the Togo, Hakko, or Avon lagoon, which is* cut off from the ocean by the narrow belt of sandy soil on which are situated Bagida, Porto Seguro, and Bay. The town of Togo lies on the east side of the Togo lagoon, where it extends eastward to Little Popo Lake. The lagoon is fed by a stream from the north, the Haho or Hakko, first discovered by John Duncan in 1846.
See Hugo Zoller, Togoland ; Petermann's Mittheilungen (1886); and Scull. Geogr. Mag. (1886), all of which give maps.

TOKAT, a decayed provincial town of Turkey, in the vilayet of Sivas, and capital of the upper basin of the Iris (Yeschil Irnak), is a poorly-built place of abont 10,000 inhabitants, in a hot, narrow valley, dominated by the ruins of a Byzantine castle, and surrounded by gardens watered by the Iris. It was once an important commercial station, and has still copper foundries. Six miles np the valley are the ruins of the Pontic Comana (q.v.).
TOKAY, or Tokaj, a small town in the county of Zemplén, in the morth-east of Hungary, at the influx of the Bodrog into the Tisza, in $48^{\circ} 7^{\prime} \mathrm{N}$. lat., $21^{\circ} 4^{\prime} \mathrm{E}$. long. The slopes of the adjacent mountains of Hegyallya, which are of volcanic origin, produce excelient wine, several kinds of which are of perhaps the best, sweetest, and strongest quality in the world. Of these, however, none or hardly any come into the market, the wine usuali,y sold under the name of Tokay not being a natural wine, and often not coming from the district at all. Tokay, along with abont twenty-five neighbouring villages, pioduces annually an average of $2,200,000$ gallons. The vine culture has been greatly improved of late years by a company in Budapest. The timber trade, fishing, and export of frnits are also considerable. The population was 4479 in 1880.

TOKIO, formerly called Yedo, the present capital of the empire of Japan, is situated in $35^{\circ} 41^{\prime} \mathrm{N}$. lat. and $139^{\circ \circ} 46^{\prime} \mathrm{E}$. long., at the head of the bay of the same name, on the sonth-east coast of Hondo (mainland), the largest of the group of Japanese islands. It is convected with the seaport of Yokohama by a railway 18 miles in length. The bay of Tokio is shallow, and therefore not well suited for the navigation of large vessels. The wide river Sumida, also called Ôkawa ("great river") near its mouth, runs through the town. For administrative purposes Tokio proper is divided into fifteen $k u$ (districts), of which thirteen lie to tie west and two to the east of the Sumida. Each ku is presided over by an official appointed by the Government, called the ku-chio (chief of the ku), and an assembly (Ku-Kwai) for local administrative purposes is elected every four years by the inhabitants. These ku and
six gun (suburban districts) collectively form the Tokio-Fu, and are under the general superintendence of the fu-chiji (governor). Matters affecting the interests of the whole fu are discussed by an assembly (Fu-Kwai) composed of representatives from all the ku and gun. Order is maintained by a well-organized body of police (3648 men in 1885) under the command of a keishisokan (chief commissioner), who, like the fu-chiji, is responsible to the central Government. Since the establishment of this system crime has very materially decreased. There is also a fire brigade of 2000 men, which is connected with the police system, and renders effective service in checking the spread of the fircs to which the town is peculiarly liable. Buildings of brick and stone have lately been erected in many parts of the town. The fifteen ku which form Tokio proper cover an area of 4.01 square ri, and the six gun 27.94 square ri, the whole fu thus extending to about 32 square ri (about 190 square miles). The greater part of the town is flat, particularly near the Sumida, and is intersected by numerous moats and canals, which, with the bridges crossing thern, form a distinctive feature. There are hills varying in height from 50 to 100 feet in the six districts of

Environs of Tokio.
Hongo, Koishikawa, Ushigome, Yotsuya, Akasaka, Azabu, and in part of Shiba. The numcrous residences of the old daimios were the chief characteristics of the town, especially in the Kôjimachi-ku. Many of these have been demolished and Government offices erected on their sites; some have given place to new streets and houses; others, having survived the downfall of the shogunate, still remain surrounded by large gardens, which are celebrated for their elaborate rock-work, artificial lakes, and magnificent trees. Nearly in the centre of the Kôjimachi-ku, on an eminence, surrounded by moats, stood the residence of the shoguns, which was burnt down in 1872. An imperial palace is now in course of construction on this site. Outer moats connected with those already mentioned enclose the whole Kôjimachi-ku and a greater portion of Kanda-ku; one of the moats terminates at the Sumida. The Nihonbashi, Kiobashi, and Kanda-ku, through which the O-dori (main street) passes, are the business quarters of the town. The Nihoubashi (Bridge of Japan), in the ku of the same name, also in the O-dori, is the centre from which all distances are calculated. Nearly all the. principal buildings of the city-such as the Gwaimusho (Foreign Office), the Naimushô (Home Office), the Ōkurashô (Ministry of Fınance), the Monbushỗ (Ministry of Education), and other Government offices, dc.-are situated in those four ku. Among the parks, those of Shiba and Uyeno rank first in size and beauty, the latter containing a large sheet of water. In

1868, when the imperial army entered the city, a body of men called the shogitai, loyal to the cause of Tokugawa, here made a last stand, and during the fighting the magnificent temple of Tôyesau, on the hills of Uyeno, was burnt down. This park, as also the Mukojima (the enlbankment of the Sumida), and the Asukayama park, which is at some distance north-west of Uyeno, are celebrated for their sakura trees (species of cherry), which, when in full bloom, attract crowds of all classes. The famous temple of Kwannon (goddess of mercy) is in the Asakusa park, in which a continual fair is held, with the usual accompaniments of booths, shows, tea-houses, \&c. The districts of Fukagawa and Honjo lie on the east bank of the river, and are connected with the rest of the town by five wocden bridges of considerable length; they are intersected by aumerous canals, and the streets there are regularly laid cut. The means of communication are imperfect; the streets of Tokio are in general irregular, and many are so narrow that they are unsuitable for carriages. The jinrikisha, a kind of chaise drawn by one or in some cases by two or more men, supplies their place to a great extent.' The introduction of tramways in some parts of the town has had the good effect of diminishing the number of second-rate carriages drawn by miserable horses.

There are no reliable data as to the population of Yedo during the shegunate (see below). Owing to the influx caused by the periodical visits of the daimios with their numerons attendants, it probably exceeded one millica during the early part of the present century. At the abolition of the skogunate there was a marked decrease, but the returns of recent years ($1,121,500$ in 1881; $1,173,603$ in $1883 ; 1,300,073$ in 1885) indicate a rapid increase. Of the $1,519,781$ who constituted the population in 1886, 1,211,357 are to be classed as belonging to the town proper, and $308,42 t$ to the six suburban districts. The sanitary condition of the city leaves much to be desired, but extensive improvements are now being carried out. The general health, however, is good, and the enforcement of vaccination has virtually stamped out the scourge of small-pox. The deaths from cholera are occasionally very numerous, especially among the lower classes.
A well-organized system of education exists, under the supervision of the ministry of education. In 1885 there were in the Tok: Fu 658 public and private elementary schools, with 1503 teachcrs, - the cost of maintaining public schools being 145,152 yen (Japanese dollars). In the same year the boys and girls of school age numbered 172,653, of whom 77,001 attended schools recognized by the Government. Kindergartens on the European system have been introduced. There are also the shihangakko (normal schools), the chugakko (middle schools), and schools, both Government and private, for special branches In the district of Hongo is the imperial university, sub disided into the four branches of law, science, medicine and literature. Many of the students attain a high degree of proficiency.
No mention is made of Tokio in Japanese history before the end of the 12 th century. It appears to have assumed no importance till about 1457, when Ota Dokwan, a general in the acrvice of Uyesugi Sadamasa, governor of Kanakura, built a castlo there. About thirty years later the town fell into tho hads of Ilojo of Odawara, and snbsequeotly, on his overthrow by Hideyoabi aod Iyeyasu, the enstle was granted to the latter, wbo was the founder of the shogun house of Tokugawa. In 1590 Iyeyasu made his tormal eotry into the castle of Yedo, the extent of which he greally enlarged. From this dato tho real importa neo of Yedo commenced. The family of the Tokugawas furnisbed tho ahoguns (or tycoons) of Japau for nearly three hundred years, and these resided during that period at Yedo. Under then the town was vastly extended, land was reclaimed from the hay, canals were constructed, and a water auply introduced. The shoguns compelled the daimios (feudal loris) 10 reside at Yedo with their numerous retinues dur.
ing a constderable portion of thelr lives, and thas the prosperity of the town rapidly iucreased. At the restoration of the supreme authority of the emperor in 1868 the shogunate was abolished, and the population of Ycdo speedily decreased. A fresh vitality was again imparted by the transfer of the court from Eioto, and the town then received its prosent name Tokio (eastern capital). It las since been the seat of the imperial Government, and may be considered the centre of the political, commercial, and literary activity of Japan. It is the channel through which the stream of European cirilization pours into the country, and all recont progress has there taken its rise.
(R. S. L.)

TOLAND, Joan (1670-1722), or Janus Junius, as his sponsors are said to have named him, usually described as a chief leader of the English deists, was born November 30,1670 or 1671 , in the north of Ireland, near Londonderry. He was the son, perbaps illegitimate, of Catholic parents, and was brought up in their faith. But in his fifteenth year he became a zealous Protestant, and in 1687 he passed from the school at Redcastle to Glasgow university, recommended by the magistrates of Redcastle "for his affection to the Protestant religion." Thus early in life he became "accustomed to exarnination and inquiry, and was taught not to captivate his understanding to any man or society." After three years at Glasgow he entered the university of Edinburgh, taking his M.A. degree there June 30, 1690. He then spent a short time in some Protestant families in England, and with their assistance went to Leyden university, to qualify him for entering the Dissenting ministry. He spent about two years in Leyden, studying ecclesiastical kistory especially under the famous scholar Frederick Spanheim. At the expiration of that time he took up his abode, January 7, 1694, at Oxford, having good introductions to Creech, Mill, and others. Here he made large use of the Bodleian Library, and soon acquired the reputation of being "a man of fine parts, of great learning, and of little religion," though there is no svidence to show that the last distinction was justly his due. His letters show that he then claimed to be a decided Christian, and that he was too orthodox to be classed with the Arians or the Socinians. At the same time the characteristic freedom and originality of his mind were displayed by his anticipation of subsequent doubts of the integrity of the book of Job, and the separation of the historical prologue and the speeches of Elibu from the original poem. While at Oxford he commenced the book which called him into notoriety, and became one of the standard "deistical writings"-his Christianity not Mysterious. ${ }^{1}$ The book gave great offence, and several replies to it were immediately published. The author was prosecuted by the grand jury of Middlesex the year of its publication; and, when he attempted to settle in Dublin it the beginning of 1697, he was greeted with dangerous denunciations from the pulpits and elsewhere. He was soon prosecuted before the court of King's Bench, and on September 9th his book was condemned by the Irish parliament to be burned and its author to be arrested. He escaped the latter part of the sentence by flight to England. The title and the philosophical principtes of Toland's book were singularly akin to those of Locke's famous work, The Reasonableness of Christianity, published the year before; and Locke's opponents seized the opportunity of fathering upon the philosopher the doctrines of his more heterodox and less guarded disciple. Thus Toland's work became the occasion of the celebrated controversy between Stillingfleet and Locke, in which Locke takes pains to show the difference between his position and Tolund's. Toland's next work of importance was

[^183]his Life of Milton (1698), in which, jn connexion with his exposure of the fictitious authorship of the Eikon Basilike, he found occasion to make reflexions on "the numerous supposititious pieces under the name of Christ and Eis apostles and other great persons." This provoked the charge that he had called in question the genuinencss of the New Testament writings, and he replied in his Amyntor, or a Defence of MIilton's Life (1699), to which he added a remarkable list of what are now called apocryphal New Testament writings. In his remarks he really opened up the great question of the history of the canon, towards the examination of which Stephen Nye, Jeremiah Jones, and Nathanael Lardner made in reply to him the first valuable contributions. The next year his Amyntor and Christianity not Mysterious were under discussion in both Houses of Convocation, and the Upper House declined to proceed against the author. In 1701 Toland spent a few weeks at Hanover as secretary to the embassy of the earl of Macclesfield, and was received with favour by the electress Sophia in acknowledgment of his book Anglia Libera, a defence of the Hanoverian succession. On his return from the Continent he published a defence of himself, and of the bishops for not prosecuting him, Vindicius Liberius (1702), and several political pamphlets. The next jear he visited Hanover and Berlin, and was again graciously received by the electress and her daughter Sophia Charlotte, queen of Prussia. On his return to England (1704) he published Letters to Serena, and afterwards acknowledged that the queen of Prussia was intended by the pseudonym. In these letters he anticipated some of the speculations of modern materialism. The next year appeared his Account of Prussia and Hanover, of which Carlyle has made use in his Life of Frederick the Great. From 1707 to 1710 he is again on the Continent,-at Berlin, Hanover, Düsseldorf, Vienna, Prague, and The Hague, with very varying fortunes, but generally of an adverse character. In 1709 he published Adeisidæmon and Origines Judaica (The Hague), in which, amongst other things, he maintained that the Jews were originally Egyptians, and that the true Mosaic institutions perished with Moses. This work provoked a number of replies from Continental theologians. In 1710 he returned to England, living chiefly in London and latterly at Putney, loving the country and his books, and subsisting precariously upon the earnings of his pen and the benevolence of his patrons. His literary projects were numerous (see the incomplete list in Mosheim); and the nobler traits of his warm Irish nature appear in his projected history of the ancient Celtic religion and his chivalrous advocacy of the naturalization of the Jews. The last of his theological works were Nazarenus, or Jewish, Gentile, and Mahometan Christianity (1718), and Tetradymus (1720), a collection of essays on various subjects, in the first of which, "Hodegus," he set the example subsequently followed by Reimarus and the rationalistic school in Germany, of interpreting the Old Testament miracles by the naturalistic method, maintaining, for instance, that the pillar of cloud and of fire of Exodus was a transported signal-fire. His last and most offensive book was his Pantheisticon (Cosmopoli, 1720). He died May 11,1722 , as he had lived, in great poverty, in the midst of his books, with his pen in his band, and left behind him a characteristic Latin epitaph, in which he could justly claim to have been "veritatis propugnator, libertatis assertor."
Toland is generally classed with the deists, but at the time when he wrote his first book, Christianity not' Mysterious, he was decidedly opposed to deism, nor does Leland deal with that work as an exposition of deistical vicws. The design of the work was to show, by an appeal mainly to the tribunal of Scripture, that there are no facts or doctrines of the "gospel," or "the Scriptures," or "Chiistian ravelation" which, when revealad, are not perfect) 5
plain, intellipiblo, and reasonable, beiug neither contrary to reason nor incomprelicnsible to it. The work undoubtedly ained a blow at some of tho dogmas of later Christiau timos, but it claimed to be "a viudication of God's revcaled will agaiust the most unjust imputations" which occasioned "so mauy deists avd athcists." Tolanl's line of argument is to show that tho aupposition of the doctrines of the gospel being repugnant to clear and distinct ideas and common notions leada into absurdities and nevitabla acepticisu; that the proof of tha Divinity of Scripture is its self. evideacing power; that, though mon are depedent on Divive revelation for tho kuowledige of tho most ialjortaut truths, tho truths nust themselves bo plam and intelligible when revealed; that all tho doctrines, precepts, and miracles of tho New Testanneut aro perfectly minlligible aud plain; that, thongh reason is dis. ordered in tha caso of many bien, the disorder is not in the faculty itself but in the use made of it; that in the New T'estament "myatery" never means anything inconccivable in itself, but things naturally intelligible enough, which aro gither so reiled by figurativo words or rites, or so lolged in God's aole knowledge and decres, that they comld not bo discorned without apecial rovelation; that no muracle of the gosjel is contrary to reason, for they were all prodnced according to the lawa of nature, though above its ordinary operations, which were therefoco supernaturally assisted; that mysteries were first introluced into Cliristianity by the early admission into the clurch of Levitical ceremonics ant heathen rites and mysteries, and especially by mixing up heathen philoBophy with the simpla religion of Christ. Tho work wos inteuded to be the first of three discourses, in the second of which ho was to attempt a particular aml rational oxplamation of tho roputed Dussteries of the gospel, and in the third a demonstration of the vority of Divino revelafion against atheista and all cuenics of re. vealed religion. But, like so mauy other of his numerons projects, this failed of execution. After lis Christianity not Mysterious and lis Amyntor, Toladd'a N゙azarcnus was of chicf importance, as calling attention to tho right of tho Ebionites to a placo in the early church, thongh it altogether failed to establish his mann argument or to put tha question in the true light. His Pautheisticon, sive Formula celcbranda Sodalitatis Socratice, of which he priated a felv copies for private circulation only, gave great offence as a aort of liturgic service made up of passoges from heathen authors, in imitation of the Church of Enchland liturgy. The titla also was in thoso days alarming, and still 100 ore 80 the myatery which tha author threw rouud the question how far auch societics of mantheists actually existed. Poor Toland had bern outlawed by tha churches of his day, and took a most imprudent Ilelight in alarming and mystifying his persecutors. Thas and all his later thorks must bo read from the point of vicw first suggested by Herder: "Who call refuse to seo iu Toland the man of wisle readiug and of clear jutellect, and the earvest inquirer, although, as embittered by persecutiona, with every fresh book ho dipped his pen in a moro bitiog acid?

Soe Moshelm's Findicies An!inu:9 Christianorum Discipline, lat ed, 1720, 20 ed., $17 \% 2$ (the life of Toiand prefixed to the $2 d$ edition of that casay gives etili the best and most leamed account we have of his $11 f 0$ and wilthess); "Atemoirs of the Lifo and Withings of Mr John Toland," hy Des Melzesux, Frefled to The Miscellancous Horks of Mr Join Toland, in 2 vola., I.cndcn, 1747 : 1.elsmd's Fiew of the Prlacipal Delstical IIrilers; Herder a Adrastea: Lech?er's Daschichte des englischen Deismus; Isace Dhstachis Calamities of Authors; Theclogienl Eeriex, November 1864: Hunt's artlele in Contenporary Review, vol. vill., End his Religious Thought in Rengland; Leslic Stephen's Ihistory of Euglish Thought in Eiph. lemsh Cenlury: Cairnse © Cunnsngham Leclures for 1850 Oo Tolsnd's relution to the subsequent Tublugen school, ss prebentod is his Nazarcnus, seo Theologieal Reriaw, Oct., 1877; and on hils relation to match1slism, F. A. Langes Geschich (s des Jatertalismus.
(J. F. S.)

TOLEDO, a province of Spain, in New Castile, is bounded on the N. by Avila sad Madrid, on the E. by Cuenca, on the S. by Cindad Real, and on tho W. by Cácercs, and has on area of 5020 squaro miles. The surface is throughout lofty, and in a great part of its extent mountainous. Towards the centre, indecd, there are oxtensive plains or tablelands, but the whele of the soutb and cast is occupied by the Montes de Toledo, which separate the waters of the Tragus on the north from those of the Guadians on the south. These mountains are of no great height; and they wero once densely envered with forests, which have now bcon almost entirely cut down, although there are still woods and groves of considerable extent on their lower slopes. Branches of this chain enclose the province on the east and west, and part of the rango that stretches north of the Tagus approaches its north-western frontier. Toledo is well watered by the Tagus and its affucnts, - the Tajuna, Jarama, Guadarrama, Alberche, and Tietar on the north, and the Algodor, Torcon, Pusa, Sangrera, and Cedron on the south Tha

Guadiana forms for a short distance the south-western frontier, and its tributary the Giguela waters the eastern part of the province. The country is rich in minerals, as yet almust entirely onworked, containing veins of gold, silver, lead, iron, quicksilver, copper, and tin. Coal, alum, cinnabar, \&c., are also found. The soil produces corn, pulse, potatoes, oil, wine, flax, oranges, lemons, chestauts, and melons in fair abundance, but the trade in agricultural products is alınost confined to the province itself. The number of sheep and goats is few, of horses and mules still less; while the ouly oxen aro those uscd in agriculture. Bees and silkworms aro kept in considerable number. Manufactures once flourished, but are now in a very low state,-silk and woollen cloth, earthenware, soap, oil, chocolates, wine, rough spirit (aguarcliente), guitar stringe, and arms being almost tho only articles made. The province is traversed by three lines of railway, that of Madrid Seville.Cadiz in the east, Madrid-ToledoCiudad Fieal through the centre, and Madrid-CáceresLisbon in the north. There are 12 partidos judicisles and 206 ayuntamientos, and threo scnators with cight deputies are returned to the cortes. The total population in 1885 was 332,000 ; tho only towns with a population exceeding 10,000 are Toledu (20,251) and Talavera de la Reina (1],986). Somo of tho most brillisat fighting of the Peninsular War took place in Toledo and the neigh bouring province of Cáceres, tho battle of Talavera de la Reina being fought on the 27 th and 28 th of July 1809.

TOLEDO, the capital of tho above province, and once of the whole of Spain, stands upon a circle of seven hills, 2400 feet above the sea, and waslicd on threo sides bv the Tagus. It is 37 miles west-south-west of Madrid. The river is spanned by two fine stono bridges,-the Aleíntara, a Moorish bridge of a eingle arch, giving entrance to the city from the east, and the other, that of San Martin, from tho west, whlle between them the river makes a sweep southwards. The place is enclosed on the land side by two walls, still in fairly perfect condition,-the inner one being built by King Wamba in the 7 th century, the outer by Alfonso VI, in 1109. The gates ere numierous and well preserved, the most noteworthy being the fanous l'uerta del Sol, the Puerta Visagra, and the Cambron. Somo Roman remains (a circus, \&c.) lic without the walls, on the plain to the north-west. The apjearance of Toledo from a distance is imposing in the extreme, from its noble situation and tlie terraced lines of its buildings; but upon a nearer spprosch it reveals itself as dull and decayed enoogh, witb little or no traffic in the streets, and a strange silence broading over all its ways. The houses are large, massive, and gloomy, generally Moorish in style, of the 12 th, 13 th, and 14 th centuries, with a great contral patio (courtyard), and yiclding abundant traces of Arabic decoration. The principal poblic square is the Zocodover. It forms the favourito promenade, and from it the one fairly wide street of the city leads to the cathedral. The latter is the glory of Toledo, and one of the finest monuments of art in Spain. Built upon the site of an aneicnt mosque, and comeneaced in 1227, it was completed in 1492; and, though sacked over snd over again,-finally lyy the French under La Houssaye in 1808,-it is atill, with the exception, perhaps, of the cathedral of Soville, the riehest and most megnificeat foundation in the Peniusula. The cxterior is unfortunately hiddca to a great extent by mean surrounding buildings, bat the fane western façade, with its two towers, one rising 325 feet, is cifective. Tho interior is somewhat dwarfed in 风]pearanec by the immense width. It is 404 fect long by 204 Scet broad, and is divided by 84 pillars into five naves, with contral lentern and choir, and a completo ecrics of side chapels. Most of these latter are lato additions, of the 15 tb and $16 t \mathrm{~b}$
senturies, and are very magnificent in dotail. The 16thsentury stained-glass windows, chiefly of Flemish work, are superb; and the treasury, reliquaries, and library, notwithstanding their repeated despoilings, are not unworthy of the ses which atyles itself the "first of all the Spains." In the Muzarabic chapel the ritual known by that name is still performed daily. Within the precincts of the cathedral are interred the archbishops and cardinals Tenorio, Fonseca, Mendoza, Ximenez, the great constable Alvaro de Luna, and a long array of kings and heroes. The archbishop is primate of Spain, and has for suffragans Coria, Cuenca, Siguenza, and Palencia. Besides the cathedral Toledo still possesses a great number of fins churches and other religious buildings, together with numerous Moorish and Jowish monuments. The most important church is the 15th-century florid Gothic San Juan de los Reyes, bnilt by Ferdinand and Isabella. The best Moorish work is to be found in the old Jewish synagogues of Santa Maria la Blanca and El Tránsito, in the mosques of Cristo de la Luz and Las Tornorias, in some private houses, and in the later churches of San Roman, Santo Tomé, Saatiago, and Santa Leocadia. The patio and staircase of the hospital of Santa Cruz present same of the finest Renaissance work extant. Seen from afar, the Alcazar, or royal palace, is one of the most conspicuous features of the city. It stands upon a commanding position overlooking tho Tagus, and was originally built by King Wamba, but has been repeatedly altered and pulled about. It was almost entirely rebuilt by Charles V. and Philip II., under the architects Covarrubias and Herrera, and has lately been converted into a huge military academy. The city is provided with numerous elementary achools, a public library, museum, town-ball, and several large hospitals. The woll-known manufactory of ewords is about a mils to the north-west, beyond the Cambron gate. It is in excellent order, and produces blades as parfect aa over, but is no longer of great importance, employing only about 120 bands.

Toledo existed in the time of the Romans, who conquered it In 193 b.C. They etrengthened the fortifications, and built an aqueduct to eupply the place with water. By the Goths, who captured the city in 467 A.D., these works wera kept up and improved ; and, under the Moorish domination, from 714 to 1085 , Toledo was eecond only to Cordova in rank and importance, with a population of 200,000 eouls. Alfonso V1. of Castile and Leon recovered the stronghold in 1085; and under him and his auccessors it continued to flourish until the permanent establishment of the court at Madrid gave a deathblow to ita prosperity. The population now is no more than 20,000 .

TOLEDO, a city of the United States, the county aeat of Lucas county, Ohio, is situated in $41^{\circ} 40^{\prime} \mathrm{N}$. lat. and $83^{\circ} 33^{\prime}$ W. long., chiefly upon a peninsula batween the Naumee on the south and the Ottawa upon the north, just above their points of discharge into Maumee Bay, and 5 miles from Laks Eris. A small part of it, formerly known as Maumee City, lies south on the Maumee. Toledo includes an area of 21.5 square miles within its corporate limits. The bay and river form arr-excellent harbour and roadstead. The harbour is easily made and is well sheltered, and the bottom affords good holding ground. Besides being open to the navigation of the Great Lakes, Toledo is the terminus of the Miami and Eris Canal, convecting it with Cincinnati (184 milea distant). Seventeen railroad lines enter it, making it one of the principal railroad centres of the country. The site of Toledo and the surrounding country are very level, and only slightly elevated abovo Lako Erie. The soil is very productive, and is highly cultivated, being largely devoted to market gardening. There are three public parka, having a total area of 41 acres. The city is well sewered. Water is obtained by pumping. The city, which is divided into eight rards, had in 1880 a population of

50,137. The number is probably now (1887) not tar from 65,000 . In $1840,1850,1860$, and 1870 respectively the population was returned at $1224,3829,13,768$, and 31,584 .
Besides its largo commercial interests, as one of the principal ports upon the Great Lakes, and its importance as on of the leading railrosd centres of the country, Toledo kolds high rank as a menufacturing city. The capital invested in thie class of industries in I880 excceded $\$ 5,500,000$, and the producte were valued at double this sum. They employed nearly 7000 persons, and paid in wages over two and a quarter millions of dollers. These industries are very varied in cbaracter, but consist largely in lumber menufactures, brewing, and iron and steel manufactures.

The first settlement witbio what are now the corporate linits of Toledo was made, ebortly after the war of 1812, upon the south bank of the Moumee. North of the river no eettlements were attempted until 1832, when the villages of Port Lawrence and Vistufa were cornmenced in what is now the heart of the city. In the following year they were united under the present name. The city was incorporated in 1837. In 1852 it was made the conuty eeat, and in 1874 its corporate limits were considerahly enlarged.

TOLL is a aum of money paid for the use and enjoy. ment of a privilege. In Eagland it ia now always or almost always a sum of money; but formerly tolls in kind were not unknown. An instance is afforded by the Act of 36 Geo. III. c. 85 , substituting a money payment for tolls of conn in kind taken by millers, with an exception in favour of tolls taken by custom in aoke mills. Such customary tolls, if any such now exist, are apparently the only examples remaining of tolls in kind. The Weights and Measures Act, 1878 , enacts that all tolls are to be charged and collected according to imperial weights and measures.
The word toll, in its earliest use, appears to have signified a franchise enjoged by lords of manors, and is defined by Glanvill as the liberty of buying and selling in one'e own land: "tol, guod nos vocamus theloneum, acilicet libertatem emendi ot vendendi io terra sua." The word then becsme used to denote duties payable to the crown, especially oo wool, generally with an inseparable epithet indicative of unpopularity. It thus took the form of "maletote" or "malum tolnetrm," against which many early atatutes were directed, from the Magna Carta of John till the final abandonment of the duty by F.dward JIl. In modern English law toll is either en incident of a Franchise (q.v.), as of a market or fair, or is independent of franchise. In tha latter cass it is claimod by prescription, as toll traverse or toll thorough, or is created by Act of Parliament, as in the case of turapikes, railwaye, harboure, navigable rivers, and canels. Toll traverse is paid for passing over a private way, bridge, or ferry. No consideration need be proved. Toll thorough is paid for the use of a highway. In this case, if charged by a privata person, some consideration, euch as repair of the highway, must le shown, as such a toll is against common right. Io one case, that of the Cornish custom of tin-bounding, the right to tin tolls may depend upon custom. At common law a toll must be reasonable. The same principle appears in various Acts of Parliament. The Statute of Westminster tha First, 3 Edw. I. c. 31, inflicts a penalty for taking excessive toll. The Railway Clauses Consolidation Act, 1845, and most apecial Acte of railway companies provide, by what are known as "the Shaftesbury cleuses," for the equality of tolls, that is, that all persons and classes of goods ehall under like circumstances be treated alike as to charges. A right of distress is iacident to the right to impose tolls, but the distress cannot be sold unless an Act of Parlisment expressly authorizes the sale. Tolls are rateable for the relief of the noor where they are appurtenant to land, but not where they are extrinsic profits not arising from the possession of land. Exemption from tolls may be claimed by the prerogative, by grant or prescription, or by Act of Parliament. The king pays no toll, and may grant to another exemption from toll. The exemptions by Act of Parliament mainly affect persons in the public service, clergy on their parochial duty, and persons going to or returning from their usual place of religious worship. Most of the exceptions from turnpike tolls will be fonud io 3 Geo. IV. c. 126. Turnpike tolls, bridge money, and causeway mail were abolighed ia Scotland by the Roods and Bridges Act, 1878, as from the 1st June 1883. In England there hes been no such general abolition, but the abolition of tolls hes been facilitated by eeveral recent Turnpike Acta, and their entire diaspearace is only a question of time.
Ia the United States tolls are a subject for Stato legislation,
${ }^{1}$ The aame term was known in mediæval Italy. Dante, in Inferno, xi. 36, alludes to "tolletta dannose."
excent in a few instances in which Acts of Congress have dealt with tolls in rivers and harhoms (sce Fevised Statutes, tit. Ixili.).
Tho question of tells was at one time an impertant one in international law. Tolls were cxacted on ccrtain straits and tidal rivers by virtue of the sovereignty of a particular state. Such tolls have mostly ceased or been redeemed. Notable iustances were tho Scheldt tolls and the Sound duea levied by Denmark. See Navigation Laws.

TOLUCA, or Toloccan, a city of Mexico, the capital of the state of Mexico, on the Mexican National Railway, 45 miles sonth-west from the federal capital. It lies on the west side of the Anahuac tablcland, at the foot of Mount San Miguel de Tutncuitlalpillo, at an elevation of 8653 feet above the sea, being the highest town in the republic next to the mining station of Ameca-meca (which is 8800 feet). Tolnca bad in 1886 a population of about 12,000 , and is usually described as a well-built flourishing town, with fine buildings and clean well-drained streets. Lut T. M. Brocklehurst, who visited it in 1880 , gives an unfavourable impression of the place, which presented nothing attractive beyond the Portales, a fine arcade running round a large block of central buildings, with a number of good shops under the arches (Mexico To-day, p. 222). There is also a good theatre, and in the Plaza de los Martires a. well executed white marble monument to the patriot Miguel Hidalgo y Costilla. Bnt the Carmen, Vera Cruz, and one or two other churches are dirty and tawdry, without presenting any striking architectnral features. The oity is traversed by a foul stream flowing at the bottom of a barranca or deep ravine, along whose banks are herded numerous swine in a half-wild state, which supply the hams and sausages for which the place is noted. Here also soap and wax candles are manufactured and supplied to the surronnding districts. In tho south-west the Nevado de Tolnca, an extinct snow-clad volcano with a flooded crater, rises to a lueight of 15,156 feet above sea-lovel.

Although Toluca appears to have been one of the earlicat Toltec gettlements in Analuac, its foundation dsting probably from the 6th centnry, it has preserved no remains of its ancient grandene, nor have any monuments been discovered in the district in any wny comprable to those of Cholula, Tula, Tcotihuacan, and other ancient centres of Toltce culture. According to M. Charnay, Toluca formed one of the chief starting points of the great migrations which, after the overthrow of the Toltec empiro by the Chichimec irruption in the litlicentury, moved in two parallel streams sonthwards, converging at Copan and spreading their arts and industries over Chiapas, Yucatan, and Guatemala (Ancicnt Citics of the Ncuo World, 1887, p. 125).

TOMATO. See Horticulture, vol. xii. p. 288.
TOMPA, MiHALY (= MichaEl) (1817-1868), one of the best and tenderest Hungarian lyric poets, was born in 1817 at Rima-Szombat, in the connty of Gömör, of very humble parentage, his father being village bootmaker. He studied law and theology in Sáros-Patak, and subsequently at Budapest; bnt, feeling little inclination for the first-mentioned career, after many vicissitudes he, at the age of thirty, accepted the post of Protestant minister in Beje, a small village in his native county, whence, in two years, he removed to Kelemér, and four years later to Hanva, in the county of Borsod, where be remained till his death in 1868.

At the age of four-and-twenty Tompa pullished his first poems in the Athenerum, which soon procured for him a high reputation. His first volume, Népregek és Népmondik ("Folk-Legeods and Folk-Tales"), in 1846, met with great success, and the same may be said of the first volume of his "Poems" in 1847. In 1848 ho took part in the war of independence, acting as ficld chaplain to the volunteers of his county and sceing scveral battles; but the unfortunato close of that heroic struggle silenced his poetic vein for a considerable time, and, when in 1852 aod 1853 he gave vent to his patriotic grief in somo masterly allegories on the stato of oppressed Huncary, he was twice arrested by the Austrian authorities. After being released ho published lis Virogregik (" legends of Flowers"), a collection of poems of the highest order, showing great imagiuation and lovo of nature, and displaying the lofticst
humanity and great noclitative power. Soon after this ho became oppressed with melancholy and abandoned this brandi of poctry. Indeed fiom this time he produced comparatively little. He pub. lished threo volumea of sermons, "which," says his biographer, Charles Szasz, Protestant bishop of Budapicst, "are amoner the best in Hungarian literature, and will favomably comparo with those of Robertson, Monod, or Parker." His collected poetical works, in six volunes, were publishol at Rudapest in 1870. and again, in four volumcs, in 1885.

TOMSK, a government of Western Siberia, extending from the Chinese frontier to $60^{\circ} \mathrm{N}$. lat., is bounded by Tobolsk on the N.W., by Yeniseisk on the N.E., by the Chinese province of Khobdo on the S.E., and by Semilalatinsk on the S.W. Its area, 329,040 sqnare miles, is fully one and a lialf times that of France. The surface is most varied, including in the soutle cast the high alpine tracts of the Altai Monntains, with an elevated step]e which skirts these, and in the north-west and west the lowlands of the Irtish and the marslay tracts of the Ob.

The Altai Monntains, which cover within the limits of the Rnssian empire an area of 53,000 square miles, or three times that of the whole of Switzerland, althongh visited by many geologists, still remain very imperfectly known, even as regards their orography\%. The country lias been mapped only aiong the rivers and the course of a few footpaths, and great confusion still prevails with reference to the directions of the different chains of the Altai and their mutual relations (compare Siberla). The best descriptions, however (including the most recent by M. Potanin), ${ }^{1}$ indicate in that part of Asia the very same leading orographical features that are seen in the Tian-Shan Mountains farther south, and in the West Sayan range farther north. A plateau with an average altitude of more than 4000 feet, watered by the tributaries of the upper Yenisei, all flowing in open valleys 3000 to 4000 feet above the sea, is known to rise in that part of north-western Mongolia which is drained by the upper Yenisei and Selenga. The surface of this platean is diversified by ridges, and by clepressions like that of the Ubsa-nor-a relic of what was formerly a much larger lake. A lofty monntain chain, which has its soutli-east foot on the plateau and its north-west foot in the valley of the UTs, fringes the platean, and has all the characters of a border-ridge. The present writer las proposed to call this Erghik-shan. It runs from north-east to sonth-west along the Russo. Chinese frontier, and is pierced by a deep gorge through which flows the Yenisei. A belt, some 200 miles in width, of alpine tracts, made up of three or four chains parallel to the border ridge, fringes the outer border of the plateau, and fills up the Minusinsk region. The structure of the billy tracts (watered by the Kemtchik) between the Yenisei and the Altai remains quite unknown, no scientifie man or topographer having ever visited it. But the very same orographical features as those already described reappear in the Altai region. There is now no doubt that the backbone of the Altai is a buge and lofty border-ridge, the Sailnghem, which includes the small alpine plateans of Ukek, the upper Tchuya, and Juvlu-kul, and runs from south-west to north-east, being a continuation of the border-ridge of the West Sayan. Its flat dome-shaped summits rise to about 10,000 feet, and the small alpine plateans just named range from 7800 to 8200 fect in clevation. It has a very stccp slope towards the northwest, i.e., towards tho broad valleys of the upper Bukb. tarma and Tchuya, and a refy gentlo slope towards the sonth-east, and its south-eastern hillfoots are on the level of the plateau of Khobdo (from 4500 to 5000 feet). A broad alpino region spreads to the north-west of the borderridge, but in the imperfect state of our knowledge it is
${ }^{1}$ Jivopisnaya Rossiya, rol, xi.; Stetches of N. IF. Momgotia, vols i. and iii. ; Addenda to Ritter's Asia.'
difficult to discriminate the real directions of 1 ts chains. Nevertheless, another lofty chain, containing the snow-clad Alps of the Katuñ (Katunskiye Byetki) and those of the Tchaya, and running also from south-west to north-east, parallel to the Sailughenı border-ridge, can be distiuguished iu the labyrinth of confusedly scattered mountains seen on our present maps. It is one of the most picturesque chains of the region, and contains the Byelukha peak, estimated at 11,000 feet, and the Alas-tu, of nearly the same height. It is pierced, however, by so many rivers, which rise on the north-west edge of the plateau, and find their way to the lowlands by a series of gorges, that its continuity could De easily overlooked. Farther to the north-east it joins, in the opinion of the present writer, the high chain on the left bank of the Kemtchik, which is continued by the picturesque Alps on the northern bank of the Us. A third system of mountain chains, also parallel to the above, can be distinguished in the succes. sion of the Terektinsk Mountains, those which are pierced by the Tchulyshman and those which follow the right bank of the Abakan; while traces of a fourth plication of the rocks may be discovered in the Tigeritsk Mountains, those pierced by the Biya below Lake Teletskoye, and the Kuznetskiy Alatau, ou the leit bank of the Abakan. A number of smaller, much lower, and shorter chains faintly appear as outer walls of this extensive alpine region. As for the Great Altai, or Altain-Nauru, our knowledge of which has been greatly increased by the recent explorations of M. Potanin, ${ }^{1}$ it may be regarded as a south-western border-ridge of the Khobdo plateau, with its steep slope facing towards the wide Dzungarian depression, or rather to the broad trench of the Ulungur. Its direction is nearly at right angles to the above, running from northwest to south-east, like the Tarbagatai Mountains (see Turiestan), and it is continued farther to the south-east by the Irdyn-ula and Artsa-bogdo Mountains, which separate the eastern Gobi from the Tarim depression. It is most probable that upheavals, having the same northwestern direction (which, according to M. Mushketoff, are in Central Asia more recent than the north-eastern ones), have to a certain extent modified the old nortl-eastern chains of the Altai, and complicated the chains of its alpine region. If so, the structure of the Altai would be very similar to that of the Turkestan mountains. A chain having a north-western direction-the Salair Mountainsshoots off from the main ranges of the Altai, between the Tom and the Tchumysh; it is about 170 miles in length, with a width of nearly 60 miles, and contains the best silver-mines of the region, as also several gold-washings. lts upheaval belongs to a more recent epoch than that of the Sailughem ridge, and (like the mountains of Turkestan, baving a north-west direction) it is due to dioritic rocks. In the Kuznetsk depression it is covered with deposits of the Lower and Upper Carboniferous, containing beds of coal. The Kuznetskiy Atatau, in which Humboldt saw one of his meridional upheavals, consists of a series of ridges rumning south-west to north-east, with further continuations within South Yeniseisk. ${ }^{2}$

The alpine region of the Altai is most picturesque; most of its chains, rising over 8000 and 9000 feet, are suowclad, and a great glacier descends from the hollows under the Byelukha peak; several other less known glaciers occur in the different "byetkis" (snowclad chaius). A thick forest vegetation clothes the mountain slopes, while beautiful valleys, often of great length, such as that of the Bukhtarma (180 miles) or that of the Uimoo and Koksu, offer on their fertile end well-shelterel floor's most favourable conditions for agriculture. Several lakes are met with. some, like the Juvlu-kul and Keudykty-kul on the small alpine platenus, at heigbts where anly the diwarf birch grows and the polar marmot takes up its abode,

[^184]while two others, Lakes Livtyranskoye and Teletskoye, respectivelyे 1170 and 1600 feot above the sea, from theil position anidst steep and picturesyue inountaius, orecall those of Geneva and Lucerne.

The Altai flora is veryrich. Althourh the European flora (iup cluding the beech) which clothed the Altai at a recent period has disappeared, and the Siberian flora invades its hillfoots from the north-west,' while the steppe flora is advancing from the south, still in a zone ranging from 1000 to 6000 feet ahove the sea the botanist has to admire a flora rich in briglit flowers, tall grasses, and shrubs, several of which are now conmon ornamestal plants in European gardens; and the zoologist discovers in the Altai tho meeting-place of the northern fauna (iucludiag the reiadeer) with that of the high Central-Asjan platcau (iucluding the tiger aud the two-bumped camel of Eactrianal
A strip of elevated plains or grassy steppes, also about 200 miles in breadth, girdles the alpine region upon the north-west. Its outer border can be roughly indicated by a line rumning north-east from Lake Gorkoye to Tomsk.' They have an average. altitude of from 700 to 1000 feet above the sea, and are covered with a luxuriant grass vegetation; the conditions for agriculture are excellent, and Russian villages are rapidly springing up. The south-west portion is known as the Kuruandinsk steppe. An innumerable succession of small lakes-rivers in the process of fornation-cover this steppe, where we have a system of parallel undulations, resulting in tributaries of the Ob , all flowing north-eastward with remarkable regularity.
Beyond the high plains, that is, all over north-western Tomsk, are the lowlands, which may be subdivided into two portions,-thio Baraba steppe in the south-west (see Tobolsk), and the marshy region of the Ob (the Vasyugan and Narym regions). The latter is one boundless marsh, a ferv settlements of native hunters occurring only along the rivers. The interior is for the most part inaccessible alike to boats and to human feet. Low hills, or rather swellings, intersect it, but eveu the highest points, barely 200 or 300 feet above the sea, are covered with marshy forests. The forests themselves grow on marshy ground; but where the trees disappear one sees for hundreds of miles nothing but green flowery carpets, which, when trodden on, treacherously yield under the unwary traveller. Similar in character must have been the marshes in which the Siberian mammoths and rhinoceroses of the Quaternary epoch found their graves. Only the light and broadhoofed reindeer, but not the elk, can cross them. This inhospitable region is inhabited only by Ostiaks, who have been driven into it by stress of circumstances, and support themselves partly by fishing and partly by hanting.
The Sailughem ridge, and tha high Khobdo plateau as well, consist of granites, syenites, porphyries covared only with the oldest metamorphic slates belonging to the Archaic formation (Huronian and Laurentian). Tho structure of the outer chains of the Altai is more complicated. Their back bone is alse composed of granites, porphyries, and porphyrites covered with metamorphic elates whish are intersected by layers of erystalline limestones, breccias, and veins of jade. ${ }^{3}$ Diorites, diabases, mugitic porpbyries, and hyperathcuites also a ppear, but they are of a more receat arigin. Silurian clay-slates are widely spread in the southern Altai. Devenian slaies and limestones are also developed in the southern Altai, and the metalliferons dcposits of Zmeinogorsk, Petrovsk, Riddersk, sec., belong to that age. Carboniferous dolomitic limestones and slates are widely apread both in the southern and northern Altai. After the Carboniferous epoch the southern Altai was oot agaia sub. merged, while the northern Altai was covered by the Jurassic sea, and has thick Jurassic deposits containugg a copious fossil flora and rich beds of coal. Basaltic eruptions, dating from the Jurassic period, have been found in the Salair MIountaius. Thick diluvial deposits cover the whole area, and in mauy valleys ere traces of immense former glaciers; in fact, the whole of the Sailughem ridgo must at one tinve have been clothed with an ice-cap. ${ }^{4}$

The couthern Altai is rich in silver, copper, lead, and ziuc; while in the Atatau are concealed its chief auriferous alluvial (or diluvial) deposits, iron-ores, and coal-seams. The mineral wealth of the Altai is really immense, hut only a very few of the mines already knowu are worked. Iu 18814030 th of gold, 14,820 tb of silver, 13,100

[^185]cwts. of lead, 6720 cwts. of copper, $240,000 \mathrm{cwts}$ of coal, 330,000 cwts. of ealt, and $30,000 \mathrm{cwts}$. of bitter salt were obtained. In the same year only 3000 civts of iron were mannfactured, and that metal is still imported from the Urals. The jade, beautiful porphyries, and the like of the district, which are cut into works of art at the crown works of Kolyvañ, are well known through the urns and vases ahown at the St Petersburg Hermitage. The mioeral waters of the Altai are of high quality.

Tomsk is watered mainly by the Ob end ita tributsries, only its south-east corner draining into the Abakan, a tributary of the Yenisei. The Ob, formod by the union of the Biya and Katui, has within the government a course of more than 800 miles, and is navigated as far as Barnant and Biysk. Its tributaries, the Tom (450 miles), the Vasyugan (530 miles), the Ket (230 miles), and the Tym (200 miles), are all navigablo. The Tchulym and the Tchumysh are also great rivers. Of tribntaries of the Irtish, the Bukhtarma, the Om, the Uba, and the Tara are worthy of notice. As many as 1500 lakes have been counted on the maps, but this number is exceeded by tho reality. Some of them are alpine; others dot the steppes or the marshy tracts. Lake Tcheny, notwithstanding its rapid desiccation, still covers 1265 square miles. Many brackish lakea, Kutundinsk, Kutchuk, \&c., attain a great size, and some small aalt lakes yield about $100,000 \mathrm{cwts}$, of salt.
The climate is very severe, and has, moreover, the disadrantage of being very wet in the morth-west. The average jearly tempera. tures at Tomak, Kainsk, and Barnant are $30^{\circ} \cdot 2,31^{\circ}$, and $32^{\circ} \cdot 7$ (January, $4^{\circ},-6^{\circ} \cdot 2$, and $3^{\circ} \cdot 7$; July, $65^{\circ} \cdot 5,68^{\circ} \cdot 5$, and $62^{\circ} \cdot 2$). The Altai steppes, enjoying a much drier climate than the low. lands, are covered with a beautiful vegetation, and in the oheltered valleys corn is grown to heights of 3400 and 4250 feet.

The population, which is rapidly incrensing, in 1882 reached 1,134,750. The Russians are in a large majority, the indigenons inhabitants numbering in 1879 only 63,600 , or 6.6 per cent. of tho aggregate population. They include 23,600 Altaian Tartara, 5730 Teleutes, 17,020 Mountain Kalmucks (see Tartars), 10,000 Tomsk Tartars, 2920 Samoyedes, and 4210 Ostiaks. The prevailing religion is Greek-Orthodox, but there are also nome 50,000 Nonconformists, 7320 Catholics, 2600 Jewa, 10,700 Mohammedans, and about 28,000 pagans.

Agricultare is the prevailing occupation. It is most prodnctive on the elevated plains of Tomsk, Mariinsk, Barnaut, Kurnetsk, and Biysk. Cattle-Ureeding is much developed, especially in the Kutundinak steppe; and bee-keeping is an important source of wealth. Fishing and hunting are extensively carried on in the forest region. Nining occupies aeveral thousands of men in the Altai. Manufactures are insignificant, the aggregate production -chiefly from distilleries and tanneries-hardly amounting to $£ 250,000$. Trade is actively carried on at Tomak and Barnaut, which are two great centres for the export and import trade of Siberia with Russia. The Biysk merchants enrry on exchange trade with Mongolia and China. There are eight gymnasia (696 boys and 569 girls in 1883) and 225 primary scbools (5680 boys, 1730 girls). The government is divided into aix districta, the chicf towna of which (with populations in 1884) are Tomsk $(31,380)$, Baruaut (17,180), Biyak (18,960), Kainsk (4050), Kuznetsk (7310), and Mariinsk (13,090). Narym (1600) also has municipal institutiona; it is the centre for the administration of the vide Narym region. Of the above towns only Tomsk and Barnant have the aspect of European towns. Barnant, capital of the mining district of the Altai, which belongs to the "Cabinet of the Emperor," is a wealthy city, with a mining echool and laboratory, a botanic garden, a museum of mining and natural history, and a meteorological observatory. Kotyvañ, with a atone-cutting manufactory, has 12,250 inhabitanta. Several mining villages are more important than the district towns:-Zyryanovsk (silver-mine; 4500 inbabitants), Riddersk, Zueinogorsk (6160), Suzunsk (540)), and Salairsk (3500).
(P. A. K.)

TOMSK, capital of the ahore government, is situated on the Tom at its confluence with the Ushaika, 27 miles abcro its junction with the Ob , and 2377 miles from Moscow. It is one of the chief cities of Siberia, second only to Irkutsk in population and trade importance. The great Siberian highway from Tyumeũ to Trkutsk passes tbrough Tomsk, and it is the terminus of the navigation by steamer from the Urals to Siberia. It has, moreover, communication by steamer with Barnaut and Biysk in the Altai. The position of Tomsk determines its character, which is not that of an administrative centre, like so many Russian cities, but that of an entrepôt of wares, with many storehouses and wholesale shops. Before 1824 it was a more village; but after the discorery of gold in the district it grew rapidly ; and, although the immense
wealth that accumulated suddenly in the hands of a ferm proprietors of gold diggings was as rapidly squandered it continued to maintain its importance, owing to the navigation on the Irtish and the Ob , which meanwhile had grown up. It is built on two terraces on the high right bank of the Tom, and is divided into two parts by tho Ushaika. The streets are rather narrow and steep ; many houses of the richer merchants are of stone, but rather heavy in appearance, and altogetber the aspect of the strects is not attractive. The best building is that of the future aniversity, which is a spacious and elegant structure, with ample accommodation for library, museums, and clinical hospitals. The Government has not as yet given permission to inaugurate the building. A large cathedral, begun some fire-and-twenty years ago by proprietors of gold diggings, collapsed after considerable progress had been made. The industries are almost entirely confined to tanning and the manufacture of carriages. The trade is of great importance, Tomsk being not only a centre for traffic in local produce, in which sledges $(50,000$ every year) and cars are prominent items, but also for the trade of Siberia with Russia. The population in 1884 was 31,380 .

TONGA. See Friendly Islands.

TONG-KING, Tung-King, Tonquin, or, as it is cafled Sè man by the Annamese, Dong-king, consists of that portion of xri, Annam between $18^{\circ} \mathrm{N}$. lat. and the frontiers of the IX Chinese provinces of Kwang-se and Yun-nan, with an area of 60,000 square miles. On the W. it is bounded by the Tran-ninh range, which forms the limit of the Lao states, and on the E . by the sea. In shape it resembles, roughly speaking, an isosceles triangle, having its apox at its juncture with Annam and its base along the Chinese houndary. The name Tong king, "the eastern capital," was originally applied to Hanoi, but was eventually adopted as that of the whole country. It is the same word as Tokio (q.v.).

Geographically Tong.king is divided into three welldefined areas. First, there is the delta of the Song-kei ("Red river") and its affluents, which, beginning at Sontay, widens out into the low lands which constitute the most fertile district in Tong-king, and within which are situated the principal cities of the country. Here is grown the rice which constitutes 39 per cent. of the total exports from Tong-king, and which is reckoned in the Hong-Kong market to be equal in quality to the rice from Siam and superior to that from Cochin-China. During the rainy season this part of the country, with the exception of the embankments, is under water, but notwithstanding this the climato is fairly healthy, and the prevalence of ferer and dysentery is not so great as might be expected. From the delta northward and westward rise plateau districts, while westward of $103^{\circ} \mathrm{E}$. long. there stretches a forest region about which very little is known, but which is said by the natives to be inhabited only by savages and wild beasts.

Politically the country is divided into sixteen provinces, of which the following seven are in the delta mentioncd :-Bac-ninh, Sontay, Hanci, Hai-Dzuong, Hung-yen, Nam. Dinh, and Ninh-Binh. Five provinces constitute the upland districts, viz., Cao-Banh, Lang-son, Thai-Nguyen, Tuyen-Kwan, and Kwang-yen; while the forests form the prorince of Hung-hoa. The main geographical feature in the country is the Song-koi, which, taking its rise near Tali Fu, in Yun-nan, enters Tong king at Lao-kai ("the Lao boundary"), and flows thence in a southeasterly direction to tho Gulf of Tong-king. It was this river which mainly in the first instance attracted the Frencb to Tong king, as it was beliered by the explorers that, forming the shortest route by water to the rich province of liun-nan, it would prove also to be the most convenient and expeditious means of transporting the tin, copper, silver and
gold which are known to abound there. This belief has, however, proved fallacious. The upper course of the stream is constantly impeded by rapids, the lowest being about 30 miles above Hung-hoa. Beyond this point navigation is impracticable during the dry season, and at all other times of the year goods have to be there transferred into flat-bottomed boats built for the purpose. Within the limits of Yun-nan the navigation is still more difficult. Near Sontay the Song-koi receives the waters of the Black river, the Clear river, and other streams, and from that point divides into a network of waterways which ompty themselves by countless outlets into the sea.

Hanoi, the capital, is a fine city, and stands on the right bank of the Song-koi, at a distance of 80 miles from the sea. The commercial town extcuds along the water face for a distance of a mile and a half, while behind it stands the citadel, which encloses within its walls the palace, the treasury, the court of justice, the royal pagoda, the prison, the barracks, public offices, and official residences. Embroidery and mother-of-pearl work are the principal industries of Hanoi, which never has been and probably never will be a great commercial centre. But, notwithstanding this, the population is said formerly to have numbered 150,000 , a number which has of late years probably been reduced by at least one-third.

Next in importance to Hanoi is Nam-Dinh, on one of the lower branches of the Song-koi. It is the centre of an extremely rich silk and rice district, and was before the war a great resort of Chinese merchants. But the chief place of trade is Hai-plong, on the Song-tam-bac Canal, It miles from the sea. This is the port of Tong-king, and its trade represents the foreign commerce of the country. In 1880, the last year of anything like normal trade, goods were imported to the ralue of $5,467,315$ francs, and the exports amounted to $7,507,528$ francs. Of the imports 34 per cent. consisted of English cotton goods and yarn, 21 per cent. of opium, 11 per cent. of Chinese medicines, 9 per cent. of Chinese water-pipe tobacco, 5 per cent. of tea, and 20 per cent. of miscellaneous goods. From 97 to 98 per cent. of these goods came from Hong-Kong. Saigon furnished about $\frac{1}{2}$ per cent., and rather more than 2 per cent. represented the trade from Annam and elsewhere. The exports were in the following proportions :rice, 39 per cent.; raw silk and silk piece goods, 21 ; tin, 16 ; lacquer oil, 6 ; and miscellaneous goods, 18. Of these 79 per cent. were shipped to Hong-Kong, 16 per cent. went to Saigon, and the remaining 5 per cent, were distributed among the coast ports.

The mineral wealth of the country is doubtless considerable, though so little has been done in the direction of working it that it is impossible to form any idea of its richness. According to Major-General Mesny, there are flourishing gold-fields in seventeen districts, while silver and copper mining occupies a great deal of native and Chinese labour. Ouly very small quantities of these minerals, however, are produced in evidence.

The population of Tong-king is estimated at about 12,000,000, and consists of Tong-kingese, Chinese, and an admixture of Lao from beyond the western frontier. The Tong-kingese belong to the Indo-Chinese stock. They are taller and a finer people than the Annamese, and they are more frivolous and excitable than their northern neighbours, the Chinese. Their intelligenre is, generally speaking, of a very low order; they are dirty in their habits; and their natural timidity serves to make them deceitful. As traders they show little enterprise, and are quite unable to compete with the Chinese, into whose hands the commerce had, before the arrival of the French, entirely fallen. Their spoken language is allied to the Cambodian, while Chincse forms the medium of literary communication.

The Chinese records carry the history of Tong-king as far hack as the 22d century b.c., but, as the data are neither well sutkeaticated wor particularly interesting, we need not dwell apon them. There is, however, one mention of Tong-king, or Yueh, as it was then called, in the 12th century B.c., which acquires inportance from the fact that ambassadors from that country ale said to have arived at the Chinese court, bringing with them "aonth-pointing. chariots." These are supposed by some to have been mariner'a compasses, but it is difficult to prodounce any opinion on a statament so obscure. During the reign of Che Hwang te (218 в.c.), the emperor who maile himself famous by building the Great Wall of China and burning the books, a Chinese army invaded Tong-king and captorcd the town of Luliang, possibly the modern Hanoi. The occupation, however, was only temporary, and it was not until the rise to power of the Han dynasty that any serious attempt was made to subjugate the conntry. At that tione a Chinese general, Choou T"o, who hat established a principality consisting of the two modern provinces of Kwang-tung and Ǐwang-se, with his capital at Canton, invaded Tong-king, but wes defeated and driven out of the couatry by the ruler, An-yang, whose victeries were achieved mainly by the help of a foreign "diviue mechanic." This man, whoever he may have bcen, seems to have been thrown aside after serving his immediate purposo; and, having. thus deprived himself of his right hand, An-yang fell an easy victim wheo attacked by a secoud army sent by Chaou T'o. On the oubjugation of the empire by the Han sovereign, Clazou T'o's principality nas absorbed with the rest, and in 116 B.o. Tong-king became a lependency of Clina.

But this connexion brought no peace to the country, and for centuries rebellion followed on rebellion. A particular uprising io the 1st century is noticeshle from two sisters, Chêpg T'sêh and Chêng Urh, leading the rehel forces against the Chinese garrisons, with ouch snccess that the celebrated Ma Yuen hat to be sent against the malcontents. After an arduous campaign Ma dispersed the rebels and captured and cxecuted the two sisters, thus patting an end to the rebellion. The next fourteen centuries furnish a perpetual record of wars and rumours of wars, the disconwectel uarrative of which is generally uninteresting and sometimes unintelligible. In 1427 Li Loi acquired the throne, as so many of his predecessors had done, by violent means, but, uulike them, he established aome degree of peace and order in the land. In the following century, however, the spirit of revolt broke ont, and one of his successors owed the maintenance of his throne to the skill of his general Ngujen Dzo, on whom the title of hereditary viceroy was consequeatly conferred. This viceroy gradually assumed the supreme authority in the district under his contiol and virtually separated Tong-king from Anoam, holding the first under his own sway and leaviog the southero portion of the country to the roi faineant. In this disunited condition the two countries remained during the 17 th century and part of the 18th, till a successor of Nguyen invaded Annam, captured the imporial city of Hué, and dethroned the king, Gia Long, who fled to Siann. The Siamese sovereiga entertained the fugitive with hospitality, but declined to help him to recover his throne. It happeod, however, that at this time (1787) the Jesuit establishment of Bangkok was presided over by Bishop Pigneaux de Betaine, who thought he saw in the political condition of Annam a means of establishing the power of France in the eastern portion of Indo-Clina. With this object he proposed to Gia Long that he shonld accomany him to Paris to enlist the aid of Lous XVI. for the recovery of his throne. This the king declined to do, but as a compromise he sent his eldest son. The young prince was cordially received by Louis, before whom the bishop land the following reasons for the interference of France on hehalf of Gia Long. "The balance of political power in India appeare at the present moment to be largely in favour of the English, and one may be justified in looking upon it as a matter of no little dificulty to restore the equilibrium. In my opinion the establishment of a French colony in Cochin-China will be the surest and most efficacious means to the end. . . . The most certain way of damaging the English in India is to ruin, or at any rate to weaken, her commerce in time of peace. Being situated nearer to China, we should undoubtedly absorb much of her trarle. . . . In time of war it would be still more easy to stop all commerce between China aud any hostile nation. . . From such a coign of vantage it would be easy to interfere with the designs which the English evidently have of extending their frontier more to the cast."
The embassy resulted is a treaty with Gia Long, by which the French king engaged to restore that monarch to his throne on condition that he accepted the virtual protectorship of France over Annam. But even before the initial steps towards the fulfilment of this contract could be carried out, the political uprising which finally brought the French king to the scaffold made all interference in the East impossible. In these circumstances the bishop determined to raise a sufficient force from the French and other adventurers who then frequented India and the neighbouring countrics, and, with an army so recruited, he landed in Annam. The Anna: mese resistance was of the_feeblest kind; the usurper's ${ }^{\text {power was }}$
broken at the first encounter, and Gia Long once again ascended his throns. As a reward for the services thus rendered to him, he extended a liberal protection to the Roman Catholic missionaries and their colnverts, and engaged French officers to fortify his towns and to drill his troops. He soon found, however, that his new allies had more smbitious desigas then could be satisfied lyy doing him scrvice. He therefore vitndrew his countenance from them, and emphasized his displeasure by leaving his throne array from his eldest son, who had pleaded his cause in Paris, and by giving it to his youngest son. This change of policy told, as was natural, with greatest forcc on the missionarics and their converts in the interior of the country. From 1833^{2} to 1839 eleven missionaries were put to death, and thousands, it is said, of the native Christians suffered martyrdom. Neither change of sovereiga nor varying circumstances brouglit any relief to the persecuted Christisns, until in 1859 the French Government determiaed to intervene on their behalf. In that year Admiral Rigault de Genouilly took Saigon by assault, and was attempting to open negotiations with the king of Annam, when the outbreak of the China war compelled him to satisfy himself with holding the captured town. So soou, hovever, as the Peking treaty was signed, the French resumed active operations in the neighbourhood of Saigon and took possession of the provinces of Mitto and Bienhoa in Cochin-China. These victories led to the conclusion of a treaty with the king, Tu Duc, which, lowever, did not prevent the French from adding the provinces of Kinhlnong, Chandoc, and Ha-tien to their acquired territory.

Having thus frmly established themselves in Annam, tleey began to turn their attcation to Tong-king, attracted by the roported richaess of its mineral wealth. They found a ready pretext for iutcrfering in its affairs in the disturbances arising from the invasion of its northern provinces by the disbanded followers of the Tai-ping rebels. Acting on the protectorship which they professed to excrcise over all the territories of Tu Duc, they proposed to him that a joint expedition composed of Fronch and Aunamese troops should be sent to quell the disturbances. On Tu Duc declioing to accede, the French adanial was on the point of starting "to protect" Tong.king, when as before the outbreak of war put an end to the enterprise. The events of 1870 forbade any advance in the direction of Tong-king, but the return of peace in Europe was once more the signsl for the renewal of hostilities in the East. The appearsace of Garnier's work on hisexpedition up the Mekong aroused sgain an interest in Toug-king, and the reported wealth of the country added the powcrful motire of self-interest to the yearnings of patriotism. Already MI. Dnpnis, a trader who in the pursuit of his calling liad penctrated into Yun-nan, and had thus discovered that the higher waters of the Song-koi were navigable, hsd visited Hanoi with e small force of desperadoes, and was attompting to negotinte for the passage up the river of himself and a cargo of military atores for the Chinese outhorities in Yun-nan. Meanwhile Captain Senez appeared from Saigon, hsving received instructions to open the route to French commerce. But to meither the trader nor the naval officer wonld the Tong-kingese lend a favourable ear, and in default of official permission Dupuis determined to force his way up the river. This lie succeeded in doing, but arrived too late, for he found the rehellion crushed and the stores no longer wanted. On his return to Hanoi, Dupuis found that the oppositien of the authorities had gathered strength during his absence. His arrival served to restore the position of the French, and, not wishing to nake an open attack upon them, the Tong-kingese general wrote to the king, begging him to induce the goveraor of Saigon to rcmove the intruder. An order was thereupon issued calling upon Dupuis to leave the country. This ha declined to do, and, aifter sonse aegotiations, Garnier with a detachment was eent to Hanoi to do tho best he could in the difficult circumstances. Garnier threw himself heart and sonl into Dupuis'a projects, and, when the Cong-kingesa authorities refused to treat with him except on the sulject of Dupuis's expulsion, he attacked the citadel on November 20, 1873, and carried it by assault. Having thus secured his position, be seat to Saigon for reinforcements, and meanwhile seat small detachments against the five other importaut fortresses in tho delta (Hung-yen, Phu-ly, Hai-Dzuong, Ninh-Binh, and NomDinh), and captured them all. The Tong.kingese now called in the help of Litl Yung-fu, t.sa leader of the "Black Flags," who at once marched with a large forca to the scene of sction. Within a few days he recaptured several villages near Hanoi, and so threatening did his attitude appear that Garnier, who had hurried hack after capturing Nam-Diah, made a sortio from the citadel. The movement proved a disastrous one, and resulted in the death of Garnier and of his second in command, Balny d'Avricourt.

Meanwhile the news of Gernier's hostilities had alarmed the governor of Saigon, who, having no desire to be plunged into B var, seat Philastre, an inspector of native affaira, to offer apologiea to the ling of Annam. When, however, on arriving in Tongking Philastre heard of Garnier's death he took command of the French forces, and at once ordered the evacuation of Nam.Dinh, Ninh-Binh, and Hai-Dzuoag,-a measure which, however advan. tagrous it may have been to the French at the moment, was most
disastrons to the native Christian population, the withdrawal of the French being the signal for a general massacre of the converts, In pursuance of the same policy Philsstre made a convention with the authorities (Februsry 6, 1874), by which he bound his couatrymen to withuraw from the occupation of the country, retaining ouly the right to trade at Hanoi and Hai-phong, and agreed to put an end to Dupuis's aggressive action. On the 15 th of March a treaty was signed at Saigon.

For a time affairs remained in statn quo, bnt in 1882 Le Myre de Villers, the goveruor of Saigon, sent liviere with a small force to open up the route to Yum-nan by the Song-koi. With a curious similarity the events of Garnier's campaign were repested. Finding the authorities intrsctable, Riviero stormed and carried the citadel of Hanoi, and then, with very slight loss, he captured Nam-Diah, Hai-Dzuong, 'and other towne in the delta. And once again these victories brought Lin Yuag-fn and his Black Flags into the neighbourhood of Hanoi. As Garnier had done, so Riviere hurried back from Nam-Dinh on news of the threatened danger. Like Garaier also he headed a sortie against his enemies. and like Garnier he fell a victim to his own impetuosity.

In the meantime the Annamese conrt had been seeking to enlist the help of the Chinese io their contest with the French. The tio which bound the tributary nation to the sovereign state hed been for many generations slackened or drawn closer as circumstances determined, but never had it been entirely dissevered, and from the Annamese point of view this was one of the occasions when it was of paramount importance that it should be acknowledged and acted upon. With much more than usual regulsrity, therefore, the king despatched presents and letters to the court of Peking, and in 1880 he sent a special embassy, loaded with unusually costly offer. rags, and with a letter in wnich his position of a tributary was emphatically asserted. Far from ignoriag the responsibility thrust upon him, the emperor of China ordcred the publicstion of the letter in the Peking Gazelle. The death of Riviere and the defeat of his troops had meanwhile placed the French in a position of extreme difficulty. The outlying garrisons, with the exception of Nam-Dinh and Hai-phong, were at once withdrawn to Hanoi, and that citadel was made as secure as circuastances permitted. The Black Flags swarmed round its walls, and the reinforcements brought by Admiral Courbet sad General Bouet were insufficient to do more than kecp them at bay. So continued was the pressure on the garrison that Bonet determined to make on advance upon Sontay to relieve the blockade. After gaining 60 me trifligg saccesses, ho attacked Vong, a fortified village, but he met with ouch resistance that, after suffering considerable loss, he was obliged to retrest to Hanoi. In the lower delta fortune sided with the Freuch, and slmost without a casualty Hai-Dzuang and Phu-Binh fell into their hands. These snccesses led to an ultimatum being sent to the king of Annam, in which were demanded the fulfiment of the treaty of 1874 and the acceptance of the protectorate of France over the whole of Aanam, iucluding Tong.king. This docunent met with no favourable reception, and, as at this moment is reinforcement of 7000 men srrived from France, Courbet, determining to supersedo diplomacy by arms, appeared with his fleet before Hué. He found that, though Tu Duc was dead, his policy of resistance was maintained, and he therefore stormed the city. After a feebla defence it was taken, and the admiral concluded a treaty with the king (August 25, 1883), in which tha Freach protectorate was fully recognized, the king further binding himseli to recall the Annamese troops serving in Tong-king, and to construct a road from Saigon to Hanoi.

Though this treaty was exactec from the king uader pressure, the Freuch lost no time in carrying out that part of it which gave them the authority to protect the country, and on the let September Bovet again advanced in the direction of Sontay. But again the resistance he met with compelled him to retreat, after capturing the fortified post of Palan. The e日rious nature of the opposition experienced in these expeditions iaduced the Freach commanders to swait reinforcements before again taking the field. Mcanwhile, on the determination to attack Sontay becoming koown in Paris, the Chinese ambassador warned the ministry that, since Chinese troops formed part of tha garrison, he should consider it ss tantamonnt to a declaration of war. But his protest met with no consideration. On the arrival of reinforccments an advenca was agaiur made; and on the 16 th December, after some desperate fighting, Sontay fell.

The immediate object of the Fronch commsnders was at this time to make themselvee secure in the delta, and to inflict buch chestisement on the Black Flags aud their allios as would prevent their disturbing the peace of the garrisons. This could not be attained so long as Bac-Ninh remained in the hands of the enemy. Geaersls Négrier, Brière da l'Isle, and Millot accordingly marched against tha town, and began to shell it. But it was already deserted, and Millot entered the gates withont striking a blow. Thus, while ona part of the progranme was fulfilled to the letter, the other part, which was to have scaled the fate of the garrison, failed conspicuously. In, these circumstances it was though
advisable to push on along the great northeeastern road to China; and Négrier advainced about 30 miles towards Lang-son, captured a village there, and then returaed to Bac-Ninh.
Meanwhile Briere de l'Isle followed up that pertion of the BacNinh garrisou which had escaped along the northern road in the direction of Thai-Nguyeu. He captured the fort of Yen-Te, and marched on to Thai-Nguyen, where, as on so many occasions, there was a great display of martial ardour so long as the French were beyond firing distance, but the discharge of a few shells completely discomfited the defenders, who fled out of the north gate as the French marched in at the south. As Brière de l'Isle had positive orders not to hold the town, he burat some of the buildiugs, and evacuated it. The Chinese troops immediately returned, and again were driven out a month later, only to return again on the withdrawal of tho French. Once more, however, a column was sent against the city, which on this occosion was burnt to the ground.
The whole of the lower delta was thus made accure in the hands of the French. Hung-Hos (a town about 15 miles north-east of Sontay) and Tuyen-Kwan (a fortified place about 40 miles farther north) both fell hefore the invaders, but from both the garrisons escaped practically unscathed.
In the meantime M. Fouraier, the Freach consul at Tientsin, had been negotiating for peace, so far as China was concerned, with Li Hong-cheng, and on Mey 17, 1884, had signed and sealed a memorandum by which the Chinese plenipotentiary agreed that the Chinese troops should evacuate the northern provinces of Tongking "inmediatsment." This expression was undeniably vague, and the Freach general in Tong-king, impatient of delay, in June dispatched Colonel Dugenne at the head of a strong force to occupy Lang-sor. The expedition was badly arranged; the baggage train was far too unwieldy; and the pace at which the men were made to march was too quick for that scorching time of the year. They advanced, however, within 25 miles of Lang-son, when they suddenly came upon a Chinese camp. An irregular engagement commenced, and, in the pitched battle which ensued, the Chinese broke the French lines, and drove them sway in headloog flight. This brought the military operationa for the season to a close.
During the rainy. season fevers of all kinds became alarmingly prevalent, and the zumber of deaths and of men invalided was very farge. In the meantime, howerer, an expedition, led by Colonel Donnier, against the Chiuese garrison at Chu, abont 10 miles aoutheast from Lang-kep, was complately auccessful; and in a battle fought near Chu the Chinese were defeated, with a loss of 3000 killed, the French loss being only 20 killed and 90 wounded. In the skirmishes which followed the French were generally victorious, but net to such a degree as to warrant any enlargement of the campaign.
The arrival in January 1885 of 10,000 men having brought up the force under Brière de l'Isle to 40,000 , he ordered an advance towards Lang-son. The difficulties of transport greatly impeded his movements, still the expedition was successful. On the 6 th Februsry three forts at Doag-Song, with large supplies of stores and ammunition, fell into the hands of the French. Three days" heavy fighting made them masters of a defile on the read, and on the 13th Lang-son was taken, the garrison having eracuated the tewn just before the eutrance of the conquerors. With his usudl energy Négrier pressed on in pursuit to Ei-hea, and even ceptured the frontier town of Cua-ai. But Briere de l'Isle bad now to hurgy back to the relief of Tuyen-Kwan, which had been attacked by a Chinese Lorce, and Négrier was left in command at Lang-son. The mithdrawal of Briere do l'Isle's division gave the Chinese greater confidence, and, though for a time Negrier was ablo to hold his own, on the 22d and 23d of March he sustained a severe check between Lang-sou and Thatke, which was finally couverted into a complete roat, his troops being obliged to retreat precinitately through Leng-son to Than-moi and Dong-Song. Brierc de liIsle reached Tuyca-Kwan on the 3d of March, and found the Black Flags and Yuaman brares atrongly pested on the side of an almost inaccessible pass. After having sustained a succession of attacks for eighteen days, and seven actual assaults, the delight of the garrisou at geeing Brire de l'Isle'e relieving force may be imagined. It was while matters were in this position that Sir Robert Hart succeeded in regotiating pasce betreen the two countries. By the terme agreed ou (April 6, 1895), it was stipulated that France was to take Toug-king under its protection and to cracuate Formosa. The Chinese undertook st the same time to oxpend $80,000,000$ frsnes on the construction of rosds in South China
The future fortanes of the colozy must depend greatly on the administrative ability of the governors selected to rule over it. The death of Panl Bert was in this respect a great loss to Tong-king. See France and Tonj-King, by J. G. Scoti, 18s5; Tondin, by C. B. Norman, 1884: Tunating, by 7 . Mesnéa, 18S4.
TONGUE. Soo Anatomy, vol. i. p. 895, and Taste.
TONNAGE, Register Tonfage, or International Register Tonnaar, is the unit on which the assessment of dues and charges on shipping is based. The system at prebent in force is known as the Moorsom system. A register
ton is 100 cubic feet of internal volume. Thus a vessel of 100,000 cubic feet of internal space within the points of measurements prescribed by the law is 1000 tons register. Vessels are sometimes bought and sold under this unit. The tonnage rules, which are very full and elaborate, are contained in part ii. of the Merchant Shipping Act, 1854, sections 20 to 29 inclusive, and in section 9 of the Merchant Shipping Act, 1867, the latter being a special section in reference to a deduction from the gross tonnage in respect of crew space, which space must be fit for the proper accommodation of the men who are to occupy it to entitle to such deduction. This enactment has led to great improvement in seamen's quarters.

Sestion 60 of the Merchant Shipping Act, 1802, provides on the point of international tonnage as follows:"Ships belonging to foreign countries which have adopted the British system of tonnage need not be remeasured in this country." The British system has been adopted by the following countries at the dates named :-United States, 1865 ; Denmark, 1867; Austria Hungary, 1871; Germany, 1873 ; France, 1873 ; Italy, 1873 ; Spain, 1874 ; Sweden, 1875; Netherlands, 1876 ; Narway, 1876; Greece, 1878; Russia, 1879; Finland, 1877; Hayti, 1882; Belgium, 1884; Japan, 1884. It is also under consideration by China.

There are slight differences in the rules for deduction for engine room in some of the countries, but owners or masters of foreign steamships, where this difference exists. may have the engine-rooms remeasured in the United Kingdom if they desire; in other words, their net tonnage may bo reduced to exact English measure.

The British system was also mainly adopted by the International Tonnage Commission assembled at Constantinople in 1873, the rules of such commission forming the basis of dues levied on the ships of all conntries passing through the Sue之 Canal. A special certifcate is issued in the respective countries for this purpose. The main point of difference from the British system is with respect to the deduction for engine room.

There are three terms used in respect of the tonnage of ships,-namely, tonnage under decks, grosis tonnage. and register tonnage.

In obtaining the gross measurement the space under the tonnage deck is first measured-sections 20 and 21 (1), (2), and (3); then the space or spaces, if any, betweec the tonnage deck (the tonnage deck is the second deck from below in all vessels of moro than two decks and the upper deck in all other vessels) and the upper decksection 21 (5) of Act ; and finally the permanent closed-is spaces above the upper deck available for cargo, stores. passengers, or crew-section 21 (4) of Act.

The allowance for engine room is governed by the percentage the net engine room-that is, the space exclusive of the coal bunkers-hears to the gross tonnage, and varies in paddle- and screw-steamers as laid down in section 23 of the Act.
Io obtaining the tomage ander tonnage deck, snips are dividec in respect of their length into five classes as follows:-

$$
\begin{aligned}
& \text { Class 1. Length } 50 \text { feet and nnder.................. Snto } \frac{4}{6} \text { equal parts. }
\end{aligned}
$$

The following is an epitome of the rule for tomnage under the tomage deck:-
Length is taken inside on tonnage deck, from inside of plank at .ern to inside of midship stern timber or plank; the length so taken, allowing for rake of bew and of atern in the thickness of the deck, and one-third of the round of beam, is to be divided into the prescribed number of equal parts "(which determines the stations of the areas), eccording to the length of vessel, as ebove.
Area 1 is at the extreme linit of the bow. Ares 2 is at the first point of division of the leagth. The rest are mumbered in succession, the last being at the extrime liznit of the stern.
Depths are taken at cach point of division of the leag th, or station
of each area, from the underside of the tonnane deck to ceiling at inuer edge of timber strake, deductiug therefrom one-third of the round of the bean. The depths so taken are to be dirided into four aqual narts, if midship depth should not axceed 16 feet; otherwise into aix equal parts.

Breadths are taken at each point of livision of tha depths aod also at the upper and lower points of the depths. The upper breadth of each area is to be set domn in its respectiva column in a lize with No. 1 (left-liand numerals), and the rest in succession.
Tho number of columns for areas will vary according to the length, as in the several classes, and will be equal to the number of parts into which the length is divided plus one.

The spaca or spaces betreen decks above the tonnege deek are dealt with by a similar formula. A mean horizontal area of the space, or cach spaca if mora than ona, is found and multiplied by the mean height.
The permanent closed-in smees above the upper deck availabla for cargo, stores, passengers, or crew are measured in the samo manner by finding a mean area and multiplying by a mean heiglat.
The measurement of net engine room is governed by the arrange ment of the space, and is measured as a mhole or in parts as may bo required by its particular form

The following is an examplo under class 2, depth under 16 feet, of tomnage under tonnage deck:-

This formula is also applinable for fioding displacement tonnage of ehips, that is, the external disphacement measured by taking transerse areas to the height of the load water-line to find tho cubic content, which coutent divided by 35 givea the displacement in tons weight, the diference between the light and load dispiacement repiesentiog the carrying powers of a vessel in tons.
"The rule," asye Mr Moorsom, "is founded on the parest mathematical principles. It was first published io the Philusophical Transactions of the Royal Society of 1798 hy Attwood, in his ' Disquisition on the Stability of Ships,' who there descrihes it as one of those formale invented by Sterling for measuring spaces bounded by irregular curres, founded on Sir Isaae Nowton'a dis. covery of a theoren-a discovery which the imarertal nutbor himself considered anongst his happiest inveutions-by mhich the areas of all enrvilinear spaces not grometrieally quadrible nor discoverable by any known rules of direct investigation are so closely approximated as to amouat to geometrical exactuess."
Mr Allan Gilmour at tha midule of tha present century expressed bis opinion, after a careful consideration of the tonagge question, which ras receiving much attention at that time owing to the law 8 and 9 Vict. cap. 89, which had been arlopted in place of the old tonage law 13 Geo. III. cap. 74, net giving satisfaction, that the "system framerl by Mr Moorsom mill as it were compel every one to build strong fast-sailing, and good scagoing ships, and that, in fact, it will stand as long as the world remains. ${ }^{\text {. }}$ It will be adnitted that great progress has been mado in every way in British shippiag of late jears, and for tl is due praiso must ba given to the influence of the present tonnage laws. (W. M^{*}.)
TONNAGE AND POUNDAGE were customs duties anciently imposed upon exports and imports, the former being a duty upon all wines imported in addition to prisage and butlerage, the latter a duty imposed ad valorem at the rate of twelrepence in the pound ou all merchandise imported or exported. The duties were levicl at first by agreement with merchants (poundage in 1302, tonnage in 1347), then granted by parliament in 1373, at first for a limited period only. They were considered to be imposed for the defence of the realm. From che ctigs of Henry VI. until that of James I. they were usually granted for life. They were not granted to Charles I., and in 1628 that king took the unconstitutional courso of levying them on his own authority, a course denounced a few years later by 16 Car. I. c. 18 , when the Long Parliament granted them for two months. After the Restoration they were granted to Charles II. and his two
successors for life. By Acts of Anne and George I. the duties were made perpetual, and mortgaged for the public debt. In 1787 they were finally abolished, and other modes of obtaining revenue substituted, by 27 Geo . III. c. 13.
Poundage also signifies a fee paid to on officer of a court for his services, c.g., to a sherifi's officer, who is entitled hy 28 Eliz. c. 4 to a poundagy of a ahilling in the pound on an cxecution up to £100, and sixpeuce in the pound above that aum.
TONQUA BEAN. The Tonqua, Tonka, or Tonquin bean, also called the coumara nut, is the seed of Dipterix odoruta, a Leguninous tree growing to a height of 80 fect, native of tropical South America. The drupe-like pod contains a single sced possessed of a fine sweet "nerrmown hay "odour, due to the presence of a crystallizable principle called counarin, to which also the dried stalks of Melilotus officinalis and the verhal grass Anthoxanthum odoratum owe their odour. Tonqua beans are used principally for scenting snuff and as an ingredient is perfuase sachets and in perfumers" "bouquets."

TONQUIN. See Toxg-kina.

tonsillitis. See Thro.it Disfases.
TONSURE. The reception of the tonsure, in the Roman Catholic Church, is the initial corconony which marks admission to orders and to the rights and privileges of clerical standing. It is administered by the bishop with an appropriate ritual. Candidates for the rite must hare been contirmed, be adequately instructed in the clements of the Christian faith, and bo able to read and write. Those who thave received it are bound (unless in exceptional circumstances) to renew the marh, consisting of a bare circle on the crown of the head, at least once a month, otherwise they forfeit the privileges it carries. A very early origin las sometimes been claimed for the tonsure, but the earliest instance of an ecclesiastical precept on the subject occurs in can. 41 of the council of Toledo (633 A.D.): "omnes clerici, detonso superius capite toto, inferius solam circuli coronam, relinquant." Can. 33 of the Quinisext council (692) requires even singers and readers to be tonsured. Since the 8th century three tonsurces have becn more or less in use, known respectively as the Roman,
the Greek, and the Celtic. The first two are sometimes distinguished as the tonsure of Peter and the tonsure of Paul; in the latter the whole head was shaven, but when now practised in the Eastera church this tonsure is held to be adequately shown when the hair is shorn close. In the Celtic tonsure (tonsure of St John, or, in contempt, tonsure of Simon Magus) all the hair in front of a line drawn over the top of the head from ear to ear was shaven.
TONTINE. This system of life insurance owes its name to Lorenzo Tonti, aa Italiaa banker, born at Naples early in the 17 th century, who settled in France about 1650: In 1653 he proposed to Cardiaal Mazario a new scheme he had devised for promoting a pablic loan. His plan was to the following effect. A total of $1,025,000$ livres was to be subscribed in ten portions of 102,500 livres each by ten classes of subscribers, the first class consisting of persons under 7, the second of persons above 7 and under 14, and so on to the tenth, which consisted of persons between 63 and 70 . The whole annual fund of each class was to be regularly divided among the survivors of that class, and on the death of the last individual the capital was to fall to the state. This plan of operations was authorized under the name of "tontine royale" by a royal edict, but this the parlement refused to register, and the idea remained in abeyance till 1689, when it was revived by Louis XIV., who established a tontine of $1,400,000$ livres divided into fourteen classes of 100,000 livres each, the sabscription being 300 livres. Although the classes were not quite filled, this tontine was carried on till 1726, when the last beneficiary died,-a widow who at the time of her decease was deriving from this source an annual income of 73,500 livres. Several other Goverament tontines were afterwards set on foot; but in 1763 restrictions were introduced, and in 1770 all tontines at the time in existence were wound up. Private tontines continued, however, to flourish in France for some jears, the "tontine Lafarge " having been opened as late as 1791.
Tho tontine principle has often been applied in Great Britain, chiefly to the purchase of estates or the erection of buildings for which the necessary funds could not be procured by ordinary methods. The speculative element in the system has proved an attraction. The investor etakes his money on the chance of hia owa life or the life of his nomioce enduring for a longer period than the other lives involved in the speculation, in which case he expects to win a large prize. The only thing which will aerve to distinguish this from an ordinsery lottery is the assumption that some may apply greater care or skill in the aelection of lives than others of the players. The tontine principle is nearly the converse of ordinary life assurance, where it is the man who dies early who obtains an advantage for his heirs at the expense of the long liver. But it has been occasionally introduced into life assurance in the distribution of profits or surplus, and so far it teads to redress the inequalities of the original contract, the profts being assigued to the longest livers to a larger extent then in the common life assurance system. The tontine principle has been brought into considerable prominence ky some American life offices (see IneukANCE, vol. xiii. p. 183). All that is wanted to meke the system fair is that every one should understand that in order to secure a dis. proportionste share of profits in the event of his surviving and keeping up his policy he must make a correspondiog earribice if he dies early or discontinues his insurance.

TOOKE, John Horne (1736-1812), an ardent politician and an erudite philologer, was the third 60 of John Horne, a poulterer in Newport Market, whose business the son, when a pupil at Eton with other boys of a more aristocratic position, in early life happily veiled under the title of a "Turkey merchant." He was born in Newport Street, Long Acre, Westminster, on 25 th June 1736. Some portion of his school days was passed, when he was about seven years old, in "an academy in Sobo Square," and when three years older he went to a school in a Kentish village. For a time (1744-46) he was at Westminster School, but the greater part of his education was got st. Eton, and then under private tuition
first at Sevenoaks in Kent (1753) and then at Ravenstone in Northamptonshire. In 1755 he was entered at St John's College, Cambridge, and took his degree of B.A. in 1758, as last but one of the senior optimes, Beadon, his life-long friend, afterwards bishop of Bath and Wells, being among the wranglers in the same year. Strange to say, the object of all this care and expense found hinself doomed to the drudgery of ushership at a boarding school at Blackheath, and the pleasures of bis lot were not enhanced by his father's strongly expressed desire that he should take orders in the Church of England. A strange vaciliation marked his career at this period, a vacillation probably due to a constant struggle between his owa iociination and the wishes of his father. He was admitted to the diaconate of the church, and almost at the same time was entered at the Inner Temple. He studied for the bar for some time, mostly in the company of Dunning and Kenyon, and then was ordained as a priest of the national church by the bishop of Salisbury. After this event his father obtained for him the next presentation to the small vicarage of New Brentford, to which Horne was duly admitted, and he retained ite scanty profits until 1773. During a part of this time he was absent on a tour in France, acting as the bear-leader of a son of the miser Elwes. To his credit be it said that while he resided at Brentford he discharged with exemplary regularity all the duties of his profession, and that, reviving a practice of the previous century, he studied medicine for the benefit of his poorer parishioners. Under the excitement created by the actions of Wilkes and the blunders of his ministerial oppoaents, Horne plunged into politics with consuming zeal. The newspapers abounded with his productions, but his chef effort was a scathing pamphlet on Lords Buto and Mansfield, setting out the "petition of an Englishman." In 1765 he again went abroad as tutor, and on this occasion he escorted to Italy the son of a Mr Taylor, who lived near his Middlesex parish, a young maar subject to fits of insanity. It was while passing through Paris on this tour that he made the persoaal acquaintance of Wilkes, and it was while at Montpellier, in January 1766, that a letter addressed by Horne to Wilkes laid the seeds of that personal autipathy which afterwards grew so rapidy. In the summer of 1767 the travelled parson landed again on English soil, and, in spite of his latent distrust of the so-called "patriot," his exertions quickly obtained for Wilkes that seat for the county of Middlesex which ensured his fortune. Horne was deeply concerned in all the proceedings of the corporation of London in support of the popular cause, and he advised, if he did not actually draw up, the celebrated speech which Alderman Beckford addressed' to his sovereign. As an incidental act in this struggle with the court and the majority of the House of Commons, Horne involved himself in a dispute with George Onslow, the member for Surrey, which culminated in a civil action, nltimately decided in Horne's favour, and in the loss by his opponc at of his seat in parliament. An influential association, called "the Society for Supporting the Bill of Rights," was founded, mainly through the exertions of Horne, in 1769, but the members were soon dlvided into two opposite camps of the thick and thin partisans of Wilkes and of those who refused to be labelled by the aame of any combatant, and in 1770 Horne and Wilkes broke out into open warfare. Into this controversy, carried on with that unflagging zeal which always springs from personal hatred, none will now care to enter; it benefited the fortunes of neither of the combatants, and it- damaged the success of the cause for which they had both laboured energetically. In 1771 Horne obtained at Cambridge, though not without some oppositiou from membere of both the politica.
parties, his degree of M.A., and in the same year he embarked on a more laborious and costly undertaking, that of vindicating the right of printing an account of the debates in parliament, in which, after a protracted struggle between the ministerial majority and the civic authorities, the right was definitely established. The energies of the indefatigable parson knew no bounds. In the same year (1771) he crossed swerds with Junius, and ended in disarming his masked antagonist. It is a curious corollary to this controversy that more than one speculator has identified him with Junius. Horne had now passed more than Lalf the alletted span of life, and his only fixed inceme consisted of those scanty emoluments attached to a position which galled him daily. He resigned his benefice, and betook himself to the study of the law and to his studies in philology. An accidental circumstance, however, occurred at this moment which largely affected his future. His friend Mr William Tooke had purchased a considerable estate south of the town of Croyden in Surrey, part of which seems to have consisted of Purley Lodge in Coulsdon.' The possession of this preperty brought about frequent disputes with an adjoining landowner, and, after many actions in the law courts, the friends of Mr Tookc's opponent endeavoured to obtain, by a bill forced through the Houses of Parliament, the privileges which the law had not assigned to him. Horne thereupon, by a bold libel on the Speaker, drew public attention to the case, and, although he bimself was placed for a time in the custody of the sergeant-at-arms, the clauses which were injurious to the interests of Mr Tooke were eliminated from the bill through the publicity which bis conduct had given to the matter. Mr Tooke's gratitude knew no bounds; he declared his intention of naking his friend the heir to his fortune, and, if the design was never carried into effect, Horne derived from the generous old man during his lifetime large gifts of money. No sooner had this matter been happily settled than Horne found himself invelved in a more serious trouble than any that bad yet befallen him. For his conduct in signing the advertisement soliciting subscriptions for the relief of the relatives of the Americans murdered by the king's troops at Lexington and Concerd, he was tried at the Guildaall in July 1777 before Lord Mansfield, found guilty, and committed to the King's Bench prison in St George's Fields, from which he only emerged after a year's durance, and after a loss, in fine and costs, amounting to $£ 1200$. Soen after his deliverance, as he had thrown off, as he thought, his clerical govn, he applied to be called to the bar, but his application was negatived on the ground that his orders in the church were indelible. To return to the church was now impossible ; and Horne tried his fortune, but without success, in farming some land in Huntingdonshire. Two tracts which were penned by him, one before and the other after this failure in practical life, exercised great influence in the country. One of them, criticizing the measures of Lerd North's ministry, passed through numerous editions; the other set out a scheme of 'reform which he afterwards withdrew in faveur of that advocated by Pitt. On his return from his veluntary banishment in Huntingdonshire, he became once more a frequent guest at Mr Tooke's house of Purley, and in 1782 assumed the name of Horne Tooke, which is now invariably assigned to him. In 1786 Horne Tooke conferred perpetual fame upon his benefactor's country house by adopting as a second title of his elaborate philological treatise of "Eтєа IItєро́єта, the more popular though misleading title of The Diversions of Purley. The treatise at once attracted attention in England and the Continent, was universally read by the vulgar as well as the learned, and, while its conclusions, if not always carrying conviction to the erudite, were
deemed by them worthy of consideration as proceeding from a mind of extensive learning and singular acutoness, the fame given to Purley by the choice of the title gratified its ewner. The first part was published in 1786, the second in 1805. The bést edition is that which was published in 1829, under the editorship \& Richard Taylor, with the additions written in the author's interleaved copy.

Betwcen 1782 and 1790 Tooke gave his support to Pitt, and in the election for Westminster, a constituendy in which Fox was vitally interested, he threw all his energies into the ministerial cause. With Fox he was never on terms of friendship, and Samuel Rogers, in his Table T'alk, asserts that their antipathy was so pronounced that at a dinner party given by a prominent Whig not the slightest notice was taken by Fox of the presence of Horne Tooke. It was after the election of Westminster in 1788 that Tooke depicted the twe rival statesmen in his celebrated pamphlet of Two Pair of Portraits. At the general election of 1790 he came forward as a candidate for that distinguished constituency, in opposition to Fox and Lord Hood, but was defeated; and, though he again sought the suffrages of its voters in 1796, and his spceches at the hustings were never exceeded in ability, he was again at the bottom of the poll. Meantime the excesses of the French republicans had unhinged the minds of all sections of society in England, and the actions of the Tory ministry faithfully represented the feelings of the country. Horne Tooke was arrested early on the morning of 16th May 1794, and conveyed to the Tower. His trial for high treason lasted for six days (October 17-23) and ended in his acquittal, the jury only requiring the short space of eight minutes to settle their verdict. The evidence which the crown could adduce in support of the charge proved to be of the slightest description, and the demeanour of the accused throughout the proceedings furnished abundant proofs of the resolution of his mind and the force of his abilities. His public life after this event was only distinguished by one act of importance. Through the influence of Lord Camelford, the fighting peer, he was returned to parliament in 1801 for the pocket borough of Old Sarum. No sooner was he returned to, the House of Commons than Lord Temple endeaveured to secure his cxclusion on the ground that he had taken orders in the church, and one of Gillray's caricatures delineates the two politicans, Temple and Camelford, playing at battledore and shuttlecock, with Horne Tooke as the shuttlecock. The ministry of Addington would not support this suggestion, but a bill was at once introduced by them and carried into law, which rendered all persons in holy orders ineligible to sit in the House of Commons. The parliamentary life of the member for Old Sarum was preserved through one parliament, but at its exniration he was excluded for ever.

The last years of Tooke's life were spent in retirement in a house on the west side of Wimbledon Common, and there he was visited by the leading members of the party of progress. The traditions of his Sunday parties bave lasted unimpaired to this day, and the most pleasảnt pages penned hy his biograyher describe the politicians and the men of letters who gathered round his hospitable board. His conversational powers rivalled those of Dr Jehnson; and, if more of his sayings bave not been chronicled for the benefit of posterity, the defect is due to the absence of a Boswell. Through the liberality of his friends, his last days were freed from the pressure of poverty, and he was enabled to place his illegitimate son in a position which soon brought him wealth, and to leave a competency to his two illegitimate daughters. Illness seized him early in 1810, and for the next two years his sufferings were acute. : He died in his house at Wimbleảen on 18th March 1812, and his body
was buried with that of his mother at Ealing, the tomb which he had prepared in the garden attached to his house at Wimbledon being found unsuitable for the interment. An altar-tomb etill stands to his memory in Ealing churchyard. A catalogue of his library was printed in 1813.
The Life of Horne Tooke, by Alexander Stephens, is written in an auattractive atyle, snd was tha work of an admirer only sidmitted to bis acquaintance at the close of his days. Its msin facts are feproduced with more brightness in an esssy by Mr J. E. Thorold Fogers in the second saries of his Historical Gleanings. Msny of Hoine Tooke'a wittiest sayings sre preserved in the Table Talk of Samuel Rogers and S. T. Coleridga.
(W. P. C.)

TOPAZ. It appears that the stone described by ancient writers ander the name of romáfios, in allusion to its occurrence on the island of Topazion in the Red Sea, was the mineral which we now know as the chrysolite or Peridote (q.v.). The topaz of modern mineralogists was nnknown to the ancients. Topaz occurs either crystallized, in association with granitic rocks, or in the form of rolled pebbles in the beds of streams. The crystals are ortho rhombic prisms, with a perfect cleavage parallel to the base, or transverse to the long axis of the prism. This cleavage is recognized by the lapidary as the "grain" of the stone. It is notable that crystals of topaz are commonly hemimorphic; in other words, the prisms are terminated by dissimilar faces. This hemimorphism is associated with the property of pyroelectricity (see Mineralogy, vol. xvi. p. 376). The chemical composition of the topaz has given rise to much discussion, but the mineral is now generally regarded as a silicate of aluminium associated with the fluorides of aluminium and silicon. When strongly heated it suffers considerable loss of weight. Brewster, examining the topaz microscopically, detected numerous fluid cavities, whence he concluded that it had been formed in the wet way. Two of the fluids obtained from these cavities liave received the names of brevosterlinite and cryptolinite. Some of the finest topazes are almost colourless, and may be occasionally mistaken for diamonds. The topaz, however, is inferior in harảness; it lacks "fire"; and it becomes electric wher heated-a property not possessed by the diamond. Colourless topazes are known to French jewellers as gouttes deau, and in Brazil as pingas d"agoa-names which refer to the limpidity of the stone-while in England they pass in trade ander the curicus name of minas novas. The beauty of the stons is best developed when in the form of a brilliant. The topaz is cut on a leaden wheel by means of emery, and is polished with tripoli. Coluured topazes are usually either yellow or blue. The pleochroism of the stone is very marked: thus the colour of the sherry-yellow crystals from Brazil is resolved by the dichroiscope into brownish yellow and rose-pink. The colour is unstable, the yellow topaz especially being liable to suffer bleaching by exposure to sunlight. Hence the fine series of crystals of Siberian topaz from the Kochscharow collcetion, now in the British Museum, is carefully protected from light by means of opaque pasteboard caps. In 1750 a Parisian jeweller named Dumelle discovered that the yellow topaz of Brazil, when exposed to a moderate heat, assumed a rose-pink colour. It is generally believed that all the pink topaz occurring in jewellery owes its tint to artificial treatment. Formerly it was the practice to lieat the stone in a sandbath, but the change of colour is now generally effected by wrapping the stone in German tinder, which is then ignited. This "burnt topaz" is sometimes knowa to jewellers as "Brazilian ruby." In like manner the blue topaz occasionally passes under the name of "Brazilian sapphire," and the pale green as "aquamarine"-a name which is strictly applicable only to the sea-green beryl. The largest knuwn cut topaz is a fine brilliaut, weighing 368 carats, and termed the "Maxwell Stuart topaz."

The topaz is oceasionally fonad in Britain, but uanally in amall crystals unfit for jawallery. It occurs in granita at St Michael's Mount in Cornwall, in Lundy Island, and in Arran, but the firiest British spacimena aro obtained from the Highlands of Scotland. Ben-a-hourd, one of the Cairngorm group, vields good blue crystals. Topaz occurs in colourless and blue crystals in the granito of the Mourne Monntains in Ireland; and microscopic crystala are not uncommon in certain other granites. The famoue topaz-rock of the Schneckenstain, in Sazony, yíelds psle yellow crystals of great beanty as mineralogical apecimens, but not snited for cutting. Tha yallow Saxon topaz does not scem to change colour on exposure to heat. Some of the finest topaz comes from near Odon Tchelon, in Siberis; while the well-known deep-yellow crystals of Brazil occur near Villa Rica (Ouro Preto). Fine topaz, palo blue and colourless, is found, as rolled crystals, in Tasmania aud on Flindere Island in Bass'a Strait. It also occurs in the tin-drifts of New South W6les ; and beantifully-formed limpid crystals, of small size, secompany stresm-tin at Durango, in Mexico. Fine topaz fit for jewellery has recently been worked at the Platte Mountain, noar Pike's Peak, Colorado. One stona, weighing 125 carate, has been described as boing "as fina a gem as America has produced of any kind " (Kunz, 1885). Topaz also occurs iu cavities in rhyolita at Nathrop end Chalk Monntain, Colorado, and in trachyte near Sevier Lake, Utah. It is likewiso fond in Arizona, in New Mexico, and at Stoneham, Msina.

Oriental topaz is the name aometimas givan to yallow corundum, a mineral which is resdily distinguished from ordinary topaz by its euperior hardness and density. The yellow and suoky varieties of quartz, or cairngorm, are often known in trade ss Scocch topaz, but these are inferior to true topaz in hardness aud in density. The chief differences between tha three may be thua axpresaed:-

	Scotch Topaz.	Trua Topaz.	Orlental Topaz.
Hsidness	7	8	9
Spacific gravity	2.6	3.5	4
Crystallization.......	Heragonal.	Orthorhombic.	Hiragonal

TOPEKA, \& city of the United States, the county seat of Shawnee county and the capital of the State of Kansas, is siluated ($39^{\circ} 3^{\prime} \mathrm{N}$. lat. and $95^{\circ} 39^{\prime}$ W. long.) for the most part upon the soutll bank of the Kansas or Kaw river, upon a level prairie bench considerably elevated above the river. A small portion, known locally as North Topeka, lies upon the north side of the river. Besides the State capitol, which is an imposing building in the midst of an extensive park, the city contains the State insane asylum and the reform school. The Atchison, Topela, and Santa Fe Railroad Company has its offices and workshops here, and the city is also intersected by a branch of the Union Pacific line. In 1860 Topeka had only 759 inhabitants; in 1870 the number had risen to 5790 . In 1880 tho population was 15,452 (8140 males and 7312 females) ; and in 1886 the number is returned at 25,005 , making Topeka the second largest city in the State. The assessed valuation in 1886 was $\$ 6,547,079$, and the debt of the corporation only $\$ 422,900$.

TORCELLO, a small island 6 miles north-east of Venice, now almast deserted, but once a place of much importance. Torcello was one of the parent islands from which Venice was colonized, and possessed a cathedral church long before St Mark's was founded. In the 11th century Torcello had already begun rapidly to decline. The existing cathedral of S. Maria is a building of the highest ecclesiological importance, unique in Europe as a perfect example of the arrangement of the choir in the 6th or 7 th century, when the original cathedral was built, and, though most of the upper structure was rcbuilt by Bishop Orseolo ${ }^{1}$ about 1008 , the plan of the church and the fittings of the choir still exist as they were originally designed. The church consists of a nave, with ten bays of arches on marble monoliths, and three aisles each terminated by an apse. Round the walls of the central apse are six tiers of seats for the officiating clergy, and, in the centre, raised above the others, a marble throne for the bishop, approached by a flight of steps (eee vol.

[^186]iiii. p. 418, fig. 16). The high altar stood in front of the steps, and the celcbrant stood with his back to the apse, louking over the altar towards the congregation. An pxactly similar arrangement still exists in many of the carly Coptic churches of Old Cairo: the church of Abiu Sergeh is a specially perfect examplo. ${ }^{1}$ When the church was reconstructed in luU3, Bishop Orseolo did not interferc with the older and then olsolete arrangements of the choir, but added a later choir, formed by marble screens, projecting three bays into the nave, with seats along three sides of the enclosure,-an arrangement like that wh:ch still exists in the church of S. Clemente in liome (see Rome, vol. xx. p. 833). The present choir-stalls date from the 15 th century. A fine marble ambo was at the same time placed outside the cancelli, and the position of the celebrant at the high altar was reversed. The vaults of the three apses are covered with nine glass mosaics, added probably in the 12 th century: in the centre is a large figure of the Virgin, with the twelve apostles below; other mosaics cover the vaults of the aisle-apses and the whole eutrance wall. The latter, much restored, has scenes of the Crucifixion, the Doom, and Heaven and Hell. The sculpture of the nave capitals and on the marble cancelli is very gracelul work of By zantine sty le, closely resembling similar panels at Raveuna. - One remariable peculiarity of this church is the marble shutter which closes each window on the right wall ; these have pivots which revolve in projecting corbels-a very early method of closing windows of which very ferv examples still exist. Even when the shutters were closed some dim light passed through the semitranslucent marble slabs. ${ }^{2}$ An octagonal baptistery, also built by Bishop Orseolo, stood outside the main entrance to the church, but has been rebuilt on a smaller scale. The crypt under the central apse of the cathedral is probably part of the original church, unaltered by any later changes. ${ }^{8}$ The sinall church of S. Fosca, which is connected with the cathedral by a loggia, is also a building of exceptional interest, dating from the 10th century. It is purely Oriental in plan, and much resembles that of St Mark's at Venice and S. Vitale at Ravenna, on a small scale. It has a cruciform nave, with a large dome supported on sight columns, and a projecting choir with three apsess Externaliy it is surrominded by a loggia, supported on marble columus with rich Byzantine capitals. S. Fosca was partially rebuilr in the 1 2th century, and has since been much modernized, but its original very interesting plan still remains but little changed.

TORGAU, a fortified town in the Prusstan province of Saxony, is situated on the left bank of the Elbe, 30 miles north-east of Leipsic and 26 niles south-east of Wittenberg. Its most conspicuous building is the Schloss Hartenfeis, on an island in the Elbe, begun in 1481 and completed in 1544 by the elector Joln Frederick the Magnanimous This castle is one of the largest Renaissance buildings in Germany, and contains a chapel consecratzd by Luther in 1544. The town-house is a quain! building of the middle of the 16 th century, and thcre are several other large and fine buildings, chiefly modern. The parish church contains the tomb of Catherine von Bor 1 , Luther's wife. The once flourishing weaving and brs ving industries of Torgau have declined in modern t'r.es; but the town bas manufactures of gloves and

[^187]iniscellaneous articles, and carries on trade in grain, \&c., on the Elbe and by rail. The fortifications, begun in 1807 at Napoleon's command, arc largely surrounded with water; they include a tête-de-pront at the end of the bridge across the Elbe. In 1885 the population was 10,988 (in 1783 4000), a large proportion of them soldiers.
Torgall is saill to have existell as the cayital of a distinct principality in the time of the enperor Henry li, but ly $^{2} 305$ it was in the possession of the margrave of Jluissein lt was a frequent residence of the electors of Saxony. In Reformation tinses Torgar appears as the spot where Joha of Saxony and Plilip of Hesse formed their league against the Romau Catholic innerial cstates; and the Torgau Articles, drawn up here by Lnther in 1530 , were the basis of the Angsturg Confession. The Thirty Ycars' War intlicted great suffering on the town. In 1760 Freilorick the Great defeated the Austrians in the ucighbounhool of Torgan. The town capitnlatod to Tauentzien on Jauuary 10, 1814, after a siege of three montlis.

TORONTO, the capital of the proviuce of Ontario end the second largest city in the Dominion of Canada, is situated on a large and finely sleltered bay on the north shore of Lake Ontario, between the rivers Don and Humber. The naguetical and meteorological observatory, in the university grounds, sfands at a height of 108 feet above the lake, and approximately 342 fcet aloove the level of the sea, in lat. $43^{\prime} 39^{\prime} 35^{\prime \prime} \mathrm{N}$., long. $79^{\circ} 23^{\prime} 39^{\prime \prime} \mathrm{W}$. Toronto is 39 miles north-east of IImilton, at the bead of Lake Ontario, and 310 miles west-south-west of Muntreal. The bay is formed by a peninsula or island about 6 miles loug, enclosing a fine basin of 3.44 square miles, with a narrow entrance at the west end. This forms a safe and comroodious harbour. The city stands on a thick deposit of boulder clay, overlying slaly gandstones of the Cincinnati or Hudson River group, practically cquivalent in

Plan of l'orontn.

1. Front Street
2. King Sureet (IVest) 3. King Sti cet.
3. Bay Strect
4. Yonge Strces
5. Yarlinment

17gs. Balld-
13. Government House
14. U'pper Canada (inl.

15 leze.
15. Oscoods IIshl.
15. Sscoods Misll.
16. St Mi hael's Cathedral.
17. Metropolitan Cluarch 14. Free Library.
19. St Jamusis Cathcdral.
:0 River Don.
21. Knox Cullege.
22. University Cunnsc.
22. University Cunlige.
23. Jagnet lo Ubservatory.
23. Jagnetlc Oloservatory
24. Qu'en P Park.
25. Si James's Park.
6. Queen Struct (IV'est)

7 Queen Strcet.
8. Qucrn Strcet (East) 9. Yosk Strect
position to the Caradoc horizon of British geology. These thin-beaded sandstones crup out on the lake shore, and have been quarried for flagsing and building purposes at the mouth of the Humber. In the northern part of the city the boulder clay is overlaid by stratified clays of the Post-Glacial age, largcly used in the manufacture of bricks, of which many of the honses are built. The site slopes gradually from the margin of the bay for a distance of 3 miles to a tcrrace or ancient lake margin immediately outside the northern limits of the city, which occupics an area of 12.83 square railes, or of $17 \cdot 99$ square miles including the barbour and island. The streets cross each other at right angles. Yonge Street, the main tiorough-
fare running north and south, was constructed as a great military road in 1796, and extends under the same name, for upwards of 30 miles, to Lake Simcoe. It constitutes the dividing line of the city, the streets being reckoned east or west according to their relation to it.

The city is the seat of the provincial Gevernment, with the official residence of the lieutenant-governer, the parliament buildings and Government offices, the courts of law, and the educational departmental buildings for Ontario. The provincial legislature occupies the old parliament buildings erected in 1849, when Toronto was the capital of Upper Canada; but they have long been recog. nized as inadequate for the purpose. Plans have accordingly been prepared, snd the new buildings are now in process of erection. The site is in the centre of the Queen's Park, a finely wooded park of upwards of 30 acres, originally laid out for the provincial university, and on which the old buildings of King's College stood. The new university building occupies a fine site immediately to the west. It is an imposing structure, of great architectural beauty, in the Norman style, with a massive central tower. The buildings of the provincial school of practical science, and of the magnetical observatory, are also erected in the university grounds. The observatory is one of the meteorological stations established by the British Government, on the recommendation of the Royal Society, in 1840. It is now maintained by the Dominion Government.

The unirersity, University College, and the school of practical science embrace in their conjoint teaching a comprehensive system of training in arts and science; and in them upwards of 500 students receive their training in arts, in the natursl and applied eciences, and in engineering. There is also a medical faculty, reorganized under a recent Act, in conjunction with the department of science in the university. The university and college constitute unitedly the state institution maintained by public funds, and strictly secular. But it is surrounded with the theological and training colleges of different denominations in affilistion with it, the students of which pursue their andergraduate course in the university for a degres in arts. The affiliated colleges, some of which give degrees in divinity, include Knox College (Presbyterian), Wycliffe College (Church of England), St Michael's College (Roman Catholic), Macmaster Hall (Baptist), and Victoria College (Methodist). Besides the provincial university and its affiliated colleges, Trinity College (Church of England) gives instruction in divinity and arts, and confers degrees in all the faculties. Toronto and Trinity medical schools occupy convenient buildings in the immediate vicinity of the genersl hospital, the Burnside lying-in hospital, and the Mercer eye and ear infirmary. The students in medicine number nearly 500 , including a small number of lsdy students, for whom special instruction is provided. Upper Canada College, founded in 1829, is a provincial institution analogous to one of the great English public schools. It has about 300 students. The Collegiate Institute occupies a fine building immediately to the west of the horticultural gardens. It is the higher school, forming an important feature in the provincial system of education, and is maintained, along with the free public schools, from local taxes. Its students number 443 , of whom 182 are females.

Osgeode Hall, the seat of the superior courts of law and equity, is an ornate Italian building, extended at various dates. The provincial asylum for the insane affords accommodation for upwards of 700 patients; it is sarrounded with recreation grounds extending to 50 acres.

The city charities are numerous and well organized. The churches include some large and handsome buildings. Among the mere important public buildings are those of
the educational department, including a museum and gallery of art, normal and model schools; the custorshouse, a fine Renaissance building, with extensive warehouses attached; and the post-office, also of tasteful architectural design. The free city library occupies a commodious building in Church Street, in addition to branch libraries in different parts of the city. It contains upwards of 47,000 vols. There are 35 city public schools, occupying large and commodious buildings, with 262 teachers and 20,213 children. The separate (Roman Catholic) schools number 13, with 60 teachers and 3792 children.

Teronto is the seat of many flourishing industries, including foundries, tanneries, furniture, stove, shoe, and other msnufactories, flour-mills, breweries, \&c. The site of the city is favourable to commerce. It is the centre of a rich agricultural district ; and its harbour is of easy access to the largest vessels that navigate the lakes. It lies directly opposite the mouth of the Niagara river, distant 40 miles; and throughout the season of navigation wellappointed steamers maintain communication with the principal routes of travel in the United States and Canada. By means of the Grand Trunk, the Great Western, the Northern, the Canada Pacific, and other railways, it forms an important commercial centre for distribution; and it is the seat of the head offices of most of the banks and of the chief wholesale trade of western Canada. The direct route from the lower lakes to Lake Superior and the great North-West is by the Northern Railroad to Geergian Bay, where lines of steamers maintain constant communication from Collingwood and Owen Sound to Prince Arthur's Landing and the railways to Manitoba and the North-West.

In 1861 the populstion numbered 44,821 ; in 1871 it had increased to 56,092 ; in 1881 to 86,415 ; and in 1887 it is believed to amount to 146,000 . The actual number on the assessment rolls is 111,800 . The estimated value of real estate in Toronte is $\$ 105,000,000$. The assessed value in 1886 was $\$ 83,556,811$. The annual revenue of the city is estimated for 1887 at $\$ 1,812,941$. The amount of customs duties for the fiscal year ending 30th June 1887 was $\$ 4,273,038$. The value of exports to the same date was $\$ 3,192,157$, and of imports $\$ 21,020,528$. The city returns three members to the Canadian House of Commons. and three to the provincial legislature of Ontario.
In the deapatches of Canadian officials of Louis XIV. in the 17th century Toronto means the country of the Hurons, a region lying between Lake Simcos and Lake Huron, about 40 miles north. The river Humber, which euters Lake Ontario immedintely to the west of the Bay of Toronto, though navigable only for a short distance eveu by canoes, formed with its portages a line of communication between Lake Ontario and the Huron country. Hence the station near the mouth of the river became the common landing-place for trading and hanting parties bound for the region known of old as Torunto, and so received its name. A French trading post, built there in 1549, and origirally named Fort Rouille, after the French colonial minister Anvine Louis Rouillé, comte de Jouy, was familiarly known as Fort Toronto. Tho Northern Railway, the first one constructed in Upper Canada, followed the route of the old Indian trail, and established a direct line of communication, by means of steamers from Collingwood, with Lakes Huron, Michigan, and Superior. The railway passcs through a fine agricultural country, and is uow extended into the Muskoka and Nippitsing districts, bringing an extensive lumbering region into direct comannication with Toronto.

The site for the town was survejed in 1793 by Surveyor-General Bouchette, under the instructicn of the lieutenant-governor, General Simcoe; and in his narrative of the original sarvey Bouchette describes the untamed aspect of the scene, with the group of wigwams of a little band of Mississaga Indians who conatituted the sole occupants of the lond; while the waters of the bay and the neighbouring marshes were the haunts of innumerable coveys of wildfowl. The first parliament of Upper Canada held its eecond session in May 1793 at the town of Newark, at the mouth of the Niagara river; but iu the following August the seat of government was transferred to Toronto, to which General Simcoe gave the name of York, in honour of the duke of York, the second вon of George III. Under its new name tho embryo me:tmpolis
"Elowly progressed as the surrounding ceuntry was cleared and settled. The entrance to the harboar was guarded by two block houses; provision was made for barracks aud garrison stores; luildings were erected for the legislature;, and there the membere of parliament, anmmoned by royal proclamation to "meet us in our provincial parliament in our town of \bar{l} ork," assembled on the lst of June 1797. Sixteen fears later the population numbered only 456 . The town was twice ascked in the war of 1812. General Dearborn captured it at the head of a force of upwards of 2000 drawn from the neigh bouriog Statee. On their advance to the outworka of the garrison, the magazine of the fort expladed, whether by accident or design, killing mauy of the invaders. The halls of legislature and other buildings were burnt, and the town pillsged. On the restoration of peace the work of creating a capital for Upper Cansda had well nigh to begin anew. But tho city advaoced with the general progress of the country. Trade centred in the little capital; the population increased; and needful manufactures wele established. The organiza. tion of Upper Canads College in 1830, with e staff of teachera nearly all graduates of Cambridge, gave a great impetus to the city and pro. vince. In 1834 the population of York numbered fully 10,000 ; and an Act of the provincial legislature conferied on it a charter of incorporstion, giring it for the first time an efficient aystem of municipal government, with a mayor, aldermen, and councilmen, eutrusted with the administration of its affairs." Uuder this charter it was constituted a city, with the name of Toronto.
(D. W.)

TORPEDO. Torpedoes may be briefly described as charges of some explosive agent, enclosed in water-tight cases, and moored or propelled under water at such depths that by their explosion they may sink or seriously damage a. vessel in their vicinity. The use of torpedoes in naval warfare was proposed and even attempted in the end of the last and beginning of the present century, but no successful application of them was made until the American Civil War of 1861-64. The word "submarine mine" is generally substituted for "torpedo" when speaking of defensive or stationary mines, the latter term being reserved for locomotive torpedoes, or others used in offensive operations.

1. Submarine Mines. - Submarine mines are divided into three classes:-(1) observation mines, fired by an electric current when the enemy is observed to be within the destructive area of the mine; (2) electro-contact mines, which, when struck, fire by automatically completing the electric circuit from the battery ashore; (3) mechanical mines, which, when struck, fire through the action of some contrivance withln themselves, and are not connected with the shore. Mines of the first class are used in places where a channel has to be kept clear for screw steamers to pass, the eecond class in those parts of the channel where there is little traffic, and the third class in channels which it is intended to bar equally against friend or foe.

Flectrical mines have the advantage over mechanical that by the removal of the firing battery the passage of a ship is rendered perfectly safe, and that the condition of the mine can be ascertained by electrical tests, but the electric cables are liable to damage, and add greatly to the expense of the defence.

Gun-cotton and dynamito are the explosives generally used in mines, the charges varying from 30 tb to 500 lb , according to the description of mine. In all mines the charge is exploded by means of a detonator con. taining fulminate of mercury. In mines loaded with gun-cotton the detonator is inserted in a priming charge of dry gun-cotton, this priming charge being in a metal case, closely surrounded by the wet gun-cotton comprising the remainder of the charge. Where dynamite is employed the priming charge is not necessary. Experiments made to determine the horizontal distance at which an ironcled will be vitally injured by different charges have vielded the following general results :-

Charge.	Submergence.	Distance.
150 to mine.	10 to 15 ft .	4 [t.
250 to ground mine	30 ft .	10 ft .
500 th ground mine	60 ft .	15 ft .

The explosion of 500 Jb of gun-cotton at a horizontal distance of 30 feet would seriously injure a vessel, and 30 tb in contact with the bottom below the armour would probably blow a bole through the outer and inner skin. The depths given above are approximately the best depths to get the fullest effect out of the charges mentioned. When the water is so deep that if the uine were placed on the bottom it could not esert its full destructive effect on the bottom of a ship, it is given enough buoyancy to allow it to float above its moorings, - a mine on the bottom being termed a "ground mine," and a mine floating above its moorings a " buoyant mine."

If mines are placed ton close together the explosion of one will damage those near it, the interval which must be left between them being-for a 100 D mine, 100 feet; for a 250 tb mine, 250 feet ; and for a 500 db mine, 300 feet. There is therefore alwaye a porsibility of a ship passing through a single line of mines without coming within the destructive area of any. Mines are therefore generally arranged in. two or more lines, the mines of one line covering the spaces left between the mines of the next, or several mines may be laid close together, and the whole exploded simultaneousiy.

The electric circuit of all electrioal mines is very similar. A voltaic battery ashore has one pole put permanently to earth and the other pole joined to the electric cable leading to the mine. This cable passes into the mine case through a water-tight joint, and is connected up to one pole of the electric detonator, the other pole of the deton ator being connected to the month-piece of the mine and consequently to earth. To prevent the mine being fired until the proper moment has arrived, this circuit must be broken somewhere, and means provided for completing it when the mine is to be fired. In the case of observation mines this is done by inserting a fring key in the electric cable uear the battery, and in electro-contact mines by a circuit closer in the mine.
The right moment to fire an olservation inine is determined by obsertwo observers ashore, who have each adjusted two sights in line vation with the mine, as it was lowercd into position, -the stations for mine these observers being chosed so that their lines of sight may be as nearly as possible at right angles to each other. The clectric cable from the mine is led past both observers and comected to a fring battery, oue pole of which is put permanently to carth. A firing key inserted in the circuit at the station of each observer renders the aimultaneous pressure of hoth keys necessary to explodo the mine. If each observer depresses his firing key as the centre of the enemy crosses his own line of sight, both keys can only be pressed simultaueonsly if the enemy arrives at the intersection of the two lines of sight, and conscquently over the mioe. When many mines are placed in one chamel, it is usual to moor them in three lines, the prolongation of cach line converging to su olserving statiou, where the direction of each line is nnsrked by sights. The electric cables from all the mines come to snother observing station, and are there connected to scparate firing keys, cach of which has one pole joincd up to a firing tattery. The observer at this station is slso provided with a separate sight marking tho direction of each mine in all the lines. The former station is termed tho "converging" and the latter the "firing" station. The obscrver at the converging station telegraphs to the firing station the instant at which tbe contre of the encmy is ou one of tho lines of mines, the observer st the firing statiou determining by means of his sights which individual mine the enemy is over, and he can fire it by pressing the corresponding key.

Insteac of separate sights for each pine, obscrving urcs may be used. These instruments are furnished with a telescopo, whicb can be constantly directed on the encmy, a bar attachmeot automatically clesing the circuit when the direction of the coeny corresponds to a mine. The camera oliscura has also been used for determining the positios of an enemy in the mine field.

Electrocontact mines aro buoyant mines moored about 10 fect below the surface, and are in connexion with an electric baftery ashore. They are arranged to explode on bcing struck by a lassing ahip, by mesns of an sparstus contaiued in the mine itself, called a circuit closer. Many different kinds of circuit closers aro in use, but they all depend upon there being a break in the clectric circuit while the circuit closer is at rest, the circuit closer completing the circuit when the mine reccives a blow. That most commonly used umes.

Wlectro
(fig. 1) consists of a stcel spindle a carrying a weight b on ats upper cnd. This steel spindle carries an insulated brass ring c, to which the wiro from the dotonator d is attarhed, the other pole of the detomator being connected to the cable e leading to the electric battery. Po the mine beirgstruck the inertia of tho weight causes the steel rod to vibrate sufficiently to bring the insulated ring in contaet with brass springs in connexion with the earth, thus completing the circuit of the electric battery through the detonators. Anotlier form of circuit closer is a tube of mercury, which by splashing up when the mino is struck completes the electric circuit between two previously insulater points.

- A single main cable from the battery may have several electro-contact miues attaches to it ; the expense of leading a separate wire from each mine to the battery is therefore avoided. If one mine was fired tho broken thd of its branch wire from the main cable would be left in the water, and on mother mine being struct it wonld only rece e i

Fig. 1. portion of the current, as the battery would be connceted to enrth through the broken branch. Each lranch wire must therefore lave a disconnector in circuit, clear of tho explosion. The disconnector consists of a platinum wire fuse contained in a streng iron case, and the same current which fires the detomator in the mine fuses the platinum wire bridge of the disconncotor, and the circuit to the bwoken branch remains insulated.

Mechanical mines, of which there are many different patterns, contain the means of ignition within thomselves, and aro unconneeted with any apparatus ashore. They may bo ignited by percussion, friction, chemical action, and electricity.

A simple form of mechanical mine has a heavy top, which, on being pushed off by a passing ship, either pulls out a pin and releases a plunger, which is then forced by a powerful spring iuto a detonator, or a friction tube is fired when the weight falls on a line attached to it. Another form, known as Abel's mechanical exploder, consists of a glass tube containing sulphuric acid, and surrounded by chlorate of potash and sugar. The whole is contained in an india-rubher tube, which projects from the top of the mine, the lower end being in communication with tho charge. When struck, the india-rubber tube bends, and, the glass tube breaking, the sulphuric acid mixes with the chlorate of notaslı and sugar and inflames the charre.

Electro-meclanical mines can bo mado by placing a voltaic
closer, the circuit closer completing the circuit when the mine is struck. Another form of electro-mechanical mino (fig. 2) has several projecting horns (a, a, a) of lead tubing Inside each born is a glass tubo containiner bichromate of potash, and immediately under it a sow of small zinc and carbon plates, b, in a containinge cell. On any one of the lead horns ocimer bent, the glass tube is broken, and the hichromate of potasle dropis into the cell, converting the arrangement into a
 roltaic battery, which, being already connceted to the electric fuse c, fires tho mine.

All meehanical and electro-mechanical mines are provided with some contrivanco to guard against accidental explosion during the jrocess of layincr. In mechanical mines a safety pin can be withdrawn after the mino is in position, or, in the case of A bel's exploder, the projecting tube is surrounded by iron serments which fall off when the mine is in position. In electro-nechanical mines two of the wires forming plart of the circuit inside tho mine may bo broucht through to tho outside and kepit apart till the mine is in position, theso vires being long enough to allow of the operator retiring clear of the explosion before joining them up and rendering the mine dangerous.

Meclianical mines have the advantage over electrical that they
charges in an enemy's mine field. Mines containing heavy charge. would be used for the purpose, several of these mines being droppped in succession from a bout towed by a fast steamer, tho whole lino being exploded together as soon as the last mine had been droppel. Numerous experiments lave provel that tho explosion of a 500 H mine vill effectually destroy any mine within a ralius of 100 feet: the countomines would therefore bo dropped at duuble this distance apart, aud tho chamel so cheared inarked by buoys. Electric cables can also bo caucht and raised to the surface by grapmels; or the grapnel may have a case of explosive between its arms, so that, instead of raising the wire, it may bo cut by firinr the charge.
2. Lacomotive Torpedoes.-Locomotive tornedoes are a numerous class, the principal being the Whitehead, Lay, Sims, Brennan, and Ericsson. The Whitehead is the only one whicb can be considered a well-devel bed a aval weapon.
This torpedo (fig. 3) is made in different sizes, varying Whitr from 12 feet to 19 feet in length and from 12 to 15 hoan, inches in diameter; the cross scction is circular, tapering tuepe to a point at each end. It is capable of being so adjusted that on being discharged it will travel at any depth between 5 and 15 feet below the surface, and it will maintair. this depth for its entire run. The torpedo travels at a uniform speed for the whole of its range, the speed and range varying for different patterns; the latest type has a speed of 24 knots fer $6 r, 0$ yards. The torpedo can be ses so that, in the event of its not striking the ship aimed at, it will stop at the end of its range and sink. For exercise it can be set to stop at any distance within the limits os its range, rise to the surface, and float. The torpedo is divided into several compartments. The foremost A con $\frac{1}{4}$ tains a charge of from 30 to 100 tb of gun-cotton, according to the size of the torpedo. This charge is fired on tho torpedo striking a ship by a pistol which screws into the nose of the torpedo. On impact the point of the pistol is driven inwards and forces the point of a steel striker into a detonator. By means of powerful air-pumps air is compressed into the air-chamber B to a pressure of 1000 th on the square inch, and actuates a three-cylinder engine, whick drives two propellors revolving in opposite directions in the tail. The meclanism in the balance-chamber C works two exterior rudders on each side of the tail, which keep the torpedo at a uniform depth during its run. This devico has never been patented, but is a secret; the details of it, however, have been purchased by all prominent maritimd nations.
The tail F is fitted with four broad fins, which tend te keep the torpedo on a straight course and prevent it rolls ing. The horizontal tail fins carry four rudders, two horid zontal and two vertical. The horizontal rudders worked from the balance chamber keep the torpedo at its sef depth; the vertical rudders are permanently adjusted so as to causo the torpedo to travel in a straight line.
The air-chamber of a torpedo is usually made of fluid compressed steel, the remaining compartments of thin steel plate, and the interior mechanism of phosphor-bronze In Germany torpedoes are now made entirely of phosphorbronze.
The torpedo can be discharged from above or below require fewer trained men for their manipulation, are cheaper, and can be placed in position very rapidly. But no really efficiont method has yet been devised that vill ensure a mechanical mine, after it has been placed in position, boing safely taken up again for examination or removal, nor can any tests be applied to ascertain if it remains in an efficient condition.
, All mines, especially thoso with elcetric cables attached, must te protected by gun fire or guard boats, as, if the mine field is ungrotected, they can be easily destroyed oy countermining or creeprng. \& Countermining is carricd ont by exploding a succession of

water. From above water it is shot out of an alp-gun (fig. 3) mounted on the deck of a ship and pointing througb the side. The air-gun consists of a metal tube a, a, a, of the same length as the torpedo, the rear end being closed by an air-tight door. The gun carries a reservoir e of
,ompressed air, the contents of which, by means of a suitable fring valve d, can be instantaneously admitted into the gun. When the torpedo is to be discharged tois firing valve is opened, and the compressed air in the reservoir forces the torpedo out at a high velocity, a tripper b projecting through the top of the gun throwing back the starting lever of the torpedo on its way out. From below water the torpedo is discharged through a tube, the muzzle of which forms part of the stem of the ship, the tube being fitted with an outside valve which prevents the water from entering while the torpedo is placed in the tube. Lattcrly powder has been used instead of compressed air for the ejecting force.
'The Lay torpedo is a bost of cylindrical form, the fore part being charged with an explosive. The notive power is carbonic acid gas generatod in the usual wey. As only a very small portion of the boat is visible on the surface, two guide rads, one on each end of the vessel, mark its position at any part of its run. Tho boat can bo started, stopped, and steered by pieans of an electric cable, containing screral insulated wires, which is paid out from the boat as it tre rels.

The Sims torpedo is cirgar-shaped, and is suspended to a boatshaped float. The torpedo is propelled by screwe driven by an supplied from u unamo ashore. The electric cable is coiled on a drum in the torpedo, and pays out as the torpedo advances. The torpedo is also steered from the shore bv an electric curreat. Its speed is about 12 knots.
Brennan The principle of the Brennan torpedo is as follows. The torpedo torperlo. contains two drums unon which a large amonnt of pianoforte wive is wound. One end of the wire from each drum is taken to large drume ashore, which aro revolved by a steam-engine. By winding np on the large drums ashore a rotatory motion is imparted to the drams in the torpedo, which by means of gearing revolve two screw propellers, and these drive the torpedo through the water. The torpedo can be stecred from the shore in any direction, by winding on ono drum faster than the other, which alteration in motion moves a rertical rudder on the torpedo.
Ericsan The Ericason torpedo is a long fish-shaped weapor, made of torpeds. Wood, and weighted so as to have little or no buogancy. The cherge is contained in a metal case at the fore end. It is propelled by a charge of gunpowder, out of a submarine gun fixed in the bows of a ship. Its range is about 300 feet, and it fires on impact.

Out. Outrigger, Drifting, and Towing Torpedoes. - Before the introduc-

 rigger, tion of the Whitohead, vessels armed with torpedoes were princidrifteng, pally 6upplied with the outrigger torpedo. The explosive is conand tow- tained in a metal case secured to the end of a ateel or wooden pole, Log tor- which lies fors and aft in the vessel carrying it. The pole can bo padoes. rigged out until the torpedo is subuerged a ahort distance ahead of the ressel, and is fired on contact with the enemy's side, either by en operator in the boat compheting the electric circuit, or by the circuit being completed by a circuit closer in the torpedo. In rivers, or places with a current, drifting torpedoes can be used. They should be suspended from floats, and arranged in groups or paire connected together by a rope, oo that they may catch across the bows of a vessel at anchor. They can be fired after a given lapse of time by clockwork sad other devices, or can be so arranged that tho firing arrangement is relcascd on a catch being withdrawn by the action of a propeller whecl, which remaine stationary as long as the tornedo drifts with the cnrrent, but is revolved by the force of the current when the torperln is stoppes. Towing torpicdoes are constructed to diverge frou either side of a ship when tomed, wbich is effected by sheping the torpedo like an otter. The torpedo tows on the surface, and, on striking s ship's side, the head containing the charge drops off, sod fires as its weight tautens a line connecting it to the body.Torpelo Boals. - The sreat improvements made of late ycare in machine gnos have rendered the outrigger and towing torpedo of little value for torpedo boats, as it rould bo almost impossible to approach a vessel near eoough to nse them before the boat would be destroyed by the storm of missiles which would be fired at her. All torpedo boats under construction, and most of those already completed. are therefore armed with the Whitehead torpedo. A modern torpedo boat is built entircly of steel, the plates often not exceeding 1 inch in thickness, as, in order to get the necessary bigh speed, the minimmm of weight consistent with the necessary strength is of the first inportance. There aro three classes of boats, known as first, sccond, and third. The first are capable of keeping tho sea on their own account; tho sccond are for harbour defence; and the third can he cerrich ou board a ship.

The following table gives the dimensions and other detaile of a boat of each tyre:-

Type of Boat.	Length.	Beam.	Dis. place. ment.	Full Speer 10 Knots.	Indicated llorsePower at Full Speed.	Bolfer Pressule, to per Square Inch.	Dlstance Boat can steam with Coal carrled at	
							Euld Speed.	Half Speed.
1st class..	${ }_{135}{ }_{\text {Ft }}$		Ton9.	23	11.50	140	Knots.	Knots. 2000
2d class...	88	110	30	20	450	125	159	400
3d class...	64	76	12.5	16.5	150	120	100	250

The boilers and machinery are protected by coal, and sa armoured tower protects the stecring gear and telegraphs for controlling the engines.

Torpedo Nets. - The introduction of the modern tormedo boat bas caused great attention to be 'paid to any means which will protect a ship from tho torpedo. Mlost nations are sdopting steel-wire netting, suspended from booms attaehed to the ship's side, the bcoms keeping the nets sufficiently far off to prevent any damage being donc to this bottom by the explosion of the larcrest charge carricd by a Whitchead. This nettiog, besides being cumbersone and heary, cannot be used unless the slrip is stationary or nearly so, so that is many cases it would be useless, but for ships at anchor it is of great value. Increased cellular subdivision is also being given to ships under construction, and opecial vessels, called " torpedo catchers," are being built by most nations. A torpedo catcher is a vessel of superior size and otrengtl, but with the amme high speed as a torpedo boat, the principal arm of the torpedo catcher being machive guns.
(E. P. G.)

torquatus. See Manlius.

TORQUAY, a watering-place of England, is finely situated on the northern recess of Tor Bay, Devonshire, and on the Dartmouth and Torbay branch of the Great Western Railway, 12 miles north of Dartmouth, 23 south of Exeter, and 220 west-south west of London. Owing to the beauty of its site and the equability of its climate, it is the favourite watering-place of Devon, and, being screened by lofty hills on the north, east, and west, and open to the sea breezes of the south, it has a high reputation as a winter residence. The temperature seldom rises as high as 70° in summer or falls below freezing point in winter The lower ground is occupied by shops, hotels, and the plainer class of houses, while mansions and villas occupy the picturesque acclivities of the well-wooded limestone cliffs, commanding great variety of

Environs of Torquay. fine views. There are still some remains of the original Torre abbey, founded for Premonstratensians by William, Lord Brewer, in 1196. They stand to the north of the modern mansion, but, with the exception of a beautiful pointed-arch portal, are of comparatively small importance. On the south of the gateway is an old 13th-centary building, known as the Spanish bara. On Chapel Hill are the remains of a chapel of the 12th century, dedicated to St Nichael, supposed to have formerly belonged to the abbey. St Saviour's parish church of Tor-Mohun, or Tormoham, an ancient stone structure, was restored in 1874. The old church at St Mary Church, to the north of Torquay, bas been rebuilt in the Early Decorated style; and in 1871 a new tower was also crected as a memorial to Dr Phillpots, bishop of Exeter, who with his wife is buried in the churchyard. St John's church, by Street, is a very fine example of modern Gothic. Among the principal

Eecular buildings are the town-hall with square tower (1852), the post-office (1865), the museum of the natural history society (1874), the theatre and opera-house (1880), the county police court, the market, and the schools of art and science (extended in 1887). There are a number of benevolent institutions, including the Torbay infirmary and dispensary (1843), the homœoopathic dispensary (1848), the Western hospital for consumption (1852), Crypt House institution for invalid ladies (185t), and the Mildmay home for incurable consumptives (1886). In 1886 the local board purclased from the lord of the manor, at a cost of $£ 85,000$, the harbours, piers, baths, assembly rooms, \&c., including 60 acres of pleasure grounds and open spaces. The town is supplied with water from the Dartmoor hills, 16 miles distant, at a cost of $£ 120,000$. There is a convenient barbour, extended in 1870 at a cost of $£ i 0,000$, and having a depth of over 20 feet at low water. The principal imports are coals, timber, and slates, and the principal exports are stones of the Transition limestone or Devonshire marble, which is much valued for building purposes. In the town are a number of marble-pulishing works. Terra-cotta ware of very fiue quality is also manufactured from a deposit of clay at Watcombe and at Hele. The population of the uilan sanitary district (Tormoham with Torquay, area 1465 acres) in 1871 was 21,657 , and in 1881 it was 24,767 .
There was a village at Torre even before the foundation of the abbey, and in the neiglbourhood of Torre are remsins of Roman occupation. The manor was grantell by William the Conqueror to Richard de Bruvere or de Brewere, and was subsequently known as Tor Brever. After the defeat of the Spanish Armada, Don Pedro's galloy was brought into Torbay; and Williann, prince of Orange, landed at Torbay 5th November 1688. The bay was a rendezvous for the British fleet during the war with France, and the frrst good houses at Torquay were built for the officera. Until half a century ago it was an insigniticant fishing village.
See Blewltt's Panorama of Tor ruauy, 1832 , and White's history of Torguay, 1878 .
TORQUEMADA, Juan de (1388-1468), or rather Johannes de Turrecremata, cardinal, was born at Valladolid in 1388, and at an early age joined the Dominican order, early distinguishing biinself for learning and devotion. In 1415 he accompanied the general of his order to the council of Constance, whence he proceeded to Paris for study, and took his doctor's degree in 1423. After teaching for some time in Paris, he became prior of the Dominican house first in Valladolid and then in Toledo. In 1431 Pope Eugenius IV. called him to Rome and made him "magister sancti palatii." At the conncil of Basel he was one of the ablest and most prominent supporters of the view of the Roman curia, and he was rewarded with a cardinal's hat in 1439 . He died in 1468.

His principal works are In Gratiani Decretum Conmentariz, 4 vols., Venice, 1578 ; Expositio Brevis et Utzris supcr Toto Psalterio, Mainz, 1474; Questioncs Spirituales super Evangclia Totins Anni, Brixen, 1498; Summa Ecclesiastica, Salamanca, 1550. The lastnamed work has the following topics:-(1) De Universa Ecclesia; (2) De Ecelesia Romana et Pontificis Prinatu; (3) De Universalibus Conciliis ; (4) De Schismaticis et Herreticis.

TORQUEMADA, Toscas. DE, inquisitor-general for Castile and Leon, was born early in the 15th century, and died in 1498. When called to the work with which his name is so unenviably associated he was prior of the Doninican honse in Segovia. See Inquisition.

TORRE ANNUNZIATA, a town of Italy, in the province of Naples, $12 \frac{1}{2}$ miles south-east from that city, on the Bay of Naples, at the sonthern base of Vesuvius. The inbabitants are mainly occupied in fishing and in a brisk coasting trade; there are also manufactures of arms, paper, and macaroni. The population in 1881 was 20,060.

TORRE DEL GRECO, a town of Italy, in the province of Naples; $7 \frac{1}{2}$ niles to the south-east of that city; lies
at the south-west foot of Vesuvius, on the shore of the Bay of Naples. It is built chiefly of lava, and stands on the lava stream of 1631 , which destroyed two-thirds of the older town. Great damage was done by the eruptions of $1: 37$ and 179t, when inmmense streams of lava. fiowed through the town into the sea; the earthquake of 1857 and the eruption of December 8,1861 , were even more destructive. After each disaster the people have returned and repaired the rnin, the advantage derived from the rich land on the flanks of the volcano and the proximity to the sea and to Naples being more than enough to overcome apprehensions of danger. In the outskirts are many beautiful villas and gardens. The inhabitants are largely employed in fishing (tunny, oyster, sardine, and especially coral), and the neighbourhood is famed for its fruit and wine. The population in 1881 was 21,588 .

TORREY, Jobn (1796-1873), a distinguished American botanist, was a member of an old New England family which contributed several officers to the War of Independence. He was born at New York, and spent his school days there, save for the concluding year at Boston. When he was 15 or 16 years of age his father received a prison alpoirtment at Greenvich, and there he made the acquaintance of Amos Eaton, one of the foremost pioneers of natural history studies and popular science teaching in America. He thus learned the elements of botany, as well as something of mineralogy and chemistry, so determining the studies of his life. In 1815 he commenced the study of medicine, meanwhile finding time to prepare his first catalogue of plants, and to establish a correspondence with Anerican and foreign botanists, and in 1818 he commenced practice. Stimulated by Elliott's account of the flora of South Carolina and Georgia, Torrey commenced a systematic account of the botany of the Northern States, of which the first and only volume appeared in 1824. In the same year he obtained the chair of chemistry and geology at West Point military academy, whence he was translated three years later to the chemical professorship in the college of physicians, New York. He next described the collections of the first exploration of the Colorado Territory, so laying the foundation of all subsequent work upon the flora of the Rocky Mountains. In these years he also monographed the sedges, and did good service in substituting the natural for the Linnæan system. In 1836 he was appointed botanist to the State of New York, producing his Flora of the State in 1843; while from 1838-4.3 he carried on the publication of the earlier portions of Flora of North Americt, with the assistance of his pupil Asa Gray. Becoming more and more immersed in chemical labours, which from 1857 passed partly and soon completely into those of U.S. assayer, be notwithstanding continued to accumulate and work up masses of material for this vast undertaking, which still awaits completion at the hands of his colleague aud successor, Prof. Gray. He evinced a continued interest in botanical teaching, and made over his valuable herbarium and library to Columbia College two or three years before his death. He will be remembered not only as the father of American systematic botany, and an accurate and faithful, if somewhat excessively cautious, investigator, but also as an eminent teacher, aud for an excellence of personal character and simplicity of beliefs much resembling Faraday's. His memory is literally kept green by the beautiful Coniferous genus Torreya, and his labours commemorated and continued in the valuable memoirs of the Torrey Botanical Club.

See Gray, in Silliman's Journal, 1873.

TORRICELLI, Evaygelista (1608-1647), physicist and mathematician, was borh at Faenza, October 15, 1608.

Left fatherless at an early age, he was carefully educated ynáer the care of his uncle, a Camaldolese monk, who in 1627 sent him to Rome to profit by the scientific teachings of Benedetto Castelli. The perusal of Galileo's Dialoghi delle Nuove Scienze (1638) inspired his fertile mind with many fresh developments of the new mechanical principles there set forth, which he embodied in a treatise De Motu (printed anıongst his Operr Geometrica, 1644). Its conmunication by Castelli to Galilco in 1641 led to the adoption as a disciple by the Florentine sage of one who seemed not unworthy to become bis successor. Torricelli accordingly, repairing to Florence, October 10, 1641, resided with Galileo, and acted as his amanuensis during the three remaining months of his life. On its close his contemplated return to Rome was anticipated by his nomination as grand ducal nathenatician and professor of mathematics in the Florentine academy. The discorery which has perpetuated his fame was made in 1643. Galileo had failed to perceive why water refuses to rise above 33 feet in a closed tube. It occurred to Torricelli to try the experiment in a more compendious form. The anticipated result ensucd that the suspended column of mercury was shorter than that of water in the proportion of its greater specific gravity. He immediately concluded both to be sustained by atmospheric pressure, and constructed the "siphon-barometer "expressly for the purpose of measuring its fluctuations. By this monentous discovery the obscure notion of a fuyg vacui was banished from physical science, and its progress most notably yuickened. The mercurial barometer was long knowu as the "Torricellian tube," and the vacuum it includes is still designated the "Torricellian vacuum."

The publication amongst Terricelli's Opera Geometrica (Florence, 1644) of a tract on the properties of the cycloid involved hin in a controversy with Roberval, who accused him of plagiarizing his earlier solution of the problen of its quadrature. There seens, however, no roon for doubt that Torricelli's was arrived at independently. "The matter was still in debate when he was seized with fever and pleurisy, and died at Florence, after twenty days illness, October 25, 1647, at the age of 39. He was buried in San Lorenze, and a conmemorative statne of him erected at Faenza in 1864. He was of a singularly amiable disposition, and possessed qualities the most felicitous for the investigation of nature. Among the new truths detected by him was the valuable mecluanical principle that if any number of bodies be so connected that, by their motion, their centre of grarity can meither ascend nor descend, then those bodies are in equilibrinm. He also discovered the remarkable fact that the parabolas described (in a vacuum) by indefinitely unmerous projectiles discharged from the same point with equal velocities, but in all directions, are situated within a paraboloid which is a tangent to all of them. His theoreni that a fluid issues from a small orifice with the same velocity (friction and atnospheric resistance apart) which it would have acquired in falling through the depth from its surface is of fundamental importance in hydraulics. He greatly improved both the telescope and microscope, and invented the simple microscope composed of a globule of melted glass. Several large object lenses, engraven with his uame, are preserved at Florence. He used and developed Cavalieri's method of indivisibles.
A selection from Torricelli's manuscripts was published by Tommaso Bonarentura in 1715, witl the title Lexioni Accadenichic (Florence). They include an address of acknoyledgment on his admission to the Accadenia della Crusca. His essay on tho inundations of the Val di Chiana was printed in Racolln d'Antori che trattano del Noto dell' Acque (vol. iv. p. 115, Florence, 1668) snd amongst Opuscoli Idrautici (vol. iii. p. 347, Bologna, 1822). Por his life, see Fabroni. Vita Italorum, vol. i. 1. 345°; Glinassi, Zetlere fin qui Inodile di Evangelista Tornicclli (Faedza, 1864);

Tiraboschl, ${ }^{\text {T }}$ Sloria delln Lett. Il., Fol. viii p. 302 (ed. 1824) Mlontucla, Hish. des Math., vol ii'; Marie, His. dis Sciences, vol iv. p. 133 .
tORRIGIANO, Pietro (c. 1470-1522) -a Florentine sculptor, was, according to Vasari, one of the group of talented youths who atudied art under the patronags of Lorenzo the Maguificent in Florence. Ben. Cellini, report, ing a conversation with Torrigiane, relates that he and Michelangelo, while both young, were copying the frescos in the Carmine chapel, when some slighting remark made by Michelangelo so euraged the violent temper of Torrigiano that he struck lim on the nose, and thus caused that disfigurement which is 80 conspicuous in all the portraits of Nichelangelo. Soon after this Torrigiano visited Rome, and helped Pinturichio in modelling the elaborate stucco decorations in the Appartamenti Borgia for Alexander VI. After some time spent as a hired soldier in the service of different states, Torrigiano was inrited to England to execute the magnificent tomb for Henry VII. and his queen which still exists in the lady clapel of Westminster Abbey. This appears to have been begun before the death of Henry VII. in 1509, but was not finished till 1517. It consists of two colossal recumbont effigies in gilt bronze on an altar-tomb of black marble, decorated with very graceful medallions of the patron saints of Henry and his wife, and other enrichments in bronze. The two effigies are well nodelled, and have life-like but not too realistic portraits. © After this Torrigiane received the commission for the altar, retable, and baldacchino which stood at the west, outside the screen of Henry VII.'s tomb. The altar had marble pilasters at the angles, troo of which still exist, and below the mensa was a life-sized figure of the dead Christ in painted terra-cotta. The retable consisted of a large relief of the Resurrection. The baldacchino was of marble, with enrichments of gilt bronze ; part of its frieze still exists, as do also a large number of fragments of the terra-cetta angels which surmounted the baldacchino and parts of the large figure of Christ. The whole of this work was destroyed by the Puritans in the 17 th century. ${ }^{1}$ Henry VIII. also commissioned Torrigiano to make him a magn:ficent tomb, somewhat similar to that of Henry VII., but one-fourth larger, to be placed in a chapel at Windsor ($q \cdot v$.); it was, hewever, never completed, and its rich bronze was melted by the Commonwealth, together with that of Wolsey's tomb. The indentures for these various works still exist, and are printed by Neale, IFestminster Abley, London, 1818, vol. i. p. 5t-59. These interesting documents are writiten in English, and in them the Florentine is called "Peter Torrysany." For Henry VII.'s temb he contracted to receive $£ 1500$, for the altar and its fittings $£ 1000$, and $£ 2000$ for Henry YIII.'s tomb. Other works attributed from internal evidence to Torrigiano are the tomb of Margaret of Richmond, mother of Henry VII., in the soutb aisle of his chapel, and a terracotta effigy in the chapel of the Rolls.

While these royal works were going on, Torrigiano visited Florence in order to get skilled assistants. He tried to induce Ben. Cellini to come to England to hel l_{3} him, but Cellini refused, partly from his dislihe to the brutal and swaggering manners of Torrigiano, and also becauso he did not wish to live among "sucl, heasts as the Eng. lish." The latter part of Torrigiano's life was spent in Spain, especially at Seville, where some terra-cotta sculp, ture by him still exists. His violent temper got him into
${ }^{1}$ An old elrawing still exists showing this elaloorate work ; it is engraved in the Jicruryia Anglicoun, London, 1848, p. 26\%. Many hnodrede of fragments of this terra-cotta sculpture were found as few years ago hioden under the floor of the triforium in the abbey; they are unfortunately too much broked aud imperfect to be fitted together.
difficullies with the authorities, and he ended his life in 1522 in the prisons of the Inquisition.

TORSHOK, a district town of Russia, in the government of Trer, on the river Tvertsa, 3 S miles by rail to the south-west of the Ostashkovo atation of the St Petersburg and Moscow railway. It dates from the 11 th century, and the very name (" market-place") shows that thie dependency of Novgorod was a commercial centre. It was strongly fnrtified with a stone wall, which, however, only partially protected it from the attacks of Mongole, Lithuanians, and Poles. Torshok is now celebrated in Russia for its embroidered leather-work and manufacture of travelling bags, and for its trade in corn and flour. The population in 1884 was 12,900.

TORT, as a word of art in the law of England and the United States, is the name of civil wrongs (not beiog merely breachos of contract) for which there is a remedy by action in courts of common law jurisdiction. It may be said to cerrespond approximately to the term "delict" in Roman law and the aystems derived from it. . But this is ouly a rough approximation. For in English usage tort includes, not only those matters which in Roman law are classed under obligations quasi ex delicto, but various others which Roman or modern Continental lawyers would refer to the law of ownership or real rights, and not to any such head-as "delict." The truth is that the actual development of tort as a legal geaus has been purely bistorical and to no small extent accidental. Nothing can be learnt, of course, from the word itself. It is merely the French word for "wrong," specialized into a technical meaning by a process which was completed only in the latter years of the 17 th century and the earlier of the 18th.
The early common law had no theory of obligations in the Roman sense, and hardly any theory of contract. Its remedies were directed either to the restitution of something which the defendant unjustly detained from the plaintiff-were it land, goods, or money-or to the repression of violent wrongdoing. Only the former class of remedies was purely.civil; the latter included a penal element of which formal traces remained long after the substance had vanished. A man who trespassed on his neighbour with force and arms offended the king as well as his neighbour, and was liable not only to pay damages to his neighbour but to make a fine to the king. Gradually the category of "force and arins" was held to include all manner of direct injuries to person, land, or goods, though the force might consist in nothing more than the bare setting foot without lawful cause on the soil poseessed ty one's neigbbour. But this was still a long way from meking room for the modern growth of the law of torts. The decisive opening was given by the Statute of Westminster, which enabled actions to be framed " on the case "- in consimili casu, -that is, allowed legal remedies to be extended by analogy to the forms of action already recegnized. Now those forms and their incidents were archaic and inelastic: the procedure was cumbrous, and plaintiffs were liable in many ways to irrational and irreparable discomfiture The more modern action on the case was free from these drawbacks. Hence it was the aim of ingenious pleaders to extend the action on the case as much as possible ; and so successful was this movement that in the 16 th century a special form of "trespass on the case" became, under the name of assumpsit, the common and normal method of enforcing contracts not made by deed, and remained so till the middle of the present century. It still holds its place in those American States where the old forms of action have not been abolished. Note that "assumpsit" had become a substantive title of the lew, and was consciously referred to
its proper genus of contract, before the genus or order of torts was formed. Meanwhile other actions on the case, framed mostly on the analogy of trespinss, bit partly on that of other genericelly similar remedies of the old law, were applied to the redress of miscellaneous injuries to person or property which for one and another reason could not be touched. or could not be conveniently dealt with, by the old action of trespass itself. Some of these actions on the case acquired fixed forms of their own and became distinct species; others did not; there remained (and there still remains in theory) an undefined region of possible new actions applying the principles of legal right anc duty to nerv exigencies of fact.
The extension of forms of remedy grounded on trespass caused those forms which were grounded on restitution ts fall into the hackground, with the curious result that in the modern common law nothigg is left enswering to the vendicatio of the Roman law. We have an elaborate lav of property, but when it comes to the practical protection of our rights we find that we can recover our property only by complaining of a wrong done to our possession or right to possession. The law puts the actual possessor in the first line, and allows an owner definitely out of possession to sue only for "injury to the reversion," thoughe ar owner who can resume possession at will is indeed more favourably treated. Its remedies are made efficient, but at the cost of straining the theory at various points. Hence many difficulties of detail and much olscurity of principle. The distinction between dominium and obligatho exists, of course, in English law, but it is peculiarly hard for an English lawyer, with the usual unsystematic training, to grasp it with certainty or trace it with accuracy

There is aiso a region of considerable obscurity about the points of contact between contract and tort. The questions thus raised are too technical for discussion here. Since pleadings have ceased to be formal they are much less likely to arise; on tha other hand, they are more likely, in the exceptional cases where they may still arise, to be unexpected and baffling.
For the practical purposes of modern law wo may aivide torts into three groups, -wrongs of a personal character, wrongs affecting property, and wrongs affecting person and property, either or both. Under the first group come the wroxys of physical violeoce and restraint, natruly, assault and false imprisoniuent; then the wrong done to men'a good nanie by libel and slander, in which kind there are sundry curious and not wholly rational distinctions; and wo must hera rather than elsewhere count deceit, and a somewhat illdefined class of wrongs of a like nature, of which the geeeric mark is tbo neeessary presence of a frandulent intention, or at feast reckless disregard of good faith. In oue case, that of maliciouns prosecution, evil motive must be shown; in fact, the much-tormented word "malice" has yery nearly its natural and ordinary meaning. So-called alander of title belongs to this class, beiag in trath a opecial form of deceit. Wilful interferenco with the exercise of public or private rights may be an actionnilo wrong, though the competitive exercise of like rights is none; and it is beld, thouglt not without doubt, that procuring a person to break bis contract for one'a own advantage (for oxaniple, a singer angaged by a rival opera manager, or a specially skilled workman in a rival factory) is on this principle a wrong io the other contracting party.
With regard to property the broad rule of the commion law is that a man meddles with whatever belongs to others at bis peril. This bas beco established and worked out only througla a series of intricate formal distinctions. But the resilt is that, special exceptions excepted, even tha most innocent assumption of dominion witbout a real title makes one liable to the true owaer.
Wrongs of the mixed kind alfecting both persou and property, arise frem the use of one's own property, or the doing of acts lawfuly in thersselves, in a manuer inconsistent with the safety and con? venienco of others. The accustomed heads of such wrongs are nuisance and negligence. Generally some failure in due diligence is involved; but in some cases the law has, on grounds of general policy, imriosed an absoluta or all but absolute duty of avoiding harmful results. One must do certain things at one's peril, if at all, though the doing of them is not in itself uula lafful; others are done not at oue's peril, and yet under a wider responsilility than
the common run of lawful acts It is not wrong to make au artificial reservoir of water on one's own land; but the landowner who doca so nust answer for all damage, thongb no failuro in duo diligence be shown, if tho water escapes by any cause which reasonable human caro could prossilly have provided against. Again, the occupien of a place of buslness must keep it in affe repair, for the bentht of customens anl others lawfully coming there; and, if harm is sune through the want of repair, it is 110 excuse for him to say that he liad engaged an apparently competent nerson to keep things in order. These aro modern principles in the law, and beelu to have harilly yct reached their full development. Tho dectrine of nesligenco is also mostly modern. Questions of manch interest and difficulty are raisel by "contributory дegligence," i.e., when it is alleged by way of defence that the party complaining suffered wholly or mainly by his own want of care. The true principle appears to bo that, if wader the circumstancea the harm suffere. by the plaiutif was the natural and probable cousequence of the defendant's want of carc, the defendant is liable, -and this whether tho plaintiff, or some third person, has or has not in any degreo contributed to tho final result by want of caie oll hia own mart, or even by a voluntary act, provided that the act be such as might liavo been foresecn and cxpected. IJut if the plaintiff has doze something which, though induced by tho defendant'a default, was not a natural and probablo conseguence of it, or if the harn suffered is due 10 some act of a third person which could not have been reasonably foreseeu or expectod, then the defendant will not be liable.

A great number of special dutiea have been imposed on different classes of percons-public officers, undertakers of public occupations, and so forth-by molern Acts of Parliament, and arc enforcable by penalties. In nome cases the breach of such a duty confera a aeparate right of action upon a person who thereby suffers danage, in others not, accordiog to what apjears to be the intealion of tho euactment. No general rule can he laid down.

In practice, a largo proportion of actionabla injuries, especially injuries by negligence, are due to tho acta or defaults of scrvants or workmen, from in bom no suhstantial redress could be obtained or expected. It is held in the common law, and appears to be held in all modern systems, that a master is liable for the acts and defaulas of the servants cmployed by hin, proviled those acta or defanlts occur in tho conrse of the servant employment, that is, while the servaut is ahout the master'a busidess, and acting with a view to the master's interest, and not for some differeut private purpose of his own. But a man 15 not generally liabla for the conduct of an "independent contractor" - a person who underlakes to do or get done certain work, but not to be under the employer's control as to tho manuer of doing it. One may be so liable, however, in virtue of spcciel duties attached to particular ailnations by positive rules of law. When a servant is injured by the act or default of another servant working under the same employer, the general rula of liability bas been largely modified in the employer's favour, on grounds which have neither been consiatently expounded nor geacrally reccived as हatisfactory. The Employers' Liability Act of 1850 has remedied tha most obvious hardships consequent ou the decisions, but only by way of particular exceptions, so that the law as a whole, if nore just than it was, is much mors iotricate, and does not appear to rest on any intelligiblo priaciple. Tho Scotrish courts were in a way to develop a more rational doctize, latt the House of Lords, instead of adopting it, forced the law of Scotlaud into conformity witb judyments which were still of only recent authority in England. The subject, however, has miven trouble everywhere, and legislative experiments have been tried in nanj" Continental countries. See Perliamentory Papers, Commercial, No. 21, 1886.
Liferoture.-There are several modern English and Amertcan text-books on the law of sits:-C. G. Addlson. Wiangs and itheir, Remedies, being a Treakise on the Law or Tors, Gth ed, by Howacc Smith, London, 1837, la, 8vo; M. M. Bigelow.
Leading Ceces on the Lau of Torts, Moston, Mass., 1675, 1a, Svo; Id., Elements of the Lav of Torts, Jd ed., Boiston, Jass. 18so, sm. 8vo; C. Collett. Manual of the Lav of Torte and of the Neasure of Damapes, 6th ed., Mrdras, 1886, 8\%o; T. M. Cooley. A Treatise on the Law of Torts. Chicaco, 1 kao, svo : S Hastings A Treakes on Torts. London, 13s5, la. 8vo; F. Hilliard. The Jaw of Torts or Prirate TRs on Torts. London, 1885, lu, 8vo; F. Hshard. The law of Torts or Pricate the Law of Turts, Londoi, 1855,8 ovo F. Pollock. The Lavo of Torts, London, 1887 , There are also well-known wo: es of a wider scope which touch on many parts of the subject, anch as that of Mayne on Damazes; and monographs on speclal the Gubject, anch as that of Mayne on Camazes i and monographs on special
parrs. sach as those on Negligence by Campell, Horuce Smith, Shearman and parrs. such as those on Negligence by Campbell. Horace Smith, Shearman and Redfeld, and Wharton, and those on Llbel and Slancer by Starkie (recent ed. by Foikard) and Blake Odgers. The Govermment of India has taken steps to codify the law of civil wrongs (Whitley Stokes, The ynglooIndian Codes). Tha genarsl Institutional books (Blackstone and Kent, and the later adoprations of Blackstons developed and modified by the decialons of the last fifty yeais.
(F. PO.)

TORTOISE. Of the three names generally used for this order of reptilcs, viz., Tortoise, Turtle, and Terrapin, the first is derired from the old French word torlis, i.e., twisted, and was probably applied first to the common European species on account of its curiously bent fore-
legs. Turtle is believed to be a corruption of the same word, but the origin of the aame terrapin is unknown: since the time of the navigators of the 16th century it has been in gencral use for freshwater species of the tropics, and especially for those of the New World. The name tortoise is now generally applied to the terrestrial members of this group of animals, and that of turtle to those which live in the sea or pass a great part of their existence in fresh water.

Tortoises and turtles constitute one of the orders of Reptiles, the Chelonia. They are characterized by having the truok of tho body incased in a more or less ossified carapace, which consists of a dorsal more or less convex portion, and of a flat ventral one, the so-called plastron: These portions are generally more or less firmly united on the side, but leave a wide opening in front through which the head and neck and the fore-limbs protrude, and one behind for the tail and hind-limbs. The dorsal carapace is (with the exception of Sphargis) formed by the dorsal vertebre, by the ribs which are so much expanded as to form sutures with each other, and by a number of lateral dermal ossifications (marginals). The plastron consists of from eight to eleven more or less dilated dermal bones, the sternal elements of higher Vertebrata being absent. This osseous case or shell receives in its interior the organs of the chest and abdomen, the humeral and pelvic bones, and the muscles for the humerus and fernur. In many species, especially those of the family Testulitidx, or tortoises proper, the neck and head and the limbs can be withdrawn within the shell, the cervical and the proximal caudal vertebre retaining their mobility. In the majority of Chelonians the osseous shell is covered with a hard epidermoid coat, which is divided into large symmetrical plates (commonly called "tortoise-shell". in those species from which the article of commerce is obtained), which can bo detached from the underlying bones. These epidermoid plates do not correspond in arrangement or extent with the bones of the carapace; they vary considerably in form, and are therefore generally noticed in the deseriptions of suecies. Their arrangement and- terminology may be learned from the accompanying illustrations (figs. 1, 2).

The integuments of the head, neck, tail, and limbs are either soift and smooth or tubercular or scaly, the tubercles and scales having frequently an osseous nucleus.

Other parts also of the skeleton show remarkable peculiarities, so that the sometimes very fragmentary remains of Chelonians can almost always bo recognized as such. All the bones of the skull are suturally united, with the exception of the mandible and hyoid bone; the dentary portion of the mandible consists of one bone only. The pectoral arch is composed of the scapula, with which the precoracoid is united, and the coracoid. Clavicles (epiplastra) are represented by the anterior elements of the plastron. Two pairs of limbs are invariably present.

All Chelonians possess a tail, whicl is generally short, but sometimes elongate, and always provided with strong muscles at the base. No Chelonian possesses teeth; but their jaws are provided with horny sheatis, with hard and sharp edges, forming a beak like that of a parrot.

The number of Chelonians known at present nay be estimated at about 220, the freshwater species being far the most numerous, and abundart in well-watered districts of the tropical and subtropical zones. Their number and rariety decrease beyond the tropics, and in the north they disappear entirely about the 50 th parallel in the western and about the 56 th in the eastern bemisphere, whilst in the southern lemisphere the terrestrial forms seem to advance to $36^{\circ} \mathrm{S}$. lat. only. The marine turtles, which are spread over the whole of the equatorial and subtropical seas, sometimes stray beyond those limits. As in other
orders of Reptiles, the most specialized and the largest forma are restricted to the tropics (with the exception of Macroclemnys) ; but, unlike lizards or snakes, Chelonians

Fig. 1.

Fiog. 1. 2-Shell of Testudo pardalis, to show the divistons of the integument, which ara marked by entra lines, and of tha osseons carapace, thesa belng marked by dotted sines. Fig I, Upper or dolsal aspect. Fig. 2, Loner or ventral gspect.
Dermal Scutes :- $c 0$, costols; δ, vertebrals; m, marglnals; g, gulars; rg, postgulara; p, pectorala; a^{b}, abdorolnals; $p a$, præanals; an, anals.
Bones of tha Carapaca:-co, costals, ne, seurals; nu, nuchal; py, pygal: m°. marginale; ent, entoplastron, ep, eplplastron: hyo, hyoplastron; hyp, liypo-
plastron; $x y p, x j p h j p l a s t r o n . ~$
are unable to exist in sterile districts or at great altitudes. Chelonians are strictly animals of plains, or at least of low country.

Chelonians show a great divergence in their moda of life, -some living conatantly on land, others having partly terrestrial partly aquatic habits, others again rarely leaving the water or the sea. The first-mentioned, the land tortoises proper, have short club-shaped feet with blunt claws, and a very convex, heavy, completely ossified sheil. In the freshwater forms the joints of the limb bones are much more mobile, the digits distinct, armed with sharp claws, and united by a membrane or web; their shell is less convex, and is flattened, and more or less extensive areas may remain cartilaginous to lessen its specific gravity. As a rule, the degree of development of the interdigital wab and of conrexity of tha shell indicates the prevalence of aquatic or terrestrial babits of a species of terrapin. Finally, tne marine turtles have paddle-shaped limbs resembling thosa of Cetaceans.

Land tortoises are sufficiently protected by their cara pace, and thereiore have no need of any special modi fication of structure by means of which their appearance would ba assimilated to the surroundings, and thus give them additional aecurity from their enemiey. These, how
ever, ara but few in number: the large cats of South America are said to be able to tear them out of tha shell with their claws; and the ancient tale of Eschylus baving been killed by a tortoise carried aloft by an eagle and dropped on the head of the unfortunata poet seems to be founded on the fact that tortoises are a favourite prey of the Lämmergeyer (Gypactus), which has the habit of dropping them from a height on rocks in order to break the shell. On tha other band, among the carnivorous terrapins and freshwater turtles instances of protective resemblance are not scarce, and may even attain to a high degree of specialization, as in Chelys; their shells offer them less protection, and their enemies (crocodiles and alligators) ara more numerous; they also requiro this special provision to enabla them to approach or seize their prey with greater ease. The colours of land tortoises are generally plain or in simple patterns, whilst those of many terrapins are singularly varied, bright, and beautifnl.

Chelonians are diurnal animals; only a few are active during the night, labitually or on apecial occasions, as, for instance, during oviposition. Land tortoises are slow in all their novements, but all kinds living in water can exacute extremely rapid motions, either to seize their prey or to escape from danger. All Chelonians are stationary, residing throughout the year in the samelocality, with the exception of the marina turtles, which periodically migrate to their breeding stations. Species inhabiting temperate regions hibarnate.

Chelonians possess great tenacity of life, surviving injuries to which other Reptiles would succumb in a short time. The beart of a decapitated tortoise continues to beat for many hours after every drop of blood has been drained from the body, and the muscles of the trunk and head show signs of reflex action twenty-four hours after the eeverance of the spinal cord. The longevity of tortoises is likewise a well-known fact, to which reference will again be made.

Land tortoises, a few terrapins, and some of the marine turtles are berbivorous, the othera carnivorous, their prey consisting cliefly of fish, frogs, and other small aquatic animals.

All Cbelonians are oviparous, and the eggs are generally covered with a hard shell.

In the system ${ }^{3}$ proposed by Duméril and Bibron, and afterwards modified by Gray and Strauch, the Chelonians are arranged according to their mode of life, and divided into terrestrial, paludine, fluviatile, and marine forms. However natural such an arrangement may appear at first, a more carcful examination proves it to be (as all arrangements based solely upon the inode of life) at variance with the atructural affinities, whetber the recent forms alone be considered or the fossil as well. The division of the bulk of the order into Cryptodira and Plewrodira, as suggested by Agassiz, Cope, and Ruitimeyer, was a decided progress, as is also the elimination of the suborders Atheca and Trionychoidea recently proposed by Cope and Baur.

The order of Cbelonians may then be divided into the following suborders and families: ${ }^{2}$ -

Suborder I. ATHEC.E.
Vortebre and ribs free, sepsrated from a bony exoskeleton. Family ${ }^{-1}$. Sphargide
Limus paddle-shaped, clawless ; phalanges without condyles. Plastron reduced to an annular series of eight emall bones. Exookeleton consisting of numerocs small bony plates arrenged like mosaic. Pelagic.

Gemus: Dermalochelys (Sphargis).
Fossll genera: Paophophorus (Pllocene), Protosphargis (Crctaceous), Protostega (Cretaceous), Psephoderma? (THassle).
${ }^{1}$ The more important works on this order of Reptiles hnve been enumerated in the article Reptiles, vol. xx. p. 440.
${ }^{2}$ Only the more imporlant and best known of the extinct genera are admittel] Into this synopsis.

Subonder II. TESTUDINATA.

Dorsal vertebre ancl ribs immovally united and expandel into boo" plates forming a carapace, which is bordered by a complete serie., of marginal bones. Epiplastra (clsvicles) in contact with hyoplastra; entoplastron (interclavicle), if present, ovsl, rhom boidsl, o: T-shaped. Sacral and caudal ribs articulating with the ceutrun and the neural arch! Digits with not more than three phalanges.

Selies A. cryptodira.

Neck retractile by a sigmoid curvo in s verticsl plane. Pelvis not anchylosed to the carapace and plastron. Rarely ono or two epidermic scutes (intergular) in addition to the pormal six pairs.

Grour A. Digitata.
Digits slont or moderately elongate; rhalanges with condyles; claws four or five. Neck completely retractile.

Family 1. Testedinide.

Plastral bones nine. Nuchal bone withont costiform processes. Carapaco with epidernic sentes. Candal vertebre procuelons. Tropical and temperate zones, with the exception of Anstralia.

- Recent Renera: Dermatemys;, Bntogur, Clemthys, Prangshura, Geoemyda, Cycle. mus. Envs, Cistruio, Manourlia, Testudo, Homopms. Cinyris, Pyris.
Fossil Eencta: Eurysternum: (Jurassic), Chitracephafus '(Cietaceous), Adocus (Cretrecolis), Palroochelys (Milocene), Pivchogaster (Miocene), Colossochetys (Plocene).

Family 2. Platybtebnide.

Plastrsl bones nine \approx. Nuchal bone without costiform processos. Carapaco with epidormic scutes. ., Candal veriebre nostly opisthocelous. Indian region.

Gerus: Platysternum.,

Family 3. Baenide.

Plastral boucs eleven, mesoplastra being present. Nuchal bone without costiform processes. Carapace with enidermic scutes. Candal vertebre opisthocrelous.
Fosoll genera: Platychelys (Jurassic); Buena (Eocene)

Family 4. Cuelydride.

Plastral bones nine. Nuchal bone with long costifnem processes, oxtending below the marginsls. Carapace with epidermic scutes. Caudal vertebre mostly opisthocelous, Northeru and trapical Anerican regions.

Kecent genera: Chelydra, Macroclemimys
Fossil genus: Tietosternum (Crelaceous).
Family 5. Staunotypade (Eulenger).
Plastral bones nine. Nuchal bono with short costiform processes, exteneling below tho marginals. Carapaco with epilemmic scutes. Caudal vertebre procœlors. Central-Amcrican district. Genera: Staurotypus, Claudius.

Family 6. Cinosternide

Plastral bones eiglit, the entoplastron being alsent. Nuchal bene with short costiform processes, extenling below the marginals. Carapace with epidarmic scutes. Caudal vertebra procelous. Northern and tropical Anerican regions.

Goners: Aromoclielys, Cinosteriuии.
Frmily 7. Psetdotrionychide (Boulenger).
Shell without epidermic scutes.
Fossll geucra : Pscuddrioniyx ond Anostira (Eocrne).

Grout B. Pinnata.

Limbs paddle-shapel; phalanges withont condyles; claws ono or two. Neck imperfectly retractile; cervical vertebre_short. mostly articulated by amphiarthrosis.

Family 8. Chelonide.

Plastral boncs nine. Nuchal without costiform processes. Carapace with epilermic sentes. Hyo-and hypo-plastra not meetsug mesially.". - Pelagic.
liceent menerd. Chelone, Caonmat, Carella.
Fossil genus: Puppigerus (Miocen' and Eocene)
SEhifs P. PLEURODIRA.
Neck not retractile, bending laterally. Pelvis ancliylosed to the carapree and phatron. When epidermic scutes are present, one or tivo intergulars in addition to the normal plastral scntes.

Family 1. Chelydides

Plastral bones uine. Carspnce with enidermic scutes. Limbs with four or five claws. Australian and tropical Anerican regions.
Recent geners: Platenys, Chelymys, Elseya, Cheiodina, IIydraspis, Ifydromedusa, Chelys.
Fossij gunels: Plesiochelys (Jarassic), Craspedochelys (Junassic), Idiochelys (Jurassle), Volonorpha (Eiocene).

Fanily 2. Pelomeduside

Plastral bones eleven, mesoplastra being present. Carapace with epidermic scutes. Limbs with four or five claws. African ond tropical American regions.
Recent gener's: Pelontedusa, Stemotharus, Dumerilta, Podocnenis, Pello. eephalus.
Fossil genera: Pleu"osternum (Cretaceons, Eocene), Bolhremys (Cretsccons), Taphrosphys (Cretaceous).

Finily 3. Carettochelfotdos.

Plastral bones nioe. No enidermic sentes on the ohell. 2 Limby pacldla-shaped, with only two claws. New Guinea.
Genus: Carellochelys.
Family 4. Molaviide (Boulenger).
Candal vertebre opisthoccelous; tail long sud encased in a bony sheath. Australia.
Fossil genus : Miotania (Pletstocene).

Sudohder III. TRIONYCHOIDEA.

Dorsal vertebre and ribs immovsbly united, forming a carapace; no 1 Ygal plata; marginal plates absent or forming an incomplete series. Plastron formed of nine bones, epiplastra separated-from the hyoplastra by the eutoplastron, which is Λ-shaped, without longitudinal process. Sacral and caulal ribs attached to trensverse processes of the neural arch. Fourth ligit with ${ }^{\text {four or five }}$ phalanges.

Family 1. Trionychide.
No epidernic sentes. Lionbs with three elaws. Indian, African, and American regions.
Genera : Chitra, lleptathyra, Trionyr, Cyctanostens, Emyda.
We add a few notes on such of the genera enumerated in this synopsis as have some special interest attached to them, either from a scientific or an ecunomic point of view,

The fanily Sphargide is represeuted in the recent fauna by a single species, Devmatochclys or Sphargis coriacca, the Leathery Turtle, the range of which extends over the tropicsl snd subtropical exas of both hemispheres, and which occasionally strays into tho northern parts of the Atlantic, its occurrence on the British coast having been recorded three or four times within the last century. It diflers from all other Chelonians by its rarapace being formed by ossifications of the skin only. Neither the vertebre nor tbe ribs enter intn its formation; the latter remain free, and are not particularly dilatecl. During the life of the amimal the carapace is Hexible like thick leather, tho Lony deposits being arranged liko mosaic, with several longitnelinal ridges of larger osseous tubercles. The limbs are, as in other marine turtles, padule-or fin-ehaped, the anterior much longer than the posterior, and all destitute of claws. This turtle is probably the laigest living Cbelonizn, exceeding 6 feet in length. The names Testudo lyna, Sphargis mercurialis, \&c., have referenco to the myth that the shell of this or some other turtle was used by Mercury in his construction of the lyre.
The fanily Tcstudinidre is composed of an unbroken series, from thoronghly aquatic freshwater tortoises like Dcrmatemys and Batagir to tho tortoises which live exclusively on land and are perfectly helpless in water. In the Central-American genus Dermatemys the digits are very broadly webbed, the epidermic scutes are thin, and the nose is much produced, -characters which, together with the strong depression of the shell, give these terrapins some. what the aspect of the freshwater turtles or Trionychides. Tbey feed exclusively unou leaves, grass, and especially fruit, and are eaten by the natives. Of the freshwater tortoisoc of the Old World the most thorongbly aquatic aro the Batagurs, which inhabit tho East Indies, and attaiu to a length of 2 feet. Like their American representative, Dcrmatemys, they aro essentially herbivorous, 3nd their flesh is eaten. The genus Clemmys is extremely abundant in species, most of which are of small size, and elegantly örnamented with symmetrical markings of bright colonr. The majority of the species occur in North Anicrica and Mexico, and are of amphibious lialits. Only one species, C. liprosa, inbabits southern Europe. A second European species Lelongs to tho genus Emys, E. orbicularis, which, towards the eud of the Quaternary period appears to have been distributed over a grest part of northern Europe, remains having been fonnd in peat in England, Belgium, Denmark, and Sweden. Its hisbitat is Low restricted to southern Europe, and sweden. Its bas survived in a few isolated northern stations, for instance, in the neighbourhool of Berlin and Konigsberg, aithough it is thero on the verge of extinction. The mobility of the lobes of the plastron, which distinguishes Emys from Clcmmys, is carried a degree further in the North-American genus Cistudo, the Box Tortoise; this terrapin possesses a hinge in the plastrou, rendering its anterior anel posterior portions movable, and converting theni into lids by which the openings of the shell cau be completely closed when the liead and limbs are retracted. A similar protective apparatus exists in the tortoises of the genus Cinusternum. In the African terrestrial genus Cinyxis it is the Iesterior portion of the carapace that is movable, and separated trom the anterior by a hinge. True land tortoises, Testuda, occur in Africa, southern Europe, southerm Asia, South America, and the southern parts of North Ancrica. Those best known in Europe are Tcstudo graca and the Moorish Tortoise, Tcstudo mauritunica, large numbers of which are imported into the United liingdom, chiefly from Morocco. But the most interesting are the gigantic tortoises which formerly inhabited in extreme abundance the Mascareno and Galapagos Islands, and are new on the verge of extinction, or have actually
becomo extinct. "At the time of their discovery those islands were 1870% anu, although known to havo beers more than eighty years uninlabited by man or any large mammal; tho tortoises, therefore, old, was still growing at the time of its death. There is no evidence to show that any of these tortoises were
 indigenous in the Scycliclles; the specimens kejst there in a semi-lomesticated stato liave been either directly imported fron Aldabra or are the descendants of imported individnals.

The family of Chclydridæ includes fresliwater tortoises, which are known under the names of Snapjers or Alligator Terrapins (fig. 3), ou account of their feroeity and long compressed crested tail. They aro now confined to North America east of the Rocky Mountains, Central America, and nortli. west South America, but remains of two species of Chelydra, closely related to their recent representative, have been found in the Oligocene and Mincene enjoyed perfect security; and this, as well as their extraordinary degree of longevity, accounts for their enormous size and their large numbers. They could lo captured in any quantity with the greatest ease within a few days, and proved to the shipg' companies who during their long voyages had to subsist mainly on salt provisions annst welcomo addition to their table. They could be carried in

110. 4 Loggerhead (Caouana carella)
thie hold of a ship, without food, for months, and wero slaugntered as occasion required, each tortoise yielding, according to size, from 80 to 300 pounds of excellent and wholesome meat. Under these circumstances the numbers of these helpless creatures decreased so rapilly that in the beginning of this century their extermination was accomplished in the Mascarencs, and now only a few remain in a wild state in Aldabra and in sone of the islands of the Galapagos group. Singularly, tho majority of these islands were inhabited each by one or more pecnliar forms, specifically distinct

Fig. 5 .-Gieen Iartle (Chelonia viradtsh
from those of the other islands. A large male specauen fron Aldabra, which was iuported into London somo years ago, weighed
of contral Enrope. A second genus, closely allied to Chelydra, Macroclemmys tomminckii, the shell of which attains to a length of 3 feet, and which is the largest known freshwater Chelonian, is restricted to the river-systems tributary to the Gulf of Mexico.
The family of Cinostemide contains a rather large number of small-sized species, distributed from the northern parts of the United Statcs to the northern parts of Brazil. They are of amphibious labits. The front and hind lobes of the plastron are movable, and in certain species of Cinostcrnum the animal can completely shut itself up in its shell.

The Chelonides, or marine turtles, contain but fer species, which are referred to three geuera,-Ccouana, Chclonc, and Carella, Their limbs are wholly modified into paddles, by means of which they can propel themselves with extraorlinary rapidity through the water, but which are entirely unfit for locomotion on land, where the progress of these aminals is as awkward ns tlat of a seal. The toes are euclosed in a common skin, out of which only one or two claws project. The carapace is broad and much depressed, so that when tho turtles are surprised on shore nnd turned

Fic. 6.-Hawksbill Turtte (Caretta mbricata).
over on tneir back, they cannot regain their natural posinon. Their capture forms a regular pursuit wherever they occur in any numbers. Comparatively few ate caught in the open sea, others in atake nets, but the majority nre intercepted at well.known periods and localities where they go ashore to deprosit their eggs. Theso are very numprnas, from 100 to 250 being producad by one female, and buried by her in tho sand; they are eagenly soarched for and caten. Some of the marine turtles are highly esteemed for the delicacy of their meat and of the gelatinous skinuy parts of their neck aud fins; others yield oil, and others again the tortoise. shell of commerce. Probably the largest of these marine turtles is the Loggerhead (Caozana), which lossessus fifteen vertebral and costal shields, and occurs in the Atlantic as well as in tho Indian

Ocean (fig. 4). It is carnirorous, feeding on fish, miolluses, and crustaccans, and not esteemed ss food, although it is caten by the pative fishermen. A great part of the turtle-oil which finds its

Fio. 7. - The Matamats (Chelys fimbricia), with sldo view of head, and separate view of plastron.
cop into the market is ohtained from the Atlantic species of this genus; also tortoiseshell of $8 n$ inferior quality is obtained from it. The (Green Turtle (fig. 5), whicl yields the msterials for the celobrated soup, beiongs to the genus Chelonia; it is distinguished from Caouana by having thirteen vertobsal snd costal shields only, which are not im.
are herbivorous, feeding
ou marine Algz only;
they occur in the Indo-
Facificand Atlantic; and, although several species bave hecn distinguished, they all may possibly be refersbie to one only. The turtle imported into Europe comes chicfly

Fio. 8.-Upper Vlew of the Turtlo of the Euphrates (Trionyx euphrafioc).
frem the West Indies. Instances are recorded of the flesh of this apecics hisving acquircd poisonous qualities. The Hzwksbill Turtle, Larcila (fig. 6), so named from its rather elongate und compressed
curved upper jaw, does not reacle the same size as the other turtles, and is readily recognized by the thirteen imbricate scutes of its carapsce. It seoms to be more abundsnt in the Indian than in the Atlantic Occan, hu't is plentiful only in certain locsiities. As, however, thesa turtles always resort to the locality where they were born, or where they have been wont to propagate their kind, and as their capture is very profitable, they become
scarcer and searcer at places where they are known to have beon abundant formarly. Í the plates of tortoiseshell are detached from the animsl when decom. position has set in, their colour becomes cloudel and milky, and hence

Fio. 9.-Lower Vlaw of Trionyx euphratica.
the cruel expedient is reserted to of suspending the turtle over firs till hest makes the shields start from the bony gart of the carapace, after which the cresture is permitted to escape to the wster. There is no doubt that turtles thas allowed to escape to the water after such an operation msy survive; but it is very improbshle that the epidernal shields are ever sufficiently regencrated to be fit for use. At Celebes, wheace the finest tortoiseshell is exportad to China, thonstives kill the turtle by blows on the head, and immarse the shell in boiling water to detach the plates; dry heat is only resorted to by the unskilful. The natives eat the flesh of this turtle, but it is unpratable to Europeans; the eggs, however, are regarded as equal to those of the other turtles.

Of the family Chclydids the most remarkahle type is the Matamata, Chelys fimbriala, a nstive of the Guisnas and northern Brazil (fig. 7). In its strongly depressed and ast head, long tubolike enont, weak jaws, minute oyes, skinny tentacles, it bears a striking sinilarity to the Surinsm toad, Pipa americana, which inhabits thasame countries. The neck is very broad and depressed, and fringed with foliated tentacles, lloating in the water like some vegatable growth, whilst the rough bossed carapace resembles a atoue, -an appearance which evidently is of as great usa to this creature in escaping the observation of its enemies as in alluring to it unsuspicious animals on which it feeds.
The family of Carctochelydidz con tains a single genus, Caretochciys, quite recently discovered in the Fly river, New Guioes, and exlibiting a remarksble combination of characters. Its linus sra formed very much like those of the marine turtlcs, whilst the shell lacks epidermic scntes, as in the Trionychids.

In the freshwater tnatles, or Trionychidse (figs. 8 and 8), the carapace is reduced to a flat disk, which is covered with soft ekin. The neck and limbs can be lodged under the brosd skinay horders of the carapace: also tho plastron is very imperfectly ossified, and sometimes dilated into larga flexible lobes which may cover tha limbs. The latter are much thattened and brasily webbed, and only the three inner toes armed with claws. The jaws are conccaled nnner brosd, feshy lips, the noso projecting like a enort proboscis. Theso turtles aro carnivorous, and very fcrecious; when they want to bita or seize their prey they project their neck and head with lightning rapidity. They are well known un the opper Nile, Euphrates, Ganges, Yangtse-kiang, and Mississippi, and, indeed, distributed over all the large fresh waters of tho geographical regioas to which
theso rivers belong. Some of the species excced a length of 3 feet. In the United States, where twospecies, Trionyx mulicus and Tionyx forox, occur, the flesh of the latter is said to be most delicate to eat, far surpassing in flavoinr that of the green turtle.
(A. C. G.)

TORTOISESHELL. The tortoiseshell of commerce consists of the epidermic plates of the hawksbill turtle, Caretta imbricata. The plates of the back or carapace, technically called the head, are 13 in number, 5 occupying the centre, flanked by 4 on each side. These overlap eachi other to the extent of one-third of their whole size, and Lence they attain a large size. reaching in the largest to 8 inches by 13 inches, and weighing as much as 9 ounces. The carapace has also 24 marginal pieces, called hoofs or claws, forming a serrated edge round it ; but these, with the plates of the plastron. or belly, are of inferior value. The plates of tortoiseshell consist of horny matter, but they are larder, more brittle, and less fibrous than ordinary horn. Their value depends on the rich mottled colours they display-a warm translucent yellow, dasled and spotted with rich brown tints-and on the high polish they take and retain. The finest tortoiseshell is obtained from the Eastern Archipelago, particnlarly from the east coast of Celebes to New Guinea; bnt the creature is found and tortoiseshell obtained from all tropical coasts. large supplies coming from the West Indian Islands and Brazil.

Tortoisesliell is worked preeisely as horn; but, owing to the high value of the material, care is taken to prevent any waste in ita working. The platea, as separated by heut from the bony skeleton, are keeled, curved, and irregnlar in form. They are first flattened by leat and pressure, and superficial inequalities are rasped away. Being harder and more brittle than horn, tortoiseahell requires careful treatment in monlding it into any form, and as high heat tends to darken and obaeure the material it is treated at as low a heat as practicable. For many purposes it is necessary to increase the thickness or to add to the superticial size of tortoiseshell, and this is readily done by careful cleoning aud rasping of the surfaces to be united, softening the plates in boiling water or sometimes by dry heat, and then pressing tiem tightly together by means of heated pincers or a vice. The heat softens and liquefies a superficial film of the homy material, and that with the pressure effects a perfect union of the surfaeea bronglit together. Heat and pressure are also emphoyed to mould the substance into boxes and the numerous artificial forms into which it is made up.

Tortoiseshell has been a prized ornamental material from very early times. It was one of the highly eateemed treasures of the far East brought to ancient Rome by way of Egypt, and it was eagerly sought by weaithy Romans as a vencer for their rich furniture. In modern timea it is most characteristically used in the elaborate inlaying of cabinet work known as buhl furniture. It is also employed as a veneer for small boxes and frames. It is cut into combs, monlded into snuffboxes and other sinall boxes, formed into knife-handles, and worked up into many other similar minor articles. The plates from certain other tortoises, koowa commercially as turtle-shell, possess a certain industrial value, but they are either opaque or soft and leathery, and cannot be mistaken for tortoiseshell. A close imitation of tortoisesliell can be made by staining translucent horu. See Comb, iol. vi. p. 17δ.

TORTOLA. See Virgin Islands.

TORTONA, a town of Italy, in the province of Alessandria, on the right bank of the Scrivia, at the northern foot of the Apennines, 13 niles to the east of Alessandria, was formerly a place of strength until its fortifications were destroyed by the French after Marengo (1799); the ramparts are now turned into shady pronenades. The cathedral, erected by Philip.II., is architecturally uninteresting; but contains a remarkably fine Roman sarcophagus. Silk-weaving, tanning, and hat-making are the chief industries; and there is some trade in wine and grain. The population in 1881 was 9023 (commune 14,442).

Deriona is spoken of by Strabo as one of the most important towua of Liguria, and is alluded to by Pliny as a Roman colony. In the Middle Ages it was zealously attached to the Guclphic cause, on which account it was twice laid waste by Frederick Barbarossa (in 1155 and 1163).
TORTOSA, a fortified city of Spain, in the province of Tarragona, and 40 miles by rail to the south-west of that town, is picturesquely situuted on the left bank of the

Ebro (here crossed hy a bridge of hoats), 22 miles abowe its mouth. It is for the most part an old walled town, with narrow, crooked, and ill-paved streets; the houses are lofty, and massively built of granite. The slope on which it stands is crowned with an old ruined castle, commanding a splendid view. The cathedral is a cor. picuous building near the river: it occupies tho site of a mosque built in 914 by eAbd al Ralmán; the present structure, which dates from 1347 , las its Gothic character disguised by a classical façade with Lonic pillars and much tasteless modernization. The stalls in the choir, carved by Cristobal de Salamanca in 1588-93, and the sculpture of the pulpits, as well as the ironwork of the choir-railing and some of the precious marbles with which the chapels are adorned, deserve notice. None of the other public luildings, which include an episcopal palace, a town-hall, and numerous churches, require special mention. The manufactures of Tortosa include paper, hats, leather, porcelain, majolica, soap, and spirits. There is an important fishery in the river, and an active trade is carried on through the harbour, which is accessible to vessels of 100 tons burden, corn, wine, oil, wool, silk, fruits, and liquorice (a specialty of the district) being among the learling articles of export. Near Tortosa are rich quarries of marble and alabaster, and the whole surrounding country is very fertile and beautiful. The population within the municipal boundaries in 1878 was $24,057$.
Tortosa, the Dertosc of Strabo and the Colonia Julia Augusta Dertosa of numerous coima, was a city of the Ilercaones in Hispania Tarraconensis. Under the Moors it became a place of great inportance as the key of the Ehro valley. It was taken by Louia the Pious in 811 (after an unsuccessful siege two ycars before), lunt was soon recaptured. Having become a haunt of pirates, sul exceel. iogly injurious to Italian commerce, it was made the object of a crusade proclaimed by Pope Eugenins III. in 1148, and nas accord. ingly captured by Raymond Berengar, assisted by 'Templars, Pisana, snd Genocas. Tortosa fell into the hauda of the dake of Orleans in 1708, and was again surrembered in the War of Independeuce in 1811 to the French under Suchet, who held it till 1814.

TORTURE. It is proposed to treat in this place not so much the inmunmerable modes of inflicting pain which have been from time to time devised by the perverted ingenuity of man as the subject of legal torture as it existed in the civilized nations of antiquity and of modern Europe, that is to say, torture inflicted with more or less appearance of legality by a responsible executive or jndicial authority. From this point of view torture was always inflicted for one of two jurposes-(l) as a means of eliciting evidence from a witness or from an accused person either before or after condemnation, (2) as a part of the punishment. Torture, as a part of the punishment, nay be regarded as including every kind of hodily or mental jain beyond what is necessary for the safe custody of the offender (with or without, enforced labour) or the destrnction of his life, - in the language of Bentliain, an affictive as opposed to a simple punishment. Thus tlie mmecessary sufferings endured in English prisons before the reforms. of Howard (see Howard and Prison Discipline) and the drawing and quartering in the old executions for treason fall without any straining of terms under the category of torture. The whole subject is now one of ouly historical interest as far as Europe is concerncd. It was, however, up to a comparatively recent date an integral part of the law of most countries (to which England, Aragon, and Sweden ${ }^{1}$ formed honourable exceptions), as much a commonplace of law as trial by jury in England. Ona reason for its long contiuuance was no doubt the view taken in an age of judicial perjury ${ }^{2}$ that truth was ouly to be attained by violent means, if not by torture then by ordeal or trial by battle. Speaking generally, torture may

[^188]be said to have succeeded the ordeal and trial by battle (compare Ordeal). Where these are found in full vigour, as in the capitularies of Charlenagne, there is no provision for torture. It was no doubt accepted reluctantly, bot tolerated in the absence of any better means of eliciting truth, especially in cases of great gravity, on the illogical assumption that extraordinary offences must be met by extraordinary remedies.

The opinions of the best authorities have been in theory almost unanimously agaiost the use of torture, even in a system where it was as completely established as it was in Roman law. "Tormenta," says Cicero, ${ }^{1}$ in words which it is almost impossible to translate satisfactorily, " gubernat dolor, regit quesitor, flectit libido, corrumpit spes, infirmat metus, ut in tot rerum angustiis nihil veritati loci relinquatur." Seneca says bitterly, "it forceseren the innocent to lie." St Augustine ${ }^{2}$ recognizes the fallacy of torture. "If," says he, "the accused be innocent, he will undergo for an uncertain crime a certain junishment, and that not for having committed a crime, but because it is unknown whether he committed it." At the same time he regards it as exclised by its necessity. The words of Ulpian, in the Digest of Justinian, ${ }^{9}$ are no less impressive. "The torture (questio) is not to be regarded as wholly deserving or wholly uudeserving of confidence ; indeed, it is untrustworthy, perilous, and deceptive. For most men, by patience or the severity of the torture, come so to despise the torture that the truth caunot be elicited from them; others are so impatient that they will lie in any direction rather than suffer the torture ; so it bappens that they depose to contradictions ind accuse not only themsclves but others." Montaigne's ${ }^{4}$ view of torture as a part of the punishment is a most just one :-"All that exceeds a simple death appears to mie absolutẹ cruelty; neither can our justice expect that he whom the fear of being executed by being beheaded or hanged will not restrain should be any more awed by the imagination of a languishing fire, burning piocers, or the wheel." Montesquien ${ }^{5}$ speaks of torture in a most guarded manner, condemning it, but without giving reasons, and eulogizing lingland for doing without it. The system was candemned by Bayle and Voltaire with less reserve. Among the Italians, Beccaria, ${ }^{6}$ Verri, ${ }^{7}$ and Man'zoni ${ }^{8}$ will be found to contain most that can be said on the subject. The influence of Becraria in rendering the use of torture obsolcte was undoubtedly greater than that of 'any other legal reformer. The great point that he makes is the unfair incidence of torture, as persons' minds and bodies differ in strength. Moreorer, it is, says he, to confound all relations to expect that a man should be both arcuser and accused, and that pain should be the test of truth; as though truth resided in the muscles and fibres of a wretch under torture. The result of the torture is 'simply a matter of calculation. Given the force of the inuscles and the sensibility of the nerves of an innocent person, it is required to find the degree of pain necessary to make him confess himself guilty of a given crime. Benthan's ${ }^{n}$ ohjection to torture is that the effect is exactly the reverse of the iotention. "Upon the face of it, and probably enough in the intention of the framers, the object of this institution was the protection of innocence; the protection of guilt and the aggravation of the pressure upon innocence was the real fruit of it." The apologists of torture, even anong jurists, are not numerous. In fact, theoretical objections to it are often urged by the authors of books of practice, as by Damhouder, Von Rosbach, Yon

[^189]* De Civ. Dei, uk. xix. c. 6.
- Essay l.xv. (Cotton's traus.).
- Dei Delitlie delle Pexe. c. xvi.
s Storia della Commaa Infume.

Boden, and Voet. It is worthy of note, however, as illus trative of the feeling of the time, that even Bacon ${ }^{10}$ com. pares experiment in nature to torture in civil matters as the best means of eliciting truth. Myyart de Vouglaus 's derives the origin of torture from the law of God. Other apologists are Sinnancas, bishop of Badajos. ${ }^{12}$ Engel, ${ }^{13}$ and in England Sir R. Wisenaa. ${ }^{14}$

Greece.-The opinion of Aristotle was "in, favour of torture as a mode of proof. It is, he says," ${ }^{\text {a }}$ kind of evidence, and appears to carry with it absolute "credibility because a kind of constraint is applied. It is classed as one
 slaves, and probably at times resident aliens, were tortured, but it was never applied to free citizens, ${ }^{16}$ such application being forbidden by a psephism passed in the archonship; of Scamandrius. After the mutilation of the Hermæ in' 415 B.c. a proposition was made, but not carried, that it should be applied to two senators named by an informer! In this particular case Andocides gave up all his slaves to be tortured. 17 Torture was sometimes inflicted in. open court. The rack was used as a lunishment even for freo citizens. Antiphon was put to death by this means. ${ }^{18}$ The torture of Nicias by the Syracusans is alluded to by Thucydicles ${ }^{19}$ as an event likely to happen, and it was only in order to aroid the possibility of inconvenient disclosures that he was put to death without torture. Isocrates and Lysias refer to torture under the generic name of $\sigma \tau \rho$ é$\beta \lambda \omega \sigma \iota$. As might be expected, torture was frequently inflicted by the Greek despots, and both Zeno and Anax archus are said to have been put to it by such irresponsible authorities. At Sparta the despot Nabis was accustomed,? as we learn from Polybius, ${ }^{20}$ to put persons to death by an instrument of torture in the form of his wife Apega, a mode of torture no doubt resembling the Jungfernkuss once in use in Germany.

Rome.-The Roman system, was the basis of all subsequent European systems which recognized torture as a part of their procedure. The law of torture was said by Cicero to rest originally on custom (mores majorum). There are frequent allusions to it in the classical writers ${ }^{21}$ both of the republic and the empire. The law, as it existed under the later cmpire, is contained mainly in the titles $D e$ Qurstionibus ${ }^{22}$ of the Digest and the Code, ${ }^{23}$--the former consisting largely of opinions from the Sententix Receptix of Paulus, ${ }^{24}$ the latter being for the most part merely a repetition of constitutions contained in the Theodosian Code. ${ }^{25}$ Both substantive law and procedure were dealt with by these texts of Roman law, the latter, however, not as fully ${ }^{30}$ Nov. Org., bk. i. aph. 98. 1n the Advancement of Learning, bk. iv. cb. 4, Bacoa collects many instances of constancy under torture.
in Instiluts du Droit Criminel, Paris, 1757.
${ }^{12}$ De Catholicis Institutionilus Liber, od pracavendas et extirpandas Hereses adnodent necessarius, Rome, 1575.
${ }_{13}$ De Tortura ex Foris Christianis non proscribenda, Leipsic, 1753. ${ }^{14}$ Laro of Laros, p. 122, London, 1686.
${ }^{15}$ Rhet., i. 15, 26.
${ }^{10}$ The opinion of Cicero (De Partitionibus Oralorius, \& 34), that it was so spplied at Athens sud Rhodes, seems, as far as regards Atheos, not to be justified hy existing evidence.
${ }_{17}^{17}$ See Grote, Hist. of Grecee; vol. wii. p. 274.
${ }^{15}$ See Dict. of Antiz., s.v. Báravos. In the Rana of Aristophanes, v. 617, there is a rist of kinds of torture, and the wheel is alluded to in Lysistrata, v. $846 . \quad 19$ vii. $86 . \quad 20$ xiii. 7.
${ }^{21}$ An interesting one, illustratiog the uselessness of torture in the face of courage and resolution, is the abortive result of the torture of a Spanish peasant in 25 A.D. On the charge of beiog the murderer ol Lucius Piso ('Tac., Ann., iv, 45). A somewhat similar case, occurring in Sicily, is given by Valerius Maximus, bk. iii. c. iii. The horrible torture of Epicharis, a freed woman, is described ly Tacitus, Ann., x.. 57. In Pliny's letter to Trajan (Epist., x. 97), he meations having put to the torture two Christiau deaconesses (ministre).
${ }_{22}$ Quæstio iacluded the whole process of which torture was a part. In the worls of Cujacius. "quæstio est interrogatio que fit" per tormenta, vel de reis, vel de testibus qui facto intervenisse dicuatur. ${ }_{23}$ Dig., xlviil. 18; Cod., ix. 41 . ${ }_{24}$ v. 14, 15, $16{ }_{25}$ is. 35 ;
as in medieval codes, a large discretion being left to the judges. Torture was used both in civil and criminal trials, but in the former only upon slaves and freedmen or infanous persons-such as gladiators-and where the truth could not be otherwise elicited, as in cases affecting the inheritance (res hereditarix). Its place in the case of free citizens was taken by the refercnce to the oath of the party (see Oatп). During the republic torture appears to have been confined to slaves in all cases, but with the empire (accorrling to Dion Cassius under Tiberius) a free man became liable to it if accused of a crime, though not as a witness. If a Cliristian, of however bigh a condition, he was subject to torture during the period between tho erlict of Diocletian in 303 and the edict of tolcration of Galcrius in 311 . This short period excepted, the liability of a free man depended upon two conditions, the nature of tho accusation and the rank of the accused. On an accusation of treason every one, whatever his rank, was liable to torture, for in treason the condition of all was equal. ${ }^{1}$ Tho same was the case of those accused of sorcery (magi), who were regarded as humnti generis inimini. ${ }^{2}$ A wife might be tortured (but only after her slaves had been put to the torture) if accused of poisoning her husband. In accusations of crimes other than treason or sorcery, certain persons were protected by the dignity of their position or their tender ase. The main exemplions wero contained in a constitution of Diocletian and Maximian, and included soldiers, nobles of a particular rank, i.e., eminentissimi and perfectissimi, and their descendants to the third gencration, and resuriones and their children to a limited extent-that is to say, they were subject to the torture of the plumbats in certain cases, such as fraud on the revenue and cxtortion. In addition to these, priests (but not clergy of a lower rank), childrell under fourtcen, and pregnant women were exempt. A free man could bo tortured only where he had been inconsistent in his depositions. No one was to bo clained in prison before trial, nor could a prisoner be tortured while awaiting trial. The rules as to the torture of slaves were numerous and precise. It was a maxim of Roman law that torture of slares was the most efficacious means of obtaining truth. ${ }^{3}$ Ther could be tortured either as accused or as witnesses, but against their masters only in accusations of treason, adultery, frauds on the revenne, coining, and similar offences (which wero regarded as a species of treason), attempts by a husband or wife on the life of the other, and in cases where a master had bought a slave for the special reason that he should not give evidence against him. The privilege from accusations by the slave extended to the master's father, mether, wife, or tutor, and also to a former master. On the same principle a freedman could not be tortured against his patron. The privilege did not apply where the slave was joint property, and one of his masters had been murdered by the other, or where he was the property of a corporation, for in such a case be could be tortured in a charge against a member of the corporation. Slaves belonging to the inheritance could be tortured in actions concerning the inberitance. The adult slaves of a deceased person could be tortnred where the deceased had been inurdered. In a charge of adultery against a wife, her husband's, her own, and her father's slaves could be put to the torture. A slave manumitted for the express purpose of escaping torture was regarded as still liable to it. Before putting a slave to torture withont the consent of his master, security must be given to the master for his value. The master of a slave tortured on a false accusation could recover double his value from the accuser. The undergoing of torture had at one time a serious effect upon the after-life of the

[^190]slave, for in the time of Gaius a slave who had becus tortured could on mauumission obtain no higher civil rights than those of a dediticius. ${ }^{4}$ The rules of procedure were conceived in a spirit of as much fairness as such rules could be. Some of the nost important were these. The amount of torture was at the discretion of the judge, but it was to ho so applied as not to injure life or limb. The examination was not to begin by torture; other proofs must be exhausted first. The evidence ${ }^{5}$ must have ad vanced so far that nothing but the confession of the slave was wanting to complete it. Those of weakest frame and tenderest age were to bo tortured first. Except in treason, the unsupported testimony of a singlo witness was not a sufficient ground for torture. The voice and manner of the accused were to be carcfully observed. A spontaneous confession, or the evidence of a personal enemy, was to be received with caution. Repetition of the torturc could only be ordered in case of inconsistent depositions or denial in the face of strong evidence. There was no rule limiting the number of repetitions. Leading questions were not to be asked. Λ judge was not liable to an action for anything done during the course of the examination. An appeal from an order to torture was competent to the accused, except in the case of slaves, when an appeal conld be made only by the master. ${ }^{6}$ The appellant was not to be tortured pending the appeal, but was to remain in prison. ${ }^{7}$ The principal forms of torture in use wero the equuleus, or rack (mentioned as far back as Cicero), the plimbate, or leaden balls, the ungulx, or barbed hooks, and the fidicatz, or cord compressing the arm. Other allusions in the Digest and Code, in addition to those already cited, may be shortly noticed. The testimony of a gladiator or infamous person (such as an accomplice) was not valid without torture. ${ }^{8}$ This was no doubt the origin of the mediæral maxims (which were, however, by no means universally recognized),- Vilitas personse pst jusin causa torquendi testem, and Tortura purgatur infamin. Torture could not be inflicted during the forty days. of Lent. ${ }^{9}$ Tobbers and pirates might be tortured even on Easter Day, the Divine pardon being hoped for where the safety of society was this assured. ${ }^{10}$ Capital punishment was not to be suffered until after conviction or confession under torture. ${ }^{11}$ Withdrawal from prosecution (abolitio) was not to be allowed as a rule after tho accused had undergone the torture. ${ }^{12}$ In charges of treason the accuser was liable to torture if he did not prove bis case. ${ }^{13}$ The infliction of torture, not judicial, but at the same time countenanced by law, was at one time allowed to creditors. They were allowed to keep, their debtors in private prisons, and most cruelly ill-use them, in order to extort payment, ${ }^{14}$ Under the empire prisate prisons were forbidden. ${ }^{15}$ in the time of Juvenal, if his sixth satire may be believed, the Foman ladics actually hired the public torturors to torture their domestic elaves. As a part of the punishmeat torture was ir frequent use. Crucifixion, mutilation, cxposure to wild beasts in the arena, and other cruel modes

[^191]of destroying life were common, espectally in the time of the persecution of the Christians under Nero. ${ }^{1}$ Crucifixion as a punishment was abolished by Cunstantine in 315 , in veneration of the memory of Him who was crucified for mankiud. The punishment of matilation was moderated by Justinian, who forbade amputation of both hands or feet or of any limb, and confined it in future to anputation of one hand. ${ }^{2}$ Scourging was inflicted only on slaves; free men were exempt by the Lex l'orcia and Lex Valcriu, except in a few cases, such as that of adultery, the penalty for which was scourging and cuttiog off the nose.s On the other hand, where the interests of the church were concerned, the tendency was in favour of greater scverity. Thus, by the Theodosian Code, a heretic was to be flogged with lead (contusus plumbo) before banishment, ${ }^{4}$ and Justinian made liable to torture and exile any one insulting a bishop or priest in a church.
The Church.-As far as it could the church adopted the Roman law, with the important aad characteristic difference (dating from the severe edicts of Theodosins the Great in 381) that heresy took the place of treason, it being regarded as a kind of treason against God ("crinien læsse majestatis divinæ") ${ }^{\circ}$. The doctrine of coufiscation for treason was so convenient and profitable that it was rapidly adopted by the church. ${ }^{7}$ As most instances in which torture was iuflicted by ecclesiastical tribunals would be accusations of heresy or Judaism-a specially revolting form of heresy to medixval Christians-this theory practically equalized all persons for the purpose of torture, in accordance with the doctrine that in treason all were equal. The chorch generaliy secured the almost eutire immunity of its clergy, at any rate of the higher ranks, from torture by civil tribunals. ${ }^{8}$ In many instances councils of the church prozounced against torture, e.g., in a synod at Rome in 384°. Torture even of heretics seems to bave been originally left to the ordinary tribunals. Thus a bull of Innocent IV., in 1252, directed the torture of beretics by the civil power, as being robbers and murderers of souls, and thieves of the sacraments of God. ${ }^{10}$ The church also enjoined tortore for usury." A characteristic division of torture, accepted by the church but not gencrally acknowledged by lay authorities, was into spiritual and corporal, the latter being simply the imposition of the oath of purgation, the only form originally in use in the ecclesiastical courts. The canon law contains little on the subject of torture, and that little of a comparatively humane nature. It laid down that it was no sin in the faitiful to inflict torture, ${ }^{12}$ but a pricst might not do so with his own hands, ${ }^{13}$ and charity was to be used in all punishments. ${ }^{14}$ No confession was to be extracted by torture. ${ }^{15}$ The principal ceclesiastical tribunal by which torture was inflicted in more recent times was of course the

${ }^{2}$ The well-known lines of Juvenal (Sat., i. 155),

Qus stantes ardent qui ixxo gutture tunaut,"
will serve as an example of such punishments.

- Noo., cxxiii. 31. On the subject of torture in Romon law reference may be nade to Westphal Die Torkurer der Griechen, Roner, und Deulschen, Leipsic, 1785; Wasserschlebcn, Historia Quæestionuin per Tormente apud Rumanos, Berlin, 1830.
- This term, which included blasphemy ant cognate offences, is nsed both by ecclesiastical end secular jurists, e.g., by Suarez de Pbz and by Jousse, Traite de la Juslice Criminelle.
${ }^{7}$ See an article by Mr Lea in The English Historical Review, (ipril 1887, "Coufiscation for Heresy in the Middle Ages."
${ }^{8}$ See Escobar, Mor. Theoi., tract. vi. c. 2. They were to be tortured only hy the clergy, where possible, and only on indicia of opecial gravity.
Q Lea, Superstition and Force, p. 419, 3d ed., Philadelphı6, 1878.
${ }^{10}$ Leges el Constilutiones contra Mareticos, $\$ 26$.
${ }^{11}$ Lecky, Rationalism in Europe, voL ii. P. 34, 1 .
12 Decr., $1^{\text {tit. ii. } 23,4,45 .}$
is Decr., ph 1. 86, 25.
is Decr., pt. 14. 12, 2, 11.
ts Decr., ph i.i. 15̈, 6, 1

Inquisition (1.0.). The codo of instructions issuea by Torqueuada in Spain in 1484 . provided that au accused person might be put to the torture if semiplena probatio existed against the accused,-that is, so much cvidence as to raise a grave and not merely a light presumption of guilt, often used for the cvidence of one eyc or car witness of a fact. If the accused confessed during torture, and afterwards confirmed the confession, he was punished as convicted; if lie retracted, Le was turtured again, or subjected to extraordioary punishment. One or two inquisitors, or a commissioner of the Holy Office, were bomd to be present at every examination. Owing to the occurrence of certain cazes of abuse of torture, a decree of Mrily. 1I. was issued, in 1556, forbidding the adrainistration of torture without an order from the council. But this decree does not appear to have been fully observed. By the edict of the inquisitor-general Valdís, in 1561 , torture was to be left to the prudence and equity of the judges. They most consider mutives and circumstances before decreeing torture, and nust declare whether it is to be employed in cuput proprium, i.e., to extort a confessiou, or in caput alienum, i.c., to incrimiuate an accomplice. 'The accused was not to be informed of the grounds of torture. He was not to be questioaed on a particular fact, but was to bo allowed to say what he pleased. T'orture was not to be decreed until the termination of the process, and after defence heard, and the decree was subject to appeal, but ouly in doubtful cases, to the Council of the Supreme. It was also only in doubtful cases that the inquisitors were bound to consult the council; Where the law was clear (and of this they were the judges) there seed be no consultation, and no appeal was allowed. The judges, the registrar, and the executioners were the only yersons allowed to be present at the torture. They mere io be careful that the jailer suggested mothing to the accused furing the torture. On ratification twenty-four hours afterwards of a confession mado under torture, the accused migist bet reconciled, if the iuquisitors believed him to be sincerely repentant. If convicted of bad faith, he uight be relaxed, i.e., delivered to the secular power to be burned. The inquisitors had a discretion to allow the accused to make tho canonical purgation hy oath instead of undergoing corporal torture, but the rule which allows this to be done at the same time discountenances it as fallacious. It is remarkable that the rules do not allow much greater efficacy to torture. They speak of it almost in the terms of Roman law as dangerous and uncertain, and depending for its effects on physicai strength. ${ }^{16}$ Torture had ceased to be inflicted before the suppression of the Inquisition, and in 1816 a palal ball decreed that torture should cease, that proceedings should be public, and that the accuser should be confronted with the accused. ${ }^{17}$ It was still, however, customary for the fiscal, even in the latest times, to end the requisition by demanding torture as a matter of form. The rules in themsclves were not so cruel as the construction put upon them by the inquisitors. For instance, by Torquemada's instructions torture could not be repeated ualess in case of retractation. This led to the subtlety of calling a revewed torture a continuation, and not a repetition. ${ }^{1 s}$ The rules of Torquemada aud of Taldés are those of the greatest historical importance, the latter forning the code of the Holy Office uotil its suppression, not oaly
${ }^{10}$ The rules will be found in Llorente's Hist. of the Inruisition, cr. vi, xxii.
$\left.{ }^{17}\right]_{\mathrm{A}}$ case of actuat torture occurred in Spain in the case of Vam Halen, is 1817, in spite of the papal hull. In Soutl America, as late as 1809, power to torture was conferred on inquisitors by the dean and chapler of Sattiago. See Franciseo Moyen, or the Inquisitions in South America, by B. V. Mackenna 〈transl. by J. W. Duffy. 1869), p. 217.
${ }^{18}$ Prescott, Fordinand and Lsabeliu, vol ip 327.
in Spain, but in other countries where the Inquisition was established.' But several other codes of procedure existed before the final perfection of the system by Valdés. The earliest is perhaps the instructions for inquisitors (Directorium Inquisitorum) compiled a century earlier than Torquemada by Nicholas Eymerico, grand inquisitor of Aragon about 1368. ${ }^{1}$ Rules of practice were also framed two centuries later by Simancas, whose position as an apologist has been already stated. The text-book of procedure of the Italian Inquisition was the Sacro Arsenale. ${ }^{2}$ In the Netherlands, Francis Van der Helst was appointed inquisitor-general in 1521 , with authority to torture heretics without observing the ordinary forms of law, and without appeal. ${ }^{3}$. In 1545 and 1550 instructions for the guidance of inquisitors were issued by Charles V. ${ }^{4}$ The liability of a judge for excecding the law was not always recognized by the Inquisition to the same extent as by the lay tribunals. Llorente gives an instance of a warrant by an inquisitor to a licentiate ordering the torture of an accused person, and protesting that, in case of death or fracture of limbs, the fact is not to be imputed to the licentiate. ${ }^{5}$
Thus far of the law. In practice all the ingenuity of crnelty was exercised to find new modes of torment. ${ }^{6}$ These cruelties led at times to remonstrance from the civil power. One example is the edict of Philip II. just mentioned. Another and an earlier one is an ordonnance of Philip the Fair, in 1302, bidding the Inquisition confine itself within the limits of the law. ${ }^{7}$ At Venice the senate decreed that three senators should be present as inquisitors. Further details of the varieties of torture will be found, by those curious in such matters, in the works of Llorente, Herculano (History of the Inquisition-in Portugal), Motley, Garrido and Cayley, and Picart, to which may be added works giving accounts of the sufferings of individuals under the Inquisition, such as the narrative of the sufferings of William Lithgow at Malaga in 1622 and of Van Halen in 1817, and (in the Spanish and Portuguese colonies) the cases of Francisco Moyen in Chili, and of Dellon at Goa in $1673 .{ }^{8}$ Mental torture may be exemplified by Excommumication (.$\cdot v$.), and by the secrecy and uncertainty of the proceedings of the inquisitors.

As the practice of torture, both by the civil and ecclesiastical power, became more systernatized, it grew to be the subject of casuistical inquiry by churchmen, to an extent far exceeding the scanty discussion of the question in the text of the canon law. It will be sufficient here to cite as an example the treatment of it by Liguori, who incorporates the opinions of many of the Spanish casuists. On the whole, his views appear to be more humane than the prevailing practice. The object of torture lie defines very neatly as being to tuin semiplena into plena probatio. For this proper indicic are necessary. He then proceeds to decide certain questions which had arisen, the most interesting of which deal with the nature of the \sin of which the accused and the judge are guilty in particular instances. A jndge sins gravely if he does not attempt all

[^192]milder means of discovering truth before resorting to tor ture. He sins in a criminal cause, or in one of notabls infamy, if he binds the accused by oath to tell the truth before there is proof against him. It is the same if with. out oath he uses threats, terror, or exhibition of torment: to confound the witness. ${ }^{9}$ If any one, to avoid grave tormente, charges himself with a capital crime, he does not sin mortally. ${ }^{10}$ It was a doubtful question whether he sinned gravely in such a case.

England.-It is the boast of the common law of England that it never recognized torture as legal. One, perhaps the chief, reason for this position taken by the law is the difference of the nature of the procedure in criminal cases from that in general use in Continental countries. To use words more familiar in foreign jurisprudence, the English system is accusatorial as distinguished from inquisitorial. The common law of England has always shown itself averse to the inquisitorial system, and so (at least in theory) to the torture which may be regarded as an outcome of the system whose one end was to obtain a confession from the accused. The tendency of the small amount of statute law bearing on the subject is in the same direction. It was provided by Magna Clarta, § 29, "that no free man should be destroyed in any way unless by legal judgment of his equals or by the law of the land." On this Sir E. Coke comments, "No man destroyed, \&c., that is, forejudged of life or limb, disinherited, or put to torture or death." 11 The Act of 27 Hen. VIII. c. 4 enacted that, owing to the frequent escape of pirates in trials by the civil law, "the nature whereof is that before any judgment of death can be given against the offenders they inust plainly confess their offence (which they will never do without torture or pains)," such persons should be tried by jury before commissioners under the Great Seal. Finally, the Bill of Rights provided that cruel and unusual punishments ought not to be inflicted. The opinions of the judges have been invariably against torture in theory, however much some of them may have been led to countenance it in practice. The strongest authority is the resolution of the judges in Felton's case (1628), "that he ought not by the law to be tortured by the rack, for no such punishment is known or allowed by our law." 12 In accordance with this are the opinions of Sir John Fortescue, ${ }^{13}$ Sir Thomas Smith, ${ }^{14}$ and Sir E. Coke. The latter says, -"As there is no law to warrant tortures in this land, nor can they be justified by any prescription, being so lately brought in." ${ }^{15}$ In spite of all this torture in criminal proceedings was inflicted in England with more or less frequency for some ceuturies, both as a means of obtaining evidence and as a part of the punishment. But it should be remarked that torture of the former kind was invariably ordered by the crown or council, or by some tribunal of extraordinary authority, such as the Star Chamber, not professing to be bound by the rules of the common law. In ouly two instances was a warrant to torture issued to a common law judge. ${ }^{16}$

A licence to torture is found as early as the Pipe Roll oi 34 Hen. II. ${ }^{17}$ The Templars (see Templars) were tortured in 1310 by royal warrant addressed to the mayor

[^193]and sheriffs of London. ${ }^{1}$ In this case it is recorded that torture was unknown in England, and that no torturer was to be found in the realm. ${ }^{2}$ A commission was issued concerning the tortures at Newgate in 1334. ${ }^{3}$ The rack in the Tower is said to have been introduced by the duke of Exeter in the reign of Henry VI., and to have been thence called "the duke of Exeter's daughter." ${ }^{4}$ In this reign torture seems to have taken its place as a part of what may Le called extraordinary criminal procedure, claimed, and it may be said tacitly recognized, as exercisable by virtue of the prerogative, and continued in use down to $1640 .{ }^{5}$ The infliction of torture gradually became more common under the Tudor monarchs. Under Henry VIII. it appears to have been in frequent use. Only two cases are recorded under Edward VI.,'and eight under Mary. ${ }^{6}$ The reign of Elizabeth was its culminating point. In the words of Hallam, "the rack seldom stood idie in the Tower for all the latter part of Elizabeth's reign." ${ }^{7}$ The varieties of torture used at this poriod are fully described by Dr Lingard, ${ }^{8}$ and consisted of the rack, the scavenger's daughter, ${ }^{9}$ the iron gauotlets or bilboes, and the cell called "Little Ease." The registers of the council during the Tudor and early Stuart reigns are full of entries as to the use of torture, both for state and for ordinary offences. ${ }^{10}$ Among notable prisoners put to the torture were Anne Ascue, the Jesuit Campion, Guy Fawkes, ${ }^{11}$ and Peacham (who was examined by Bacon "before torture, in torture, and after torture"). ${ }^{12}$ The prevalence of torture in Elizabeth's reign led to the well-known defence attributed to Lord Purghley, "A declaration of the favourable dealing of Her Majesty's commissioners appointed for the examination of certain traitors, and of tortures unjustly reported to be done upon them for matter of religion," $1583 .{ }^{13}$ The use of torture in England being always of an extraordinary and extra-judicial nature, it is comparatively certain that it could hardly lare been applied with that observation of forms which existed in countries where it was regulated by law. There were no rules and no responsibility beyond the will of the crown or council. This irresponsibility is urged by Selden ${ }^{14}$ as a stroug objection to the use of toriure.

So far of what may be.called torture proper, to wnich the common law professed itself a stranger. There were, howerer, cases fully recosnized by the common law which differed from torture only in name. The peine forte et dure was a notable example of this. If a prisoner stood mute of malice instead of pleading, he was condemned to ther peine, that is, to be stretched upon his back and to have iron laid upon him as much as he could bear, and more, and so to continue, fed upon bad bread and stagnant water through alternate days until be pleaded or died. ${ }^{15}$ It

[^194]was abolished by 12 Geo. III. c. 20, 7 and 8 Geo. IV. c. 28 enacted that a plea of "not guilty" should be entered for a prisoner so standing mute. A case of peine occurred as lately as 1726 . At times tying the thumbs with whipcord was used instead of the peine. This was.said to be a common practice at the Old Bailey up to the last century. ${ }^{16}$ In trials for witcheraft the legal proceedings often partook of the natnre of torture, as in the throwing of the reputed witch into a pond to see whether she would sink or swirs, in drawing her blood, ${ }^{17}$ and in thrusting pins into the body to try to find the insensible spot. Confessions, too, appear, to have been often extorted by actual torture, and torture of an unusual nature, as the devil was supposed to protect his votaries from the effects of ordinary torture.
Torture as a part of the puoishment existed in fact, if not in name, down to a very recent period. Matilation as a punishment appears in some of the pre-Conquest codes, such as those of Alfred, Athelstan, and Canute. Bracton, who does not notice torture as a means of obtain: ing evideuce, divides corporal punishment into that inflicted with and without torture. ${ }^{18}$ Later instances are the punishment of burning to death inflicted on beretics under the Six Articles (31 Hen. VIII. c. 14) and other Acts, aod on women for petit treason (abolished by $30 \mathrm{Gro}. \mathrm{III}. \mathrm{"c}. \mathrm{48)}$, the mutilation inflicted for violence in a royal palace by 33 Hen. VIII. c. 12, the puaisbment for high treason, which exister nominally mentil 1870° (see Treason), the pillory (abolished by 7 Will. IV. and I Vict. c. 23), the stocks, and the buruing in the hand for felony (abolished by 19 Geo. III. c. 74). Corporal punishment now exists only in the case of juvenile offenders (see Summary Jurisdiction) and of robbery with violence (see Theft)! It was abolished in the arnyy by the Army Act, 1881. ${ }^{19}$
Scotland.-Torture was long a recognized part of Scottish crininal procedure, and was acknowledged as sucli by many Acts and warrants of the Scottish parliament, and warrants of the crowu and the privy council. Some of the more important instances are the following. In $15+2$ the forfeiture of John, Lord Glammis, was reduced by the parliament as having proceeded on a coufession extorted by threats of the "pynebankis." ln 1567 four persons were ordered by the Privy Council to be tortured for complicity iu Daruley's muriler. ${ }^{20}$ In 1591 a commission issued to torture cestain persons accused of witchctaft. ${ }^{21}$ James VI., in 1596, empowered the provost and bailies of Edinburgh to try rioters by torture. The torture was applied to Rhynd in 1600 , on a charse of being privy to the Gowrie House couspiracy. ${ }^{22}$. Two Acts in 1649 deate with torture: one took tho form of a warrant to examine witnesses against William Barton by any form of probation, ${ }^{23}$ the other of a warrant to-a committeo to inquire as to the use of torture against persons stispected of witchcraft. ${ }^{24}$ In 1650 the parliament ordained the committee appointed for the examination of prisoners to intimate to Colonel Sibbald that if his examination were not satisfactory the parliament would ordain him to be tortured. The judges, in 1689, were empowered by the estates to torture Chiesly of Dalrye, charged with the murder of the Lorl President. Lockhart, in order to discover accomplices. In the same ycar the use of torture without evidence or in ordinary cases was declared illegal in the Clain of Right. The careful vording of this will be noticed: it does not ohject to torture altogether, but reserves it for cases where a basis of evidence had already been laid, and for crimes of great gravity, thus admitting the dangerons principle, founded on Roman law, that the importance of the crime is a reason for departing from the ordinary rules of justice. However great the crime, it is no more certain than in the case of a crime of less gravity that the person accused vias the person who committed it. A warrant issued in the same year to put to the torture certain persons accusel of conspiring against the Government, and also certain dragoons suspected of corresponding with Lord Dundee. In 1690 an Act passed recit. ing the torture of William Carstares, a minister, in 1683, and re.

[^195]establishing his competency as a witness. ${ }^{1}$ The last warrant appears to be one in 1690 for torturing a manaccused of rape and murder. In 1728 torture in Scotland was finally abolished by 7 Anne c. 21 , § 5. Many details of the tortnres inflicted will be found in Pitcairn's Criminal Trials and the introduction to Maclaurin's Criminal Crases. Among other varieties-the nature of some of them can only be guessed-wero the rack, the pilniewinkis, the boot, "the caschie-lawe, the lang irnis, the narrow-bore, and, worat of all, the waking, or artificial prevention of sleep. ${ }^{8}$ The ingenuity of torture was exercised in a special degree on charges of witchcraft, uotably iu the reign of James V1., an expert hoth in witcheraft and io torture. The Act of 1649 already cited shoms that the priaciple survived him. Under the government of the dukes of Lavderdale and York torture as a practice in chargee of religious and political offences reached its height. "The privy council was gecustomed to extort coafessions by torture ; that grim diran of bishops, lawyers, and peers sucking in the groans of each undaunted onthusiast, in hope that some imperfect avomal migbt lead to the sacrifice of other victims, or at least marrant the execution of the present." " With such examples before them in the law, it is acarcely to be wondered at that persons in positions of authority; especially the nobility, sometimes exceeded the law and inficted torture at their own will and for their owa purposes. There are eeveral instances in the register of the privy council of suits against such persons, c.g., against the earl of Orkney, in 1605, for putting a son of Sir Patrick Bellenden in the boets.
Ireland seems to have enjoyed a comparative immnnity from torture. It was not recognized by the common or statute lam, and the cases of its infliction do not appear to be nunierous. In 1566 the president and council of Muoster, or any three of them, were empowered to inflict torture, "in cases necessary, upan veliement presumption of aoy great offence in ony party committed against the Queen's Majesty." ${ }^{5}$ In 1583 Hurley, an Irish pricst, was tortured in Dublin, by "toasting his feet against the fire with het boots." ${ }^{6}$ In the case of 3 yagh, in 1581 , the accused was brought over from Ireland by command of the lord deputy to he tartured in the Torer. ${ }^{7}$ In 1615 one O'Kennan was put to the rack in Dublin by virtue of the lard deputy's comrnission. ${ }^{8}$ In 1627 the lord deputy doubted whether he had autherity to put a priest named O'Culleasn to the rack. An auswer wes returned by Lorl Killultagh to the effect that "you ought to rack him if you ssw cause and hang him if you found reasour." ${ }^{\text {o }}$
British Colonics and Dcpendencies.-The iafiction of torture in any British colony or dependency has usually been regarded as contrary to law, and ardered only by arbitrary authority. It is true that in the trial of Sir Thomas Picton in 1806, for subjecting, while governor of Trinidad, a moman named Luisa Calderon to the torture of the picquet, ${ }^{10}$ one of the grounds of defence was that such tarture was authorized by the Spanish law of the islaud, but the accused was convicted in spite of this defeoce, and the final decision of the Court of King's Bench, in 1812, decrecing a respite of the defendant's recognizances till further order, was perhsps not so much an affirmation of the legality in the particular iustance as the practical expression of a wish to spare an eminent public servant. ${ }^{15}$ As to Iodia, the second charge agaiust Warren Hastings nas extortion from the begums of Oude by means of the torture of their servants. ${ }^{13}$ In the present Indian Penal Code and Evidence Act there are provisions intended, as Sir James Stephen says, ${ }^{33}$ to prevent the practice of torture by the police for the purpase of extracting confessions from persons in their custody. ${ }^{14}$ In Ceylon torture, which bad been allowed under the Dutch government, was expressly abolished by royal proclamation in 1799 .

United Slates.-One instance of the peine fortc et dure is known. It was ioficted in 1692 on Giles Cory of Salenı, who refused to nlead when arraigned for witcheraft. ${ }^{15}$ The constitution of the United States provides, in the wards of the Bill of Rights, that crucl and unusual punishments are not to be inflicted. ${ }^{16}$ This is repeated in the constitutions of most States. The infliction of crnel and unusual punishment by the master or officer of an American ressel on the high seas, or within the maritime jurisdiction of the Uaited States, is punishable with fine or imprisonment, or both. ${ }^{17}$

[^196]Continental States. -The principles of Roman law were generallf adopted. Want of spaco unfortuantely prevents a detailed examination of the law of other countries, but that of Italy may failly be taken as the type of a system which reached at its maturity a certain revalting eonpleteness of which it is difficult to speak with patience. The law as it existed in Italy is contaiaed in a long liue of authorities, chiefly supplied by the achool of Bologna, beginuing with the glossatores and coming down through tho yost-glossatores, ontil the system attained its perfection in the vast work of Farinaccius, written early in the 17 th century, where every possible question that could arise is treated with elaborate minuteness The writiags of jurists were supplemented by a large body of Iefislatipe enactmeots ia most of the Italian states, extending from the coastitutions of the emperor Frederick II. down to the last century. It is not until Bartolus (1314-1357) that the law begins to assums a definite and complete form. In his commentary on hook zlriii. of the Digest ho follows Roman law closely, but introduces some further refinements: e.g., though leading questions may not oe asked in the main iqquiry they are admissible as subsidiary. The:o is a beginning of classification of indicia. A very full discussion of the lar is contained in the work on practice of Hippolytus do Marsiliis, ${ }^{19}$ a jurist of Bolngna, notorious, on his own admission, as the inventor of the torture of keeping without sleep. He defines the question as inquisitio vertatis per tormenta et cordis dolorem, thus recognizing the mental as well as the physical elementa in torture. It was to be used only in capital cases and atrocious crimes. The works of Farinaccius and of Julius Clarus nearly a century later were of great authority frorn the high official positions filled by the writers. Farinaccius was procurator-general to Pope Paul V., and his discussion of torture is one of the most complete cf any. ${ }^{\text {ig }}$ It occupies 251 closoly printed folio pages with double columns. The length at which the subject is treated is one of the hest proofs of the science to which it hat been reduced. The chief feature of the work is the roinute and skilful analysis of indicia, fana, prasumptio, and other technical terms. Many defivitions of indicium are suggested, the best perhsps being conjectura ex probabilibus el ron necessariis orta, a quibus potest abesse veritas sed non צrrisimilitudo. For every infliction of tarture a distinct indicium is required. But this rule does not apply where it is iuHicted for discovering accomplices or for discovering a chiue other than that for which it wes originally inficted. Torture may be ordered in all criminal cases, except small offeuces, and in certain civil cases, such as deoisl of a depositum, bankruptcy, usury, treasure trove, and fiscal cases. It may be inflicted on all persone, unless specially exempted (clergy, miaors, \&e.), and even those exempted may bo tortured hy command of the sovereign. There are three kinds of torture, levis, gravis, and gravisima, the first and second corresponding to the ordinary torture of French mriters, the last to the cxtraordinary. Tbe extraordinary or gravissina was as much as could possibly be borne without destroying lifc. A_{n} imunense varioty of tortures is mentioned, the mast nsual heing the tying of one hand only with the corl. The julge conld not begin with torture; it was only a subsidium. If inflictel mithout due course of law, it was veit as a pruaf. The judge ras liable to penalties if he tortured without proper indicia, if a privileged jerson, or if to the extent that death or permsnent illacss was the result. An immense variety of tortures is mentioued, and the list tculed to grov, for, as Farinaccius says, judgcs continually invented ncw modes of terture to please themselvcs. Numerous casuistical questions are treated at length. Could a priest reveal an acknowledgment of an intendel crime made to hinı in confession? What kinds of reports or how much hearsay ovidence constituted fame? How far was a confession allowed to be extorted by blandishmeats or false promises on the part of the julge? Were thele three or five grades in torture? Julius Clarns of Alessandria was a nember of the council of Philip II. ${ }^{20}$ To a great cxtent he follows Farinaccius. He puts the questions for the consideration of tho judge with great clearness. They aro-whether (1) a crine has been committed, (2) the charge is one in which tortore is admissible, (3) the fact can be proved otherwise, (4) the crime was secret or open, (5) the object of the torture is to elicit confession of crime or discovery of accomplices. IIe admits the tremendous power given to a judge of torturing a witness should he suspect that the latter knows whe truth and is concealing it. An accuser may not be racked with the accused in order to test his siucerity: The clergy can be tortured only in charges of tresson, poisoniag, and violation of tombs. On the great question whether there are tbree or five grades, he decides in favour of five, viz, threats, takiog to the place of torment, stripping aud binding, lifting on the rack, racking. Other Italian mriters of less emineace have been referred to for the purposes of this article. The burden of their writings is practically the same, but they have not attained the eystematic perfection of Farinaccias. Citations from many of them are made by Manzoni (see below). Among others are Guido de Suzara, Paris

[^197]fle Putco, Egidius Bossius of Milan, Casonus of Venice, Decianus, Follerius, and Tranquillus Ambrosianua, whose works cover tha period from the 13 th to tha end of the 17th century. " Tha law depended mainly on the writings of the jurists as interpretera of custom. At the asma tima in all or nearly all tha Italian atates the customary law was linited, supplemented, or ameaded by legislation. That a check by legislative authority was neceseary a ppears from the glimpsea aflurded by the writings of tha jurists that the letter of the law was by no neans alwaya followed. ${ }^{1}$ The earliest legislation after tha Roman law aecmas to be the constitutions of the emoeror Frederick 11. for Sicily promulgated in 1231.

Several instances of the torture of eminent persons occur in Italian history. The bistorical case of the greatest literary interest is that of the persons accused of bringing tha plagua into Milan in 1630 by smearing the walls of houses rith poison. Au analysis of the case nas undertaken by Verri ${ }^{2}$ and Manzont, ${ }^{3}$ anci puts in a clear light some of the abuses to which the systan led in times of popular panic. Convinciag argumeuts ara urged by Manzoni, after an exhaustive review of tha authorities, to prove the groundlessacss of the charga on which two iuroceut persons underrent tha torture of the canape, or hempen cord (the effect of which was partial or complate dislocation of the wrist), and afterwards auffered death by breaking on the wheel. Tha main argunents, shortly stated, ara these, all based upon the evidence as racorled. and tha law as laid dowa by jurists. (1) The unsupported evideuce of an accomplico was treated as an indicium in a casa not one of those exceptional ones in which such an indiciun was sufficiont. Tha avidence of two wituesses or a confession by tha accuscd wha necessary to establisli a remote indicium, such as lying. (2) IIearsay evideuce was received when primary eviclcuce was obtanable. (3) Tho confession made under torturo was not ratified afterwarda. (4) It was mada in consequedca of a promise of inupuity. (5) It was of an impossibla crime.
Moch general Information on the sablect will be found in the works of Mr Lea and Mr Lecky, to which reference has already been madio, in the Pemu" Cyclo. padiu, \&.y. "Torture," ta Zedler's Unicersal Lexicon E.r. "Tortar," and hu Bleytr'y Esp ut des Insibutions Juficiaures. ror England. Jerdine's work the the atandard authority. Thinty-six klods of torture are descrtied in Meycrs hon-ostraitions-Lezikon, s.v. "Mitur. Instmments of toitule art still preserved lo the $o w e r$ and Hague, and other places. Tho-e at the Tower are the troo collur, the ulbues, the shurobsrew, and the scavenger'i deughter. There is also a model of one of the
(J. Wt.) lordis of the rack.

TORY. See Whig and Tory.

TOTEMISM. A totem is a class of material objects which a savage regards with superstitious respect. believing that there exists between him and every member of the class an intimate and altogether special relation. The name is derived from an Ojibway (Chippeway) word which was first introduced into literature, so far as appears, by J. Long, an Indian interpreter of last century, who spult it totam. ${ }^{4}$ The connexion between a man and his totell is mutually beneficent: the toteu protects the man, and the man shows his respect for the totem in various ways, by not killing it if it be an animal, and not cutting or gatbering it if it be a plant. As distinguished from a fetich, a totem is never an isolated individual, but always a class of objects, generally a species of animals or of plants, more rarely a class of inanimate natural objects, very rarely a class of artificial objects.

Considered in relation to men, totems are of at least three kinds:-(1) the clan totem, common to a whole clan, and passing by inheritance from generation to generation ; (2) the sex totem, common either to all the males or to all the females of a tribe, to the exclusion in either case of the orner sex: (3) the individual totem, belonging to a eingle individual aud not passing to his descendants. Other kinds of totems exist and will be noticed, but they may perbaps be regarded as varieties of the clau totem. The latter is by far the most important of all: and where we speak of totems or totemism without qualification the reference is always to the clan totem.

The Clan Zotem.-The clan toten: is reverenced by a body of men and women who call themselves by the name

[^198]of the totem, beliere themsclres to be of one blood. descendants of a common aucestor, and are bound tegether by common obligations to each other and by a common faith in the totem. Totemison is thus both a religions and a social system. In its religious aspect it consists of the relations of mutual respect and protection betweea a man and his totem; in its aocial aspect it consists of the relathons of the clansmen to each other and to mea of other clans. In the later history of totemisin these two sides, the religious and the social, tend to part company; the social system sometines survives the religions; and, on the other hand, religion sometimes bcars traces of totemism in countries where the social system based on totemism has disappeared. We begin mith the religious side.

Totemism as a Religron, or the Relation betroeen a Man and his Totern. -The members of a totem clan call themselves by tha namo of their totem, and commonly believe thenselves to be actually descendel from it.

Thus the Turtle clan of tha Iroqnoig ora descended from a fat Desceef turtle. which. burdeaed by tho welght of its sbell in walking, con-from trised by great areminos to throw it off, and tbereafter gradually totace. developed into a man. ${ }^{\text {B }}$ The Cray. Fish clan of tha Choctara were originally cray-fish and lived undergrouml, coming up occasionally throngh the mull to the surface. Once a party of Choctaws smoked them out, and, ticaling them kiluig, tanght them the Choctaw la: © \quad 月ge, tougt then to walk on tho legs, mado :hem cut off their toe uaila and pluck the hair from their bodics, alter which they adopted them into the trike But the jest of their kindred, the cray-6sh, see still living uuderground. ${ }^{8}$ The Osages are desecuded from a male snail and a cenale bearcr. The suail burst his shell, sereloped arms, feet. and leas, and becanc a fina tail man; afterwards ho married the hemver maid.? Some of the clans of western Australia are descendal frum ducks, swans, and other waterfowl. ${ }^{5}$ In Sencgambia each fanily or clan is descended from au animal (hipropotnmus, scorpion, \&c.) with which it counts kindred."

Snaewhat different are tba mytha in which a homan ancestress is sail to hava given birth to an auimal of the toitn species. Thus the Suake clau among the Moquis of Arizona are descended from a women who gave birth to snakes ${ }^{10}$ The bakain\} in western equatorial Africa beliese that their wonou onca gava birth to the toten animals: one woman brought forth a calf, othars a crocudile, bippopotamus, monkey, hoa, and wild ligg. u

Believing himself to be descended from, and therefore Resped akia to, his totem, the savage uaturally treats it with respect. shown If it is an animal be will not, as a rule, kill nor cat it. In totera. the Mount Cambier tribe (South Australia) "a man does Lut kill or use as food any of the animals of the same subdivision with bimself, excepting when hunger compels; and then they express sorrow for having to eat their roingong (friends) or lumanuny (their flesb). When using the last word they touch then breasts, to indicate the close relationship, meaning almost a part of theinselres.

To illuatrate :-One day oue of the blacks killed a crow. Three or fonr davs alterwards a Buonws (crow) named Lary dicd. He bad heen ailing for souna days, but the killing of his rengong Lastened his death. ${ }^{\text {r }}$ The tribera about the Gulf of Carpentaia greatly revercuce their totema: if any one wore lo kill the totem animal in presence of the mun whose totem it was, tho latter would 6ay, "What for sou kill that fallow ? that my father !" or "That brutber belonging to ma youl have killal: why hud you do it !" 18 Sir George Grey says of the westera Austadinn thbes that a man will never kill an enimal of has kubug (tutem) spccica if he fod it asleep; "indeed, he always killa it reluctuntly. and neven without aflorling it a cliance to escape. This arises from the family belief tbai sonua oue individun of the sperica ia their neareat friead, to kill whom wnuld he a grat cmine, aud to be carcfully avoided." 14 Amougat the Inlians of British Columbua a man "il

- Secord Aunual Report of the Bureur of Ethuology, Washington

 1883, p. 77. Cathn, Worth Ametican Indians, i. p. 128.7 Schoolcraft, The Americen Pudians, p. 95 sq.; Lewis and Clarke,
Travels to the Source of the Missouri River, Lonton, 1815, L. p
${ }^{\text {a }}$ Sir Geurge Grey. l'ocobulary of Dialcet's of S. W'. Australia.

- Revue at Ethnographre. iii. 1) 396 , v. p. 81.
${ }^{15}$ Bourka, Snake Dance of the Moquis of Arizona, p. 177.
${ }^{12}$ Du Chaillu, Explorations in Equatorial Africa, p. 308.
12 Stowart in Fisoa ad Howitt. Liunilaroi and Kírnai, p. 169.
is Jour. Authroy. Just. . xiii. p. 300.
${ }^{14}$ Groy, Journals of Two Exycdilions in North. Ifest and Wreaters dustralia, is m. 228.
fover kill his totem anlmal, If he seta asotfer do it, he will hide his face for shame, and afterwards demand compensation for the act. Whenever one of these Indians exhibita his totem badga (as by painting it on his forehead), all persons of the same totem ara bound to do honour to it hy casting property before it. ${ }^{1}$ The Damoras in South Africa are divided into totem clans, called "eandas"; and according to the clan to which they belong they refuse to partaka, e.g., of an ox marked with black, white, or red spots, or of a aheep without horas, or of draught oxcu.. Some of them will not aren touch vessels in which such food has been cooked, and avoid even the amoka of tha fire which has been used to cook it. ${ }^{2}$ The negrocs of Senegambia do not eat their totems. ${ }^{3}$ The Mundas (or Mundaris) and Oraons in Bengal, who ere divided into exognnous totem clans, will not kill or e日t the totern animala which giva their names to the clans.* A romarkable featuro of aome of these Oraon totema is that they are not whole animals, but parts of auimals, as the head of a tortoise, the stomach of a pig. In anch cases (wbich are not confined to Bencal) it is of course not the whole aoimal, but only the special part, that the clansmen are forbidden to eat. Such totems may be distinguished as splil cotcons. The Jagaunathi Kumlaar in Bengal abstain froos killing or injuring the totems of their respective clans, and they bow to their totems when they meet them.

When the totem is a plant the rules are sueh as these. A native of western Australia, whose totem is a vegetable, " may not gather it under certain circumstances and at a particular period of the jear." ${ }^{\circ}$ An Oraon clan, whose totem is the kujrar tree, will not eat the oil of that tree, nor sit in its shade. ${ }^{7}$ The Red Maize clan of the Omahas will not eat red maize. Those of the people. of Ambon and Uliase who are descended from trees may not use these trees for firewood.

The rules not to kill or eat the totem are not the only taboos; the clansmen are often forbidden to touch the totem or any part of it, sometimes even to look at it.

Thus the Elk clatı of the Omalhas neither cat tha flesh nor tonch any part of the male elk. ${ }^{\text {a }}$ Tha Decr-Head clen of the Omahas may not touch the skin of any auimal of the deer family, nor wear moccasins of deer skin, nor use tha fat of the deer for hair-oil; but they may eat Cize flesh of deer. ${ }^{\circ}$ Of the totem clans in Bengal it is said that they f'are prohibited from killing, eating, cutting, burning, carrying, nsing, \&c., "the totem. ${ }^{10}$ The Bechunanes in Sonth Africa, who have a welldoveloped totens systom, may not ent nor clothe themselres in tha 'akin of the toten animal. ${ }^{11}$ They even avoid, at least in some cases, to look et the totem. Thus to a man of the Bakuena (Bakwain) or "Crocodile claa, it is "hateful and unlucky" to meet or gaze on a crocodila; the sight is thought to canse inthammation of the eyea.

Sometimes the totern animal is fed or even kent aliva in captivity: Among the mountaineers of Formosa each clan or village keeps its totem (serpent, lenpard, \&c.) in a cage. ${ }^{12}$ A Samonn clan whose fotem was the eel used to present the first fruits of the faro plantations to the cela. ${ }^{13}$ Amongst the Narringeri in South Australie men of the Sanke clan aometines catch snakea, pull out their teeth or aew up their mouths, and keep them as pets. ${ }^{14}$ In a Pigeou clan of Samoa a pigeon was carefully kept and fed. ${ }^{15}$ Amonget the Kalang in Java, whose totem is the red dog, each family as a rula keeps one of these animala, which they will on no account allow to bo atruck or ill-nsed by any one. ${ }^{16}$

The dead totem is mouroed for and buried like a deard clansinan. In Sainoa, if a man of the Owl tatem found a dead owl by tho road side, he would ait down and weep over it and beat his forchead with stones till the blood flowed. Tho bird would theu be wrapped up and buried with es much ceremony as if it had beeu a human being. "This, bowaver, was not tha death of the god. He was supposed to ha yetalive, and incernata in all the owls in existenca." 17 Tho generalization hera implied is characteristic of totemism; it is not morely an individual but tho apecies that is reverenced. The Wanika in eostcra Africa look on the byeua as one of their
R. C. Msyue, Brilish Columbia, P. 258.
C. J. Anderson, Lake Ngami, 222 sq. \& Rev. d'Ethn., iii. 396.

Dalton in Trais. Fithnolog. Soc., new eeries, vi. r. 86 ; Jil., "Thnoh of Bengrt, pf. 189, 254; As. (uart. Rer:, July 1886, 1.76.
${ }^{5}$ As. Quarl. Rev., July 1886, p. 79. Grey, Journals, ii. 228 sy.
Dslton, Ethn. of Liengat, 254; 1d., Trans. Ethnot. Soc., vi. 36.

- E. James, Erpeditioni from Pittsburyh to the Rochy Morutaias, ऐ. 47 ; Third Rep. Butr. Ehiavl., p. 225.
TJanies, loc. cit.; Third Rep., 245. ${ }^{10}$ As. Qirart. Rev., July 1836.
© Caaslia, The Lasutos, 211.
19 Ferhandl. det Berliner Gesell. f. Anthropoloyie, I882, p. (62),
${ }^{13}$ Turner, Samoa, 1. 71.
" Native Tribes of S. Avstrulia, p. 63. ${ }^{16}$ Turaer, op, cit., P. 64.
- Rafles, Hist. of Jave, i p 328, ec. 1817.

47 Tarner, op. cí., p. 21, cf. 26, 60 sq.
ancestora, and tho death of an hyxr.i is nourued ly the whofe peoplo; the mourning for a clice is said to be as nothing compared to the mourning for an hyona. ${ }^{18}$ A tribe of southern Arabia used to bury a slead gazalle wherever they fomd onc, aud tho whole tribo mourned for it ses en days. ${ }^{10}$ A Califormian tribo which roverenced the buzzard held an annual festival at whicle the chicf ceremony was the killing of a buzzard without lostng a drop of its blood. It was then skinned, the feathers were preservel to inske a sacred dresa for the medicine-man, and tha bolly was buried in holy ground anide the lamentations of the old women, who mourned as for the loss of a relatire or friend. ${ }^{20}$

As sonie totem clans evoid looking at their totem, so others aro careful not to speak of it by its proper name, but use descriptive epithets instead. The three totems of the Delawares-the wolf, turtle, and turker-were referred to respectively as "round foot." "craw-ler," and "not chewing," tho last referring to the birl"a habit of swallowing its food; aul the clans called thenselves, not Wolves, Turtles, oud Turkeys, but "Round Feet," "Crawlers," and "I'liose who do not chew. "'21 The Bear clan of the Ottawas called theia. selves not Beara but Big Feet. ${ }^{22}$ Tha object of these circemnlowitions is probably to give no offence to the worshipful animal.

The penalties supposed to be incurred by acting dirrespectfully to the totem are various. The Bakalai think that if a man were to ent bis totem the women of his clan would miscarry and give birth to animals of the totem kind, or die of an awful disease. ${ }^{23}$ The Elk clan anong the Omahas believe that if any clausman were to tonch any part of the male elk, or cat its flcsh or the flesh of the male deer, he wonld break out in boils and white spots in different parts of the body. ${ }^{24}$ The Ired Maize subclan of the Omalias believe that, if they were to eat of the red maize, they would bare running sores all round their mouth. ${ }^{25}$ And in general the Omalas believe that to eat of the totem, eren in-ignorance, would canse fickness, not only to the eater, but also to his wife and chilcren. ${ }^{2}$ s The worshippers of the Syrian godricss, whose creed was saturated with totemien, belicred that if they ate a sprat or an anchory their whole bodies wonld break out in ulcers, their legs would waste away, and their liver melt, or that their belly aud legs would swell up. ${ }^{27}$

The Samoans thought it death to mouse or eat their totems. The totem was supuped to take up his ahode in the sinner's body, and there to gender the very thing which he had eaten till it. caured his death. ${ }^{2{ }^{3}}$
Thus if a Turtle man ato of a turtle ho grow rery ill, and the Samon voice of tha turtle was heard in hia inside sinymg, "He ate mo; mode of I am killing him." 29 In ruch cascs, however, the famonns had a appeasi nuode of appensing the angry totcus. The offeuder limself or ono totem. of his clan was wripued iu leares and laid in an mbented oveu; as if be were aloout to be bsked. Thus if amoogst the Cuttle.Fish clan a visitor hod caught a cuttle-firln nud cooked it, or if a C'nttleFish man had heen present at the eating of a cuthic-fish, the Cuttle. Fish clau met and chose a nan or woman who weut tinungh the pretence of 1 cing haked. Otherwise a cuttle-fish would grow in the atomach of some of the clam and bu their death. ${ }^{30}$

In Australia, also, the punishment for eating the totem Aus appears to have been sickness or death. ${ }^{31}$ But it is not merely the totem which is taliooed to the Australians, they hare, luesides, a zery elaborate code of food jrohibitions, which vary chiefly witl age, lecing on the wholo strictest and most extensive at juberty, and gradually relaxing with advancing yeves Thus young meo arc for bidden to eat the emm; if they ate it, it is thought that they would be afflicterl with sores all over their bodics. 82

[^199]The relation between a man and his totem is one of mutual help and protection. If the man respects and cares for the totem, he expects that.the totern will do the same by bim. In Senegambia the totems, when they are dangerons animals, will not hart their clansmen; e.g., men of the Scorpion clan affirm that scorpions (of a very deadly kind) will run over their bodies without biting them. ${ }^{1}$ A Snake clan (Ophiogenes) in Asia Minor, believing that they were descended from snakes, and that snakes were thcir kinsmen, submitted to a practical test the claims of any man amongst then whom they suspected of being no true clansman. They made a snake bite him; if he survived, he was a true clansman; if he died, he was not. ${ }^{2}$ The Psyili, a Snake clan in Africa, had a similar test of kinship; they exposed their new-born children to snakes, and if the snakes left them unharmed or only bit without killing them, the children were legitimate; otherwise they were bastards. ${ }^{3}$ In Senegainbia, at the present day, a python is expected to visit every child of the Python clan within eight days after birth. ${ }^{4}$

Other totern clans regard a man who has been bitten by the totem, even though he survives, as disowned by the totem, and therefore they expel him from the clan. Among the Crocodile clan of the Bechuanas, if, a man has been bitten by a crocodile, or merely bad water splashed over him by a crocodile's tail, he is expelled the clan. ${ }^{5}$

But it is not enongla that the totem should merely abstain from injuring, he must positively benefit the men who put their faith in him. The Snake clan (Ophiogenes) of Asia Minor believed that if they were bitten by an adder they had only to 'put.a snake to the wound and their totein would suck out the poison and soothe away the inflammation and the pain. ${ }^{\text {® }}$ Hence Oraaha medicineenen, in curing the sick, imitate the action and voice of their (individual) totem. ${ }^{7}$ Menbers of the Serpent clan in Senegambia profess to heal by their touch persons who have been hitten by serpents. ${ }^{8}$ A similar profession was made in antiquity by Snake clans in Africa, Cyprus, and Italy. ${ }^{\text {a }}$

Again, the totem gives his clansmen important information by means of owens. In the Coast Murrins tribe of New Sonth Wales each man's totem warned him of coming danger; if his totem was a kangaroo, a kangaroo wonld warn him against his foes. ${ }^{10}$ The Samoan totems gave omens to their clansmen. Thus, if an owl flevr before the Owl clan, as they marched to war, it was a signal to go on: but if it flew across their path, or backwards, it was a sign to retreat. ${ }^{11}$ Some kept a tame owl on purpose to give omeus in war. ${ }^{12}$

When the conduct of the totem is uot all that his clansmea conld desire, they have various ways of putting pressure on him.
Thus, in barvest time, when the hirds eat the oorn, the Sunsll Bird clan of the Onullas take seme corn which they chew sad anit over tho field. This is thourlit to keep the bids frem the creps. ${ }^{13}$ If worms infest the corn the Reptile clan of the Omahas 'etch some of them and pound them up with some grains of orn which have been heated. They make a soulp of the mixture ald eat it, believing that the coro will not be iofestad agaill, at least for that year. ${ }^{14}$ During a log the men of the Turtla aubclan of the Onashas nsad to drew

[^200]the figure of a turtle on the grcum l with its face to the south On the head, tail, mildle of the hack, sud on each leg were placed amall pieces of a red breech-cloth with $\theta 0 \mathrm{me}$ tohscco. This was thought to make the fog disappear. ${ }^{10}$
In order, apparently, to put himself more fully under the protection of the totem, the clansman is in the habit of assimilating bimself to the totem by dressing in the skin or other part of the totem animal, arranging his hair and mutilating his body so as to resemble the totem, and repre senting it on his body by cicatrices, tattooing, or paint.

Among the Thlinkets on colemm occapione, auch es dances, menoriai festivals, and buials, iudiviluals oftea appear diaguised in the full fornt of thein totem animale; and, ss a rule, esch clans. man carries at least on evsily recogniagble part of his totom with him. ${ }^{16}$ Amongst the Omahas, the smaller boye of the Black Shoulder (Buffalo) clan wear two locks of hair in initatiou of horns. ${ }^{77}$ Thu Small Bird clan of the Omahas "Jeave a little hair in front, over the foreliead, for a bill, surl some st the back of the hesd, for the birl's tail, with milh over each ear for the wiuga." is The Turtle subclan of the Omahas "cut off all the hair from a hoy"e head, except six locks; two are left on each aide, one over the forehead, and one hanging lown the back iu imitation of the legs, head, and tail of a turtle." 19 The practice of knockiog out the upper frent tseth st puberty, which prevails in Anstrelia aud elsewhore, is, or was once, prolably an initation of the totell. The Batoks in Africa who edopt this practice say that they do so in order to be like oxell, while those who retaiu their teeth are like zebras, ${ }^{80}$

The Haidas of Queen Charlette Jslands are universally tattooed, Tatteas the design being in all cases the totem, executed in a conventional ing atyle. When several families of different totena live together in the sane large house, a Haids chief will have all their totems tattooell on his person. ${ }^{23}$ Tribea in South America sre especislly distinguished by their tattoo marks, hat whether these are totem marks is not said. ${ }^{22}$ T'lie Australians do not tattoo but raise cicatrices; in aome trihes these cicstrices are arrangod in patterns which aerve as the tribal badges, consisting of lines, dots, circles, semicircles, \&c. ${ }^{23}$ Accorrling to one authority, these Austraian tribsl badgea ere contetimes repreanatations of the totem. ${ }^{24}$

Again, the totem is unatimes painted on the person of the clensmau. This, as twe lisve seen (p. 408), is cometimes done by the Indians of British Colnmbia. Anong the Hurone (Wyandota) each clan has a distinctive mode of painting the face; and, at least in the case of the chiefs at installation, this painting represente the totem. ${ }^{25}$ Among the Mequis the representatives of the clans at foet-races, dances, \&c., have each a conventiousl representation of his totem blazoned ou breaet or back. ${ }^{28}$

The clansman also affixes his totem mark as a signature to treatiea and other documents, ${ }^{27}$ and paints or carves it on Lis weapons, lut, canoe, \&c.

The identification of a man with his totem appeare further to have been the object of various ceremonies olserved at birth, marriage, death, and on other occasions.

Birth Ceremonies.-On the fifth day after birth a child Birt of the Deer-Head clen of the Omahas is painted with red cere spots on its back, in imitation of a fawn, and red atripes mondes are painted on the child's arms and chest. All the Deer. Head men present at the ceremony nake red spots on their chests. ${ }^{28}$ When a South Slavonian women has givon birth to a child, an old woman runs ont of the house and calls out, "A ohe-wolf has littered a be-wolf," and the child is drawn through a wolfskin, as if to simulate actual birth from a wolf. Farther, a piece of the eye and heart of a

${ }^{18}$ Third Report, 240.

10 Holmberg in Acts Soc. Scien t. Feninica, Iv. 293 sq., 328 ; Petroff, Report an Pop station, Industries, al d Resuntrees of Alaska, p. 168.
${ }_{17}$ Th'rd Rep., 229. 18 Tbid., $238 . \quad 10$ Ibid., 240.
${ }^{20}$ Livingstooe, South Africa, p. 532.
21 Geolog. Surv. of Con zda, Rep. for 1878-79, pp. 108n, 185b; Sn. ©thson'm Contrib. to Knowl., vol. vxi. No. 207, p. 3 sq; ; Nature, 20th Jannary 1887, p. 285; Fourth Aumunl Report of the Bureaut of $E^{\prime} h n o l o g y$, Washingtoo. 1886, p. 67 sq.
2\% Martius, Zur Ethnographie Anverica's, aumul Brasiliens, p. 55.
is Brough Smyth, Aborigines of I'ictoria, i. p. xli. sq., 295, ii. 313 Ejre, Jour., ii. 333, 335 ; Ridley, Kamilaroi, p. 140 ; Jour. and Froc. R. Soc. N. S. Wrales, 1882, p. 201.
\& Mr Chatfield, in Fison and Howitt, Kamiaror and Kurnai, p. 68 n . On tettooiag in connexion with totcmism, see Haberlandt io Miftheil. der anthrop. Gescll. in Wien, xv. (1885) p. [58] 8q.
${ }_{25}$ First Rep., pp. 62, 64. ${ }_{28}$ Bourke. Snake Lance, p. 229.

* Heckewelder, Irdirn A stions, D. 247.
\% Third Rep., p. 245 sq.
wolf are sewed into the child's shirt, or bung rouna its aeck; and, if several children of the family have died before, it is called Wolf. The reason assigned for some of these customs is that the witclies who devour childrea will not attack a wolf. ${ }^{1}$ In other words, the human child is disguised as a wolf to cheat its supernatural foes. The same desire for protection against supernatural danger may be the motive of similar totemic custorns, if not of totemism in general.

Marriaye Ceremonies.-Among the Kalang of Java, whose totem is the red dog, bride and bridegroom before marriage are rubbed with the ashes of a red•dog's bones. ${ }^{2}$ Among the Transylvanian Gipsies, bride and bridegroom are rubbed with a weasel skin. ${ }^{3}$ The sacred goatskin (xyis) which the priestess of Athene took to newly married women may have been used for this purpose. ${ }^{4}$ At liome bride and briderroom sat down on the skin of the sheop, which had been sacrificed on the occasion. ${ }^{5}$. An Italian bride smeared the doorposts of her new home with wolf's fat. ${ }^{0}$ It is difficult to separate from totemism the custom observed by totem clans in Eengal of marrying the bride and bridcgroom to trees before they are married to each other. The bride touches with red lead (a common marriage ceremony) a mahw tree, clasps it in her arms, and is tied to it. The bridegroom goes through a like ceremony with a mango tree.?

Death

Death Ceremunies.-In death, too, the clansman seeks to become one with his totem. Amongst some totem clans it is an article of faith that, as the clan sprang from the toteni, so each clansman at death reassunes the totem form. Thus the Moquis, believing that the ancestors of the clans were respectively rattlesnakes, deer, bears, sand, water, tobacco, de., think that at death each man, according to his clan, is changed into a rattlesnake, a deer, \&c. ${ }^{8}$ Amongst the Black Shoulder (Buffalo) clan of the Omahas a dying clansman was wrapped in a buffalo robe with the hair out, his face was painted with, the clau nark, and his friends addressed him thus: "You are going to the animals (the buffaloes). You are going to rejoin your ancestors. You are going, or your four souls are going, to the four winds. Be strong." "9
Cere-
Ceremonies at Puberty.- The attainment of pmberty is aonies at celebrated by savares with ceremonies sonne of which seem suberty. to be directly connected with totemism. The Australian 'rites of initiation at puberty include the raising of these scars on the persons of the clansmen and clanswomen which serve as tribal badges or actually depict the totem. They also include those mutilations of the person by knocking out tectl, de., which we have scen reason to suppose are mea.at .to assimilate the man to his totem.

At one stage of thesc Australing rites a number of meu appear on the sceue liowlinur and ruming on all fon!s in imitation of the dingo or native Anstralian dog; at last tho leader jumps up, claspls hia hands, and shonts the totem mane "wild dog "to The Coast Murring tribe in New South Wales had an initiatory cere. mony at which the totem name "hrowu snake" was shonted, and a medicinc-man produced a live brown smake out of his mouth. ${ }^{11}$ As the fundamentul rules of toten societies are rules regnlating bocial intercourse, lerliapis these pantomimea were iutentod to bulpigy the youtlis with a symbolic language by means of which they uright communicate with persous speaking different languages,

[^201]aud thus iscertan whether they belonged to clans with which marriage was allowed. I'he totem clans of the Bechuanas have each its sjecial dance of pantomime, and whes they wish to ascertain a stranmer's clau they ask him, "What do you danoeq" 1a We finl elsewhere that dancing has Leen used as a mona of sexual selection.

But in sono cares these dances seem to be purely religious. At their initiatory rites the Yuin tribe in New South Wales mould figures of the totems in earth aud dance before them, and a medicine-mau brings up out of his inside the "magic" appropriate to the toten before which he stand.s: before the figure of the porcupine he brings up a stuff like chalk, before the kangaroo a stuff like glass, ic. ${ }^{13}$

Again, it is at initiation that the jouth is solemnly forbidden to eat of certain foods; but, as the list of foods prohibited to youths at puberty both in Australia and Anerica extends far beyond the simple totem, it would seem that we are here in coutact with those unknown general ideas of the savage, whereof totemism is only a special product.

Thus the Narrinyeri jouth at iuitiatiou are forbidden to eat twenty different kinds of game, besidea any food belonging to womeu. If they eat of these lorbidden foods it is thought they will grow ugly. ${ }^{24}$ In the Mycoolon tribe, near the Gulf of Carpentaria, the youth at initiation is forbiducn to eat of eaglelawk and its young, native companion and its young, some snakes, turtles, ant-eaters, and emul eggs. ${ }^{15}$ The Kurnai youth is not allowed to eat the fenale of any animal, nor the cmu, nor the porcupinc. He becomes free by laving the fat of the animal sineared on his face. ${ }^{15}$ On the other hand, it is said that."initiation confers many lיrivilegea on the youths, as they are now allowed to eat many articles of food which were previously forbidden to them." ${ }^{7}$ Thus in New South Wales before initiation a buy may eat only the females of tho animals which he catches; but after iuitiation (which, however, may not be complute for sovelal years) he may eat whatever lie finds. ${ }^{18}$ In North America the Creek youtha at puberty were forbidden for twelve montha to eat of young bucks, turkey-cncks, fowls, pease, aud salt. ${ }^{12}$

These ceremonies secm also to be meant to admit the youth into the life of the clan, and hence of the totem. The latter appears to be the meaning of a Carib ceremony, in which the father of the youth took a live bird of prey, of a particular species, and beat his son with it till the bird was dead and its head crushed, thus transferring the life and spirit of the martial bird to the future warrior. Further, he scarified his son all over, rubbed the juices of the Lird into the wounds, and gave hin the bird's heart to eat. ${ }^{20}$ Amongst some Australian tribes the jouth at initiation is smeared with blood drawu from the arms either of aged men or of all the men present, and he eveu receives. the blood to drink. Amongst some tribes on the Darling this tribal blood is his only food for two days. Among some tribes the youths at initiation sleep on the graves of their ancestors, in order to absorb their virtues. ${ }^{21}$ It is, however, a very notable fact that the initiation of an Australian youth is said to be conducted, not by men of the same totem, but by men of that portion of the tribe into which he may marry. ${ }^{22}$ In some of the Victorian tribes no person related to the youth by blood can interfere or assist in his initiation. ${ }^{23}$ Whether this is true of all tribes and of all the rites at initiation does not appear.

Connected with totemism is also the Australian cers? mony at initiation of pretending to recall a dead man to life by the utterance of his totem name. An old man lies

[^202]down in a grave and is covered up lightly with earth; but at the mention of his totem name he starts up to life. ${ }^{1}$ Sometimes it is believed that the youth himself is killed by a being called Thuremlui, who cuts him up, restores hins to life, and knocks out a tooth. ${ }^{2}$ Here the idea seems to be that of a second birth, or the beginning of a new life for the novice; hence he receives a new name at the time when he is circumcised, or the tooth knocked out, or the blood of the kin poured on him. ${ }^{3}$ Amongst the Indians of Virginia and the Quojas in Africa, the youths after initiation pretended to forget the whole of their former lives (parents, language, customs, \&c.), and had to learn everything over again like new-born babes. ${ }^{4}$ A Wolf clan in Texas used to dress up in wolf skins and rum about on all fours, howling and mimicking wolves; at last they scratched up a living clansman, who had been buried on pr rpose, and, jutting a bow and arrows in his hands, bade him de as the wolves domrob, kill, and murder. ${ }^{5}$ This may have been an initiatory ceremony, revealing to the nuvice in pantomime the double origin of the clan-from wulves and from the ground. For it is a commen belief with totem clans that they issued originally from the ground.
Connected with this mimic death and revival of a clansman appear to be the real death and supposed revival of the toten itself. We have seen that some Californian Indians killed the buzzard, and then buried and mourned over it like a clansman. Gut it was beliered that, as often as the bird was killed, it was made alive again. Much the same idea appears in a Zuni ceremony described by an eyewitness, Mr Cushing. He tells how a procession of fifty men set off for the spirit-land; or (as the Zunis call it) "the home of our others," and returned after four days, each man bearing a basket full of living, squirming turtles. One turtle was brought to the house where Mr Cushing was staying, and it was welcomed with divine honours. It was addressed as, "Ah! my poor dear lost child or parent, my sister or brother to have been! Who knows which? May bo my own great great grandfather or mother?" Nevertheless, next day it was killed and its flesh and bones deposited in the river, that it might "return once more to eternal life among its comrades in the dark waters of the lake of the dead." The idea that the turtle was dead was'repudiated with passionate sorrow; it had only, they said, "changed houses and gone to live for ever in the home of 'our lost others.' " θ The meaning of such ceremonies is not clear. Perhaps, as bas been suggested, ${ }^{\text {, }}$ they are piacular sacrifices, in which the god dies for his people. This is borne out by the curses with which the Egyptians loaded the head of the slain bull. ${ }^{8}$
Sex Totems.-In Australia (but, so far as is known at present, nowhere else) each of the sexes has, at least in some tribes, its special sacred animal, whose name each individual of the sex bears, regarding the animal as his or her brother or sister respectively, not killing it nor suffering the oprosite sex to kill it. These sacred animals therefore answer strictly to the definition of totems.

Thus amongst the Kurnai all the men were called Yeerung (Emn-Wren) and all the women Djeetgun (Superb Warbler). The birds called Yeerung wero the "brothers" of the mon, and the birls called Djeetgın were the women's "sistcrs." If the men killed an emu-wren they were attacked by the romen, if the women killed a superb warbler they were assailed by the men. Yeeruag and Djeetgun were the mythical ancestors of the Kurnai. ${ }^{9}$

[^203]The Kulin tribe in Victoria, in addition to sixteen clan totems, has two pairs of sex totems: olle pair (the emu-nreu and superb warbler) is identical with the Kurnai pair; the other pair is the bat (male totem) and tho small aight jar (femalo totem). The latter pair extends to the extreme north-western confines of Vice toria as the "man's brother" and the "woman's sister."10 The Ta-ta-thi gronp of tribes in New Sonth Wales, in addition to regular clan totems, has a pair of sex totems, the bat for men and \mathfrak{a} small owl for women; men and women aldress each other as Owl and Bats; and there is a fight if a woman kills a bat or a man killd a small owl." Of some Victorian tribes it is said that "tho common bat belongs to the men, who protect it against injury, even to the half killing of their wives for its sake. The fern owl, or large goat. sucker, beloags to the women, and, althongh a bird of evll omen. creating terror at night by its cry, it is jealously protected by them. If a man kills one, they are as much enraged as if it was one of their children, and will strike him with their long poles."13
The sex totem seems to be still more sacred than the clan totem; for men who do not object to other people killing their clan totem will fiercely defend their sex totem against any attempt of the opposite sex to injute it. ${ }^{13}$
Individual Totems.-It is not only the clans and the Indi seses that have totems; iudividuals also have their own special totems, i.e., classes of objects (generally species of animals), which they regard as related to themselves by those ties of mutual respect and protection which are characteristic of totemism. This relationship, however, in the case of the individual totem, hegins and ends with the individual man, and is not, like the clan totem, transmitted by inheritance. The evidence for the existence of individual totems in Australia, though conclusive, is very scanty. In North America it is abundant.
In Australia we hear of a medicine-man whose clan totem through his mother was kangaroo, but whose "sectet" (i.e., individual) totem was the tiget-snake. Snakes of that species, therefore, would not hurt him. ${ }^{14}$ An Australian scems usually to get his individual totem by dreaming that he has been transformed into an animal of the species. This a man dreamed three times he was a kangaroo; hence ho became one of the kangaroo kindred, and might not cat any part of a kangaroo on which there was blooul; he might not even carry home one on which there was blood. He might eat cooked kangaroo; but, if ho were to eat the meat with the blood ou it, the spirits would no longer take him up aloft. ${ }^{15}$

In America the individual totem is usually the frst animal of which a youth dreams during the long and generally solitary fasts which American Indians observe at puberty. He kills the animal or bird of which ho dreams, and henceforward wears its skin or feathers, or some part of them, as an amulet, especially on the war-path and in hunting. ${ }^{16}$ A man may eren (thouglt this seems exceptional) acquire several totems in this way; thus an Ottawa medicineman had for his individual totems the tortaise, swan, woodrecker, and crow, because he had dreamed of them all in his fast at puberty. The respect paid to the individual totem varies in different tribes. Among the Slave, Hare, and Dogrib Indians a man may not eat, skia, nor if possible kill his individual totem, which in these tribes is said to be always a carnivorous animal. Each man carries with him a picture of his totem (bourght of a trader); when he is unsuccessfinl in the chase, he pulls out the picture, smokes to it, and makes it a speech. ${ }^{17}$

The Indians of Cnnarla changed their okki or manitoo (individual totem) if they had reason to be dissatisfied with it; their women had also their okkis or manitoos, but did not pay so much heed to. them as did the men. They tattooed theirindividual totems on their persons. ${ }^{18}$ Amougst the Indians of San Juan Capistraue, a figuro of the individual tatem, which was acquired as usual by fasting, was moulded in a paste made of crushed herbs on the right arm of the novice. Fire was then set to it, and thus the figure of, the totem was burned into the flesh. ${ }^{18}$ Sometimes the individua? totem is not acquired by the individual himself at puberty, but is

[^204]㐌xed for him iadependently of his will at birth. Thus among the tribes of the isthmus of Tehuantepec, when o woman was about to be confined, the relstions assembled in the hut and drew on the floer figures of different snimals, rubbiag each one out as soon as it was finished. This went on till the child was bern, and the figure that then remained aketched on the ground was the child's tona or totom. When he grew older the child procared his totem aninal and took care of it, beliaving that his life was bound up with the animal's, and that when it died he too must die. ${ }^{1}$ Similarly in Samea, at child-birth the help of several "geds" was invoked in succession, and the one who happened to be addressed at the moment of the birth was tlie infant's totem. These "gods" were dogs, eels, eharks, lizards, \&c. A Samosn had no objection to eat nnother man'e "god "; but to eat his own would have been death or injury to him. ${ }^{2}$ Sometimes the okkis or mauitoos acquired by dreams are not totems but fetiches, beiag not classes of objects but individual objects, such as a particular tree, rock, knife, pipe, \&c. ${ }^{3}$

Besides the clan totem, sex totem, and individual totem, there are (as has been indicated) some other kinds or varieties of totems; but the consideration of them had better be deferred till after the consideration of the social organization based on totemism.

Social Aspect of Totemism, or the relation of the men of Fa totem to each other and to men of other totems.-(1) Ail the members of a totem clan regard each other as kinsmen or brothers and sisters, and are bound to help and protect each other. The totem bond is stronger than the bond of blood or family in the modern sense. This is expressly stated of the clans of western Australia and of north-western America, ${ }^{4}$ and is probably true of all societies where totemism exists in full force. Hence in totem tribes every local group, being necessarily composed (owing to exogamy) of members of at least two totem clans, is liable to be dissolved at any moment into its totem elements by the outbreak of a blood feud, in which husband and wife must always (if the fend is between their clans) be arrayed on opposite sides, and in which the children will be arrayed against either their father or their mother, according as descent is traced through the mother or through the father. ${ }^{5}$ In blood feud the whole clan of the aggressor is responsible for his deed, and the whole clan of the aggrieved is entitled to satisfaction. ${ }^{6}$ Nowhere perlaps is this solidarity carried farther than among the Goajiros in Colombia, South America. The Goajiros are divided into some twenty to thirty totem clans, with descent in the female line; and amongst them, if a man bappens to cut himself with his own knife, to fall off his horse, or to injure himself in any way, his family on the mother's side immediately demand payment as blood-money from him. "Being of their blood, he is not allowed to spill it without paying for it." His father's family also demands compensation, but not so much. ${ }^{7}$
(2) Exogamy.-Persons of the same tatem may not marry or have sexual intercourse with each other. The Navajos believe that if they married within the clan "their bones would dry up and they would die." ${ }^{8}$ But the penalty for infringing this fundanental law is not merely natural; the clan steps in and punishes the offenders. In Australia, the regular penalty for sexual intercourse with a person of a forbidden clan is death.

It matters not whether the woman be of the same local group or has been captured in war from snother tribe; a man of the wrong

[^205]clan whe nses her ss his wife is hunted down and killed by his clansmen, and so is the womsn; though in some cases, if they succeed in eluding capture for a certain time, the offonce may be condoned. In the Ta-ta-thi tribe, New Sotuth Wales, in the rare cases which occur, the man is killed but tho woman is only boaten or apeared, or beth, till she is nearly dead; the reason given for not actually killing her being that she was prebably coerced. Even in casual smours tha clan prohibitions are strictly observed; auy violations of these prohibitions "are ragarded with the utmost abhorreace ond are purished by death."9 An inportant exception to these rules, if it is correctly reported, is that of the Port Linceln tribe, which is divided inte two clans, Mattiri and Karrarn, and it is said that though persons of the same clan never marry, yet "they do not seem to consider less virtuons connexions between partiee of the eame class [clan] incestuous." 10 Again, of the tribes on the lower Muray, lower Darling, \&c., it is said that though the slightest bloed rolationship is with them a bar to marrisge, yet in their sexual intercomrss they are perfectly free, and incest of every grade continually occurs. ${ }^{21}$

In America the Algonkins consider it highly criminal for a man to marry a woman of the same totem as himself, and they tell of cases where men, for breaking this rule, have been put to death by their nearest relations. ${ }^{12}$

In some tribes the marriage prohibition only extends to Pbratries a man's own totem clen; he may marry a woman of any totem but his own. This is the case with the Haidas of the Queen Charlotte Islands, ${ }^{13}$ and, so far as.appears, the Narrinyeri in South Anstralia, ${ }^{14}$ and the western Australian tribes described by Sir George Grcy. ${ }^{15}$ Oftener; however, the prohibition includes several clans, in none of which is a man allowed to marry: For such an exogamous group of clans within the tribe it is convenient to have a name ; we shall therefore call it a phratry (L. H. Morgan), defining it as an exogamous division intermediate between the tribe and the clan. The evidence goes to show that in many cases it was originally a totem clan which has undergone subdivision.

The Choctaws, for example, were divided into two phratrics, American cach of which included four claus; marriage was prohibitcd be-phratries, tween members of the sanne pliratry, but nombers of either phratry could marry into sny clan of the other. ${ }^{18}$ The Seneca tribe of the Iroquois was divided into two phratries, each includiug four clans, -the Bear, Wolf, Beaver, and Turtlo clans forming oue phratry, and the Deer, Snipe, Heron, and Hawk clans formiug the other. Origiaslly, as among the Chectaws, marriage was prohibited within the phratry but was permitted with any of the clane of the other phratry; the prohibition, however, has now broken down, and a Seneca may nuarry a worman of any clau but his own. Hence phratries, in our eense, no longer exist among the Senecas, though the organization survives for certain religions sud social purpeses. ${ }^{17}$

The phratries of the Thlizkets and the Mohegans deserve especial attention, becauso each phratry bears a name which ia also the name of one of the clans included in it. The Thlinkets aro divided as follows:-Raven phratry, with clans Raven, Frog, Goose, ScaLion, Owl, Salmon; Wolf plirstry, with claas Wolf, Bear, Eagle, Whale, Shark, Auk. Members of the Reven phratry must marry members of the Wolf phratry, and vice versa. ${ }^{\text {d }}$ Cousideriag the prominent parts played in Thlinket mytholegy by the ancestore of t^{3}, two phrstries, and considering that the names of the phratrics sre also names of clans, it seems probable that the Raven suld Wolf were the two origiunl clans of the Thlinkets, which afterwards by subdivision became phratries. This was the opinion of the Russian missionary Venisminoff, the best early authority on the tribe. ${ }^{19}$ Still more clearly do the Mohegan phratries appear to have been formed by subdivision fiom clans. They ere as follows : ${ }^{30}$ - Wolf phrstry, with clans Wolf, Bear, Dog, Opossum; Turtle
${ }^{9}$ Howitt in Rep. of Smithsonian Inst. for 1883, 1). 804 ; Fison and Howitt, pp. 64-67, 289, 344 sq.; J. A. I., xiv. p. 351 sq .
${ }^{10}$ Nat. Tr. of S. Australia, p. 222.
${ }^{11}$ Jour. and Proc. R. Soc. N. S. Wules, 1883, p. 24 ; Transactions of the Royal Society of Victoria, vi. p. 16.
${ }^{12}$ James in Tanner's Narr., p. 313.
${ }^{13}$ Geol. Sur. of Canada, Rep. for 1878-79, p. 134B.
${ }^{14}$ Nat. Tr. of S. Austr., p. 12; J. A. I.. xii. p. 46.
${ }^{35}$ Grey, Jour., i1. p. 226.
18 Archawologia Americana, Trans. and Collect. Americ. Antiq. Soc. vol. ${ }^{\text {iii. p. }} 109$; Mergan, A. S., pp. 99, 162.
${ }^{17}$ Morgan, op. cit., pp. 90, 94 sq.
18 A. Krause, Die Tlinkit-Indianer, 112, 220; Holmberg, op. cit., 293, 313; Pinart in Bull. Soc. Anthrop. Paris, 7 th Nov. 1872, D 792 sq. ; Petroff, Rep. on Alaska, p. 165 sq. 19 Petioff, op, cit, p. 160. ${ }^{20}$. Morgat, p, 174.

Thratry, with clans Littlo Turtle, Mul Tortle, Great Turtle, Yellow Eel; Turkey pliratry, with clans Turkey, Crane, Chickea. Hero we are almost forced to conclude that the Turtle phratry was origin. ally a Turtle clan which subdivided into a number of clans, each of which took the name of a particular kind of turtle, while the Fellow Eel clan may lave been a later subdivision. Thus we get a probable explanation of the origin of split totems; they seem to have arisen by the acgmentation of a single onginal clan, which had a whole animal for its totem, into a number of clans, each of which took the name either of a part of the original animal or of a sulspecies of it. We may conjecture that this was the origin of the Grey Wolf and Yellow Wolf and Great Turtle and Little Turtle clans of the Tuscarora-Iroquois; ${ }^{1}$ the Black Eagle and White Engle ant the Dectand Deer-Tail clans of the Liaws ; 2 and of the Ilighland Tuntle (striped), Mighland Turtle (black), Mud Turtle, and Smooth Large Turtle clana of the Wyandots (Hurons). ${ }^{3}$ Warren actually states that the puinerous Bear clan of the Ojibways was formerly subdivided into subelans, each of which took for its totem some ,art of the Bear's body (head, foot, ribs, \&c.), but that these have nov merged into two, the Common Bear and the Grizzly Bear. ${ }^{4}$ The subrivision of tho Turtle (Tortoise) clan, which on this hypothesis has taken place among the Tuscarora-Iroqpois, is nascent among tho Onoodaga.Jroquois, for among them "the name of this clan is Hahnowa, which is the general word for tortoise; but the clan is divided into two septa or subdivisions, the Hanyatengona, or Great Tortoise, and the Niknhoowaksa, or Little Tortoise, which together are held to constitute but one clan." "

On the other hand, fusion of elans is known to have taken place, as among the Haidas, where the Black Bear and Fin-Whale clans hare united; ${ }^{6}$ and the same thing has happened to some extent among the Omahas and Osages. ${ }^{7}$

In Australia the phratries are still more important than in America ilessrs Howitt and Fison, who have done so much to advance onr knowledge of the social system of the Australian aborigines, have given to these exogamous divisions the name of classes; but the term is objectionablo, because it fails to convey (1) that these divisions are kinship divisions, and (2) that they are intermediate divisions; whereas the Grcek term phratry eonveys both these meanings, and is therefore appropriate.

We lave seen examples of Australian tribes in which members of any clan are free to marry members of any clan but their own; but such tribes appear to be exceptional. Often an Australian tribe is divided into two (exogamous) phratries, each of which includes under it a nunber of totem clans; and oftener still there are subphratries interposed between the phratry and the clans, each phratry including two subphratries, and the subphratries including totem clans. We will take examples of the former and simpler organization first.
The Turra tribe in Yorke Peninsula, South Australia, is divided into. two phratrics, Wiltin (Eaglelawk) and Mñlta (Seal). The Eaglehawk phratry includes ten totem clans (Wombat, Wallaby, Kingaroo, Ignana, Wombat-Snake, Bandicoot, Black Bandicoot, Crow, Rock Wallaby, and Enuu); and the Seal Phratry includes six (Wild Goose, Butterfish, Mullet, Schnapper, Shark, aod Salmon). The phratrics are of course exogamous, but (as with the Choctaws, Mohegan, and, ao far as appears, all the American phratries) any clan of the one phratry may intermarry with any clan of the other phratry. ${ }^{\theta}$ But the typical Australian tribe is divided into two exogamous phratries; each of theso pliratries is subdivided into two subphratries; and these subphratrics ara subdivided into an iadefinite number of totem clans. The phratries being exogamons, it followa that their suldivisions (the subphratries and clang) cre so also. Tho well-kuown Kamilaroi tribo in New South Wales will serve as an cxample. lta subdivisions are as follows: ${ }^{9}$ -

[^206]In sach tribes the freedom of marriage is still more cartailed A subphratry is not freo to onarry into cither subphratry of the other phratry ; each suluphratry is restricted in its choice of partners to one suhphratry of the other phratry; Muri can only marry Kombo, and vicc versa; Kuhi can only marry Ipai, and vicc versa. Hence (aupposing the tribe to be equally distributed between the phratries aod subphratries), whereas under the two phratry and clan system a mao is free to chooso a wife from half tho women of the tribe, under the pliatry, subphratry, and clan system he ia restricted in his choice to one quarter of the women.

A remarkable featnre of the Australian social organization is that divisions of one tuibe have their recognized equivalents in other tribes, whose languages, including the names for the tribal divisions, are quite different. A native who travelled far and wide through Australia stated that "be was furnished with temporary wives by the rarious tribes with whom he sojourned io his travels; that his right to these women was recognized as a matter of course ; and that he conld always ascertain whether they belonged to the division into which he could legally marry, "though the places were 1000 miles apart, and the languages quite different." "12 Again, it is said that "in cases of distant tribes it can be shown that the class divisions correspond with each other, as for instance in the classes of the Flinders river and Mitchell river tribes; and these tribes are separated by 400 miles of country, and by many intervening tribes. But, for all that, class corresponds to class in fact and in meaning and in privileges, although the name may be quite different and the totems of each dissimilar." 12 Particular information, however, as to the equivalent divisions is very scanty. ${ }^{13}$ This systematic correspondence between the intermarrying divisions of distinct and distant tribes, with the rights which it conveys to the members of these divisions, points to sexual communism on a scale to which there is perhaps no parallel elsewhere, certainly not in North America, where marriage is alway: within the tribe, though outside the clan. ${ }^{14}$ Bit even in Australia a man is always bound to marry within a oertain kinship group; that group may extend across the whole of Australia, but nevertheless it is exactly limited and defined. If endogamy is used in the sense of prohibition to marry outside of a certun kinship group, whether that group be exclusive of, inchusive of, or identical with the man's own group, then marriage among the totem societies of Australia, America, and India is both exogamous and endogamous; a man is forbidden to marry either within his own clan or outside of a certain kinship group. ${ }^{25}$
(3) Rules of Descent.-In a large majority of the totem Rule: of tribes at present known to us in Australia and North descamen America descent is in the female line; i.e., the children belong to the totem clan of their mother, not to that of their father. In Australia the proportion of tribes with female to those with male descent is as four to one ; in America it is between three and two to one.

As to the totem tribes of Africa, descent allong the Damaras is in the female line, ${ }^{16}$ and thero are traces of fennale kin among tho Bechuanas. ${ }^{17}$ Among the Balalai property descends in the male line, but this is not a conclusive proof that descent is so reckoned; all the elans in the veighbourhood of the Bakalai have fomalo descent botli for blood and property. ${ }^{18}$ In Bewsal, where there is a considerable body of totem tribes, Mr Risley says that after careful search he and his coadjutors havo found $n 10$ tribe with fenale descent, and only a siurle trace of it in onc. ${ }^{19}$ Among tho totem

[^207]trilee of Bengal descent is male. ${ }^{1}$ In Aesam the exogamous totem cluns of the Xasias have female descent, ${ }^{2}$ as also have the exogamoue cluns of the Garos, but it does not appear whethar thoir clang are totem clane, though noine of their legeads point to totemism. ${ }^{\text {a }}$
In the Australian tribal organization of two phratries, four subphratries, and totem clans, there occurs a peculiar form of descont of which no plausible explanation has yet been offered. It seems that in all tribes thns organized the children are born into the rubphratry neither of their father nor of their mother, and that desceat in such cases is either female or male, according as the subphratry inte which the children are born is the companion subphratry of their mother's or of their father's subphratry. In the former case we have that may be called indirect female descent; in the latter, indirect male descent. But it is only in the subphratry that descent is thus indirect. In the totem clan it is always direct; the child belongs to the clan either of its mother or of its father. Thus, in the typical Australian organization, descent, whether female or male, is direct in the phratry, indirect in the subphratry, and direct in the clan.
 ab the phratries and subphratries are coocerned, in the Kamilaroi:-

This is an example of indirect female deacent, becsuse the children belong to the compaaion oubphratry of their nother, not to the companion oubphratry of their futher. But in the toteme the female descent is direct; e.g., if the father is Muri-Kangaroo and the mother is Kumbo-Emu, the children will be Inai-Engu; if the mother is Kumbo- Randicoot, the children will be Ipai. Bandicoot. ${ }^{4}$, ${ }^{\text {The }}$ following is the echeme of descent in the Kibar trihe The following is the echeme of descent in the Kiabara trihe: 0^{-}-

Phastries.	Nala.	Marriea	Childreu ara
$\left.\begin{array}{l}\text { Duebl. } \\ \text { Cubatina. }\end{array}\right\}$	Barlog. Turawline. Bulcola. Bundah.	Bundah. Bulcola. Turawiae. Barling.	Turawine Baring. Bundah. Balcoln.

This is en example of iudirect male descent, becanse the children belong to the companion aubphratry of their father, not to the companion oubphratry of their mother. We lave no information as to the totems, hut on the azalogy of indirect fermale descent we should expect them to be taken from the father. This at any rate is true of a large tribe or group of tribes to the south of the Gulf of Carpentaria; their rules of marriage and deecent, eo far as concerne (which at the lower like those of the Kiabara, and the totems (which at the lower Leichhardt river are the names of fish) are inhorited from father to oon. ${ }^{6}$
In some Aostralian tribes eone take their toteme from their father and daughters from their mother. Thus the Dieri in South Anstralia are divided into two phratries, each of whicb in Soluth undor it eixtean totem clans, (Caterpillar, Mullet, Dog, Ras, Kangaroo, Frog, Crow, \&c.) 7^{7} and if a Dog man marries a Rat woman, the soas of this marriage ere Dogs and the daughters are Anstralian Bight, has, with ceptain exceptions, the of the Great descent. ${ }^{9}$ Bight, has, with certain exceptions, the same rule of

Besides the tribes whose line of descent is definitely fixed in the female or male line, or, as with the Dieri and Ikula, half-way between the two, there are a number of :tribes among whom a child may be entered in either his 'miviher's or his father's clan. Among the Haidas, children regularly belong to the totem clan of their mether; but po very exceptional cases, when the clan of the father is reduced in numbers, the newly-horn child may be given

[^208]to the father's sister to suckle. It is then spoken of as belongiug to tlie paterual aunt, and is counted to its father's clan. ${ }^{10}$ Among the Delawares descent is regularly in the female line; but it is possible to transfer a child to its father's clan by giving it one of the names which are appropriated to the father's clan. ${ }^{11}$ In the Hervey Islands, South Pacific, the pareats settled beforehand whether the child should belong to the father's or mother's clan The father usually had the preference; but sometimes, when the father'e clan was one which was bonad to furnish human victims from its ranks, the mother had it adopted iute her clan by having the name of her totem pronounced over it. ${ }^{12}$ In Samoa at the birth of a child the father's totem was usually prayed to first; but if the birth was tedious, the mother's totem was invoked; and whichever happened to be in voked at the moment of birth was the child's totem for life. ${ }^{18}$
When a North American tribe is on the march, the members of each totem clan camp together, and the clans ara arrauged io ef fixed order is camp, the whole tribo being arranged in a great circle or in several concentric circles. ${ }^{14}$ When the tribe livea in eettled rillages or torus, each clan hae its өoparate ward. ${ }^{10}$ The clans of the Osages are divided into war clans and peace clong; when they are out ou the buffalo huat, they camp on opposite sides of the tribal circle; and the peace clans are not allowed to take animal life of any kiod; they mast therefore live on recgetables unless they can obtain neat in exchange for vegetables from the war clans, Mombers of the aame clan are huried together and apart from those of other clane; beace the remains of husband
and mife, beloaging as they do to separate clane, do not rest and mife, belonging as they do to separate clans, do not rest
together. 17
It ia remarkable that amoog the Thlinkets the body must alwaye be carried to the funeral prre and barued by mea of another totem, ${ }^{\text {² }}$ and the presenty distributed on these occasioue by the ropresentatives of the deceased must alnays be made to uned
of a differeat clan. 18

Here we must revert to the religious side of totemisn, Phratrity in order to consider some facts which have emerged from and anl the study of its social aspect. We bare seen that some phratries, both in America and Australia, bear the names of animals; ${ }^{20}$ and in the case of the Thlinkets and Mohegans we have seen reason to believe that the animals which give their names to the phratries were ouce clau totems. The same seems to held of the names of the Australian phratries, Eaglehawk, Crow, and Seal, or at least of Eaglehawk and Crow, for these are clan totems in other tribes, and are, besides, important figures in Australian mythology. Indeed, there appears to be direct evidence that both the phratries and subphratries actually retain, at least in Qeme tribes, their totems. Thus the Port Mackay tribe in Queensland is divided into two phratries, Iungaru and Wutaru, with subphratries Gurgela, Burbia, Wungo, and Kubera, and the Yungaru phratry has for its totem the alligator, and" Wutaru the kangaroo, ${ }^{21}$ while the oubphratries have for their totems the emu (or the carpot 6nake), ignana, opossum, and kangaroo (or scrub turkey). ${ }^{22}$

[^209] ${ }^{14}$ First Rep. was that neither of his father nor of hie mother.
${ }_{14}^{14}$ First Rep., 64 I Third Rep., 219 ; Amer. Naturalist, xviii. 118.
${ }^{1 s}$ Gatschet, Migration Legend of the Creek Indians, 154; Bourka, ${ }^{18}$ Srake Dance, 229; Acad., 27 tb Sept. 1834, p. 203.
${ }_{17}^{18}$ Rev. J. Owen Dorsay in A merican Naturalist, xviii. p. 113.
${ }^{17}$ Adair, Hist. Amer. Ind., 183 sq.; Morgan, A. S., 83 sq.; Briuton, The Lenape and their Legends, 54; Id., Myths of the New World, 87 n; A. Hodgson, Letters from North America, i. p. 258; Dalton, Eth. of Beng., 56 ; cf. Robertoon Smith, Kinship and A Aarriage in Eurly Arabia, 315 sq. 19 Krause, Die Tlinkit.Indianer, 223 . Holmberg, op. cit, 824.
${ }^{20}$ As among the Chickasas, Thlinkets, and Mohegane in America, aud the Turra, Ngarego, and Theddora tribes in Anstralia. The aulb-
phratries of the Kiabara aleo bear adimal names ${ }_{21}$ phratries of the Kiabara alao bear adimal names,
${ }_{2}^{21}$ Fison aud Howitt, 38 sg., 40.
${ }^{2}$ Fiaon and Howitt, p. 41. Tha toteme of the phratries and aub-, phratries are gives by differest authorities, who write the native sames of the subyhratrics difereatly. But they seem to be apeaking of the oqma tribe; at least Mr Fison onderstands them so

As the subphratries of this tribe are said to be equivaient to the subphratries of the Kamilaroi, it seems to follow that tue subphratries of the Kamilaroi (Muri, Kubi, Ipai, and Kumbo) have or once liad totems also. Hence it appears that in tribes organized in phratries, subphratries, and clans each man has three totems-his phratry totem, his subphratry totem, and his clan totem. If we add a sex totem and an individual totem, each man in the typical Australian tribe has five distiact kinds of totems. What degree of allegiance he owes to his subphratry totem and phratry totem respectively we are not told ; indeed, the very existence of such totems, as disticet from clan totens, appears to have been generally overlooked. But we inay suppose that the totem bond diminishes in strength in proportion to its extension; that therefore the clan totem is the primary tic, of which the subphratry and phratry totems are successively weakened repetitions.

In these totems superposed on totems may perbaps be discerned a rudimentary classification of natural objects under heads which bear a certain resemblance to genera, species, dc. This classification is by some Australian tribes extended so as to include the whole of nature. Thus the Port Mackay tribe in Queensland (see above) divides all nature between the phratries; the wind belongs to one phratry and the rain to another; the sun is Wutaru and the moon is Yungaru; the stars, trees, and plants are also divided between the phratries. ${ }^{1}$ As the totem of Wutaru is kangaroo and of Yungaru alligator, this is equivalent to making the sun a kangaroo and the moon an alligator.

The Mount Gambier triba in Sontb Australia is divided into two phratries (Kumi and Kroki), which ogain ara subdivided into totem clans. Everything in naturo belongs to a totem clan, thus: ${ }^{2}$ -

Phratrles.	Totem Clans.	Including
Kuml. SrokL	1. JIala = F1sh1-Hawk. 2. Parangal = Pellcan. 3. $\bar{W} \bar{a}=$ Crow. 1. Wus= Black Cockaloe. 5. Karato =A hurmless Snaka. 1. WëHe=Tea-Trea. 2. Marna $=$ Aa cdibla Reot. 8 Karáal = Black crestless Cock . atoo.	```Smake, honeysuckle, trees, \&c. f Dogs, blackwond trees, fre, frost (rem.) Rain, thunder, ligitning, winter, hail. clouds, \&c. Stars, moon, de. fFisli, stingybark trees, seals, ecis, \&c. Ducks, wallables, owls, cray flsli, \&e \(\left\{\begin{array}{l}\text { Bustards, quatls, dolvich (a amall } \\ \text { kajgaroo). } \\ \text { Kangaroo, shc-oak trees, summer, } \\ \text { 日un, autumn (fem.) wind (fem.) }\end{array}\right.\)```

With reference to this classification Mr D. S. Stewart, the sutherity for it , says, "I have tried in vain to find some reason for she arrangement. 1 osked, "To what division does a bullock belong!' After a pause camo the answer, "It eats grass: it is Boortwerio.' I then said, 'A cray-fish does not eat grass; why is it Boortwerio ?' Then camo the etanding reason for all puzzling questions: "That is what our fathers said it was." "3 The natural pbjects thus classed under and sharing the regrect due to the totem may be conveniently called, as Mr Howitt proposes, ${ }^{4}$ subtotems. Araiu, the Wotjoballuk tribe in morth-western Victoria has a system of subtotems, thus: ${ }^{5}$ -

Of the subtotems in this tribe Mr Howitt says, "They appear to ane to ba totems in a state of dovelopment. Hot mind has at least Gve of them, white cockatoo has seventeen, and 60 on for the others. Able :hese surutotems are now in process of gaining a cort of inde. pedence may be shown by the following instance: a man who is Erokitch-Wartmut (hot wind) claimed to own all the five soltotems of bot wind (threa snakes and two birds), yet of these there was one which he enecially claimed as 'belonging' to him, namely, sfatwuk (carpet-soake). Thus his totem, hot wind, seens to havo geen in process of subdivision into minor totems, and this naan's

[^210]- Fison and Howitt, loc. cil. 8^{8} Fison and Howitt, 169.
-In Smithsort. Rep. for 1889, p. 818.
- bid.
division might have become hot wind carpet-shike had not civilization iulcly stopred the process by slmost extiuguishing the tube."

Geographical Diffusion of Totemism.-In Australia totemisin is almost universal. ${ }^{6}$ In North America it may be roughly said to prevail, or have prevailed, among all the tribes cast of the Rocky Mountains, ${ }^{7}$ and among all ,the Indian (but not the Eskimo) tribes on the north-west coast as far south as the United States frontier. On the other hand, highly competent authorities have failed to find it among the tribes of western Washington, north-western Oregon, and California. ${ }^{3}$ [n Panama it exista apparently among the Guaymies . each tribe, family, and individual has a guardian animal, the most prevalent being a kind of parrot. ${ }^{9}$ In South America totemism is found among the Goajiros on the borders of Colombia and Venezuela, ${ }^{10}$ the Arawaks in Guiana, "1 the Bosch negroes also in Guiana, ${ }^{12}$ and the Patagonians. ${ }^{18}$ Finding it at such distant points of the continent, we should expect it to be widely prevalent; but, with our meagre knowledge of the South Americars Indians, this is merely conjecture. The aborigines of Peru and the Salivas on the Orinoco believed in the descent of their tribes from animals, plants, and natural objects, such as the sun and earth; ${ }^{14}$ but this, though a presumption, is not a proof of totemism.

In Africa totemism prevails in Senegambia, among the Bakalai on the equator, on the Gold Coast and in Ashantee, and among the Damaras and Bechuanas in southern Africa.'s There are traces of totemism elsewhere in Africa. In eastern Africa the Gallas are divided into two exogamous sections, and have certain forbidden foods. ${ }^{16}$ In Abyssinia certain districts or families will not eat of certain animals or parts of animals. ${ }^{17}$ The territory of the Hovas in Madagascar is divided and subdivided into districts, the names of the subdivisions referring "rather to clans and divisions of people than to place." One of these names is "the powerful bird," i.e., either the eagle or the vulture. The same clan is found accupying separate districts. ${ }^{13}$ One Madagascar tribe regard a species of lemur as "an embodiment of the spirit of their ancestors, and therefore they look with horror upon killing them." Other Malagasy tribes and families refrain from eating pigs and goats; others will not eat certain vegetables nor even allow them to be carried into their houses. ${ }^{19}$ The only accasion when the Sakalava tribe in Madagascar kill a bull is at the circumcision of a child, who is placed on the bull's back during the customary inrocation. ${ }^{20}$

In Bengal, as we have seen, there are numerous totem tribes among the non-Aryan races. In Siberia the Yakuts

[^211]are divided into totem clans; the clansmeu will not kill their totems (the swan, goose, raven, \&c.); ${ }^{1}$ and the clan's are exogamous. ${ }^{2}$ The Altaians, also in Siberia, are divided into twenty-four clans, which, though interfused with each other, retain strongly the clan feeling; the clans are exogamous; each has its own patron divinity and religious ceremonies; and the only two names of clans of these and kindred tribes of which the meanings are given are names of animals. ${ }^{3}$ Totemism exists among the monntaineers of Formosa, ${ }^{4}$ and there are traces of it in. China. ${ }^{6}$ In Polynesia it existed, as we have seen, in Samoa. In Melanesia it appears in Fiji, ${ }^{6}$ the New Hebrides, ${ }^{7}$ and the Solomon Islands. ${ }^{8}$ Amongst the Dyaks there are traces of totemism in the prohibition of the flesh of certain animals to certain tribes, respect for certain plants, dc. ${ }^{9}$ It exists in the islands of Ambon, Uliase, Leti, Moa, Lakor, Keisar (Makisar), Wetar, and the Aaru and Babar archipelagos. ${ }^{10}$ In the Philippine Islands there are traces of it in the reverence for certain animals, the belief that the souls of ancestors dwell in trees, \&cc. ${ }^{11}$
With regard to ancient nations, totemism may be regarded as certain for the Egyptians, and highly probable for the Semites, ${ }^{12}$ Greeks, and Latins. If proved for one Aryan people, it might be regarded as proved for all; since totemism could scarcely have been developed by any one Aryan branch after the dispersion, and there is no evidence or probability that it ever wss borrowed. Prof. Sayce finds totemism among the ancient Babylonians, but his eridence is not conclusive. ${ }^{13}$
No satisfactory explanation of the origin of totemism has yet been given. Mr Herbert Spencer finds the origin of totemism in a "misinterpretation of nicknames": savages first named themselves after natural objects, and then, confusing these objects with their ancestors of the same names, reverenced them as they already reverenced their ancestors. ${ }^{14}$ But this view attributes to verbal misunderstandings far more influence than, in spite of the so-called comparative mythology, they ever seem to have exercised.
Litcrature.- Apart from the original anthorities, the literature on totemiem is very scanty. The importance of totemism for the early bistory of society was first recognized by Mr J. F. M'Lennan in papers published in the Fortnightly Revicico (Oct. and Nor. 1869, Feb. 1870). The subject has since been treated of by E. B. Tylor, Early History of Mankind, p. 284 sq.; Sir John Lubbock, Origin of Civilization, 260 sq.; A. Lang, Custonn and $11 y$ th, P. 260 , se.; Id., Myith, Ritual, and Religion, i. p. bि sq., \&c.; E. Clodd, Myths and Dreams, p. 99 sq.; W. Robertson Smith, Einship and Marriagc in Early Arabia. See also Sacrifice, vol. xxi. p. 135. For fuller details, zee J. G. Frazer, Totemism (Edinburgh, 1887).
(J. G. FR.)
totila. See Justinian and Narses.

[^212]tóttenham, or Tottenham High Cross, a suburb of London, in the county of Middlesex, is situated on the old "Great Northern" road, about $4 \frac{1}{2}$ miles north from Shoreditch. The cross at Tottenham is not a market cross, and its origin is doubtful. Towards the close of the 16th century it consisted of a column of wood, capped with a square sheet of lead. The present cross of brick was erected by Dean Wood about 1600, and the ornamental work of stucco was added in 1809. In the time of Isaak Walton there stood over it a shady arbour of woodbine, sweetbriar, jessamine, and myrtle. Formerly Tottenham was noted for its "greens," in the centre of one of which stood the famous old elm trees called the "Seven Sisters"; these were removed in 1810, but the name is preserved in the Seven Sisters Road. Bruce Castle, occupying the site of the old mansion of the Bruces, but built probably by Sir William Compton in the beginning of the 16 th century, is now occupied as a private boarding school. The church of All Hallows, Tottenham, was given by David, king of Scotlaud, probably when he visited Henry in 1126, to the canons of the church of Holy Trinity, London. It has frequently been restored and altered. The older parts are the tower, nave, and south aisle of the Perpendicular period and the south porch of the 16 th century. There are a large number of monuments and brasses. Tottenham consists chiefly of an irregular line of houses for about two miles along the high road, with short side streets at intervals. There are a number of almshouses, including the Sanchez almshouses, founded in 1596 by Balthazar Sanchez, or Zanchero, confectioner to Philip of Spain; Reynardson's (1685); Pheasunt's, or "The Pound," for poor widows, originally founded by George Hynningham in 1536, and further endowed by Pheasunt and Saunders; and the sailmakers' almshouses, founded in 1869 by the Drapers' Company for forty-five inmates. The free grammar school was enlarged and endowed in 1686 by Sarah, dowager duchess of Somerset. The population of the urban sanitary district (area 4642 acres) in 1871 was 22,859 , and in 1881 it was 46,456 .

In the reign of the Confessor the manor of Tottenham was poseessed by Earl Waltbeof, who in 1070 married Judith, niece of the Conqueror, and was created in 1072 earl of Northumberland, Huntinglon, and Northampton, but joined the conspiracy against William, was betrayed by his wife, and was heheaded at Wiucliester. It was inherited by his daughter Mand, who was married first to Simon de St Liz and afterwards to David, sout of Malcolm 111., king of Scotland, who was crested by Henry 1. earl of Hunting. don, and received possession of all the lauds formerly held by Earl Waltheof. In 1184 the manor was granted by Willian the Lion, king of Scotland, to his brother David, earl of Augus and Gallo. way, the grant being confirmed in 1199 by ling Joln of Englaud; who created him earl of Huntingdon. He married Maud, liciress of Hugh, earl of Chester, and his sou John inherited both earldoms. The son married Helen, daughter of Llewelyn, prince of Wales, by whom he was poisoned in 1237, dying withont issue. She retained possession till 1254 , when the manor was divided between his coheirs Robert de Brus, John de Baliol, aud Henry de Hastings, each division forming \& distinct manor bearing the name of its owner. In 1429 they all camo into the possession of Alderman Gedeney. William Bedveell, the Arabic scholar, was vicar of Tottenham, aud published iu 1632 a Bricfe Description of the Towne of Totenhan, in which bo printed for the first time the burlesque poern, the "Turnament of 'Tottenhan."
See Robinsou's History of Tollenham, 1810.
TOUCAN, the Brazilian name of a bird, ${ }^{15}$ long since ${ }^{1}$ adopted into nearly all European languages, and apparently first given currency in England (though not then used as an English word) in 1668^{16} by Charleton (Onomasticon, p. 115) ; but the bird, with its enormous beak and feather:

[^213]like tongue, was described by Oviedo in his Sumario de la Natural Historia de las Indias, first published at Toledo in 1527 (chap. 42), ${ }^{1}$ and, to quote the translation of part of the passage in Willughby's Ornithology (p. 129), "there is no bird secures her young ones better from the Monkeys, which are very noisom to the young of most Birds. For when she perceires the approach of those Enemies, she so settles her self in her Nest as to put her Bill out at the hole, and gives-the Monkeys such a welcom therewith, that they presently pack away, and glad they scape so." Indeed, so remarkable a bird must have attracted the notice of the earliest European invaders of America, the more so since its gaudy plumage was used by the natives in the decoration of their persons and weapons. In 1555 Belon (Hist. Nat. Oyseaux, p. 184) gave a characteristic figure of its beak, and in 1558 Thevet (Singularitez de la France Antarctique, pp. 58-90) a somewhat long description, together with a woodcut (in some respects inaccurate, but quite unmistakable) of the whole bird, under the name of "Toucan," which he was the "first to publish. In 1560 Gesaer (Icones Avium, p. 130) gave a far better figure (though still somewhat incorrect) from a drawing received from Ferrerius, and suggested that from the size of its beak the bird should be called Burhynchus or Ramphestes. This fgure, with a copy of Thevet's and a detailed description, was repeated in the posthumous edition (1585) of his larger work (pp. 800, 801). By 1579 Armbroise Paré (Euvres, ed. Malgaigne, iii. p. 783) had dissected a Toucan that belonged to Charles IX. of France, and about the same time Léry (Voyage fait en la Terre du Bresil, chap. xi.), whose chief object seems to bave been to confute Thevet, confirmed that writer's account of this bird in most respects. In 1599 Aldrovandus (Ornithologia, i. pp. 801-803), always ready to profit by Gesner's information, and generally without acknowledgment, again described and repeated the former figures of the bird; but he corrupted his predecessor's Ramphestes (which was nearly right) into Ramphastos, and in this incorrect form the name, which should certainly be Rhamphestes or Rhamphastas, was subsequently adopted by Linneus and has since teen recognized by systematists. Into the rest of the early history of the Toucan's discovery it is needless to go. ${ }^{2}$ Additional particulars were supplied by many succeeding writers, until in 1834 Gould completed his Monograph of the family ${ }^{3}$ (with an anatomical appendix by Sir R. Oren), to which, in 1835, he added some supplementary plates; and in 1854 he finished a second and much improved edition. The latest systematic compendium on Toucans is Cassin's "Study of the Ramphastidæ," in the Proceedings of the Philadelphia Academy for 1867 (pp. 100-124).

By recent systematists 5 genera and from 50 to 60 species of the Family are recogaized; but the characters of the former have never been satisfactorily defiaed, much less these of numerous subdivisions which it has pleased some writere to iavent. There can be little doubt that the bird first figured and described by the earliest authors above named is the R. loco of nearly all ornithologists, and
1 The writer has oaly beea able to consult the reprint of this rare work cootaiaed is the Biblioleca de Autores Españoles (xxii. pp. 473515), published at Madrid io 1852.
${ }^{2}$ One point of come interest may, however, be noticed. In 1705 Plot (V. II. Oxfordshire, p. 182) rerorded a Toncaa found within two miles of Oxford in 1644, the body of which was given to the repositery in the medical school of that uoiversity, where, ho said, "it is still to bo seen." Already is 1700 Leigh in his Laneashire (i. p. 195, Birds, tab. 1, fig. 2) had figured another which had been found dead on the coast of that county about two years before. The bird is easily kept in captivity, and no doubt from carly times many were brought alive to Europe. Besidea the one dissected by Paré, as above mentioned, Joh. Faber, in bis additions to Hernandez'a work on the Natural History of Mexico (1651), figures (p. 697) 00e 6ceu and described by Puteus (Dal Pozzo) at Fontainebleau.
${ }^{3}$ Of this the brotherg Sturn in 1811 published at Nuremberg a German version.
as such is properly regarded as the type of the genus and therefore of the Family. It is one of the largest, measuring 2 feet in leugth, aod has a wide range throughout Guiana and a great part of Brazil. Tha huge beak, looking like the great claw of a lobster, more than 8 inches long aud 3 higb at the base, is of a deep orango colour, with a large black oval 6 pot near the tip. The eyc, with its double iris of green and yellow, has a broad blue orbit, and is surrounded by a bare space of deep orange skin. The plamage generally is black, but the throat is white, tinged with yellow and coinmonly edged bencath with red; the upper tail-coverts are white, and the lower scarlet. In other species of the genus, 14 to 17 in number, the bill is mostly particoloured-green, yellow, red, cbestnut, blue, and black varionsly combining so as oftea to form a ready diagnosis; but some of these tints are very fleoting and often leare little or no trace after death. Alteroations of the brighter colours are also displayed in the feathers of the throat, breast, and tail coverta, so as to be in like manner characteristic of the species, and in several the bare space round the eye is yellow, green, blue, or lilac. The sexes are almost alike in coloration, and externally differ chiefly in size, the males being largest. The tail is nearly square or moderately rounded. In the genus Pleroglossus, the "Aracaris" (pronounced Arassari), the sexes more or less differ in appearance, and the tail is graduated. The specics are smaller in size, and nearly all are banded on the beliy, which is generally yellow, witb black and scarlet, while except in two the throat of the males at least is black. One of the most remarkable and beautiful is P. beauharnaisi, by-some autbors placed in a distinct genus and called Beauharnaisius ulocomus. In this the feathers of the top of the head are very singular, looking like glossy curled shavings of black horn or whalebone, the effect being due to tho dilatation of the shaft and its coalescence with the consolidateck barbs. Some of the feathers of the straw-coloured throat and cheeks partake of the same structure, but in a less degree, while the snbterminal part of the lamince is of a lustrous pearly-white. ${ }^{4}$ The beak is richly coloured, being green and crimson above and lemon below. The upper plumage generally is clark green, but the mantle and rump are crimson, as are a broad abdominal belt, tho flanks, and many crescentic markings on the otherwise yellow lower narts. ${ }^{5}$ The group or genus Selenodera,]roposed by Gould in 1837 (Icones Avium, pt. 1), contains some 6 or 7 species, having the beak, which is mostly transversely striped, and tail sborter than in Pteroglossus. Here the sexes also difer in coloration, the males laving the head and breast black, and the females the samo parts chestnut; but all have a yellow nuchal crescent (whence the namo of the group), The so-called Hill-Toucans have been separated as another genus, Andigcna, aud consist of some 5 or 6 species chiefly frequenting the slopes of the Andes and reaching an elevation of 10,000 feet, though one, often placed among then, but perhaps belongiug rather to Pteroglossiss, the A. bailloni, remark able for its yellow-orange bead, neck, and lower parts, inhabits the lowlands of sonthern Brazil. Another very singular form is A. laminirostris, which has affixed on either side of the maxilla, near the base, a quadrangu ar ivory-like plate, fornıing a featnre unique in this or almost in any Family of Birds. The gronp Aulaco. rhemphus, or "Groove-bills," with a considerable but rather un. certain number of species, contains the rest of the Toucans.
The moostrous serrated bill that so many Toucans possess was by Buffon, after his manner, accounted a grave dcfect of Nature, a ad it mist be confessed that no one has given what scems to be a satisfactory explaoation of its precise use, though on evolutionary principles noue will now doubt its fitucss to the bird's requirements. Solid as it looks, its woight is inconsiderable, and tho perfect hinge by which the maxilla is artionlated adds to its efficiency as an instrument of urehension. Swainson (Classif. Birds, ii. p. 138) imagined it merely "to contain an infiaity of nerves, disposed liko net-work, all of which lead immediately to the nostrils," and add to the olfactory faculty. This notion seems to be borrowed from Trail (Trans. Limu. Socicly, xi. p. 289), who adraittedly had it from Waterton, and stated that it was "an admirable contrivance of naturo to increase the delicacy of the organ of smell; " but Sir R. Owen's description shews this view to be groundless, and he attributes the extraordinary develop ment of tho 'loucan's beak to the need of compensating, by the additional power of masticatioa thus given, for the absence of any of the grinding structures that are so characteristic of the intestinal tract of vegetable-eating birds-its digestive organs possessing a general simplicity of formation. The question is ono worth deciding, and would not be difficult to decide by those who bave the opportunity. The nostrils are placed so as to be in most
${ }^{4}$ This curious peculiarity naturally atiracted the notice of the first discoverer of the species, Poeppig, who briefly described it in a letter published in Frorjep's Notizen (xxxii. p. 146) for December 1831.
${ }^{5}$ Readers of Mr Bates's Naturalist on the River Amazons will recollect the account (ii. p. 344) and illustration there given of lis eoconnter with a flock of this species of Toucan. His remisrks on the other mpecies with which be met are also excellent.

Forms invisible until songht, being obscured by the frontal feathers or the backward prolongation of the horny eheath of the beak. The wings ara somewhat feeble, and the legs have the toes placed in pairs, two before and two behind. The tail is capable of free vertical motion, and controlled by strong muscles, so that, at least in the true Toucans, when the bird is preparing to sleep, it is reverted and lies almost flat on the back, on which also the huge bill reposes, pointing in the opposite direction.

As may be inferred from the foregoing, the Toucans are a Neotropical form, and by far the greater number inhabit the northern part of South America, especially Guiana and the valley of the Amazons. Some three species occur in Mexico, and several in Central America. One, R. vitellinus, which has its headquarters on the mainland, is said to be coonmon in Trinidad, but none are found in the Antilles proper. The precise place of the Family in the heterogeneous group Picarix cannot yet be determined. Its nearest allies perhaps exist among the Capitonidx; but none of them are believed to have the long feather-like tongue which is so characteristic of the Toucans, and is, so far as known, possessed besides only by the Momotidx (cf. Motmot, vol. xvii. p. 3). But of these last there is no reason to deem the Toucans close relatives, and, according to Swainson (ut supra, p. 141), who had opportunities of observing both, the alleged resemblance in their habits has no existence. Those of the Toucans in confinement have been well described by Broderip and Vigors (Zool. Journal, i. p. 484 ; ii. p. 478), and indeed may be partially observed in many zoological gardens. Though feeding mainly on fruits, little seems amiss to them, and they swallow grubs, reptiles, and small birds with avidity. They are said to nest in hollow trees, and to lay white eggs.
TOUCH may be defined as a sense of pressure, referred usually to the surface of the body. It is often understood as a sensation of contact as distinguished from pressure, but it is evident that, however gentle be the contact, a certain amount of pressure always exists between the sensitive surface and the body touched. Mere contact in sach circumstances is gentle pressure; a greater amount of force causes a feeling of resistance or of pressure referred to the skin; a still greater amount causes a feeling of muscular resistance, as when a weight is supported on the palm of the hand; whilst, finally, the pressure may be so great as to cause a feeling of pain. The force may not be exerted vertically on the sensory surface, but in the opposite direction, as when a bair on a sensory surface is pulled or twisted. Touch is therefore the sense by which mechanical force is appreciated, and it presents a strong resemblance to hearing, in which the sensation is excited by intermittent pressures on the auditory organ. In addition to feelings of contact or pressure referred to the sensory surface, contact may give rise to a sensation of temperature, according as the thing touched feels hot or cold. These sensations of contact, pressure, or temperature are usually referred to the skin or integument covering the body, but they are experienced to a greater or less extent when any serous or mucous surface is touched. The skia being the chief sensory surface of touch, it is there that the sense is most highly developed, both as to delicacy in detecting minute pressures and as to the charpecter of the surface touched. Tactile impressions, properly so called, are absent from internal mucous surfaces, as has been proved in men having gastric, intestinal, and urinary fistulx. In these cases, touching the mucous surface caused pain, and not a sensation of tonch.
Organs of Touch.-Comparative Shetch.-Tha organs of touch present many varieties of form, from a simple filament of sensitive protoplasm to a highly complex end-organ connecied with the commoncement of a sensory nerve-fibre. The bodies of the lowest organisms ara formed of contractile protoplasm, and mechanical contact with any resisting substances causes a change of form. Hera is the eimplest kind of touch -a response on the part of any portion ef the surface of the body to a meclanical stimulus. The pseudopodia
of the Rhizopoda are also organs of tonch, and probably the clia, the flagellæ, and the short rod-like bodies eeen on many Mufusoria belong to the same class of sensory organs. Among the Ceeleatera (hydroid polyps, tubularians, Hydromedusæ, Medusæ, Anthozoa or sea-anemones) teatacles nra found, usually arranged in circles around the mouth or on portions of the body engaged in locomotion, as on the margins of the umbrella of Medusæ. These have a larga amount of sensibility, and serve as organs of touch. In some also thera are stiff hairs on the teutacles and around the mouth, more differentiated tactile organ:. The Vermes ghow organs of touch in the form of modified cells of the iutegament, connected with sensory nerves. These cells often assume the form of stiff rods projected from the surface (tactile setæ). Such are often found over the whola body of Turbellaria and Nemertina, on the tentaclas of Bryozoa, on the head segment of Lrmbricidæ, and on the tentacles and antaunæ of Chætopoda. In the latter group of animals tretile organs are also found in ring-like arrangements, called cirrhi, on the foot-stumps or parapodia. In sonse Hirudinca (leeches) complicated tactile rods are embedded in cup-shaped organs scattered over the body. Large prominences of the cuticle, called tactile papillæ, are also found in many of the Vernies near the oral and genital orifices. The Echinodernata have also special parts devoted to touch, and these slow their highest differentiation in the tentacles of the Holothuroida. Arthropoda show tactile organs iu the form usually of rod-like bodies projecting from the surface of the appendages and chiefly connecterl with nerves passing to ganglionic cells. In Crustacea such organs are found on the anteuur and other appendages, and on the antennæ in Aryriapoda and Insccta. In the latter they are also found on the tarsal joiuts of tha feet. The appearance of these rod-like bodies is seen in fig. 1.

Ciliated tentacular processes exist in the larva of Brachiopoda which are probably touch organs, but there are do definite organs of this kind in the adult form. The Mol lusca have the sense of tonch widely diffused. All the soft parts of the body are capable of feeling when touched, and in various situations there arefine hair-like prolongations from cells. These are supplied with werves, and are touch organs. Such are found on the edge of the mantle in Lamellibranchiata, where tliey
 ganglienic swelling; s, factlle rods
c, fine hairs of cuticle (Leydig). may be in rows; they also exist on the siphons, and "they serve to watch over the particles that get into the mantle cavity with the water " (Gegenbaur). Processes of a tactile kind are also found on the epipodium, the edge of the mantle, and the cephalic tentacles in many Gastcropoda, and on the dorsal tufts of the Nudibranchiata Here and thera also there ara enlargements of the integument covered with cilia and supplied by a nerve which have been regarded as touch organs, but are by some supposed to be connected with smell (see Sitell). The Tumicata bave cells with long filamentous processes in the integument, which are probably tactile in function.

In the great majority of fishes tonch is limited to the lips, to parts of the fins, and to special organs called barbels. In the Cyprinoids there is a fold of skin bordering the mouth which is highly tactile. The lip of the sturgcon is covered with pumerous papillæ; the sucking lip of the lamprey is papillose and bighly sensitive. The fins are in may fishes modified to serve as orgads of touch. Thus the gurnards (Triglidx) have three soft flexible rays detached from the fin, and "the filiform radial appendages of the Polynemidse, the prolonged ventral fins of Osphromenus, Trichogaster, aud ather Labyrinthibranchs, and of the Ophidirdx," are examples of this class of organs (Owen). Tho barbels are long slender processes of skin, either single or in pairs, found in tha Siluridx, loaches, barbels, cods, sturgeons, and in the parasitic Myxinide. The nerves for the barbels come from the fifth pair of cranial nerves. "A cod, bliud by absence or destruction of both eyeballs, has been captured in good condition, and it may be supposed to have found its food by exploring with the aymphysial barbule, as well as by the sense of smell" (Owen). Bodies somewhat similar to the Pacinian corpuseles (to be afterwards described) were discovered by Savi in 1844 in the torpedo; they aro arranged in linear series on the anterior part of the mouth and nostrils, snd over the fore part of the electrical organs. Each is composed of two capsules, oue counected with the other, and containing a granular aubstance in which the nerve end is embedded. Peculiar mucous glands are also found outside the electrical orgaus of the torpedo which are believed to mimister to touch. Similar organs exist in sharks, and John Huuter dissected the snout of the spotted dog.fish (Scyllium) "to show the manner of the nerves ramifying,
as also their apparenit termination in this part, each nltimste nerve appearing to terminste in the bottom of a tube or duct, the sides of which secrete and convey \& thick mucns to the skin." These "nerve-mucous" organs are fonnd in the sides and ander part of the head and on the fore part of the trunk.
The Amphibia snd Repitilia do not show any epecial organs of tonch. The lips of tadpoles have tactile papillæ. Some snakes heve s pair of tentacles on the sacut, but the tongue is probsbly tho chief organ of tonch in most serpents and liasrds. All reptiles possessing climbing powers have the sense of touch highly dereloped in the feet.

Rirds have epithelisl papilla on the soles of the toes thst are no donbt tactile. These are of grest length in the capercsilzic (Tetrax urogallus), "enabling it to grasp with more eeourity the frosted branches of the Narwegian pine trees" (Owen). It has been sug. gested that the delicate "pspillose" digits of the smaller birds assist them in mest-building by having the sense of touch highly developad. Around the root of the bill in many birds there ara special tactile organs, assisting the bird to nse it as a kind of sengitive probe for the detection in soft ground of the worms, grubs, and slugs that constitute its food. Special bodies of this kind have beon detected in the beak and tongue of the duck and goose. called the tactile corpnscles of Berkel, or the cerpuscles of Grandry (fig. 2). Similar bodies have been found in the epidermis of man and msmmals, in the outer root-sheath of tactile heirs or feelers. They corsist of small bodies comsposed of a cansn? e ecilosing two or
 more flattened aucleated

Fio. 2. - Tactua Corpuscles from dack a tongre. n, nerve.
cells, piled in a row. Esch corpnsele is separated from the others by a transparent protoplasmic disk. Nerve fibres terminsto oither in the cells (Merkel) or in the protoplasmic intercellular matter (Ranvier, Hesse, Izquierdo). Another form of ead-organ has been described by Herbst as existing in the mucous membranc of the duck's tengue. These corpuscles of Herbst are like sinall Pacinisu cerpuscles with thin and rery close lamellæ. Developments of in tegrument devoid of festhers, such as the "wattles" of the cock, the "carancles" of the vulture and turkey, are not tactile in their function.

In the great majority of Mammalia the general suriace of the skin shows sensitive-
 ness aod this is developed to a high degree on certain parts, such as the lips, the end of Fro.3.-Tactle Corpascle a teat, snd the generative organs. Where from the band. touch is highly dereloped, the akin, more especially the epidermis, is thin and deveid of hair. In the Monkeys tactile pspille are found in the skin of the fingers and palms, sad in the skin of the prohensile tails of rarious species (Aletes). Such rapillis also sbound in the oaked skin of the pose or enout, as in the shrew, mole, pig, tapir, and elephant. In the Ornithorhynchus the skin covering the mandibles is tactile (Oren). In many snimals certain hairs acquire great size, length, and stiffoess. These constitute the vibrisse, or whiskers. Each large hair grows from a firm capsulo sunk deep in the true skin, and the hair bulb is supplied with eensory perve filaments. In the walrus the espsule is cartilaginous in texture. The marine Carnivora have strong vibrisss which "act as a etaff, in a wayanslogous to that hold snd applied by the hand of a blind man " (Owen). Each species has hairs of this kind
 developed on the eyehrows, lips, or

Fro. 4.-Tactile Corpuscles from clitorls of rabblt. n, merve. cheeks, to suit a particular morie of existence, es, for examola, the long fine whiskers of the night-prowling felines, sad in the aye-aye, a monkey having nocturnal habits. In the Ungulata the hoofs need no delicacy of touch as regards the discriminstion of minute points. Such animals, however, hsve brosd, massive sensations of touch, ensbling them to spprecista the firmness of the soil on which they tread, snd under the hoof me find highly vaseular and sensitive lamellos or papilla, contributiog no doubt, not only to the growth of the hoof, but also to its sensitiveness. The Celaca havenumerons papillw in the skin, regarding which John Fnnter remarks: "These villi are soft and plisble; they float in water; and each is longer or shorter accorling to the size of the snimal. In the epermaceti
whale they are about a quarter of an inch long; in the grampos, bottlenose, mnch shorter; in sll they are extremely vascular; they sre shesthed in corresponding hellows of the epiderm." In some whales the skin is thrown into aumerons longitudinsl plaits on the nnder and fore part of the bedy (Balsnoptera). Prof. Owen remarks regarding these: "It is peculiar to the ewifter ewimming whales that pursue mackerel sud herring, and may serve to warn them of shoals, by apprecistion of au impulse of the water rebound. ing therefrom, and so conveying a seuse of the propinquity of eunken rocks or sand-baoks. Sensitiveness to the movements of the ambient ocesn is indicated by certain observed phenamena. The whale-fishers aver that when a straggler is sttscked its fellows will hesr dewa from some miles' distance, 86 if to its sssistance; and it may be that they are attracted by perception of the vibration of the wster caused by the struggies of the harpooned whale or cachslot" (Owen's Comparative Anatomy, vol. iii. p. 189). Bats have the sense of touch etrongly doveloped in the wings and external ears, and in some apecies in the flaps of akin found near the nose. These "nose-leaves" snd capanded ears frequently show vibratiio movements, like the antennse of insects, enabling the snimsl to detcet slight atmospheric impulses. In the vampires (Desmodi) and fruit-esting bats (Pteropi) the aurienlsr and nasal appendages are small; "such seasitiye tactile guides or sarners in flight are only peeded in the bats of active food, which must follow in owift evolutions, like the swallows, but in gloom, the volstile insects that people the summer air at dawn or dusk " (Owen). There is little doubt that many specisl forms of tactile organs will be found in animals using the nose or feet for burrowing. A peculiar eadorgan has bcen found in the nose of the mole, while there are "endcapsulee" in the tongue of the elephant and "nerre rings" in the ears of the mouse.

End-Organs of Touch in Man. - In man toree special forms of tactile end-organs have been described, and can be readily demonstrated.
(1) The End-Bulbs of Krause. -These are oval or rounded bodies, from $\frac{1}{860}$ to $\frac{1}{180}$ of an irch long. Each consists of a delicate capsule, composed of nucleated cone nectivé tissue eaclosing pumerous minute colls. On tracing the nerve fibre, it is found that the nerve sheath is continuous with the capsule, whilst the axis cylinder of the nerve divides into branches which lose themselves among the cells. Waldeyer and Longworth state that the nerve fibrils terminate in the cells, thus making these 3 bodies similar to the cells described by Merkel (ut supra). See fig. 5. These bodies are found in the deeper layers of the conjunctiva, margins of the lips, nasal mucous membrane, epiglottis, fungiform and circumvallate papille of the

Fio. δ.-End-Bulb from haman conjunctive a, macleated capsale; b, cors ; c, enteriag nerve-fibra tarmlnating In th core at α tongue, glans penis and clitoris, mucous membrane of the rectum of man, and they have also been found on the under surface of the "toes of the guinea-pig, ear and body of the mouse, and in the wing of the bat" (Landois and Stirling). In the genital organs aggregations of end-bulbs occur, known as the "genital corpuscles of Krause" (fig. 4). In the synovial membrane of the joints of the fingers there are larger end-bulbs, each connected with three or four nerve-filaments.
(2) The Touch Corpuscles of Wagner and Meissner.-These are oval bodies, about $\frac{1}{300}$ of an inch long by $\frac{1}{500}$ of an inch in breadth. Each consists of a series of layers of connective tissue arranged transversely, and containing in the centre granular matter with nuclei
 (fig. 7). One, two, or three nerve fibres pass to the lower end of the corpuscle, wind transversely around it, lose the
white substance of Schmann, penetrate into the corpuscle, where the axis cylinders, dividing, end in some way unknown. The corpuscles do not conbain any soft core, but are apparently built up of irregular septæ of connective tissue, in clie meshes of which the nerve nbrils end in exmansions similar to Merkel's cells. Dr Thin describes imple and comnound corpuscles according to the number of nerve fibres entering Fio. 7.-Vertical Sectlon of the skin of the palm of the .hem. Thesebodies are found abundantly in the palm of the hand and

10. 7.-Vertical Sectlon of the Skin of the palm of the liand. a, blood-vessel : b, papilla of tbe cutis vera; c, capllary; d, nerve flbre pessing to a touch-corpuscla; e Vagner'a touch corpuscla; f, nervefibre, diflded transversely; a, cells of the Malplghian layer of the skIn. (From Landols and Stilling, after Blesladeckl.)
sympathetic, on the coccygeal gland, on the dorsum of the penis and clitoris, in the meso-colon, in the course of the intercostal and periosteal uerves, and in the capsules of lymphatic glands (Willianı Stirling).

Physiology of Touch in Man.-Such are the special endorgans of touch. It has also been ascertained that many sensory nerves end in a plexus of network, the ultimate fibrils being connected with the cells of the particular Itissue in which they are found. Thus they exist in the i cornea of the eye, and at the junctions of tendons with muscles. In the latter bituation "flattened end-flakes or plates" and "elongated oval end-bulbs" lave also beer found (Sachs, Rollett, Golgi). A consideration of these various types of structure show that they facilitate intermittent pressure being made on the nerve endings. They are all, as it were, elastic cushions into which the nerve endings penotrate, so that the slight variation of pressuro will be transmitted to the nerve. Probably also they serve to break the force of a sudden shock on the nerve endings.

Sensitiveness and Sense of Locality.-The degree of sensitiveness of the akin is determined by finding the smallest distauce at which the two points of a pair of compasses can be felt. This method, first where there may be as many as 21 to every square millimetre ($1 \mathrm{~mm} .=\frac{1}{2} \frac{1}{5}$ inch). They are not so numerous on the lack of the hand or foot, mamma, lips, and tip of the tongue, and they are rare in the genital organs. "Kollmann describes three special tactile areas in the hand:-(1) the tips of the fingers, with 24 touch corpuscles in a length of 10 mus ; (2) the three eminences lying on the palm behind the slits between the fingers, with $5 \cdot 4-2.7$ touch-corpuscles in the same length; and (3) the ball of the thumb and little froger, with $3 \cdot 1-3 \cdot 5$ touch corpuscles. The first two areas also contain many of the corpuscles of Vater or Pacini, whilst in the latter these corpuscles are fewer and scattered. In the other parts of the hand the nervous endorgans are much less developed" (Landois and Stirling).
(3) The Corpuscles of Vater or Pacini.-These, first described by Vater sa long ago as 1741, are small oval bodies, quite visible to the naked eye, from $\frac{1}{18}$ to $\frac{1}{10}$ of an inch long and $\frac{1}{25}$ to $\frac{1}{2 \sigma}$ of an inch in breadth, attached to the nerves of the hands and feet. They can be readily demnostrated in the mesentery of the cat (fig. 8). Each corpuscle consists of 40 to 50 lamellæ or coats, like the folds of an onion, thinner and closer together on approaching the centre. Each lamella is formed of an elastic material mixed with delicate connective tissue fibres, and the inner surface of each is lined by a single continuous layer of endothelial cells. A double-contoured nerve fibre passes to each. The white substance of Schwana becomes continuous with the lamellæ, whilst the axis cylinder passes into the body, and ends in a small knob or in a plexus. Sometimes a bloodvessel also penetrates the Pacinian body, with the nerve. Such bodies are found in the subcutaneous tissue on the nerves of the fingers and toes, near joints, attached to the nerves of the abdominal plexuses of the

F1G. 8.-Vater's or Paclni's Corpuscla. a, stalk; b, nerve-fibre entering it ; c, d, connectiva tissue envelope; e, axis cylinder, with Its end divided at f. followed by Weber, is em. ployed by phy.
 sicians in the diagnosis of nervons effections involving the eensitiveness of the akin. The following table shows the oenvitiveuess in mullimetres for an sdult, whilst the corresponding numbera for a boy 12 yeare of age are given within hrackets (Landous and Sturling, ultis Weber) :-
Tip of tongue Hillmetres.
Third pholanx of finger, volar surfa:o..............................2-2
Red part of the lip. 45
Second phalanx of finger, volar surface 4-45
First phalaux of finger, volar surface.. 5-5 5
Third phalanx of finger, dorsal surface........... 68
Tip of rose.. 68
Head of metacarpal hone, volar........................ 5-6.8
Ball of thumb............ ~....... 6. 6-7
Ball of little finger................. $5 \cdot 5-6$
Centre of palm-... 8-9
Dorsum and side of toague; white of the lips; metacarpel part of the thumb. Third phalanx of the great toe, plantar surface, Second phalanx of the fingers, dorsal aurface... Back. .
$\stackrel{9}{11 \cdot 3}$
113
Eyelid.
$11 \cdot 3$
Centre of hard palate
Lower third of the fore-arm, volar surface...... 15
In front of the zygoma 15.8
Plantar surface of the great toe...................... $15 \cdot 8$
Jnner surface of the lip............. 20.3
Eenind the zygoma....................................... $22 \cdot 6$
Forehead... $22 \cdot 6$
Occiput..................... 27 1
Back of the hand ... $31 \cdot 6$
Under the chin................ $33 \cdot 8$
Vertex........................ $33 \cdot{ }^{8}$
Knee $36 \cdot 1$
Sacrum (gluteal region).
Fore-arm and leg.
Neck..

Back of the fifth dorsal vertebra; lower dorsal
and lumbar region.
Middle of the aeck
Upper arm ; thigh; centrc of the liack
$54 \cdot 1$
67.7
$6.40 \%{ }^{\circ}$
These investigations show not only that the skin is sensitive, but that one is able with great precision to distinguish the part toucbed. This latter power is usually called the sense of locality, and it is influenced by various conditions. The grester the number of sensory nerves in a given area of skin the greater is thes degree of accuracy in distinguishing different points. Contrast in this way the tip of the finger and the back of the hand. Scnsitiveness increases from the joints towards the extremities, and, as pointed out by Viepordt, sensitiveness is erreat in parts of the body that are actively moved. The 3ensihility of abo linibs is finer in
the transverse axis thau in tho loag axis of the limb, to the extent of $\frac{1}{1}$ on the flexor surfaca of the upper limb and $\frac{7}{7}$ on the extensor surface (Landois). It is doubtul if exerciso improves sensitivenesa, as Francis Galton found that the performances of blind boys were not superior to those of otber boys, and he says that "the guidance of the blind denends mainly on tha multituds of collateral indications, to which they give much heed, and not their superiority to any one of them." When the skin is mai.tened with indifferent fluids sensibility is increased. Suslowa made the curious discovery that, if the area between two points distinctly felt be tickled or be stimulated by a weak electric current, tha inupressions are fused. Stretching the skin, and baths in water containing carbonic acid or common salt, increase tha power of localizing tactile impressions. In experimenting with the com. passes, it will be found that a smaller distance can bedistinguished if one proceeds from greater to smaller distances than in the reverse direction. A smallier distauce can also be detected whed the points of the conpasses are placed one after the other on the ekin than when they are placed simultanoously. If the points of the comprases are unequally heated, the sensation of two contacts becomes coafused. Anauæmic condition, or a state of venous congestion, or the application of cald, or violeat stretching of the skin, or tho uso of such substances as atropine, daturin, morphia, strychnine, alcohol, bromida of potassium, canuabin, and hydrate of chloral blunt sensibility. The only active substance said to increase it is caffein.
Absolute sensitiveness, as indicated by a sense of pressure, has been determined by various methods." Two different weights are placed on the part, and the smallest difference in weight that can bo perceived is noted. Weber placed sluall weights directly on the skin; Aubert and Kammler loaded small plates; Doliru made use of a balance, hnving a blunt point at one sud of the beam, resting on the skin, whilst weights were placed on the sther ead of the bean to equalize the pressure; Eulenberg invented an instrument like a spiral spring paper-clip or balance (the barasthesioneter), having an index showing the pressure in grammes; Goltz employad an india-rubber tube filled with water, and this, "to ensure a constant surface of contact, bent at one spot over a priece of cork, is touched at that spot by the cutauesus part to bo examined, and, by rhythmically exerted pressure, waves analogons to those of the artariai pulse are producel ia the tube" (Hermann); and Landsis invented a mercurial balance, enabling him to make rapid variations in the weight without giving rise to agy slock (figureul in Landois and Stirieng's Physiology. p. 1155). These nethods hare given the following gemerel results. (1) Tha greatest acuteuss is on tha forehead, termples, and lack of the hand and forearm, which detect a pressure of 002 gramine; fingers detect 005 to 015 gramme; the ckiz, abcomon, and nose '04 to "05 gramme. (2) Goltz's method gives the sanie general rasults as Weber's experiment with the compasses, with the exception that the tip of the tongue has its sersation of pressure much lawer in the scale than its sensation of toacb. (3) Eulenberg found the following grailations in tha fineness of the pressure sense:- the forehead, lips, back of the cheeks, and temples apprecinte differences of $\frac{1}{40}$ to ${ }^{3}$ ($200: 205$ to 300: 310 grammes!. The back of the last phalanx of the fingers, the forearm, hand, 1st and 2 d phalanges, the palnar surface of the hand, forearm, and upper armi dstimguish differences of is to $\frac{1}{20}$ (200: 220 to 200: 210 gramincs). The front of the leg and thigh is similar to the forearm. Then follow the back of the foot and toes, the scle of the foot, aud the back of the leg and thigh. Dohrn placed a woight of granme on the skin, and then determined the least additional weight that could be detected, with this result:Sd phalanx of finger, 499 gramme; back of the foot, 5 gramma; 2d.phalanx, 771 granue; 1 st phalans, 82 gramme; leg, 1 gramase; back of hand, $1-156$ grammes; poltn, $1 \cdot 108$ grammes; patella, 1.5 grammes; forearm, 1.90 gramines; umbilicus, 3.5 gramines; and back, 3.8 grammes (Landois and Stirling). 14) In passing from light to heavier weirlits, the ocuteness increases at once, a maximum is reached, an? then with heary weights the pawer of distinguishing the differencea diminishes (Hering, Biedermann). (5) A senaation of pressure after tha weights have been removed may bo noticed (ufler-pressure sensution), eapecisily if the weight be considerable. (6) Volentine noticed that. if the Gnger were held against a blunt-toothed wheel, and the whel were rotated with a certain rapidity, he felt a soooth margin. This was experieaced when the iatervals of time between the contacts of suc. cessive teeth were less than from tove to oto of a second. The same expariment can be readily mado by holdiog the fuger over the holes in one of the outermost circles of a large syren rotating quickly: the sensations of individual holes bccome fused, so as to give rise to a feeling of touching a elit. (7) Vibrations of atrings ara detacted aven when the aumber is about 1500 per eecond ; abova this the eensation of vibration ceases. By attaching bristles to tha prongs of tuning forks, and bringing these into contact with the lip or tongue, sensations of a very acute character are exivericmed, which are most intense when the forks vibrate fron. 600 to 1500 per second.

Information from Tactile Impressions, -These euable us to come to the following conclusions. (1) We note the existence of something touching the somsory surface. (2) From tho iuteusity of the sensation we deternine the weight, teneion, ur intensity of tha preesure. This sensation is in the first instance referred to the skin, but after the pressure bas reached a certain amonnt muscular sensa. tions ary alsu experienced-the so-called muscular cense. (3) The locality of the part touched is at onca determined, and from this the probable position of the tonching body. Like the visual feld, to which all retinal impressions are referred, point for point, there is a tactile tield, to which all points on the skin aurface may be referred. (4) By touching a body at various poiats, from tha difference of prossure and from a comparison of the positious of various points in the tactile field we judge of the coafiguration of the body. A number of "tactile picturey" aro obtained by passing the skin over the touched body, and the shape of the body is further determined by a kuowledge of the inuscular movements Decessary to briug the cutaneous surface into contact with different portions of it. If there is abnormal displavement of position, a false conception may arise as to the shape of the body. Thus, if a small marble or a pea be placed between the index and middle finger so as to touch (with the palm downwalds) the outer side of the index finger and tha iuner side of the middle finger, a sensation of touching one roumd body is experienced; but if the fongers be crossed, so that the marble touches the inner side of the index fiuger and the outcr side of the middle finger, there will be a feeling of two round bodies, because in these circumstances there is added to the feclings of contact a feeling of distortiou for of muscular action) like what would take place if the fingers, for purposes of touch, were placed in that abnormal position. Again; as showing thst our knowledge of the tactile field is precise, there is the well-known fact that when a piece of skin is transplanted from the forchead to the nose, in the operation for removing a deformity of the nose arising frem lupus or other nlcerative disease, the patient feels the new nasal part as if it were his forehead, and he may have the curious seusation of a nasal instead of a frontal headache. (5) Froun the number of points touched we judge as to the smoothness or roughness of a bolly. A body having a uniformly level surface, like a billjard ball, is sinooth; a body baving points irregular in eize ond number in a given área is rough; and if the points are very close together it gives rise to a sensation, like that of the pile of velvet, almost intolerable to somo indivi. duals. Again, if the pressure is ao uniforan as not to be felt, as wheu the body is immersed in water (paradoxical as tlis mazy seem, it is the case that the seasation of contact is felt only at the limit of the fluid), we experience the sensation of being in contact with a fuid. (6) Lastly, it weuld appear that touch is always the restilt of raria. tion of pressure. No portion of the body when touching anything can be regardea as absolutely motionless, and the slight oscillations of the sensory surface, and in many cases of the body touched, produce those variations of pressure on which touch depends.

Theories as to Touch.-To explain the phenomenou of the tactile field, and more especially the remarkable rariations of tactile sensibility above describerl, various theories have been advanced. (1) The one most generally known is that of E. H. Weber, as modified or restatad by Lotze, Meissner, Czermak, and others. It assumes that, whilst ve refer every tactile eensation to a certain position in the tactile field, we do not refer it merely to a poiut, but to a circular or oral arra ou the skiu, called a circle of sensibility. Furcher, it is nssmmed that if t wo such circles touch or overlap they cannot be individually perceived, and that they can only be so individually perceived when one or more circles of sensibility intervene, or, is ether words, when there is a "non-irri
tated sensery eletated sensery els-
ment" betwern the tro peiats tonched (figs. 10 and 11).
Each circle of sensibility may ba supposed to be inuervated by a distioct fibre: Tbus, suppose the eensitive surface of tho skia to be diagranmatically represented as in figs. 10 and 11, e9ch squara would be a "circle of aeneibility." In more sensitive regions the squares woulrl be smaller and the number of nerve terninations greater than in leas sensitive rogions. In fig. 10 the area contains nine "circles" and bas nine nerve terminations, whilst in fig. 11 , although tho total area is the came, thera are thirty-six "circles" and thirty-six nerve filaments. If the points of the compasses be placed at a and c in fig. 10 tbe sensation will ba that of one point ; there would alsc be a scnsation of one point if they were placed at c
nd d; but if the points touch c and e there will be a double sensa. ion, hecause the "circle" d intervenes. Again, in fig. 11 , where the "circles" are much smaller and more numerous, the minimum distance at which two sensations are experienced is much less than In fg .10 , for this would happen when the compasses touch a and d. [t will also be observed that the same distance $d e$ in fig. 10 would give a single seasation, whilst it would give a double senaation in fig. 11. But $c e$ in fig. 10 gives a double aensation, and jet the aame distance wonld give a single sensation if the points of the compasses toucbed adjoiaing "circles." A "circle of sensibility," however, caonot be regarded as an anatomical magnitude or "cutaneous sensory unit," or, in other words, the area of distribution of a single nerve-fibre. Tbe extent of any such hypothetical circle can be altered by practice and attention, and we may therefore assume that the circles overlap, and that even the sama ares of skin receives aumerous nerve fila. meats, and that consequently, when a body is touched, it excites at once many filaments. This is illustrated by fig. 12.

It will be seen that each ares receives a certain number of nerve fibres and each nerve fibre supplies filurils that cross the fibrils of ad. joining nerves. If the point of the compass touch at a, it will irritate all the fibres from 1 to 7 , hut these will not be excited with equal intensity ; the excitation will be at a maximum at 4 , more feeble for 3 and 5 , and still more feeble for 2 and 6; so foble for 2 and 0 ; so "circlea of senslbulity" (Erom Beaunis.) that the intensity of the excitation may be represented by the curve above a. In this case the sensation will be that of one point, because all the fibrils have been excited. If the other point of the compass be placed at b, there will ba an intermediary region not excited, aod two points will be felt. Suppose now the second point of the compasses is moved to c, all the fibrils between the two points a and c are excited, and there is Jikely a sensation of siogle contact; but the excitation of the fibrils 7 and 8 is very feeble, and it is possilile, by attention aud practice, to leave these out, and then there will be a sensation of two contacts (Benumis). This mechanicel theory has no anatomical basis, except it be tbe staternent made by Krause that the distance of the two points of the compesses at which two points are felt includes in the mean 12 tactile corpuscles. Whilst attention has been roainly directed to the skin as the locality where an anatomical explanation is to be sought for, it must not be forgotten that processes may be in operatioo in the nerve centres. It is well known that irradiation of nervous inpulses occur in the nerve centres (see Physiolooy, vol. xix. p. 29), and it is not unlikely that, when a nervous impression reaches the brain from a particular area of skin, this may bo diffused to neighbouring nerve-cells, exciting these, and that then the effect on these cells, in accordance with the law that sensations in nerve centres are referred to the origins in-the periphery of the seasory nerve fibres reaching them, will be referred to adjoining areas of skip, or. in other words, to adjoining points in tbe tactile field.

Wundt has propouuded a psycho-physiological theory that every part of the akin with tactile sansibility slways conveys an impreseion of the locality of the sensation. Each area of skio has a "local colour," and this diminishes from srea to area. The gradstion is suddeu where the sense of locality is acute and gradual where it is obtuse. - A circle of sensation is an area where the local colour changes so little that two separate impressions fuse io to one" (Landois). Practice eoables one to notice the changes of local colour, and thus more and mora accurately to discriminate points closer and closer together. This theory does not appear to explain anything; it simply restates the phenomena for which an explanation is desired.

Sensations of Temperature. - The okin is not merely the geat of tactile impressions, but also of impressions of temperature. This depends on thermic irritation of the terminal organs, as proved by the following experiment of E . H. Weber:- "If the ellow be dipped into a very cold flnid, the cold is only felt at the immersed part of the body (where the fibres terminate); pain, however, is felt in the terminal organs of the ulnar nerve, namely, in the finger points; this pain, at the same time, deadens the local ensation of cold." If the sensation of cold were due to the irritation of a specific-nerve fibre, the sensation of cold would be referred to the tips of the fingers. When any part of the skin is above its normal mean temperature, warmth ia felt; in the opposite case, cold. The normal mean temperature of a giveo area varies according to the distribution of hot blood in it and to the activity of nutritive changes occurring iu it. When the skin
is hrought into contact with a good conductor of hest there is a eensation of cold. A sensation of heat is axperienced when heat is carried to the ekin in any way. The following are.the chief facts that have been ascertained regarding the temperature sense. (1) E. H. Weber found that, with a skin temperature of from $15^{\circ} \cdot 5 \mathrm{C}$. to $35^{\circ} \mathrm{C}$., the tips of the fingers can distinguish a difference of $-25^{\circ} \mathrm{C}$. to ${ }^{\prime} 2^{\circ} \mathrm{C}$. Temperatures just below that of the blood $\left(33^{\circ} \mathrm{C}\right.$.$\left.27^{\circ} \mathrm{C}.\right)$ are distinguished by the most $\begin{aligned} & \text { ensitive parts, even ta }\end{aligned}{ }^{\circ} 05^{\circ}$ C. (2) The thermal sense varies in different regions as follows:tip of tongne, eyelids, cheeks, lips, neck, belly. The "perceptible minimum " was found to be, in degrees C. :-breast, 4°; back,.$^{\circ}$; back of hand, 3°; palm,.$^{\circ}$; arm,.$^{\circ}$; back of foot, $\cdot 4^{\circ}$; thigh, $\cdot 5^{\circ}$; leg, 6° to 2°; cheek, 4°; temple, 3°. (3) If two different temperatures are appliad side by aide and simultaneously, the impressions often fuse, especially if the areas are close together. (4) Practice is said to improve the thermal sense. (5) Sensations of heat and cold may curiously alternate; thus "when the skin is dipped first into water at $10^{\circ} \mathrm{C}$. we feel cold, and if, it be then dipped into water at $16^{\circ} \mathrm{C}$. we liave at first a feeling of warmth, but soon agaiu of cold " (Landois). (6) The some temperature applied to a large area is not apprecisted in the same way as when applied to a emall one; thus "the whole hand when placed in water at $29^{\circ} \cdot 5 \mathrm{C}$. feels warmer thān wheus finger is dipped intc water at $32^{\circ} \mathrm{C}$.

There is every reason to hold that there are different nerve fibres and different central organs for the tactile and thermal sensations, but nothing definito is koowa. The one sensation andoubtedly affects the other. Thus the minimum distance at which two com. paes points are felt is diminished when ove point is wermer than the otber. Again, a colder weight is felt as heavier, "so that tho apparent difference of pressure becomes greater when the heaviel weight is at the same time colder, and lesa when the lighter weight is colder, and differeace of preasure is felt with equal weights of unequal temperatura" (E. H. Weber). Great sensibility to differences of temperature is noticed after removal, alteration by vesicants, or deatruction of the epidarmis, and in the skin affection called herpes zoster. The same occurs in some cases of locomotor ataxy. Removal of the epidermis, as a rnle, increeses tactile sensibility and the sense of locality. Increased tactile sensibility is termed hyperpselaphesia, and is a rare phenomenon in nervous diseases. Paralysis of the tactile sense is called hypopselaphesia, whilst its entire loss is apsclaphesix. Brewn-Séquard mentions 8 case in which contact of two points gave rise to a sense of a third point of contact. Certpin conditions of the nerve centres affect the seases both of touch and temperature. Under the influence of morphia the person may feel abnormally enlarged or diminished io size. As a rule the senses are affected simultaneously, but cases occur wbere one may be affected moro than the other. Herzen states that "limbs which are sleeping" feel heat and not cold (Landois).
Pain.-In addition to seusations of touch and of temperature referred to the skin, there is still a third kind of geosation nulike either, amaly, paip. This sensation cannot be supposed to be excited by irritations of the end-organs of touch, or of epecifio thermal end-organs (if there be such), but rather to irritation of ordiuary sensory nerves, and there is every reasoo to believe that painful impressions make their way to the brain along spinal tracks in tho apinal cord. If we consider our mentel condition as regards sensation at any moment, we notice numerous sensations more or less definite, not referred directly to the surface, nor to external ohjects, such as a feeling of general comfort, free or impeded breathing, hunger, thirst, malaise, horror, fatigue, and pain. These are all caused by the irritation of ordinary sensory nerves in different localities, sad if the irritation of such nerves, by chemical, thermal, mechanical, or nutritional stimuli, passes beyond a certaiu maximum point of intensity the result is pain. Irritation of a nerve, in accordance with the law of "peripheral reference of sensation," will cause pain. Sometimes the irritation applied to the trunk of a sebsory nerve may be so jotense as to destroy its normal function, and loss of sedsation or anæsthesia results. If then the stimulus be increased further, pain is excited which is referred to the end of the nerve, with the result of produciog what has been called anæsthesia dolorosa. Pains frequently cannot be distinctly located, probably owing to the fact of irradiation in tho nerve centres and subsequent reference to areas of the body which are not really the seat of irritations. The intensity of pain depends on the degree of excitability of tha sensory nerves, whilst its massiveness depends on the number of nerve fibres affected. The quality of the pain is probably produced by the kind of irritation of the nerve, as affected by the structure of the part and the greater or less continuance of severe pressure. Thus there are piercing, cuttiog, boring, bnrning, throbbiog, pressing, gnawing, dull, and acute varieties of pain. Sometimes the excitability of the cutaneons nerves is so great that a breath of air or a delicate touch may give rise to suffering. This hyperalgia is found in inflammatory affections of the skin. In neuralgia the pain is cbaracterized by its character of shooting along the course of the nerve and by
serere exacerbations. In many nervous diseases there are dis. ordered sensations referred to the skin, such as alternatious of heat and cold, burning, creeping, itching, and a feeling as if insecta were crawling on the surface (formication). This condition is tormed paralgia. The term hypalgia is applied to a dimination and anulgia to paralysis of pain, as is produced by auæsthetica.

Muscular Sense. -The sensory impressions consicured in this article are closely related to the so-called muscular sense, or that aense or feeling by which we are aware of the state of the muscles of a limb as regards contraction or relaxation. Some have held that the muscular sense is really dus to greater or less siretching of the skin and therefore to irritation of the nerves of that organ. That this is not the case is evident from the fact that disordered movements indicating perversion or loss of this sense are not affected by remnval of the skin (Claude Bernard). Further, cases io the humau being have been noticed where there was an entire loss of cotaneous sensibility whilst the muscular sense was unimpaired. It is also known that inuscles pnssess sensory nerves, giving rise, in certain circumstances, to fatiguc, and, when strongly irritated, to the pain of cramp. Duscular sensations are really excited by irritation of sensory nerves passing from the mnscles themselves. We are thus made conscious of whether or not the muscles aro contracted, and of the amount of contraction necessary to overcome resistance, and this knowledge enables us to judge of the amonnt of voluntary intpulse. Loss or diminution of the muscular sense is seen in cheren and especially in locomotor ataxy. Increase of it is rare, but it is seen in the curious affection called anxietas tihiarum, "a painful condition of unrest, which leads to a continual change in the position of the limbs" (Landois). See also Physiologr.
(J. G. Dt.)

TOUL, a town of France, chef-lieu of an arrondissement in the department of Meurthe-et-Mose!le, on the left bank of the Moselle, 199 miles east of Paris by the railway to Nancy, at the point where the Marne Canal joins those of the Rhine and the East. The isolated hills of St Michel and Barine respectively rise 548 feet and 574 feet above the town, which is a stronghold of the first order, the centre of an entrenched camp protected by numerous forts and redoubts, and a link in the chain of fortifications which extends from Verdun to Belfort. The light and elegant church of St Etieane (formerly the cathedral) has a fine choir and transept, dating from the 13 th century; the nave and aisles are of the $14 t h$, and the beautiful recently restored façade and the towers (246 feet) of the 15 th The interior (118 feet in height, 289 in length, and 89 in width) lias fine glass, a remarkable organ-loft, and some interesting monuments. The bas-reliefs of the charming Gothic cloister (13th and 14th centuries) were much damaged during the Revolution. The choir and transept of St Gengoult, a fine church of the 13 th century with a façade of the 15 th, contain some interesting 13 thcentury glass ; and the light groups of supporting columns, and the sculptures in the cloisters (first half of the 16 th century), should also be mentioued. The old episcopal palace (18th century) is now used as the town-hall ; it contains the museun and library, in which is preserved the golden bull by which the emperor Charles IV. in 1367 contirmed the liberties of the city. The population, 9632 in 1881, was 9981 in 1886 (commune 10,459).

Toul (Tullum) is one of tho oldest tovens of Frauce; originally capital of the Ineuci, in tho Belgic coufederation, it acquired great importance under the Romans. It was evangelized by St Mansuy in the latter half of the 4 th century, and became one of the leading sees of north-east Gaul. After being sacked successively by Goths, Burgundians, Vandals, and Huns, Toul was conquered by the Franks in 450. Under the Merovingians it was governed by counts, assisted by elective officers. The bishopa, who had become increasingly powerfu], were invested with sovcreign rights in the 10th century, holding only of the emperor, and for a period of 300 years (13 th to 16 th centuries) the citizens maintained a long atrugerle against them. The town was ferced to yield for a time to the Count.of Vaudemont in the 12th centory, and twice to the duke of Lortaine in the 15 th, and was thrice devastated by the plague in the 16 th. Charles V. roado a solems entry into the town in 1544 , but in the following year, at the iastance of the Cardinal de Lorraine, it placed itself under the perpetual pratection of the kings of France. Henry II. took possession in 1552, but the town with its territory was not officially incorporated witl France till 1648. Henry JV. was received in state ill 1603, and in 1637 the parlement of Metz was transferred to Toul. Iu 1700 Viaubad recou.
structed the fortications of the town, and in 1790 the bishopric was suppressed and the diocese united to that of Nancy. Toul capitulated in 1870, after a bombardment of twelve anys from heights now included in the new fortifications.

TOULON, a French fortress of the first class, chef-lieu of an arrondissement in the department of Var, of the 5th naval arrondissement, and of a military subdivision, is situated on the Mediterranean, 42 miles east-south-cast of Marseilles by the railway to Nice. The bay, which opens to the east, has two divisions, the "grand rade" and the "petite rade"; it is sheltered on the north and west by high hills, closed on the south by the peninsula of Capes Sicis and Cépet, and protested on the casts by a litgo

Environs of Toulon.
breakwater, - the entrance, 1300 feet wide, being defensible by torpedoes. A ship coming from the open sea must first pass the forts of St Marguerite, of Cape Brun, of La Malgue, and of St Louis to the north, and the battery of the signal station to the south; before reaching the petite rade it must further pass under the guns of the battery of Le Salut to the east, and of the forts of Balaguier and L'Éguillette to the west. The Bay of La Seyne lies west. of the petite rade, and is defended by the forts of Les Six-Fours, Napoleon (formerly Fort Cairo), and Malbousquet, and the batteries of Les Arénes and Les Gaus. To the north of Toulon rise the defensive works of Mont Faron and Fort Rouge, to the east the forts of Artigues and St Catherine, to the north-east the formidable new fort of Le Coudon, and to the south-east that of La Colle Noire, respectively dominating the highway into Italy and the valley of Hyères with the Bay of Carqueyranne. The port of Toulon consists of the old duck, "of which one-third is reserved for the national navy, a new dock, wholly so devoted, a harbour capable of receiving trading vessels drawing from 16 to 18 feet, but only used for cargoes of wood and wine, and the Castigneau dock. The naval arsenal (including the arsenal of Castigneau, which is contiguous with it, in the direction of La Seyne) extends over 4 miles, has an area of 667 acres, and employs from 12,000 to 13,000 men. It contains the offices connected with the administration of the port, the ottice of naval construction, a well-stored naval museum, and a greab variety of workshops. These last include a rope-work 1050×66 feet, covered building yards, careening basins, iorges, armourers' and joiners' shops, general magazines, reconstructed on a fireproof principle since the conflagra-
tion of 1793 , in which are stored al! materials required in the arsenal and oin board ship, a park of artillery, a splendid collection of arms, and separate storohouses for various classes of rigging. The Castigneau arsenal contains the nary bakery of twenty orens, capable of cooking 600,000 rations daily, the foundry and boiler-making works, engineers' workshops, forges, three large careening basins, a washing house, a slaughter house, stores of prorisions, coals, anchors and machinery, and the like. The Mourillon arsenal, to the south-east of the town, has stores of wood, building yards, and appliances for naval construction in wocd and iren. The town, enlarged to the north under the second empire, has on that side a fine new quarter ; but in the old town the streets are for the nost part narrow, crooked, and dirty, and to their insanitary state the cholera epidemic of $188 t$ has been attributel. The cbief buildings are the old cathedral of St Marie Majeure, the church of St Louis, the town-hall, the theatro (seating 2000 persons), the museum, the library (18,000 volumes), the naval and military hospital, with a natural history collection and an anatomical museum attached, a naval school of medicine, a school of hydrography, and large barracks. The imports are wine $\{2,470,000$ gallons in 1581), corn, wood, coal, bemp, iron, sugar, coffee, and fresh fish; the exports are salt, copper ore, harks for tanning, and oils. In 1882 the movement of the port was represented by 280 vessels (41,000 tons). The interesting buildings and gardens of the bospital of St Mandrier stand on the peninsula of Cape Cépet, and near them is the lazaretto. In 1881 the population of Toulon was 48,832 , and in 1886 it was 53,941 , exclusive of 12,487 soldiers, sailors, \&c. (commune 70,122).
The Roman Telo Martius is supposed to have stood near the lazaretto. The town was successi: ely sacked by Goths, Burguadians, Franks, and Saracens. During the early Midlle Ages, and till conquered by Charles of Anjou in 1259, it was noder lords of its own, and entered into alliance with the repuldics of Marseilles and Arles. St Lonis, Louis XII., and Francis 1 strengthened its fortifications. It was seized by the enperor Charles V. in 1524 and 1536. Henry IV. founded a naval arsenal at Toulon, which was further strengthened by Richelieu, and Vauban made the nert dock, a new enceinte, and several forts and batteries In 170^{7} the town was unsuccessfully besiegerl by the duke of Savoy, Prince Eugene, and an English fleet. In 3721 there was an outbreak of the plague. In 1792, after great and sanguinary disorder, the royalists of the town sought the support of the Engiisla and Spanish fleets cruising in the neiglbbourhood. The convention having replied by putting the towis "bors la loi," the inlabitants opened their harbour to the English. The ammy of the repiblic now laid siege to the tomn, and it was on this occasion that Napoleon Bonaparte first made his name as a soldier. The forts commanding the town having been taken, the English ships retirel after setting fire to the arsenal. The conflagration was extinguished by the prisoners, but not before 39 out of a total of 56 vessels had been destroyed. Under the Directory Toulon became the most important French military fort on the Mediterranean; it was heve that Napoleon organized the Egyptian campaign, and the expedition against Algiers set out from Toulon in 1830. The fortifications have been strengthened by Napoleon 1., Louis Philippe, Napoleon 111., and since 1870.

TOULOUSE, chef-lieu of the French department of Haute-Garonne, 478 miles south from Paris and 160 southeast from Bordeaux, stands on the right bank of the Garonce, which here describes a bold outward curve to the east. On the left bank is the Faubourg St Cyprien. The river is spanned by three bridges, -that of St Pierre to the north, that of St Michel towards the south, and the Pont Neuf in the centre; the last-named, a fine construction of seven arches, was begun in 1543 . The city is peculiarly subject to great floods, such as that of 1855 , which destroyed the suspension bridge of St Pierre, or the still more disastrous one of June 1875, which, besides carrying away that of St Michel, laid the Faubourg St Cyprien under water, destroyed 7000 houses, and drowned 300 people. East and north of the city runs the great Canal du Midi (from the Mediterranean), which here joins the Garonne.

Betwen this canal an l the city proper extends the long line of bor:!evards (Boulevards Lacrosses. d’Arcole, du 22 Seutembre. de.) leading by the Allee St Etienne to the Boulidgrin, whence a series of allées shoot out in all directions. Soutl-west the Allee St Michel leads towards the Garonne, and south the Grande Allie towards the Faubourg St Miche!. Theso boulevards take the place of the old city wails. Between them and the canal lie the more modern faubourgs of St Pierre, Arnaud-Bernard, Matabiau, \&c.

Plan of Tonlouse
The more ancient part of the city consists of narrow irregular pebble-paved streets. Most of the houses are of brick, and none of any great architectural pretensions, except. those which date back at least to the 17 th century. In 1868 the municipal authorities determined to construct two entirely new streets, broad and straight, intended to cut one another at right angles near the centre of the city. Of these the first, the Rue de Metz, starts eastward from the Pont Neuf, and will ultimately intersect the Rue d'Alsa!eLorraine running from north to sonth. These alterations, however, go on very slowly. The Place du Capitole may the regarded as the centre, whence streets branch out in eveiy direction. Eastward and nortb-east the Rue La Fayetto leads across the boulevards towards the Allée La Fayetie, beyond which, across the Canal du Midi, are the Eccle Veterinaire and the railway station, and still farther uff the obelisk erected to commemorate the battle of Toulouse (April 10, 1814), and the observatory. From the northwest of the Place du Capitole the Rue du Taur runs due north past the ancient Eglise du Taur to the great Eglise St Sernin, the largest and most famous church of southern France. From the north-west corner of the same Place the Rue des Lois conducts towards the École de Droit and the arsenal. In a more westerly direction the Rue Pargaminière stretches towards the venerable church and the bridge of St Peter From the south-west corner the Rue des Balances extends towards the Rue de Metz and the Pont Neuf. From the south the Rue St Rome, Rue des Changes, and Rue des Filatiers lead to the Place des, Carmes or de la Republique; while from the south east corner the Rue de la Pomme and the Rue' Boulbonne' lead 'across the Rue d'Alsace-Lorraine to the cathedral of St Stephen. In the
south of the city lies the palais de justice, near which are the ancient church of the Inquisition and several of the finest houses in Toulouse. Going northwards, the traveller passes the E.glise de la Dalbade on his way towards the Pont Neuf. immediately to the north of which is the Eglise de la Daurade. North of this churel, but somewhat farther from the river, is the military hospital, to the immediate east of which lio the lycee, the church of the Jacobins, and the public library. South-east from this, about halfway towards the cathedral, is the museum. North of the military hospital and beyond the Rue Pargaminiere lie the arsenal and the Faubourg St Pierre. Slightly to the northvest of the Pont St Pierre the Canal de Brienne (finished 1778) cuts across the angle formed by the Garonue and §anal du Nidi. Between the Canal de Brienne and the faronne is the cliief manufacturing part of the city, where the great Bazacle flour-mill stands. Along the right bank of the river run the various quays of St^{\prime} Pierre, dcc . In - the Faubourg St Cyprien, just north of the Pont Neuf, is the Hôtel Dieu St Jacques, said to have been founded before the 12 th century, with its large gardens. Close to the Foat St Piére is the hospital of St Joseph de la Grave, which makes up 1432 beds, and affords shelter to foundlings and the aged. South of the Allee St Michel is the Jardin des Plantes, founded by the ill-fated La Pérouse.

The most interesting building is the churcle of St Sernin or Saturainns, whom legend represents as the iirst preacher of the gospel in Toulousc, where he was perhaps inartyred towards the middle of the 3 d century. The oldest part of the present building was consecrated by Urban II. in 1096. This church is now the largest edifice of sonthern France, beiríg 375 feet from east to west and 217 feet in its utmost breadth. Thie pave (12 th and 13 th centuries) is remarkable for having donble aisles, Four pillars, supporting the central tower, are sitrounded by heavy masonry, which somewhat eproils the general larmony of the interior. In the southern transept is the "rortail des comtes," so named becauso near it lie the tonlbs of William Taillefer, l'ons, and other early counts of Toulonsc. The little chapel in which these tombs (as. cribed to the 11 th century) are found was restored by the capitols of Toulouse in 1648. A nother chapel contains a Byzantine Christ of late 11 th-century workinansliip. The choir (11th and 12th centurics) ends in an apsc, or rather clevet, surrounded by a range of colunns, marking off an aisle which in its turn opens into five elapels. The stalls are of 16 th-century work and very grotesquely carved. Agaiust the uorthern wall is an ancient table d daztel, which an 11 th-century inscription declares to have belongell to St Sernin. In the crypts are many relics, whiol, however, were robled of their golld and silver slirines during the Revolution. Tho finest gato is on the sontlh, and is surmounted by a fine representation of the. Ascension in Byzantine style. The capitals of the St Scruin pillars are somectimes ornamented with leavcs and sonetimes with grotesque animals, \&ce. The belfry consists of five stories, of which the two higclest are of later date, but harmenize very well with the thiree lower ones. The cathedrul, dedicated to St Stephen, dates from three different erochs. The nive, commensed by Rayniond VI. towards the beginning of the 13th century, still displays the sculptured arms of its founder, and a few yeals ago prescrved the pulpit in which St Bernard and St Dominic are sail to have preached. The elooir, commencel by Bertrand de Lillo (ce 1272), was burned in 1609, but restored in the sane egntury. It is surtounded by seveuteen clapels, which were finishled by the Cardinal d'On'sns, nophey of Loutis XI, towards the beginning of the 16 th onntury. These chapels are adorned with glass dating from the 15 th to the 17 th century. The great westera gate was constructed by Peter dn Moulin, areh bishop of Toulouse, fronn 1439 to 1451. It has been greatly battered, and presents but a poor approximation to its ancient Leanty. Over this grand gate, whicle was once orluameated with the statues of St ournn, St Exuperius, and the twelve apostlcs, as well as those of the two brother archbishops of Toulouse, Denis (1423-1439) and Peter du Moulin, there is a beautiful 13th-century rose-window, whose centre, however, is not in a perpeodicmlar line with the point of the Gothic arch below. . In the same way the choir and the wave have not the same exis.

- Among other remarkable clurches nay be noticell those of St fierre des Cnisines (12th century), with its beautifully sculptured apitals; of Notre Datme de la Daurade, near the Pont Neuf, built on the site of a 9 th-century Bcucdictine abbey, but reconstructed in 1764; and of Notre Dame do la Dalbade, perbans existing in she. 111 hi century but in its present form datiug from the 15 th. The Eglise des Jacolins, held by Viollet le Due to be "one of the wost beaut ful brick churches constructed in the Middle Ages."
was built towards the end of the 13 th century, and originally consisted of but one structure divided iato two aisles by a range of columns. It has a beautiful octaronal belfry. Before the Revolution it contained the mansolenm of Thomas Aquinas. On the left of the Garonne stands the cnurch of St Nicholas, also with an octagonal belfry and a spire doting from the I5til century. There are many other churches of co:ssiderable aatiquity.

Of secular buildings the most note vorthy are the capitole, the museum, and the lycee. The capitule (16th-17th centurics) bas a long Ionic façade constructed by Cammas (1750-60). The theatre is situated in the left wing. Ruuning along alinost the whalo length of the first floer is the "salle des illustres" edorned with the busts of forty-four great natives of Toulouse; the word "native" has, however, been construcd very liberalls. In the capitole tbo Académie des Jeux Floraux holds its annual meetings. The nuseum (opened 1795) occupics the chureh and other buildings of the Angustinian convent (14 th-15th cent.). It contains a splendid collection of antiquities arranged in two cloisters, and a collection of pictures The uatural history muscum is at the Jardin des Plantes. The lycée occupies the group of buildings known as "Les Jacobins," the Hotel Bernui (16th century), sc. Here is the public library (65,000 volumes).

Toulouse is singularly rich in mansions of the 16 th and 17th centuries. Several of these are richly adorned by Bachelier, Michel angelo's pupil. The Hobtels d'Assezat, de St Jean, Las Bordes, Felzios, Duranti, aad Maison de Pierre may be specially mentioned. A few houses are said to date from the 14 th century or even earlier. Near the Allée St Michel is the palais de justicc, the old meeting house of the parlenent oi Ioulousc. Close by was the old Château Narbonnais.
Besides its university, which ranks next to those of Paris ond Lyons, and has faculties of law, science, letters, and medicine, Toulouse possesses many educational and learned societies, arnong which may bo mentioned the Ecole des Peaux Arts et des Sciences Iodustrielles, the Ecolo Normale, the Ecole de Musique, the Académies des Jeux Floraux, des Sciencce et des Belles Lettres et Arts, aod de Législation, the Société d'Agriculture, and the archrological Société du Midi.

The geographical position of Tonlouse, on the plain of Languedoc, has made it the chief entrepot of the district for wine, corn, and almost all the industries of the ncirhbourhood. Besides the grinding of flour, its leading industries are cabinetmaking, hat-naking, calico priating, the manufacture of pots and pans, macaroni, aud starch, leather-naking (moroceo), cloth and paper making, glass. blowing, saddery, and pottery. The tobaceo factory occupies 1250 hands, and manufactures 1000 tons of snulf, a correspowdiug quantity of tobacco, and 250 tons of cigars amually.
The peprulation of the city, 127,196 in 1881, numbered 133,775 in 1886, that of the commune being 147,617 .
Tolosa (To入 $\omega \sigma \sigma a$), chief town of the Volcæ Tectosages, does not seem to have been a place of great importance during the early centuries of the Roman rule in Gaul, thoukl one incident in its early history gave rise to the famous latin proverb "habet aurum Tolosanum" (Aul. Gell., iii. c. 12). It was possessed of a circus and an amphitheatre, but its most remarkable vemains are to be found on the licights of Old Tonlouse (vetus Tolosa) some 6 or 7 miles to the east, where huge accumulations of broken pottery and fragmeats of an old carthen wall mark the site of an ancient settlement. The numerons coins that have been discovercd ou the samo spot do not date back farther than the $2 d$ century B.C., and seem to indicate the position of a Roman manufacturing centre then beginning to occupy tise Gallic hill-fortress that, in earlier days, had in times of peril been tho stronghold of the native tribes dwelling on the river bank. Tolosa docs not scem to lave been a Koman colony; but its importance must have increased greatly towards the middle of the 4 th century. It is to be found eutered in more than one itinerary dating from about this time; and Ausonius, in his Ordo Nobilium Urbium, alludes to it in terms implying that it then had a large population, In 419 it was taken by Wallia, king of the Visigotlis, under whom or whose successors it became the seat of the great Teutonic kinglom of the West-Goths, -a kingdom that within fifty years had extended itself from the Loire to Gibraltar aul from the lihone to the Atlantic. On the defeat of Alaric II. (507) Toulouse fell into the haads of Clovis, who carried away the royal treasurcs to Angonleme. Under the Mlcrovingian kings it seems to have remained the greatest city of southern Gaul, and is said to have been governed by dukes or counts dependent on one or other of the rival kincs descended from the great founder of the Frankish monarchy. It figures promimently in the pages of Gregory of Tours and Sidonins Apollinaris. About 625 Dargobert erected South Aquitainc into a kingdow for his brother Charibert, who close Toulouso as his capital. For the next eimlety ycars its history is obscure, till we reach the days of Charles Martel, when it was besieged by Seina, the leader of the Saraceas from Spain (c. 715-20), but delivered by Endo, "princeps Aquitanix," 10 whom later writers discovered the ancestor of all the later counts of Toul. ous..- Modern_criticism however has discredited this genealogy;
and the real history of Tomouse recommences in 780 or 781, when Charlemagne appointed lis little son Lonis king of Aquitais?, with Toulouse for his chief city.

During the minority of the young king his tutor Chorson ruled at Toulouse with the title of duka or count. Being cleposed at the council of Worms (790), he was succeeded by William Courtnez, tha traditional hero of southero France, who in 806 retired to his nawly fouoded monastery at Gellone, whers ha died in 812. In the unhappy days of Louis the Pious and his children Toulouse sulfered in comanon with the rest of western Europe. It was besieged by Charles the Bald in 844 , and taken four years later by the Normans, who in 843 had sailed up the Garonna as far as its walls. About 852 Raymond I., count of Querci, sueceeded bis brother Fridolo as count of Rouergue and Toulouse; it is from this noble that all the later counts of Tonlouse trace their deseent. Raymond I.'s grandchildren divided their parent's estates; of these Raymond II., ti:e elder (d. 924), becamo count of Toulouse, and Ermengaud, the younger, count of Rouergue, while the hereditaty titles of Gothia, Querci, and Albi were shared between them. Raymond II.'s grandson, William Taillefer (d. c. 1037), married Emma of Provence, and hamled down part of that lordship to his younger sod Bertrand. ${ }^{1}$ William's elder son Pons left two children, of whom William IV. succeerled his father in Toulouse, Albi, Querci, \&c.; while the younger, Raymond IV. of St Gilles (c. 1066), made himself master of the vast possessions of the counts of Rouergue, married his cousin the heiress of Provance, and about 1085 began to rule the imnense estates of his elder brother, who was still living.

From this time the counts of Toulouse were the greatest lords in southern France. Raymord JV., the hero of the first crusade, assumed the formal titles of marquis of Provenca, duke of Narbonne, and count of Toulouse. While Raymond was sway in the Holy Laud, Toulouse was seized by William 1X., duke of Aquitaine, who claimed the city in right of his wifa Philippa, tha daughter of William IV., but was unable to hold it long (1008-1100). Raymond's son and successor Bertrand followed his father's example aud set out for the Holy Land in 1109, leaving lis great estates at his death to his brother Alplonse-Jourdain. The rule of this prince was disturbed by the ambition of William IX. and his grand. daughter Eleanor, who urged her lusband Louis VII. to aupport her clams to Toulonse by war. On her divorce from Louis and her marriage with Henry II., Eleanor's claims passed on to this monarch, who at last forced Raymond V. to do him homage for 'foulouse in 1173. Raymond V., tha patron of tlia troubadours, died in 1194, and was succeeded by his son Raymond VI., under whose rule Languedoc was desolated by the remorseless crusaders of Si.noo de Montfort. Raymond VII., the son of Raymond VI. and Princess Joan of England, succeeded his father iu 12\%2, and died in 1249, leaving an only danghter Joan, married to Alfonso tha brother of Louis IX. On the death of Alfonso and Joan in 1271 the vast inheritance of the counts of Toulousa lspsed to the crown. ${ }^{2}$

From the middla years of tha 12 th century the peopla of Toulonse seen to have begun ts frea themselves from the most oppressive feudal dues. An act of Alphonse-Jourdain (1141) exempts them from the tax on salt aud wina; and in 1152 we have traces of a "commune consiliun Tolosæ" making police ordinances in its own name" with the advice of Lord Raymond, count of Toulouse, duks of Narbonne, and marquis of Provence." This act is witnessed by six "capitularii," four duly appointed judges (judices constituti). and two adrocates. Twanty-three years later there are twelva capitularii or consuls, six fue tha city and six for its auburba, all of them elected and sworn to do justice in whatever municinal matters were bronght before them. In 1222 their numbar was increased to twenty'four; but they wers forbidden to touch the city property, which was to remain in the charge of certain "communarii" chosen by themselves. Early in the 14th century the consuls took tha name of "domini de capitulo" or, a little later, that of "capitulum nobilium." From the 13th century the coasuls met in their own house, tha "palatium communitatis Tolose" or bôteldeville. In the 16th century a false derivatiou changed the ancient consuls (domini de capilulo) into the modern "capitouls" (domini capitolii Tolosani), a barbarous etymology which in its turn has, in tha present century, transformed the old assembly housa of Toulouse into the capitole.

The parlement of Toulousa was established as a permanent court in 1443. Louis XI. transferred it to Montpellier in 1467, but restored it to Toulonse before the close of the next jear. This

[^214]parlement was for Languedoc and southern Frauce what the parle ment of Paris was for the north. Towards the end of the 16 th century, during the wars of tho Lesgue, it was split up into three different sections, sitting respectively at Carcassonne or Béziers, at Castel Sarrasin, and at 'foulouse. The threa were reunited in 1596. Ubder Francis 1. it hegan to persecuta heretics, a nd in 1618 renderad itself notorious by burning tha philosopher Vaniai. Tha univer. sity of Toulouse owes its origin to the action of Gregory IX., who in 1229 bound Raymond V11, to maintain four masters to teach theology and eight others for canon law, grammar, and the liberal urts. Civil law and medicine were taught only a few yeara later. The famous "Floral Games" of Toulonse, in which the poets of Languedoc contended (May 1-3) for the prize of the golden violet and other gold or silver flowers, given at the expense of the city, were instituted in 1323-24.
See, besides the varlous gulde-bnoks, De Vic and Valssetc, Histoire de Lan. guedoc, ed. 1873 sq,; Catel, /listoire de Toulocse, 1623; La Fulll: /Iiswoive de Tou/ouse, 1687,1701 ; Du Mege, Histoire des Institutions do Toulouse, \ddagger yols., 184446: D'Aldeguier, Histoire de la Ville de Toulouse, 1833-35.
(TA A. A.)
TOUNG-NGU, a district in the extreme north of the Tenasserim division of Burmah, with an area of 6354 square miles, and lying between $17^{\circ} 37^{\prime}$ and $19^{\circ} 28^{\prime} \mathrm{N}$. lat., and between $95^{\circ} 53^{\prime}$ and $96^{\circ} 53^{\prime}$ E. long. It is bounded on the N. by Upper Burmab, on the E. by a high mountain range known as the "Great Watershed," on the S. by Shwe-gyeng district, and on the W. by the Pegu Yomas. Three mountain ranges traverse the district-the Pegu Yomas, the Poung-loung, and the Nat-toung or "Great Watershed,"-all of which have a north and south direction, and are covered for the most part with dense forest. The Pegu Yomas have a general elevation of from 800 to 1200 feet, while the central range averages from 2000 to 3000 feet. The rest of Toung-ngú forms the upper portion of the valley of the Tsit-toung (Sittang) river, the only large river in the district, the chief tribntaries of which are the Tsliwa, Khaboung, Hpyu, Thouk-re-gat, and Rouk-thwa-wa, all heing navigable for a great portion of their course Limestone appears in various places, and in the north-east a light grey marble is quarried for lime. The rivers form the chief means of communication during the rainy season. Of late years some good roads have been constructed, and the Burmah State Railway, when completed, will intersect the district from south to north.
In 1881 the population numbered 128,848 (males 68,484, females 60,364), of whom 93.997 were Budclisists, 17,448 Christians, 2086 Hindus, 1982 Molamnedans, and 12,612 aborigines. The only town in the district is Toung-ngli, on the Tsit-toung river in $18^{\circ} 55^{\prime} 24^{\prime \prime}$ N. lat. and $96^{\circ} 31^{\prime} 4^{\prime \prime}$ E. long., with a population of 17,199 in 1881. Of the total area ouly 59 square miles are actually under cultivation, owing mainly to the hilly nature of the country. Rica is tha chief product; other crops inclule oil-seeds, augar. cane, cotton, fruit, and vegetables. The principal inanufactures are silk, saltpetre, and gunpowder. In 1885-86 the gross value of the district was $£ 15,098$, of which the land produced $£ 5880$.

TGUR, Márice Quentin de la (1704-1788), the rcuowned pastellist, was born at St Quentin on the 5th September 1704. On leaving Picardy for Paris he entered the studio of an artist named Du Pouche, and then that of Spoede, -an upright man, but a poor inaster, rector of the Academy of St Luke, who still continued, in the teeth of the Royal Academy, the traditions of the old guild of the master-painters of Paris. This possibly contributed to the adoption by De la Tour of a line of work foreign to that imposed by an academical training; for pastels, though occasionally used, were not a principal and distinct branch of work until 1720, when Rosalba Carriera brought them into fashion with the Parisian world. In 1737 De la Tour exbibited the first of that splendid series of a hundred and fifty portraits which formed the glory of the Salon for the succeeding thirty-seven years. In 1740° he was received by the Academy; and in 1751, the following year to that in which be received the title of painter to the king, he was promoted by that body to the grade of councillor. His work had the rare merit to satisfy at once hoth the taste of his fashionable models and the judgment of his brother artists. His art, consummate of its kind, achieved

He task of flattering bis sitters, wailst hiding that flattery behind the just and striking likeness which, says Mariette, hir hardly ever missed. His portraits of Rousseau. of Voltaire, of Louis $X V$., of bis qucen, of the dauphin and daıphiness, are at once documents and masterpieces unsurpassed except by bis life-size portrait of Madame de Ponipadour, which, cxlibited at the Salon of 1755 . is still the chief ornament of the cabinet of pastels in the Louvre. It is and will probably always be the most perfect model of this class of work as long as time and damp spare the fragile dust to which it owes its beauty. The museum of St Quentin, howerer, also possesses a magnificent collection of works which at his death were in his own hands. De la Tour retired to St Quentin at the age of 80 , and there he died on 17 th February 1788. The riches amassed during his long life were freely bestowed by him in great part before his death; he founded prizes at the achool of fine arts in Paris and for the town of Amiens, and endowed St Quentin with a great number of useful and charitable institutions. He never married, but lived on terms of warm affection with his brother (who survived him, and left to the town the drawings now in the museum); and his relations to Mdlle. Fel, the celebrated singer, were distinguished by a strength and depth of feeling not common to the loves of the 18 th century.

See, in alluition to the general works on French art, Desmaze, three works, of which the most important is Le Reliquaire de la Tour; Guiffrey and Tourneux, Correspondance Inedite de M. Q. de la Tour; Champfleurs, De la Tour, and Peintres de Laon ei de Sl Quentin; and Dréollo do Nodon, Ėloge Biographique de Mr. Q. de la Tour.

TOURACO, the name, evidently already in use, under which in 1743 Edwards figured a pretty African bird, ${ }^{\text {J }}$ and presumably that applied to it in Guinea, whence it had been brought alive. It is the Cuculus persa of Lin-

White-Created Touraco (Turraous albicristatus). After Schlegel.
nreus, and Turacus or Corythiair persa of later authors, who prreeived that it required generic separation. Cuvier, in 1799 or 1800 , Latinized its native name (adopted in the meanwhile by hoth French and German writers) as above, for which barbarous term Illiger, in 1811, substituted a

[^215]more classical word. In 1788 Isert described and figured (Bcobacht. Geselloch. naturf. /'reunde, iii. pp. 16-20, jl. 1) a bird. also from Guinea, wuich he called M/vsnz/hay violacea. Its affinity to the original Touraco was soon recognized, and both forms have been joined by modern systematists in the Family Jhusophayidre, commonly Englisheu Plantain-eaters or Touracos, sometimes spelt Tourakoos.

To take first the Plaatnin-eaters projwr, or the genus Musophaga, of which only two speces aro known. Ons about the size of a Crow 18 comparatively common iu museums, and is readily recor. nued by haviug tho horny liase of ita fine yellow bill proionged backwards over tho forehead in a kiud of abield. The top of tho head, and the primaries, except their oater edga and iip; are deep crimson; a white atreak extends behind the eye; and the rest ol the plumage is of a rich glossy purple. The second species, $A f$. rosse, which is rare, chiefly differs by wanting the white eye-streak. Then of the Touracos-the sureies oriminally describel is about the size of a Jay, and has the head, crest (which is vertically com. pressed and tipled with red), neck, and breast of a fine glass-grcen, varied by two conspicuous white atreaks-one, from the grape to the upper part of tho crimson orbit, separated ly a black patcli from the other, which runs bencath and behind the cyc. The wingo coverts, lower part of tha back, and tail ace of a liright steel-purple, the primaries deep crimson, edged and tipled with bluish-lilack Over a dozen other congeneric apecies, mose or luss resembling this, havo now been described, and all inhahit somodstrict of Africa; but thero is only room here to mentiou that found in the Cape Colony and Natal, whers it is known as the "Lary" ($c f$. vol. xv. p. 7, note 1), and, though figured by Daubunton aad others, first differentiated in 1841 by Stricklanil (Aun. Níl. Hislury, vii p. 33) as Turacus albicristatus-its crest having a conspicuous white border, while the ateel-purple of T. persa is replaced by a rich and glossy bluisb-green of no loss beauty. In nearly all the species of this genus the nostrils are almost completely lidden by the frontal feathers; but there aro two others in which, though closely allicd, this is not tha case, and soune aystrmatists woukl place them in a separate geaus Gallircx; while another species, the giant of the Family, bas beez moved into a third genus as Corythæola cristatu. This differs from any of the foregoing lyy the absence of the criason coloration of the primaries, and seenus to lead to amother group, Schizorrhis, in whicla the plumage is of a still plainer type, and, morcover, the nostrils bere are not only exposed hut in the form of a rlit, instead of being oval as in all the rest. This geuus contains about half a dozen specics, ono of which, S. concolor, is the Grey Touraco of the colonists in Natal, and is of an almost uaiform slatybrown. A good deal has been written about these hirds, which form the aubject of one of the most beautiful monorraples ever published - De Toerako's afgebeld en beschreven,-by Schleprel and Westerman. brought out at Amsterdan in 1860; while the latest collected information is contained in an elaborate essay by Herr Schalow (Jour. f. Ornithologic, 1886, 1p. 1-77). Still, much remains to bo mada known as to their distribution throurgnut Africa, and their habits. They aeem to be all fruit-caters, and to frequent the biginest trees, aaldom coming to the rround. Very littlo can be conficutly asserted as to their nidification, but at l'ast one species of Schizorrhis is aaid to make a rough nest and therein lay three efgs of a pale blue colour. An extraordinary peculiarity attends the crimson coloration which adorns thic primaries of so many of the Afusophagids. So long aro as 1818, Jules Verreaux observed (Proc. Zool. Society, 1871, 1. 40) that in the case of T. abbicristalus this beautiful hue vanishes on cxposure to heavy rain and reappears only after coma interval of time and when the feathers are dry. ${ }^{2}$

The Afusophagide form a very distinct Family of Prof. Huxley's Coccygomorphw, baving perhaps the Coliidx and Cuculide as theirnearest allies. Eyton pointed out (Ann. Nal. IIistory, ser. 3, ii. p. 458) a feature possessed in common by the latter and the Musophagadx, in the "process attached to the anterior edge of the ischium," which he likened to the so-called "marsupial" bones of Didelphian Mammals. J. T. Reinhardt bas also noticed (I'idensk. Meddels. Naturlist. Forening, 1871, pp. 326-341) another Cuculine character offered by the os uncinatum affixed

[^216]to the lower side of the ethmoid in the Plantain-eaters and Touracos; but too much dependence must not be placed on that, since a similar structure is presented by the Frigate-bird (vol. ix. p. 786) and the Petrels (vol.玉viii. p. 711). A corrésponding process seems also to be found in Trogon (q.v.). The bill of nearly all the species of Musophagidx is curiously serrated or denticulated along the margin, and the feet have the outer toe reversible. No member of the Family is found outside of the continental portion of the Etbiopian Region.
(A. x.)

TOURCOING, a manufacturing town of France in the department of Nord, 7 miles north-east of Lille on the railway to Ghent, is rapidly becoming one with the peighbouring towa of Roobaix (q.v.). Wool, cotton, linen, and silk are spun in more than 65 mills (40,000 spindles); there are upwards of 25 combing establishments (by machine and hand), 50 to 55 manufactories of velvet-pile carpets, furniture stuffs, and all kinds of woven goods, besides dye-works, soap-works, a sugar refinery, and machine workshops. The total industrial production of Tourcoing may be set down at about $£ 6,800,000$ per aonum. Tourcoing possesses a chamber of commerce, a conseil de prudhommes, a consultative chamber of arts and manufactures, a wool "conditioning" bureau, schools of drawing, painting, music, and architecture, and a horticultural society. In 1866 a pyramid was erected to commemorate a battle gained by Jourdan and Morean in the neighbourhood in 1794. The population, $34, \pm 15$ in 1881 , was 41,570 iu 1886 (commune 58,008).

Famed since the 14th ceatury for its woollen manufactures, Tourcoing was fortified by the Flemings when Lonis XI. of France disputed the inheritance of Charlesthe Bold with Mary oi Burgundy. The town suffered much frons the Frencli is 1477, from the Huguenots in- 1556, and by fire in 1607 and 1711. The inhabitants, 18,000 in 1789, were reduced by the French Revolution to 10,000, but a nen cra prosperits began in 1832. In 1801 the population of the commune was 23,493 , and in 1871 it was 43,322 .

TOURGUENIEFF, Ivan (1818-1883), the descendant of an old Russian family, was born at Orel, in the government of the same name, in 1818 . His father, the colonel of a cavalry regiment, died when our author was sisteen years of age, leaving two sons, Nicholas and Ivan, who were brought up under the care of their mother, the heiress of the Litvinoffs, a lady who owned large estates and many serfs. Ivan studied for a year at the university of Moscow, then at St Petersburg, and was fually sent in 1843 to Berlin. His education at howe had been conducted by German and Freuch tutors, and was altogether.foreign, his mother only speaking Russian to her servants, as became a great lady of the old school. For his first acquaintance with the literature of his country the future novelist was indebted to a serf of the family, who used to read to him verses from the Rossiad of Kiheraskoff, a once-celebrated poet of last century. Tourguenieff's early attempts in literature,-consisting of poems and trifing sketches, nay be passed over here; they were not without indications of genius, and were farourably spoken of by Bielinski, then the leading Russian critic, for whom Tourguenieff ever cherished a warm regard. Our author first made a name by his striking sketches "The Papers of a Sportsman " (Zapishi Ohhotuika), in which the miserable coodition of the peasants was described with startling realism. The work appeared in a collected form in 1852 . It was read by all classes, including the enperor bimself, end it undoubtedly hurried on the great work of emaneipation! Tourguenieff had always sympathized with the muzhiks; he had often been witness of the cruelties of his mother, a narrow-minded and vilidictive woman. In somo interesting papers recently contributed to the "European Messenger" (Tiestnik Evropî) by a lady blought up in the hóusehold of Mme Tourghenieff, sad
details are given illustrative of her character. Thus the dumb porter of gigantic stature, drawn with such power in Mumu, one of our author's later sketches, was a real person. We are, moreover, told of his mother that she could never understand lonw it was that her son became an author, and thought tliat he had degraded himself. How could a Tourguenieff submit himself to be criticized if

The next production of the novelist was "A Nest of Nobles" (Dicuriansioe Gnie:do), a singularly pathetic story, which greatly increased his reputation. This appeared in 1859 , and was followed the next year by "On the Eve" (Nakanue), -a tale which contains one of his most beautiful female characters, Helen. In 1862 was published "Fathers and Children" (Otzi i Dieti), in which the author admirably described the nihilistic doctrines then beginning to spread in Russia, he himself inventing the word nililism, which seems likely to become permanent. In 1867 appeared "Sinoke" (Dîn), and in 1877 bis last work of any length, "Yirgin Soil" (Nov). Besides his longer stories, many shorter ones were produced, some of great beauty and full of subtile psychological analysis, such as Rudin, "The Diary of a Useless Man" (Dnernik Lishnago Choloviekil, and Qthers. These were afterwards collected into three volumes. "The last works of the great novelist were "Poetry in Prose" and "Clara Milich," which appeared in the pages of the "European Messenger."

Tourguenieff, during the latter part of his life, did not reside much in Russia; he lived either at Baden Baden or Paris, and chiefly with the family of the colehrated singer Viardot Garcia, to the members of which he was much attached. He occasionally visited England, and in 1879 the degree of D.C.L. was conferred upon him by the university of Oxford. He died at Bougival, near Paris, on September 4, 1883 ; according to his wish, his remains were taken to St Petersburg, and buried in the Volkoff cemetery, near, those of the critic Bielinski.
Unquestionably Tourgnenieft may be considered one of the greatest novelists of our own or any other times, and worthy to be ranked with Thackeray, Dickens, and George Eliot: with the genius of the last of these he has many affinities. His studies of human gature are profound, and he has the wide sympathies which are essential to genius of the highest order. A melancholy, almost pessimist, fceling pervades his writings, but perhaps this is always found in those who have truly listened to the "still, sad music of humanity." This morbid self-analysis seems natural to tho Slavonic mind, and Tourguenieff has given abundant proof of possessing it. The closing clapter of "A Nest of Nobles" is one of the saddest and at the same time truest pages in the whole range of existing novels.
The writings of Tourguenieff have been made familiar to persons unacquainted with Russian by Frencl translations. There are some versions in English, but the only two worthy of notice are tho trasslation of the "Nest of Nobles" under the name of "Lisa," by Mr Ralston, and "Virgin Soil," by the late Mr Ashton Dilke.

TOURMAL jNE. See Electricity, vol. viii. p. 99; Geology, vol. x. p. 228 ; and Mineralogy, vol. xvi. p. 409.

TOURNAI (Flem. Doornik), a town of Belgium, capital of an arrondissement in the province of Hainault, 53 miles by rail west-south-west from Brussels, is divided into two parts by the Scheldt, which is here spanned by seven bridges and lined with spacious tree-shaded quays. The older, which is also the busier and more important portion of the town, stands on the left bank; the new town is distinguished by its neat regular streets and modern architecture. The cathedral, which is a fine example of the Romanesque style, is' a cruciform basilica, with a series of chapels and five towers. The nave was probably corsecrated in 1171 : the transepts date from the 13th century; and the (Gotbic) choir was completed in 1338. at which time also the Romanesque façade was altered, and a poreb in the Pointed style added. The sculntules in the porch range in date from the 13 th to ths.

17th century, and deserve special notice, particularly those of later date by native artists. The general effect of the interior is harmonious and impressive. The capitals of the pillars are rich and varied ; the passage round the choir contains several pictures of the Flemish school ; the richly sculptured Renaissance roodloft dates from 1566 ; and most of the stained glass in the transept dates from about 1456. The adjacent belfry, dating originally from 118T, and partly rebuilt in 1391, was restored in 1852. In the Grande Place, not far from the cathedral, is the church of St Quentin, sometimes suoken of as "la petite cathédrale," in the Transition style, and nearly of the same date as the cathedral. The church of St Jacques dates from the 13th and 14th centuries, and that of St Brice from the 12th. The bnildings of the old monastery of St Martin, on the sonth-west side of the town, are now used as an hotel de ville, in connexion with which there is a small picture gallery containing same examples of Rembrandt, Rubens, and Van Dyck. The town contains courts of law, an athenæum, a theatre, a school of arts and manufactures, an eppiscopal palace and seminary, a natural history museum, leesides other public buildings. The fortifications of Vauban, extended after the second treaty of Paris, are now demolislied, and their place taken by boulevards. The leading objects of manufacture are stockings and "Brussels" carpets ; the other industries include paper-making, threadmaking, and the spinning of wool and flax. The trade of the place is very considerable, as vessels of 150 tons burden can ascend the river to this point, and its railway communications are good. The population in 1876 was 32,145.
Tournay, supposed to be the Civilas Necriorum of Cassar, and afterwards known as Tournacus, was ove of the firsi places conquored by the Franks, and Cloris made it for a time lisis capital. In modern timea, stauding as it does on the frontier between Belgium and France, it bas been frequently, besieged and taken. History records specially the siegs by Alexander of Parma in 1581, when it was bravely but unsuccessfully defended by the $V_{\text {rincess }}$ D'Epinoy, whose statue now stands in the Grande Place. Perkin Warbeck was a native of Tournai.

TOURNAMENTS. Tournaments and jousts were the chief military exercises and displays of the age of chivalry. Besides being the apprepriate sports and pastimes of a warlike era and caste, they were intended to test the skill and exhibit the provess of the knights and squires who took part in them. Considered under their more serious aspect, apart from their association with pomp and festirity, they were, practically speaking, the equivalents of the reviews and slam-fights of later times, and were designed as a preparation for the actual manourres and real conflicts of the battlefield. Tournaments and jousts differed from one another principally in the circumstance that in the first several combatants on each side were engaged at once, and in the second the contention was between two combatants only. The former consisted of the mutual charges of equal troops of cavalry, while the latter consisted of a duel on horseback. Du Cange says that the French tournoi, English "tournament," "was a general expression which comprehended all sorts of combats that were pelformed by way of exercise. But it more properly meant such as were performed by companies, where many were in confict against the same number, representing the form of a battle. When those general combats were ended, then single ones commenced ; for all who were desirous of displaying their address, and attracting public notice for their valour, offered single combat with sword or lance against all who should present themselves"; and he adds that these combats were called by the old Frensh writers "joustes," which is the same word as the English "jousts." But jousts were held far more frequently than, and quite independently of, regular
tournaments throughout the period in which the customs of chivalry were observed, and, according to some authorities, the lance alone was used in them, while in the others all weapons except firearms were employed. In both cases such weapons were usnally although not invariably rendered innocuous, and it was only rarely that the combatants were killed or injured by wounds, as distinguished from fails and bruises. But in one way or another tournaments and jonsts were always extremely dangerous, and a long list of eminent persons met their death in them, from Raoul, Comte de Guines, to Henry II. of France. It may be assunied that jousts in some shape existed at all periods, in which men fought in armour and on horseback, and were in the habit of practising themselves in time of peace for the exigencies of warfare. But it is very doubtful when and where tournaments, in the proper sense of the term, were originally institnted. The older writers on the sulject saught to connect them with the "Troja" or "ludus Troje" among the Romans. But this is a piece of archrology of the same sort as that which identified the knighthood of the Middle Ages with the ancient "ordo equestris," and will not, of course, bear examination. Much reliance again has bcen placed by some of then on the account of a sham-fight which was held at the celebrated interview between the emperor Louis and Charles the Bald in 841, which in certain respects bore a close resemblance to a tournament, and was no doult the kind of exhibition out of which the tournament of a later age was developed. Others attribute the institutio:: of tonrnaments to the emperor Henry the Fowler, who died in 936 , or to Geoffrey de Prenilly, the ancestor of the counts of Tours, who died in 1066. However this may be, it is certain that they were in vogue on the Continent at the end of the 11th century, and that in the early part of the 12th century they were introduccd into England. In the 13th and 14th centuries they were comonon all over Christendom, including the Eastern as well as the Western empire and the states comprised in or adjacent to it. It was not until the end of the 16th century that tilts and hastiludes passed out of fashiou in Britain, and even in the earlier years of the 17 th century they wore occasionally celebrated under the patronage of Henry, prince of Wales, son of King James 1.
The older anthorities on tournaments and jousts aro exceediugly numerous. But all tbat is material in what they lave written will be found in Ste Palaye's Mennoires sulv. C'Ancienne Chcevalcric and Mills's History of Chizulry. The "Dissertations" of Du Cange at the end of Joinville's Memoirs and the Chronicles of Froissant and Monstrelet may also be consulted. Ste Palaye nud Mills were both industrious compilers, and the sccond is much indleltrad to the first.
TOURNEBOUT, a wind instrument of wood, in which a cylindrical column of air is set in vibration by a reed. The lower extremity is turned up in a half circle, and from this peculiarity it las gained the French names tourrebout and cromorne, - the latter a corruption of the Cerman name Kinummhork. There appears to be no English equivalent. The reed of the tournebout, like that of the bassoon, is formed by two tongues of cane, adapted to the small end of a conical lirass tube, the large end being inserted in the body of the instrument. It presents, however, this difference, that it is not, like that of the bassoon, in contact with the player's month, but is covered again by a cap pierced with a hole in the upper part, through which opening the air is introduced which sets the reed in vibration, the reed being therefore subject to no pressure of the lips. The compass of the instrument is naturally limited to the simple fundamental sounds which the successive opening of the lateral holes gives rise to. The tournebouts have not much length for the deep sounds they produce, which arises from these instruments sounding, like all tubes of cylindrical bore provided with reeds, the same as the stopped pipes of au organ. That is to say, theoretically,

VXIII. - 69
they require only half the lengths necessary for the open pipes of an organ, or for conical tubes provided with reeds, to produce notes of the same pitch. Moreover, when, to obtain a larmonic, the column of air is divided, the tournebout will not give the octave like the oboe and bassoon, but the twelfth, corresponding in this peculiarity with the clarinet and all stopped pipes or bourdons. With the ordinary boring of eight lateral holes, the tournebout possesses a limited scale embracing a ninth. Sometimes, however, the deeper sounds are completed by the addition of one or more keys. By its structure the touraebout is one of the oldest wind instruments; it is evidently derived from the Greek aulos and the Roman titia, which cousisted equally of a simple cylindrical pipe of which the column of air was set in vibration by a double reed.

Notwithstanding the successive imprevements that were introduced in the manufactrre of wind instruments, the tournebout scarcely ever varied in the details of its construction. Such as we see it represented in the treatise by Virdung ${ }^{1}$ we find it again about the epoch of its disappearance, in L 'Art du Faiseur d'Instruments de l'Encyclopédie de Diderot et d'Alembert (Paris. 1751-80).

The tournebeuts existed as a complete family from the 15 th century. According to Virdung, it was formed of four individual instrumenta; Pretorius ${ }^{2}$ cites five, -the deep bass, the bass, the tenor or alto, the cantus or soprane, and the higb soprano, with compass respectively of

A band, or, to use the expression of Preetorius, enf "accort," of tournebouts compre. hended-1 deep bass, 2 bass, 3 alto-tener, 2 cantus (soprane), 1 high soprano $=9$.
Tho tournebouts were not always an orchestra by themselves; they allied themselves also to otber instruments, and notably to fintes and oboes. It was thus that the little groups of musicians iu the service of princes, or those engaged by some large town on the occasion of a festival or public ceremony, were composed of several tournebout players combined with some flautista and oboo playerg. In 1685 the orchestia of the Neve liirche at Strasburg comprised two tournebonts, and until the mildle of the last century these instruments formed part of the music called "la grande écurie" in the survice of the French kings. Tournebouts have in our days become of extreme raity, and scarcely exist in collections. The masenm of the Conservatoiro Royal do Musique at Brussels has the good fortune to possess a complete family, which is regarded as having helonged to the duko of Ferrara, Alphonso II. d'Este, a prince who reigned from 1559 to 1597. The soprano (cantus or discant) has the same compass as above, white the alto, tho teuor (furnished with a koy), and bass bave an extent respectively of

aul 9

Tho bass (see accompanying figure), besides having two keys, is distinguished from the others by a kind of small bolt, two of which slide in grooves and close the two holes that form the lowest notes of the instrument. It is very curious to observe that the employ. ment of these bolts, placed at the extremity of the tournobout and out of reach of the fingers of the instrumentalist, forces him to require the assistauce of a person whose sole mission is to attend to these bolto during the performance.
The "Platerspil" of which Virdung gives a drawing is only a tind of tournebout. It presents esprecially the peculiarity that,

[^217]instead of having a cap to cover orer the reed, there is a spliericai receiver surrounding the reed, to which the tube for insufflation is adapted. This receiver was of wood worked round, ur perhaps consisted of a simple gourd.
(V. M.)

TOURNEFORT, Joseph Pitton de (1656-1708), a botanist of considerable reputation, was born at Aix, in Provence, in 1656. He studied in the convent of the Jesuits at Aix, aud was destined for the church, but the death of his father left him free to follow his botanical inclinations. After a couple of years collecting, he studied medicine at Montpellier, but soon returned to his favourite pursuit, and was appointed professor of botany at the Jardin des Plantes in 1683. By the kiag's order he. travelled through western Europe, where he made very extensive collections, and subsequently spent three years in Greece and Asia Minor (1700-1702). Of this journey a description in a series of letters was posthumously published in 3 vols. (Relation t'un Voyage du Levant, Lyons, 1717). His principal work is eatitled Institutiones Rea Ilerbarix (3 vols., Paris, 1700), and upon this rests chiefly his claims to remembrance as one of the most eminent of the systematic botanists who prepared the way for Linnæus. His exact position among these bas been discussed at length by Sachs (Geschichte d. Botanik, Munich. 1875). He died December 28, 1708.

TOURNEUR, CYRIL, a tragic poet of the first order, has left no record of his existence beyond the respectire dates of his first and last extant works (1600-1613). An allegorical poem, worthless as art and incomprehensible as allegory, is the earliest of these; an elegy on the death of Prince Henry, son of James I., is the latest. The two plays on which his fame rests, and on which it will rest for ever, were published respectively in 1607 and 1611, but all students have agreed to accept the internal evidence which assures us that the later in date of publication must be the earlier in date of composition. His oniy other known work is an epicede on Sir Francis Vere, of no great merit as poetry, but of some value as conveying in a straightforward and masculine style the poet's ideal conception of a perfect knight or "happy warrior," comparable by those who may think fit to compare it with the more nobly realized ideals of Chaucer and of Wordsworth. But if Tourneur had left on record no more memorable evidence of his jowers than might be supplied by the survival of his elegies, he could certainly have claimed no liigher place among English writers than is now occupied by the Rev. Charles Fitzgeoffrey, whose voluminous and fervent elegy on Sir Francis Drake is indeed of more actual value, historic or poetic, than either or than both of Tourneur's elcgiac rhapsodies. The singular power, the singular originality, and the singular limitation of his genius are all equally obvious in The Atheist's Tragedy; a dramatic poem no less crude and puerile and violent in action and evolution than simple and noble and natural in expression and in style. The executive faculty of the author is in the metrical parts of his first play so imperfect as to suggest either incompetence or perversity in the workman; in The Revenger's Tragedy it is so magnificent, so simple, impeccable, and sublime, that the finest passages of this play can be compared only with the noblest examples of tragic dialogue or monologue now extant in English or in Greek. There is no trace of imitation or derivation from an alien source in the genius of this poet. The first editor of Webster has observed how often he imitates Shakespeare ; and, in fact, essentially and radically independent as is Webster's genius also, the sovereign influence of his master may be traced not only in the general tone of his style, the general scheme of his composition, but now and then in a direct and never an unwortly or imperfect echo of Shakespeare's very phrase and accent.' But the resemblance between the tragic verse oi Tourneur.
and the tragic verse of Shakespeare is simply such as proves the natural affinity betwecn two great dramatic poets, whose inspiration partakes now and then of the quality more proper to epic or to lyric poetry. The fiery impulse, the rolling music, the vivid illustration of thought by jets of insuppressible passion, the perpetual sustenance of passion by the implacable persistency of thought, which we recognize as the dominant and distinctive qualities of such poetry as finds vent in the utterances of Hanilet or of Timon, we recognize also in the scarcely less magnificent poetry, the scarcely less fiery sarcasm, with which Tourneur bas informed the part of Vindice-a harder-headed Hamlet, a. saner and more practically savage and serious Timon. ITe was a satirist as passionate as Juvenal or Swift, but with a finer faith in goodness, a purer hope in its ultimate Eecurity of triumph. This fervent constancy of spirit ${ }_{10}$ lieves the lurid gloom and widens the limited range of a tragic imagination which otherwise might be felt as (יppressive rather than inspiriting. His grim and trenchant humour is as peculiar in its sardonic passion as his elo!uence is original in the strenuous music of its cadences, in the roll of its rhythmic thunder. As a playwright, his method was almost crude and rude in the headlong "siraightforwardness of its energetic simplicity; as an artist in character, his interest was intense but narrow, bis power magnificent but confined; as a dramatic poet, the force of his genius is great enough to ensure him an enduring place ainong the foremost of the followers of Shakespeare.
(A. c. s.)

TOURS, a towr. of France, formerly the capital of Tonraine, now chef-lieu of the department of Indre-etLoire, the see of an arch hishop, and the headquarters of the 9 th coups d'armée, lies 145 miles (by rail) south-west of Paris, on the left bank of the Loire, a little above the

Plan of Tours.
junction of the Loire and Cher. Many foreigners, especially English, live at Tours, attracted by the town itself, its mild climate, its beautiful situation in "the garden of France," and the historic chateaus of the neighbourhood. The Loire is crossed by two suspension bridges, by a railway bridge, and by a fine stone bridge, but its waters too often either expose large stretches of sand, or come down in devastating flood. Many of the inhabitants belong to the leisured class, and the town possesses societies of science, art, and literature, of agriculture, of horticulture, of archæology, of medicine, and a library (50,000 volumes, and 1200 MSS., including a gospel of the 8th century, on which the kings of France took oath as honorary canons of the church of St Martin). The industrial establishments
include four large silk mills, the printing and publishing works of Mame (1200 workmen), manufactories of cloth, carpets, files, white lead, stained glass, boots and shoes, and pottery. A considerable trade is carried on in wine, brandy, ana dried fruits, and the sausages and confectionery of the town are well known The population, 52,209 in 1881, was 59, 185 in 1886.
Tours, under the Gauls the capital of the Turones or Turons, originally stood on the right bank of the Loire, a little above the present village of St Symphorien. At first called Allionos, the town was aiterwards officially known as Casarodunum. The Romans removed the own from the liill whero it originally stood to the plain on the left bank of the river. Behind the present cathe. dral. remaing of the amphitheatre (443 feet in length by 394 if breadth) built towards the end of the 2 d century might till lately be seen. Tours became Christian about 250 through the preaching of Gaticn, who founded the bishoprric. The first cathedral was buill a hundred years later by St Litorius. The bishopric became an archbishopric when Gratian made Tours the capital of Lugdunensis Tertia, and abont the same time the official name of Cessarodunum was clianged for that of Civitas Turonorum. St Martin, the great apostle of the Gauls, was bishop of Tours in the 4th century, and he was buried in a suburb which soon became as important as the town itself from the number of pilgrims who flocked to his tomb. Towards the end of the 4 th century, apprehensive of barbarian invasion, the inhabitants pulled down some of their earlier buildings in order to raise a fortified wall, the course of which can still be traced in places. Their advanced fort of Larcay still overlooks the valley of the Cher. Affliated to the Armorican confederation in 435, the town did not fall to the Visigoths till 473 , and the new masters were always hated. It became part of the Frankish dominions under Clovis, who, in consideration of the help afforded by St Martin, presented the church with rich gifts out of thc spoils taken from Alaric, confirmed and extended its right of sanctuary, and accepted for himself and his suceessors the title of canon of StMartin. The basilica, built under Bishop St Perpetuus from 472 to 477, was the largest and finest church of Frauce, and one of the most important built in the Wes. daring the decline of the Roman empire ; it is said by St Gregory of Tours to have been 160 feet long, 60 wide, and 45 high It seems to have been one of the first which had an ambulatory round the choir. Toury grew rapidly in prosperity under the Merovingians, but abuse of the right of sanctuary led to freat disorder, and the church itself became a hothed of crine. Charle.magne re-cstablished discipline in the disorganized monastery and set over it the learned Alcuiio, who established at Tours one of the oldest public schools of Christian philosophy and theology. The abbey was made into a collegiate church in the 11th century, and was for a time amliated to Cluny, but soon cane under the direct rule of Rome, and for long had bishops of its own. The suburb in which the monastery was situated became as important as Tours itself under the name of Jartinopolis. The Normans, attracted by its riches, pilla ged it in 853 and 903 . Strong, walls were erected from 906 to 910 , and in the 12 th century the name was changed to that of Chateaunueuf. Philip Augustus abolished the disorderly commnne in 1212, but the insumerable offerings of princes, lords and pilgrims maintained the prosperity of the town all through the Diddle Ages. A 13 th -century writer speaks with euthusiasm of the wealth and luxnry of the inhahitants, of the beauty and chastity of the women, and of the rich slrine of the saint. A third church, replaciag one which had been built after the burning of that of St Perpetuus in 997, was begun in 1175, and finished in the 13 th century. It was 374 feet long and 85 feet high, and had five towers, of which only two remain. The rest of the church, sold to epeculators after the Revolution, disappeared under the frst empire. of the monastic buildings, only a beautiful inclosed gallery, built by Bastien Frangois, nephew of Xichel Colomb, in the tirae of the Renaissance, remains, but the streets which formerly belonged to Châteauneuf show nany in teresting relica of ecclesiastieal and civil architecture. About 1130 Arclibishop Hilderert built a cathedral iu the old Roman town itself, on the ruins of those successively erected by Litorins and Grecory of Tours. This was burnt in 1166 during the quarrel between Louis V1I. of France and Henry II. of Encland, the latter being lord of Tours and count of Anjou. The work was resumed in 1175, but not finished till 1547. Part of the towers helong to the 12th century; the choir to the 13 th; the transept and Grat bays of the Dave to the 14 th; the remaining bays, the cloister on the north, and the fine fagade to the 15th: and the two Renaissance towers (217 feet and 223 fect) to the 16 th. The building is nevertheless remarkable for the harnong and regulerity of its construction; specially uotemorthy details are the rriple westcra portal, the upper staircase of the north tower, a Reuaissance staircase in the cloister, the old woodwork in chestnut-wood. and tho splendid-glass of the 13th, 14 th, and 15th centurics. A pretty little mavsoleum, built in 1506 by Jean Juste, is the burial-place of three young sone of Charles
VIII. The archbislop's palaco is to the right of the cathedral, with an interesting chapel of the 12 th century, and an outside pulpit of tha 16 th. During the 10th century the Benedictine abley of St Julien was re-established by Archbishop Théotolon, and a Romanesque churcls built, of which the great square tower still remains. St Julien has a fino nave and double aisles; the straight terminal wall has two 16 th-century apses attached. There arc somo paintings of the 12th century under the tower.

The magnificence of Tours declined in the 14th century; it was then united to Châteauoenf by a common wall, of which an elegant round tower (the Tour de Guise) remains near the quay, and both towns were put under the same government. The numerous and long-continued visits of Charles VII., Louis XI., and Charles VIII. in Tonraine during the 15 th ceutury favonred the commerce and industry of the town, then peopled by 75,000 inlabitants. To the flourishing school of art which existed at the Renaissance are due several privata houses, a fountain, and the church of Notre Dame Lis licha, with splendil windows by Pinaigrier. An unimportant buildiag, part of a modern chateau, is all that remains of the royal residence and magnificent gardens of Plessis-les.'T'ours, where Louis XI. shut himself up and died, the states in 1506 proclaimed Louis XII. the father of his people, and Henry III. and Henry of Navarre united in 1589 against the League. From that ycar Tours was sleserted by the kings of France. A fine bridge of fifteen arches was built across the Loire from 1765 to 1777 by Bayeux. The chief modern buildings ara the theatre, the church of St Joseph, the railway station, and a museum with collections of antiquities, pictures, pottery, and mineralogy. There are also antiquities in the museum of the archeological society of Indre-et-Loire. Tho gardens and a remarkable portal of the archbishop's palace, a marnificent iron gate of the 18 th century in the-prefecture, once the cenvent of the Visitation, and the general hospital (1200 beds) should also be mentioned. In 1870 Tours was the seat of the government of the national defeuce. Tours "is tbe birtbplace of the heretic Berengarius, the two marshals Boucicant, the novelist Honore de Balzac, the poet Destouches, the painters Fouquet and Clouet, and Madame de la Valliére.
tousSaint louverture, Pierre-Dominique (1746-1803), one of the liberators of Hayti, claimed to be descended from an African chief, his father, a slave in Hayti, being the chief's second son. He was born 20th May 1746 at Breda, and was at first suruamed Breda, which was changed to Louverture in token of the results of his valour in causing a gap in the ranks of the enemy. From childhood he manifested unusual abilities, and succeeded, by making the utmost use of every opportunity, in obtaining a remarkably good education. He obtained the special conlidence of his master, and was made superintendent of the other negroes on the plantation. After the insurrection of 1791 he joined the insurgents, and, having acquired some knowledge of surgery and medicine, acted as physician to the forces. His rapid rise in infuence aroused, however, the jealousy of Jean François, who caused his arrest on the ground of his partiality to the whites. He was liberated by the rival insurgent chief Baisson, and a partisan war ensued, but after the death of Eaisson he placed himself under the orders of Jean François. Subsequently he joined the Spaniards, but, when the Freach Government ratified the Act declaring the freedom of the slaves, he came to the aid of the French. In 1796 he was named commander-in-chief of the armies of St Domingo, but, having raised and disciplined a powerful army of blacks, he made himself master of the whole country, renounced the authority of France, and announced himself" "the Buonaparte of St Domingo." For further details of his career see Hayti (vol. xi. p. 545). He was taken prisoner by treachery on the part of France, and died in the prison of Joux, near Besançon, 27th April 1803.
See Blemoires written by himself, 1853; Saint.Rémy, Vie de Toussaint Louverture, 1850 ; Gragoon-Lacoste, Toussaint Louverture, General en Chef de l Armice de Saint-Doningue surnomme ie Promier :des Noirs, based on private papors of the Louverture family, 1877
town, township. See Borodge, City, Municipality, and United States, pp. 731, 827.

TOWNSHEND, Charles Townseend, Second Viscount (1674-1738), a statesman of unsullied integrity, was the eldest son of Horatio. the first viscount, and was
born in 1674. He succeeded to the peerage in December 1687, and was educated at Iton and King's College, Cambridge. When he took his seat in the House of Lords his sympathies leant to Toryism, but this predilection soon faded away, and in February 1701-2 it was rumoured among the conrtiers that he would hold the office of privy seal in the Whig ministry which William III. had in view. For some years after the accession of Queen Anne he remainod without office, hut on 29th September 1707 he was created captain of the yeomen of the guard, and in the same year he was summoned to the privy council, a distinction renewed by the queen's two successors on the throne The command of the yeomen remained in his kands until 13th June 1711, but its responsibilities did not prevent him from acting as joint plenipotentiary with the duke of Marlborough in the peace negotiations with France which were carried on at Gertruydenberg, near Breda, or from serving as ambassador extraordinary at The Hague congress (2d May 1709-26th March 1711). Townshend was high in favour with George I., and on that king's arrival at The Hague in September 1714 he published the appointment of Townshend as secretary of state for the southern department, and entrusted to his new minister the privilege of nominating. his own colleague. Horace Walpole, bis brother-in-law and private secretary, recommended Stanhope for the vacant post, and Stanhope was duly appointed. - Townshend did not neglect to avail himself of the advantages afforded by his attendance. on the king, and before the arrival of George I. in England he had obtained complete ascendency both over his mind and the dispositions of the advisers by whom his line of conduct was generally determined. The policy of the new ministers at home and abroad lay in the promotion of peace. With this object they endeavoured to limit the charges against their predecessor Harley, Lord Oxford, to high crimes and misdemeanours. To gain this end they brought about, in 1716, an alliance between those ancient rivals in arms, France and England. In spite of their success, their influence was gradually undermined by the intrigues of Lord Sunderland and by the discontent of the Hanoverian favourites, who deemed the places and the pensions which they had gained an insufficient reward for their exertions. In October 1716 Stanhope accompanied the king on his journey to Hanover, and during this visit was seduced from his allegiance to his colleagues by the wily Sunderland, who had ingratiated himself into the royal favour. George I. was induced to believe that Townshend and Walpole were caballing with the prince of Wales, and were forming designs against the royal authority. Townshend was dismissed in December 1716 from hls place of secretary of state, and was offered in lieu thereof the splendid banishment of lord-lieutenant of Ireland, a gilded sinecure which he at first contemptuously declined and only condescended ultimately to accept on the condition that he was not required to set foot on Irish soil. His latent spirit of hostility to this arrangement quickly developed into open antagonism, and in March 1717 Townshend was dismissed from his position. At the close of May 1720 a partial reconciliation took place between the opposing Whig sections of Stanhope and Townshend. The latter was readmitted into the ministry as lord president of the council (11th June 1720), and his devoted relation and colleague sir Robert Walpole became paymaster-general. When the South Sea Bubble burst, the fortunes of the principal members of the ministry shared in the misfortune of the scheme which they had promoted Stanhope, in a paroxysm of passion during a heated debate, broke a bloodvessel, and Sunderland, though acquitted of the cbarge of personal corruption, was forced to retire into private life. The withdrawal of these statesmen assigned to their rivals
the chief prizes in the state: Townshend became (10th February 1721) secretary of state, and Walpole gained the position of first lord of the treasury and chancellor of the exchequer. The death of George 1. threatened a change of advisers, but the dismay of the new king's favourite, Spencer Compton, at being cailed upon to draw up the rojal speech, led to the old ministers of the crown being retained in their places. What the attacks of the opposition could not effect, the internal strife of the administration accomplished. Townshend was of a proud, impetuous disposition, born with a nature more accustomed to rule than to obey. His fanily had for several generations stood higher in the social life of Norfolk than Walpole's progenitors, and when he himself attained to distinction in politics his position as a member of the Upper House was greater than that enjoyed by his friend in the Commons. As the power of the Lower House increased, and as Walpole became more and more the object of the attacks of the Tories, the pre-eminence of Townshend passed from him. So long, to use the witty remark of Sir Kobert Walpole, as the firm was Townshend and Walpole, things went well with them, but when the positions were reversed jealousies arose between the partners. The growing alienation was bastened by the death, in 1726 , of the secretary's wife, the sister of Walpole. At the close of 1729 Townshend endearoured to obtain the appointment of his old and attached friend, Lord Chesterfield, as his fellow secretary of state, and the failure of the attempt brought about a fierce scene between Walpole and himself. They broke out into passionate words, eeized one another by their coat-collars, and would hare come to blows had they not been prevented by their friends who were preseat. After this outbreak of passion further co-operation was impossible, and Townshend, haring the good sense to recognize the position, retired into private life on 15 th May 1730. The chief domestic erents of his ministry were the impeachment of Bishop Atterbury, the partial restoration of Lord Bolingbroke, and the troubles in Ireland sver the granting to a man called Wood of a patent for coining peace. Its concluding act was the signing of the treaty of Scville (9th Norember 1729). Townshend died ¢!. apoplexy 21st June 1738 .

Townshend was slow in forming, but risolute in adhering to, his opinion, and, like most other men of that stanp, was impationt of contradiction. His mnaners lave been styled "coarse, rustic, and eccmingly brutal," but these defects were not visiblo in his donestic life. Never clid minister leave office with cleaner hands; he dirl not add one acre to his estate nor leave large fortunes to his younger cbildren.

TOWNSHEND, Charles (1725-1767), a politician ever to be remembered as the embodinent of wit and indiscretion, was the second son of Charles, third Viscount Townslend, who married Audrey, the daughter and beiress of Edward Harrison of Ball's Park, near Hertford, a lady who rivalled ber son in brilliancy of wit and frankness of expression. Charles was born 29 th August 1725, and was sent for his education to Leyden and Oxford. At the Dutch university, where he matriculated 27 th October 1745, be associated with a small koot of English youths, afterwards well known in varions circles of life, among whom were Askew, the book-collector, Dowdeswell, his subsequent rival in politics, Wilkes, the witty and unprimipled reformer, and Alexander Carlyle, the genial Scotchman, who devotes some of the pages of his Autobiography to chronicling their sayings and their doings. He represented Great Yarmonth in parliament from 1747 to 1761, when he found a seat in the treasury borough of Harwich. Public attention was first drawn to his abilities in 1753 , when be delivered a lively attack, as a younger son who might hope to promote his advancement by allying himself in marriage to a wealthy heiress, against Lord

Hardwicke's marriage bill. Although this measure passed into law, he attained this object in August of the following year by marrying Caroline, the eldest daughter of the second duko of Argylo and the widow of Francis, Lord Dalkeith, the eldest son of the second duke of Buccleugh. In April 1754 Towashend was transferred from the position of a member of the Doard of Trade, which he had held from 1749 , to that of a lord of the admiralty, but at the close of 1755 bis passionate attack against the policy of the ministry, an attack which shared in popular estination with the scathing denunciations of Pitt, the supreme success of Single-Speech Hamilton, and the hopeless failure of Lord Chesterfield's illegitimate son, caused his instant dismissal. In the administration which was formed in December 1756, and which was ruled by Pitt, the lucrative office of treasurer of the chamber was given to Townshend, and in the following spring he was summoned to the privy council. With the accession of the new monarch in 1760 this volatile politician traosferred his attentions from Pitt to the young king's favourite, Bute, and when, at the latter's instance, several changes were made in the ministry, Townshend was promoted to the post of secretary of war. In this place le remained after the great commoner had withdrawn from the cabinet, but in December 1762 he threw it up. Bute, alarmed at the growth in numbers and in influence of lis enemies, tried to buy back Townshend's co-operation by sundry tempting promises, and at last secured his object in March 1763 with the presidency of the Board of Tracle. Whea Bute retired and George Greaville accepted the cares of official life, the bigher post of first lord of the adiniralty fell to Townshead's lot, but with his usual impetuosity he presumed to designate one of his satelliter to a place under bim at the board, and the refusal to accept the nomination led to his exclusion from the new administration. While in opposition his mind was swaycd to and fro with conficting emotions of dislike to the head of the ministry and of desire to share in the spoils of office. The latter feeling ultimately triumphed; he condescended to accept in the dying days of Grenville's cabinet, and to retain through the "lutestring " administration of Lord Rockinghann,"pretty summer wear," as Townshend styled it, "but it will never stand the winter,"-the higbly-paid position of paymaster-general, refusing to identify himself more closely with its fortunes as chancellor of the exchequer. The position which he refused from the hands of Lord Rockingham le was forced to accept from the imperious litt (August 1766), and a few weeks later his urgeat appeals to the great minister for increased power were favourably answered, and he was admitted to the inner circle of the cabinet. Dowdeswell, his predecessor at the exchequer, resented his removal for his brilliant rival. The new chancellor proposed the continuance of the laod tax at four shillings in the pound, while be beld out hopes that it might be reduced neyt year to three shillings, whereupon his predecessor, by the aid of the landed gentlemen, carried a motion that the reduction sbould take effect at once. This defeat proved a great mortification to Lord Chatham, and in his irritation against Townshead for this blow, as well as for some acts of insubordination, he meditated the removal of his showy colleague. Before this could be accomplisbed Chatham's mind became impaired by some mysterious malady, and Townshend, who was the most determined and infuential of his colleagues, §wayed the ministry as he liked. His wife was creatcd (August 1767) Baroness Greenwich, and his brother was made lord-lientenant of Ireland. He hinself delivered in the House of Commons many speeches unrivalled in parliamentary bistory for wit and recklessness; and one ...f them still lives in history as the "champagne speeciu".

His last act was to pass through parliament resolutions which even his colleagues deprecated in the cabinet, for taxing several articles, such as glass, paper, and tea, on their importation into America, which he estimated would produce the insignificant sum of $£ 40,000$ for the English treasury, and which shrewder observers prophesied would lead to the loss of the American colonies. Shortly after this event he retired to his wife's country seat in Oxfordshire, where he died on 4th September 1767, from a fever which he had neglected.
Tho universal tribute of Townshend'a colleagues allows hint tis possession of boundless wit and ready cloqueoce, set off by perect melody of intouation, but marsell by an unexampled lack of judg. ment and discretion. Ha slifted his ground in politics with every new noon, and the world fastencd on him the nickuame, which ha himself sdopted in his "clampagne" speech, of the Weathercock. His official knowledge was considerable; and it would be unjust to his memory to igoore the praises of his contemporaries or his profound koowledge of his country's commercial interests. The House of Commons recognized iu him its spoilt child, and Burke happily said that "he never thought, did, or aaid anything" without judging its effect on his fellow-members. Charles Townshend is the subject of a memoir by Mr Percy Fitzgerald.

TOXICOLOGY. See Poisons.

TRACHIS, a city of ancient Greece, at the foot of Mount CEta, a little to the north-west of Thermopyla. As commanding the approach to Thermopylæ from Thessaly, it was a place of great military importance. According to Homer, it was one of the places subject to Achilles, and was famed in legend as the scene of Hercules's deathan event which forms the subject of Sophocles's play The Trachinian Women. In historical times it first attained importance on the foundation of Heraclea by the Spartans in 426 b.c. The Thessalians, jealous of the establishment of a Spartan outpost on their borders, attacked Heraclea, and in 420 the Heracleots were defeated by them with heavy loss. In the winter of 409-8 Heraclea sustained another disastrous defeat. In 395 the Thebans expelled the Spartans, and restored the city to the old Trachinian and Etiean inhabitants. In later times Heraclea was one of the mainstays of the Etolian power in northern Greece. In 191' в.c., after the defeat of Antiochus at Thermopylæ, Heraclea was besieged and taken from the Ætolians by the Romans under the consul Acilius Glabrio. From Liry's account of the siege (xxxvi. 24), it appears that the citadel was outside the town, which lay on the low ground between the rivers Karvunaria (Asopus) and Mavra-Neria (Melas). There are still traces of the citadel on a lofty rock above.

TRACT SOCIETIES are associations for publishing or circulating religions treatises or books. The circulation of short treatises for the promotion of Christian knowledge is older than the invention of printing. Wickliffe, for instance, was a great writer and circulator of tracts, employing his Oxford friends and pupils to multiply copies. So was Luther in his day, with the help by that time of printer and bookseller. In later times John Wesley was a busy worker in this way; and Hannah More, from her own pen, produced what were known as the "Cheap Repository Tracts," highly lauded by Bishop Porteus, and widely nsed towards the close of the 18th century. Before this time there had been efforts of associated labour for the same object, a "book society for promoting religious knowledge among the poor" having been established in 1750. A similar society was formed at Edinburgh in 1793. But it was at the close of the century, in 1799, that there was founded in London the Religious Tract Society, an institution unparalleled in the extent and variety of its operations, and the parent of numerous societies in different parts of the empire as well as in the Unitcd States and on the continent of Lurope. There are other associations with kindred objects, but in connexion
with particular ecclesiastical systems. Thus the tract department of the Christian Knowledge Society is specially connected with the Church of England; and the Wesleyans, Baptists, and other denominations have their own tract societies. The Church of Rome also has now similar associations. The Religions Tract Society is alone in being confined to the diffusion of religious trath common to all Protestant Christians, to the exclusion of topics touched by ecclesiastical divisions. This catholicity is secured by; the fundamental rules of the society, and by its managing committee being composed half of Churchmen and half of Nonconformists of all denominations.
A brief atatement of the proceedings of the Religious Tract Society, as presented in its latest annual Rcport, will best serve to show the general objecta and operations of all such organizations,any special or varied action elsewhere adopted being noted as we proceed. The main object of the aociety is the preparation and publication of religious literature. At first this consisted mostly of tracts and small treatisea. After a time larger booka were published, including serics of reprinted works of the early Reformers and English Protestant theologians and Biblical expositors, and also books on conmon subjects treated in a religious spirit. The socisty also issues magazines for all classes. Four of these period. icale, the Leisure Hour, the Sunday at Hone, the Boys' Own Paper, and the Girls' Own Papcr, have a united circulation, including monthly parts anil jearly volumes, of nearly 600,000 numbers weokly, or above 30 millions in the year. The total annual issuc, iocluding books, tracts, \&c., at bome and abroad, is nearly 86 millions.
The distribution of this is chiefly through the ordinary channels of trade, with the exception of the tracts, which are circulated by bome and foreign missionary aocieties, and various agencies public and private. Almost every missionary agency is indebted to the Religious Tract Socicty for the work carried on through the press. Grants aro made, either fres or as nearly as possible at cost price; and, when it is advisable to produce publications at foreign stations, grants of paper and other material, as well as money paymeats, are voted. The publications are in almost every tongue, the lisz containing works in 174 langunges and dialects.
The funds for this large and varied work come partly from dontions, subscriptions, a od legacies, but chicfly from the profits of the sales of the society's publicatioas. The total missionary and evangelistic expenditure in the year ending March 31, 1886, amounted to $£ 47,722$, of which $£ 19,019$ wae supplicd from the trade funds, which have also borne the cotire cost of management, both of the business and missionary departments. The iotal amount received from sales, subscriptions, and all other sources was $£ 212,731,11 \mathrm{~s} .8 \mathrm{~d}$.
The American Tract Socicty and some of the Continental societies undertake the distribution as well as the production of tracts and hooks, by means of paid colportenrs aod other agents. The Continental societies produce most of their own booke ard tracts, aided largely by granta of money and paper from the Religious Tract Society.

TRACTION, Electric The driving of vehicles by electricity was made commercially practicable by the invention of the dynamo-electric machine, which gave a ready means of producing electrical energy by the expenditure of mechanical work, and by the further discovery that the function of the dynano could be reversed,-that it was capable of acting efficiently as a motor to do mechanical work when supplied with energy in the electrical form. Experiment has shown that when a dynamo is used to produce an electric current, which, in its tuen, drives another dynamo serving as a motor, the double conversion of energy may be performed with no very seripus loss. In favourable cases, when the dynamo and motor are close together, the motor will yield more than 80 per cent. of the work which is spent in driving the dynamo. When they are far apart there is an additional loss, due to the resistance of the conductor which connects them, and a further loss due to its imperfect insulation. The use of high electromotive force, which reduces the first of these, tends to increase the second; it is, however, practicable to keep both within reasonable limits. Early attempts to apply electricity to traction were made by Robei1 Davidson, who placed an clectromagnetic locomotive on the Edinburgh and Glasgow Railway in $\mathbf{1 8 3 7}$, and by Jacobi
of St Peitrsburg, who propelied a boat on the Neva in 1839 by an electromagnetic engine driven by a battery of Grove's cells. The ine揺ciency and bulkiness of early electromotors, and the cost of producing electric energy when a galvanic battery was the source, made it impossible for electricity under such conditions as these to compete with other methods of traction. A good battery using zinc as the active metal consumes from 1 to 2 tb of zinc per hour per horse-power developed; a good steam-engine consumes from 2 to 3 lb of coal in doing the same amount of work, and the cost of zioc is about fifty times that of coal. Heace, notwithstanding modern improvements in electromotors, the cost of producing mechanical power by means of electricity, when a zinc-consuming battery is the source, is still prohibitive.

The earliest practical electric railway was constructed at the Berlin exhibition of 1879 by Dr Weruer Siemens. At one station was a dynamo driven by a steamengine. The current was conducted to the moving car through a special rail placed between the ordinary rails and insulated from the ground by blocks of wood. From this rail it passed through a motor-dynamo on the car, and the ordinary rails completed the circuit. Electrical contact with the ordinary rails was made by the wheels, and with the central rail by a pair of brushes made of copper wire which rubbed against its sides. Spur-wheels were used to connect the motor shaft with the wheels and to effect a suitable reduction of speed. The line was balf a mile long and of 2 -feet gauge. The motor developed about $3 \frac{1}{2}$ horse-power, and was carried by a separate truck, forming a locomotive which drew a car with 20 passengers at a speed of from 4 to 7 miles an hour.

The success of the Berlin experiment was complete, and Messrs Siemens followed it up in 1881 by the construction of a permanent electric tramway, $1 \frac{1}{2}$ miles in length, at Lichterfelde, which has now (1887) been in continuous operation for six years. At Lichterfelde the ordinary rails, insulated by wooden sleepers, are the only conductors. Where roads cross the line the rails are cut out of circuit, and the current is carried past the gap by underground cables, but switches are provided by winch the current can be sent into the insulated sections if required. Each car takes 24 passengers, and runs at a speed of 12 miles an hour. There is no separate locomotive, the motor-dynamo being on the car itself. 1n 1882 Messrs Siemens constructed an electric tramway in the mines of Zankerode, in Saxony, and built for it a locomotive able to draw 8 tons at a speed of $7 \frac{1}{8}$ miles an hour. Overhead conductors were enployed, consisting of a pair of insulated 1 -shaped rails fixed to the roof of the workings; the current was conveyed to and from the locomotive by means of a pair of contacl carriages sliding on these conductors, and connected with the car by short flexible cables. A similar line was opened in 1883 at the Hohenzollern colliery in Upper Silesia.
The same year witoessed the completion of another pioneer undertaking of the first importance, an electric tramway 6 miles long connecting Portrush and Bushmills, in the north of Ireland. Here the insulated conductor is a special rail, carried alongside of the line on wooden posts at a height of $1 \frac{1}{2}$ feet above the ground. Contact is made by springs shaped like carriage-springs, which project from one side of the car at both ends, so that the length of the car. enables contiouous contact to be maintained at crossroads, where there are gaps in the conductiug rail, past which the current is taken by underground cables. The ordinary rails serve as return conductors. The dynamos are driven by turbines at a station nearly a mile distant from the line; they supply a current of 100 amperes with an electromotive force of 250 volts. The motors are
placed ou passenger cars; their speed is regulated by means of resistance coils, which the driver of the car switches into the circuit. A similar tramway, 3 miles long, connecting Bessbrook and Newry; was opened in 1885 ; there also water-power is made use of to drive the generating dynamos. On these lincs the train usually consists of a motor car with passengers, followed by two or three goods waggons, and the whole working cxpenses are from 3 d , to 4 d . per train-mile. The speed is 10 miles an hour.

Amongst early electrical railways Mr Volk's short line on the beach at Brighton deserves mention. There the rails themselves act as conductors, and are insulated only by wooden sleepers lying on the shingle. The line has been in operation since 1883 , with a working expense of only 2d. per car-mile.

Other English and Continental lines wall be referred to later; it is, however, in America that electrical traction has hitherto found its widest development. In 1880 Mr Edison ran an electric locomotive on an experimental track near his laboratory at Menlo Park. Soon after the Chicago exhibition of 1883 , at which an electric railway was shown in action, a large number of permanent lines were established. There are now more than twenty electrical tramways at work in the United States, under the patents of Edison, Field, Daft, Van Depoele, Sprague, and others. Many more lines are projected, and experiments are in progress on the application of electrical traction on a large scale to the elevated railways of New York.

In all the instances which have been referred to above, electricity Electrié is employed as a means of transmitting power as it is wanted from traction a generating station to the cars, througb a conductor extending by storage along the track. Another method of effecting electric traction is batteries. to carry a store of energy on the car or on a special loconotive, by usigg secondary batteries which are charged from time to time at the generating station. This system, which was introduced in England by Mr Rackevzaun and on the Contipent by M. Julien. has been successfully employed on several lines.
The system of stcrage, by means of sccondary batterics, has the great advantare over the system of trausmission through a conductor that it makes each car independent and that it is applicable to ordinary tramway lines. As regards econony of power, we lave in the stolage system a more complex series of transformation of energy, and therefore a larger number of items of loss. In both systems alike we have a certain loss of eoergy at the dynamo and at the motor. A secondary battery yields in the electrical form only about 70 per cent. of the cocrgy given to it. In comparing the two methods, the loss which this involves has to be set off against that which occurs in the transmission system in the process of conduction, an iten which may be very small in favourable cases, but which becomes large when there are many cars to be driven, when the liue is long, and when, owing to the use of an exposed conduclor, the electromotive force lias to be kept low. Under average conditious it is probable that the conductor system has a slight adratage over the other in this respect, but the difference is not material, especially as the cost of power is a comparatively small part of the whole working expense of a linc. The differcace is slightly affected by the fact that in the storage system there is an extra weight to be carried-namely, the batteries-amountiag to about $\frac{1}{4}$ or $\frac{7}{6}$ of the whole weight, and the tractive force required to overcome friction is increased in a corresponding degree. A serious objection to the storage system is the probable cost of renewing batteries. In respect, however, both of durability and of power (in relation t.) weight) secondary batteries have of late undergono a marked i , provement: and it is likely that the storage system will prove the most applicable to tramways in city strects, where conductors on the level of the road are impracticable aod overhead conductors would not be perimitted.
The existing methods of electrical traction as applied to tramways may be classitied as follows:-
I. Motor driven by storage batteries, the batteries and motor being carried either (α) in the car itself or (b) on a separate truck forming a locomotive. Reckenzaun's and Iulien's cars, in which the batteries are under the seats, are examples of the first plan, which is in operation ou lines at Antwerp, Hamburg, Brussels, and New York. Mr Elieson's tramway loconotive working in London on the North Metropolitan tramways is an example of the second plan. It is obviously preferable, when space can be found on the car itself for the motor and batteries, to place thens there rather than on a separate truck. When a separate locomotive is used it
sust bo heavy enough to grip the rails, and the whole weight to be drawn is then cousiderably greater. ${ }^{1}$
II. Conductor systems, which may be classified thus:-
(a) Those using the ordinary rails as tha only conductors. The lines at Lichterfelde and Brightoh, already mentioned, are examples of this plan, which is quite inspplicable where the rails are laid fush with the roadway as in city atreets.
(b) Thuse using a third (insulated) rail, above ground. To this class belong the lortrush, the Besshrook, and several Arucrican lines. This plan, like the last, is not spplicable to city streets.
(c) Those osing onc (or in some cases two) overhead conductors. A line of this type has been successfully worked between JIodling and Hinterbriihl, near Vienna, and another between Frankfort and OIfenbach, both sioce 1884, at a cost of about $3 \frac{1}{2}$ d. per car-mile. The conductors consist of slotterl tubes 1 inch ia bore supported on ninsts 18 feet high and stayed by wires at internediate points to Fiep them from sagging. The contact carriages are pistons sliding in the tubes. ${ }^{3}$ The Daft lines at Baltimore am other places in America, and the Tan Depoela lines, of which some 30 miles are in operation, are mostly worked by means of overhead coaductors.
(d) Those using undergronad conductors in a slotted chanael or conduit. This system, which lias the obvious advantage that the conductor is placed entirely out of the way of street traffe, has been introduced at Blackpool by Mr Holroyd Smith, ausl, in America, at Cleveland by Messrs Bentley and Knight aurl at Plailadelphia by Mr. Schlesinger. In the Blackpool liue the conductor is split into two parts which run parallel to each other withiu the conduit on its two sides, and are tonched by a contact am which reaches down through a narrow ceitral slot at the lovel of the street; an electromotive force of 200 volts is cmployed. The conduit is placed midway between the rails, hut it may be queationed whether, in view of the conditions of ordinary street trafic, a better place for it weuld not be at one side. Afr Ficid lus proposed a trammay with two conduits, oue heside each rail, containing two conductors, one to be charger posititely and the other negatively, so that a comparatively high resultala diflerence of potential is available for the motor althongh the polertial of ncilher conductor differs to a dangerous degree from lhat of the calll.
(c) Ona system remains to he described, which was proposed in 1881 by Hesars Ayrton and Yerry as specially applicable to electric railways of considerible length, in which an exposed conductor would give rise to much loss though leakage. Their plan is to nse a well-insulated conducior in a closed channel underground. The line is divided into short sections; each of these has an exposed conductor, which may be one of the rails, and this is placed in temporary conlact with the insulated conductor as the train passes, by the pressure of the wheels on a flexible rail or stad, or by means of autumatic electronagnetic suitches. Leakage is thus restricterl to the continuous and well-insulated conductor, logether with that section of the surface conductor which is in contact with the former at any one lime; and the system lias the further adrantage that it gi: ies the meang of providing an automatic block by which snccessive trains are kepl from overtaking one another.
The form and disposition of the motor-dynamo and the mode by which it is connected with the driving-axle of the car are matters in which much variety of practice exists. The question of gearing is complicated by the fact that the frame of the car oscillates vertically with respect to the axles. Spur-wheels, worm-gear, frictiongear, belts, multiple-band gear, and chain-gear are or have been used. Mr Reckenzaun'a car is carried by two bogie trucks, one uoder each end, and each bogie carries a motor whose axle, placed longitadinally, drives a central spur-wheel on one axle of the hogie by means of a worm. An advantage possessed by two motors is that, by coupling them in series or parallel, or by using one only, the driver is able to command different grades of power without the ree of resistance coils. In cars driven by storsge batteries the same slject may be secured by varions groupings of the cells.

Telpherage. In all the methods of electrical traction to which reference has luen marle the road on which the cars rum is essentially a railway or tramway of the kint used in borse traction and stean traction. In 1881 the late l'rof. Fleming Jenkin devised a system of electric locomotion in which the vehicles are buny upon what resembles an exaggeratell telegraph line. To this he gave the name of telpheruge. As developed hy the inventor, in conjunction vith Messrs, Ayrton and Perry, the system is especially adapted to the transport of goods at a slow spepil, in localities where the trattic would he insufficient to support an ordinary railway.

The telpher line is a stepl rod or eable, suspended from brackets on posts about 70 fect apart: it serves at once as carrier of weights and conductor of electricity. The line may le made rigid, and in that case a bich speed of trinsit may lee attained; but in general the line is flexib]o and tho trains travel slowly in what may be, if the 2 For a comparison of the welghts to be drawn and tha tractive force required
In different aystems, Bea a paper by Mr Reckenzaun, Elect. Rev., May 21. 1856 . In different aystems, sea a paper by Mr Reckenzaun, Elect. Rev., May 21. 1856 .
2 For details of the construction and working expenses of these and other Mnes, see the valnibla peper by Mr Reckenzaun, Jour. Soc. of Arts. April $20,1887$. Statistles of American lines will be fund in a poper by T. C. Martin, read before
voluwa of traftic requires it, a mearly contimons strean. Dack train consists of a serics of buckets or skeps which hang each fron a single runuing wheel or pair of wheela, and are spaced by woodec connecting bars. A small electric motor, which hangs below the line and is geared by spur and chain gearing to a pair of driving wheels, formus the locomotive. In general, the line is electrically divided into equal sectioas, which have the same length is a single train, so that the front carriage is always on the section in advance of the rear carriage. The train is furnished with a contimunus couductor from end to end, through which it malies electric contact between the section in front and the section behind, and the motor is included in the circuit of this conductor. Two systems of workiog are used, which enable trains to bo run either in electricsl series or "prallel." In the series system the successire sections of the line are electrically conaected, so long as no traiu is on then, by means of switches at the joints between the sections, so tliat the whole forms one continuous conductor. When a train comes on any ono section it breaks contact at the joint betwcen that section and the one behind it; the circuit, however, remsing closed through the conductor on the train itsclf, and in this way the motor leceives the current which is passing thronigh the line. Other trains at other places in the line reccire the same current, each by breaking for the time the ordinary contact between the two sections it touches, and substituting a coulact throumh its own conductor and motor. When a train leares a section it replaces the switch that makes contact with the section behind. If, how. ever, there sre more than one train on the liue, ao automatic block system is sdded to prevest ono frow ovcrtakirg another by letting the section which a traim leaves stand insnlated for a time. Ne control is exercised from the vehicles thenselves; in fact, the trains run without attendants. In the simplest pural!el system of telpherago a continuous coarluctri distinct from the ine is stretchad alongside of it; the trains suake contacl ketween the two. The figure shows auother plat, f howr as the csoss-over parallel system,

Which is autable whore a dnuble line of trains is desired. There $A_{1}, B_{2}, A_{3} \ldots$ form succecsive scctions of one line, and $B_{1}, A_{2}, B_{3}^{\prime}$ of another. $\Lambda_{1}, \lambda_{2}, \lambda_{0} \ldots$ arg electrically continnous, and
comected to one pole of the dy namo. $B_{1}, B_{1}, B_{3} \ldots$ are also continuons, and are comected to the other pole. Thas the sections of each line are altemately pusinive and negative. Any trsin, such as P or Q, bridges the gap hetircen two sechions and receives a cmrent which sullers reversal as the rrain passes from, one section to the next. It is to be regretted chat space does not adnuit of any descrigtion of the details of tclpherage, mauy of which present tho ulonost ingennity. The system was shown to be practicable by experiments on an experimental line at Weston. The first telpher line on a commercial losis was cructed in 3885 al Glynde, in Sussex, and has been maintained in operation notwithstanding manv dim. culties isseparable from so completely novel an uadertaking.

The electrical propulsion of boals, by means of storage batteries, Pron bsa been the subjcet of several successful experiments, but has not pulaion found systemstic application. In this connexion reference should of boaton be matle to a schense proposed by Ayrton and Perry for the haulage of boata on canals or of waggons upon roads. Their proposal was to have a conductor rangel along the towing path, or along the side of the road. A motor running on this was to pull itself along ani drag the baat or waggon ofter it.

In aerial mavigstion, storage batteries working an electric motor Aerial have been used to drive the propeller of a "dirigible" balloon. navigatios
Space does not admit of more than the briefest reference to the Theorg theory of electric motors. A motor may be regarded as a dynamo of acting to produce an electromotive force e which is opposite in motowa direction to the externally impressed electromotiva force L . The resultant electronotive force is $\mathrm{E}-c$, and on this, together with the resistance of the circuit, the strength of the current C depends. The electrical power supplied is CE, and of this the motor utilizes Cc. The efticiency is ϵ / E. It is easily seen, as was first shown by Jacobi, that the power developed by the motor (Ce) is a maxinum when $c=\frac{1}{2} \mathrm{E}$. But this condition of maximum power involves that half the energy supplied is wasted; to secure higher efficiency, notors are in practice run at much less than their maximum power, so that e may approach more nearly to equality with E. 1 The field ragnets of motors, like those of dynamos, may be wound with coils in series with the armature coil, or with coils forming a sbunt to the armature, or with a combination of botb. A very important part of the theory deals with the automatic regulation of speed by the use of componnd winding. In a paper of fundamental importance with regard to this part of the subject, Messrs Ayrton and Perry ${ }^{3}$ have shown that a motor may be made to rux

[^218]at constant speed under varying losds when the exteraal electronotire force is coastant, provided that a differential combination of direct ehunt and reverse gerics winding be employed, - the shunt coil serving to energize tho magnets and the serics coil to reduca their msgnetism to a certain extent when the current in the anma luro 15 mereased. The propertion of series to shunt wiuding Jecessary for this result depends on the relation of tho resistance of the srms:ure to that of the shuat coil, and it is an easy deduction from tha theory that, whea the resistance of the armature is afgligibly small, the specd of a simple shant-wound motor driven by mesns of a coostant external electromotive force is seasibly constant, a result which bas been experimentally demonstrated by Mr Mordey (Phil. Mag., Jan. 1886). It is shown in the sanne paper that a similar means of governing may be used when the curreat passing through the inotor is kent constant, instead of the external electromotive forcc. The principle of differential contpound windieg to secure automatic regulation of speed has beeu applied in several American motors, Dolably by Mr Spraroue.
Detalls of most of the electrical tramways and raflways meationed in the text will be lound lin the Journels Electrica! Recieve, Etectrician, and Electrical World (New York) of the dates referred to. See also The Electric Notor ond its Applications, by T. C. Martin and J. Wetzler (New iork, 1887). The Portrush une la described by E. Hopkloson and A. Slemens in o paper reat before the Society of Arts, April 1883. For telpherage, in aditituo to articles in the foumats named, sco Fireming Jenkin "On Telpherage," Jour. Soc. Arls, May 1884; also Profes" sional Popers af the Con ps of Royal Englneens, Chatham, vol. x, 1884. (J. A. E.)
tracy, Antorne Louis Cladde Destutt, Comte de (1754-1836), was born in Bourbonnais on July 20, 1754. The noble family to which be belonged was of Scottish descent, tracing its origin to Walter Stutt, a gentleman who in 1420 accompanied the earls of Buchan and Douglas to the court of France, and whose family afterwards rose to be counts of Tracy. The father of Destutt de Tracy (as he is usually called) was a soldier, and died a field-marshal. Destutt de Tracy began his studies under the superintendence of his mother, and afterwards prosecuted them at the university of Strasburg. During his student days, however, he was chiefly noted for his skill in every kind of manly exercise. On leaving the university he embraced a military career, in which his advance was rapid. When the Revolution broke, Tracy, who was then thirty-five years of age, took an active part in the provincial assembly of Bourbonnais. He was elected a deputy of the nobility to the states-general, where he sat alongside of his friend La Fayette. In the spring of 1792 be received the rank of field-marshal, along with the sole command of the cavalry in the army of the Norib; but, as the conduct of affairs fell more and more into the hands of the extremists, he took an indefinite leave of absence, and settled with his family at Autfuil. Here, in the society of Condorcet and Cabanis, ho devoted himself to scientific studies. Under the Reign of Terror he was arrested and imprisoned for nearly a year. It was his solitary meditations at this pariod, we are told, which discovered to him his true bent. Under the influence of Locke and Condillac he abandoned the natural sciences for the study of mind. On the motion of Cabanis he was named associate of the Institute in the class of the moral and political sciences. He soon began to attract attention by the mémoires which he read before his colleagues-papers which formed the first draft of his comprehensive work on ideology. The society of "ideologists" at Auteuil embraced, besides Cabanis and Tracy, who have been called respectively the physiologist and the metaphysician of the school, Volney, who has been called its moralist, and Garat, its professor in the National Institute. Under the empire he was a member of the scnate, but took little part in its deliberations. Under the Restoration he became a peer of France, but protested against the reactionary spirit of the Guvernment, and remaired in opposition. $\ln 1808$ he was elected a member of the French Academy in room of Cabanis, and in 1832 lie was also named a member of the Academy of Moral siciences on its reorganization. He appeared, however, coly once at its confercnces. He was old and nearly bind. and filled with saduejs, it is said, by the loss of his friends and the discredit into which his nost firmly
cherished opinions had falleu. "His on!y distraction was to have Voltaire read aloud to him." He died at Paris on the 9 th of March 1836.

Dcstutt de Tracy was the last emineat representative of the scnsualistic scheal which Condillac fouaded in France upon a onesided interpretation of the doctrines of Locko. He pushed the scasualistic priaciples of Condillac to their last consequences, being ia full agicemant with the materialistic viows of his friend Cabanis, theugh the attention of the latter was devoted more to the plysiological, that of Tracy to the nsjeliological or "ideological "side of man. His ideology, he frankly atated, formed "a lart of zonlogy," or, as we should say, of biology. To think is to fcel. The iour faculties into which lie divides the consciuus life-percejrion, memory, judgment, will-are alt varicties of seusation. Perception is sensation cansed by a present affection of the external extreunities of the nerres; menory is sensation caused, in the absence of preseat excitation, by dispositious of the aerves which are the result of past experieuces; judgment is the perception of relatious between sensations, and is itself a opccies of sensation, because if we are sware of the censations we must slse be aware of the relations between them; will he identities with the feeling of desirc, aud therefore includes it as a rariety of sensation. It is easy to see that such concinsions ignore important distinctions, and are, iudeed, to a large extent an aluse of language. As a psycholngist. Destutt do Tracy leserves credit for his distiwction between active snd passive touch, which has developed in to the nodern theory of the mnscular sense. His account of the notion of external existence, as derirel, not from puro sensation, but from the experience of action on the oae linnd and resistance on the olher, may be compared with the account of Baiu and later psychologists. Tracy worked up his sefrarate monographs extending aver a number of years into the Eléments d'Idtologic (1817-18 and 1824-5), which presents his complete doctrine. He slso wrote in 1806 a Commentaive sur l'Esprit des Lois de Montesquicu, in which he argues ably iu support of a free constitution on grounds which hardly sdunt of theing harmonized with his general philosophical principles. The book was trasslated in America by lis friend President Jefferson, who recommended it for use in the colleges. The first French edition sppeared in 1817, aod it was several times reprinted.

TRADE, Board of. The greater part of such supervision of commerce and industry as exists in the United Kingdom is exercised by the "Committee of Privy Council for Trade" (see Privy Councin), or, as it is usually called, the Board of Trade. As early as the 14 th century councils and commissions had been formed from time to time to advise parliament in matters of trade, but it was not till the middle of the 17 th century, under the Commonwealth, that any department of a peruanent character was attempted. Cromwell's policy in this respect was continued under the Restoration, and in 1660 a committee of the privy council was appointed for the purpose of obtaining information as to the imports and exports of the country, and improving trade. A few years later another committee of the council was appointed to act as intermediaries between the crown and the colonies, or foreign plantations, as they were then called. This joint commission of trade and plantations was abolished in 1675, and it was not until twenty years later that the Board of Trade was revived under William III. Among the chief objects set before this board were the inquiry into trade obstacles and tho employment of the poor; the state of the silver currency was also a subjent on which Jobn Locke, its secretary, lost no time in making representations to the Government. Locke's retiremert in 1700 remored any chance of the Board of Trade adrocating more enlightemed opinions on commercial suojects than those generally held at that time. It had only a small share in making the constitutions of the coloni s, as all the American ones except Georgia and Nova f were formed before the reign of Charles II. ; and in 1.co a secretary of state for the colonics was appointed, to whom the control drifted away. In 1780 Burkc made bis celebrated attack on the public offices, which resulted in the abolition of the board. In 1786 , howerer, another permanent committee of the privy council was formed by order in council, and with one or tr:o small exceptions the, legal constitution of the Board of Trade is still regulated by that order. Under it all the principal officers of state,
including the first lords of the treasury and admiralty, the secretaries of state, and certain members of the privy council, among whom was the archbishop of Canterbury, outained scats at the board ex officio; and ten unofficial members, including several eminent statesmen, were also placed on the committee. The duties of the revived board were made the same as they were in the beginning of the century, hut, in addition, the regulation of the food supply of the country, by restricting or relaxing the export and import of corn, was brought into prominence owing to a larger population requiring to be fed. New duties were thrown on the hoard by the growth of joint-stock cnmpanies, the development of railways, and the increase in shipping, and it was necessary to break it up into departments charged with the administration of the various Acts of Parliament. The Eoard of Trade thus became a mere name, the president bcing practically the secretary of state for trade, and the vicc-president became, in 1867, a parliamentary secretary, with similar duties to those of a parliannentary under-secretary of state. At present, besides the president, who has usually a seat in the cabinet, the parliamentary secretary, and a permanent secretary, there are six assistint secretaries, each in charge of a department.

1. The Conmercial Dcpartment is the real remains of the origiual Board of Trade, as it combines the charge of the trade statistics with the general consnltative dnties with whiel King Charles 1I.'s boand was originally eutrusted. The statistical work includes comprling the abstracts relating to the United Kingdon, the col. onies, and foreizn conotries, the supervision of the trade accounts, and the preparation of slipping, railway, emigration, and fishery statistics. A recerd of the prices of com has been obtained from actual sales in the chief market towns for about a hundred years, the originai object being the sliding scale of coru duties, but these are now continued to govern the tithe pryments, and forman unbroken series of prices bascd on actual transactions, and not mere market quetations, Foreign and colonial customs tariffs and regulations are also matters on which infornation is published, and labeur statistics are for the future to have special attention. In 1872 ane of the most inportant functions of the commercial departmont, viz., the negotiation of ccommercial treaties, was transferred to the Foreign Office, but the Buard of Trade is still consulted on these matters by the Foreign Office, as well as by the Colonial Office on colonial commercial matters, and by the other puhlie departments. The Bankruptey Act of 1883 added a new branch of work, but for this there is now a seprate establishoent onder an in-pectur-general. The last new woik undertaken by the department is the [mblication (begun August 1886) of a Monthly Journel of commercial information, chielly from official sources.
2. The lailway Department was originally constituted in 1840 , and performs multifarious dutica muler varions Railway Acts ineloding the inspection of railways before they are open, inquiries into accidents, reports oa jroposed railways, approval of bye-laws, appoint rent of arbitrators in disputes, as well as many duties under pivate Ralway Acls. The inspection of tramways, their bye-laws and "provistonal orders," are all dealt with here, as are similar orders relating to gas and water schemes and to electric lighting. Patents, designs, and trade marks are now dealt with by the Patent Office, which is subordinate to the railway department, and copy right, art unions, and industrial exhibitious are also amoag the matters dealt with by the departinent.
3. The Marine Department was created a separate branch of the Board of Trade in 1850, about which time many new and impertant marine questions came under the Board of Trade, such, for example, as the survey of passenger steamers, the compulsory examination of masters and mates, the establishment of shipring offices for the engagoment and discharge of scamen. Further work fell to the marine department by the Act of 1853, which gave it the control of lighthouse fonds, and to a certain extent of pilotage. The consolidating Merchant Shipping Act of 1854 and subsequent legislation so much increased the department that in 1866 it was divided inte three, viz., the present marine department, which deals with ships and seamen, the liarbour department, and the mance department.
4. The Harbour Department was, as stated above, \& branch of the marine department until 1866, so far as it is connected with the physical adjuncts of navigation, but various other matters have smine beea added, c.g., the charge of the foreshores belonging to the crown, formerly managed by the commissioncra of wooda and forests, and the protection of navigablo harbonrs and channels, long under the contrel of the Admiralty. Lighthouse funds, provisional orders for owser and susefl fisheries, the macamement of

Helyhead and Ramsgate harbours and of Dover pier, wreck, and quarantine are all anong tite matters dealt with by this department, whicl also has charge of the standards department los weights and measures.
5. The Finance Department was, like the haroour department, acparated in 1866 from the marine departncut. The accounts of all the branches of the Board of Trade are in its charge, including the subordinate offices. It also deals with the accounta of harboura, lighthouses, and mercantile marine offices, and of the murchant seamen'a fund, and with the consuls' accounts for disabled scamem sbroad. Savings banks and seamen's noney orders are also amone the accounts and payments with which it is charged, and ontsids these marime matters it lus to prepare fer parliament the life in. surance companies' acceunts and to take charge of the bankruntcy estate accounts
6. The Fishcries Department.-By a recent Act the powers of the Home Office over salmon and other fisherics have been transferred to the Board of 'rrade, and a small department has consequently beeu created charged with the care of these industries.

TRADE-MARLS. There seems no reason to dorbt that the practice of employing a mark to denote the goods of a particular trader (not necessarily the manufacturer) grew out of the use of signs, which, first affixed to the dealer's shop, were afterwards represented on his tokens. and eventually placed on the goods themselves. Trade marks proper appear to have been in use in England in: the reign of Elizabeth. The first reported case was in 1783, when Lord Mansfield decided that the sale by the defendants of a certain medicine under the name or marsi of the plaintiff was a fraud. By other decisions it was affirmed that the use of another's trade-mark was actionable, even without the intent to defraud. The law, however, remained in an unsatisfactory condition till, by the Merchandise Marks Act in 1862, it was made a misdemean our to forge or counterfeit a trade-mark, while penalties were inflicted for the sale of articles bearing a forged mark.

In 1875 the Trade Marks Registration Act estahlished for the first time a registry of trade-marks in Britain, greatly facilitating the proof of title. A more precise definition of a trade-mark was also provided. In 1883 the Act was rcpealed by the Patents, Designs, and Tradค Marks Act, in which its principal provisions were incorporated. All proceedings for the registration of trade-marks are now regulated by the Patents Act. A trade-mark may he a name printed or otherwise delineated in some particular os distinctive manner, or a signature, or a device, mark, hrand, \&c. Registration is compulsory, at least in the sense that the owner cannot prevent infringement or sue for damages for infringement unless he las registered, though it would appear that this disability exists only in the case of a mark capable of being registered under the Act. There are certain indicia which cannot be registered because they do not fall within the definition of a trade-mark, but which may yet be protected at equity. Registration is deemed equivalent to public use of the mark, and, after the expiration of five years, is conclusive evidence of right to exclusive use. Applications for regristration have to be addressed to the comptroller of patents ; should he refuse to register, there is an appeal to the Board of Trade. If there is opposition, the matter goes to the High Court of Justice. Registration holds good for fourteen years, at the end of which time it has to be renewed. Special provision is made in the Act for the retention of certain of the ancient privileges of the Cutlers Company of Sheffield. The total number of marks now upon the register is nearly 50,000 .

The Customs Consolidation Act, 1876, forbids the importation of articles of foreign maoufacture bearing any mark purporting to be the mark of manufacturers resident in tbe Uaited Kingdom, or atating or implying that auch articles were mannfactured in the United Kingdom. The Merchandise Marks Act, 1887, consolidated and amended the law of offences relating to trade-marks and trade oescriptions. It $r \in$ pealed the Act of 1862 and replaced it by fuller provisions. It is now an offence to forge a trade-mark, to falsely apply to gooda any trade-mark or any mark so nearly resembling a thadc-mark as to deceive, to make any die, \&c., for the purpose of
forging or for being used for forging a Trade-mark, to apply any false trade doscription to goods, to dispose of or bave in possession any die, \&c., for the parpose of forging a trade-mark, or to cause any of the above-mentioned things to be done. There are apecial sections in the Act dealing with its application to watches and watch-cases. Where a wstch-case is of foreiga manufacture it must, if stamped at an assay office in the United Kingdom, bear a mark differing from the mark placed upon watches manufactured in the United Kingdon. A warratty is implied in the sale of goods bearing a trade-mark or trade description. See Warranty.
In most foreign countries provisions have long exiated for tho registration of trade-marks ; and the j_{j} slso form one of the classes of "industrial property" for the protection of which an international convention was formed in 1883. This convention now includes sixteeu states, -the mor important being Belgium, France, Great Britain, Italy, Netherlands, Norway. Portugal, Snain, Sweden, Switzerland, and the United States. The subjects of all the contracting states enjoy in each state the saine rights and privileges, as that state grants to its own subjects for the protection of trade-marks. Registration also in one of the states conferg certain rights of priority in the others.

United States.-The legislation of the differeut Ststes and Territiories varies considerabls, seme providiag for the registration of trade-marks either with or without protection for onregistered trade-marks, while othcrs provide only for protection without reristration. On March 3, 1851, Cougress passed an Act "tn authorizo the registration of trade-marks and to protect the same," which provides that owners of trade-marks usedi ia comoerce with foreign nations or with the Indian tribes, providel auch owners be domiciled in the Uaited Statee or located in aty foreign conutry or tribo which affords similar mivileges to citizens of the United States, may obtain registration of trade-onarks under the Act. Registration is not compulsory; failure to registrp a trade-mark, or to renew registration, does nut de jrive the owner of suy remedy he might have at law or in equity; and the conrts will, generally spenking, protect the unregistered equally with the registered.

For iuller informatlon keo L. B. Sebastien'm Lavo of Trarte Marks, or R. W. Willace's edttlou of the Patents, Delp ns, and Trude Murks Act: and in Antrici Rowland Cox's American Trade-Mark Came. Cox's Jfamal of Trade-Mark Cases,
and Willam Llenry Brown's Trealise oz the Law of Trado Marks

TRADE UNIONS are combinations for regulating the relations between workmen and masters, workmen and workmen, or inasters and masters, or for imposing restrictive coaditions on the conduct of any industry or business. By the common law all such combinations were, with certain rare and unimportant exceptions, regarded as illegal. They were considered to be contrary to public policy, and were treated as conspiracies in restraint of trade. Those who were engaged or concerned in them were liable to be criminally prosecuted by indictment or information, and to be punished on coaviction by fine and imprisonment. The offence was precisely the same whether it was committed by masters or by workmen. But, although the provisions of the common lav applied mulatis anutandis to both of them alike, it was, practically sueaking, in refereace rather so the latter than to the former that their effects were developed and ascertained. While it was held to be perfectly lawiul for workmen, as individuals, to consent or to refuse to labour for any remuneration or for any time they pleased, when two or more of them joined together, and agreed to labour only on certain stipulated terms with respect either to the payment or the duration of their labour, they were guilty jso facto of a misdemeanour. It was immaterial whether the end they had in view was to determine wages or to limit rork; or whether the means they adopted for promoting its attaiament was a simultaneous withdrawal from employment, an endeavour to prevent other workmen from resuming or taking employment, or an attempt to control the masters in the management of their trude, the engagement of journeymen or apprentices, or tho use of machinery or industrial processes ; or whether in secking to enforce their demands they relied merely on advice and solicitation. or resorted to reproach and menace, or proceeded to actual violence. In any erent their combination in itself constituted a crimioal conspiracy, and reudered them amenable to prosecution and puoishment. From the reign of Edward I. to the reign of George IV. the operation of the comnon law whs enforced and
enlarged by between thirty and forty Aots of Parliament, all of which were more or less distinctly and explicitly desigued to prohibit and prevent what wo bave learned to describe and recognize as the "organization of labour." But the rise of the manufactaring system towards the end of tho last century, and the revolution which accompanied it in the industrial arrangements of the country, were attended by a vast and unexpected extension of the movement which the legislature bad for so long and with so much assiduity essayed to suppress. Among the moltitudes of workmen who then began to be employed in single factories or in neighbouring factories in the same towns, trade unions in the form of secret societies speedily becane numerous and active, and to meet the norel requrements of the situatiou a more summary method of procedure than that which had hitherto been a vailable was provided by the 40 th Geo. III. cap. 106. By this statute, passed in 1800, it was enacted that all persons combining with others to adrance their wages or decrease the quantity of their work, or in any way to affect or control those who carried on any manufacture or trade in the conduct and management thereof, might be convicted before one justice of the peace, and might be committed to the common jail for any time not exceeding three calendar months, or be kept to hard labour in the house of correction for a term of two calendar months. The discontent and disorder of fhich, in conjunction with a state of comnercial depres. sion and national distress, the introduction of steam and improved appliences generally into Eritish manufactures was productive in the first quarter of the current century led to the nomination of a select committee by the House of Commons, to inquire into the whole question of what were popularly and comprehensively designated the "combination lars," in the session of 1824 . After taking evidence, the colomittee reported to the House that "those laws had not only not been efficient to prevent combinations either of masters or workmen, but on the contrary had, in the opinion of many of both parties, had a tendency to produce mutual irritation and distrust, and to give a violent cbaracter to the combinations, and to render them highly dangerous to the peace of the community." They further rejorted that in their judgment "masters and workmen should be freed from such restrictions as regards the rate of wages and the hours of working, and be left at perfect liberty to make such agreements as they mutually think proper." They therefore recommended that "the statute laws which interfered in these particulars between masters and workmen should be repealed," and also that "the common law under which a peaceable meeting of masters or workmen might be prosecuted should be altered." la pursuance of their report, the 4 th Geo. N. cap. 95 was at once drafted, brought in, and passed. But the immediate results of the change which it effected were rectarded as so inconvenient. formidable, and alarming that in the session of 1825 the House of Commons appointed another select committee to re-examine the various problems, and review and recossider the evidence which had been submitted to their predecessors in the previous year. They reported without delay in favour of the total repeal of the 4th Geo. IV. cap. 95, and the restoration of those provision: of the combination laws, whether statutory or customary. which it had been more particularly intended to abrogate. The consequence was the enactment of the 6th Geo. IV cap. 129, of which the preamble ueclares that the 4 th Geo. IV. cap. 95 had not been found effectnal, and that combinations such as it had legalized were "injurious to trade aud commerce. dangerous to the tranquillity of the country, and especially prejudicial to the interests of all who were concerned in them." The effect of the Gth Geo. IV. cap. 129 was to leave the commor law of conspiracy
in full force against all combinations in restraint of trade, except such as it expressly exempted from its operation as it had been before the 4 th Geo. IV. cap. 95 was passed. It comprised, however, within itself the whole of the statute law relating to the subject, and under it no persons were liable to punishment for meeting together for the sole purpose of consulting upon and determining the rate of wages or prices which they, being present, would require for their work or pay to their workmen, or the hours for which they would work or require work in any trade or business, or for entering into any agreement, verbal or written, for the purpose of fixing the rate of wages or prices which the parties to it should so receive or pay. But all persons were subjected to a maximum punishment of three months' imprisonment with hard labour who should by violence, threats or intimidation, molestation, or obstruction do, or endeavour to do, or aid, abet, or assist in doing or endeavouring to do, any of a series of things inconsistent with freedoin of contract which the Act enumerated and defined. Afterwards, in order to remove certain doubts which had arisen as to the true import and meaning oif the words "molestation" and "obstruction," it was provided by the $22 d$ Vict. cap. 34 that " no person, by reason merely of his endeavouring peaceably and in a reasonable manner, and without threat or intimidation direct or indirect, to persuade others to cease or abstain from work, in order to obtain the rate of wages or the altered hours of labour agreed to by him and others, should be deemed to have been guilty of 'molestation' or "obstruction." In spite of the partial recognition which trade unions had thus received, they continued to be unlawful, although not necessarily criminal, associations. In certain cases, they were by statute exempted from penal consequences, and their members were empowered to combine for specified purposes, and to collect funds by voluntary contributions for carrying them into effect. But in the estimation of the common law the special privileges which had been accorded to them under particular circumstances did not confer any general character of legality upon them, and where their rules were beld to be in restraint of trade, as in the prohibition of piece-work or the limitation of the number of apprentices, they were still regarded as conspiracies. Hence they were practically excluded from the advantages in regard to the security of their property and the settlement of their disputes which, under the Friendly Societies Act, 18 th and 19th Vict. cap. 63, had been granted to all assaciations established for any purposes which were not illegal. In this condition the law was when what became notorious as the "Sheffield and Manchester outrages" suggested the appointment of the royal cemmission on trade unions, which investigated the subject from 1867 to 1869 . The outcome was, first, a temporary measure for the more effectual protection of the funds of trade unions, passed in 1869, and, secondly, the two measures which, as amended and amending, are cited together as the "Trade Union Acts 1871 and 1876 "the 34 th and 35 th Vict. cap. 22 and the 39th and 40 th Vict. cap. 31.

By these statutcs, construed with ine Censpiracy an Protection of Property Act, 1875 , the 33 and 39 Vict. cap. 86 , the law relating to combinations, whether of workmen or of masters, assumed the shape in which it exists at the present time. In cenvexion with trade disputes no person can now be prosecuted fer conspiracy to commit an set whicn would nat be criminal if cemmitted by him singly, and consequently empleyers and employed alike may lawfully do in combination all that they would be entitled to do as individuals. The purnoses of a trade union are not to be deemed illegal merely because they are in restraint of trade, and the circumstance that they are in restraint of trade is not to render any member of it liable to prosecution, nor is it to avoid or make void. able any agreement or trust 'relating to it. No court, hewever, can entertain legal proceedings with the object of directly enforcing or reccvering damages for the breach of an agreement between the
members of a trarle unien as such, concerning the cunditiens on. which the mombers for the time being shall or shall not sell their goods, transact their business, employ or be employed, or the payment by any person of any subscription or penalty to a trade union, or for the application of the funds of a trade union to provide benefits or to furnish contributions to any emplojer or workman not a member of such trade union in censideration of such empleyer or workman acting in confernity with the rules or resulutions of such trade union, or to discharge any tine imposed upon any person by any court of justice or any agreement made between one trale voien and another, or any bend to secure such agreenients. But such incapacity to sue on such agreements is not to be taken as constituting any of them illegal. Every person, howeyer, commits a misdemeanour, and on conviction is liable to a maximum fine of $£ 20$, or to a maximum imprisonment of three menths with baril labour, who wilfully and malicieusly breaks a contract of Eervice or hiring, knowing, or having reasonable cause tn believe, that the probable consequence of his so deing, either alune or in combination with others, will be to endanger human life or cause serious bodily injury, or to expose valuahle property, whether real or personal, to destruction or serions injury; or who, being employed by a municipal autherity or by any company or contractor on whon is imposed by Act of Parliament, or who have otherwise assumed, the duty of smplying any place with gas or water, wilfully and maliciously breaks a contract of service or hiring, knowing, or having reasonable cause to believe, that the probable consequenoe of his so doing, alone or in combination with others, will be to deprive the inhabitants of that place, wholly or- in part, of their supply of gas or water; or who, with a view to compel any other person to de or to abstain from doing any act which such other person has a right to abstain from deing or to do, wrongfully and without legal authority uses vielence to or intimidates such other person or his wife or children, or injures his property; or who persistently follows such person about frem place to place; or who hides any tools, clotbes, or other property owned or used by such other person, or deprives him of or hinders him in the use thercof; or who watches or besets the house or other place where such person resides or works or carries on business or happens to be, or the approach to snch house or place; or who follews such other person with two or more other persons in a disorderly manner in or threugh any street or road. But attending at or ncar the house or gllace where a person resides or works or carries on business in order 'merely to ebtain or comniunicate information is net watching or besetting within the statiate. In regard to registration, trade unions are placed on a similar footing with friendly and provident and industrial societies, and they enjoy all the privileges, advantages, and facilities which those associations possess and command. On their side, bowever, they have to comply with the same conditions, ari subject to the same liabilities, and are compelled to make the same periodical returns.

Although there are several large and influential secieties among the employers of labour which come within the legal definition of trade unions, what are commenly as well as more accurately mesnt by trade unions are societies exclusively composed of the employed, -the suppliers of labour whether skilled or anskilled. Of trado unions in this sonse, -thnse of which the members are all artisans or labourers, -the organization is cverywhere pretty much the same, although the tules and regulations of various asseciations differ in detail more or less distinctly and widely from one another. Their ordinary constitution is that of a society divided into districts, and again into smaller lncal bodies. The seat of the governing anthority -the general or executive council-is usually fixed at some large centre of industry or commerce, as Lendon, Manchester, or Birmingham, and it is often changed at stated intervala by a vote of the society at large. It is the policy of the trade unions, by this method of organization, to extend the area of their influence, and so to increase their power in dealing with the masters or in con. trolling their own mernbers in any emergency. Eanh of the branches has a separate government for special purpnses. But for general purposes all the branches are under the command of the exccutive conncil or central committee, which is constituted of members or officers who are elected by the whole society. The terins on which members are admitted are different in different associations. But in all of them there are certain limita as to age and the number of years during which the candidate has been apprenticed to or has worked in the trade. The revenue and reserve of all the societies are derived from admission fees and weekly or monthly subscriptions, together with the amount of thp fines which are imposed for neglect of duty and breaches of the rules and regulations. These sources of incorne are sufficient for ordinary purposes; and extraordinary charges, such as are entailed by a "strike" or a "lock-out," are nearly always, if not invariably, met by means of "levies" made on the members by order of the executive council or central committee. The following account of the Amalgamated Society of Engincers may be accepted as furnishing a typlcal example of the organization and management of a large and flourishing trade union.

According to the thirty-third annual Report of that oociety, it appesrs that in 1883 the union consisted of 424 branches, chiefly in towns in the British Isles, but with a fair sprinkling in Canada, the United States, Australia, India, and other parts of tho globe. The number of members was 50,418 . A branch must consist of not fewer than ee rea members or more than three hundred. The coustitution is pre-eminently democratic. Each branch is itself a completely organized body. It selects and elects its own officers; it collects, holds, sud spends its own funds; and it manages the whole of the business which affects itself alone. The officers of the branch are elacted at ganeral meetiogs at which every member must be present under the penalty of a fine. Members who refuse to ba nominated for office, or who refuse to serve if elected, are also subject to fiues, and officers who neglect their business either by coming lats to meetiogs or absenting themselves altogether are similarly punished. A meeting of the members of each brauch is held avery fortnight for the transaction of ordinary business, such as receiving subseriptions and deciding upon propositions for new membars. These meetiags begin at hall-past 7 in the evening. and close at half-past 9 or 10 o'clock, but the hours are altered when it is convenient to alter them. The duties of the secretary are onetous, and bis responsibility is great. No one therefore is eligible who has not been in the society two jears succcasively, and "no member shall be elected as secretary who keeps a public or beer house." He has charga of the accounts of his lranch, and conducts its correspondence. He has to see to the payment of members who are entitled to trarelling relief dunation, sick, superannuation, or funeral benefit. He has to summon meetings, keep minntes, report to the general oecretary as to the state of trade in the district, the number of men out of work, or on the other hand he has to state what men are wanted, end he has also "to transact any other business that belongs to his office." The president, vicepresident, and assistant secretary of a branch are elected quarterly, while the secretary and referes are elected annually. Members are exempt if they are fifty years of age, or if they reside mere than 3 milas from the club house; and they are disqualified if they are 10月. in arraar with their contributions. There are also bookkeepers, money stewards, doorkeepers, treasurers, and ouditors, the naturs of whose work is evident from their titleg. There ara also sick stewards, whose duties are to visit the sick twice a week, to report their visits to the neetings of the branch, and to carry the invalid his sick benefit. Nons of the offices are honorary. In branches numbering fewer than fifty members every officer is allowed 4d., and in branches numbering fifty and upwards 6d., for his attendance on branch meeting nigl is. The eecretary is paid annually and according to the size of the branch. The lowest amount is $£ 1,58$. for a branch of ten members, the highest $£ 10$, 4s. for a branch of thres hundred. The auditors are paid at a lower rate, which raries from 9d. to 4s. 8d., while the treasurer is paid 10 per cent. on the sunn set apart for use. Each branch has also a cumnoittee, which has power to determine anything whereon the sociaty's rules are silent. The books of the branch are open to their inspection; they can eummon meetings, and they have various other duties. Each member of this committee receives 6d. for each meeting be attends, and is fined 6d. for each meeting from which he is absent. In any district in which there are more branches than one, a local district committee must be formed, consisting of saven members, each branch as nearly as practicahle selectivg an equal number. Where there are seven branches, each one sends a representative. The duties of this committee are to "watch over the interests of the trade, and transact such husiness as affects the district generally." it inust not. however, interfere with the business of any particular hranch of the society. The central authority is vested in a general or executive council, conaisting of thirty-seven members, of whom eleven represent metropolitan branches, the others being from the provinces, including Scotland and Ireland. As the country councillors cannot conreniently attend frequent meetings in London, tho ordanary mauagement is entrusted to the eleven London menters, who sre calleu the local council, and the council is also further broken up into various committees for managing the details of the society. This council hears a ppeals from braochcs, advises, forbids, initiates, and terminates strikes. The general secretary receives a Ealary of $£ 4$ a week and lives rent free. He also receives ls. 6d. each time he attends a council meeting, and is paid for any special journeys undertaken or extra work done. His assistants receive $£ 2,10$ s. a week eaeh, and have to give the whole of their time to the association. They have to compile and issue a monthly report as well as quarterly and yearly reports. The last-named is quite a rormidablo volume, consisting of nearly 400 pazes of large post octavo, and those of other societies are similar. Tbe general sccretary's hours of business are fixed from 9 A. M. to 6 P. M. He has power to authorize members who sre on donation to be removed from ons branch to another where there is a probability of employment, and hs has to keep a register of sll the members of tho soeiety, stating When and where admitted, age, married or single, aod whether a oember has reeeived any part of the financial money. In the

Amalgamated Society of Engineers the contribution of cach member is generally 1s. a week, and if a man be in arrears he is suspended from tha benefits of the society, unless indecd he is ont of work or in distressed circumstances. At the end of 1883 the union had a balance in hand of $£ 178,128$, or upwards of $£ 3,10$ s. a mın.

In some trade unions--for example, those of the compositorsthere is a special hody (" lathers of chapels") whose business it is to see that the rules and regulations of the societies they belong to are faithfully observed in the establishments where they sie employed. In others sgain-for instance, in the National Agricultural Labourers Union, as distinguished from the Federai Union of Agricultural Labourers-the system of management is completely centralized, the secretary or the executive committes havitg entire control of the funds and business of the whole association. In all large towns there are trade councils formed of delegates from the different trade unions within their area, whose functiou it is to discuss and aupervise the general interests of the unionists in the several trades of which they ara representative. Moseover, an annual trade unions congress is held in some great centre of industry and population in one of the three kingdoms, at which delegates frum almost all the trade unions throughout tha realm are present and take part in debating questions, whether social or political, which are of special interest to tha working classes. At these assemblies, which hsva now been held for twenty consecutive years, a parlismentary committes, which remains in existence for the ensuing twelvemonth, is chosen, to whom the whole body of trade unionists looks for counsel and assistance with respect to legislation intended or desired on their behalf. To the action of the trade unions congress and their parliamentary committee mach of tho legislation which has been recently effected on questions affecting the welfare of the order of the community to which they belong is to be attributed, - notably the Emplogers' Liability Act and the ameoded Factory and Mines Acts. (See Trade Unions, \&c., by William Trant.)

The ohjects of trade nnions are twofolu, - first, those of a friendly or benefit society, and, secondly, those of a trade saciety or guild. In the former capacity they afford relief to their members when they are out of work from auy cause, including sickness or accident; they occasionally provide them with supcrannuation allowances, and they almost always make hurial allowances ou account of deceased members and their wives. In tha latter eanacity it is their special business to promoto what they conceive to be the interests of the trade with which they are conneeted by placing the workmen, so far as combination will fulfil that parpose, on a footing approaching to equality with the capitalists by whon they ara employed in the disposal of their labour. Of canrse this is the great object for which the unions really exist. But, as the commissioners on trade unions have pointed out, it is Cound desirable to conjoin the ohjects of a friendly or benefit society with it, because by that means additional members and funds are obtained, and the authority which the undon as a trade society has over its members is thus augmented. The leading aims of all trade unionism are to increase wages and to diminish the labour by which it is needful to eara them, and further to secure a more equal distribution of work among the workmen in aoy given trade than would be the casa under a reginsa of unrestricted competition. Hence their rules prescribe a minimum amount of wages to be accepted and a maximum amount of work to be dons by their nuenbers, and pruhibit piece wark or working overtime. The methods by which the unioniste endeavour to accomplisli their end, which is in a sense the monepoly of the labour market, aro either direct or intirest. The direct method is a "strike," ur simultaueous cessation of labour on the part of the workmen. It is the ultimate sanction as between the employel and their employers of the dernands made by the union. But, where the unioniste are strong, the mere threat of a strike is often suffient to fulfil the intended purpose, and arbitration is still more frequently fouod effectual for bringing about a settlement or compromise. The indirect methods to which the trade unionists resort for reachiog their aims are by liniting the number of workmen to be euployed in any trade and by repressing or discountenancing competition among those who are actually employed in it. Most of them forbid the admission of more than a stipulated proportion of apprentices, aud some of them prohibit the engagenent of women to do work which can be done by men. Nearly all of them resist the common ernployment of mionists and pon-unionists, and do their best to exclude non-urinnists from employment altogether. But the amount expended by wade unione in the conduct of trade disputes is very much less thao is gencrally imagined. Mr George Howell, for instance, showed conclusively in the Contemporary Revievo that auch was the case three or four years ago, and Mr Murchie, tho chairman of the parliamentary committee, stated the trade unions coogress at Stockport in the autuma of 1885
Mr Howell's contentions had been signally confirmed by mor recent experience. Taking the seveu largest trade unions, thus whose statistics had leee relied on by Mr Howell-name: M , the Amalgamated Engineers, the Ironfounders, the Boilcr Makers
and Iron Shipbuilders, the Steam-Eogioe Makers, Ironmoulders of Scotland, Amalgamated Tailors, and Amalganated Carpenters and Joiners-be affirmed that, while in the nioc years preceding $18 S 4$ their receipts were $£ 2,818,548$, their expenditure was $£ 2,963,186$, of which amount' $£ 1,207,180$ was spent in unemployed beuefit, $£ 592,273$ in sick beoefit, $£ 975,052$ in compensation for loss of tools, superanouations, accidents, fuaerals, minor grants a ad benefits, and cxpense of managemeat, only $£ 188,680$ bad been spent in connexion with "trade movements," or about 6 $\frac{1}{2}$ per cont. of the whole sum expended.

There are no really trustworthy means of arriving at anything a pproaching to an accurate estimate of the actual numerical atrength of the trade unions in the United Kingdom. According to the last Report of the registrar general of friendly societies, there were in the year 1883 registered in his office 195 trade unious with 253,088 members aad $£ \ddagger 31,495$ funds, of which 12 returned over $£ 10,000$ fuads, 9 over 10,000 members, and 6 over $£ 10,000$ income. But this of coarse conveys a very inadequate notion of the dimensions to which trade unionism has attained, since many of the largest ond most influential societies are still unregistercd.

Tbe followiag tahle shows the aumber of delegates and the aggeegate membership of the societies represented by them at the trade unions congresses in the years from 1880 to 1886 , both iaclusive:-

	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Delegates. } \end{gathered}$	Number of Bodies represented.	Trade Councils represented.	Trads Unlons represented directly.	Total Number of Persons represented.	Number represented by Trade Connclls.	Unlonists represented directly (8pproximate).
1880	122	105	37	88	474,218	92,511	381,702
1881	154	122	18	101	460,797	86,376	374,421
1882	153	126	23	103	608,337	102,972	405,365
1888	173	135	21	114	561,091	94,166	466,925
1884	142	116	21	95	597,636	109,984	487,652
$18 \$ 5$	162	136	27	109	631,606	131,368	500,238
1886	143	121	24	97	635,380	122,207	513,173

Weshall not be far wrong, perhaps, if we set down the number of trade unionists in all the three kingdoms at about 800,000 .
(F.DR.)

TRAGEDY. See Drama.

TRAJAN (c. 53-117 a.d.). Marcus Ulpius Teaianus, the fourteenth Roman emperor, was a native of Italica, in Spain. The family to which he belonged was probably Italian and not Iberian by blood. His father began life as a common legionary soldier, and fought his way up to the consulship and the governorship of Asia. He was one of the bardest fighters in Judæa under Vespasian and Titus; he served too against the Parthians, and won the highest military distinction open to a subject, the grant of the triumphal insignia. Thus he acquired a promicent place among the brand new patricians created by the Flavians as substitutes for the nobles of old descent who had succumbed to the cruelty and rapacity of the emperors from Tiberius to Nero. The younger Trajan was rigorously trained by his father, and deeply imbued with the same principles and tastes. He was a soldier born and bred. No better representative of the true old hardy Roman type, little softened either by luxury or education, had come to the head of affairs since the days of Marius. The date of his birth was probably 53 A.D. His training was almost exclusively military, but his ex. perience as an officer gave him an acquaintance with almost every important province of the empire which was of priceless value to him when he came to the throne. For ten years he held a commission as military tribune, which took him to many lands far asunder; then he filled important posts in Syria and Spain. How much actual warfare Trajan saw in those days we can hardly tell; he certainly went through some severe service under his father's command against the Parthians. By the year 89 he had achieved a considerable reputation. At that time L. Antonius Saturninus headed a rebellion in Germany, which threatened seriously to bring Domitian's rule to an end. Trajan was ordered in hat haste from Further Spain to the Rhine. Althongh he carried his troops over that long and arduons march with almost unexampled rapidity, he unly arrived after the insarrection had been fat down.

But his promptitude raised him higher in the favour of Domitian, and he was advancel to the consulship in 91 Of the next five years of his life we know nothing posi tively. It is not unlikely that they were spent at Rom or in Italy in the fulfilment of some official duties. Whes the revolution of 96 came, and Nerva replaced the murdered Domitian, Trajan had conferred upon him one of the most important posts in the empire, that of consulay legate of Upper Germany. An officer whose nature, ai the event showed, was interpenetrated with the spirit on legality was a fitting servant of a revolution whose aim it was to substitute legality for personal caprice as the dominant principle of affairs. The short reign of Nerva really did start the empire oa a new carcer, which lasted more than three quarters of a century. But it also demonstrated how impossible it was for any one to govern at all who had no claim, either personal or inherited, to the respect of the legions. Nerva saw that if he could not find an Augustus to control the army, the army would find another Domitian to trample the senate under foot. In his difficulties he took counsel with L. Licinius Sura, a lifelong friend of Trajan, and in October 97 ho ascended the Capitol, and with all due solemnity proclaimed that he adopted Trajan as his son. The senate confirmed the choice, and acknowledged the emperor's adopted son as his successor. In a letter which Nerva sent at once. to Trajan he quoted most significantly a line from the beginning of the Iliad, where Chryses, insulted by Achilles, prays to Apollo: "May thy shafts afford me vengeance on the Greeks for my tears." After a little hesitation Trajan accepted the position, which was marked by the titles of imperator, Cæsar, and Germanicus, and by the tribunician authority. He immediately proceeded to Lower Germany, to assure himself of the fidelity of the troops in that province, and while at Colugne be reccived news of Nerva's death (January 98). The authority of the new emperor was recognized at once all the empire over. The novel fact that a master of the Romans should have been born on Spanish soil seems to have passed with little remark, and this very absence of notice is significant. Trajan's first care as emperor was to write to the senate an assurance like that which had been given by Nerva, that he would neither kill nor degrade any senator. He ordered the establishment of a temple and cult in honour of his adoptive father, but he did not present himself at Rome for nearly two years after his accession. Possibly he had taken measures before Nerva's death to secure the revenge which Nerva craved, but probably did not live to see. In his dealings with the mutinous pretorians the strength of the new emperor's hand was shown at once. He ordered a portion of the force to Germacy. They did not venture to disobey, and were distributed among the legions there. Those who remained at Rome were easily overawed and reformed. It is still more surprising that the soldiers should have quietly submitted to a reduction in the amount of the donative or gift which it was customary for them to receive from a new emperor, though the civil population of the capital were paid their largess (congiarium) in full. By politic management Trajan was able to represent the diminution as a sort of discount for immediate payment, while the civilians had to wait a considerable time before their full due was handed to them.

The secret of Traján's power lay in his close personal relations with the officers and men of the army and in the soldierly qualities which commanded their esteem. He possessed courage, justice, and frankness to a high degree. Having a good title to military distinction himself, he could afford, as the unwarlike emperors could not, to be generous to his officers. The common soldiers, on the other hand, were fascinated by his personal prowess and
his somewhat ostentatious camaraderie. His features were firm and clearly cut; his figure was tall and soldierly, and exhibited the sinewy hard health of a veteran campaigner_ His hair was already grey before he came to the throne, though he was not more than forty-four years old. The stoutness of the emperor's arm had been proved in the face of his men in many a hard fight. When on service he used the mean fare of the common private, dining on salt pork, cheese, and sour wine. Nothing pleased him better than to take part with the centurion or the soldier in fencing or other military exercise, and he would appland any shrewd blow which fell upon his own helmet. Ho loved to display his acquaintance with the career of distinguished veterans, and to talk with them of their battles and their wounds. Probably he lost nothing of his popularity with the army by occasional free indulgence in sensual pleasures with which, as Bacon remarks, the soldier is apt to pay himself for the perils he encounters. Yet every man felt and knew that no detail of military duty, however minute, escaped the emperor's eye, and that any relazation of discipline would be rigidly punished, yet with unwavering justice. Trajan emphasized at once his personal control and the constitutionality of his sway by bearing on his campaigns the actual title of "proconsul," which no other emperor had done. All things considered, it is not surprising that be wes able, without serious opposition from the army, to remodel the whole military institutions of the empire, and to bring them into a shape from which there was comparatively little departure so loag as the army lasted. In disciplinary matters no emperor since Augustus had been able to keep so strong a control over the troops. Pliny rightly praises Trajan as the lawgiver and the founder of discipline, and Vegetius classes Augustus, Trajan, and Hadrian together as restorers of the morale of the army. The confidence which existed between Trajan and his army finds expression in some of the coins of his reign.
For nearly two years after his election Trajan did not appear in Rome. He had decided already what the great task of his reign should be-the establishment of security upon the dangerous north-eastern frontier. Before visiting the capital he determined to put affairs in train for the attainment of this great object. He made a thorough inspection of the great lines of defence between the Danube and the Rhine, and framed and partly carried out a vast schẹme for strengthening and securing them. The policy of opposing uncivilized tribes by the construction of the limes, a raised embankment of earth or other material, intersected here and there by fortifcations, was not his invention, but it owed in great measure its development to him. It is probable that the northernmost part of the great limes Germanix, from the Rhine at Rheinbrohl, nearly midway between Coblenz and Boun, to a point on the Main east of Frankfort, where that river suddenly changes its course from north to west, was begun by Domitian. The extension of this great barrier southwards was undertaken by Trajan, though wo cannot say how far he carried the work, which was not entirely completed till long after his time. The limes leaves the Main at Miltenberg, a point at which the north and south course of the :iver is broken by a great angle, and then follows a line generally parallel to the stream of the Neckar, till it reaches Lorch, a place between Stuttgart and Aalen. Here it meets the so-called limes Rxtixe, which trends eastward till it cuts the Danube at Keltsim, a place some distance short of Ratisbon, the ancien - Castra Regina. This grand work, which would have oxitited the envy of Avgustus, is traceable in its main 6 stent at the present day. We may without hesitation follow the opinion of Mommsen, whe maintains that the limes wss not intended, like Hadrian's wall
between the Tyne and the Solway, and like the great wall of China, to oppose an absolute barrier against incursions from the outside. It was useful as marking definitely the boundary of the Roman sway, and as assuring the Romans that or inroad could be made without intelligence being had of it beforeland, while the limes itself and the systen of roads behind it enabled troops to be directed rapidly to any threatened point, and the fortified positions could be held against large numbers till reinforcements arrived. Great importance was no doubt attached to the perfection of the lines of communication bearing on the limes. Among a people of roadmakers, Trajan was one of the greatest, and we have definite evidence from inscriptions that some of the military roads in this region were constructed by him. The more secure control which the Romans now maintained over the territory within the limes tended to its rapid civilization, and the Roman influence, if not the Roman arms, soon began to affect powerfully the regions beyond.

After his careful survey of the Rhine end of the great defensive barrier, Trajan proceeded to consider it and plan it from the Danube. From the age of Tiberius onwards the Romans possessed the whole southera bank of the river from its source to the Enxine. But the precarious tenure of their possession had been deeply impressed on them by the disasters and bumiliations they had undergone in these districts during the reign of Domitian. A prince had arisen among the Dacians, Decebalus by namse, worthy to be placed at the head of all the great barbarian antagonists of Rome. Like Maroboduus, he was able to combine the forces of tribes commonly hostile to each other, and his military ability almost went the length of genius. After he had swept the province of Mcesia bare, he was defeated by one of Domitian's lieutenants, but the position of affairs on the Danubio-Rhenish border was still 80 threatening that the emperer was glad to conclude a treaty which conferred extraordinary advantages on his foe. Not only did the Romans stipulate to pay to Decebalus an annual subsidy, which he must have regarded as a tribute, but they agreed to supply him with engineers and craftsmen skilled in all kinds of construction, but particuiarly in the erection of fortifications and defensive works. During the nine or ten years which had elapsed since the conclusion of this remarkable treaty, the Dacian prince had immensely strengthened the approaches to his kingdom from the Roman side. He had also equipped and drilled his formidable army after the Roman fashion. It was impossible for a soldier like Trajan to endure the conditions laid down by Domitian ; but the conquest of Dacia had become one of the most formidable tasks that had ever confronted the empire. Trajan no doubt planned a war before he left the Danube for Rome late in 99.

The arrival of the emperor had been amaited in the capital with an impatience which is expressed by Plipy and by Martial. ${ }^{1}$ All that had happened since Trajan's elevation to the throne had raised high ad Rome the hope of a prosperous and glorious reign. As he entered the city and went on foot to the Capitol, the plaudits of the people were unmistakably genuine. During his stay in' the city he riveted more firmly still the affections, bnth of the senate and of the people. The reconciliation of the empiro with liberty, inaugurated, as Tacitus says, by Nerva, seemed now to be securely achieved. Trajan was absolutely open and simple, and lived with men at Rome as he had lived with his soldiers while on service. He

1 It has been conjectured, not improbably, that the Germania of Tacitus, written at tha period, had for one of ita aime the enlighten. ment of the Romans concerning the formidable charaoter of the Germans, so that they might at once bear more readily with the emperor'a prolonged absence and be prepared for the necessity of decisive action on the frontier.
realized tho senate's ideal of the citizen ruler. The assurance that no senator should suffer was renewed by oath. All the old republican formalities were most punctiliously observed-even those attendant on the emperor's election to the consulate, so far as they did not involve a restoration of the old order of voting at the comitia. The reneration for republican tradition is curiously attested by the reproduction of many republican types of coin struck by senatorial officers. Trajan seized every opportunity for emphasizing his view that the princeps was merely the greatest of the magistrates, 'and so was not above but under the laws. He was determined, he said, to be to his subjects such a ruler as be had desired for himself when a subject. There is a pretty story to the effect that he handed the commander of the prætorians his sword, and said, "Use it for me if I do well, but against me if I do ill." Martial, who had called Domitian his lord and his god, now cried, "In him we have no lord, but an imperator!" Real power and influence were accorded to the senate, which had now, by the incorporation of members whose origin was provincial, become in a manner representative of the whole empire. Trajan associated with the senators on equal terms, and enjoyed in their company every kind of recreation. All pomp was distasteful to him, and discarded by him. There was practically no court, and no intrigues of any kind were possible. The approach to his house was free, and he loved to vass through the city unattended, and to pay unexpected visits to his friends. He thirsted for no senator's bluod, and used severity against the delatores alone. There was but one insignificant conspiracy against him during his whole reign. Though not literary himself, Trajan conciliated the literary men, who at all times had close relations with the senate. His intimate, M. Licinius, played an excellent Mæcenas to his Augustus. In his efforts to win the affections of Roman society, Trajan was excellently aided by his wife Plotina, who was as simple as her husband, benevolent, pure in character, and entirely unambitious. The hold which Trajan acquired over the people was no less firm than that which he maintaioed upon the army and the senate. His largesses, his distributions of food, his public wcrks, and his spectacles were all on a generous scale. The exhibitions in the arena were perhaps at their zenith during his tenure of power. Though, for some unexplained 'reason, he abolished the raimes, so beloved of the populace, at the outset of his reign, be availed bimself of the occasion of his first triumph to restore them again. The people were delighted by the removal of the imperial exedra in the circus, whereby five thousand additional places were provided. Taxation was in many directions reduced, and the financial exactions of the imperial officers controlled by the erection of a special court. Elaborate precautions were taken to save Italy from famine; it is said that corn for seven years' consumption at the capital was retained in the granaries. Special encouragement was given to merchants to import articles of food. The corporation of bakers was organized, and made more effective for the service of the public. The internal trade of Italy was powerfully stimulated by the careful maintenance and extension of the different lines of road. Bnt the most striking evidence of Trajan's solicitude for his people's welfare is found in his institution of the alimenta, whereby means were provided for the rearing of poor and orphan children in Italy. The method had been sketched out by Nerva, but its great development was due to Trajan. The moneys allotted by the smperor were in many cases supplemented by private benevolence. As a soldier, I'rajan realized the need of men for the maintenance of the empirc against the outer karbarians, and he preferred that $t^{\text {he }}$ ese men should be of Italian birth. He was only
carrying a step farther the policy of Augustus, who by a system of rewards and penalties had tried to encourage marriage and the nurture of children. The actual effect of Trajan's regulations is hard to measure ; they were probably more effectual for their object than those of Augustus. The foundations were confiscated by Pertinax, after they had existed less than a century.

During the year 100, when Trajan was consul for the third time, Pliny, who had been designated consul for a part of it, was appointed to deliver the "Panegyric" which has come down to us, and which forms the most important source of our knowledge concerning this emperor. Pliny's eulogy of Trajan and his denunciation of Domitian are alike couched in extravagant phrases, but the former perhaps rests more uniformly on a basis of truth and justice than the latter. The tone of the "Panegyric" certainly lends itself to the supposition of some historians that Trajan was inordinately vain. That the emperor had an bonest and soldierly satisfaction in his own weil-doing is clear; but, if he had had anything like the vanity of a Domitian, the scnate, ever eager to outrun a ruler's taste for flattery, would never have kept within such moderate bounds.

Towards the end of 100 , or early in 101, Trajan left Rome for the Danube. Pretexts for a Dacian war were not difficult to find. Although there was no lack of hard fighting, victory in this war depended largely on the work of the engincer. The great military road connecting the posts in Upper Germany with those on the Danube, which had been begun by Tiberius, was now extended along the right bank of the river as far as the modern Orsova. The year 101 was spent mainly in road-making and fortification. In the following campaign, after desperate fighting to the north of the Danube in the mountainous region of Transylvania, such as Cæsar never encountered in all his Gaulish wars, the capital of Decebalus was taken, and he was forced to terms. He agreed to raze all fortresscs, to surrender all weapons, prisoners, and homan deserters, and to become a dependent prince under the suzerainty of Rome. Trajan came back to Italy with Dacian envoys Who in ancient style begged the senate to confirm the conditions granted by the commander in the field. The emperor now enjoged his first Dacian triumph, and assumed the title of Dacicus. At the same time he royally enter tained the people, and no less royaily rewarded his brave officers. But the Dacian chief could not school his high spirit to endure the conditions of the treaty, and Trajan soon found it necessary to prepare for another war. A massive stone bridge was built across the Danube, near the modera Turn Severin, by Apollodorus, the gifted architect who afterwards designed the forum of Trajan. In 105 began the new struggle, which on the side of Decebalus could now only lead to victory or to destruction. The Dacians fought their ground inch by inch, and their army as a whole may be said to have bled to death. The prince put an end to his own life. His kingdom became an imperial province; in it many colonies were founded, and peopled by settlers drawn from different parts of the empire. The work done by Trajan in the Danabian regions left a lasting mark upon their history. The emperor returned to the capital in 106 , laden with captured treasure. His triumpla outdid in splendour all those that went before it. Games are said to have been held continuously for four months. Ten thousand gladiators contended in the arena, and eleven thousand beasts were killed in the contests. Congratulatory embassies came from all lands, even from ludia. The grand and enduring monument of the Dacian wars is the noble pillar which still stands on the site of Trajan's forum at Rome.

The end of the Dacian wars was followed by seven years of peace. During part of that time Pliny was imperial
legate in the proriuces of Bithynia and Pontus, and in constant communication with Trajan. The correspondence is extant, and gives us the means of observing the principles and tendencies of the emperor as a civil governor.
The provinces (hitherto हenatorial) were in considerable disorder, Which Pliny was sent to cure. It is clear from the emperor's letters that in regard to nine ont of ten of rie matters which his anxious ind deferential legate reforred to him for his decision he would have been better pleased if the legate had decided thern for himself. Trajan'a notions of civil government were, like those of the duke of Wellington, strongly tinged with militery prepessessions. He regarded the provmcial ruler as a kind of officer in command, who ought to be able to discipline his province for himself, and only to a preal to the commander-in-chief in a dificult case. In advising P'iny about the different free commanities in the provinces, Trajan showed the same regard for traditional rights end privileges which be had exhibited in face of the senate at Rame. At the same time, these letters bring home to us his conviction that, particularly in financial effairs, it was necessary that local self-goverament should le carrical on under the vigilaut eupervisiou of imperial officers. The control which he began in this way to exercise, both in Itaiy and in the provinces, over the "municipia" nad "hberace civitates," by means of agents entitled (then or later) "correctores civitatium liberarum," was carried continually farther and farther by his successors, and at last onded in the complete centralization of the gavernment. On this account the reign of Trajan constitules a turning point in civil as in military history. In other directions, though we fud many salutary civil measures, yet there were no far-reaching achemes of reform. Many details in the administration of the law, and particularly of the criminal law, were improved. To cure corruption in the senate the ballot was introduced at elections to magistracies. The finances of the state were economically managed, and taxpayers were most carefully guarded from oppression. Trajan nevor lacked money to expend on great works of public utility; as a builder, he may fairly be compared with Augustus. His fornm and its numerous eppendages were constructed on a mognificent scale. Many regions of Italy and the provinces besides the city itself benefited by the care and munificence which tho emperor bestowed on such public improvementa. Hisattitude towarda religion was, like that of Augustus, moderate and conservative. The famous letter to Pliny about the Christians is, according to Roman ideas, merciful and considerate. It was impossible, however, for a Roman niagistrate of the tinie to rid himEelf of the idea that all forms of religion must do homage to the civil power. Hence the conflict which made Trajan appear in the eves of Christians like Tertullian the mast infamons of monsters. On the whole, Trajan's civil administration was sound, careful, and sensible, rather than brilliant or epoch-making.

In 113 or 114 Trajan left Italy to make war in the East. The never-ending Parthian problem confronted him, and with it were more or less connected a number of minor difficulties. Already by 106 the position of Rome in the East had been materially improved by the peaceful annexation of districts bordering on the province of Syria. The district of Damascus, hitherto a dependency, and the last remaining fragment of the Jewish kingdom, were incorporated with Syria; Bostra and Petra were permanently occupied, and a great portion of the Nabathrean kingdom was constituted the Roman province of Arabia. Rome thus obtained mastery of the most important positions lying on the great trade routes from East to West. These changes could not but affect the relations of the Roman with the Parthian empire, and the affairs of Armenia became in 114 the occasion of a war which has been described under Persia, vol. xviii. p. 603. Trajan's campaigns in the East ended in complete though brilliant failure. In the retreat from Ctesiphon (117) the old emperor tasted for almost the first time the bitterness of defeat in the field. He attacked the desert city of Hatra, westward of the Tigris, whose importance is still attested by grand ruins. The want of water made it impossible to maintain a large force near the city, and the brave Arabs routed the Roman cavalry. Trajan, who narrowly escaped being killed, was furced to withdraw. A more alarming difficulty lay before him. Taking adrantage of the absence of the emperor in the far East, and possibly by an understanding with the leadors of the rising in Armenia and the annexed portions of

Parthia, the Jews all over the East had taken up arms at the same moment, and at a given signal. The massacres they committed were portentous. In Cyprus 240,000 men are said to have been put to deatb, and at Cyrene 220,000 . At Alexandria, on the other hand, many Jews were killed. The Romans punished massacre by massacre, and the complete suppression of the insurrection was long delayed, but the Jews made no great stand against disciplmed troops. Trajan still thought of returning to Mesopotamia, and of a arenging his defeat at Hatra, but he was stricken with sickness and compelled to take ship for Italy. His illness increasing, he landed mn Cilicia, and died at Selinus in that country about the end of July 117. Trajan, who had no children, had continually delayed to settle the succession to the throne, though Pliny in the "Panegyric" had pointedly drawn his attention to the matter, and it must have caused the senate muck anxiety. Whether Hadrian, the cousin of Trajan, was actually adopted by him or not is impossible to determine ; certainly Hadrian had not been advanced to any great honours by Trajan. Even his military service bad not been distinguished. Plotina asserted the adoption, and it was readily and most fortunately accepted, if not believed, as a fact.
The senate had decreed to Trajan as many triumphs as be chose to celebrate. For the first time a dead general triumphed. When Trajan was deified, he appropriately retained, alone among the emperors, a title he had won for himself in the field, tbat of "Parthicus." He was a patient organizer of victory rather than a strategic genius. He laboriously perfected the military machine, which when once set in motion went on to victory. Much of the work he did was great and enduring, but the last year of his life forbade the Romans to attribute to him that felicitas which they regarded as an inborn quality of the highest generals. Each succeeding emperor was saluted with the wish that he might be "better than Trajan and more fortunate than Augustus:" Yet the breach made in Trajan's felicitas by the failure in the East was no greater than that made in the felicitas of Augustus by his retirement from the right bank of the Rhine. The question whether Trajan's Oriental policy was wise is answered emphatically by Mommsen in the affrmative. It was certainly wise if the means existed which were necessary to carry it out and sustain it. But succeeding history proved that those means did not exist. The assertion of Mommsen that the Tigris was a more defensible frontier than the desert line which separated the Parthian from the Roman empire can bardly be accepted. The change would certainly have created a demand for more legions, which the resources of the Romans were not sufficient to meet without danger to their possessions on other frontiers.

The recards of Trajan's reign are miserably deficient. Our best authority is the 68th book of Dio Cassius; then comes the "Panegyric" of Pliny, with his correspondence. The facts to be gathered from other ancient writers are scattered and scanty. Fortunately the inscriptions of the time are abundant and iaportant. Of modern histories which comprise the reign of Trajan the best in English is tbat of Merivale; but that in German by H. Schiller (Gcschichle der römischen Kaiserzeit, Gotba, 1883) is more on a level with recent inquiries. There are special works on Trajan by H. Francka (Giistrow, 1837), De la Berge (Paris, 1877), and Dieraner (in M. Büdinger's U'ntersuchungen zur rönischen Kaisergeschichte, Leipsic, 1868). A paper by Mommsen in Hermes, iii. pp. 30 sq., entitled "Zur Lebensgeschichte des jüngeren Pliuius," is iuportant for the chronology of Trajan's reign.
(J. S. R.)

TRALEE, a market-town and seaport, and the chief town of Kerry, Ireland, is situated on the Ballymullen or Leigh river, about a mile from where it discharges itself into Tralee Bay, and on the Great Southero and Western Railmay, 21 miles north-west of Killarney and 18 south west of Listowel. It is a neat, well-built, and compara tively prosperous town. The principal public buildings are
the crurt-house, the town-hall, the corn exchange, the chamber of commerce, the worlshouse, the infantry barracks, the county hospital, and the fever hospital. A ship canal, permitting the passage of ships of 200 tons burden, and constructed at an expense of $£ 30,000$, connects it with Tralee Bay. Coal, iron, and timber are imported, and there is a considerable export of grain. There is a large trade in butter. The population of the town in 1871 was 9506 and in 1881 it was 9396.
Tralee, anciently Traleigh, the "strand of the Leigh," owes its origin to the foundstiou of a Dominican monsstery iu 1213 by John Fitz.Thomas, of the Gersldine family. During the reign of Elizabeth it was in the possession of Earl Desmond, on whose forfeiture it came into possession of the Dennys. At the time of the rebellion in 1641 the English families in the neighbourhood saked to be placed in the castle under the charge of Sir Edward Denny, but during his absence a surrender was made。 The town was incorporated by a charter in the 10th of James I., and hed the privilege of sending two members to the Irish parliament. Though disfranchised at the Union, it obtained the privilege of returning one member in 1832, but in 1885 it was merged in the county.

TRAMWAY. Originally a tramway signified a wheel crack laid ${ }^{0}$ with timbers, and afterwards with iron plates, having a flange on the inner edge by which wheels of the ordinary sort were kept in the track (see Railuay). The introduction of the flanged wheel and edge rail-caused tramways to be superseded by railways, but not until many miles of tramroads had been laid and successfully worked in various parts of the United Kingdom. Although the name is sometimes given to a light railway, by a tramway is now generally understood a street railway, constructed so as to interfere but little with the ordinary traffic, on which vehicles baving flanged wheèls are propelled by animal or mechanical power. Tramways in this sense originated in the United States.

A street railway for passengers was laid in Now York in 1832, but it was soon removed on account of the accidents caused by it. In 1852 a French engineer, Loubat, revived tramways in New York, and they were soon afterwards laid in other American cities. A short line was also laid in Paris in 1853 . The rails used were of wrought-iron, 5 inches wide, having a groove for the flanged wheels of the cars $1 \frac{3}{4}$ to $2 \frac{1}{4}$ inches wide and 1 to $1 \frac{1}{2}$ inches deep (fig. 1). To lessen the inconvenience to ordinary traffic occasioned by this rail, the "step rail" (fig. 2) was introduced, consisting of a fiat surface 3 to 5 inches wide, which can be used by ordinary wheels, and a raised tread on the outer side 1 inch higher and $1 \frac{3}{4}$ inch wide, on which the flanged wheels of the cars run.

Fig. 1.

Fig. 2. This form of rail is still very general in America, and is a good one for the tramways, though not for the general public. In 1858-9 Train, an American, endeavoured to obtain an Act of Parliament authorizing tramways in London; failing in that, he laid tramways, by consent of the road authority, first in 1860 at Birkenhead, and soon afterwards in London. The rail laid at Birkenhead had a step of $\frac{3}{4}$ inch between flat surfaces 3 inches and $1 \frac{1}{2}$ inches wide. That laid in London was narrower, with a step of half an inch, but the slippery flat surface and the step of the rail caused serious inconvenience and numerous accidents to carriages, and the tramways were removed in a few months, after one of them had been successfully indicted as a nuisance In Birkenhead, in spite of complaints of the inconvenience caused to the general traffic, the original rails remained until 1864, when, after a short length had been laid as an experiment with a rail of the grooved section now in general use (fig. 3), the whole of the tramway, several miles in length, was relaid with it The
tramway was subsequently indicted as a nuisance, but ${ }^{2}$ he trial resulted in a verdict in favour of the grooved rail In 1868 an Act of Parliament authorizing the construction of about 63 miles of tramways in Liverpool was obtained ; and in 1869-71 Acts for 61 miles of tramways in London were passed, and were soon followed by other Acts for tramways in Glasgow, Dublin, Edinburgh, and other provincial towns.

In .1870 the Tramways Act was passed, enabling the Board of Trade to make provisional orders euthorizing the construction of tramways in Great Britain, with the conseat of the local authorities, and giving considerahle powers for regulating their construction and working. By the Act the gauge, unless otherwise prescribed by special Act, is to be such as will admit* of the use of carriages constructed for use on railways of a gauge of 4 feet $8 \frac{1}{2}$ inches.' Tramways for which Acts had been previously obtained were of 4 feet $8 \frac{1}{2}$ inches gauge, to comply with a standing order intended for railways, and not to make them a vailable for railway rolling stock, which the narrow groove of an ordinary trammay rail will not admit. There is reason to think that a narrower gauge, such as 3 feet 6 inches, is often sufficient and preferable to the 4 feet $8 \frac{1}{2}$ inches gauge.

Tramways in towns, authorized by provisional order, are to be constructed in the middle of the road, and are not to be so laid that for 30 feet and upwards a less space than 9 fect 6 inches shall be left between the outside of the footpath and the rail, if one-third of the owners or occupiers of premises abutting upon that part of the road object. Vehicles are thus enabled to stop at the road side without hindrance from the tramcars. To leave 9 feet 6 inches on each side of a single line of tramway of 4 feet $8 \frac{1}{2}$ inches gauge a street must be upwards of 24 feat wide. No carriage used on a tramway must extend more than 11 inches beyond the outer edge of the wheels, and there must be a space of at least 15 inches between the sides of the widest carriages or engines to be used, when passing one another. A width of not less than 3 feet 2 inches between double lines and at passing places is thus necessary, and a double line of tramway, leaving 9 feet 6 inches space on each side, requires a street at least 32 feet 6 inches wide between the footways. In narrow roads there is a convenience in having the tramway at the side, and it is sometimes provided for in special Acts. The space between the rails, and for 18 inches bejond them, is repairable as part of the tramway. Power is given to local authorities to purchase tramways at the expiration of twenty-one years, and they may be removed under certain circumstance3.

It appears from a parliamentary return that in 1886 there were 779 miles of street tramways open for traffic in Great Britain, on which a capital of $£ 11,503,438$ had been expended, the net receipts for the year being $£ 563,735$, and the working expenses 79 per cent. of the gross receipts.

The groored rail first laid in England was $4 \frac{1}{3}$ inches wide er sn inch thick, having a tread or rolling surface for the wheel 13 inches wide, and a groore $\frac{8}{4}$ inch deep, $\frac{3}{4}$ inch wide at the bottom, and $1 \frac{4}{4}$ inches wide at the top (fig. 3). The rail was spiked through to a longitudinsl timber lisid on crosa sleepers, and secured to them by angle brackets and spikes. This rail snd method of laying were generally sdopted, but it was found
 that the heads of the spikes wore off, snd the rails required respiking, sud split and worked loose at the joints. A rail knomy as the box-rail was introduced, having flanens hrlow on each side, through holes in which clips are driven to fasten the rail to the trie
ber．This constitutes a good fastening，and the flanges give atiffoess to the rail，bue the clips canso gaps between the rail and the paving stones，wlich lead to the formation of ruts alongside the rails．The longitudinal timbers，instead of being laid on cross sleepers，on which the paring does not bed well，are citen fixed in cast－iron chairs con－ nected by trausverse tie－bars．A bed of concrete is alwaya laid under the longitudinal timbers，and should extend to the whole width of the paviog．The rails first laid weighed 40 tb per yard，bat it was soon found desirable to increase the weight to 60 to per yard．It is， however，impossible to fish the joints of rails like the above，and it was found that the working of the joints under the passage of the cars loosened the ends of the rails，dislocated the paring，and damaged both the tramway cars and ordinary vehicles．Tramways proved hardly able to withetand beavy atreet trafic；and to provide for steam traction a stronger form of rail and a better aystem of perma－ nent way became necessary．Many forms of iron bearings have been derised，the rail being either supported continuously or on chairs at intervale．In the best of these the tram rail can be replaced when worn without disturbing the foundation．In the syatem used in Liverpool cast－iron longitudinal sleepers weighing 80 and 90 lb a yard carry ateel rails of a T section（fig．4）woighing 40 Ib a yard， both sleepers and rails being held down by bolts to jawe anchored in the concrete foundation．The rails can be renewed and the sleepers can be taken up with very little distarbance of the naving．

Fig． 4.

Fig． 5

Steel rails of a flatfooted or a bridge section，and of such a depth as to constitute both rail and sleeper，are also used．In some of the latest and hest examples the rail is of a flatfooted section（fig．5）， 6 or 7 inches deep，and 6 or 7 inches wide at the base，weighing 65 to 93 tb per yard．Tho head has a groove either planed out or rolled in it，giving the usual proile to the upper surface．The joints are fished in the ordinary way，and are as etrong as the rail itself．Cross ties are sometimes used，but when the sail is slightly bedded in the concrete foundation they are dispensed with．The paring is aet in cement close against the rail，and is bedded directly or in sand on the base of the rail，upon which there is a bearing of 1⿱十口⿱⿰㇒一乂凵，or 2 inches．Such a tramway will stand ateam traction and the heariest street traffic，bat the rail，which is of an expensive section，requires entire renewal when the head is worn out．Iron or steel continuous bearings are less elastic，and therefore more jarring and noisy than timber slecpers．

The profile of the upper surface of tram rails has been little altered since the first grooved rail was devised for Birkenhead in 1863， though slight modifications have been made in the form of the groove with the ohject of lessening tractive resistauce．For the sake of the ordinary traffic the groove should not exceed 1 inch in Fidth，and a rounded section with sides splaying outwards facili－ astes the forcing out of the mud and dirt．A nearly npright side aest the tread or rolling surface with a pplay on the inner side throws the mud aray from the wheel．The upper corners of the rail should be angular，to mako as thin a joint as possible betreen the rail and the paving．There has been a tendency to diminish the width，and a rail as narrow as 3 inches has leen laid．A deviation from the usual profile has been adopted in Liverpool， where the groove is in the middle of a rail $3 f$ inches wide．

A tramway rust not only afford a good rolling surface capable of bearing the weights running on it，hut it must also be able to resist the shocks of heavy vehicles crossing the rails in all directions． The space between the raile，and for 18 inches beyond them，which is repairable with the tramway，is slways paved，eometimes in pro－ rincial towns and in the suburbs of London with wood，but generally rith stone sets in the best manner on a corrcrete foundation．The sots alongside the rail should be carefully dressed and fitted to make a thin joint．There is much extra wear，and a tendency to form a rut alongside the rail，arising from ordingry wheels using the tram rail，and unless the aurface of the paring is kept to the level of the rail the wheels of carriages are caught by the rail，and damago and accidents are caused．To resist the wear near the rails，chilled cast－ iron blocks have boon nsed where the traffic is great．On a mac－ adamized road there is the same tendency to form a rot along the poter edge of the tramwey paring，which is to some extent prevented by giving a eerrated edge to the paving．There is alwaya great diffi－ culty in keeping the road surface to the level of the paring，and it is better to pave the entire width of a etreet in which a tremway is laid．

Although cars can be drawn round very sharp curves，the latter should be as casy as possible．A radius of 150 to 200 fect is the least that should be used when there is any choice，hat necessit？ may compel the use of curves of 50 or even 30 feet radius．On such curves，however，the cars are liable to be strained，aid the resistance to traction is greatly increased．

A single line of tramway must have passing places for the cars， consisting of pieces of double line of length sufticient to hold two cars at least，with connecting curves and the necessary points and crossings．Where steam or other mechanical power is to be used the passing loops should be at least 200 feet in length．There is inevitable delay and interference with the street traffic at passing places，and where cars are to be run at frequent intervals it is better to lay down a douhle line if the atreet is wide enough．It is a great advantage to the ordinary traffic to have the cars moving always in the same direction on the same line of rails．

For horse traction fixed points of chilled cast－irou or steel ar eufficient，as the driver can turn his horses and direct the car on to either line of rails．When mechanical power is used，drop puin－ or movable points are required．In the former the groove leadino into the road to be taken is of the full depth，and the other groove shallow，so that the engine and cars naturally take the former． On coming out of the shallower groove to the deeper there is，how－ ever，a drop onconntered which is damaging to the rolling stock， and especially to the engines．Movable points require setting by hand，or they are actuated by a spring or balance weight．In one form of epring point one groove is filled up by a tomgue which is pressed down by wheels passing out of a loop，but which forms the side of the groove for wheels running the opposicu direction．A epring point of eteel，which is forced aside by the flange of the wheel passing ont，and shuts close again by its own elasticity，is also successfully used．A movable point on one side of the way is sufficient．Crossings are eithcr built up from rails cut to the required angle，or they are cast solid in steel or chilled iron．Fill． ing pieces of the same material，roughened on the surface for foot－ hold，are inserted between the rails at the angles of points and crossings．Both points and crossings wear rapidly，and are trouble－ some to maintain in good condition，and when not so maintained are dangerous to ordinary traffic．

The rramcars generally in use in the United Kingdom are con－ structed to carry 22 persons inside and 24 outside．They are 16 feet long in the body，or 24 feet including the platforms at each end，and weigh $2 \frac{1}{3}$ to $2 \frac{3}{4}$ tons when empty and about $5 \frac{1}{3}$ tons when fully loaded Smaller cars to carry 20 or 14 persons inside，drann by one horse，ere useful to run at short intervals when the traffic is not great，a frequent service of care being a great element of success．The car wheels are usually of steel or chilled iron，with a flange half an inch deep，and are fitted with powerful brakes． The axles are about 6 feet apart，giving a short wheel－base to enahle the cars to pass sharp curves，but with the disadvantage of overhanging ends．Cars to be drann by mechanical power，espe－ cially if outside passengers are to be carried，should hare a flesible wheel－base，either by means of bogie frames or radiating axles． In Hamburg and Copenhegen tramcars have wheels witbout flanges， and a emall guiding wheel running in the groove，which can be raised to allow the car to leave the track．

The tractive force required on a straight and level tramway is foand to vary from Ibo to to of the load，according to the con－ dition of the rails．On a tramway in average condition it is about $\frac{1}{1}$ ．The resistance is thus at the best nearly double that on a railway，and sometimes as much as on a good pavement． This is due to the friction of the flange of the wheel in the grooved rail，and to the circumstance that the latter is always more or less clogged with dirt．The clearance between the flange and the groove is necessarily small，as the former must have sufficient strength，and the latter must be narrow．The least inaccuracy of gauge，therefore，cauaes extra friction，which is greatly increased on curves．By removing the flanges from two of the four wheels of a tramway car Tresca found that the resistance was reduced from $\frac{1}{10}$ to $\frac{1}{18}$ of the load．The resistance due to gravity is of course not lessened on a tramway；and，if $\frac{1}{100}$ of the load be the tractive force required on the level，twice as much，or $\frac{1}{60}$ of the load， will be required on a gradient of 1 in 100 and three times as much on a gradient of 1 in 50 ．To start a tramcar，four or five times as great a pull is required as will beep it in motion afterwards，and the constant starting after stoppages，especially on inclines，is very destructive to horses．Horses employed on tramwaye are worked only a few honrs a day，a day＇s work being a journey of 10 or 12 miles，or much less on steep gradients．In London a tram car horse bought at the age of five years has to be aold at a low price alter about fonr years work．On the Edinburgh tramways，in conscquence of the steep gradients，the horses last a lese time，and they have to be constantly shifted from ateep to easier gradients． The cost of traction by horses is generally $6 d$ ．or 7 d ．per milo for two horses，and more when the gradients are stecp．

The application of steam as a motive power on strect tramweys 15 attended with epecial diffeulties，arwing from the conditions
ander which the eogines have to work. A tramway engine must be able to draw its load up steep gradients, demending perhaps seven or eight times the power required on a level, and it must have tire necessary adhesion without being too heavy for the permanent way. It must be capable of traversing sharp curves, of going backwards or forwards with safety, and of stopping and starting quickly. Por the safety and convenience of the public the Board of Trade require that tramway engines shall have brakes to each wheel, to be applied by haud and by steam, a governor eo arranged as to shut off the steam and apply the brakes when the engine -xceeds the speed of 10 miles an hour or other stated speed, an indicator to show the speed, a whistle or bell to be sounded as a waraing, and a fender to push aside obstructions; the engine must be free from noise produced by blast, and from clatter of machinery suoh a to constitute a reasonable ground of complaint; and the machinery and fire must be concealed from view; no smoke or steam must be emitted so se to constitute any reasonable sround of complaint to passengers or the public.

The first attempt to use steam on a modern tramway was with Grantham's combined engiue and car. It was about 25 feet long, having a vertical boiler in a central compartment, with the steam cylinders below, driving one pair of wheels 2 feet 6 inches in diameter. It carried 20 passengers inside and 24 outside, weighing $6 \frac{1}{2}$ tons empty and 12 tons when fully loaded. In a later car the boilor and machinery were at one end, and the body of the car was carried on a bogie frame. In a combined engine and car the weight of the car and passengers is utilized for adhesion of the driving wheels, and this is conveniently effected in Rowan's car, in which there are two four-wheel bogies, the leading one csrrying the engine and boiler, and half the bady of the car and passengers. The engine can be detached from the car for repair and another engine can be substituted in a few minutes. Economy of rolling atock, and the advantage of being abla to use cars intended for horses, are in favour of independent engines. They are usually in general construction similar to locomotives, but are enclosed so as to resemble in outward appearance a short tramcar. The cylinders are 6 to 9 inches in dismeter, with a stroke of 10 to 12 inches. The wheels are coupled, 2 to 3 feet in diameter, and the engines weigh 4 to 6 tons mith fuel and water. The governor to shut of steam and apply the brakes when any determined speed is attaine is actuated either by the engine wheels or by an independent wheel to prevent the possibility of the brakes being put on when the driving-wheels slip. An effectual way of rendering the exhaust steam invisihle is to condense it by passing it throngh water in a tank, or through a shower of water let off at each blast, but when the water gets hot it must be changed, and in streets it is difficult to get rid of the hot water. Several methods of superheating by passing the exhanst steam through the fire have been adopted, but they are all attended with an increased consumption of fuel, which in cold damp weather is considerable. It is now preferred to pass the stean into tubes exposed to the air on the top of the engine car, from which the condensed water is returned to the feed-tank, to be again pumped into the hoiler at a high temperature. Any stesm remaining uncondensed passes into the smoke-box. Compound cylinders have been applied to tramway engines, giving a greater range of power, economizing fuel, and rendering the exhaust steam easier to deal with. The extra complication of. a compound engine is, however, e drawback.

The cost of steam traction with engines of ordinary size is generally 3 d . to 4 d . per mile run by the ongine, snd more on lines with stcep gradients: 'To this must be added for depreciation 10 per cent., or, according to some authorities, 15 per cent. on the original cost of the engines, making altogether 4 d . to 6 d . per mile run on a tramway with average gradients.

Fireless engines were first tried io New Orleans, and have been in successful use on tramways in France for some years. The motive power is obtained from water heated under pressure to a very high tomperature in atationary hoilere and carried in a reservoir, where it gives off sieam as th 7 pressure and temperature are reduced. Two tons cf water heated io give a steam-pressure of 250 tb to the squars inch serves for a run of 8 or 10 miles, leaving more thain $\frac{0}{20}$ of the water and a pressure of 20 to 25 Ib above the atmosphere on returning wo the hoiler. Large boiler-power is required to reheat the engine reservoirs quickly, and this cannot be afforded for only a few engines, but, when worked on a sufficient scale, the fireless engines are claimed to be economical, the economy resulting from the generation of the steam in large stationary boilers.

Compressed air as a motive power offers the advantage of haviug noither steam nor the products of combustion to be got rid of. In Scott Moncrieffe engine, which was tried on the Vale of Clyde tramways in 1876, air was compressed to 310 方 on the square inch, and expanded in the cylinders from a uniform working pressure to that of the atmosphere. There is a considerable loss of beat during the expansion of the air which is attended with a serious lass oi preo, and in Mékarski's system, which has been in use tor the pr...s.on of tramcars at Nates for eeven yeare, the lose of pres-
sure is considerably lessened by heating the air during expansion. The air, at a pressure of 426 to per square inch, is stored in cylindrical reservoirs beneath the car, and before use is passed through a ressel three quarters full of water heated to 300° F., by which it is heated and mixed with steam. The heat of the latter is absorbed by the air during its expansion, first to a working pressure which cen bo regulated by the driver, and then to atmospheric pressure in the cyliuders. At Nantes the average cost for three years for fropelling a car holding 34 persons was about 6 d . per mile.
ln San Francisco a main charged with air at a pressure of about 120 ib per equare inch has been laid along the tram route, from which reservoirs on the cars are charged. by means of standpipes and flexible connexions at convenient points, the operation taking a very short time. The inventor claims to utilize 30 per cent. of the power applicd to the compressor.

Strcet tramways-worked by mesns. of a wire ropo have been in successful operation in San Francisco since 1873. There are now upwards of 24 miles of double line in San Francisco, and 10 miles in Chicago, and the system is being adopted in other American and colonial cities. It has also been in operation in Englaud at Highgate Hill for aeveral years, and is about to he adopted in other localities. The motive power is transmitted from a stationary engine by a rope of steel wire running always in one direction up one track and down the other, in a tube midway between the rails, on pulleys which are arranged so as to suit curves and changes of gradient as well as straight and level lines. Over tho rone is a slot $\frac{3}{4}$ inch wide, in which travels a flat arm of ateel connecting the dummy car with the gripper which grasps the cable. 'l'he flat arm is in three pieces, the two outer ones constituting a frame which carries the lower jow of thegripper, with grooved rollers at each end of it, over which the cable runs when the gripper is not in action. The upper jaw is carried by the middle piece, which slides within the outer frame, and can be do. pressed by a lever or screw, pressing the
cable firston the rollers, and then on the lower jaw until it is frmly held. The speed of the cable, which is genorally 6 to 8 miles an hour, is thus imparted to the car gradually and without jerk. The arrangements for passing the pulleys, for

Fís. 6.-Gripper. changing the dummy and cars from one line to the other at the end of the road, for keeping the cable uniformly taut, and for crossinge ond junctions with other lines are of considerable ingenuity. When the cars are cast off from the cable they must be stopped by hand brake., which on stcep gradients especially must be of great power.

The systerm has advantages on double lines with few and easy curvee when the gradients are long and oteep, and it can bo employed on gradients too steep for steam traction. On level lines it is doubtful if it could compete in economy with steam, or
 en with borse traction, unless with a very frequent service of cars, though then it presents the advantages of being comparatively quiet, and freo from snmoke and steam, aud of admitting a frequen service of cars with little extra cost. On the cable roads of San Franciaco it has been found that, of the average daily power employed, 68 per cent. is expended in moving the cables, \&ic., 28 per cent. for the cars, and 4 per cent. for passengers. It is considered that it is practicable to utilize in moving cars and passengers as much as 50 per cent. of the power, providod the cars are fully loaded and run at short intervals.

Electricity has been applied as a motive power on a tramway about 2 miles long at Blackpool. The current is conveyed by two copper conductors in a central channel beneath the roadway, and is communicated to the motors in the car by a collector runniug
apon the conductors and fissiog through a narrow slit in the channel. The return current passes through tho rails. The cars carry as many as 56 passengers on a level line. Traniways have also been worked by accumulators at Antwerp and Brussels, but the weight of them appears to be at present prohibitory to this method of applyiog electricity, oxcept for short trips. See Traction.

For tuller Information, see D. K. Clark, Tramways, their Consiruction and Maintenance: \mathbf{F}. Serafon, Les Tramıays es les Chemins de Fer sur Routes; "Street Tramways," Proc. Inst, C. E., Fol, 1,-vol. 1xvil.; "The Working of Tramwsya by Steam." lbid, vol. lxxix.; and F. B. Smlth, Cable Tramuays. (T: C.)

TRANCE. See Sleep; also Magnetism (Animal).
TRANI, a seaport of Italy, on the Adriatic, in the province of Bari, and 26 miles by rail west-north-west of that town, still retains its old walls and bastions, with the citadel, now used as a prison. Some of the streets remain much as they were in the medieval period, and many of the houses display more or less of Norman decoration. The cathedral, on a raised open site near the sea, dating from about the year 1100, is a basilica with three apses, a large crypt, and a lofty tower. The arches of the Romanesque portal are beautifully ornamented, in a manner suggestive of Arab influence ; the bronze doors, executed by Barisanus of Trani in 1175, rank among the best of their period in southern Italy. The capitals of the pillars in the crypt are fine examples of the Romanesque. The interior of the cathedral has been barbarously modernized. The vicinity of Trani produces an excellent wine (Moscado di Traai); and its figs, oil, almonds, and corn are also profitable articles of trade. The harbour was once deep and good, but latterly has got silted up. The population of the town in 1881 was 25,173 (commune 25,647).
Trani is the Turenum of the itiDeraries. It first became a Pourishing place under the Normans and during the crusades, but attaiued the acme of its prosperity as a eeat of trade with the East ander tho Aagevine princes. Several synagogues continue to afford an indication of its former commercial prosperity.

TRANQUEBAR, a seaport town in the Tanjore district of Madras presidency, India, in $11^{\circ} 1^{\prime} 37^{\prime \prime}$ N. lat. and $79^{\circ} 55^{\circ}$ E. long. In the 17 th centnry it belonged to the Danes; it mas taken by the Eritish with other Danish settlements in 1807, but restored in 1814, and finally purchased in 1845 for a sum of $£ 20,000$. In Danish times Tranquebar was a busy port, but its prosperity has fluctuated considerably of late years, and is now at a very low ebb. It was the first settlement of Protestant missionaries in India, founded by Ziegenbalg and Plutschau (Lutherans) in 1706 ; and as a mission station it still retains its importance.

TRANSBAIKALIA (Zabaikalskaya Oblast), a province of Eastern Siberia, to the east of Lake Baikal, has Irkutsk on the west, Yakutsk on the north, the province of Amur on the east, and Mongolia on the south. Its area (240,780 square miles) is about as great as that of AustriaHungary, but its population is under half a million. With regions of a purcly Siberian character on the one hand, and including on the other the outer borders of the Mongolian steppes and the upper basin of the Amur, Transbaikalia, forms an intermediate link between Siberia, Mongelia, and the northern Pacific littoral. The inountains of the Yablonovoi Khrebet, which run in a north-easterly direction from the sources of the Kerulen to the bend of the Olekma in $56^{\circ} \mathrm{N}$. lat., divide the province into two quite distinct parts: to the west the upper terrace of the high East Asian plateau continucd from the upper Selenga and Yenisei (from 4000 to 5000 feet high) towards the plateau of the Vitim (3500 to 4000 fest) ; and to the east the lower terrace of the same plateau (about 2800 feet high), which appears as a continuation of the eastern Gobi. The continuity of the high plateau extending from the upper Selenga to the upper Vitim was for a long time overlooked in consequence of a broad and deep valley by which it is intersected. Beginning at Lako Baikal, it pierces the huge north-western border-ridge of the plateau,
aud runs eastrard up the Uda, with an imperceptible gradient, like a gigantic railway cutting enclosed between two steep slopes, zending another brahch south towards Kiakhta. After having served, through a succession of geolugical periods, as an outiet for the water and ice which accumulated on the plateau, it is now utilized for the two highways which lead from Lake Baikal over the plateau ($3500-4000$ feet) to the Amur in the east and the Chinese depression in the south. Elsewhere, the high and massive border-ridge on the north-western edge of the plateau can be crossed only by difficult footpaths. The border-ridge just mentioned, pierced by the wide operning of the Selenga, runs from south-west to north-east under different names, being known as Khamar-daban to the south of Lake Baikal (the Khamar-daban peak raising its bald summit to a height of 6900 feet above the sea), and as"the Barguzia Mountains (7000 to 8000 feet) along the eastern bank of the Barguzin river, while farther to the north-east it has been described by the present writer under the names of the South Muya and Tchara Mountains (6000 to 7000 feet). Resting its south-east base on the plateau, it descends steeply on the north-west to the lake, or to the broad picturesque salleys of the Barguzin, the Muya, and the Tchara. Larch, fir, and cedar forests thickly clothe the ridge, whose dome-shaped rounded summits (goltsy) rise above the limits of tree vegetation, but do not reach the snow-line (here above 10,000 feet). The high plateau itself has the aspect of an undulating table-land, intersected by low ranges, which rise some 1500 or 2000 feet above its surface, and are separated by broad, flat, and marshy valleys, which the rivers languidly traverse till they find their way across the border-ridges. Those of the valleys which are better drained have fine meadow lands, but as a whole the plateau has the appearance, especially in the north, of a wet or marshy prairie in the hollows, while the hills are thickly clothed with forests (almost exclusively of larch and birch). Numberless lakes and ponds occur along the river courses. Tungus hunters find a livelihood in the forests and on the meadows, but permanent agricultural settlements are impossible, corn seldom ripening on account of the early frosts. The lower parts of the broad and flat valley of the Djida have, however, a few Cossack settlements, and on the upper Selenga and Yenisei Mongolian shepherds (Uryankhes and Darkhates) inhabit the high grassy valleys abont Lake Kossogol (5560 feet above tha sea). Quite different is the lower terrace of th ...au, occupied by the eastern Gobi and the Ne. wansk region of Transbaikalia, and separated from the above by the Yablonovoi ridge. This last is the south-eastern border ridge of the higher terrace. It rises to 8250 feet in the Sokhondo peak, but elsewhere its dome-shaped summits do not exceed 5000 or 6000 feet. When crossing it from the north-west, about Tchita, the traveller hardly perceires that he is approaching the great water-parting between the Arctic and the Pacific oceans. Numberless lakes, with liat undefined borders, feed streams which flow lazily amidst marshes, some of them to join the great northward rivers, others to find their way to the Amur and the Pacific. Low hills rise gently abore the edge of the plateau, but an abrupt slope descends towards the south-east, where the hill-foots of the Tablonovol are nearly 1500 and 2000 fept lower than on the north-west. Climate, flora, and fauna suddenly change as soon as the Yablonovoi has becil crossed; the steppes of Dauria (continuations of those rif the Gobi), covered with a bright luxuriant regetation, meet the view of the spectator. The Siberian flora give way to the mucb richer Daurian flora, which in turn is exchanged for the Pacific littoral fiora as 8000 as th, traveller descends from the lower terrace of the platea, towards the Manchurian plains and lowlands.

The lower terrace, occupied in Transbaikalia by the Nertchinsk district, has the character of a steppe, hut is also intersected by a number of ranges, all ruuning southwest to north-east, and all being plications of Silurian and Devonian rocks, containing silver, lead, and copper, and also auriferous sands. Agriculture can be easily carried ou in the broad prairies, the only drawbacks beng droughts, and also frosts in the settlements in the higher close valleys of the Nertchinsk or Gazinur Mountanns. The lower terrace is in its turn fringed by a border-ridge-the Great Khingan -which has, with reference to the lower terrace, the same characters as the Yablenovoi in relation to the upper, and separates Siberia from northern Manchuria. This inportant ridge, as shown elsewhere (vol. xxii. pp. 3, 4), does not run from south to north, as represented on the old maps, but from south-west to north-east ; it is pierced by the Anur near Albaziu, and joins the Othotsk ridge, which in its turn does not join the Yablonovoi Mountains. The inountains drawn west and east on older maps to connect the Yablonovoi with the Okhotsk ridge bave no actual existence.
The rivers bclong to three different systems, -the affuents of Lake Baikal, of the Lena, and of the Amur. Of the first tho Selenga (800 niles long) rises io the Hanghai Mountains of uorthwestern Mongolia, oue of its great tributaries (the Ehin-gol) being an emissary of Lake Kossogol. It flows past Selenghinsk and enters Lake Baikal from the south east, forminga wide delta. The Tchikoi, the Khitok, and the Ulla are its chief tributaries in Transbaikalin. ${ }^{2}$ The Pargnzin and the Upper Angara are two large tributaries of Lake Baikal from the north-east. Of the tributarius of the Lenn, the Vitim with its afluents (Karenga, Tsipa, Minya, Kitar, Katakan) flows on the ligh platean through nninhakited regions, as also does the Olckma. The tributaries of the Amur, which is formed by the junction of the Shilka and the Arguü, are much more inportant. The Arguni, which at a quite recent enoch received the waters of the Dalai-1uor, and thus had the Keruleîi for its source, is no longer iu communication with the rapidly drying Mongolian lake, anill las its sources in the Gañ, which flows from thic Great Khinyan. It is not navigable, but reeeives the Gazinur and scveral other streans which water the Nertehinsk mining district. The Shilka is formed by the union of the Onou and the Tchita rivers, and is uavigable from the town of Tchita, thus leing an important clamael of transit to the Amur.
Lake Baiknl, with an area of 12,430 sqquare miles (nearly equal to that of Switzerland), exteuds in a hulf cresceut from sonth-west to north-east ; it has a length of over 400 miles aud a wilth of fro:n 20 to .53 miles. Its lecrel is 1561 fect above the sea. ${ }^{3}$ About the middle it is tliviled into two parts, the Great Lake and the Little Lake, by tho island Olkhon and the peniusula of Svyatoi Nos, which closely approach one another. Between the two thero is a subunerged ridpe, which must be considered as a continnation of the Rarguzin A pps. The wide delta of the Sclenga nariows the Great lake in its middle part, and renders it more shallow in the east than in the west-the gyteatest depth (4186 feet) having been reachecl by D_{r} Godlerski in the sonth-west. The depth of the Little Like does not exceed 210 feet. According to Tcherskv, the trongh yov occuried by the base had its origin int three separate synclinal valleys, which dato from the Azoic epocl, and wero gilfs of the ocean during the Silurian or Huroman preziod. They coalesced at a much later epoch. ${ }^{3}$ Of other lakes, the Gusinoye and Lako launt on tho Vitim plateau, aull Oron at its lasc, aro worthy of notice. Many lakes yield common salt or sulphato of patron.
The high $r^{\text {latean }}$ consists of granites, gneisses, and syenites, Covered with Laurentian schists. Silurian aud Devouian marine denosits occur only on the lower terrace. Siace that timic the region has not been under the sea, aud only freshwater Jurassic deposits and coal-beds are met with in the depressions. During the Glacial period most of the high terrace of the platean andl its looriler ridges were nndouhtedly covered with yast glaciers. Volcanic rocks of more recent origin (Mesozoic ?) are nict with in the north-western border ridge and on its slopes, as well as on the Vitim platcau. During the Glacial period the fanna of the lowest parts of Transbaikalia was decidedly aretic; while during tho Lacustrine or Post-Glacial period it was covered with uumberless lakes, the

[^219]shores of which were inhabited by Neolithic man. Only few traces of these have remained, and they are rapidly drying up. Easthquakes are very frequent on the shores of Lake Baiksl, especially at the mouth of the Selenga, exteoding as far as Irkutsk, Barguzin, and Sclenglunsk; in 1862 an extensive area was submerged by the lake. Numerous iniveral spings, some of thens of ligh repute, ate spread all over Transbaikalia. The chicf of them are the hot alkaline springs ($130^{\circ} \mathrm{F}$.) at Turka, at the month of the Barguzin, whither hundreds of patients resort annally, those of Pogromna on the Ula (very similar to the Scltzer springs), those of Motokova near Tchita, and those of Darasm in the Nertchiusk aistrict (very rich iu carbone acid and phosphate of iron).

The flora and fama of Transbaikalia, owing to their intermediate character between a purely Siberian flora and fanna and those characteristic of the Mongolian and Manchurian regions, bave bects the subject of many careful investigations siace the time of Pallas down to those of TUrezaninoff, Middendorff, Schrenck, Radide, and Polyakoff. Their various characters in different parts of this extunsive territory could not be described withou eotering too largely into details. The realer may consult the works of the authors jnst nameil (seo vol. xxii. p. 12).
The clinate is, as a whole, exceedingly dry and exticme. The winter is cold and dry; snow is so trifling that the horses of the Buriats fiad their food thronghout the winter on the steppes, and in the rety middle of the winter wheelod vehicles are used all over the west. To the east of the Yablonovoi ridge the Nertchinsk district feels the influcnce of the North Pacific monsoon region, and snow falls more thickly, especially in the valleys, but thic summer continnes to be hot nud dry. On the high platean, even the summer is cold, owing to the altitude and the hunidity arising from the marshes, and the soil is frozen to a great depth. In the vicinity of Lake Baikal the moderating influcnce of the grat water basin is felt to some extent, and there is a cooler summer : in winter exccedingly deep snow covers tho goltsys and valleys of the mountains around the lakc.*
The population (497,760 in 1882) is exceedingly sparse, unless the immense minhalitable spaces of the plateans lee left ont of accomnt. Even on the lower terrace nearly the whole of the region on the leff bauk of the Sliilka is unsnited for agriculture, as also are the Gazimur Mountains, whert only a few settlers gain a livelihoud in some of the valleys, suruggliug amainst an unliealthy climate and the ilhnence of goite. The Russian pupulatinn there gathers arount the crown mines of the Nertehinsk district, while the steppes aro occupien by liuriats. A succession of villages, supported partly by agriculture and partly by huntidg and traile with Mongolia, are settled along the Shilka between Tehita amel Sryetensk, while farther lown the river Jlows in such a will mountain region that ouly a fow fanilies are settled, at distances some 20 mits apmet, to inaintain communication. The same is true with regard to the lower Arguñ. The valleys of the Ula, the lower Sulenga, and especially tha Tchikoi and the Khitok layo becu occuphel since the beginning of the century by Raskoluiks, who have receivel tho rane of Sencistiye on account of their large (compurnd) fanilics, and there one fiuds, in a condition of prosperity snch as is unknown in Russia proper, somo of tho tinest repeschtatives of the Russian race. The remoinder of the stepre of the Uda is occupied by Buriats, while the forests and marslicy of the platenu are the hunting grounts of the nonad Tungnses. Only the valley of the Djida ia the south of the Khamar-daban is settled in its lower parts.
The Eussiaus of Transbaikalia present a great varicty of cthnological types. Moinly owng to the difficulties of communication, maly Great Russian Rinskolnks and Little Fussian settlers liave prescrved their ethnographical features pure from any admixture; while there are, on the other ham, villages in the Nertelinsk district, chiclly composed of the earliest liussian settlers, where a great almixture of Tungrisian or Mougoliun L!ood is observable. On the upper Argun the Cossacks are in features, character, language, and mancrs largely Mongolian. The Russians along the Chimese Prontier ennstinte a separato voisko of the Transbaikalinn Cossacks. Thore is great uncertainty as to the numbers of the Buriats ; they are estimated at about 150,000 . The Tunguses munber ouly a very few thousands.

Agriculture is carried ou to a limited extent ly tho Burints and in all Russian settlements; but it prospers only in the valleys of west Transhaikalia, and partly in the Nertchinsk region, while in the steppes of the Argnin and Onon even the Russians resort chiclly to cattle-lycerling and tralc, or to hunting. On the wholc, com has to bo imported; summer wheat and summer rye, oats, and barley are the chief crops in the east, winter rye not being sown in consequence of tho waut of suow. Cattlc-rearing is extensively carrict on, especialiy by the Buriats, but thoir herds and flocks, which wander freely over the stepnes throughout the winter, are often destroyel in creat numbers by the snow-storms of spring. Hunting is an important occupation, even with the Russians, many of

[^220]whom leave their homes in October to spend six weeks in the taiga (forest-region). The fisheries of Lake Baikal and the lower parts of its aftuents are important. Enormous quantities of Salmo omul are taken every year; and, although the curing is most primitive, the annual yield is valued at $£ 20,000$. The Salmo thymalus, S. oxyrhynchus, and S. fluviatilis aro also taken laruely.

The possibilitics of discoverica of gold are absorbing all the iodustrial forces of Transbaikalia. Gold-diggings occur chiefly in the basins of the Shilka and the upper Yitim, also on the Tchikoi and the Khilak. No less than $25,400 \mathrm{tb}$ is extracted anuually by private cnterprise, and about 3200 Hb by the crown, at the Kare goll-digning\%, where nearly 1400 convicts are employed. The silver miming fornierly carricd on at several crown works is now on the decrease (see Nertchinsk); the quantity extracted in 1884 was only 211 th. Erery hind of manufactured ware has to be importer fron Rusoia ; and even petty trades are almost unknown in the villages.

The trade of the prorince is chiefly represented by that of Kiaklita Jhn Cossacks on the frontier carry on some trade in brick rea, eatlle, and bides with Mongolia. The export of furs is of considerahie value.
The communications of Transbaikalia are linited to the great Amur highway, which fringea the sonth coast of Lake Baikal and passes through Verkhneudinsk, Tchita, and Nertchiusk to Sryetensk, WL rr ee steamers ply down to the mouth of the Amur; in winter, further :ommunication with the Amor heyond Sryctensk is maintained on sledges on the ice of the Shilka, but in the autumn and apriog a horseback journey as far as Kumara is the only possible rethod of reaching the middle Amur. Steamer communication is also maintained for six or seven months across-Lake Baikal, from Posolskoye, at the month of the Selenga, to Listrenichnaya, 40 miles from Irkutsk. A highway connects Verkhneudinsk with Selenghinsk and kiakhta, and communication on the steppes of the Arguñ and the Onon as well as np the Barguzin is easy. The rest of Transbaikalia can be risited only on horseback.

Transbaikalis is divided into five districts, the chief towns of which (with popu'ations in 1880) are Tchita, capital of the province (12,600 inhabitants), Barguzin (800), Nertchinsk (4070), Selenglimsk (1150), and Verkhneudinsk (4150). Kiakhta has 4290 inlabitants, and Sryetensk, being at the head of the navigation, is © rising town.
(P. A. K.)

TRANSCASPLAN REGION (Zakaspiyskaya Oblast), an extensive territory to the east of the Caspian, annexed by Ruвsia within the last fifteen years, is bounded on the S. by the highlands of Khorasan and Afghanistan, on the N. by Uralsk (from whicb it is divided by a line drawn from the Mortryi Kuftuk Bay of the Caspian to the south extremity of Lake Aral), on the N.E. by Kihiva and Eokhara, and on the S.E. (where it penetrates towards Herat on the slopes of the Paropamisus, and includes the Eadhyz plateau) by Afghan Turkestan. So defined, it has an area of 220,000 square miles.

Although nine-tenths of this territory consists of uninhabitable desert, an interest attaches to it on account of the great physical changes it has undergone during the Post-Glacial period. Since Pallas visited its borders, and still more since Humboldt discussed its history, it has never ceased to attract the attention of geographers. In fact, some of the mast intercsting problems of geography, such as those relating to the changes in the cuurse of the Jaxartes and the Osus, the bifurcatiou and the oscillation of a great river, and the supposed periodical disappearanco of Lake Aral, are connected with the Transcaspian deserts; and it is here that we must• 100 k for a clue to the great physical changes which transformed the Mediterranean of Western Asia - the Aral-Caspian and Pontic basin-into a serics of separate seas, and desiccated them, powerfnily influencing the distribution of floras and faunas, and compelling the inhabitants of Western and Central Asia to enter upon their great migrations. But down to a very recent date the dry and barren deserts, peopled only by wandering Turcoman bands, remained almost a terra incog. nila, and only now are we beginning to make the very first steps towards their really scientific exploration.

A mountain chain, in length comparable to the Alps, spparates the deserts of the Transcaspian from the highlands of Khorasan. It runa from north-west to south-east, and appears as a contiuuation of the Caucasus. It begiss io the Krasnodovak peninsula of
the Caspian, under the names of Kuryanin-kara and Great Balkana, whose masses of granite and ather crystalline rock reach a beight of more than 5000 feet. Farther to the south-east these are cantinned in the muclı lower Little Balkans and Kynren-dagh (2000 feet), the Kopepet-dagh, Kesty-dagh, Asilma, and Zarya-kul, -the name of Kopepet-dagh or Kopet-dagh heing often now used to designate the whole chain which rises stecp aud wild above the flat deserts from the Caspian to the river Murghab,-a stretch of 600 miles. In structure it is homologous with the Caucasus chain; it appeers as an outer wall of the Khorasan plateau, and is scparated from it by a broad valley, which, like the Rion and lyura valley, of Transcaucasia, is watered by two rivers flowing in opposite directions,--the Atrek, which flows north-west into the Caspian, and the keshefrud, which flows to the sonth-east, and is a tributary of the Murghab. On the other side of this valley the Allahdagh and the Binalund border.ridges (9000 to 11,000 feet) fringe the edge of the Khorasau plateau. At its south-eastern extremity this onter wall loses its regularity where it meets with the spurs of the Hindu-kush. Descending towards the steppe with steep stony slopes, it rises to heights of 6000 and 9000 feet to the east of Kizil-arvat, while the passes which lead from the Turcoman deserts to the valleys of Khorasan are seldom as low as 3500 , usually rising to 5000,6000 , and even 8500 foet, and in most cases being very difficult. This wall is pierced by but one wide openiug, that between the Great and Little Balkans, throngh which the sea which once covered the steple maintained connexion with the Caspian.

While the Allah-dagla and Binalund border-ridges aro chiefly composed of crrstalline rocks and metamorphic slates covered with Devonian deposits, a series of more recent formations-Upper and Lower Cretaceous, aud Miocene-are shown in the otter wall of the Kopet-dath. Here astain wo find that the mountains of Asia which stretch towards the north-west continued to be uplifted at a geologically recent cpoch. Quaternary deposita have an extensive derelopment on its slopes, and its hillfoots are bordered by a girdle of loess.
The loess terrace, called "Atok" ("mountain hase"), is but narrow, ranging in width from 10 to 20 miles; still its chain of settlements have rendered it possitlo to lay down a railway which now connects the Caspian with Sarakhs. It is very fertile, but could produce nothing without irrigation, and the streams flowing from the Kopet-dagh are few and meagre. The winds which reach the northern slope of the mountains have been deprived of all their moisture in crossing the Kara-kum-the Black Sands of the Turcoman desert; and even such rain as falls on the Kopet-dagh ($10 \frac{1}{3}$ inches at Kizil-arvat) too often reaches the soil iu the shap of showers which do not saturate it, so that the average relative humidity is but 56 and the average nebulosity only $3 \cdot 9$, as against 62 and $4 \cdot 1$ at even so dry a place as Krasnovodsk. Still, at thos places where the mountain streams are closer to one another, as at Geok-tepe, Askabad, Lntfabad, and Kahka, the villages are more populous, and the bouses are surrounded by gardens, every square yard and every tree of which is fed by irrigation.
Beyond thia narrove strip of irrigated land begins the desert, the Kara-kum, -which exteods from the mountaina of Khorasan to Lake Aral and the Ust.Urt, and from the Caspian to the Annu, interrupted only by the oases of Merv and Tejcin." It appears, how. erer, that the terrible shifting sanils blown into barkhans, or elongated hills, sometimes 50 and 60 feet in height, are groupe chiefly in the west, where the country has more recently emerged from the sca. Farther to the east tho barkhans are more stable, their slopea being covered with bushes (for the most part leafless): the caravans sometimes follow their crests, and the ahifting sands occupy restricted spaces. Large areas amidst the sands are occupied by lakyrs, or flat surfaces covered with clay which is hard as a rule, but becomes almost impassable after heavy rains. In these tazyrs the Turcomans dig ditches, draining into a kind of cistern-the hak-where the water of the spring rains kecps for a few months. Wells are sunk also along the routes of the cararaus, and water is found in them at deptha of 10 to 50 or occasionally 100 feet and more. All is not desert in the strict sense; in spring there is for the most part a covering of grass, which allows of journeys across the desert. There are sootpaths in several directions, especially from the irrigated and cultivated Atok towarda Khiva.
The vegetation of the Kari-kum cannot bo described as poor ; the typical representative of the sand deserts of Asia, the saksanl (Anabesis Ammodendron), las been almost destroyed within the last hundred years, and never appears in forests, but the borders of the spaces covered with saltcd clay are briglatened by forests of tamarisk, which are inlabited by great numbers of the desert warbler (Atraphornis aralensis) - a typical inhabitant of the sands,-sparrows, and ground-choughs (Podoces); the Houbara macquentii, Gray, though not frequent, is characteristic of the region. Hares and foxes, jackals and wolves, marmots, moles, helgehogs, and one species of marten live in the steppe, especially in spring. As a whole, the fauna is richer than night be supposed, While in the Atok it contains representatives of all the
species known in Turkestan, mixed with Persian and Himalaynu species. ${ }^{1}$

The Uzboi.-A feature distinctive of the Turcomon desert is seen in the very numerous shors, or elongated depressions, the lower 1 ortinns of which are occupied mostly with: sand impregnated with buackis? water. They are obvionsly the remains of brackish lakes, and, like the lakes of the Kirghiz steppes, they often follow one another in close succession, thus closely resembling river-beds. As the dinection of these shors is generally from the higher terraces watered by the Amu-Daria towards the lowlands of the Caspian, they were nsually regarled as old beds of the Amu-Daria, and were helil to support the idea of its once having flowed across the Turcoman desert towards what is now the Caspian Sea. A few years ago it seemed almost settled, not only that that river (sce Oxus) Howed into the Caspian during listorical times, but that, aftel having ceased fo do so in the 7 th century, its waters were again diverted to the Caspian about 1221. A succession of elongated depressions, having a faint resemblance to old river-beds, was traced from Urgenj to the gap between the Great and the Little Balkans, marked on the maps as the Uzboi, or old bed of the Oxns. ${ }^{2}$ The idea of again diverting the Amu into the Caspian was thus set afloat, and expeditions were sent out for explorations with this view. The result of these investigations by Russian engineers, especially Hedroitz, Konslin, Mushketeff, Lessar, and Svintsoff, ${ }^{3}$ was, however, to show that the Uzboi is no river-bed at all, and that no river has ever discharged its waters in that direction. The existence of an extensive lacustrine depression, where the small Sary-kamysh lakes are now the only remains of a wide basin, was proved, and it became evident that this depression, haviug a length of more than 130 miles, a width of 70 miles, and a depth of $2 S 0$ feet below the present level of Lake Aral, would have to be filled by the Amu, before its waters could adrance farther to the south-west. The sill of this basin being only 28 feet below the mesent level of Lake Aral, this latter could not be made to disappear, nor even be notably reduced iu size by the Anum flowing from Urgenj to the sonth-west. A more careful exploration of the Uzboi has shown moreover that, while the deposits in the Sary kamyslr depression, and the Aral shells they contain, bear unmis. takable testimony as to the fact of the basin having once been fed by the Amn-Daria, no such traces are found along the Uzboi below the Sary-kamysh depression; ${ }^{4}$ on the contrary, shells of molluscs still inliabiting the Caspian are found in mumbers all along it, and the smpposed ald bed has all the characters of a series of lakes which continned to subsist at the hillfoots of the Ust. Urt plateau, while the Caspian was slowly receding westwards during the Post-Pliocene period. On rare accasions only did the waters of the Sary-kamysh, when raised by inundations above the sill just mentioued, send their surplus into the Uzboi. It appears most probable that in the 16 th century the Sary-karoyblh was confounded with a gulf of the Caspiant ${ }^{3}$ and this gives nutheh plausibility to Koushin's supposition that the changes in the lower course of the Amu (which no geolarist would venture to ascribe to man, if they were to mean the alternative discharge of the Amm into the Caspian and Lake Aral) merely meant that by means of appropriate dams the Amu was made to fow, in the 13th, 14th, $15 t h$, and 16 th centuries, alternately into Lake Aral and into the Sary-kamysh.

As for the ancient texts with regard to the Jaxartes and Oxns, it becomes more and more probable that their interpretation, if pessible at ail, is ouly so when it is admitted that, since the epoch to which these relate, the outlines of the Cavpian Sea and Lake Aral have undcrgone notable changes, commensurate with those wbich are supposed to have occurred in the courses of the Central Asian rivers. The desiccation of the Aral-Caspian basin proceeded with such rapidity that the shores of the Caspian conld not possibly maintain for some twenty centuries the outlines which they have at present. When studied in detail, the general configutation of the Transcaspian region leaves no doubt that both the Jaxartes and the Oxus, with its former tributaries, the Murghab and the Tejeñ, once flowed torards the west; but the Caspian of that time

[^221]Was mot tho sea of ar layo; its galfs penetrated the Turcoman step ${ }^{10}$, and washed the luse of the I'st-Urt platean, as is shown by the depesits of it; sleells des rihed by the Russian engineers.

Kelif-Uzboi. -There is also no doubt that, instead of flowing north-westward of Kelif. the Amu once flowed to join the Murghab and Tejeñ; the suecession of depressions described by the Russian engineers as the Kelif-Uzhoi ${ }^{6}$ supports this hypothesis, which a geugrapler cannot avoid making when studying a map of tho Transcaspian region; but the date at which the Oxus followed such a course, and the extension which the Caspian basin then lad towarls the east, remain unsettled. Nuch, however, has still to be ilone before we can Iully reconstnuct the geological history of that region since the Plioces.0 epoch, or show how far the data of Piny, Straho, and Ptolemy were descriptions of entual facts. ${ }^{7}$

Popultelion. - With the exception of some 35,000 Kirghiz encamped with their herds on the Ust-Urt platean (a swelling sonne 600 to 1000 feet in leight and nearly 92,000 square miles in extent, which, owing to its dryness and cold winter, can be inhabited only by nomal cattle-breeders) and a fow Persians in the Lutfabad and Shilghyan villages of the Atok, the whole of the pormation of the Transcaspian region consists of Tuicomans. Until a very recent date their chief occupation was cattle-rearing and robbery. Even these Turcomais whe had settled abodes on the oases of the Atok, Tejeâ, and Metv were in the lhabit of encamping during spring in the steppes, and these practising robbery. Robber bands were easily formed, and on their powerful horses they extended their excursions to distances of 200 and 300 miles from their abodes. They infested the Astrabad province; and the villages of the klianates of Afghan Turkestan, from Balkh to Meshhed, were periodically devastated by them. The aspect of the steppe has, however, greatly changed since the Russian advance, the fall of the Turcoman stronghold of Geok-tepe, and the massacres which eusued; the Persians are already begiuning to avenge themselves oll the iolnabitants of the Atok by disputing with them the surplies of water coming from the Kopet-dagh.

The chief oasis of the Turcoman desert is the Atok, which extends along the base of the Kopet-dagh, and is now traversad by the Transeaspian railway. The Akhal and the Arakadj oases, collectivcly called Atok, now have a popnlation of about 42,000 Tekke-Turcomans, who hare recently settled there, and live for the most part in miserable clay huts or in felt tents (kibitkas). They raise wheat, barley, and lucerne ; and the Persians have excellent gardens. Some cotton is also grown, and the culture of the silk. worm is beginning to spread. The chief settlements are Askabad, Kizil-arvat, and Geok-tepe.
The oasis of Merv (g.v.) is inhabited by Akbal-tekkes (about 160,000), mostly yoor. In Jannary 1887 they submitted to Russia.
The oasis of Tejeñ has recently sprnng up where the river Tejeñ (Heri-rul) terminates in the desert. Formerly it was only temporarily visited by the Tekkes who came to cultivate the ficlds in summer. In 1883 it was estimated to have 7500 inhabitants.

South. II cst I'urcomania. -The region between the Heri-rud and the Murghab, as they issue fron the highlands, described in English maps under the name of Badhyz, and by the Russians as Sonth- West Turcomania, has of late attracted a good deal of attention since the Rnssian occupation of Sarakhs on the Tejeñ (see AFGhanistan and Persia) and Penjdeli on the Murghab. It has the characters of a platean reaching about 2000 feet above the sea, with hills 500 and 600 feet high covered with sand, the spaces between being filied with loess. The Borkhut Mountains which conuect the Eopet-dagh with the Sefid-kuh, reach 3000 to 4000 feet, and are crossed in a gorge by the Heri-rud. Thickets of poplar and willow follow the courses of both the Mnrghab and Heri-rud, and the treesreach a considerablo size. Pistachio and mmberry trces grow in isolated gronps on the hills; but there are few places avaibable for culture, and the Saryks (some 60,000 in number) congregate in only two oases at Yot-otan and Penjcleh. Cattle-breeding is their chiefoccnpation, and enables them to live in a certain degree of affuence. Brigandage, formerly a notable source of income, is now being suppressed. The Sarakhe oasis is now occupied by the Salors, hereditary enemies of the Tekkes, who number about 3000 tents at Old Sarakhs, and 1700 more on the Murghab, at 'Tchardjui, at Maimene, and close to Herat. - Great modifications in the life of the stenue have of course been brought about by the Russian conquest, which was followed with

[^222]great rapidity by the cunstruction of a rsilmaj from Mikbsilorsk on the Caspian to Kizi-arvat and Sarakhs, and thence to Merv and now being continued scross Bokhars tomards Samarksad. Attempts at growing cotton and tes are beiug made, snd land has been rented at Merv for cotton plantations. Cotton is to be pressed hy stesma at Bokhara and Tchardjui, to be sent to Russia by the Transcaspian railway. ${ }^{1}$
Caspiar Littoral.-The Caspisn littoral is divided into two districts, Krasnovodsk and Msnghishtsk. The fnemer has about 15,500 settled inhabitants and 3056 Turcoman krbitkss (partly shifted in summer to Persisn territory). The chief settlements of the district sre Krasnovodsk on the Krasnovodsk Gulf. Mikhsilovek, the termiaus of the Trsascaspian railmay, in regular communicstion by steamer with Baku; and Tchikishlyar, close to the mouth of the Atrek. The Manghishtak distriet, which includes the Ust-Urt plateau, has \& popnlation of abunt $34,500 \mathrm{Kirghiz}$. Its chief settlement is Alexandrovek.
The total population of the Trenscaspian region was estimated in 1883 -that is, before the annexations in South-West Turcomsnia -st from 214,000 to 260,000 inhabitants
(P. A. K.)

TRANSCAUCASIA, the name given to that portion of the Russian empire (in Caucasus, Armenia, and Asia Minor) which lies to the south of the main Caucasus ridge. It comprises the goveroments of Kutais (inclusive of the province of Batum), Tiflis, Elisabethpol, Erivañ, and Kars, with parts of Daghestan and most of Baku, and the separate military districts of Tchernomorsk and Zakataty. Sometimes Transcaucasia is identified with Southern Caucasus, and then it is intended to include the whole of Daghestan. So defined, it would have an area of 95,930 equare miles, and a population of $4,173,380$.

Threo regions must be distinguished:-(1) the narrow strip of land between the main Caucasus ridge and the Black Sea (Tchernomorsk district, q.v.) ; (2) the broad valley, watered by the Rion in the west and the Kura in the east, which scparates the main Caucasus ridge from the region next to be mentioned; (3) the highlands, mountains, and plateaus of Lazistan, Kars, and Armenia.

The valley referred to, which crosses the isthmus from the Black Sea to the C8spian, consists of two widely different sections, - the drainage-area of the Rion, which is Mediterranean in its physical characteristics, and the valley of the Kura and Araxes, which slopes to the Caspian, and in its lower parts becomes purely cis-Caspian. The Mesques or Meshik Mountains ($3000-5000$ feet), a ridge running south-west to north-east, and probably a continuation of the Black Sea coast ridge (Tchorokh Mountains), separate the two. The drainage area of the Rion, which corresponds approximately to the government of Kutais, inclodes the former provinces of Imeritia, Mingrelia, Guria, and Swanetia on the upper Ingur and Tshenistshali. With the exception of the valley of the Rion (some 25 miles broad), and the sandy and marshy littoral, it is wholly occupied by spurs of the main Caucasus ridge, the Meshik, and the Wakhan Moontains; the last-named rise to 10,000 and II, 000 feet above the sea in their highest summits, and are intersected by deep and fertile valleys. The region is characterized by a heavy rainfall and a moist maritime climate. The vegetation, which is luxuriant, is of a circom-Mediterranean character : fine forests of decidnous trees clothe the menntain slopes, and the highland villages nestle amid thickets of azalea, almond, and rhododendron. Maize, the mulberry, the vine, and a great variety of fruit trees are cultirated. Mingrelia and Imeritia are the real gardens of Caucasus ; but the high valleys tributary to the Ingur, inhabited by Swanians, are wild and difficult of access ; in some of them, which are narrow and marshy, fevers and scurvy prevail. The Rion is not navigable, and of its tributaries only the Tshenis-

[^223]tshali and the Kvirila are worthy of mention. Several lakes (such as the Paleostom, surrounded by marshes at tho month of the Rion) occur in the coast region. The population consists of Imeritians, Mingrelians, Gurians, and Swanians, all belonging to the Kartvelian branch of Caucasians (see vol. x. p. 433), with a few Ossetians, Jews, Armenians, and Tartars. Russians are not numerous.

The pass of Suram, by which the Transcsucasisn railway now crosses the Mesques Mountaine, lesds from the valley of the Riom to that of the Kura. Spurs from the Csucasus and the Anticancasus fill up the hroad longitudinal depression between these, eo that above Tiflis the bottom of the valley is but a narrow etrip. But below that city it suddenly wideus, and otretchee for nearly 350 ruiles eastward towards the Caspian with a oteadily increasing bresdth, until it becomes mearly 100 miles wide in the steppe of Mngañ on the Caspian littoral. The snow-clad peake of the main Caucasus, descending by short steep slopes, fringe the valley on the nortb-east; while a buge wall, nuch lower, and having the characters of a border-ridge of the Armenian plsteau, bounds tho valley on the sonth-west. ${ }^{2}$ The floor of the valley gently slopes from 1200 feet at Tiflis to 500 feet in its middle, and to 85 feet below the level of the ocean on the Caspian shore; but a plateau ranging from 2000 to 3000 feet in height, very fertile along the Alszañ, a left-hand tributary of the Kura, stretchee along the southern hillfoots of the main ridge. In its lower course the Kura is joined by the Araxes, a river nearly as large as itself, which brings to it the waters of the Armenian platesu.
The bighest mountains of the Caucasas enclose the upper parts of the valley (now the government of Tiflis). An unbroken series of peaks, from 10,000 to 12,600 feet in height, mostly 6 now-clad and separated by hut slight depressions, is seen in profile as one looks from some height of the Anticaucssus towerds the main chain and the broad valley of the Kurs. Deep ehort gorges and valleys indent the steep slopes which are inhshited by Ossetians, Tubbes, Pshavs, and Ehersurs in the west, and by the various tribes of the Lesghisns in the eact. Every available pstch is osed in these high and stony valleys for the culture of barley, even at heights of 7000 and 8000 feet sbove the sea; bat csttle-breeding is the chief resource of the mountsineere, whose little communities are separated from one annther by passes in few cases lower than 10,000 feet The steppes which corer the bottom of the valley are for the most part too dry to be cultivated without irrigation. It is only nearar the hillfoots in Kshetia, where multitudinous streame supply the fields and the gardens of the platesu of the Atazan, that wheat, millet, and msize are grown, and orchards, vineysrds, and mulberrytree plantations are possible. Lower down the valley csttle-rearing becomes the chief source of wealth, while in the small towns and villages of the former Georgisn kingdom (fee Georoia) various petty trsdes, testifying to s bigh development of srtistic taste and technical skill, are widely diffused. Further down the Kura, in the government of Elizsbethpol, and especislly ou the right hsnk of the river, a population of Russisu a sriculturists-chiefly Nonconformists on the Gsidja. besutiful forests, The slopes of the Anticaucasus are covered with brosd and wide sternes rine is grown at tatir hase, warse, sud sheop The lower part of the Kura valley, which belongs mainly to the province of Baku, assumes the character of a dry steppe where the rainfall hardly reaches 13.7 inches at Bsku, and is etill less in the Mugañ eteppe (in most striking contrast with the moistness of the Lenkoran region close by). The steep slopes of the Great Caucasus are still covered with thriving forests; but forests and meadows dissppear in the eteppe, whose scanty vegetation has a Ceutral-Asian character. Only hegais, or thickots of poplar, dwsrf oak, tamarisk, and so ou, follow the sctusl course of the Kura, whose delia is covered with impenetrable grow the of rushes. The Mursin stoppe, however, does not deserve its sncient evil reputstion; the serpente with which it was said to abound are entirely fshulous, and in the winter it is full of life; herds of antelones roam over it, and its southern irrigsted parts promise to become the granary of Csucasus, ${ }^{3}$ although its unirrigated parts will probably never recover their former richaess, the Kurs liaving excavated its bed to a much greater depth. The Apsheron peninsuls, in which the Grest Caucasus terminates at Baku, to be continued farther bouth-east by a oubmarine plsteru of the Casplan, is the best of those remarkable andhtha springs which have recently given rise to an importaut while the and now supply most of the Tolga steamers with fuel, or Lenkorañ district on the elopes of the Armenian the Tatysh, account of their rich verctation of the Armenian plateau-an one of the most beautiful possessions of Ruesia in Asia.

[^224]The population includes only a few Russians (about 16,000); the majority are Tartar alepherds, next to whom come the Iranian Tates and Talyshes (the latter prolably aborigines of baku), whe constitute $23 \cdot 1$ jer cent. of the propulation; some 27,000 Armenians, chiefly about Shemakha, and 35,000. Kurins, or Lezghiaus, on the slope of the Great Caucasus, must be added, as also some Jews and Arabs.
A mining iudustry. of some importance has bcen growiug up of lato in this part of Trauseaucasia. The copper works of Kedabek in Elizabethpol yield from 10,000 to $15,000 \mathrm{cw}$ ts. of copper annually; nearly 300,000 cwts. of manganese are extracteif in Kutais, and 30,000 cwts. of sulphur in Daghestan and Baku; the coal-mioes of Kutais, the alum ores of Elizabethpol, and the fire-clay and cemont of Tchernomorsk, are but recently opened up.

The highlands of Transcaucasia, which extend from nortlu-west to soutleeast for nearly 375 miles, with in average width of 160 miles, must in their turn he surb. divided into two sections-the Armenian plateau, including the provinces of Erivain and Kars and parts of Baku, and the Black Sea coast-region, including the former province of Batum (now the Batum and Artvin districts of Kutais).

The former of those is an immense plateau separated by iae valley of the Araxes from the highlands of Adherbaijan and of Turkish Armenia, which belong to the drainage-areas of the Euphrates or those of Lakes Van and Urmia. All over Kars and Erivañ is a series of plateaus ranging in altitude from 5000 to 6500 feet, sometimes quite flat, sometimes broadly undulating, covered with rich meadows, and for the most part available for agricnlture. Dome-shaped mountains, isolated, or grouped into relatively low ridges, rise from these plateaus to heights which range from 8000 to 9500 feet, and occasionally reach 10,000 or 11,000 above sea-level. Several summits in the east exceed that height, and the Alaghöz reaches 13,436 feet.

This platear region is hounded on the south by the valley of the Araxes, the river which forms the frontier with Turkey, except where it is crossed by Russia-int the south of Kars and west of Erivañ. Thero the river flows in a broad valloy 4500 feet above ezs-level, aud the Kara plateau falla towards it by a steep slope, while on the other side a steep, rocky ridge of exceedingly wild aspect rises as the northern border-ridge of the South Armenian (Alaskzert) platean and the water-parting between the Caspian Sea and the Indian Ocean. This ridge, which inchedea the Allah-dagh and Kösa-dàgh (10,720 and 11,260 feet respectively), as also the Great and Little Ararats (17,100 and 12,990 feet), has no general name, but is described under the names of Shah-ioly, or Agri-dogh. ${ }^{1}$

A umber of lakes occur on the plateau, especially along its northern border-rifge, the chief being that of Goktcha, an extensive aipine basin (500 square miles 6310 feet above sea-level) surroutded by wild mountains. Most of the depressions of tlee Hateau bear traces of having been under water during the Lacustrine (Post-Glacial) peried. Granites and other uustratified rocks constitute the unclous of the Armenian and Kars plateaus. These are covered with Azoic slates, and partly with Devonian and Carboriferous deposits; Jurassic and Cretaceous are wanting, but the Tertiary (Eoceue and Miocene) are widely apreal both in the valley of the Rion and Kura and in the depressions of the plateau. Rocks of volcanic origin are widely diffused all over Erivañ: the Alexandropol plateau, surrounled by extinet volcanoes, is all covered with voleanic products, which overlie the Tertiarv deposits and in turn are covered with Glacial boukereclay.

The Alaghöz, the Ararats, aud the peaks around Lake Goktcha are. huge trachitic masses surrounced by voleanic rocks. "lrou and copper. ores are widely spread; alum and rock-salt are obtained; the latter at liulpi and Naklichevañ. Mineral springs are numerous. The region is watered by the upper Araxes-too rapid and rocky to lue navigated-and its tributaries, most of which How at the bottoms of deep gorges. The upper Kura waters western Kars. The climate presents all the varieties which might bo expected in a region of so varied altitudes. While cotton growa in the dry and bot climate of the valley of the lower Araxes, the winter is severe on the plateau, and Alexaudropol (5010 feet) bas an average temperature of only $41^{\circ} \cdot 5$ (Jan. $12^{\circ} \cdot 8$; July, $73^{\circ} \cdot 6$). The differeuce between summer and winter is still more striking at Erivay (3210 feet, which has in January an average of only 5° while that of August reaches $77^{\circ} \cdot 7$. On the Kars plateau the winter is still more severe. - Kaghyzman (4620 feet) and Sary-kamysh (7800 fect) havo the winter temperature of Finland, and the latter place, with an annual mean the same as that of Hammerfest $\left(36^{\circ} \mathrm{F}\right.$), has frosts of
W. Massalsky, "Government of Kars," in Izvestia of Russ. Geotr. Soe., vol, xxiii.. 1887.
27° and heats of 99°. The regetation of the Kars plateau reflects these extremes of elimate, and, lesides the alpine vegetation of the high yailas (alpine meadows), we find there the Anatolian, Armenian, and Pontic floras meeting. The population of Erivan cousists of Armenians (54 per cent.), 'Tartars (40 per cent.), some $28,000 \mathrm{Kurds}$, and some 4400 Russians, together with a few Greeks and Jews. In localities under 4000 feet cotton and rice are the chief crops, oil-yjelding plants, the vioe, the mulberry, and fruit trees being also cultivated. Higher up wheat and barley are growu, while at altitudes above 6000 and 7000 feet the Tartara aurd Kurds support themselves by rearing cattle. .Many petty trades are developed in the towas among the Ammenians, and the trade of Erivañ with Persia and Turkey amounta to about $10,000,000$ ronbles.
The popnlation of the province of Kars $(167 ; 610$ in 1883) is very mixed. In a remote antiquity it was inlabited by Armenians, whose capital Ani, Mren with its beautiful ruius of a grand eathedral, and several other towus now in ruing testify to the former wealth and populousness of the country: After the fall of the Armenian empire the Turks occupied the regiou; Kurds from Kurdistan and Diarbekr invaded tho alpiue pasturages of the valley of the Araxes; later ou, Kabards, Circassians, Osses, and Karapapakhs fund refuge there; and-finally, after the last war the Mohammedans emigrated to Asia Minor (82,760 in 1878-81), while Christian Armeuians, Greeks, Russion Raskoluiks, and some Yezids took their place. The population consists now of Turks, Armeniaus, Turcomans, Greeks, Kurds, Adherbaijan Tartars, Gipsies, and Russiaos. The Kara sanjak, which was one of the grauaries of Turkey, las lost this reputatiou; but the crops (chiefly wheat and bailey) are now again increasing where the early frosts do not interfere with agriculture. Cotton is raisod in the Olty regiou; and in the valley of the Araxes gardening and the culture of the silkworm are widely diffused; while cattle-rearing is the chief source of iucome in the highlands, especially with the Kurds, who move their felt tents on the yailas to higher levels as the suminer sun buras up tlie regetation.

The western part of the Trauscaucasinn highlands comprises the Batmm and Artvin districts, which now belong to Kutais. The whole of the region is occupied by alpine ridges-the Pontic ridge in the mest, and those of Arjar and Arsian in the east, whose highest yeaks rise to 10,000 and 11,000 feet, without, howerer, reaching the limits of perpetual snow. The Tchorokh and its tributaries, mountain streams enclosed in deep valleys, water the region; the Tchorokh is navigable by small boats for 60 miles.

The coast region enjoys an excellent climate; the average yearly temperature at Batum is $65^{\circ} \mathrm{F}$., that of the coldest month (February) being $41^{\circ} 5$, and that of $\mathrm{July} 76^{\circ} \cdot 5$. During the last four years the thernometer never fell lower than $39^{\circ} \cdot 5$ at Batum. The rainfall is excessive (93.4 inclues), nod days are recorded on which the amount of rain exceeded 10 inches. The region has accordingly a very luxuriant and bubtropical vegetation, and even higher up the hills the villages are literally luried amidst gardens. The higher hills have luxuriant meadows. Rice is cultivated in the coast.region, and millet, barley, tobacco, and a variety of fruittrees on higber altitudes. The inlabitauts (about 90,000 in 1884) are chiefly Georgians, approaching the Gurians most nearly. The Lazes number about 2000 and the Kurds about 1000. A Sew Thernshilli, or Mobammedan Arnenians, bave found refuge in the gorge of Makrial.

Towns.-The chief towns of Traascaucasia are more important than those of northern Caucasus. Tiflis ($q . v$.$) , with 104,024 in-$ halitants in 1883, is the capital of Caucasia. Kutais (q.v.) (13,000), to which traditiou assigus an age of 4000 or 5000 years, has grown rapidly of late, owing to its situation at the head of the alluvial plain of the Riou and the proximity of the Tlevibula coal deposits ond the Kyirila manganeso mioes. Kioni (4000) and Orpiri aro nere aduinistrative centres of Kutais. Redut-kale (620) bas lost its importaoce as a seaport, and Poti (3110), at the mouth of the Rion, has not yet become au important poit, notwithstanding efforts to improve its roadstead aud its railway connexion with Tiflis and Baku. The chief Black Sea pert of Transcaucasia is Batum ($q: v$.), Which has been diligently fortified of late, and has now a popula. tion of 12,000. Artvin (5860) aod Ardjari are the two otber chief towas of the Batum region. The chief tawns of the goverument ff Tiflis besides its capital are Gori, capital of Georgia (population4800), Mltzhet (770) at the junction of the Vladikavkaz higbway with the Transcaucasian railway, Telav (702u), Dushety (3600), Zakataly (1050), chief town of a separato military district, aad Signakh (10,340), whinh are built in the spurs of the main chain; while Akhattaikh (18,270), on the upper Kura and on the Kars plateau, is a lusy centre for petty trades. The old city of Ahatkataki (3200) on the same platcau is now a Russian cort. Flizabetrrol, NukHa, and Shosha (qq.v.) are tha principal towns in the province of
Elizabethpol. Baku (q.v.), the terminus of the Transcaucasian
railway, and in regular steamcr communication with Mikbailorsk ln the Transcaspian region, derives its importance from the naphtha wells which surround it. Siemakha (q.iv) (23,810), and Saligny (10,170), at the head of the delta of the Kura, and notable for its fisheries, are the only places of importance in the proviuce of Baku. Erivas (q.v.) (12,450), capital of the province of Erivañ, and the chief city of the Armenian platcan, 15 onc of the oldest cities of the country, and, owing to its position, would be inuch more important than it is, but for its climate. Etchmadzin, or Vagarshanad (2910), is the real capital (the Rome) of Armena, for its antiquities, monastery, library, and printing offices. Nakhitcherañ (5390)-the Naxuana of Ptolemy-is another centre of Armenia. The most populous town of the region, however, is Alexandropol (23,010) or Gumri (q.v.), the chief Russian fortress of Transcatcasia,-the othe: towas of Erivañ being Ani, or Oni, Norobayazet at Lsko Goktcha, and Orduhad (3600) The long-disputed Kars (q.v.), which has now 7340 inhabitants, is the chief town of the new Rassian proviace of the same name, annexed in 1878 . Kaghyzman (3700), on the upper Arazes, is but a collection of clay houses surrounded by rich gardens; Ardahan (1270), on the upper Kura, and Olty (530) are the only other towns of Kars worthy of notice as administrative centres.
(P. A. К.)

TBANSIT CIRCLE, or Meridian Ctrcle, an instrument for observing the time of a star's passing the meridian, at the same time measuring its angular distance from the zeaith. The idea of haring an instrument (quadrant) fixed in the plane of the meridian occurred even to the ancient astronomers, and is mentioned by I'toleniy, but it was not carried into prectice until Tycho lirahe constructed a large meridian quadrant: This instruinent enabled the obserfer to cetermine simultaneously righte ascension and declination, but it does not appear to have been much used for right ascension during the 17 th century, the method of equal altitudes by portable quadrants or distance measures with a sestant being preferred (seo Obsertatory and Time). These methods were, however, very inconrenient, which induced Roemer (q.v.) to invent the transit instrument about 1690 . It consists of a horizontal axis in the direction east and west resting on firmly fixed supports, and having a telescope fixed at right angles to it, revolving freely in the plane of the meridian. At the same tine Roemer invented the altitude and azimuth instrument for measuring vertical and horizontal angles, ard in $170 t$ he combined a vertical circle with his transit instrument, so as to determine both coordinates, at the same time. This latter idea was, however, not adopted elserfere, although the transit instrument soon came into unirersal use (the first one at Greenwich was mounted in 1721), and the mural quadrant continued till the end of the century to be employed for determining declinations. The adrantage of using a whole circle, as less liable to change its figure, and not requiring reversal in order to obserre stars north of the zenith, was then again recognized by Ramsden (q.v.), who also improved the nethod of reading off angles by means of a micrometer microscope as desuribed below. The making of circles was shortly afterwards taken up bj Troughton (2. \%), who in 1806 constructed the first modern transit circle for Mr Groombridge's observatory at Dlackheath, but he afterwards abandoned the idea, and designed the mural circle to take the place of the mural quadrant. In the United Ningdom the transit instrument and mural circle continued till the middle of the present century to bo the principal instruments in obserratories, the first transit circle constructed there being that at Greenwich (mounted in 1850), but on the Continent the transit circle superseded then from the jears $1818-19$, when two circles by Repsold (q.v.) and by Reichenbach (q.v.) mere mounted at Göttingen, and one by Reichenbach at Konigsberg. ${ }^{1}$ The firm of Repsold was for a number of years eclipsed by that of Pistor and Martins in Berlin, who furnished the obserratories of

[^225]Copenhagen, Albany, Leyden, Leipsic, Berlin, Washington, and Dublin with first class instruments, but since the death of Martins the Repsolds have again taken the lead, and have of lste years made transit circles for Strasburg, Bonn, Wilhelmshafen, Williamstown (Massachusetts), Madison (Wisconsin), \&c. The observatories of Harvard College (United States), Cambridge, and Duri Echt have large circles by Troughton and Simms, who also made the Greenwich circle from the design of Airy. ${ }^{2}$

Wo shall describe the principal features of a transit circle, referring for smaller transit instruments and altazimuths to the article Survering (vol. xxii. p. 719).
In the. earliest transit instrument the telescope was not placed in the middle of the axis, but much nearer to one end, in order to provent the axis from bending under the weight of the telescops. It is now always placed in the centre of the axis. The lattor consists of one piece of brass or gun-metal with carefully turned cylindrical pivots at each eud. The centre of the axis is shaped like a cube, the sides of which form the basis of tro cones which end in cylindrical parts. The pirots rest on Y-shaped bearings, either let into the massive stone or brick piers which support the instrument or attached to metal framerworks bolted on the tops of the piars. In order to religve the pivots from the weight of tha instrument, which would soon destroy their figure, the cylindrical part of each end of the axis is supported by a book supplied with friction rollers, and suspended from a lever supported by the pier and comuterbalanced so as to leave only about 10 pounds pressure on each bearing. Near each end of the axis is attached a circle or wheel (generally of 3 or $3 \frac{1}{2}$ feet diameter) finely divided to 2^{\prime} or 5^{\prime} on a slin, of silver let into the face of the circle near the circumference. The graduation is read off by means of microscopes, generally four for each circle at 90° from each other, as hy taking the mean of the four readings the eccentricity and to a great extent the accidental errors of graduation are eliminated. ${ }^{3}$ In the earlier instruments by Pistor and Martins the microscopes were fixed. in holes drilled through the pier, but alter-
 wards they let the piers te made narrower, so that the microscopes could be at the sides of them, attached to

radial arms starting from near the bearings of the axis. This is preferable, as it allows of the temporary attachment of auxiliary microscopes for the purpose of investigating the errors of graduation of the circle, but the plan of the Repsolds and ol Simms, to make the piers short and to let the microscopes and supports of the axis be carried by an iron framework, is better still. as no part of the circle is explosed to radiation from the pier, Which may cause strain and thereby change the angular distance between various parts of the circle. Each microscope is furnished with a micrometer screm, which moves a frame carrying a cross, c।
${ }^{2}$ This instrument differs in many particulkrs from others: the important principla of symmetry in all the parts (scrupulously followed in all others) is quite discarded ; thera is only ona circle and the instrument cannot ba reversed. Thero is a similar instrumeri at the Cape observatory.
${ }^{3}$ On I.eichenlach's circles there wera verniers instead of micro. scopes, and they Tyere attac' ed to an alidade circle, the immovability of which was tested by a lè al.
better two clese parallel threads of spider's web, with which the distance of a division line from the centre of tha field can be measured, the drum of the screw being divided to single secands of arc ($0^{\prime \prime} .1$ being estimated) while the numher of revalutions are counted by a kind of comb in the field of siew. The periodic errors of the scresv must be investigated and taken into account, and care must be taken that the microscopes are placed and kept at such a distance from the circle that one revolntion will correapood to 1^{\prime}, the excess or defect (error of run) being determined from time to time by measuring standard intervals of 2^{\prime} or 5^{\prime} on tbe circle.

The telescope consiste of two slightly conical tubes screwed to the central cube of the axis. It is of great importance that tiris connexion ahould be as firm and the tube as stiff as possible, ${ }^{1}$ as the flexure of the tube will affect the declinations deduced from the observations. The flexure in the horizontal position of the tube may be determined by means of two collimators or telescopes placed horizontally in the meridian, north and south of the trassit circle, wath their object glasses towards it. If these are poonted on pae another (through boles in the central cube of the talescope), so that the wire-crosses in their foci coincide, then the telescope, if pointed first to one and then to the other, will hare described exactly 180°, and by reading off the circle each time the amount of flexure will be found. M. Loewy has constructed a very ingenious apparatus ${ }^{2}$ for determining the flexure in any zenith distance, but fencrally the ohserver of standard stars endeavaurs to eliminate the effect of flexure in one of the following waya:-either the tube is so arranged that eye-piece and object-glass can bo interchangel, whereby the mean of two observations of the same star in the two positions of the object-glass will oo free from the efficct of ficxure, or a star is not only obserred directly (in zenith distance Z), but also by refexion from a mercury trough (in zeoith distance $180^{\circ}-Z$, as the mean result of the Z . D. of the direct and reflexion observas. tions, before and after reversing the instrument east and wcst, will only contain the terms of the flexure depeading on $\sin 2 Z$, $\sin 4 Z$, , $\&$ c. In order to raise the instrumput a reversing carriage is provided which runs on rails betreen the piers, and on which the axis with circles and telescope can be raised by a kind of screw-jack, wheeled out from between the piers, turned exactly 180°, wbecled back, and gently lowered on its bearings.
The eye end of the telescope has in a plane through the focus a number of vertical and one ar two horizontal riires (spider lines). The former are used for observing the transits of the stars, cach wire furnishing a separate result for the time of transit over the middle wire by adding or subtracting the known interval betiveen the latter and the wire in question. The intervals are determined by observing the time taken by a star of known declination to pass from one wire to the other, the pola star being best on account of its slow mation. ${ }^{3}$ The instrument is provided with a clamping apparatus, by which the obsarver, after having beforehand set to the approximate declination of a star, can clamp the axis so that the telescope cannot be moved except very slowly by a handle pushing the end of a fino acrew against the clamp arm, which at the other side is pressed by a strong spring. By this slow motion the star is made to rum along one of the borizontal wires (or if there are two close onss, in the middle betwean them), after which the microscopes are read off. The field or the wires can be illuminated at tbe obserrer's pleasure; the lamps are placed at some distance from the piers in order not to heat the instrument, and the light passes through holes in the piers and through the hollow axis to the cube, whence it is directed to the eye-end by a systcm of The
The time of the atar's transit over the middle wire is never exactly equal to the actual time of its meridian passage, es the
plane in which the telescope turns never absolutely caincides with the meridian. Let the production of the west end of the axis meet the celestial sphere in a point of which the altitude above the berizon is b (the error of inclination), and of which the azimuth is $90^{\circ}-a$ (the azimuth being counted from south through west), while the optical axis of the telescope makes the angle $90^{\circ}+c$ rith the west end of the axis of the instrument, then the correction to the observed time of transit will be $a \frac{\sin (\phi-\delta)}{\cos \delta}+b \frac{\cos (\phi-\delta)}{\cos \delta}+c \sec \delta$, Where ϕ is the latitude of the station and ô the declination of the star (see Geodesy, vol. x. p. 166). This is called Tobias Mayer's forinula, and is very convenient if only a fen ohservations bave
to be reduced. Putting $b \sin \phi-a$ cos $\phi=n$ 1 Reichenbach supplicd his tobes with counterpolsing levers like those on the

3 The tiansity are elther obselve by " of the olock and comparing the distance of the atar from the wire at secood beate before the transit over the wire with the distunce at the wire at the last beat translt, th this way estmating the time of transtt to ours ; or the observer employs a "chronograph," and by pressing an electrle key causes a mark to be made ou a paper seretched over a uniformly revolving drum, on which the clock beats are at the same thme also marked electricaily:
The Idea of Illaminatlag throagh the it is is doe to Ussher. piotessor of
strcoomy it Dubla (d. 1790).
mula, which gives the correction $-b \sec \phi+n(\tan \delta--\tan \phi)+c \sec \delta$, which is nore convenient for a grcater number of obsorvations, The daily aberration is always deducted from c, as it is alsc multiplied by sec δ (being $0^{*} .31 \cos \phi \sec \delta$) The above corrections are for upper culnination; below the pole $180^{\circ}-\delta$ has to be substituted for δ. The constant c is determined liy pointing the instrument on one of the collimators, measuring the distance of its wire-cross from the centre wire of the transit circle by a vertical wire movable by a micrometcr screw, reversiog the instrument and repeating the operation, or (without reversing) by pointing tine two cultunators on one another and measuring the distance of first one and the山 the other wire cross from the centre wire. The inclination b is nuessuren directly by a level which can be suspended on the pivats. Having thus found b and c, the obsarvation of two stara of known right asceu:-n will furnish two equa:zons from which tbe clock error and the asimuth can be found. For finding tho azimuth it is most advantagenus to use two stars differing as nearly 90° in declination as possible, such as a star near the pole and one near the equator, or better still (if the weather permita it) two successive meridian transits of a close circumpolar star (one above and one below the pole), as in this case errors in the assumed right asrension will not influence the result.
The interval of time between the culminations or meridian transits of two stare is their difference of right ascension, 24 hours corresponding to 360° or 1 hour to 15°. If once the absolute right ascensions of a number of standard stars are known, it is very simple by means of these to determine the R.A. of any number of stars. The absolute R.A. of a star is found by observing the interral of tima between its culnination and that of the suo. If the inclination of the scliptic (ϵ) is known, and the declination of the sun (δ) is observed at the time of transit, we hare sin a tan e $=$ tan 8 , which gives the R.A. of the sun, from which together with the observed interval of time corrected for the rate of the clock, we get the R.A. of the star Differentiation of the formula shows that observations near the equinoxes are noost advantageous, and that errors in the assumed ϵ and the abserved δ will have no influence if the Δa is observed at two epochs when the suo's R. A. is A and $180-A$ or as near thereto as possible. A great nombea of observations of this kind will furnish materials for a standard catalocue; but the right ascensions of many important cataloguc have been found by making use of the K. A.'a of a previons cata logue to detcrmino the clock error and tla is to improve the individnal adopted R. A.'s of the former cstalogue.
ln order to determine absolnte dechations or polar distances, it 28 first necessary to determine the co-latitude (or distance of the polr from the zenith) by observing the upper and lower culminatio of a number of circumpolar stars. The difference betwecn th. circle reading after observing a star and the reading correspondir: to the zenith is the zenith distance of the star, and this plus th. co-latitude is the north polar distance or $90^{\circ}-\delta$. In order te determine the zenith point of the carcle, the telescope is directed fertically dombwards and a basin of mercury is placed under it forming an absolutely horizontal ouirror. Losking through the telescope the obsorver sces the horizontal wire and a reflected image of the same, and if the telescope is moved so as to mal:e these colncile, its aptical axis will be parpendicular to the plane of the horizon, and the circla reading will be $150^{\circ}+z$ zenith point. I! observations of stars refraction has to be taken into account as well as the errors of graduation and flexure, and, if the bisection of tho star on the horizontal wire was not made in the centre of the field, allowacce most be made for curvature (or the deviation of the star's $[$ ath from a great circle) and for the inclination of the borizontal wire to the horizon. The amount of this ioclination is found by taking repeated obscrvations of the zenith distance of a star during the one transit, the pole star being most suitable oring to its slow motior.

Liferature. - The methods of investlgatiog the errors of a transit circle and Chaovenet's manuals (see Time). For detailed description In Brinnow's and chacienet's manuals (see Time). For detailed descriptions of modern transit Obsercasfons for 1s65, and the Publications of the Weyden (vol. b.), the Trashington The Grecawich circle is described in an appeatire Washburn observatory (val ii.). for 1852 .
(J. L. E..D.)

TRANSMIGRATION. See Metemfsychosis. TRANisportation. See Prison Discipline. TRANSUBSTANTLATION. See Eecharist.

TRANSVAAL, or South African Republic, a country in South Africa, northeramost of the European states, lying between $22^{\circ} \mathrm{I} 5^{\prime}$ and $28^{\circ} \mathrm{S}$. lat., and 25° and $32^{\circ} 10^{\circ}$ E. long., is bounded N. and N.. W. by the Limpopo, separating it from the NaLalaka and Bamangwato conntries: W. partly by the Marico and the Hart, partly by an irregular line between these streams, separating it from the naw British protectorate of Bechuanaland; S. by the Vaal and the Buffalo, separatiug it from the Orange Free State and

Natal; E. by the Libomba Mountains, separating it from Zaluland and the Portuguese East African possessions. ${ }^{2}$ Transvaal thus forms a compact inland territory nearly as broad as long, not more than 45 or 50 miles from the Indian Ocean at Delagoa Bay, but otherwise lying completely within the outer rim of the vast South African tableland. A line drawn from the south-west extremity, where it touches Griqualand West, north-eastwards to the Limpopo-Shasha confluence, gives an extreme length of 500 miles, the distance from the same confluence southwards to the Natal frontier being 425, and the greatest length east and west between the Zulu and Bechuana frontiers about 400 miles. In the absence of accurate surveys, the total area las been variously estimated at from 110,000 to 120,00) square miles, with a population (including aborigines) roughly calculated at from 750,000 to 800,000 .

Physical Features.-Physioaily Transvaal forms a wellmarked section of the great South African plateau, an elevated shallow basin with a mean altitude of over 3000 feet, whose conformation has been compared to that of a saucer. On the south and east this basin is separated from the coast by a lofty inner and 'ess elevated outer rim, the former from 6000 to 10,000 , the latter about 2000 feet high, sweeping round in curves concentric with that of the seaboard; from Cape Colony through Natal and the east side of Transraal northwards to the equatorial regions. The inner rim, whose various sections in the extreme south are known as the Roggeveld, Nieuweveld, and Quathlamba ranges, takes in Natal and Transvaal the general name of tbe Drakenberg Mountains. From the Natal frontier to the Lipalule (Olifant) tributary of the Limpopo, the Drakenberg maintains the aspect of a more or less continuous range 5000 to 7000 feet high, culminating in the Mauchberg (8725), the highest point in Transvaal: A little to the east is the Spitskop (5637), and further south the Klipstad (6020) and Holnek. (5600). This section, whose several ridges are known as the Verzamelberg, Randberg, Slangapiesberg, and Komatiberg, falls everywhere precipitously eastwards towards the Libomba range, or outer rim of the plateau, which maintains a mean elevation of 2006 feet along the eastern border of Transval. Beyond the Lipalule, the Drakenberg loses the character of a well-defined mountain system, broadening out into uplands moderately elevated above the surrounding plateau, and breaking into ridges, such as the Murchison and Zoutpansberg ranges, which ruu east and west between the Lipalule and Limpopo. The whole system slopes gently westwards to the central tableland, which is itself intersected by several broken ranges, such as the Maquassieberg, Gat Rand, Witwater Rand, and Magaliesborg in the south; the Dwarsberg, Marikele, Hanglip, Watcrberg, and Blauberg in the north, all mostly trending in the direction from east to west. But few of these ridges rise much above 4000 feet, and, as the plateau has a mean altitude of considerably over 3000 feet, they detract little from the aspect of a vast level or slightly rolling upland plain, almost everywhere presented by "ransvaal west of the Drakenberg orographic system.

The numerous fossil remains of aquatic life, together with extensive sandy tracts and the presence in several places of water-worn shingle, give to the central tableland the appearance of an upheaved lacustrine basin, whose waters escaped at one time through the Limpopo to the Indian Ocean, at another through the Vaal to the Orange river, and thence to the Atlantic. The Vaal and Limpopo are still the two great fissures in the plateau, which carry off most of the surface waters to the surrounding marine

[^226]basins. The water-parting between these two river systems lies, not in the Drakenberg, itself pierced by the Lipalule and several of its affluents, but in the Witwater Rand towards the scuth-west of the state. From this point the Limpopo, or Crocodile, sweeps round first to the west, then to the noth-east, describing a semicircle of about 1000 miles to the Limvuba (Pafuri) confluence, where it leaves Transvaal, flowing thence for nearly 340 miles through Portuguese territory south-east to the Indian Ocean. Captain G. A. Chaddock has shown (1884) that it is navigable for steamers to this confluence, above which it is obstructed by the Tolo Azime and other rapids. Throughout its whole course it receives nunerous affluents on both sides, such as the Shasha and Nuanetsi from the north, the Marico, Nyl, Limvuba, Lipalule, and othere from Transvaal, of which region it drains fully 95,000 square miles. With the exception of a few tracts watered by the headstreams of the Buffalo (Tugela), Mvolozi, Usutu, and Umcomati (King George), flowing in independent channels eastwards to the Indiau Ocean, all the rest of Transvaal is drained by the Vaal westwards to the Orange and Atlantic. The Vaal has its easternmost sources in the Wakkerstroom district on the west slope of the Draken berg, whence it flows for about 450 miles, partly within, but mainly along, the southern frontier of Transvaal, of which, with the Hart and other tributaries on its right bank, it drains about 20,000 square miles altogether. Besides these perennial streams, there are numerous shallow lagoons or saltpans scattered over the western and northern districts, as well as thermal and mineral waters, such as the Warmbad in the Nyl valley. But the only lake properly so called is Lake Chrissie, a sheet of water nearly 40 miles round, and in parts very deep, which lies on the west side of the Drakenberg, 5755 feet above sea-level.

Climate.-Although lying on the border of and partly with!n the trepics, Transvaal, thanks to its great elevation above the sea, aud to the absence of extensive rarshy tracts, enjoys on the whole a bealthy invigorating climate, well suited to the European constitution. Owing to the dryness of the air, due to the proximity of the Kalahari desert, the western and central districts are specially favourable to persons suffering from consumption and other chest complaints. But some of the low-lying moist tracts along the Limpopo and other river valleys, close to or within the torrid zone, are extremely insalubrions, fever of the general African tyje being here endemic, aod its prevalence usually marked by the presence of the destruetive tsetse fly. The route from Delagea Bay to the interior also traverses a fever-stricken const district between the sea and the Libomba esearpment, dangerous especially in tho rainy summer season. The rains generally begin about Octaber, sametimes a little before or after, and last ir termittently till A pril. But the rainfall is very unequally distributed, most of the moisture-bearing clouds from the Indian Ocean being arrested by the great larrier of the Drakenberg, or countcracted by the dry west winds from the Kalahari descrt. Thus, while there is abundauce of rain in tho east, the comutry gradually becomes dricr as it approaches Bechuana land. During the dry winter season (April to September) keen frosty winds blow from the south, sweeping freely over the contral plains and carrying the moisture to be precipitated as snow along tho eastern highlands. Novertheless, according to the careful meteerological observations made by Mr Lys at Pretoria between 1877 and 1880 , the mean annual temperature is consiterahly over $68^{\circ} \mathrm{F}$., falling to about 40° in June and rising to 90° and occasion ally even 95° in January. The rainfall in the same central district seldom reaches 30 inches, which is probably a fair average for the whole of Transvaal, falling to 12 towarls the western and risiog to 60 on the eastera frentier.

Mineral Resources. - Transvaal yields to no other African regron in the abundance of its mincral resources, while it is altogether unsivalled in their extraordinary varicty. These include, hesiles the precious metals and diamonds. iron, copper, lead, cobalt, sulphar, saltretre, and coal, this last with gold, coppcr, and iron bcing probably the most abundant and widlly distributed. Gold, largely diffused throughout the Drakenberg and in the northern Zoutpans berg and Waterberg districts and in the Rastenburg and Marica districts in the extreme west, as well as in the highlands between 'fransvaal and the Zambesi, has hitherto been workec chierly in the rich anriferous region of Lydeuburg about Mount Manchberf and Mount Spitskop in the rentral parts of the Drakenkerg rango. and farther somh in the dihannesbury, and Lower Kaals (Shelia)
district, Mideelburg. The Lydenbarg deposits, discorered in 1873, lie st an eleration of 4500 to 5000 feet 40 miles south of the Lipalnle river and 125 north-west of Lorenza Marques on Delagoa Bay, the chicf diggiugs being at Pilgrim's Rest and Mac Mac elose to the Spitskop. In the Middelburg diatrict the chief centres of mining operations are the recently founded towns of Barberton and Johannesburg. In some years the Lydenburg, Darabastad, aod other diggings hare jointly yielded over $£ 300,000$, nbtained by washing and without any quartz-crushing. Iron ores are also widely distributed, and the Izerberg ("Iron Mountain") near Marabastad (24° S., 30° E.) consists of an enormons mass of rich iron ore, which the natives have worked for ages. Diamonds are chielly confinced to the Bloemhoff district on the Vaal above the breat diamautiferous region of Kitaberley in Griqualand Weat. Coal abounds in the sonth-eastern districts (Wakkerstrona, Utrecht), and also farther north in. Middelburg (Nazareth) and Lydenburg. In some places seams 7 or 8 feet thick lie so near the surface that they aro quarried and the coal carted away by the natives. The provailing formations where this great miueral wealth is embelded are quartz, porphyry, granites, clay slates, greenstone, Lower Deronian strata, conclomerates, and lımestones.
Flora. - In Transpaal, as in most of the continent, an herbaceous flora prevaila largely oper forest growths, which are here confined chiefy to the deep kloofs (gorges) of the mountain ranges, and to the courses of the larger streans. Bush, including mimosas, thorn thickets, and ereepers, covers extensive tracto on the northern and southera plaina, and the Wakkeratroom and Utrecht districts towards Natal are well monded. But elsewhere the characteristic features are grasslands, downa, bill slopes, flots, aud even maniy parts of the higher uplends being covered with savaunahe generally affording good pasturage and fodder for cartle. In the woodlands the prevailing species are three varietice of yellow wood (Podocarpus), often graving to an enormous size, the Cape beech (Myrsine), aeveral varieties of the wild pear (Olinia) and of stinkwood (Oreodaphene), ironwond, and eboby. The Boers and other settlers have hitherto oceupied themselves ehiefly with stock-lreeding (sheep, cattlo, and horses), but there can be no doubt that much of the country is eminently suited for the cultivation of cereala, yielding two annual crops and producing some of the finest wheat in the world. Tobaceo, the vine, and most European fruits and vegetables also thrive well, while semi-tropical produrets, such es cotton, sugar, and coffee, might be raised in the warmer northern districts.
Founa.-By the early settlers Transraal was deseribed as the paradise of hunters," ${ }^{1}$ abounding in the characteristic large animals, ouch as the lion, lenpard, rhinoceros, elephant, giraffe, zebra, quagga, sevcral varietiea of antelope, and the ostrich, which roam over the continent from Soudad to the Cape. All theso animals still exist, but in greatly reduced numbers, being now largely replaced by the domestic animals-cattle, sheep, and horses -introduced by tho white settlers. All the large rivers are inhabited by the hippopotamus and crocodile, the latter giving an alteraative name to the Lirmpopo; the bullalo, gnu, eland, springbok, wildbeeste, baboon, and sereral other members of the ape family are also frequently met with. The country is occasionally awept by destructive fights of locusts; but the greatest enemy of the stock-breeder is the tsetse fly, which infests the coastlands and many of the riverine tracts, lut shors a tendeney to disappear with the large gamo, retreating with the advanco of the plough. A tsetse belt 40 miles wide along the whole course of the Limpopo still bare the spread of European settlements beyond Transraal in the direction of the Zambesi.

Inhabitants.-Of the population not more than 50,000 ate whites, mostly Eoers (descendants of the early Dutch, French, and Germar immigrants to the Cape), with a large and increasing percentage of British settlers, attraeted in recent years especially to the Lydenburg and other mining districts All the reat are natives, belonging mainly to the Baanto and Bechuana brancles of the Bantu family, and consequently allied in speech and to a large extent in physique to their Zulu-Kaffre neighbours: A conaiderable nuriber of these natires have abandoned the tribal state ard taken service, cither freely or by compulsion, with the whites as furm labourers in the rural districts, and as domestic sertanta in the towas, and are now also largely employed in mining operations The great bulk of the rest, who retain their national usages and recognize the authority of more or less independent tribal chiefs, are concentrated in the northern and eastern provinces of Zoutpansherg $(304,000)$, Waterberg (174,000), and Lydenburg (123,000). There aro also about 40,000 in Bloemhoff (extreme south-west), and the same number in the western provinces of Ruatenburg and Marico, but only a few scattered groups in all the rest of the country. These western and sonth-western trilies (Barolongs, Batlapins, Bakwenas, Takhatlas, \&e.) are all Bechnanas; the others mainly Makatis, as the Basutos are here collectively called. It may be stated in a general way that the whole country south of the Lipalule is now free of native claims and open to European colonization, while

On tha route between the Orange and Vaal ($1333-37$) the - voor-trekkerg re sald to have gilled as many as 200 llons.
the northern region between that river and the Limpopo is atill to a large extent occupted by unreduced or unbroken Basuto cormmunties.

Natural and Political Divisions.-Transvaal has been divided inta three more or less distinct uatural regions, determinel chiefly by the relief of the land, and its climatic and economic conditions. Thase are - (1) the Hooge veld, or uplands, comprising the aouther11 districts drained by the leal and the Drakenberg highlands as far north as the Lipalule, about 35,000 square miles altogether, with an altitude rangiog from 4000 to 7000 feet; (2) the Banken weld, or terrace lands, comprising the low eastern zone between the Drakenberg and Libomba ranges, falling in mavy places down to a level of 2000 feet, with an area of 15,000 to 20,000 square niles : (3) the Bosch weld, or bush country, comprising all the rest of the land, with an altitude of 3000 to 4000 feel and an area of 60,000 square miles. For administrative purnoses the country is again divided in to thirteen provinees:-Zoutpansberg and Waterherg in the north; Lydenburg, Middellurg (formerly Nazarctly), Pretoria, Rustuburg, and Marico in the centre; Utrecht, Loudiua, Wak kerstroam, Heidelberg, Potebefstroom, and Bloemhotf in the south. In the sonthera part of Lydenburg lies the somewhat detached district of Ner Scotland, comprising some 500,000 acres seleeted by the late Mr M'Corkindale as a Scotch pastoral and agricultural settlement. It is a bealthy prosperoas country, lying on the slopes of the Drakenberg, within 310 milos of Durban, Natal. But the most thickly settled province is Potchefstroonk, a fertile tract, 3500 to 5000 feet high, abundantly watered by the Mooi, Schoen. and other streams flowing to the Vaal, and well suited for tillage onl pasturage. Its capital of like asme (derived from elements in those of Potgieter, Suberf, and Stockeustroom, three popular Loen leaders during the early migrations) is the most setticd and one of the largest towus in Transvaal. The only other phaces deserving the name of town are Pretoria, eapital ol the province of like uarae and of the state, occupying a somewhat central position 100 miles north-esst of Potehefstroom, 980 from Cape Town, 820 from Pon Elizabeth, and 400 from Durban ; Barberton, in the Lomer Kaap mining district, 150 miles by road from Delagoa Bay, only three years old, but already by far the largest place in the state, with a population (1887) of 15,000 ; and Johannesburg. centre of the goldfiells of the same nanie, 30 milea sorth-east of Protoria, and 72 east of Potchefstroom, founded in 1886, but already larger thau Pretoria, with a population of over 4000 .
Administration and Statistics.-Transpaal enjoys representative institutions, with a volkgrad or pasiatirent of torty-four members elected for four years, one-hall returing every two years, the executive being entrusted to a president elected for tive years by the whole body of electora, assisted by a council of four, the ex. officio vice-president and the stato secretary, with two others appointed by the volksrasd. The revenue, derived chiefly from laud sales, quit rents, stamps, hnt-tax, and custonis, balanced the expenditure in $1 \$ 85$, and exceeded it by $£ 15,000$ in 1886 , the re. spectire sums being $£ 260,000$ and $£ 245,000$. In 1884 the public debt was $£ 396,000$, the exports (gold, ivory, corn, wool, hides, cattle, ostrich feathers, \&c.) about $£ 600,000$, and the imports probab!y over $\mathfrak{L l}, 000,000$. The long-projected railnay, intended to aford an outlet to the coast at Delagoa Bay, was completed in 188% from Lorenzo Marques, the seaward terminus, to the Transraal frontier, a distance of 50 miles. Transraal is in telegraphic communication with the Cape and the rest of the world through the Orange Free State.
History. - The historic life of Transvaal begins wath the "Great Trek," or general exodus of the Cape Colony Boers, who, being disaatistied, especially with the liveral policy of the British Government towards the natives, removed northwards in large numbers between the gears 1833 and 1837. By 1836 some thousands had already crossed the Vaal, that is, had reached the "Trans-Vaal" country, which at that time mas mostly under the sway of tha powerful refugee Zulu chief Moselekatze, whose prineipal kraal was at Mosega in the present Marico district on the west frontier. Ta avenge the massacri of some cmigrant bands, the Boers unde: Marizz and Potgieter attacked and utterly lefeated Moselekatze at this place in 1837. Next year the Zuln chief withdew beyoud the Limpopo, where be founded the present Matelele state between that rirer aud the Zambesi, thus leaving the region between tha Vaal and Limpope rirtually in the hauds of the Trekkere. But their positiou was reudered inseeure on the east side by the militar: despotism of the fierce Zulu ebief Dingasn, who, after the murdeit of his brother Cbaka, had asserted his authority over the wholo of Zululand and most of the present Natal. The situation was rendered almost desperate by the conplete rout aná wholesale massacre (1838) of the right division of the emigrant lloers, who had ventured to crass the Buffala under Pieter Retief, anil who were defeated by Dingaan, first at Umkongloof ("Aceldama"), then at Weenen ("Weeping "'), and again sonn after ander Uya, Jicritz, and Potgieter, when as many as 800 fell beiore the irrecistibla onslaught of the disciplined Zulu warrion. At ${ }^{2}$ thin eitical iuncture the Trekkers were saved from sitier externination "

Andries Pretorius of Grasf Reinet, hy whom Dingaan met with a first check before the close of 1838, followed in January 1840 by a still more crushing defeat. Dingaan having beeu soon aftel murdered, the friendly Panda was set up in his place, and Natal proclaimed a Roer rejulblec. But the British occupation of that territory in 1843 intheed tho Locrs to retiro in two banda across the Drakenherg, the southeru division settliug in the preseat Orauge Free State, the northeru again passing into Transvaal. Rut, owing to internal dissensions, and the perpetual bickeriugs of the two most promineat personalitics, Pretorius and Petgieter, all attempts at establishing an organized system of goverument throughr out Transvaal ended in failure, till Pretorius iuduced the British Government to sign the Sand River conventiou (Jausary 17, 1852), which virtually established tho political indenendence of that region The eleath both of Pretorius and Potgieter in 1853 prepared the way for a period of intercal peace under Pretorius's eldest son Marthinus Wessels Pretorius, first president of the "Dutelh African Republic," whoso title was afterwards altered (1858) to that of the "South Africau Republic." But a fatal element of weakuess lay in the persistent refusal of the Boers to treat tho natives on a footing of equality, or cven with commen justice. The murder of Hermann Potgicter and family (1854), avenged by Pretorius at Makapan's Cave, was followed (1856) hy the "Apprentice Law," establishing a system of disguised slavery, which was further strengthence by the sanction (1858) of the Grond wet, or "Fundamental Law," declaring that the "people will admit of no equality of persons of colour with the white inhabitants either in state or church." Owing to this policy opposition was constautly shown both to the English traders, disposed to deal fairly with all, and to tho missiodaries, preachers of universal equality, as illustrated by the plunder of Livingstone's house by the commando sent against the native chief Secheli in 1852. A brief chronicle must here suffice of subsequent events down to the present time:-
1857. Invasion of the Orange Free State by Prctorius; dispute settled without bloodshed by the ireaty of June 1.
1859. Pretorius elected president of the Free State; fails to effect the union of the two states.
1863. Return of Pretorius, during whose absence affairs had fallen into confusion ; contipued troubles with the natives; quarrels with the Batlapios, Barolongs, and Griquas in the west; in the east with Ketchywayo, king of Zululand, about the Boers' right to the Wakkerstroom and Utrecht districts
1867. Discovery of diamonds, and Mauch's snyouncement of goldfields in the interior.
1868. Pretorius's proclamation extending the houndaries of the state west to Lake Ngami, east to Delagoa Bay, whence dispuntes and negotiations with Eagland and Portugal, Delagoa Bay being ultimately awarded (July 1875) to Portugal by the French president, Marshal MacMshon, to whose decision the matter had been referred.
1871. Boundary disputes tawards the south-west settled by the award of Lieutcmant Goveroor Keate of Natal, leading to the resignation of Pretorius and appointment of Presideat Burgers.
1875. The Fundamental Law forces Burgers to measures leadiag to the war with Sikokuni, chief of the Bapedi, south of the Olifant river, who claimed large part of Lydenburg and even of Pretoria: Burgers's visit to Europe in connexion with the Delagoe Kailway scheme; on lis return he finds everything in the greatest confinsion; Boers dispirited by reneated reverses in the Sikokuni war; an empty treasury; broken credit; the state practically bankrupt and exposed to imminent danger of invasion by Bapedis and Znlus. Hence
1876-77. Intervedtion of England, and Sir Theophilua Shepstone's proclanation (April 12, 1877) annexiog Transvaal, followed by the appointment of Sir W. Owen Lanyou as British sdinimistrator.
1880-81. Revolt of the discontentod Boers, who, being successful in a few contests with Rritish troops, induced the british Geverument to restore the republic nader the "suzersinty" of the queen, by the treaty of peace of March 21, 1881, a British resident being appointed, with the functions of a consul-general.
1883. S. J. Faul Krüger eiected presideat.
1884. Convention of Lonaon (February 27, ratified by the volksraxd, August 8) recognizing the state as tho South African Republic, and considerably restricting the British suzerainty.
1835. Proclamation (March 23) of the British protecterate over Bechnanaland, thereby arresting the westward adyance of the Doers into the Bamangwato, Bakwens, Bangwaketsi, and Baroloner territories, and keeping open the great trade route from Cape Colony through Hopetown and Shoshoog to the Zambesi.
1 536 . Fresh discoreries of rich suriferous deposits espenially in the Midilelburg province, followed by a great influx of Englist speaking. populations, thrcatening to swamp the Botr element.
1886. Projected South African confederation, opposed by Krüger, but supported by the Orange State, Cape Colony, aud a najority of the Transvas Boers. Connected with this scheme is the proposal of a uniform tariff and the immediate construction of a through railway from Cape Town to Delagon Bay.
(A. H. K.)

TRANSVERSE FlUte, Tee, -or German Flute, as it was formerly designated in Great Britain,-may be described as a musical instrument in which a column of air is set in vibration by regular pulsations derived from a current of air directed by the lips of the executant against the side of an orifice serving as an embouchure, picrced laterally in the substance of the pipe and towards its upper extremity. This mode of blowing appears to be of very ancient origin: the Hindus, Chinese, and Japanese claim to have used it from time immemorial ; in Europe the high antiquity of a latéral embouchure is generally admitted, although it does not rcally rest, so far as our present knowledge goes, on any conclusive cvidence. ${ }^{1}$

The sblique flute of the Greeks was of Egyptian origin, and it is therefore safest to suppose it to have been like the instrument frequently figured on the monuments of ancient Egypt, which, held obliquely, was blown through the orifice itself of the pipe at its upper extremity. The same instrument (called "nay") is still used in Mohammedan countries. The flute is often mentioned in mediæval poetry, but no details of its construction are given. It was the custom, moreorer, to designate various instruments by this name. The oldest representation we know of the transverse flute is found in the 11 th-century frescos of the cathedral of St Sophia at Kieff. Eustache Descharops, a Freach poet of the 14th century, in one of his ballads, makes mention of the "flute traversaine," and we are justified in supposing that he refers to the transverse flute. It had certainly acquired some vogue in the 15 th century, being figured in an engraving in Sebastian Virdung's celebrated work, ${ }^{2}$ where it is called "Zwerchpfeiff," and, with the drums, it already constituted the principal element of the military mnsic. : Agricola ${ }^{3}$ alludes to it as the "Querchpfeiff" or "Schweizerpfeiff," the latter designation dating, it is said, from the battle of Marigoan (1515), when tlae Swiss troops used it for the first time in war.

From Agricola on wards transverse flutes formed a complete family, ssid to comprise the discant, the alto end tener, end tho bass, -
 o ments must in fact have produced
sounds an octave higher than those noted. Pretorins, ${ }^{4}$. who in a special note warns his readers against inaceuracies of this kind which were then frequent, designates the transverse flate as "traversa Querpfeiff" and "Querfiot," and notifies the bass in 0 , ane fenor - in in O in in time included two discants, four altos or tepors, zad two basses. The same author distinguishes between the "Traverss" and the "Schweizerpfeif" (which he also ealls "Feldpfeiff," i.e., military fute), elthough the construction was the same. There were two kinds of ? "Feldpfeif,"
 plojed exclusively with the military drum. ${ }^{5}$
${ }^{1}$ The Louvre has two sacient statues (from the Vills Borghese) represeating satyrs playigg upon transverse flutes. Uafortunately these marblea have been restored, especially in the details affectiag our present subject, and are therefore examplea of no value to us. Another statue represeating \& flute-player occurs in the British Musenm. The instrument has beeo supposed to be a transverse flute, but erroaeously, for the iosufliation of the laterat tube against which the instrumentalist presses his lips, cuuld not, without the iaterveution of a reed, excite the vibratory movement of the column of air.
${ }^{2}$ Musica getulscht und auszgenogen, Basel, 1511.
${ }^{8}$ Musica Insirumentalis, Witwenberg, 1529
${ }^{3}$ Organagraphia, Wolfeahüttel, 1618.

- It is from the word Pfeiff that the French Fifre and the English Fife, still applies to the military flutes in preseat nse, are ovidently derived.

Mersenne's account of the transverse flute, then designsted "flute d"sllemsind" or "flute sllemande" in France, is obscure bough; but the tabletures and an "Air de Cour" for four flutes in his work lead us to believe that there were then in tise in France the sopra. - the tenor foll sud the bass
 The Múseum of the Conservatoire o Royal of Brussels possesses specimens of ell varieties hitherto mentioned except the last. All of them are laterally pierced with six fioger holes; ${ }^{2}$ they have a cylindrical bore, and are fashioned out of a single piece of wood. Their compass consists of two octaves and a fifth. The successive opening of the lateral holes gives rise to a series of fundamental notes forming the first octave. By a stronger pressure of the breath these motes sre reproduced in the noxt octave higher, and the extent of compass of the instrument is completed in the higher region by the production of other harmonics. ${ }^{8}$

The largest bass flute in the Brussels museum is in D:-bo at the Freach normal pitch A 435 double vibrations per second. It measures. 0.95 m . from the centre of the blow orifice to the lower extremity of the tube. The disposition of the lateral holes is such that it is impossible to cover them with the fingers if the flute is held in the ordinary way. The instrument must be placed against the mouth in an almost vertical direction, inclining the extremity of the tube either to the right or the left. This inconvenieut position makes it necessary that the instrument should be divided into two parts, ensbling the player to turn the head joint that the embouchure may be most commodiously approsched by the lips, which is oot at all easy. The first and fourth of the six lateral holes are double, but those holes are stopped up with wax which have become useless. through the player's habit of using the fingers of the right or loft band to cover the higher three holes. The bass flute shown in fig. 1 is the facsimile of an instrument in the Museo Civico of Verena. The originsl, nnfortunately no longer fit for, use, is nevertheless sufficiently well preserved to allow of all its proportionate measurements being given. The lowest note, E, is obtained with a remarkable amplitude of sound, thus apsetting a very prevalent opinion that it is impossible to produce by lateral insunflation souuds which go s little Fig. 1. Fir. 2. lower than the ordinary limit downwards of the modern orchestral flate. ${ }^{4}$

The buss flute cited by Merscnne ahould not differ much from that of the Museo Civico at Verona. We suppose it to have beeo in and that it was furnished with an open key like that Which was applied to the recorders (fates douces) of the sajo epoch, the function of the key being to aggment by another note the compass of the instrument in the lower part. Following Quantz, ${ }^{5}$ it was in France and about the middle of the 17th contury that the first modifications were intreduced in the manufacture of the flute. The improvements at this period con. sisted of the sbandonment of the cylindrical bore in favour of a conical one, with the wide part in the head of the instrument. At the same time the flute was made of three separate pieces called head, body, and foot, which were ultimately further subdivided. The body or middle joiat was divided into tiro pieces, so that the instrument could be tuoed to the different pitches then in use by a replacement with longer or shorter pieces. It was probsbly about 1677, when Lully iatroduced the German flute into the operz, that recourse was had for the "first time to keys, and that the key of D was applied to the lower part of the instrument. ${ }^{6}$ The en. graving of B. Picart, dated 1707, which ornaments the work of the French flautist Hotteterre-le-Romain,? represents the flute as having reached the atage of improvement of which we have just spoken, but the body was still formed of one plece only. In 1726 Quantz, ${ }^{9}$ finding himself in Paris, had a second key applied to

1Hammonia Universelle, Peris, 1636.

3 It is usuel to fadicate the tomality of fintes by the vote prodnced when the dix lateral holes are covered by the fingers. This costom le objectionabje, becanse it is the dispos.tion of the flagers which is made ose of to sonnd D. The pracUce has for lis result that the todality is alweys a note lower.than the signacure used. Thas the flate in D is really in C; that in F in $E b_{\text {, \&c. }}$
3 Victor Mlahillon, Fints on the Fingering of the Boehm E7ute, Ioodon, 1884.
Fétls, Rapport sur la Fabrication des Insfruments die Musigue ar IExpositfon Universelle de Paris, en 1855.
5 Versuch einer Anveisumg die Fiote traversiè zu spielen, Berin, 1752.

- Unlus where the contrary is stated, we have always in view, in describing the enccessive improvements of the fate, the treble finte in D, which is considered to be typical of the famlly. 8 "Herrn Johaon Joechlm Qusntzias Lebenslanf, von thm selbst entworfed," Sn the Historisch-Kritsche Betraige zur Aufnakme der Musik, by Murporg,
the fiute, placed nearly st the same height as the firat, that of the intended to differentiste the D shd the Eb. This jnnoration was generally well recêived in Germany, but does not appear to have met with corresponding success in other countries. In France and England manufacturers adopted it but rarely; in Italy it was declared useless. ${ }^{\circ}$ About the samie time flutes were constructed with the lower extremity lengthened and furnished with tro supplementary keys to produce the $C=$ and C. This innovation, spoken of hy Quantz, did not meet with a very favourable recoption, and was shortly afterwards abandoned. Passing mention may be made of the drawing of a flute with a \mathbf{C} key in the Music-Saal of J. F. B. Mayers, Nuremberg, 1741.
The tuniag of the instrument to different pitches was effected, as already explained, by changes in the length, and notably by substituting a loager or shorter upper piece ic the middle joint. So wide were the differences in the pitches then in use that seven such pieces for the upper portion of it were deemed necessary The relative proportions between the different parts of the instrument being altered by these modifications in the leogth, it was conceived that the just relation could be re.established by dividing the foot into two pieces, below the key. These two pieces were adjusted by means of a tenon, and it was asserted that, in this way, the foot could be leagthened proportionately to the length of the middle jeiat. Flutes thus inproved took the name of "flutes à registre." The register system was, about 1752, applied by Qunatz to the head joint, and, the embouchare section being thus capable of elongation, it was allowable to the performer, according to the opinion of this professor, to lower the pitch of the fute a sernitone, without having recourse to other lengthening pieces, and without disturbing the sccuracy of iatonation.

The upper extremity of tho flute, beyond the embouchure orifice, is cloged hy means of a cork stopper. On the position of this cork depends, in a great measure, the accurate tuaing of the flute. It e is in its right place when the accompraying octaves are true. Quantz, in speaking of this accessory, mentions the use of a ant-screw to give the required position to the cork. He does not name the inventor of this sp-
pliance, but, according to Tromlitz, ${ }^{10}$ the improvement was due to Quantz himself. The invention gees back to 1726.

When the Method of Quantz appeared there were still in ase, besides the orchestral flute in D, the little fourth flute in G, the low fourth lute in- A, and the flute d'amour a note higher; is Frsece they had, moreover, the littleoctave flute in D (octave). A bass finto in D had also been sttempted (see fig. 2). When Ribos published his Bemerkungen aber die Flote ${ }^{11}$ the flute had already the five keys here shown. This auther does not cite the inveater of these now keys, but eome claim them for Kusder, a musical -instru. ment maker in London, others for Johann
 George Tromlitz of Leipsic, snd Ribocq declares he has seen no flutes so constructed other than by these two makers. But Tromlitz lays no claim for himself to the credit of this improvement. He only saye that "he had occupied himself for several years in applying these keys so as not to augment the difficulty of playing, but, on the contrary, to render the handling of them as easy as possible." 12 We may therefore regard the London maker as the author of the first finte with five keys, with, however, \& reservation as to the G , key, which, from 1727, had been applied by Hoffmann of Rastenberg ${ }^{2 s}$ to the transverse flute and the oboe. The higher key of CH, adepted froas 1786 by Tromlitz, we believe to have been first recommended by Ribocq (1782).

In 1785 Richard Potter, of London, improved Qnantz's slide aprlied to the head joint as well as to the register of the foot by a couble system of tubes forming double sliding air-tight joints. In the document ${ }^{24}$ describing this improvement Potter patented the ides of clothing the holes which were covered by keys formed by motal cooical valyes. The keys mentioned in the patent were
 finte dowawards was taken up again about the same time by two players of the flute in London named Tacet and Florio. They devised a new disposition of the keyo C and C, sad confided the execu. tion of their invention to Potter. In Dr Arnold's Ncw Instruictions for the German Flute occars a tablature, the engraving of which goes bsck to the end of the 18th century, and bears the following title, "A Compiete Drawing snd Concise Scale and Description of Tacet and Florio'e new invented German Flute, with sll the sddi tional keys explained." It explains the use of six keyo, - C, C
 ment of so many keyo was at once sdmitted. Tromlitz himself, who, however, made flutes with nine keys, - Eiding Eb, another F, snd Ch, declared that he was not in favour of so great a complication, sind that he preferred the flute with only two keys, Dt and Cb,

[^227]With a recister toot joint and a cork nut-screw at the head joint. This iustrument met all requirements. He was even against the use of the keys for C and $\mathrm{C}=$, because they altered the recognized quality of tone of the instrument. When Tromlitz published his methorl, the family of flutes had become modified. It comprehended only the typical flute in D , the finte d'amnur a minor third lower, a "third" 且ute a miuor third hifler, and, finally, the little octave fute.
While Tromlitz was struggling ill Germany with the idea of anginenting the compuss of the thite downwards hy cmploying open keys for C and $\mathrm{C}=$, an Italian, Giovanui Batista Orazi, ${ }^{1}$ mereased the scale of the instrument downwards by the application of five now keys, viz., $B, B b, A, A$, and G. At the same time that he produced this invention? he conceived the plugging of the lateral holes by tho valve keys then recently invented by Potter. But it, was hardly possible to obtain a perfect plugging of seven lateral holes with the aid of as many keys, for the control of which there were only the two little fingers, and therefore this invention of Orazi proved a failure.
In 1808 Frellerick Nolan, ${ }^{8}$ of Stratford, near London, conceived an open key, the lever of which, terminating by a ring, permitted the closing of a lateral hole at the same time the key was being acted upon. The combination in this double action is the embryo of the mechenism that a little later was to transform the system of the flute. Two years later Macgregor, ${ }^{4}$ a musical-instrument maker in London, constructed a bass flute an octave lower than the ordinary flute. The idea was not new, as is proved by the existence of the hass flute meationed nbove. The differeace betwcen the two instruments lies in the mechanism of the keys. That employed by Macgregor consistell of a double lever, a contrivance dating from before the mildle of the 18 th century, of which the application is seen in an oboe of large dimensious preserved in the National Museum at Munich. ${ }^{5}$
About 1830 the celebrated French flautist Tulou added two more keys, those of $F \neq$ and $C_{\#}^{\#}$, and a key, called "de caderce," to facilitate the accompanying shakes.
To increase the number of keys, to improve their system of plugging, and to extend the scale of the instrument in the lower region, -these had hitherto been the principal problems dealt with in the improvement of the flute. Nn maker, no inventor whose labours we have called attentioo to, had as yet devoted his attention to the rational division of the column of air by means of the lateral holes. In 1831 Theobald Bochm, a Bavarian, happeniog to be in London, was struck with the power of toue the celebrated Kinglish performer Charles Nicholson drew from his instrument. Boehm leuracd, and not without astooishment, that his English colleague obtained this result by giving the lateral holes a much greater diameter than was then usually admitted. About the aame time Boehm made the acquaintance of an amateur player named Gordon, who had effected certain improrements; ho bad bored the lateral hole for the lower E, and had covered it with a key, while he had replaced the key for F with a ring. These innovations set Boehm about attempting a complete reform of the instrument. ${ }^{\circ}$ He went resolutely to work, and during the year 1832 ho produced the new flute which bears his name. This instrument is distinguished by a new mechanism of keys, as well as by larger boles disposed along the tube ia geometrical progression.
Boehm's system had preserved the key of G open ; Coche, ${ }^{7}$ a professor in the Paris Conservatoire, assisted by Auguste Buffet the younger, a musical-instrument maker in that city, modified Boehm's flute bv closiag the Gf with a key, wishing thus to render the new fingering more contormable to the old. He thus added a key, facilitating the shake upon $\mathrm{C}_{\tilde{f}}$ with $\mathrm{D}_{\text {f. }}$. and brought about aome other changes in the instrument of less importance.

Boehm had not, however, altered the bore of the flute, which had been conical from the end of the 17 th centingy. In 1846, however, he made further experiments, and the results oltained were put in practice by the construction of a new instrument, of which the body was bored cylindrical, but the head was modified at the embouchure. The inventor thus obtained a remarkable equality in the tones of the lower octave, a greater sinorousness, and a perfect accuracy of intonation, by establishing the more exact proportions which a column of air of cylindrical form permitted.

The priority of Boelna's invention was long contested, his detrantors maintaining that the honour of having reconstructed the flute was due to Gordon. But an impartial investigation

[^228] 5 Apother specinen, almost the same, constricied about 1775 , and called Basse da stusette, may be scen in the Musenra of the Paris Conservatoire.
Stee Ueber den F'lölenbau und die nevesten Verbescerungen desselben, Malnz, 1847; and W. S. Breadwood, Ar Essoy on the Construction of Fiutes originally wrilten by Theobald Boehm, published with the addition of Correspondence and other Documente, I.oninn. 1882.

E'zamen crilinue de la Finito Ordinaire comparée à la Flute Boehm, Parls, 1228
vindicates the claim of the forner to the iovention of the lavge lateral holes. ${ }^{\text {a }}$ His greatest title to fame is the invention of the mechaoism which allows the production of the eleven chromatic semitoaes intermediate between the fuadamental note and its first harmonic by means of eleven holes so disposed that in opening them successively they shorten the column of air in exact proportional quantities. ${ }^{9}$ Boehas ${ }^{10}$ has published a diagran or scheme to be adopted in determiniog the position of the note-holes of wind instruments for every given pitch. This diagram gives the positiou of the intermediate holes which he had been enabled to establish by a rule of proportion based on the law of the lengths of strings.

The Boehin flute, notwithstanding the high degree of peifection it bas reached, has not sechred unanimous favour; even now there are players who prefer the ordinary thute. The change of fingering required for sone notes, the great delicacy and liability to derangement of the mechanism, have something to do with this. In Eagland especially, the ordinary flute retains many partisans, thanks to the improvements introduced by a clever player, Abel Siccania, in 1845. ${ }^{11^{2}}$ He bored the lateral holes of E and A lower, and covered them with open keys. He added some keys, and inade a better disposition of the other lateral holes, of which he increased the diameter, prnducing thus a sonorousness alinost equal to that of the Boehm flute, while yet preserving the old fingering for the notes of the first two octaves. But in spite of these improvements the old flute will not bear an impartial comparison with that of Boehm.
(V. M.)

TRANSYIJVANIA (Germ. Siebenbürgen), a mountainous principality (Gross-Fürstenthum) forming the extrene eastern portion of Austria-Hungary, is bounded on the W. and N. by Hungary proper, on the E. by Bukowina and Moldavia, and on the S. by Walachia. The German name is usually derived from the seven principal fortified towns or "burgs" founded by the Gerinan colonists, though some authorities prefer to connect it with the Zibin Mountains on the south frontier. The Latin name appears first after the lyth century, and signifies "beyond the woods," i.e., from Hungary ; the Magyar and Roumanian names (Erdély and Ardcalu) both mean "forest-laud." For all political and administrative ends, and in the official statistics and returns, Transylvania is now wholly incorporated with Hungary (q.v.), and to all intents and purposes is a part of that kingdom. The principality has the form of an irregular circle, with an area of about 21,000 square miles, and is on all sides surrounded by mountain chains, while the interior is barred and striped with lower ranges. On the west or Hungarian side there are various wide and comparatively easy passes into the interior, but on the east and south frontiers the lofty bounding mountains present steep and rugged faces outwards, giving to Transylvania the general aspect of a huge natural fortress. These mountains are a continuation of the Hungarian and Galician Carpathians; in fact, the mountains of Transylvania may be regarded together as forming the southeastern main group of the Carpathian system. The loftiest and most rugged peaks are on the north and south boundaries. On the north the highest summit is the Pietross (7534 feet), one of the Rodna Alps; on the south are the Butshetsh (8262 feet), the Königstein (7357 feet), and the Negoi (8340 feet). The east is bounded by several parallel chains, the highest peak in which is the Pietrossul (6910 feet); and on the west border the greatest height is attained towards the south, where several peaks reach 7200 feet. On the west are the Transylvacian Ore Móuntains (Erzgebirge), with the curious Detunata ("thunder-smit "), and the Bihar group, with its numerons caverns. There are numerous valleys, ravines, and canoss in the network of mountains covering the interior of the country, but it is only along the courses of the principal rivers that plains of any size are found. The chief rivers are the Aluta or Alt, which flows south, pierces the southern boundary mountains at the Rother Thurm Pass,

[^229]and joins the Danube, and the Maros, to the west, and the Szamos, to the north, both tributaries of the Theiss, which also falls into the Danube. All these are navigable, and are fed by various tributaries. The largest lake is the Hodoser or Eseger See, 13 miles long. Transylvania abounds in mineral springs of all kinds, especially saline and chalybeate. The climate is tolerably severe: hot summers alternate with very cold winters; but the rainfall is not great.
The mineral wealth of Transylvania is very cousiderabie. Gold is found in certain quantity in mines, snd it is also "washed" in some of the streams, chiefly by Gipsies. The gold is often found in conjunction with tellurium (first discovered in Transylvania in 1782, and until the present century not found anywhere else, see Teliunical. Silwer, copper, Iead, and iron are also worked to some proft. Coal occurs in considerable abuudance, and it is mined in the Schilthal, but the superabundance of timber has retarded its exploitation. Hills larg: y formed of pure salt are met with here and there, and there are also very rich subterranean deposits of salt, sometimes cropping up on the surface. Some of the saline springs also yith salt enough to render their evaporation profitable. The vegetation of Transylvania is luxuriant, except of course in the bigher monntain zones. Fruits sbound, as apples, pears, peaches, a pricats, plums, cherries, chestnuts, and almonds; mulbervies are also cultivated. The vine flourishes bost in the valley of the Maros. Agriculture is one of the nost important industries, though the available good land is by no means fnlly taken up. The chief crop is maize ; but wheat, ryo, and other grains, potatoes, saffron, hemp, flax, and tobacco are also grown. Extensive forests clothe much of the country, but are ia a some. what ueglested condition. On the boundary mountains the trees are mainly coniferous ; in the interior oaks. elms. beechea. aud ashes are conspicuous.
The forests afford covor for many wild animals. Bears, wolves, foxes, boars, and various varisties of game are found, and on some of the mountains the chamois. There is abundant pasturage on which excellent cattle are reared; and in some diatricts bulfaloes are bred for draught purposes. Nore important is the breeding of a sturdy race of horses, thousands of which are annually exported. The mountains maintain very large flocks of sheep, of which two kinds are distingnished-with a fine ehort-stapled and a coarse long-stapled wool respectively. Silkworms are bred, and some silk is apun; and the export of honey and wax, from both wild and domestic bees, is not inconsiderable. Ne ther the means of commnaication with the external world nor the manufacturing indastry in Transylvania is developed to any important extent; the latter, indeed, has to a sertain extent gone beck. The most industrious "Saxons"; and trade, the great bylk of the popalation are the "Saxons"; and trade, the great bulk of which is with Roumania, is mainly in the hands of Armeaians and Greeks. The chief commercial centres and principal towns are Hermannstadt, Kronstadt, Bistritz, and Szamos-Ujvar.
Perhaps the most interesting point in connexion with TransylVania is the variety of its population, which in 1880 numbered 2,084,043 in all. Unti! 1845 the chief inluence and privileges, as well as the only political rights, were divided among the three "privileged nations" of the H:agarians, SzekIers, and Saxors The first are the descendants of the Magyar conquerors. The Szeklers, i.ee, "guardians," chiefly on the east borders, settled in eastern Transylvania to act as guardians of the frontiers. The Saxons are the posterity of the German immigrants brought by King Geisa II. (1141-1161) from Flanders and the lower Rhine to eultivate and repeople his desolated territories, At first these were known as Teutones, Teutonici Hospites, and Flandreases, hat since the beginning of tho 13th centnry the genersI name of "Saxons," as tantamount to "Germans," has prevailed (ff. Saxony, vol. xxi. P. 351). The Hungarians and Szeklers tugether namber 609, 208, and the Saxnes 204,713, but by far the most numerons element, though loag excluded from power and political equality, is formed by the Walachians or Rommanians, $1,146,611$ in number, a mixed race, not entitled to the descent which they claim from the early Koman colonists of Dacia The Gipsies of Transylvania, who are heard of under a voivode or prince of their own in 1417, are estimated at 46.460; many of them have abandoned a nomadic Ife anil havo taken to agriculture or gold-washing. Jewa, Armenians, Bulgarians, Rutheuians, and Greeks are also represented in the medley of peoples. About 70,000 (chiefly children) are returned, "noclassed, as "not able to speak." The Magyars are mostiy Roman Catholics or Unitarians, the Germsns Protestants, aud the Roumanians adherents of the Greek Church.
Transylrania formed part of the Roman province of Dacia. After the withdrawal of the Romans the conntry becasae for centuries the prey of the various peoples who swept across it in their restless migrations. At the beginning of the 11 th century 'tonat Strohm I af Hungarv made hinself master of the lani', which was chencerorward governea as an fungarian province by a
voivode. In 1538 the voivode, Johu Zapolya, succeoded in rendering himself independent, and he and his successors, who were generally elected by the people, were snpported by the Turks against the honse of Austria, while the difficult nature of their country preserved them on the other hand from becoming too dependent on their powerful allies. After the defeat of the Turks at Vienna in 1683, their influence in Transylvania waned, and in 1699, by the pesce of Carlowitz, the Porte acknowledged the suzerainty of Leopold I. of Austria over Trazsylvania. By the Leopoldine diploms of 1691 Leopold had guaranteed the ancient rights and laws of the land, and united it formally with the Hungarian crown. In 1765 Maria Theresa made it a grand principality (Gross. Fürstenthun). The efforts of the Romanian iuhabitants to secure recognition as a fourth "uation," and the opposition of the noll-Magyar population to a closer union with Hungary, led to troubles and disagreement early in the 19th ceritury, culminating iu bloody interoecine struggles in 1848. Ia 1849 Transylvania rans divided from Hungary by an imperial decree, and became an Austrian crown-land; but in 1860 the old order was renewed, and the complete incorporation with Hungary was pelfected in 1868. Since that time the policy of the Hnugarian jarty has on the whole prevailed, and the Magysrization of the principality is steadily being carried through, in spite of the bitter protests aud discontent of both the Saxons and Roumanians. An Hungarian university was founded at KIsuseuburg in 1872; and Hungarian is recognized as the officiai langunge.
(F. MU.)

TRAPANI, a seaport of Italy, capital of the province of Trapani, and an episcopal see, lies on the extreme north-west coast of Sicily, 19 miles to the north-north-east of Marsala and 4 miles to the west-soath-west of Monte St Giuliano. It lies on a sandy peninsula resembling a sickle (whence the name, from δ рє́тavor), projecting westward and concare towards the north. It is a place of considerable enterprise; the streets are, comparatively speaking, regularly built and well kept; and the population are above the average iu industry and intelligence. The town is still surrounded by a wall with bastions. Some of the mediæral houses are interesting architecturally, but none of the public buildings require special notice. Among the institutions of Trapani may be mentioned the lyceum (with natural history collection and picture gallery), the gymnasium, the technical and navigation ochools, and the library. Some of the churches contain choice piorks of art. The industries of the place include linen manufacture and rorks in coral, wood, iron, marble, alabașter, mother-of-pearl ; there are also extensive salt lagoons in the immediate neighbourhood, and there is considerable traffic in salt, soda, sulphur, and grain. The harbour, on the south-west side of the sickle, is sheltered by a mole and protected by a fort in the islet of Columbara; it has a lighthouse at the entrance, and is accessible to vessels of about 400 tons. The population in 1881 was 32,020 .
Trapani, the ancient Drepanuzn or Drepana, was the seaport of Eryx (see Eryx and Monte San Gidliano), and is represented by Yirgil as the scene of the death of Anchises, and of the funeral games celebrated in his hononr. Towards the beginaing of the First Punie War (c. 260 e.c.) it was made a fortress by Hamilcar Barca, who removed hither the greater number of the inhabitants of Eryx, the remainder being transferred in 249. It fell into the hands of the Roniansat the end of the war, and does not figure again in ancient history. It appears, however, to have continued to flourish as a commercial town, being mentioned both by Cicero and by Pliny. In the Middle Ages it became a royal residence.
TRAPPISTS. The abbey of Notre Dame de la MaisnaDieu de la Trappe was founded in 1140 by Rotrou, connt of Perche, at Soliguy-la-Trappe, a village of Haut-Perche, now in the arrondissement of Mortagne, department of the Orne, so named from the narrow gorge which forms its entrauce, comparable to a trap-door. It was at first attached to the congregation of Savigny, a minor offshoot of the order of Fonterrault, but that congregation was uuited in 1148 to the Cistercian order, and, by the special intervention of $S t$.Bernard, was affliated, with ali its dependencies, to his own abbey of Clairvaux No medieval monastic order fell more rapidly and signaliy from the spirit of its original iustitute than the

Cistercian, and La Trappo formed no exception to the general decay. Indeed, its geographical position in a district fiercely contested during the long war between France and England hastened its declension, for it was several times taken and pillaged, while the members of the community, at last compclled to break up and disperse, returned at the close of tlee war with their traditions interrupted, their discipline relaxed, and their moral tone deteriorated. Nor was this the worst. The introduction of the "commendam" system into the French Church, whereby secular ecclesiastics were cappowered to hold monastic beaefices without residence or conformity to the rule of the society in which they ranked as heads, wrought yet further mischief ; and, thougl the Trappists at first endeavoured to resist Jean du Belloy; the celebrated bishop of Paris (afterwards cardinal-bishop of Ostia), whom Francis I. nominated in $15 \underline{-6}$ as abbot commendatory, and were upheld by the pope in continuing to elect their own abbots, yet their cfforts were fruitless, and Du Bellay was succecded by a series of titular abbots, unde. whose nominal rule the estates of the abbey were impor. erished, the buildings suffered to fall into nearly total ruin, and the conduct of the monks became a public scandal. In fact, the community was broken up, the dismantled inonastic buildings were abandoned to afew domestics and their familics, and the scattered Trappists scldom reassembled save for hunting partics and similar amusenuents. Such was the condition of things when a reformer arose in the jerson of one of those rery abbots commendatory whe har been the ruin of the institute.

Armand Jcan Bouthillier de Rancé, second son of Denis Bouthillier de Rancé and Charlotte Joly his wife, was born in Paris on January 9, 1626. Ey his father's side he was sprung from a patrician family of Preton origin long scttled in Normandy; by his mother's he was connected with powerful members of the offieial hierarchy: His near kindred wore wealthy, titled, and highly placed in the magistracy, the army, and the dignities of the chureh; while the fact that Cardinal Tichelieu was one of his sponsors and gave him his own fore-names sufficiently attests the political infuence just then at their disposal. The child showed carly tokens of considerable abilities, and was intrusted by his father to accomplished tutors, under whom he made rapid progress. Ife was originally" intended to enter the order of tho Knights of Malta, but the desth of his cider brother in 1637, after a long illness, changed his father's plans, and the child (who had been tonsured in 1635 by way of precaution against such a contingency) was at once put in possession of the various bencfices which had been secured for his elder; so that, while still under eleven years of age, he was cenon of Notre Dame de Paris, abbot of La Trappe, of Notre Dame du Val, and of St Symphorian of Beatrvais, and prior of Boulogne, near Chambord, and of St Clementin, in Poitou. In 1642 he was sent to the College d'Harcourt, where he hegan the usual course of philosophy; but addicted himself almust at once to the then popular study of judicial astrolocy, which he soon forsook for the cognate delusion of alchemy. Nevertheless, be distinguished himself in the more accredited studies of the college, and graduated as M.A. in 1044. It was then usual for Parisian students in theology to attend the course of lectures delivered at the Sorbonne, but De Rancé preferred to return homo and pursuc his theological studies under prirate instruction He was ordained deacon in 1648, and, being in the heje day of youth, with high spirits and popular manners, fell readily into the dissipations of the time, leading a very i:regular life, yet not so as to forfeit the goodwill of even lis stricter acquaintance. IIe was ordained pricst in 1651, lut made ne alteration in his habits, and yet so far kopt
up his studies that, wnen examined in 1652 for his licence as bachelor in theology, he came out at the head of the candidates, whilo the famous Bossuet ranked only as third. In 1653 he lost his father, who bequeathed property to him which doubled his already large income, and in 1654 he graduated as doctor of divinity, when his uncle, the archbishop of Tlours, made him one of his archdeacons, linting that this preferment wonld be merely the prelim. inary of a mitre. He never so much as pretended to discharge the dutics of his ners office, but spent his time amusing himself at his chateau of Verctz; in despite of which his uncle nominated him as deputy from the diocese of Tours to the gencral assembly of the Freneh elergy convoked by the king in 1655 to discuss the Jansenist controversy. The chief matter of interest in this conncxion is that he was one of the minority of 65 doctors of the Sorbonne who refused to vote, with the majority of 127 , a censure upon the Jansenist leader Arnauld, though he took part later against that school. The sudden death of the duchess of Rolan- Montbazon, with whom he was intimate, and whose relations with him were the subject of much hostile comment, is said to have been the first great slook which began the process of cbange in his views of life and duty. A story, which was first given currency in an anonymous account of his conversion published at Cologne in 1668, much heightens this by alleging that De Rance arrived at the duchess's houso unaware of her death, and went direct to her apartiment without being warned by the servants, only to find her head lying apart from her decapitated body, laving been cut off because the coffin was too short and there was no time to procure another. The truth of this story (itself containing several improbable incidents) was promptly denied by Maupeou, the carliest of De Rance's biogra. phers, and has beon rejected by Bayle and St Simon, though accepted by La Harpe and Voltaire. What is certain is that the alteration in his habits nearly synchronizes with the death of Madame de Montbazon, and that the years $1657^{\circ}, 1658$, and 1659 were mainly spent in solitary studies or in visits to the monasteries of which he was titular head, varied by conferences with eminent ecclesiastics whose advice he sought, while in 1660 the death of the duke of Orlcans, whose chicf almoner he was, appears to have given the final direction to his thoughts, though it was not for some years that he carried out his now plans to the full. Hlis first resolution was to sell his patrimony and resign his benefices, and in 1662 he actually sold his chatean of Véretz, nade over two mansions in Paris to the hôtel-dieu, and obtained permission to transfer all his abbeys except Boulogne and La Trappe to resident heads chosen by himself. His canonry of Notre Dame had been resigned so far back as 1653 because of some difficulty about residence. After making provision for family claims, and retaining a comparatively small sum for the repair of Boulogne and La Trappe, he distributed the remainder of his property to the poor. In 1662 he visited La Trappe, which he fornd in a deplorable enndi tion, and the few resident monks so indisposed to listen to his projects of reform that they threntened to murder him and throw his body into the abbey ponds. In his turn he threatened then with the king's direct interforence, and such was the terror of Louis XIV.'s name that they at once submitted, and consented to retire upon the payment of a moderate pension; whereupon De Fancé filled their places in 1603 with monks of the strict Cistcrcian observance, and carefully repaired the monastic buildings there and at Loulognc. In that same year he finally decided to enter the monastic life, and began bis noviciate at the Cistereian abbey of Perseigne in llaine, assuming, on lus frofession in 1664 . the actual headship
of the abbey of La Trappe, whose nominal abbot he had been for nearly thirty years. Associating himself with other personages who desired to revive the Cistercian discipline, he made two journeys to Rome to obtain papal sanction for their plans, and after considerable delay a brief was procured from Alexander VII. authorizing the abbot of Citeaux, as general of the Cistercians, to hold a grand chapter of the order to discuss the proposed reforms, which actually did meet in 1667. But De Rance's ideas went much beyond the mere re-establishment of the strict observance; and, though he judged some details of the original rule unsuited to his own day, and blended with it some particulars borrowed from the Benedictine rule, yet he was so far from diminishing its general austerity that he added to the protracted fasts, the total abstinence from flesh-meat, fish, eggs, and wine, the laborious manual occupations, the hard beds, and the severe asceticism, even in the church services, which made part of the original rule, also the obligation of perpetual silence, save at prayers (to which eleven hours daily are devoted), and save also the "Memento mori" with which the Trappists greet each other on first meeting, which is the distinguishing feature of La Trappe, a rule from which none are dispensed save the abbot and the guest-master, as obliged to bold some degree of intercourse with outsiders; and he further ordained that each monk should spend some time each evening digging his own grave, and should sleep on straw in his coffin for a bed. These austerities, though chearfully embraced by the morks of La Trappe, and attracting enthusiasts from without, were far from being approved generally, even in the Cistercian order itself, and, when a decree was issued by the council of stato in 1675 giving the abbot of Citeaux absolute authority over all Cistercians of the strict observance, De Rancé took alarm, and, thinking it possible that an attempt might be made to mitigate the severities he had introduced (particularly as the mortality amongst the members of his society had been very large, and was currently attributed to insufficient nutriment), induced them to renew their vows and to pledge themselves against the admission of any relaxations. Nor was he content with opposing this kind of resistance to the bishops, abbots, and others who remonstrated with him upon the subject, but he also tock up his pen in defence of his views, and published in 1683 his treatise De la Sainteté et des Devoirs de la Vie. Monastique, which involved him in much controversy, notably with the learned Benedictine Mabillon, who replied to bim in his well-known work Traité des Études Monastiques, puoblished in 1691. Advancing years and curemitting asceticism told even on the strong constitution of De Rance, and he found bimself unable to take his share of the manual labours of the bouse, or even to be present in chapter, so that in 1695 he felt obliged to resign the abbacy, and procured the nomination of the prior Zosimus to succeed him, but he died before the arrival of the bulls for his installation, and Dom Francis-Armand was substituted in his room, and inducted into offce in 1696. He proved a failure as a ruler, and La Trappe broke up into two factions during his headship, some holding to him and others to De Rancé, till the new abbot resigned in a fit of disgust of which he soon repented, but could not succeed In recalling his abdication. Dom Jacques de la Tour, a man in sympathy with De Rancé, was then nominated by the crown, and while he was still abbot De Rancé died, on October 20, 1700, in the seventy-fifth year of his age.
De Rancé was a tolerably copious author, though most of his writings were little more than occasional pamphlets suggested by the controversies in which he was engaged, short devotional treatises, and notices of deceased members of his community, but his reputation for ability and scholar-
ship was never contested. He was a successful admini strator, and, though the exireme severity of his institute resulted in the failure of fully six-sevenths of the postulants who presented themselves, he gathered rouad bim during bis government of the abbey no fewer than three hundred ascetics, French, Belgians, Germaus, Italians, and Irishmen, one-third of whom were drawn from less austere communities or from the ranks of the parochial clergy and candidates for the priesthood. Of lay outsiders who joined him, the largest proportion consisted of rural artisans and labourers, and of soldiers, from officer to private (a class for which La Trappe has always continued to have attractions), with a small sprinkling of the legal profession; while two plysicians and a single tradesman complete the tale of those who persevered out of the two thousand or so who presented themselves. No daughter houses were founded from La Trappe during De Rancés life, for, though he was ready enough to send some of his monks for a time or even permanently to revive the Cistercian discipline in other monasterics, he was opposed on principle to every scheme which tended to drain the resources of La Trappe itself, and it was not till 1705 that the first offshoot of the Trappists was planted at Buon-Solazzo, near Florence, at the solicitation of Cosmo III., grand-duke of Tuscany.
No remarkable events oesurred in connexion with La Trappe till the French Revolution, when the order was included in the geueral suppression of monastic societies by the Constituent Assembly in 1790. Even then the bigh character borne by La Trappe, and honourably distinguishing it from too many monasteries at that time, seemed likely to exempt it from the common fate, and great efforts wers made to obtain its exclusion from the operation of the decree. A petition addressed by the Trappists to the National Assembly was referred to the council-general of the department of the Orne at Alencon, which reported against it to the ecclesiastical committee of the assembly, though admitting that all the local municipalities which they had consulted were in favour of sparing the abbey. Dom Augustin (Louis Henri L'Estrange), at that time master of the novices, foreseeing the result of the inquiry, went to Switzerland to provide a refuge for the brethren, and obtained permission from the authorities of canton Freiburg to take possession of Val-Sainte, an unoccupied Cistercian monastery, and to bring no more than twentyfive persons thither. This necessitated leaving more than a hundred at La Trappe to await the coming storm, which burst upon Trinity Sunday, June 3, 1792, when commissioners seized all the movable goods scleduled in their inventory, and compelled the inmates to disperse. Some betook themselves to Soleure; a few retired singly into private dwellings; but various groups set out together to found colonies in Spain, Germany, England, and Canada; while the earlier Swiss and Tyrolese houses were compelled to break up and seek refuge elsewhere from the Frencil invaders. But amidst all difficulties and discouragements the order not merely maintained itself, but grew and strengthened, and in 1808 ventured to plant anew two houses in France itself. This same year, however, saw the division of the order into two congregations, because the Trappists of Darfeld, under their prior Eugene de Prade, resisted what they considered to be the excessive demands made upon them by the abbot, of the order, that very L'Estrange who had led out the colony of Val-Sainte (and who had been constituted its head, and that of the whole society, by a brief of Pius VI. in 1794), and the dispute was appealed to Rome, with the result that in June 1808 judgment was given against L'Estrange, and Darfeld was erected into an independent abbey under De Prade as abbot, and subjected to the jurisdiction of the bishop of Münster. Nearly every Trappist house at this date was
within Napoleon's dominions, and, as the order sided with the pope against the emperor, the latter expelled its monks from all monasterics in the einpire, and imprisoned not a fon of them. With his fall they revived again, and obtaincl permission to return to France, whither between 1814 and 1825 they drifted lack from most of their places of exile, though 1450 were expelled anew in 1880 under the operation of the Ferry laws. La Trappe itself was repurchased by L'Estrange, and became once more the mother honse, while there are lifteen other French monasteries of the order, four Belgian, two English (Mount St licrnard, Leicestershire, and Stape Hill. Dorset), two in lreland, one cach in Germany, Savoy, and Algiers, t wo in Italy, two (Gcthsemane in Kentucky and New Melleray in lowa) in the Ünited States, and one originally settled in I'ennsylvania, but now at Tracadie in Nova Scotia. An order of Trappistine nuns was founded by Dom Augustin in 1827, and has nine Frencl houses and one English. The total numbers are computed at 3000 members of both sexes.

The bibliograplyy relating to De Rance and the Trappists is copious, and the following list is not exhaustivc. Savary (Bishop of Sécz), Imago I. P. Dom. Arn. Joan. lo Bouthillier de Rance, Ablutis de Trappa, 1701 ; Manpeou, Vie ce M. l' Abé nic la Trappe, l'aris, 1702; Marsollier, Vie de l Alle Beulhillicr ric Jiance, Paris, 1702; Le Nain (brother of Tillemont), lic ic Le Deuthillicr de limuce, Able el Reformateur de la Trappe, Rouen, 1715; Inguimbert, Genainus Character D. Arm. Joannis Bultilicri Sancei, Kome, 1718; Charles Butler, "Life of De Rancé," Misceclanies, vol. iii., London, 1817; Dubois, Histoirc de l Abbe De Mance el de sa Reffonne, 2 vols., Paris, 1866; Félibien, Description de la Traphe, Paris, 10,72; Helyot and Badiche, Histoire rics Ordrcs Rcligieux, art. "La Trapne," Paris, 1859; Wetzer and Welte, Kirchenlexicon, art." Trappisten," Freihurg. 1849.
(R. F. L.)

TRAS-OS-MONTES (i.e., "Behind the Monntains") is the north-east frontier province of Portugal, situated on the other side of the Serra de Marão from Oporto. On the W. it is bounded by Entre Minho e Douro, and on the S. by Leira. The area is 4260 square miles, and the population increased from 393,279 in 1878 to 396,076 in 1881. Physically the province is a mountainous plateau, the most elevated in Portugal, and characterized by the picturesqueness and wildness of its scenery. Monte Zinho reaches a leight of 7445 feet. Vast tracts are covered with heath; but in certain parts the soil is fertile, and the rich winegrowing district on the upper Douro (Alto Douro) is the native country of port. Silk-growing is also carried on; and wheat, rye, hemp, and fax appear among the exports. The province is divided into the tro administrative districts of Villa Real and Draganza. Besides the two towns thus named, two only, Chaves and Miranda do Douro, are of any considerable size.

TRAVANCORE, a native state in Madras presidency, India, between $8^{\circ} 4^{\prime}$ and $10^{\circ} 22^{\prime} \mathrm{N}$. lat. and between 76° 12^{\prime} and $77^{\circ} 38^{\prime}$ F. long., with an area of 6730 square miles. It is bouncled on the N. by the native state of Cochin, on the E. by the Lritish districts of Madura and Tinnevelli, and on the S . and W. by the Indian Ocean. This state is described as one of the most picturesque portions of southern India. Its most marked physical feature is furnished by the TVestern Ghats, which rise to an elevation of 8000 feet and are clothed with magnificent primeval forest; they throw out spurs towards the coast, along which there is a belt of flat country of about 10 miles in width, covered with an almost unbroken mass of cocoanut ard areca palms, which to a great extent constitute the wealth of the country. The whole surface is undulating, and presents a series of bills and valleys traversed from east to west by many rivers, the floods of which, arrested by the peculiar action of the Arabian Sea on the const, spread theniselves out into lagoons or hackwaters, connected here and there by artificial canals, and forming an inland line of smooth-water communication for nearly
the whole length of the coast. The chief river is the Pe iyar, which is narigable for 60 miles; other important rivers are the Pambai and its tributary the Achinkoil, the Kallada, and the Western Támbraparni. Iron is abundant. Elephants are numerous, and tigers, leopards, bears, bison, elk, and various kinds of deer abound in the forests. The state possesses some good roads, and, on the whole, internal communication is tolerably complete. Travancore bas an abundant rainfall, with every variety of climate and temperature.

In 1881 the population of Travaneore was found to number $2,401,158$ (males 1,197,134, females $\}, 204,024$), of whom 1,755,610 were Hindas, 146,909 Mohamnedans, and 498,542 Christians. The clief towns are Trivasdivm (q.v.), tho capital, Alephi, tho commercial centre and chief seaport of the state, and Quiton, another seaport and military headquarters. Among the principal articles which the state pruluces are rice, cocoz-1ut paim, peplocr, areeanut, cardamoms, tamarind, coffee, timher, \&e. The manufactures comprise cocoa-nut, gingelly, lemon-grass, and laurl oils, jagaery and molasses, salt, nrrack, cotton cloths aud yans, lottery, and coir yarn, rope, and mattiag. Its revenae in $1884-85$ was ustimated at $\{640,548$. Tra rancore stato is in suhsidiary alliance with the British Governmeut, to which it pays a tribute of $£ 80,000$ a year. It is one of the fer states which lave never turned against the British. Under the enlightened rule of the late maharajilh tho country made great progress, and it now stands very high anong native states. It is free from debt, and has a shrplus of revenue over expenditure. The sovereignty as well as the inheritance of property passes in the female linc.

TRAWLING. See Fisheries.

TREASON. The law which punishes treason is a necessary consequence of the idea of a state, and is essential to the existence of the state. Most, if not all, nations have accordingly, at an early period of their history; made provision by legislation or otherwise for the punishment of those offences against public order which consist in more or less direct attacks upon the safety of the state or its chief. The principle is universal; it is the application of the principle which leads to differences of opinion. What would have been a capital crime at Rome under Tiberius may be no offence at all in England. It is to tho adrantage of both the state and the citizen that what is treason and what is not should be clearly defined, so that as little as possible discretionary power, apt to be strained in times of popular excitement, should be left to the judicial or executive authorities. The importance of this was seen by Montesquieu. Vagueness in the crime of treason, say's he, is sufficient to make the government degenerate into despotism. ${ }^{1}$ At the-same time, "it may be observed that despotic Governments have not always left the crime undefined. The object of Henry VIII., for instance, was rather to define it as closely as possible by making certain acts treason which would not have been so without such definition. In both ancient and modern history treason has generally been a crime prosecuted by exceptional procedure, and visited with affictive as distinguisbed from simple punishments (to use the terminology of Bentham).

In Roman law the offences originally falling under the head of treason were almost exclusively those committed in military service, such as in England would be dealt with under the Army Act. The very name perducllio, the name of the crine in the older Roman law, is a proof of this. Perluelles were, strictly, 1,ublic enemies who bore arms against the state; and traitors were regarded as haring no more rights than public enenies. The Twelve Tables made it puaishable with death to communicate with the enemy or to betray a citizer to the enemy. Other kinds of perduellio were punished by interdiction of fire and water. The crime was tricd before a special tribunal, the duumviri perducllionts, perhaps the earliest permanent criminal court existing at Romc. At a later period the

[^230]name of perduellio gave place to that of lasa majestas, deminuta or minuta majestus, or simply majestas. The lex Julia majestatis, to which the date of 48 B.c. has been conjecturally assigned, continued to be the basis of the Roman law of treason until the latest period of the empire. The original text of the law appears to have still dealt with what were chiefly military offences, such as seading letters or messages to the enemy, giving up a standard or fortress, and desertion. With the empire the law of majestas received an enormous development, mainly in the reign of Tiberins, and led to the rise of a class of professional informers, called delatores. ${ }^{1}$ The conception of the emperor as divine ${ }^{2}$ had much to do with this. It became a maxim that treason was next to sacrilege ${ }^{3}$ in gravity. The law as it existed in the time of Justinian is contained chiefly in the titles of the Digest ${ }^{4}$ and Code ${ }^{5}$ "Ad legem Juliam majestatis." The definition given in the Digest (taken from Ulpian) is this: ":najestatis crimen illud est quod adversus populum Romanun vel adversus securitatem ejus committitur." Of treasons other than military offences, some of the more noticeable were the raising of an army or levying war without the command of the emperor, the questioning of the emperor's choice of a sue(essor, the murder of (or conspiracy to murder) hostages or certain inagistrates of high rank, the occupation of public places, the meeting within the city of persons hostile to the state with weapons or stones, incitement to sedition or administration of unlawful naths, release of prisoners justly confined, falsification of public documents, and failure of a provincial goveroor to ozithis prevince at the expiration of his office or to deliver his army to his successor. The intention (voluntas) was punishable as much as an overt act (effectus). ${ }^{8}$ The reported opinions as to what was not treason show the lengths to which the theory of treason must have been carried by at least some person in authority. It was not treason to repair a statue of the emperor which had decayed from age, to hit such a statue with a stone thrown by chance, to melt down such a statue if unconsecrated, to use mere verbal insults against the emperor, to fail in keeping an oath sworn by the emperor, or to decide a case contrary to an imperial constitution. Treason was one of the "publica judicia," i.e., one of those crimes in which any citizen was entitled to prosecute. The law went further than this, and deprived the accused in a charge of treason of his ordinary remedy for malicious prosecution. It also took from bim the privilege (which those accused of other crimes generally possessed) from accusation by women or infamous persons, from liability to be put to the torture, and from having his slaves tortured against him (see Tortore). The punishment from the time of Tiberius was death (usually by beheading ${ }^{7}$ and confiscation of property, coupled with completa civil disability. A traitor could not make a will or a gift or emancipate a slave. Even the death of the accused, if guilty of treason of the gravest kind. such as levying war against the state, did not extinguish the charge, bui the memory of the deceased became infamous, and his property was forfeited as though he had been convicted in his lifetime.

[^231]The law of England corresponds to a consideradir extent with Roman law; in fact, treason is made by Blackstene the equivalent of the crimen lass majestatis. The history of the crime in the tro systems agrees in this that in both the law was settled by legislation at a comparatively early periocs and subsequently developed by judicial construction. In both, too, there were exceptional features distinguishing this crime from other offences. ${ }^{8}$ For instance, at commen law treason was not bailable (except by the Queen's Bench) or clergyable, could not be cleared by sanctuary, and did not admit of accessories, for all were principals, nor could a married woman plead coercion by her husband. To stand mute and refuse to plead did not save the lands of the accused, as it did in felony, so tbat the "peine forte et dure" (see Torture) was unnecessary in treason. These severities were due to the conception of treason as a breach of the oath of allegiance Other differences introduced by statute will be meritioned later. In some cases a statute simply affirmed the common: law, as did the Statute of Treasons to a great extent, and as did 26 Hen. VIII. c. 13 , depriving those accused of treason of the benefit of sanctuary. How far the Romal: law was consciously imitated in England it is impossible to determine. It was certainly not adopted to its full extent, for many acts were majestas which were never treason, even in the most despotic periods. Treason was the subject of legislation in many of the pre-Conquest codes. The laws of Alfred ${ }^{9}$ and Athelred ${ }^{10}$ punished with death any one plotting against the life of the king. Soor: after the Conquest the Leges IIenrici Primi ${ }^{11}$ put any one slaying the king's messenger in the king's mercy. The crime was shortly defined by Glanvill ${ }^{12}$ and at greater length by Braston, ${ }^{13}$ who fellows Roman law closely. He includes under treason sedition and coining. Treason seems to have rested chiefly, if not wholly, upon common law until the year 1352, whien the famous Statute of Treasons (25 Edw. III. st. 5, c. 2) was passed. The statute appears to have arisen from a petition of the Commons in 1348, praying for a definition of the offence of accroaching royal power, a charge on which several persons-notably Gaveston and the Despencurs-had suffered. The offences made treason by the statute are these:-(1) to compass or imagine ${ }^{14}$ the death of the king, ${ }^{15}$ the queen, or their eldest son and heir ; (2) to violate the king's courpanion, or lis eldest duughter unmarried, or the wife of his eldest son and heir; (3) to levy war against the king in his realm, or be adherent tn the king's enemies in his realm, giving them aid and comfort in the realm or elsewhere; (4) to counterfeit the king's great or privy seal or his money ; (5) to bring false money into the realm, counterfeit to the money of England, as the money called Lushburgh, ${ }^{16}$ knowing the money to be false ; (6) to slay the chancellor, treasurer, or the king's justices of the one bench or the other, justices in eyre, or justices of assize, and all other justices assigned to hear and deternine, being in their, places doing their offices. The statute further defined petty treason to be the slaving of a master by his servant;'; a husband by his wife, or a prelate by a man secular or religious owing him allegiance. In all cases of treason not specified in the statute the justices before whom the case came were to tarry without going to judgment until the cause had been

[^232]showed and declared before the king and his parliament whether it ought to be judged treason or felony. The statute, so far as it defines the offence, is still law, except the clauses as to counterfeiting the seal, coining, and petit treason, repealed respectively, after a considerable amount of intermediate modification by statnte, by 11 Geo. IV. and 1 Will. IV. c. 6G, 2 and 3 Will. IV. e. 34,30 Geo. Ill. c. 48, and 9 Geo. IV. c. '31. Petit treason is now treated as murder, 24 and 25 Vict. c. 100.1 From the time of the passing of the Statute of Treasons the limits of treason wero coutinually being extended for a time, and again reduced to the bounds fixcd by the statute It protected only the king's life, and its insufficiency was supplemented in periods of danger by legislation, often of a temporary vature. Under Richard II, and Henry VIII. many new offences were mado treason, ${ }^{2}$ but the Acts creating these new treasons were repealed at the earliest opportunity by the parliaments of their successors, and the Statute of Treasons was made the final standard Ly 1 Mary, sess. 1, c. 1. The reign most prolific in statatory additions to the law of treason was undoubtedly that of Henry VIII. Legislation in this reign was little more than a register of the fluctuating opinions of the monarch. Thus, by 25 IIen. VIII. e. 22 it was treason not to believe Mary illegitimate and Elizabeth legitimato; by 28 Len. VIII. c. 7 it was treason to believe either legitimate; by 35 Hen. VIII. c. 1 it was treason not to be'ieve both legitimate. An interesting act of this reign, 37 Hen . VIII. c. 10 , shows that a class of men like the Poman delatores mast have been called into existence by all th:a new legislation. The Act constituted it felony to make anonymons charges of treason without daring to appeair in support of them before the king or council. Out of the mass of Henry VIII.'s Acts, only two are still !aw,-28 IIen. VIII. c. 15 and 35 Hen. VIII. c. 2, giving power to try treasons committed within the jurisdiction of the admiralty and out of the realn Many other instances of offences of a tomporary kind made treason at different times occur among the statutes, especially in those levelied at the papal jurisdiction by the parliaments of Elizabeth. A few of the more interesting of other kinds may be brielly noticed. It was treason by 21 Ric. II. c. 4 to attempt to appeal or annul jndgments made by parlianeat against certain traitors; by 2 Hen. V. st. 1, c. 6, and 29 Hen. VI. c. 2 to break a truce or safeconduct; by 5 and 6 Edward VI. c. 11 to hold castles, fortresses, or munitions of war against the king; by 17. Car. II. c. 5 to adhere to the United Provinces; by 9 Will. III. c. 1 to return without licence if an adherent of the Pretender; by 12 and 13 Will. JII. c. 3 to correspond with the Pretender; and ly 57 (ieo. III. c. 6 to compass or imagine the death of the prince regent. In addition to these, many Acts of attainder were passed at differcut times One of the most severe was that against Catherine Lloward, 33 Hen. VIII. c. 21 , which went as far as to make it treasomablo for any queen to conceal her antenuptial incontineuce. Other Acts were thaso against Archbishop Scrope, Owen Glendower, Jack Cade, I.ord Seymour; Sir Joln Fenwick, James Stuart, and Bishop Atterbary. In one case, that of Cromwell, Ireton, and Bradslaw, an Act of attainder was passed after the death of those guilty of the treason, 12 Car. II c. 30 . At times

[^233]Acts of indemnity were passed to relieve those who hed taken part in the suppression of rebellion from any possible liability for illegal proceedings. Three such Acts we.e passed in the reign of Willian III.
The Statute of Treasons, as interpreted by the judges, is still the standard by which an act is deternined to be trenson or oot. The judicial interpretation has been sometimes strained to meet cases scarcely within the contemplation of the framera of the statute. c.g., it becane estallished doctrine that a couspiracy to levy war against the king's person or to imprison or depose him might bo given in evilence as an overt act of compassing his death, aod that shokin words, though tleey could not in themselves onombt to treason, night constitute au overt act, and so be evidence. Besides decisions on particular cases, the jwiges at dufferent times came tc general resolutions which had an apprecinble effect oo the law. The principal resolutions were thoso of 1397 (confirmed b/ 21 Ric. In. c. 12), of 1557 , and those argreed to in tho ease of the regiciles at the lestoration and neportel by Sir John keljng. A remarkable resolution in furorem ree monong the latter was that a prisoner onght not to be ironed during trinl. The result of judicial decisions on the Stature of Treasots was smmmed up in s.cta passed in 1786. made permanent in 1817 and in 1848 (57 Geo. T1T. c. 6 and 11 Vict c. 12, the latter often called the 'Tueason Felony Act). The elfect of this legislation, necming to Mr Justice Stepheo, is that such of the judicial constructions as extend tho imagining of the kng's death to inagining his death, dustruction, or any bodily harm tending to death or destruction, main or wounding, imprisomment or restraint, bave been alontel, while sutb of the constructions as mako the insagining of his deposition conspiring to levy war against him, and instigating foreigners to invade :he reahn, have not been abo!ished, but ure lett to rest on the guthor ty of deciled enses. The pexent stato of the law has been incorpurated by skilled lawyers in the draft criminal code, which will no doubt becomo on Act u teu parlianent has leisure to devoto to matters of this linal. The collo draws a distmotion between treason and treasonabie crimes, the former including such acts (omitting those that are obvions? y obsolete) ass by the Statute of Trensons and subseqnent legislation are regarded as theasoa proper, the latter inchuling the crimes contained m the Act of 1848. In the words of th:e code (\$76) "treason is (a) tho act of killing Her Majesty, or doing her any bodily harm tending to death or destruction, maim or wounding, and the ant of imprisoning or restraining her; or (b) tho forming aud manifesting by an ovelt act an intention to kill Her Majesty, or to du licr any bodily harn temding to death or destruction, maine or womding, or to imprison or to restrain her ; or (c) the ast of killing tho eldest son and hois-apparent of Her Majesty; or the quenconsort of any king of the United Kingdom of Great Britain and 1roland: or (d) the forming aad manifesting by an overt act an intention to kill the eldest son and heir-apparent of Her Majesty, or the qucen consort of any king of the United Kinglom of Creat Britain and Ireland; or (e, conspiring with any person to kill Her Majesty, or to do licr any bodily harm tending to death or destruction, maim or wouuding, or consjiring with any person to imprison or restrain her ; or (f) lerying war against Her Blajesty either with mtent to depose Her Majesty from the style, hanour, and royal name of the imprexial cromn of the Uoited Kingdom of Great Prituin and Ireland or of any other of Her Majesty's dominions or countries; or in order by force or constraint to compel Her Majesty to change her measubes or conosels, or in order to intimidate or overave both Houses or cither Honse of Parliament ; or (g) consphing to levy war anainst Her Majesty with any such intent or for any such purpose as aforesaid; or (h) Hethating any forcigner with fore to invalle this realm or any other of the doniniobs of !ler Majesty; or (i) assisting aay public onemy at war with Her Majesty in such war by any nam whatsoever; or (b) viulating, whether with her consent of nut, a queen consort, or the "ife of the checst son and hein-tipurent for the time being of tho king or queen regnimt." There are a few oulher Acts shll in force besides those of 1817 mud 1848 which have dealt will snbstantivo law. By 1111 mery VII. c. 1 obedicnce to the de facto sovereigo for the timo bene of is nut treason. Byy 1 Anoe st. 2, c. 21, it is treason to endeavour to hinder the next successor to the crown from succeeding, and by 6 Anne c. 41 it is treason to malicious!y, advisedly, and directly by writing or printing maintain and aftim that any person has a nght to the crown otherwise than aecording to the Acts of Settlement and L゙nion, or that the crown and parliament canner pass statutes for the limitation of the succiession to the crown.
The Acts dealing with proceduro and punshment are more nonerous, and are characterized by a slowly increasing favour showi to the accused, -in fact, considerably greater than in felony, for connsel were not allowed to prisouers in charges of folony putil 1836, and such prisoners are still not entitled to a copy of the indictment or the names of the witnesses or jury. With respect to the mode of trial, the cffect of common law and legislation is that there are unw four varieties, -Lmbeachmexir (q.e.), trial of a pue

By the peors, court rartiai, sod trial by a judge of the High Court of Justice and a jury. The offence cannot be tried at quarter sessions. Trial by battle in cases of treason ceased in the 14th century, as far as regards appeals in the common law courts or in parliament, by the effect of several statutes passed between 1332 and 1399. Appeals of treason were finally abolished in 1819 (see Appeal). In the court of the lord high constable an award of battle occurred as lately as 1631 in the case of Lord Rea. ${ }^{1}$ Traitors in the reign of Edward IV., and perhaps later, were at times tried by martial law. The issue of commissions of martial law in time of peace was declared illegal by the Petition of Right in 1628. The prerogative of the crowa to try traitors by martial law in time of open rebellion still exists, and is recognized by statute. In two Acts, for instance, dealing with Ireland, 43 Geo . 11 I . c. 117 and 3 and 4 Will. IV. c. 4 , it was provided that nothing in the Acts was to takeaway the undoubted prerogative of the crown for the public safoty to resort to the exercise of martial law against open enemies and traitore. A peer is tried before the House of Lords, or the court c^{5} the lord high steward if the trial be during the recess of parliament. Procedure in such trials is regulated by 7 and 8 Will. III. c. 3, and other Acts. The last trial of a peer for treason was that of Lard Lavat in 1746-47. Persons subject to naval or military law are triable by court martial in certain cases under tha nowers given by the Naval Discipline Act, 1866, and the Army Act, 1881. The trial of treason committed out of the realn is regulated by 35 Heu . VIII. c. 2, 5 and 6 Edw. VI. c. 11, and 7 Anne c. 21. Lord Macguire was tried by jury in England under 35 Hen. VIII. c. 2 for treason conmitted in Ireland. ${ }^{2}$ Pracedure before and at the trial depends upon a larga uumber of Acts, of which the most important is one passed in $1695 .(7$ and 8 Will. III. c. 3). It enacted that persons indicted for treasou are to have a copy of the indictment delivered to them five daye before trial. The court is empowered to assign connsel for the prisoner (a power extended to impeachments by 20 Geo. II. c. 30). The oath of two witnesses, or confession in opien court, or refusal to plead, or peremptory challenge of more than thirty-five jurors is necessary for conviction. The witnesses must be both to the same overt act or one to one and tho other to another overt act of the same treason. If two or more treasons of divers kinds are alleged in one indictmrent, one witness to prave one treason and another to prove another are not sufficient. No person is to be indicted unless within three years after the offence, except on a charge of attempted assassination of the king. The accused is to have copies of the panel of the jury ${ }^{3}$ twa days before trial. He is entitled to the samo process to compel his witnesses to apper as is usually granted to compel the witnesses for the prosecution. No evidence is to be given of any overt act mot expressly laid in the indictment. The Act expressly denied the prisoner the uames of the witnesses against him. The law on this puint was altered by 7 Anne c. 21 , which enacted that a list of such witnesses was to be delivered to lim ten days before trial. Such witnesses had previously been nnade examinabla unon oath by 1 Annest. 2, c. 9. By 5 and 6 Vict. c. 51 (extending the provisious of an Act of 1800) the advantages given by the Act of William III. aro not to exteud to a prisoner charged with treason in compassing or imagining any bodily harm tending to the death or destruction, naiming or rounding of the queen, where the overt act is an attemut to iujure the person of the queen. In such a case the trial is to proceel in every respect and out the like evidence as if it were for murder. By 11 Vict. co 12 no prosecution for a felony under the Act, in so far as it is expressed by open and alvised speaking only, is to be instituted nuless information be given to a justice or sherif' withiu six days and a warrant issued within ten days of the information, and no person is to be convicted of such an offence except on confossion iu open court or proof by two witnesses. The prisoner is not to be aequitted if the facts amount to treason. There may be accessories to felonies under this Act, which, as has been already stated, there cannot be to treason. The prosecutor and witnesses are not entitled to costs. By a later Act of the same year (11 and 12 Vict. c. 42,823) a person charged with treason is nut to be edinitted to buil except by order of a secretary of state or by the Cueen's Bench Division or a judge thereof in vacation.
The punishuent of treason at conmon law was barbarous in the extreme. ${ }^{4}$ The sentence was that the oftender, if a man, be drawn na hurdle to the place of execntion, that there he be langed by the neck till he be deal, that his baal be severed from lis body. und that his body be clivided into four quarters, the head and yuarters to be at the disposal of the crown. A woman was drawn to the nlace of execution, and there bnrned alive. Tha Acts of 30 Geo. III. c. 45 aud 54 Geo. III. c. 146 changed the sentenco to

[^234]hanging in the case of women, and in the case of men ematled the cromn, by warrant ander the sign manual countersigned by a secretary of state, to change the sentence to beheading or remit it altogether. By the Felony Act, 1870, the punishment is langing only, but 54 Geo. III. c. 146 appears to be still so far in forco that beheadiog may be substituted by warrant of the crown where the criminal is a man. Attainder and forfeiture are abolished by the Felony Act, 1870, except where the offender has been outlawed. ${ }^{3}$ The maximuni peualty for a fclony under the Act of 1848 is penal servitude for life. In every pardon of treason the offence is to be particularly specified therein (seo Pardon).

Trials for treason in Great Britain and Ireland have been very numerous, and occupy a large part of the numerous volumes of the State Trials. Some of tha more interesting may be mentioned. Before the Statute of Treasons were those of Gaveston snd the Despensers in the reign of Elward II. ou clarges of accroaching the royal power. After the Statute were those (some before the peers.by trial or impreachment, most beforo the ordinary criminal courts) of Enipson sud Dudley, Fisher, More, the eatl of Surrey, the duka of Somerset, Anne Boleyn, Lady Jane Grey, Sir Thomas Wyatt, Crammer, the queen of Scats, Sir Walter Ralcigh, Strafford, Laud, Sir Hemy Vane and other rericides, Willian, Lord Kussell, Algernon Sidney, the duke of Monnonth, aud those implicated in the Pilgrimage of Grace, the Gunpowder, Popish, Rye Honse, and other plots. Cases where tha proceeding was by bill of attaiuder bave been already mentioned. Oecasiovally the result of a trial was confrmed by statute. In some of these trials, as is well known, tha law was considerably strained in order to insure a conviction. Since the Revolution there have been the cases of those who took part in the risings of 1715 and 1745, Lord George Gordon in 1780, Hardy and Horne 'looke in 1794, the Cato Sireet conspirators in 1820, Frost in 1840, add the Feniaus in 186.7. It should be noticed that many cases of proceedings for treason against foreigoers occur. Ileason committed by them withiu the realm is a breach of what has been called local allegiauce, due to the sovereign of the country in which they reside. Such are the cases of Lestie, bishop of Rous, amibassador to Elizabeth from the queen of Scots, the Marquis de Guiscard in Queen Anne'e reign, and Gylleuborg, the ambassalor from.Sweden to George II. I'roceedings against ambassadors for treason have uever gone beyoud imprisonment, more for safe custedy than as a punishment. No amount of residence abroad will suffice to exempr a native-born subject from the pelualty of treason if he bear arms against the country of his birth. ${ }^{6}$

Misprision (from the old French mespris) of treason, in the words of Blackstoue, " consists in the bare knowledge and coucealment of treason, without auy degree of assent thereto, for auy assent inakes the party a pincipal traitor." At common law even the concealment was treason, but 5 and 6 Edw. VI. c. 11 and 1 aud 2 Ph . and M. c. 10 made concealuent a misprision only. The effence was dealt with by many Acts, under same of which rather renarkable crinues were made misprision; e.g:, 14 Eliz. ${ }^{\circ}$ c. 3 constituted the counterfeiting of foreigu coinage a misprision. The procedure in trials for misprision is in general the same as that followed in trials for treasom, most of the Acts regulating procedure including both crimes. The punishment is loss of the profit of the lauds of the offender during life, and imprisonment for life.

Cognate Offences.-Under this head may he conveniently grouped certain affences against public order which, though not technically treason or treasonable offcuces (to use the language of the draft ciminal cole), are so मearly allied to them as to make it convenient to treat them under the head of treason. The most interesting of these for listorical reasous is premmenire. The word is derived from premunire or pramoneri facias, the introductory words of the writ of summons to the defendant to answer the charge. From this the word came to be used to denote the offences prosecuted by means of such a writ, usually of an ecclesiastical kind. Tha Statute of Premunire, specially se called, is 16 Ric. 11. c. 5, ellacting that the procuring at Rome or elsewhere of any translations, bulls, \&c, against the king pute the persons offending out of the King's protection, subjects their goods to forfeiture and thensclves to attachment or process of premunire facias. The Act introduced no new principle, but simply continued the anti-napal policy visible in the Statutes of Provisors, the earliest of which dated from 1307. At different times many other Acts were passed, extendiug the penalities of premunire to other crimes, usually those conuected with the slupremacy of the pope (2 Hen. IV. c. 4, mentinned under Tithes, is an example), but sometimes of a more distinctly political as distingnished from religious nature. Tbus it is premunire by 13 Car. I. c. 1 to affrrn the power of parliament to legislate with. out the crown, by the Habeas Corpus Act to scnd a prisouer beyond seas, and to terbally assert the right of a person to the crown cons l'oceedings afser the death of an allesed faitor might at one tizne have
been taken, but ony to a very linited exiunt as compared with what was gllowed in Roman and Scots law. Sir E. Cobe (4 Rep., 5i) siates that there might have been forfeit:are of the land ni guods of one slatn * 4 ebellion on view of the body by tite lord chicf justice of England as supreare carocer

- See Eneas Macdonald's case, 18 Sate Trials, 857.
tregy to tho Acts of Settloment and Union is premunire by 6 Anne Ta do so by writing or printing is, as has been aaid, treason. Tho letest Act constituting o præmunire is the Royal Mrarriage Act, 12 Geo. 1II. c. 11, which subjects to the penalties of premunire any one guilty of a breach of the provisions of the Act. A peer charged with præmunire is not entitled to trial by his peers, but is to bo tried by a jury. The most famous historical instance of a prosectition on the Statuto of Premunire was that of Wolsey in 1520. Other offences cognate to treason are publishing scandslous stories sbont the king (the leasing-making of Scotch Iaw), malsdministration aud aale of public offices, coining, offences against the Foreign Enlistment Act, and the crimes specially provided angainst by 33 Hen. Vlll. c. 12 and 5 and 6 Vict. c. 51. The former Act punished malicions striking in the kiag's palace by perpetual imprisonment, fine, and loss of the right hand. The minute provisions for the matilation of the offender are very curious, but not of immediate interest, as that part of the Act which inflicted mutilation was repealed by 9 Geo. IV. c. 31. By 5 nad 6 Vict.c. 51 it is a inigh misdemesnour, puaishahle by ponal setvitule for geven years, to wilfully discharge, point, aim, or present st the person of the cileen suy gun or other arms, loaded or not, or to strike at or attempt to throw snything upon the queea'a person, or to produce any firearms or other arms, or any explosive or dangerons matter, near her person, with intent to injure or alarm her or to commit a breach of the peace. For other offences which are more or less nearly connected with tresson reference may be made to the articles Libel, Oaths, Petition, Riot, and Senjtion. ${ }^{1}$
Scolland. - Treason included tresson proper, or crinies agaiust the crown or the state, auch as rebellion, snd crimes which, though not tochnically treasouable. were by legislation punisherl as treason. Examples of the latter were the remaining in Englsud sgainat the king's will, 1430, c. 19 ; wilful fre-raising, 1526, c. 10; kidnapping, 1567 , c. 27 ; theft, reset, and stouthrief by banded men, 1537 , c. 34. There were glso many acts dealing with offences in the nature of resistance to suthority, such as unlswful convocations, and with creasous of a inerely transitory nature, such as attempting to restore the Ruthvens (1600), taking or owning the Covenauts (1085), or corresponding with James V1I. (1638). Acts of forfeiture were sometimes directed egainst individuals, as 1645, c. 23 , against the marquis of Huntly. Scottish preccdure wiss ss a rule less favourable to the accused than English. In one mstter, however, the opposite was the case. Advocates nompellable to act on belislf of the accused were allowed hin by $1!37$, c. 57 , more than a century before the concession of a similar indulgence in England. At one time trial in absence and even after death mas allowed, as in Roman law. In tho case of Robert Leslie, in 1540, a summons after death was held by the estates to be conapetent, and the hones of the deceased were exhuned and preseuted at the bar of the court. ${ }^{3}$ The Act 1542 , c. 13 , confiued this revolting procedure to certaiu trensons of the more beinous kind. By 7 Anne c. 21 trial in absence-the last instance of which had occurred in 1698-was sbolished. The aame Act assimilated the law and practice of treason to that of England in other respects by enacting that no crine should be treason or misprision in Scotland but such as was treason or misprision in England. The Act further provided that the trial was tc be by a jury of twelve, not fifteen as in other crimes, before the court of justiciary, or a commission of oyer and terminer containing at least three lords of justiciary. To slay a lord of jnsticiary or lord of session, or to counterfeit the great seal, was made treason. The Act also containod provisions as to forfeiture, ${ }^{3}$ qualification of jurors, and procedure. Ontlawry for treason was regulated by 22 Geo. II c. 48. The punishment still remains the aamo as it was in Eogland before the Felonj Act, 1870, snd attainder and iorfeiture are atill the effects of condemuation for treason, the Act of 1870 not extending to Scotlauk. One or two other atatutory provisions msy be briefly noticed. The trial of a peer of Great Britain for treasou committed in Scotlaud is to be by a commision from the crown, on indictment found by a jury of twelve (6 Anae c. 23, 6 Geo. IV. c. 66). Bail in treason-jelony is only to he allowed bs consent of the public prosecutor or warraut of the high or circuit court (11 Vict. c. 12). The term lese-majesty was sometines used for what was treason proper, e.g. in $1524, \mathrm{c} .4$, making it lese-majesty to transport the king nut of the realin, sumetimes as a aynonym of leasing-nıthing. This crime (also called
${ }^{2}$ Authorltios, -The text-witters on criminal law, auch as Hale and Hawkins; Bacon, La D Tracts, Cusea of Treason: Coke, 8 Inst.. 1-39: Sir R. Holboura, Reading on the Stalute of Treasons; Luders, havo Tracts; Foster, Diseourse of
 notsced by Hallam; Conss. Hist, vol. .II. p. 203; Stubbs, Const. Mist., vol. Ill. p. b13. The most valunblo motern suthortiles are Stephen, Hist. of the Criminal Lair, vol. It. ch. xxul., and Wulis Bund, Selection of Cases from tho State Trials.
${ }^{2}$ In the one Instanco in England-that of Cromwell. Iraton, and BradshawWharo tho bodlcs of all'red trattors were e
a The provislons In the Act as to forfeltura (now repealed) wera, according to Blarksione, rommm, vol is. p. 33t, the resilt of a compromlae between the Honss

Verbal aedition) consisted in the engendering discord between king and people by clander of the king. ${ }^{4}$ The earliest Act against leasing-making ea nomine was in 1524. The reign of James VI. was ure-eminently prolific in legislation against this crime. It is now of no practical interest, ss prosecutions for leasing-making have long fallen into desuetude. At one time, howerer, the powers of the various Acts were put into force with grcat severity, espacially in the trial of the earl of Argyll in 1681. The punishment for leasing-making, once capital, is now, by 6 Geo. IV. c. 47, fine or imprisonment, or both. The offence of promunire was introduced into Scotland at a comparatively late period. By 6 Anne c. 23 it is premunire for the peers of Scotlaud sssembled to elect represen. tativos to treat of any other mstter. ${ }^{5}$

Irbland. - Numerous Acts, beginning with 18 Hew. VI. c. 2, were passed by the Irish parlianent-in many cases mere echoes of previous English legislation. As in England and Scotland, there was a teudency to include under treason crimes of quite another character. Murler was made treason by 10 Hen. Vil. c. 21 , and arson by 13 Hen. VIII. c. 1. Apparently the law must sometimes lave hesn atrained against accused persons, for 3 and 4 Ph . and MI. c. II enacted that trials for treason were to be according to tho common law. Treasons of a temporary nature were often the sulject of legislation. Au example is 11 Eliz. c. 6, making it treason to assume the name and authority of O^{\prime} Neill. The provisions of the English Act of William III. as to witnesses, \&c., were not extended to Ireland until 1821 by 1 and 2 Geo. IV. c. 24 Many Acts of indemnity were passed both by the parliaments of Ireland and of tho United Kingdom. Among the more important were an Irish Act of 1799 (39 Geo. Ill. c. 3), indemnifying those who had been active in suppressing the treasonable rising of the previous year, and one of the parliament of the United Kingdom (41 Geo. IlI. c. 104), indemnifying those who had taken part in the suppression of rebellion subsequent to 1799 . The law is now practically the aanne as that of England, unless where exceptional political circumstances have led to exceptional legislation. Thus a series of enactments called the "Whiteboy Acts" (passed by the Irish and the United Kingdom parliaments betwren 1775 and 1830) was intended to give adc tional facilities to the executive for the suppression of tumultuons risings. Many Irish Acts dealt with unlicensed posses: sion and manufacture of arms. A similar policy was continned after the Union, and sppears in the Peace Preservation Act, 1881, contipued in 1887 for five yesrs. Some Acts, such as 3 and 4 Will. IV. c. 4, went as far as to make offenders in a proclaimed district triable by court-martial. By the Preventiou of Crime Act, 1882, now expired, the lord-lientensnt was empowered to issue special commissions for the trisl without jury of treason and treason-felony. The nower was never exercised. The Criminal Law and Procedure (Ireland) Act, 1887, desls with resistance to authority and offences of a tressonsble nature, especially "dangerous associatious," though treason is not mentioned by name.

British Colonies and Dependencies. -The law in the msin agrees with that of the mother country, but it is quite competent for a colony to deal with treasou by its own legislation which need not necessarily be in accordance with English law, and is sometimes expressed in more definite terms. Thus the Indian penal code makes it punishable with transportatiou for life to wage war sgainst the Government of any Asiatic power in alliance or at peace with tho queen, or to attempt to excite feelings of disaffection to the Government. Numerous temporary Acts were passed about the time of the mutiny, oue of the most characteristic being an Act of 1858 making rebellious villages liable to confiscation. By the Cape of Good Hope statutes it is treason to deliver arms or gunpowder to the queen's enemies. Many colonics adopt the Euglish legislation as to procedure, and some, as Now South Wales, \&c., enact the Treason Felony Act. A atriking feature of colonial legislation on this subject is the great number of Acts of indemnity passed after different rebellions. Instances of auch Acts occur in the legislation of Canada, Ceylon, the Cape of Good Hope, New Zealand, St Viucont, and Jamaica. The most important in the history of law is the Jamaica Act of 1866 , indemnifying Mr Eyre for any scts colnmitted during the suppression of the rising in the previous year. It was finally held by the Exchequer Chamber in 1870 that this Act protected Mr Eyre from being sued successfully in England on a cause of action arising out of his acts during the outbreak ("Phillips v. Eyre," Lavo Reports, 6 Queen's Bench, 1).

United States. -The law is based upon thei of England. By Art. 3 я. 3 of the constitution "treason against the United States ahall consist only in lerying war against them, or in adhering to their enemies, giving them aid and cornfort. No person shall be convicted of treason unless on the testimony of two wituesses to the same overt act, or on confession in open court. The Congress shall have power to declare the punishment of treason; but no sttainder of treason shall work corruptiou of blood or forfoiture, except during the life of the person attainted." By Art. 2 в.

[^235]impeachruent for and conviction of treason is a ground fol moving the prosident, vice-presidcnt, and other civil officers. The panlahment by an Act of 1790 was declared to be death by hanging. But daring the Civil War a new Act (17 July 1862) was passed, pronding that the ponishment should bc death, or, at the discretiou of the court, imprisonment at hard labour for uot less than five years, and a fine of not less than 10.000 dollars to be levied on the real and personal property of the offender, in addition to disability to hold any office under the United States. The Act of 1862 aud other Acts also deal with the crimes of inciting or engagug in rebellion or inaurrection, criminal correspondeuce with foreign Governments in relation to any disputes or controversies with the United States, or to defeat the measures of the Government of the United States, acditions, conspiracy, recruiting ooldiers or sailors and enlistment to aerve against the United States. Tho Act of 1790 further provides for the delivery to the prisoner of a copy of the indictment and a list of the jurors, for defence by counsel, and for the finding of the indictment within three years after the commission of the treasov. Misprision of treason is defined to be the crime committed by a person owing allegiance to the United States, and having knowledge of the conmission of any crime against them, who conceals and does not as aoon as may be diaclose and make known the same to the presudent or to some judge of the United States, or to the governor or to some judge or justice of a particular State. The punishment is imprisonment for not more than aeven years aud a five of not more than 1000 dollare (see Revised Statutes, §§ 1033, 1034, 1043, 5331-5338; Story, Constitution of the United Statcs, §§ 1290-1301, 1796-1802). Treason against the United States cannot be inquired into by any State court, but the States may, aod some of them have, their own constitutiona aud legislation as to treasons committed against themselves, generally following the linea of the coustitution and legislation of tho United States. Iu come cases there are differences which aro worth notice. Thus the constitution of Massachusetts, § 25 , declares that no subject ought iu any case or in any time to be declared guilty of treason by the legislature. The same provision is contained in the constitutions of Vermont, Connecticut, Pennsylvania, Alabaurs, and otliers. In some States the crime of treason cannot be pardoned; in otleers, as in New York, it may be pardoned by the fegislature, and the governor may auspend the sentence until the end of the aession of the legislature next following conviction. In some States a pereon convicted of treason is disqualified for exercising the franchise. Iu New York conviction carries with it forfciture of rcal eatate for the life of the convict and of his goods and chattels.
(J. WT.)

TREASURE-TROVE is defined by Blackstone to be modey or coin, gold, silver, plate, or bullion found hidden in the earth or other private place, the owner thereof being nuknown. This definition is simply an extension of the Roman law definition of thesaurus inventus as an ancient deposit of money (vetus deposilio pecunix) found by accident and without actual search. The right to treasuretrove was not, however, the same in Rounan and English law. The former at its latest stage divided it between the finder and the orner of the land on which it was found, except where it was found on public or imperial property, when one-half went to the fisc. If a man found treasure on his own land, he had a right to the whole. The rights of the crown, modified by those of the feudal lord, gradually became more extensive in the feudal law of Europe, so much so as to become, in the words of Grotius, "jus commune et quasi gentlum." In more receut times there has been a return, at any rate in the case of France, to the division made by the Roman law. In England the common law, which at one time apparently conferred treasuretrove, wherever found, npon the finder, now gives it all to the king, in accordance with the maxim "quod uullius est fit domini regis." This is always provided that the owner cannot be known or discovered. If he can be he and not the king is entitled to it.

A right to treasure-trove may be granted by the British crown as a Francaise ($q . v$.). It is the duty of one finding treasure to make it known to the coroner. By the statute De Officio Coronatoris ($\ddagger \mathrm{Edw}$. I. 日t. 2), the coroner is to inquire of treasure that ia found, Who were the finders and likewise who is anspected thereof, and that may be well perceived where one liveth riotously, haunting taverns, and hath done so of long time. Concealment of treasuretrovs is a misdemeanour at common law. There can be no larceny of it uutil it has been found by the coroner to be the property of the crown. The Home Office has recently issued a notification
modifying the existing regulations ao far as to pernut the finders of coins an $\{$ autiquities coming under the description of treasare trove to retain articles not actually required fer mational institu tions, and the oum received from euch iastitutions as the antiquarian value of any articles retained, aubject to a deduction of 20 per cent. from the antiquarian value of the objects retained and 10 per cent. from the valie of other objects. In the United States treasuretrove is usually vested in the State as bona vacantia. Louisiane follows the French Code Civil, and gives half to the finder and half to the landowner. The importance of treasure-trove in India led to the passing of tho Indian Treasure-Trove Act (Act vi. of 1878). It provides that treasure is to be delivered to tho fiuder if no owner appears. If the owner cau be found, three-fourths go to the finder snd one-fourth to the owner, power being reserved to the Government to acquire it by payment of a aum equal to one-fifth more thau the value of the material.

TREATIES. 1. A treaty is a contract between two or more states. The term "tractatus," and its derivatives, though of occasional accurrence in this sense from the 13 th century onwards, only began to be commonly so employed, in lieu of the older technical terms "conventio pablica," or "fœdus," from the end of the 17 th century. In the lauguage of modern diplomacy the term "treaty" is restricted to tho more important international agreements, especially to those which are the work of a congress, while agreements dealing with subordinate questions are described by the more general term "convention." The present article will disregard this distinction.
2. The making and the observance of treaties is neces sarily a very early phenomenon in the history of civilization, and the theory of treatics was one of the first departments of interuational law to attract attention. Treatics are recorded on the monuments of Egypt and Assyria; they occur in the Old Testament Scriptures; and questions arising under ouvөŋ̂кaь and "fœedera" occupy much space in the Greek and Roman historians. ${ }^{1}$
3. Treaties have been classified on many principles, of which it will suffice to mention the more important.' A "personal treaty," having reference to dynastic interests, is contrasted with a "real treaty," which binds the uation irrespectively of constitutional changes; treaties creating outstanding obligations are opposed to "transitory conventions," e.g., for cession of territory, recognition of independence, and the like, which operate irrevocably once for all, leaving nothing more to be done by the contracting partics; and treaties in the nature of a definite trausaction (Rechtsgescheift) are opposed to those which aim at establishing a general rule of conduct (Rechlssatz). With reference to their objects, treaties may perhaps be conveniently classified as (I) political, including treaties of peace, of alliance, of cession, of boundary, for creation of international servitudes, of neutralization, of guarantec, of submission to arbitration; (2) commercial, including consular and fishery conventions, and slave trade and navigation treaties; (3) confederations for special social objects, such as the Zollverein, the Latin monetary union, and the still wider unions with reference to posts, telegraphs, submarine cables, and weights and measures ; (4) relating to criminal justice, e.g., to extradition and arrest of fugitive seamen; (5) relating to civil justice, e.g., to the protection of trade-mark and copyright, to the execution of foreign judgments, to the reception of evidence, and to actions by and against foreigners ; (6) providing general rules for the conduct of warfare, e.g., the declaration of Paris and the convention of Geneva. It must be remarked that it is not always possible to assign a treaty wholly to one or other of the above classes, siuce many treaties contain in combiuation clauses referable to several of them.
${ }^{1}$ For the celebrated treaty of 509 в.c. between Rome and Carthage, see Polybins iii. 22; sud, on the aubject generally, Barbeyrac's foll but very uncritical Mistoire des Anciens Traíés, 1739; MullerJoclsmas, Geschichle des Völherrechts in Alterthum, 1848; E. Egger, Eludes Historiques sur les Traites Publice cher les Grecs et chez ice Romains, new ed.. 1866.
4. The analogy between treaty-making and legislation is striking when a congress agrees upon general principles which are afterwards accepted by a large number of states, as, for instance, in the case of the Geneva convention for improving the treatment of the wounded. Many political treaties containing "transitory" conventions, with reference to recognition, boundary, or cession, become, as it were, the title-deeds of the nations to which they relate. ${ }^{1}$ But the closest analogy of a treaty is to a contract in private law, as will appear from the immediately following paragraphs.
5. The making of a valid treaty implies several requisites. (1) It must be made between competent parties, i.e., scvereign states. A "concordat," to which the pope, as a spiritual authority, is one of the parties, is therefore not a treaty, nor is a convention between a state and an individual, nor a convention between the rulers of two states with reference to their private affairs. Semisovereign states, such as San Marino or Egypt, may make conventions upon topics within their limited competence. It was formerly alleged that an infidel state could not bo a party to a treaty. The question where the treatymaking power resides in a given state is answered by the municipal law of that state. It usually resides in the executive, though sometimes, as in the United States, it is shared by the legislature, or by a branch of it. (2) There must be an expression of agreement. This is not (as in private law) rendered voidable by duress; e.g., the cession of a province, though extorted by overwhelming force, is nevcrtheless unimpeachable. Duress to the individual negotiator would, however, vitiate the effect of his signature. (3) From the nature of the case, the agreement of states, other than those the government of which is autocratic, must be signified by means of ugents, wbose authority is either express, as in the case of "plenipotentiarics, or implied, as in the case of, e.g., military and naval commanders for matters, sucb as truces, capitulations, and cartels, which are necessarily confided to their discretion. When an agent acts in excess of his implied authority ho is said to make no treaty, but a mere "sponsion," which, unless adopted by bis Government, does not bind it, e.g., the affair of the Caudine Forks (Livy, ix. 5) and the convention of Closter Seven in 1757. (4) Unlike a contract in private law, a treaty, even though made in pursuance of a full power, is, according to modern views, of no effect till it is ratified. (5) No special form is mecessary for a treaty, which in theory may be made without writing. It need not eren appear on the face of it to be a contract between the parties, but may take the form of a joint declaration, or of an exchange of notes. Latin was at one time the language usually employed in treatics; and continued to be so employed to a late date by the emperor and the pope. Treaties to which several European powers of different nationalities are parties are now usually drawn up in French (the use of which became general in the time of Louis XIV.), but the final act of the congress of Kienna contains a protest against the use of this language being considered obligatory. A great European treaty usually commences "In the name of the Most Holy and Indivisible Trinity," or, if the Porte is a party, "In the name of Almighty God." (6) It is sometimes said that a treaty must bave a lawful object, but the danger 'of accepting such a statement is apparent from the uso. which has been made of it by writers who deny the validity of any cession of national territory, or even go so far as to lay down, with Fiore, that "all should be regarded as void which are in any way opposed to the development of the free activity of a nation, or which binder the exercise of its natural rights." (7) The making of a treaty is some-

[^236]times accompanied by acts intended to secure its better performance. The taking of oaths, the assigning of "conservatores pacis," and the giving of bostages are now obsolete, but revenue is mortgaged, territory is pledged, and treaties of guarantee are entered into for this purpose.
6. A " transitory coavention "operates at once, leaving no duties to be subsequently performed, but with reference to conventions of other kinds questions arise as to the duration of the obligation created by them, in other words, as to the moment at which those obligations come to an end. This may occur by the dissolution of one of the contracting states, by the object-matter of the agreement ceasing to exist, by full performance, by performance bocoming impossible, by lapse of the time for which the agreement was made, by contrarius consensus or mutual. release, by "denunciation" by one party under a power reserved in the treaty. By a breach on eitber side the treaty usually becomes, not void, but voidable. A further cause of the termination of treaty obligations is a total change of circumstances, since a clảuse "rebus sic stantibus" is said to be a tacit condition in every treaty. ${ }^{2}$ Such a contention can only be very cautiously admitted. It bas been put forward by Russia in justification of ber repudiation of the clauses of the treaty of Paris neutralizing the Black Sea, and of her engagements as to Batoum contained in the treaty of Berlin. The London protocol of I871, with of view to provent such abuses, lays down, perhaps a little too broadly, "that it is an essential priaciple of the law of nations that no power can liberate itself from the engagements of a treaty, nor modify the stipulations thereof, unless with the consent of the contracting powers, by means of an amicablo arrangement." Treaties are in most cases suspended, if not terminated, by the outbreak of a war between the contracting parties, and are therefore usnally revived in express terms in the treaty of peace.
7. The rules for the interpretation of treaties are not so different from those applicable to contracts in private law as to need bero a separate discussion.
8. Collections of treaties are either (i.) general or (ii.) national.
(i) The frst to publish a general collection of treaties was Leibuitz, whase Codex Juris Gcxtium, containing documents trom 1097 to 1497, "ea qua sola inter liberos populos legam sunt loco," appeared in 1693 , and was followed in 1700 by the Mantissa. The Corps Universel Diplomatique du Droit des Gens of Dument, con. tinued by Barbeyrac and Rousset in thirtcen folio volumes, containing treaties from 315 A.D. to 1730 , was published in 1726-39. Wenck' Corpus Juris Gentium Recentissimi, 3 vols. 8vo, 1781-95, contains treaties from 1735 to 1772. The 8 ro Recucil of G. F. de Martens, centinued by C. de Martens, Sa\&lfeld, Murhard, Samver; Hepf, and Stoerk, commenced in 1791 with treaties of 1761 , and is still in progress. The series in 1887 extended to sixty-four volumes. See also the following periodical publicatiens:-Das Statsarchiv, Sammluag der officiellen Actensticke zur Geschichte der Gegcnwart, Leipsic, comrueacing in 1861; Archives Diplomatiques, Stutigart, eince 1821; Archives Diplomatiques, Recuril Mensucl de Diplomatic et d'Histoire, Paris, since 1861; and Hertslet's British and Forcign State Papers, from the Lermination of the War of 1814 to the latcst pcriod, compiled at the Foreign Office by the Librarian and Kecpor of the Papers. London, since 1819, and atill in progress.
(ii.) The more important collections of national treaties are those of M. Neumanu and MI. de Plassan for Austria, 1855-84; Beutner for the German empire, 1883; Calvo for "1'Amérique Latine," 1862-69: De Clercq for Franco, 1864-86; De Garcia de la Vega for Belgium, 1850-83; Lagemans for the Netherlands, 1858-82; Soutzo for Greece, 1858 ; Count Selar de la Marguerite for Sardinia, 1836-61; Do Castro for Portugal, 1858-78; Rydberg for Sweden, 1877; Kaiser (1861) and Eichmann (1885) for Switzerland; Baron de Testa (1864-82) and Aristarchi Bey (1873-74) for Turkey ; F. de Martens for Russia, 1874-85; Mayers for China, 1877. The official publication fer Italy begins in 1864, for Spain in 1843, for Denmark in 1874. The treaties of Japan were pub. lisbed by autherity in 1884. Those of the United States are contained in the Stalutes at Large of the United States, and in the

[^237]collections of J. Elliott (1834) and H. Minot (1844-50) ; see also Mrr Bancroft Davis's Notes upan the Treaties of the United States vith other Powers, preceded by a List of the Treaties and Conventions with Foreign Powers, chronologically arranged, and followed by an Analytical Index and a Synoptical Index of the Treatics, 1573. In England no traties wero published before tha 1 th century, such masters being thought "not fit to he made vulgar." Tha treaty of 1604 with Spain was, however, published by authority, as were many of the treaties of tha Stuart kings. Rymer's Fadera was published, under the orders of the Government, in twenty volumes, from 1704 to 1732 . Treaties are officially published at the prosent day in the London Gazette, and are also presented to parliament, but for methodical collections of treaties made by Groat Britain we are indebted to private enterprise, which pro duced threo volumes in $1710-13$, republished with a fourth volume in 1732. Other thres volumes appeared in 1772-81, the collection commonly known as that of C. Jenkinson (3 vols.) in 1785 , and that of Chalmers (2 vols.) in 1795. J. Macgregor published (1341-44) eightvolumes of commorcial treaties, but the great collection of the commercial treaties of Great Britain is that of L. Hertslet, librarian of tha Foreign Office, continued by his son and successor in office, Sir Edward Hertslet, entitled A Completc Collection. 0 the Trcaties and Conventions and Reciprocal Regulations at prescnt subsisting between Great Britain and Foreign Poucrs, and of the Laws and Orders in Council concerning the same, so far as they relate to Commerce and Navigation, the Slave Trade, Post Ofice, dec., and to the Privileges and Interests of the Subjcets of the Contracting Parties,1820-86,16 vols. Sir Edward Hertslet also commenced in 1875 a series of volumes containing Treaties and Tariffs regulating the Trade bctwocn Britain and Foreign Nalions, and Extracts of. Treaties bctwcen Forcign Powers, containing the Most Favaured Nation Clauses applicable to Great Dritain. The treaties affecting British India are officially set out, with historical notes, in A Collection of Treatics, Engagements, and Sannuds relating to India and Neighbouring Countries, by C. W. Aicheson. This work, with the index, extends to eight volumes, which appeared at Calcutta in 1862-68.
9. It may be worth while to add a list of some of the more important treaties, now wholly or partially in force, especially those to which Great Britain is a party, classified accordiag to their objects, in the order suggested in paragraph 3.
(i.) The principal treaties affecting the distribution of territory betmeen the various states of Central Europe are those of Westphalia (Osnabrück and Münster), 1648 Utrecht, 1713 ; Paris and Hubertsburg, 1763 ; for the parti tion of Poland, 1772, 1793; Vienna, 1815; London, for the separation of Belgium from the Netherlands, 1831, 1839 Zurich, for the cession of a portion of Lombardy to Sardinia, 1859; Vienna, as to Schleswig-Holstein, 1864; Prague, whereby the German Confederation was dissolved, Austria recognizing the new North German Confederation, transferring to Prussia her rights over Schleswig-Holstein, and ceding the remainder of Lombardy to Italy, 1866 ; Frank fort, between France and the new German empire, 1871. The disintegration of the Ottoman empire has been regulated by the great powers, or some of them, in the treaties of London, 1832, 1863, 1864, and of Constantinople, 1881, with reference to Greece ; and by the treaties of Paris, 1856 ; London, 1871 ; Berlia, 1878 ; London, 1883 , with reference to Montenegro, Roumania, Servia, Bulgaria, and the navigation of the Panube. The encroachments of Russia upon Turkey, previous to the Crimean War, are registered in a series of treaties beginning with that of Kutchuk-Kainardji, 1754, and ending with that of Adrianople in I829. The independence of the United States of America was acknowledged by Great Britain iu the treaty of peace signed at Paris in 1783 . The boundary between the United States and the British possessions is regulated in details by the treaties of Washington of 1842,1846 , 1871. Switzerland, Belgium, Corfu and Paxo, and Luxemburg are respectively neutralized by the treaties of Vienna, 1815, and of London, 1839, 1864, 1867. A list of treaties of guaranteo to which Great Britain is a party, and which are supposed to ${ }^{\circ}$ be still in force, beginning with a treaty made with Portugal in 1373 , was presented to parliament in 1859.
(ii.) For the innumerable conventions to which Great Eritain is a party as to commerce, consular jurisdiction, fisheries, and the slave trade, it must suffice to refer to the exbaustive and skilfully devised index to Hertslet's Commercial Treaties, forming volume xvi., 1885.
(iii.) The social intercourse of the world is facilitated by conventions, such as those establishing the Latin monetary union, 1865 ; the international telegraphic union, 1865 ; the universal postal union, 1874 ; the international burean of weights and measures, 1875 ; and providing for the protection of submarine cables in time of peace, 1884. Such treaties are somewhat misleadingly spoken of by recent writers (L. von Stein and F. de Martens) as constituting a "droit administratif international."
(iv.) The following are the n -w operative treaties of extradition to which Great Britain is a party:-with the United States, 1845 ; Brazil and Germany, 1872; Austria, Denmark, Italy, Norway and Sweden, 1873 ; Hayti and Netherlands, 1874 ; Belgium and France, 1876 Spain, Portugal (as to India only), 1878 ; Tonga, 1879, Luxemburg, Equador, and Switzerland, 1880; Salrador, 1881; Uruguay, 1884; Guatemala, 1885 ; Russia, 1886. It will be obserped that all these, excent the treaty with tho United States, are subsequent to and governed by the provisions of 33 and 34 Vict. c. 52 , "The Extradition Act, 1870." Before the passing of this general Act, it bad been necessary to pass a special Act for giviag effect to each treaty of extradition. The most complete collec tion of treaties of extradition is that of F. J. Kirchner. L'Extradition, Recucil, dc., London, 1883.
(v.) General conventions, to which most of the European states are parties, were signed in 1883 at Paris for the protection of industrial, and in 1886 at Bern for the protection of literary and artistic, property.
(vi.) Certain bodies of rules intended to mitigate the horrors of war have received the adhesion of most civilized states. Thus the declaration of Paris, 1856 (to which, howerer, the United States, Spain, Mexico, Venezuela, Columbia, Bolivia, and Uruguay have decliued to accede), probibits the use of privateers and protects the commerce of neutrals; the Geneva convention, 1864, gives a neutral character to surgeons and hospitals; and the St Peters burg declaration, 1868 , prohibits the employment of explosive bullets weighing less than 400 grammes.

It were greatly to be wished that the official publication of treaties could be rendered wore speedy and more methodical than it now is. The labours of the publicist would also be much lightened were it possible to consolidate the various general collections of diplomatic acts into a new Corps Diplomatique Universel, well furnished with cross references, and with brief annotations showing how far each treaty is supposed to be still in force.
10. In addition to the works already cited in the course of this article the following are for various reasons important:-Joh. Lupus, De Confederatione Principum, Strasburg, 1511 (the first pnblished monogtaph upon the aubject); Bodinns, Dissertatio de Contractibus Summarum Potestatum, Halle, 1698: Neyron, De Vi Faederum inter Gentes, Gött., 1778; Neyron, Essai Historique et Poluiquo sur les Gararties, \&c., Gott., 1797; Waichter, De Modis Tollendi Pacta inter Gentes, Stuttg., 1780; Dresch, Ueber die Dauer der Völkervertrage, Landshut, 1808; C. Bergbohm, Staalsverträg4 und Gestre als Quellen des Volkerrechts, Dorpat, 1877; Jellinek, Die rechtliche Natur der Statenverträgen, Vienna, 1880; Holzen. dorff, Handbuch des Volkerrechis, vol. iii, 1887. On the history of the great European treaties generally, seo the Histoire Abregee des Traits de Paix cntre les Puissances de 1 Europe, by Koeb, as recast and contlnued by Schöll, in 1817 and 1818, and again by Count de Garden in 1848-59; as also the Recueil Manuel of De Martens and Cussy, now continued by Geffcken. For the peaco of West phalia Puitter's Geist des westphulischen Friedens, 1795, ia useful; for the congress of Vienna, Klüber's Acten des Wiener Congressss, 1816-19, and Le Congress de Vienne et les Trailes de 1815, precede des Conferences de Dresde, de Prague, at de Chatillon, suivi des Congres d'A ix-la-Chapelle, Troppau, Laybach, et VErone. by Count
'Angeberg. The last-mentioned witer has alao publiahed collections of treaties relating to Poland, 1762-1862; to the Italian question, 1859 ; to the congress of -Paris, 1856 , and the revision of its work by the conference of London, 1871; and to the FrancoGerman War of 1870-71. For the treaties regulating the Eastern question, see The European Concert in the Eastern Question, by T. E. Holland, 1885, and La Turquie et le Tanzimat, by E. Engelhardt, 1882-84.
(T. Е. H.)

TRERIZOND, in Greek Tralezua, a city of Asia Minor, situated on the Black Sea, near its south-eastern angle, from the time of its foundation as a Greek colony to the present day has always been a considerable emporium of commerce, and at one time was for two centuries and a half the capital of an empire. Its importance is due to its geographical position, because it commands the point where the chief and most direct trade route from Persia and Central Asia to Europe: over the tableland of Armenia by Bayazid and Erzeroum, descends to the sea. Its safety also was secured by the barrier of rugged mountains which separates its district, from the rest of Asia Minor, rising to the height of 7000 or 8000 feet above the sea-level. Sc complete is the watershed that no streams pass through these ranges, and there is hardly any communication in this direction between the interior of Asia Minor and the coast. For the same reason, together with its northern aspect, the climate is humid and temperate, and favourable to the growth of vegetation, unlike that of the inland regions, which are exposed to great extremes of heat in summer and cold in winter. The position which was occupied by the Hellenic and medixval city is a sloping table of ground (whence the original name of the place, Trapezus, or the "Tableland"), which falls in steep rocky precipices on the two sides, where two deep valleys, descending from the interior, run parallel at no great distance from one another down to the sea. The whols is still inclosed by the Byzantine walls, which follow the line of the cliffs, and are carried along the sea-face; and the upper part of the level, which is separated from the lower by an inner cross wall, forms the castle; while at the highest point, where a sort of neck is formed between the two valleys, is the keep which crowns the whole. The forsifications and their surroundings are singularly picturesque, for the towers, some round, some augular, which project from them are in many cases covered with creepers, and the gardens that occupy the valleys below teem with luxuriant regetation. On each side, about half-way between the keep and the sea, these ravines are crossed by massive bridges, and on the further side of the westernmost of these, away from the city, a large tower and other fortifications remain, which must heve served to defend the approach from that quarter. The area of the ancient city is now called the Kalch, and is inhabited by the Turks ; eastward of this is the extensive Christian quarter, and beyond this again a low promontory juts northward into the sea, partly covered with the houses of a well-built suburb, which is the principal centre of commerce. The barbonr lies oa the eastern side of this promontory, but it is an unsafe roadstead, being unprotected towards the north-east, and having been much silted up, so that vessels cannot approach within a considerable distance of the siore. The neighbourhood of this is the liveliest portion of the city, as it is from here that the caravans start for Persia, and at certain periods of the year long trains of camels may be ecen, and Persian merchants conspicuous by their high black zaps and long robes. The total population of the place is estimated at 32,000 , of whom 2000 are Armenians, 7000 or 8000 Greeks, and the rest Turks.

The city of Trapezua was a colony of Sinope, bat it first comes into notice at the time of the Retreat of the Ten Thousand, who found repose there. Notwithstanding its commercial inıportance, the renoteness of its position prevented it from being much known to fame eitner is the Mellenic or the early medireval nerion :
its greatneas dates from the time of the fourth crussde (1204), when the Byzantine empire was dismombered and its capital occupied by the Latins. During the confusion that followed that event a acion of the inporisl family of the Comneni, called Alexius, escaped into Asia, and, having collected an army of Iberian mercenariea, entered Trebizond, where he was acknowledged as the legitimate sovereign, and assumed the title of Grand Comnenus. Though only twenty-two yeara of age, Alexius was a man of ability and resolute will, capable of establishing order in a time of anarchy; and thus be succeeded without difficulty in making himself master of the greater part of the southern coast of the Black Sea. The empire that was thus founded continued to exist until 1461, when the city was taken by Mohammed Il., eight yeara after he had captured Constantinople. The cause of this long duration, and at the same time the secret of its listory, is to be found in the isolated position of Trebizond aud its district, between the mountaina and the sea, which has already beeu described. By this means it was able to defy both the Seljuks and the Ottnmans, and to maintain its independence agsainst the emperors of Nicsa and Constantinople. But for the seme reason its policy was alwaya narrow, go that it never exercised any beneficial infuenco ou the world at large. It was chiefly in the way of matrimonial alliancea that it wsa brought into contact with other states. Tho imperial family were renowned for their beauty, and tho princesses of this race were sought as brides by Byzsntive emperora of the dynasty of tho Palæologi, by Western noblea, and by Mobammedan princea; and the convexions thua formed originated a variety of diplomatic relations and friendly or offensive alliances. The palace of Trebizond was famed for its magnificence, the court for its luxury and elaborate ceremonial, while at the same time it was frequeutly a hotbed of intriguo and imnorality. The Grand Comneni were also patrons of art and learning, and is consequence of this Trebi2ond was resorted to by many cminent men, by whose agency the library of the palace was provided with valusble manuscripta and the city was sdorned with splendid buildings. The writers of the time spesk with enthusiasm of its lofty towera, of the churchea and monaateries in tho suburbs, and especially of the gardens, orchsris, and olive grovea. It excited the admiration of Gonzales Clarijo, the Spanish envoy, when be passed through it on his way to visit the court of Timur at Samarkand (Clavijo, Historia del Gran Tantorlan, p. 84) ; and Cardinal Bessarion, who was a nativo of the place, in the latter part of his life, when the city had passed into the hands of the Mohammedans, and he was bimself a dignitary of the Roman Church, so little forgot the impreasion it had made upon him that ho wrote a work entitled "The
 mannacript at Venice. Little was known of the history of the empire of Trebizond until the subject was taken in hand by Prof. Fallmersyer of Mnnich, who discovered the chronicle of Dichael Panaretus among the books of Cardinal Bessarion, and from that work, and other sources of information which were clicfly unkuown up to that time, compiled his Geschichte dis Kaiscrithuns won Trapezunt (Munich, 1827). Finlay's account of tho period, in the fourth volume of his History of Grecec, is based ou this. From time to time the emperora of Trebizond paid tribute to the Seljúk sultana of Iconium, to the grand khana of the Mongola, to Timur the Tartar, to the Turcoman chieftains, and to the Ottomena; but by means of skilful negotiations thoy were ensbled practically to secure their independence. We find then also at war with many of these powers, and with the Genoese, who endearoured, to monopolize the commerce of the Black Sea. The city was aeveral times besieged, tho most formidable attack being that which ocetirred in the reign of Andronicus I., the secoud emperor, when the Seljuks, uuder the command of DIelik, tho son of the great sultan Ala-ed-din, first assaulted the northern wall in tho direction of the sea, and afterwarda endeavoured to storm tha ulleer citadel by night. They failed, bowever, in both attempts; and in the latter, owing to the darkness, and to the occurrence of a violent storm which suddenly swelled tho torrents in the raviues, their force was threwn into inextricable confusion, and they were compelled to abondon their esmp and make the best of their escape from the country. So great was tlee strength of tlao fortificationa that, when Mohannmed 11. turncd his thoughta towards the sulyjugation of this state, le might Lave experienced much difficulty in reducing it, and might have been disposed to oflcr favouralılo terms, had it not buen for the pusillauimoua couduct of lavid, the last emperor, who surrendered the place almost ariconditionally.

Several interesting monuments of this period remain at Trelizoml in the form of chorches in the Byzantine stylo of architcctule. Ode of these is within the ares of tho old city, viz., tho church of the Panaghia Chrysokephalos, or Virgin of the Goldcn Ilcad, \& large and massivo but excessively plain building, which is now the Orta-hisaar mosque. On the further side of the eastern ravine standa a smaller but very well proportioned structure, the chlurch of St Eugenius, the patrou saint of 'l'rcbizond, now tho Yeni Djuna djami, or New Friday mosque. Still more important is the churela of Ieghia Sophia, which occupies a conspicunus posilion overlook-

Ing the sea, about two miles to the west of the city. The porches of this are handsomely ornamented, and about a hundred fect from it rises a tall companile, the inner walls of which have been covered in parts with frescos of religious subjects, theugh these are now much defacod. But the most remarkable memorial of the Middle Ages that exista in all this district is the monastery of Sumelas, which is situated among the mountains, about 25 miles from Trebizond, at the aide of a rocky glen, at a height of 4000 feet above the oea. Its position is most extraordinary, for it occupies a cavern in the middle of the face of a perpendicular cliff a thonsand feet high, where the white buildings offer a marked contrast to the brown rock which forms their setting. It is a pproached by a zigzag path at the side of the cliff, from which a flight of stone atcps and a wooden ataircase give acceas to the monastery. The valley below is filled with the richest vegetation, the undergrowth being largely composed of azaleas and rhododendrons. An antiquity of 1500 years is claimed for the foundation of the monastery, but it is certain that the first persen who raised it to importance was the emperor Alexius Comnenus III. of Trebizond; he rebuilt it in 1360, and richly eadower it. The golden bull of that emperor, which became theaceforth the charter of its foundation, is atill preserved ; it is one of the finest specimens of auch documents, and contains portraits of Alexius bimself and his queen. The monastery also possesses the firman of Mohemmed II. by which he accorded bis protection to the monks when he became master of the country.
(H. F. T.)

TREDEGAR, a town of Monmouthshire, England, is situated on the Sirhowy river, and on the London and North Western Railway system, 7 miles east-north-east of Merthyr Tydvil and 249 west of London. The town owes its existence to the establishment in the beginning of the century of the works of the Tredegar Iron and Coal Company, who lease the soil and minerals from Lord Tredegar. The iron-works, chiefy for the smelting of iron and the manufacture of iron and steel rails, are of enormous extent, and employ npwards of 4000 men . The town is also surrounded by iron and coal mines, the property of the company. It consists chiefly of workmen's houses, but is built with regularity and neatness, the principal streets diverging from as open space called the Circle, in the centre of the town, where there are a number a? good ehops. The church of St George is a tasteful modern building in the Norman style. The temperance hall, union workhouse, and literary institute and library deserve notice. The population of the urban sanitary district (area 7029 acres), a emall portion of which is in Erceknockshire, in 1871 was 16,989 and in 1881 it was 18,771
TREE-CREEPER, one of the smallest of British birds, and, regard being had to its requirements, one very generally distributed. It is the Certhia familiaris of ornithology, and remarkable for the stiffened shafts of its long and pointed tail-feathers, aided by which, and by its comparatively large feet, it climbs nimbly, in a succession of jerks, the trunks or branches of trees, invariably proceeding upwards or outwards and generally in a spical direction, 2 s it eeeks the small insects that are hidden in the bark and form its chief food. When in the course of its ecarch it nears the end of a branch or the top of a trunk, it flits to another, always alighting lower down than the place it has left, and so continues its work.

Inconspicuous in colour, for its upper plumage is mostly of variousshades of brown mottled with white, buff, and taray, and beneath it is of a ailvery white, the Tree-Creeper is far more common than the incurious euppese; but, atteation once drawn to it, it can be frequently seen and at times heard, for though a shy singer its song is loud and awcer. The nest is neat, generally placed in a chink formed by a half-detached piece of bark, which secures it from observation, and a considerable mass of material is commonly used to partly stnff up the opening and give a sure foundation for the tiny cup, in which are laid from six to nine eggs oif a translucent White, apottcd or blotched with rust-colour. The Tree-Cleeper inhabits almost the whole of Europe as well as Algerie, and has beon traced across Asis to Jrnan. It is naw recognized as an inhabitant of the greater part of North America, though for a time oxamples from that part of the world, which differed slightly In the tinge of the plumage, were accounted a distinst epecies (7. americana), and even those from Mexico and Guatemala (C).
mexicana) have lately been referred to the same. It therefore occupies an area not exceeded in extent by that of many Passerine birds, and is one of toe atrongest witnesses to the close alliance of the so-called Ncarctic and Palæarctic Regions.

Allied to the Tree-Creeper, but wanting its leagthened and stiff tail-feathers, is the genus Tichodroma, the single member of which is the Wall-Creeper (T. muraria) of the Alps and some other mountainous parts of Europe and Asia, and occasionally seen by the fortunate visitor to Switzerland fluttering like a big butterfy arainst the face of a rock, conspicuous from the scarlet-crimson of its wing-coverts and its white spotted primaries. Its bright hue ia hardly visible when the bird is at rest, and it then presents a dingr appearance of grey and black. It is a species of wide range, extonding from Spain to China; and, thongh but seldom leaving its cliffe, it has wandered even so far as England. Merrett (Pinax, p. 177) in 1667 included it as a British bird, and the corrcspondence between Marsham and Gilbert White (Proc. Norf. and Norw. Nat. Socicty, ii. p. 180) proves that an example was shot in Norfelk, 30th October 1792 ; while another is reported (Zoologist, ser, 2, p. 4839) to have been killed in Lancashire, 8th May 1872

The genus Certhic as founded by Linnæus contained 25 species, all of which, except the two above mentioned, have now been shewn to belong elsewhere ; and for a long while so many others were referred to it that it became a most heterogeneous company. At present, eo few are the forms left in the Family Certhiida that systematists are not wanting to unite it with the Sittide (cf. Nutgatch), for the two groups, however much their extreme members may differ, are linked by so many forms which still exist that little violence is done to the imagination by drawing upon the past for others to complete the series of descendants from a common and not very remote ancestor, one that was possibly the ancestor of the Wrens (q.v.) as well. One thing, however, has especially to be noticed here. The Certhiidax have not the least affinity to the Picidx (cf. Woodpecker, infra), but are strictly Passerine, though the Australien genus Climacteris may possibly not belong to them.
(A. ‥)

TREEFERN. In old and well-grown specimens of some of the familiar ferns of our temperate climates the wide-spreading crown of fronds may be observed to rise at a distance often of a good raany inches above the surface of the ground, and from a stem of considerable thickness. The common male fern Nephrodium (Lastræa) furnishes the commonest instance of this; higher and thicker trunks are, however, occasionally presented by the royal fern (Osnunda regalis), in which a height of 2 feet may be attained, and this with very considerable apparent thickness, due, however, to the origin and descent of a new series of adventitious roots from the bases of each annual set of fronds. Some tropical members and allies of these genera become more distinctly tree-like, e.g., Todea; Pteris also has some sub-arboreal forms. Oleandra is branched and shrub-like, while Argiopteris aud Marattic (Marattitces) may also rise to 2 feet or more. But the tree ferns proper are practically included within the family Cyatheacex. This includes five genera (Cyathea, Alsophila, Hemitelia, Dicksonia, Balantium) and nearly 200 species, of which a few are herbaceous, but the majority arboreal and palm-like, reaching frequently a height of 50 feet or more, Alsophita excelsa of Norfolk Island baving sometimes measured 60 to 80 feet. The fronds are rarely simple or sinuply pinnate, but usually tripinnate or decom. pound, and may attain a length of 20 feet, thus forming a splendid crown of foliage. The stem may occasionally branch into many crowns. The genera are of wide geographical range, mostly of course within the tropics of the Old and New World ; but South Australia, New Zealand, and the Southern Pacific islands all possess their tree-ferns. In Tasmania Alsophila australis bas been found up to the snow-level, and in the humid and mountainous regions of the tropics tree-ferns are also found to range up to a considerable altitude. The fronds may either contribute to the apparent thickness of the stem by leaving mure or lese
of their bases, which become hardened and persistent, or they may be articnlated to the stem and fall off, leaving characteristic scars in spiral series upon the stem. The stem is frequently much increased in apparent thickness by the downgrowth of aerial roots, forming a black coating several inches or even a foot in thickness, but its essential structure differs little in principle from that familiar in the rhizome of the common bracken (Pteris). To the ring or rather netted cylinder of fibro-vascular bundles characteristic of all fern stems scattered internal as well as external bundles arising from these are superadded ; and in a treefern these are of course in greater nambers. The outer bundles give off branches to the descending roots from the region where they pass into the leaves.

Tree-ferns are of course cultivated for their beanty alone; a fem, however, are of some economic applications, chiefly as sonrces of starch. Thas the beautiful Alsophitla excelsa of Norfolk Island is said to be threatened with extinction for the sake of its sago-like pith, mhich is greedily eaten by hegs; Cyathea medullaris also furnishcs a kind of aago to the ustives of New Zealand, QueensIand, aud the Pacific islands. A Javaness apeciea of Dicksonin (D. chrysotricha) furnishea silky hairs, which have been imported as a styptic, sud the leng silky or rather woolly hairs, ao a aundant on the atem and frond-leaves in the various species of Cibotiun, have not only been put to a similar use, but in the Sandwich Islands furnish wool for stuffing mattresses and cnshions, which was formerly an article of export. The "Tartarian lamb," or Agnus scylhicas of old travellers' tales in Chins and Tartary, is simply the woolly stcek of C. Barometz, which, when dried and inverted and all save four of lits frond-stalks cut away, has a droll resemblance to a toy sheep.
See Feus; J. Swith, Historia Filicum; Luerssen, Med. Pharm. Botantk; and for the Etructare of the ssem, De Bary's Fergletch. Anatomte d. Phcnerog. u. Eiorne.
tregelles, Samuel Prideaux (1813-1875), Now Testament scholar, was born at Wodehouse Place, uear Falmouth, on January 30, 1813. His parents were Qnakers, and he himself for many years was in communion with the (Darbyite) Plymouth Brethren, but latterly he became a member of the Church of England. He was educated at Falmouth grammar school, and afterwards, without having attended any university, held various modest educational appointments, but finally devoted himself entirely to a laborious student life, until he was incapacitated for literary work by paralysis in 1870. He died at Plymouth on April 24, 1875.
Most of his numerous publications had reference to his great critical edition of the New Testament (see Blble, vol. iii. p. 648). They include an Account of the Printed Text of the Greel New Teslament (1854), a dew edition of Horue's-Initroduction (1860), and Canon Mruratorianus: Earliest Catalogue of Books, of the Newo Testament (1868). As early as 1844 he published an edition of the Apocalypse, with the Greek text ao revised as to rest almost ontirely uporis ancient evidence. Tregelles wrote Heads of Hebrew Grammar (1852), translated Gesenius's Hebrevo Lexicon, and was the anthor of a little work on the Jansenists (1851) and of various works in expesition of his special eschatological views (Reniarlis on the Prophetic Visions of Danicl, 1852, new cd. 1864).

TREMATODA, popularly known as "flleses," form one of the three main divisions of the flatworms or Platyhelminthes. They have been defined thus (Jackson, 1):1-
"Unisegméntal Vermes, with a flattish, leaf-like, more or less eylindrical body provided with organs of adhesion in the shape of suckers and sometimes of chitinoid hooks. The cuticle, so called, appears to be a metamorphosed layer of cells. There is a well-developed nervous system, the ganglia of which are entirely supra-pharyngeal, i.e., dorsal. There is a mouth, and an alimentary canal which is usually forked, but no anus. The excretory system has the form of more or less branching tubes commencing with flamecells, and either ending in a contractile vesicle or opening by two independent orifices. Hermaphrodite self-impregnation occurs, as well as reciprocal impregnation. The embryo either develops direct into the sexual form (monogenetic Trematodn) or gives origin to a series of inter-

[^238]mediate non-sexual dimorphic forms (digenetic Trematoda). Parasitic."

Historical Sketch.-Some of the more salient points in the history of our knowledge of these animals have already been alluded to in the article Parasitism (q.v.) ; a few additional facts must, however, be mentioned here. The Irenatoda were first formed into a group by Rudolphi (2), who included in it the following genera:-Monostoma, Amphistoma, Distoma, Tristoma, Pentastoma, and Polystoma; the name had reference to the suckers, which Rudolphi regarded as being for the most part openings into the body (Gr. $\tau \rho \eta \hat{\mu} \mu$, an aperture). . Some of these forms were soon perceived to liave but small connexion with the others; and Cuvier (3) reduced the whole to one genus, for which he adopted the name Fusciola, Linn. The Pentastomes have since been transferred to the Arachmids (q.v.).

Our scientific acquaintance with the group may be said to date from 1831, when Meblis noticed that the eggs of certain Distomes hatched into a minute ciliated body with an eye-speck resembling an Infusorian, an observation which gave the key to the life-history of these forms. Von Siehold in 1835 (4) supplemented this discovery by the observation that the ciliated embryo of Monostomum mutabile contained, as a "necessary parasite," as it was termed, an organism identical with the "kingsyellow worm " (Redia), found by Bojanus in pond-snails, and Von Baer had previously shown (5) that these gave rise to free-swimming organisms not unlike tailed Trematodes. The materials were thus ready to hand for a co-ordination of the whole life-history, and Steenstrup recognized it as in instance of the so-called "alternation of generations" (6). " 1 hese researches received important additions at the hands of Pagenstecher (7) and others, who showed experimentally that encysted Distomes grow mature directly after their transference from one host to another, and thus that a migration is necessary to the attainment of their mat urity. Diesing's great work (8) appeared in 1850, and has formed the groundwork of all subsequent treatises on the systematic arrangement of parasitic worms, althengh it included forms which really belong to quite different groups. In 1861 Van Beneden gained a prize offered by the French Academy by his elaborate memoir on the intestinal worms (9), in which be not only described many new and interesting forms, but gavo anatomical details regarding others previously known, and entered into detailed comparisons between the Cestodes and Trematodes, both in their adult and immature states. Of recent years the chief additions to our knowledge have been more in the direction of further details regarding the structure and life-history of special forms than the elaboration of new general principles.

Anatomy. - In endeavouring to give a very brief account of the mere salient points in the anatomy of the Trematoda it has been thought expedient to select some well-known form as a type, and afterwards to indicate the characters in which other species differ from it; for this purpose tho common liver-finke, Fasciola (Distomum) hepatica has been clooseu, as it is not mofrequently found in the bile-ducts of sheep and other domestic animals, and censtitutes a scourge much dreaded by farmers. The account here given is in the main sbstracted frem Sommer (10).
External Appearance. -The animal has a flatteued eval shapa, with a sub-triangular process on the broader end, which represents the head. The total length raries from 20 to 35 mm ., the breadth from 6 to 12 mm . On superficial examination two narrower latcral areas may generally be distioguished from a broader median ono; the former are occasionally of a coarsely granular appearanco and reddish-brown or orange in colour, and increase in breadth towards the pesterior end of the body, where they commonly unite. The median area is commoniy greyish-yellow in colour, sometimes spotted with black; its anterior portion corresponds to the uterus, the posterior to the testes. Two suckers (fig. $1, A, 0, s$) are in the middle line of the bedy; one is at the anterior extremity, and is directed forwards and somewhat downwards; it is known as the
anterior or oral sncker, being perforated by the cesophagus. The postericr or ventral ancker is aituated, is its name impliea, on the inferior aurface of the body, just bahind the head-papilla. The

Fre. 1.-A, Fasctola hepafica, from the veatrel surface $(\times 2)$; the ellmentary and nervous aystems only shown on the left slde of the flgure, the excretors only oo the Jight. * a, right main Dranch of the Jntestine; c, a diverticulum; g, lateral ganglion; n, lateral norve; o, mosth; p, pharynx; s, weatral aucker; $c s$, clrrus §ac; d, leit anterlor dorssl cxcretory vessel ; m, malu vessel; v, left anterlor ventral trunk; x, excretory pore. B, Anterior portion mors highly magnlfled (from Marshall and Hurst, aitor Sommer). cs, clrrus ase; d, ductus ejaculatorlus; f, female aperture; 0 , ovary: $0 d$, ovidnct; p, penls; s, ahellgland; t, anterior testls; u, nterus ; ta, rp, rass deferentla; ε, veslcula ceminalla; y, yolk-gland; $v d$, its duct. C, G=iltal olnus aod velghbouring parte (from Sommer), a, veatral sucker; b, cirrus anc; c, gental pore; a, evaglaated A, ductus ejaculatoin, ead of ragina, cretory apparatus, wing ox E, Egg of Fasciola hepatica. $\times 330$ (from Thomps) o, orffice of thp fanael.
auckers measure on an average about 1 inm , in diameter, the venwith the outcr rorld by four a pertures:-(1) the mouth (0) situated with the outcr rorld by four apertures:-(1) the mouth (0), aituated at the anterior pale of the body and perforating the oral sucker;
(2) the excretory pore (x), placed at the opposite extremity, and giving exit to the effete products; (3) the prorus genitalis (fig. 1, B, p), leading into a ainus into which the ducts of both sots of genital organs open, -it is to be found ont the under surface of the headpapilla at or near its centre; (4) the opening of the Laurer-Stieda canal, aituated on the dorsal eurface of the animal, near the junction of the two portions of the median area, -it is excessirely minute and difficult of datection. and leada by a narron caual into tha duct of the yolk-gland.
Interanl Structure.-All Tremnioda have ben conmonly regarded, like other flat-worms, as devoid of a lody-caritr (ccelorii), and as consisting of paranchymatous tissue, in which tha rarious organs were embeldct. Recent researches of Fraipont (15) appear to ahow, however, that the intercellular spaces in this tissue are to be regarded as the homologus of a coelom. The body is suclosed by a complex sheath (cortex), which may be resolved into several layerg, which nill be discussed in order, proneeding from without inwards. (1) The cutiele, which oucloses the wholo body, is a thin, pellucid, atructureless membrans; at the margin of the coouth it is reflected so as to form a lining for the cesophagus, and similarly at the opening of the genital sinus it passes invarda to form a lining to the vagina. The same phenomenon is observed at the excretory aperture. By the application of ammonia the cuticle may be separated from the auljacent tissucs and its peculiaritios deuonstratad; although apparently emooth to the naked sye, it presents under the microscops numcroua sherp backwardly directed processes, each of which cncloses a hard atylat-sheped body. These prominences ara closely set orer the whole body except iramediately
around the auckers, extcnding even into the iuterior of the cinns genitalis, The cuticle is furthermore perforated by innumerablo fine pores, directed outrwards and somewhat backwards. With regard to the homology of the cuticle of Trematodes the eame nncertainty prevails as in the caso of Cestodes (eee Tare-Worms)y the geueral opinion is that it is not comparable with the chitinoua cuticle of A rthropoda, but is either a apecially developed base-ment-mambrane (Kerbert, 11) or a layer of modified cells (Ziegler, 12, and Schmarze, 13). (2) The outer cellular layer is the matrix of the cuticle. (3) The minscular coat consists of three different layers:-(i.) a thin layer of circular fibres; (ii.) the longitudinal muscles, which form a series of aeparate bundles; (iii.) the oblique muscles, confined to the anterior half or third of the body, and crossing so as to form a rhomboidal lattice-mork,-they are especially atrong on the anterier ventral asnect of the animal. (4) The inner cellular layer cousists of elements which closely resemble those of the outer, but are 60 me what larger; they have been mistaken by various observers for cuticular glands. The suckers may be conaidered as parts of the cortical layer; apeaking generally, each has the form of the segment of a ephere, although the anterior one ie. 6 hallower at the lover than at the upper margin, and is ponstrated by the cosophagus. Each ronsists of three cets of muscles, $-a$ thin outer equatorial layer, a eecond horidional, and a mass of radially disposed fihres forming the greater part of the substance. It wonld appear that the function of the first two of these groups is to flatten out the sucker, whilst the radinl ones reatore its cavity and thus produce a sucterial action. To the ventral sucker are attached a number of muscular fibres helooging to tho dorso ventral system, and in particular a atrong bundle. Which passes from behind downwards and forwards.
The digestive ayatem (fig. $1, \mathrm{~A}$), the presence of which furnishes one of the most characteristic differences between Trematodes and Cestodes, extends throughout the body ou a plane between the peripheral nervous and reproductive ayctems. It has only ons aporture, as above nientioned, in the ccutre of the anterior eucker. The anterior portion or pharynx, althougli very short, messuring not much more than 1 mm . in length, is again divisible into two sections. The hinder of thesa is the larger, and is sometimes apheroidal but more commonly fusiform in shaps; it has strong muscular walls, which, in conjunction with protractor and retractor muscles, bring about a kind of pumping action whereby nutritive fluids are taken iuto the stomach, which name may be applisd to the larger posterior section of the alimentary tract, since in it the digestire procesees are carried on. The canal, which leads from the posterior end of the pharyns, divides almost immediately into two branches, Which diverge at first rapidly and then run almost parallel, as far as the hinder end of the body. Each of these gives off from its outer aspect 60 me 16 or 17 lateral branches (c), which divide and sabdivide till their ramifications fill nearly the whiole area of the body. The digestive tract is lined by a layer of simple cells, resembling a cylinder epithelium. These bebave towards the blood corpuscles and other contonts of the intestine exactly as rould a number of A noebse, putting out processes or pseudopodia, which ingest them, so that, in common with many of the lower Invertehratea, the liverfluke lives by "intracellular digestion" (see Metschnikoff, 14).

The canala of the excretory system (m) may be divided in to thres groups. (1) The collecting network conaists of very fine tubnles Which anastomose freely with each other: they are aituated on the boundary botween the cortical and middle layers, and are therefore visible from either side of the body. (2) Conducting vessels ($0, d)$ receive the contents of this network. Each of these fs formed by the union of a larger or smaller number of the delicate canals just described, and after a longer or shorter course opens into the niedian excretory canal (m) On the may, howiever, it communicates with the neighbouring vessels, ao that a second network is formed, which is distinguished from that of the collecting tubules by the greater siza of its meshes and by the fact that it is apecially visiblo from the dorsal surface of the animal. In the head four of these conducting vessels arise, which are disposed in two pairs, ons situatod dorsally and one ventrally. As they rass backwards they receive many branches, the doreal unites with the rentral of its own side, aud the two tulues thus formed unite to constitute the last division of the excretory syatem. (3) The median vessel (m) passes along the body for the posterior two-thirda of its length, immodiately heneath the doreal cortical layer. It is widest near the commancomant, whacre it measures shout 0.5 mm . in diameter, aud finally opens at the posterior extremity of the body. The wall of tho excretory apparatua is constitutcd overywhers hy an exceedingly delicato olastic membrane, which exhibits naither a cellular lining nor cilia; furthermore, neither valves nor musciea hava be日n demonstrated in connexion with it It contains a thin colourless fluid, in which rery small highly refractive drops are anspended.
The detaila of the termination of the excretory system seem to have been first clearly made out by Fraipont (15), who worked apon apecies in which they are more distinct than in the form now ander coneideration: The apaces betrecn the round connectivetissue cells of the body are atar-shaped in form, and into these the

Ginest excretory tubules, above mentioned, open by funnels (fig. 1, D), into eacl of which projects a vibratile cilium, thus constituting the so-called "flama-cells." These researches have given rise to numerous differences of opinion, as regards questions both of fact (16) and of priority (17).

The liver-Huke contains a complete cet of male aud female organs, which form the most conspicuous part of its anatomy, and both of which open into the genital sinus which has been described above. A. The Male Organs. (i.) The testes (fg. 1, B, t) are two in number, situated one behind the other in the hinder division of the median area. They rest upon the ventral cortical layer in the parenchyma of the body, and immediately above them are the ramifications of the digeative tract. Each consists of a large number of ramifying tubes, oftel with slightly dilated extremities. These unite into thrse or four, aud eventinally into two, main excretory ducts ($v a$, vp), which terminate at the base of the cirrus-pouch. Within the testicular tubules may be found spermatozoa in all stages of development; the first stage appears to conaist of small roundish membraneless colls with a single nucleus; the nucleus then divides and the cells become polygonal from mutual pressure. These large cells lie in the middle rather than at the sides of the tube, and among them are a number which, while they possess on one side a smooth egenly ronnded contour, are on the other very irregularly and deeply serrated. These serrations elongate until they become the delicate filaments of spermatozoa, the small abining heads of which are still embedded in the protoplasm of the cell. (ii.) The vasa deferentia ($v a, v p$) are a pair of slender elougated canals, which lio on the two sides of the middle line, and unite at the inner extremity of the cirrus-patch, which they penetrate ia common. Their walls consist of a very delicate homageneous but resistaut membrane, upon which contractile fibres are disposed, close together and parallel to the exis. (iii.) The cirrus-pouch (cs) is a muscular eggshaped organ ; tho upper pc?e, which receives the united vasa deferentia, is situated abore the ventral sncker and separated by only a very slight interval from the dorsal cortical layer, whilst the position of the lower pole is indicated by the porus genitalis (p). The muscles are disposed in two layers, of which the inuer is thin and composed of circular fibres; the outer longitudinal layer is much thicker, and its fibres ore disposed in bundles; furthermore its aper receives a large number of dorso-ventral fibres. Within the cirrus-pouch the two terminal sections of the male conducting apparatusare situated. (iv.) The first of these is the vesicula seminalis (fig. $1, \mathrm{~B}$, es; \mathbf{C}, g), a large, epinclle-shaped dilatation of the canal usually more or less curved upon itself. Its wall is somewhat more complex than that of the vasa deferedtia, consisting of a layer of tiasue with many nnclei but no distinct cell-boundarics, succeeded by a delicate layer of circular muscular fibres, which is again followed by a layer of lougitudinal oues. (v.) The ductus ejaculatonius (fig. 1, C, h), which immediately succeeds the vesicula seminalis, is a long slender tube, disposen in coils, and usually projecting like a papilla into the base of the sinus genitalis. Its walls are furnished with a number of unicellular glands. E. The Female Organs. The fenale reproductive apparatus may be roughly divided into two portions, that which produces the eggs and that which conveys them to the outside of the body; in the former of these processes three organs take part-ono prodicing the germ, another the secondary or food-yolk, anl a third the egg-shell. (i.) The germarium or ovary (fig. 1, B, o) is situated between the anterior testis aud the ventral sucker, in obout three cases out of four on the right hand side of the body. It has tho form of a braocling tubular gland, the ramification heing dichotomous throughout; in most cases the branches are about ns large as the stems which give rise to then. The oviduct passes towards the shell-gland, marrowing as it a pproaches this, and finally unites with the excretory duct of the yolk-glands. (ii.) The yolk-glands (y) of the liver-lluke are paired orgalis of considerable size; they extend over both lateral aress, to which thoy impart the opaque appearauce and reddish colour above alluded to. They are composed of innumerable small acini, spheroidal in sliape and situated in groups on minute ductules, which unite to forma longitudiual canal on either side of the body. These canals ore ou the whols parallel to the margins of the animal and distant from it ahout one-fifth of its greatest breadth. At the anterior margin of the tcsticular area each longitudinal canal gives off a transverso branch, which unites with its fellow of the opposite side in the middla line to form a pear-shaped reservoir, situated just behind the posterior margin of the shell-gland. From this reservoir the coramon yolk-duct passes forwards in the subatance of the shellgland and there unites with the oviduct. Previously to this, howaver, it gives off a minute canal, which after an upward course opens on tho dorsal surface of the animal; it is known as the Laurer. Stiela canal, and its function bas been the subject of much discussion. It has been anpposed (1) "to serve for copulatory purposes," as has beed aecn by Zeller (18) in Polystomum, and as is supported by its structure in Axine and Microcotyle, and (2) "to act as a safety tube for the escape of over-aboadant or altered vitelline products and spermatozon," the wain argument in support of which is that its calibre is too nerrow to admit of copulation taking place by
its means ; compare Sommer (10), Kerbert (11), Poirier (19), Looss (20), and Lorenz (21). (iii.) The uterus or female condacting apparatus (u) originates at the union of the ducts of the germarium and yolk-gland. Its first portion, which lice within the ehell-gland, is a delicate narrow canal, cxcept when it is distended either by eggs or by eemen. The median section of the organ is by far the largest bath ia length and breadth; it oocupies almost the whole of the anterior part of the medion area of the animal, between the ventral oncker aud the shell-gland, and forms four or five large coils lying alternately right and left, which as a rule aro filled with completely formed eggs. The third section of this organ includes the coils which lie above and anterior to the ventral sucker; it is sometimes called the vagina. Then it contains eggs these are generally iu a siugle file, and thus giveit a moniliform appearance; it lies entirely ou the left side of the body, gradually approaching the middle line as it passes forward, until it ends below the cirrus-poucb at the left and posterior a日pect of the genital pore (Eg. 1, C, e). (iv.) The sbell-gland (fig. 1, B, s), which (as its name implies) furnishes the external coating of the eggs, has been already several times mentioned. In the Trematodea, as in the tape-worms, it forms a kind of central point of the femele geuerative system; it is a spheroidal mass of unicellular glands, each of which apens by its own special duct in to the commencement of the uteriss. The secretion of the shell-gland is liberated in the form of small pellucid droplets, which unite to form drops; afterwards it becomes thick and riscid and of a mabogany brown colour, In this condition the drops are dispersed through the uterms mired with the secretions of the other genital glauds, and they apply themselves to the recently formed eggs, producing a delicate membrane around them. This process is carried on in those coils of the uterus which lie immediately outside the shell-gland, corresponding to the "ootype" described by Van Beneden in other Trematodes.

The eggs undergo a gradual development as they pass along the uterus. The ripe primitive ovum, on enteriog the female conducting apparatus, becomes conted with a larger or smaller number of spherules of sccondary yolk, and then nndergoes the process of segmentation which leads to the formation of a morula. At this point it receives the secretion of the shell-giand. The completely tormed egg (fig. 1, E) has a length of 0.13 mra . and is ovoid in shape, witli a small lid or operculum at tho broader end; its contents consist of a number of roundly polygonal cells, with only a small quantity of secondary yolk remaining among them. All of these but oue have a thick granular protoplasm, the exceptional cell having bomogeneous aud strongly refracting contonts. It usually lies immediately under the operctlum, and is partly embedded in the other cells. They are of ten present in the bile-ducts in such quantities as to form a stiff brownish mass resembling wet sand, and the number produced by a single fluke has been estimated at half a million.

The mode of fortilization of the liver-fluke hes-given rise to much discussion. According to Sommer, the organ which bas usually been described as a cirrus or penis is merely the genital sirus avaginsted by abnormal pressure (fig. 1, C, d); it is furthermore but ill-adapted to enter either of the canals which could possibly serve as a vagina. He is therefore of opioion that self-impregnation occurs, the external sperture bcing closed by the oblique muscles, and the semeu passing directly from the vas deferens through the genital simus into the uterus. The whole question of the fertilization of the Trematodes is a matter ou which very varied opinions have been expressed, even by authors who have examined the same forms. The assertion of Von Siebold that a direct internal communication exists between the male and female organs has been denied by Stieda (22) and by many subsequent writers, but has been restated by Lorenz (21) and by Zeller in the case of Polystomum integerrimum (18); however this may be, there can ba no donbt that eelf-impregoation does occur in certain cases. The stucture of the organs renders it more than probable in some species (see Poirier, 19, p. 582) ; Zaddach has observed it actually taking place in Distomum cirrigevoum encysted in Astacus (23), and a single Polystomum integorrimum has been found in a frog's bladder with sperm in the female passages. Reciprocal fcrtilization, in which tro individuals act both os male and female simultaneously, has been recorded by Zeller in Polystomv:m intcgerrimum, by Looss (20) in Distomum clavigerum, and by Cobbold in Distomum campula.
The uervous system consists of a commissure passing round the œsophagus very obliquely, and swelling out into ganglia at three points. Trislomum molx possesses ejes of en extremely simple type, the retina being merely a ganglion cell (Lang, 24).
Life-History and Development. -The life-history of Fascrohe hepatica was worked ont independently by Thomas (25) and Leuckart (26); regarding the question of priority see Jackson (27).

The development of the embryo can only take place outside the body of the host and at a lower temperature, the most favourable being from 23° to $26^{\circ} \mathrm{C}$, at which the process occupies twa or three wecks. The free embryo (fig. 2, A) is conical in shape, with a rounded apex, ite avarage langth being 0.13 mm . At the broader anterior and is a retractile head-papilla, with the exception of which the body
en cilisted all over. The interier of the bedy as cempesed of granular nuclested cella, and it contains a deuble eye-spot, composed of two crescentic masses of pigment. There are also two ciliated funnels forming the rudiments of the excretory system and a graaular mass behind the head-papilla, probably representing the digestive tract. The embrye swims actively about, but.if it does not succecd in meeting the appropriate host for its next atage of development (Limnæus sruncatulus, a small pond snail) its peried of vitality seems to be linited to about eight hours. If it should meet with one of these

c
Fio. 2.-Five alagea in tbe life-hlstery of Fasciola hepatica: all highiy magnifled. A, The free-swimming embryo. B, A हporocyat containing young redis. C, A young redia, the digestive tract ehaded. D, Aa aduit redia, containing e deaghter-redia, two almost matuie cercarim, and germs. E, A free cercaria. The lettera hare tbe same algnificance throughont. co neaily ripe cercarie; cc, cystogenous cells; dr, daughter-redia; dt, limbs of tha digestive trsct; f, head-paplla; h, eve-spots; n, same degcnerating; k^{\prime}, kerminal cell ; l^{l}, cells of the antertor row $i m$, cmbryo in optical aection, gastrula stare $; n$, pharynx of redia; O, digestlve sac; oe, cesophagus ; p, lips of redia ; η, collar; r. processes serving as rudimentary feet; s, embryos; t, trabecula ciossing, body-cavity of
 \boldsymbol{y}^{\prime}, ventral encker; z, pharyox. (All trom Marahall and Harst after Thomas.)
snails it applies the head-papilla to come part of its anrface sud beging to bore, twisting round and ronnd on its axis by means of ats cilia, the head-papilla bocoming pointed and elongated to four or five times its original langth. Eventually the tissues of the tnail are aeparatad as if by a wedge, and a gap is formed through which the ombryo forces an entrance into its body. Here it undergoes a metamerphesis, losing its ergans of locemotion and becoming what is tarmed a "sporocyst" (fig. 2, B). This is on elliptical sac, which commonly attains a length of 0.7 mm Its wall consists of a structurcless cuticle, beneath which are exteraal, circular, and internal longitudinal muscle-fibes. These are succeeded by an ejithelium, the elements of which vary greatly in size. Theac sporocysts may be produced by a process of transverse fission. Within tho sporocyst rounded masses of colls are formed (mornla), which undergo a process of invagination, producing a gastrule, which again devalops by the formation of a digestive tract into what ts known as a "redia" (fig 2, C, D). This forces its way throngh the wall of the sperecyst, which heals up immediately, and then waudera throngh the tissue of the snail, most commonly finding its way to tha livar. If many reciio are present the snail usually perishes. Tho adult redia may sttain a length of 1.6 mm . It has an elongated cylindrical form, and near its posterior extremity are two processes directed backwards, which probably servo as aids to locemetion. At the anterier extramity is the mouth, leadiag into a muscular pharynx, folloved by a saccalar digestivo tract. A ring: shapel thickoning is soen a little way behind the menth, and Immadintely posterior to this a spocial aperture for the exit of the germs formed withiu the redia. About a scoro of thase are usually to bo found in all stages of development, the carliest being a pounded mass of cells (morula), whicls elongates, ono cnr at the
same time becoming more attenusted than the other, ad gradually forming an elongated tail, while the body becames oval and dopressed (fig. 2, E). Two suckers and the rudiment of the future digestive tract make their appearancc. As soon as the "cercaria," this being the name givcn to the present organiam, has attained this atage of developmeat it emerges from the redia, and by the aid of its suckera and tail wriggles its way out of tho host, swimming freely about in the water. Like other cercarix developed in redio this one has no head-spine, but in mature examples the anterior of the body oftea exhibits a number of very minute apines. An interesting feature in the animal is the presence of the "cystegenous cells," two lobate masses arranged one on each side of the body. These cells contain small rod-like bodies, whence they have beon termed "cellules à batonnets," and similar bodies have been found in the protective cyst which they excrete; Sonsine (28) has sliggested that they may assist in imparting stiffness to this atructure, and has noticed that they are mere abondant in these forms which encyst in the open air. When the cercaris has swum about for a short time it finds its way to the water-plants, and encysts itself on their stoms and leaves. During this process the tail is swung vigerously about, until finally a more vielent motion detaches it; at the same time the cells just mentioned threw out a gummy secretion, which rapilly hardons and encloses the cercaria in a kind of case. It is in this condition that the larve are awallower by the grazing sheep to form sexually maiure flukes in their livers.
The life-history of a typical digeuetic Trematole may be summed up as follows:-(1) the egg, produced saxually ; (8) the cilialca embryo; (3) the sporocyst; (4) the redia, produced asexually; (5) the ccrcaria, prorluced asexually; (6) the adult Trematode. Hence it would appear that the digenetic forms have at least one, usually many, esexual generations before the sexual one appears. The embryo may form oither a sporocyst or a redia, these two forms being distinguished by the presence of a digestive tract and of a special birth-opening in the latter. Within these parent forme the germs may arise from two sources, - the cells which occupy tho central region of the young sporocyst or redia, or the epithelium liaing the body-walls. "The germs to which a sporecyst gives origin may develop in some instances into sporecysta, in others inte redie or inte cercarie. And it dees not seem certain that there is any limit to the possible number of successive generations of redie. Both cercarix and redim may occur side by side in the same nurse. The last term in the series is, however, invariably a cercaria."

Pagenstecher, Ercelani (29), and others hare stated that the tail of a cerearia may become a sperecyst and produce germs, bnt this has not mot with general acceptance, and the supposition io not supperted by tha structure of the tail, which consiata of a "contractile substance, occupying the axis and periphery, with large vesicular cells between" (Schwarze, 13). Ercolani (29) has also published striking statements to the effect that the structure of these ontozoa is se profoundly modified by their habitat that what have beeu hitherte deacribed as distinct species may be only "local varieties"; thus he finds that Cercaria armata develons in Tropr. donotus iato Distonnem signatum, wbilst in Mus musculus and M. decumanus it becomes a distinct divarfed form, D. muris.

Pathological and Economic Relations.-Although the number of Tromatedes which have been recorled from the human body is about equal to that of the Cestodes, the nredical aignificance of the former is much less than that of the latfer, becanse as a rule they occur in smaller numbers and are lesa apt to invale ergans of vital imporrance. The Trematodes which hava been found in man aro-

Fasciola hepatica, LInn.
In the liver.
ilver.
Disfomum lanceolatum, Debls,
D. ophehalmoliam Dlesing.
D. heterophyes. Buharz,
D. crass $y m$, Busk $-D$. bus $\hbar \|$, Wedl,
D. capense, Larley,
D. spatulaium, Lenckart,
D. cndemierm, Baelz,
D. hepalis innocuum Baclz,
D. ralhouisi, Pollter (42).

Bilhar:ia hamatolia, Cobbold,
Mfonostomum lentfs, Nordmann,
Hexalhywdium pinguicola, Trentler,
", lens of the eye. H. senarim, Treutler,

For tha general princinlcs which gavern tho pathological effects of Trematodes in common with other entozoa, referenca may bo made to the article Taps-Worms; only a few aperial casea need ba alluded to here The occurrence of most of the forms in the above list has only been recerded very few times, and in many cases the efferts produced were very inadequately atudied, so that we can hardly be said to possess a knowledgo of their individual pathology. In a case of fistomum lanccolatum whicln occurred in Bohemia, the liver was enormonaly enlarged and the contracted gall-bladder contaiued ejrglit calculi and forty-soven fukes; the eymptoms during life were emaciation, pain over the liver, aud distention of the abdomen.

Tha ellects produced by Bilharzit hæmatobia are very well defined and exceelingly disastrous. The mature worms in couplee

Tababit the veins, especially those of the urinery bladder and mesentery ; extravasations of blood and villous growthe or ulcerations of the mucous menlbraue of tle bladder present themselves, and thus the eggs of the parasite find their way lato the urine, in which they are evacuated, and can le detected by raicroscopic examination. With the charecteristir presence of the eggs are associated colic, anæmia, and great prostration of the vital powers, more particularly in the later stages; the discaso when once fairly eetablished is almost always fatal ; see Cobbold (1).
From a practical point of view by far the most important Trema tode is Fasciola (Distomum) hevatica, which gives rise to the discase known as "liver rot" in sheep. It is always more or less abund. ant in certain districts, and it is estimated that in the United Kingdom the annual loss of sheep due to it is not less than $1,000,000$. The symptoms are said to bur emsciation, tenderness in the loins, harshness and dryness of the wool, and a scaly condition of the skin. On post-mortem examination fluid is found in the peritoneal cavity and the viscera have a blanched appearance the liver is dark chooolate or sometimes pale in colour, nodular and uneven, the ducts are thickencd and Distomes are found wiihin them. Dead flukes have been known to furnish the nucle of gall-stoncs in the gall-bladder. Briefly stated, the priucipal preventive measures secm to be as follows :-(1) destruction of the cges, and especially abstention from putting manure of rotten sheep on damp ground; (2) slaughter of sheep which are badly Guked ; (3) adequate drainage of pastures; (4) an allowance of salt and a little dry food to the shcep; and (5) dressinga of lime or salt on the ground to destroy the embryos (Thomas, 25). A series of wet seasons increases the prevalence of the malady, and animals which have been allowed to graze in low-lyirg ill-drained lands are apecially liable to infection-facto which are readily explicable on a consideration of the life-history given above.
Systematic Arrangement.-The Trematoda may bo classified as Iollows :-

MONOGENEA; Van Beoeden; development dreet, that is, withoot the media tiou of aurbe ferms.
(i.) Tristomanz, Lewckart; body roundlah or elongato; posterior estromity dever specialy cuvelopod. Two acoñal anckers often preseat: a large veatral sucker often armed with chitisold structures. Sexoal apertares 00 the left side or admediag. Laures-Stleda canal singls or double. Tra with a filamedt at one pele only.
4. Tristomidar, Van Beacdea.-1. Trislomum, Cuvler; about a dozen genera of previous witers are here inciuded; over 14 apecies are known, nll parasitic on tishes; Tascheaberg (30).
7. Mooocotylldae, Taschenberg.-1. Calicotyle, Diesiog; only opecicá C. kroyer' (31). 2. Pseudocoryte, Tascheaberg. 3. Honocolyte, Tascherb berg; only one rpeciea, 1. myliobatis, on the gills of the eagle-ray (Myliohatis aguila).
. Udooellidx, Juhnst en.- 1. Udonella, Jhost; flve specics, the typa belng O. carigorum, parasitic en a crustacean (Caligus), which in fts turn in. fests the holbbit (IIippoglossus ruhgaris).
(U.) Polfstomest, Lenckart; body elongate, pointed and narrow anteriorly bioad behind and gencrally provided with special organs of adhesion in the shape of auckers or chitineid jonlss of suckers or claspers with chtinold struciares. Two adoral suckerg In come instances. Sexual apertures median. Laurer-Stieda canal siggle or doublc. Male scxan
aperturo often armed with chitinuid hooks. Ova frequently provided aperturo aften armed with
with two long appendaces.
*. Octebothrijtla, Tasclsenberg.-1. Octobothrium, Nordmasa; abont a dozen genera of various authors are here Included by Tascheoberg (30), containing fourteen specles, parusitic on fahes, and almost Invariably on the mills. "2. Aithocotyle, Hesse sod Van Beneden; ode spectes (A, merlucia), found in the hsike. 3. Phyllocolyle, Hesse and Van Bencden ; ono species, fron the kumard. 4. Platycolyle, Hesse and Van Beneden; one species, from the gurnard. B. Pleurocolyte, Gervais and Vag Beneden ($=$ Gruben cochlear; Dies.); ooe specles, from the gille of the inackerel. 6. Diplozvon, Nordinano (see below). 7. Hexacotyle, Blalowilla: one kpeciew, from Thynnus brachyplerus. 8. Pleclanocotyle, Dies.; from the gills of Labrax mucronalus.
4. Polystenidx, Van Beneden,-1. Polystomum, Zeo̊er; two apecles, best known P. integerrmum (sco bejnw); Hexathyridinm is prebnbly e synony'm. 2. Onchocotyle, Dies.; tive ypecjes, [rom the gills of oharks and rays. 3. Erpocotyle, Jlesse and Van Beneden; ono apecles, from tha gills.nf Mustelus levis. 4. Diplubothrium, F. S. Leuckart; ooe specles, from the gills of a sturgeon.

- Mtrocotylide, Taschenberg.-1. Arine, Abildganerd; two bpectes. 2. Mierocolyle, Var Beneden; about half a dozen apectes, ull parasitic o. the gits of fishes (see below). 3. Gastrocotyle, Flesse and Van Beneden; ons specles, from tho gills of Caranx brochurus. 4. Aspidogoster, Von bacr (see below). 3. Colylaspis, Leidy; ona species, occuring in Anodonta. 6. Aspidocotyle, Dles.

4. Gyrodactylhx, Van Beneden.-1. Oyrodaclylus, Nordmann (sea below), 2. Dactylogyrus, Dics; about tweaty speclcs, all parasitic on fishes, mostly on the gills. 3. Tetraonchus, Dies.; threa apeclos, on the ghts of freshwater fishes. 4. Dipiectrum, Dies. . D. Calceostomum, Fan Beneden; ona species, on the sills of Sciena aquila. 6. Sphyranura, Wrlght $(34,45)$; on species, Irom the modth of Jenobranchus lateralis.
5. DIGENEA, Van Benciea; one or more das-sexnal forms foterrede between two successive 日exnal forms.
(.) Monostomids, Van Beneden; elnngate, oval, or rounded Ia shape; one oral sucker.-1. Monostomum, 7.eder; fifty to sixty species in mammala, birda, and ilshes; type, $N_{\text {. }}$ nunlabile, Feder, found in the bedy-cavity and eyo of water-birds. 2. Yolocatyle, Dies, ; N. 'riseriate, Dies.
bistomu vism Distonida, in beneden; bedy fiattlsh, wore or less leafilke or Disfornum Ketzius (see below) sub-median or posterior sucker.-1. koown. F. hepatica is descitbed sbove F giganca inhable the llver af the graffe 3 , (see belew). 4. Echinostomum, Dujardin; E. gadorum, Vin Beneden, (n the ratestine of Godus carbonarius (the coal-ish), and twenty-ive
atber species la the almentary canal of mammmis, birds, and fishes. 5. Amphistomum, Rodolphi; about twenty apecies io different Vartsbrates; A. subclanatum (Goze) Io the rectom of the frog. 6. Gastrodis cus (?), Lenckart (see aiso 87). 7. Homalogasier, Poirier (38). 8. Qas. trothylax, Polfler. 9. Eurycolium, Brock (44), has the oscretory vessels dilated into wide chambers (3 ccelom).
Gasterostomios, Von Slebold; oral sacker sub-medjan and ventr d; alse an anterior ancker.-1. Gasierosiomum, Ven Siebold; elglit specles, adl in fishes; farval form Bucephalus (see below).
(1.) Holostoxid.s. Claus (43); bedy fiattened, nad dividad Into as saterior and postevior part, tha former bearlng an anterior and veatral spcker; wo adozal lubes with glands in connexion, or a cireumoral fold with lobes.-1. Holustomum, Nltzsche; twenty-three speclea, most io waterblids: In. variabile, is varions rsptorial birdo; larval forms Tetracotyla wild-cat two in blys. 2. Hemistomum, Dies; three specles, oDe in tho
The true position of the following 18 doub Dies
en (9); Didynozoon, Von Linstow (30). Soubtichocoive Nematobothrium, Fan BeaaDiptozoor paradorum (18) infow (30); Stichocolyte, Cungtaghaeı (39).
Diplozoon paradoxum (18) iafeats tha gll] of the minoow io large nombera. The eggs hatch in the water, contlouing to be attached to the gill by a flament ai

Fro. 3.-A, Dfolozoon parodorum; two unlted specimens. B, Polystomum inta. gerrimun; x about 100 (after Zeller). C, Hicrocolyle mornayri; $\times 7$. D, E,
$t w e$ views of the chitinous Iramework of a sucker of Axine belones; liglily magnlied (after Loreoz). F, Aspidoguster conchicola; x about 25 (after Aubert). G, Gyroduclylus elegons; \times abuut 80 (after Wagener).
008 extremity. The embryo is elongated oval in shape, and ciliated allover; oa its Lack are two eyes, coasistiog of a cup-shaped inass of pigment, with a spheroida lenticular bedy. It preseats alse the mouth with two pecaliar suckers, the cesophagus and latestlne, nod the two claspers of the Diporpa. The ambjyo $5 w 1 \mathrm{~ms}$ yigorously, about until it finds its way te the gill of a minnow, failing which it dies In about six hours. Attached to its host it may livo lsolated for a consiferablo tlme, facrea:ing in size; ugaully, however, it unites with another Individual in s kInd of reciprecal copulation (Ag. 3, A). Oac individusl by means of its ventra bucker selzes tha durssi papma of another, and thentho tho twist across each other 80 that the sucker of the second seizes the papilla of the flast. After this a complete fusion of thu individuals takes place, the papllar and suckers growing tegether so firmly as to be anatomlcally inscparable. Both iadivicuals contiouo to grow and ocvelop s second, thit, and sometimes a fourth pair of claspers.
io Polystomum integerrimpm (18), which insabits the bladder of tho 110 g , the esgs are developed doring the winter and are laid in the spring, when the frog resort to the water. It appears probable that the worm protiudes its body from the frog and thus deposits the egs directly in the water. Tho yound worm, as it escapea from tho egz, which takes place after a lapso of siz or eight weeks measures abont 0.3 mm . in length, a.d swims vlgorausly about by 2 ha ald of a coating of cilia. At Its posterlor extremity is a rounded dsk (\$g. 3, B, jonad the margin if which slateen delicute hnoks are placed nt equal intervals, Above the feur hindmost of thess are two others gtill smaller and more delicate. Upon tha back aro aitaated four eyes dlaposed la palrs. The month is wide and leads into a pharymx and thls into the infestine; two excretory vessels are present, but thero is no trace of ceocrallve orpang. The hindermost pair of suckers is the firy to be derepoped and they enclose these two hooks which lio at the outer aldc of the very fulicate ones mentloned above, which eventually become the stroos termioal books of the adit The other two palrs of suckers aro formed in a similar manner the derclopment of all mece being usnally completed daring the month of July, The youns polyscomyon att acks not the full-crown froc but the tadpale enteing the cill-cavity and subsequently proceediog to the bladder tiks the frog it requirty four or flve years to uttain sexual maiurity, In certaio case the polystomum does not mipiete; it then becomes prematuruly gexosl an dies when the taipele indercees metamorphosls. under these circumatances th
 sexal coll and lis ted anterior porton.

Microcolve mormuri, Lorenz (21) (fig. 3, C), has no penfa, the semen Issulng by a opeolag posterior to the 6 piked birth-opeoing; tha ragina apeas medially, not
marginally. Tho posterlor extremily la polnted. Axine befones, Ablldg., resemblee it, but is broad and obliquely truncaied behind, this margin bearing a row of fifty to seventy peculiar attachisg organs, wblch are of the form of a hand-astchel (fg. 3, D, E), the metsi clasp belng represented by a complicated chitnous framework. There are four groups of hooks and one riog of the same round the genital opening. The mouth has a sucker at elther side, and sbove It an be ovaginated like the preboscis of a Dendrocele Plaiserlan.

Aspidogaster conchicola (32) Is found in the pericardal cavity of the ireshwater mussel; it is conical anteriorly with a terminal oral sucker; the ventral sucker fs vory largs and disided into rectangular arcas; the excretory pore is at the posferlor extremity of the budy, and the genital organs open on the left alde of tbe fore-part of the anlmal (fly. $3, F$).
Gyrodactylus elegans (83) Is found on the fins and surface of the bedy of the plke, aticklebsck, and other frcshwster fishes, and measures about 0.5 mm . in feagith ; it is flattened in iorm and tapers towards elther end (fig. 3, G). At the anterlor extrembty are two lappets, while the posterlor is furnished with a subtrlangular plate, which bears the organs of attachment in the shape of two large cnived hooks in Its centre and sixteen smaller ones on its clrcumfereace. The most Interesting peculiulty, howerer, of this form is to be found in the fact thet each crobryo bciore it is extruded (the onlmal is viviparous) contains another embrye, sud this in its turn another, oc that three embryoulc.generationsare prosent simultaneously.
present 6 multaneously. the present time over 300 हpecles, which eccur almost exclusively in Vertebratee; the presen the most important are perhaps D. ianceorain, when frog, ond D. miritare, Van tloas as Fasciola hepatica, D. clavigerum, from ne frog, anio D. miniore, an Bencdea, from the intestine of the duck, priorliy over Discomun (Diatoma) of Retzlus, whicls, however, has obtained extenslve currency. The name Fasciola may eppropriately bs used in a restricted scnse for forms which have a branched digestove trect, R_{c} hepatica above deseribed being taken as the type. This Eeparation has not met Welntand hns proposed nition, alhough supported hy Blanchard and Cobuiduln, for Distomum, retainfng to substituto the term Dicroccelium, used hy Dujurain, for pistomum, retaining Fasciola for the type-species, but this proposal has not met with ncceptance. The Distomes vary in size from forms almost microscopic to those which, like D. ingens, Monlez (35), messure 8 cm . long in alcoliel, or even 12.5 cm . In the fresh condition (D. gigas, Nardo). Distomum halosaur, Bell (36), is parasltic upen a deep-sea, fish taken in 1090 fathoms. Distomum macrostomum (tig. 4, B) of the woodpecker (Apternus twdactylus) hes a remarkiable larval form known as beucechlorioium paradozum, wblch io parasitic on succined puris, and consists of a
number of bronchlng thronds, from which are developed one or two contractile number of brenching threads, from which are developed one or two contractio

Fio. 4.-A, Bilharzia hæmatobia, the thin female in the gynæcophoric canal of the stouter male; $\times 15$ (after Leackart). B, Distomum macrostomum, sbowing the digestive and the grcoter part of the genltal npparatus with tbe cirrus protruded: $\times 30$. C, Snall (Succiaea), the tentacles deformed by leucochloridium ; natural slze. D, Leucochloricitum removed from the feotacle; natural elze (after Zuller). E, Bucephalus polymorphus; highly mognifled (after Ziegler). F, Portlon of a sporacjest contalning Bucephali in process of development; \times about 50 (after Lacaze-Duthiers).
hangs outwards. The threads wlthin the Succinea contain only gisnular cells, whilst the contractile sac is occupled by an orgnnism ovold in form, with a thlek clesr border, the judimeats of two suckers, \& digestlve tract, and excretary systern. Bilharaia himatoivia, Cobbold (1), is one of the most dengerons hnman psrasites, and occurs in tho blood of the portal vein and In the velus of the mesentery and bladder. The scxes aro distinct, the femalo lieing from 16 to 20 mm . In length, bladder. The scxes aro distinct, the femalo heng from 16 to 20 . The male is anly fram 10 to 14 mm . in length, but nuch theker. The surface of the femule is only from 10 to 14 mm . In length, but nuch thicker. The surface of the female is covered with fine epiaes most distinct owards the tall; at the antelior pointed extremity is thio oral sucker, flom which a nsrrow opeming leads inte n wide wain uniting posterlarly to the generative organs. Tho ventral sucker ls placed
only 0.2 mm . behind the oral me, and it is fmmediately acceeded by a long narrow groove, which extends down the ventra
The stages io the life-history of Gasterostomum are on remarkabla thet a short account of them must be given. From the egg there escapes (1) a club-shaped embryo, which in a manner hitherto unobserved entera tbe freshwater mossel Anodonia or Unio, whers it forms (2) the sporocyst (fig. 4, F); thie is several ccoti metres long and provided with lateral braaches; It occurs chlefly in the llrer and ovary, and it is best developed near the ekin. The wall of the sperocyet cooalsts of cells, muscles, and perliaps a cuticle; the extremities are poloted and flled with cells, and it is here that growth takes place. Within monlliform dilatations of these ramlfled tubes are formed balls af cells, esch of which develops lato (8) a "bucepbalus." This organism (fig. 4, E) consists of a amall eval body abou 0.25 mm . In length with a double tall. At one extremity is a mass of glands with an invagination of the integament, which has been mistaken by many observers for the almcotary chnal. This, however, opens about the midde of the body, and consists of a muscular pharynx, a formardy-directed cesophegus, and a simple sacculsr intestime. The excretory aystera terminetes lo a0 S-shaped vesicle, which opens postariorly in such a way that its coatrachon diver the fiuld into the tsil, whence it probsbly finds its exlt by osmosis. Tracer of geaital organs are found in the form of an elongated plug of cells in the hinder fouth of the body, and twe rounded masses of undifferentisted ceils bituated dorsally. The tall is dorble, and from about 0.5 to 2.5 mm . long sccording to its atate of contraction. Each half consists of a spberoldal basal portion, and en elengatel tapering flament. These caudal sppendsges contain many nucleated connectivetissue cells with fine protoplasmic processes. The lsI'va 6 wim freely in the water but sink and pertsh after aboot twelve hours, ualeos they enter the moath of cettain Ashes (e.g., Leuciscus erythrophthalmus), when (4) they leae their talls and become encapsuled under the skin. The reaeratlve organs now become further developed; cutlcnior spines and the unterior bucker are formed. If the fleh thas Infected be swallowed by a plke or perch the cyst is dissolved, and the woims (5) become adult, cmintine to live in the Intestine, and produce eggs. For further detalls, aee Ziegler (12)

Phylogenctic Relations. - The detailed eomparisons of Van Beneden (9) and the subsequent researches of othors leave no doubt that the Trematoda are closely related to the Cestoda. A consideration of their peculiarities leads moreover to the opinion that the former are more primitive than the latter; that is to say, the common ancestors of the two groups resembled Trematodes rather than Cestodes. Tho ancestry of the Trematoda is probably to be sought in types such as the Planarians rather than the Leeches; characters uniting them with the former are the possession of a commonly branched alimentary canal without an anus, but with a powerful pharynx; the genorative system is hermaphrodite, and similar arrangensents obtain in the exeretory vessels, nerves, and muscles, while histological agreements also are not wanting. Furthermore, certain forms are known whieh help to fill up the gap between the two groups: Monocelis caudatus has a discoid posterior organ of attachment, and M. protractilis a true sucker. Such forms as these could scarcely be distinguished from ectoparasitic Trematodes except for their. ciliated epithelium (Leuckart, 1). In this connexion, however, it is worth while to call attention to the researches of Fewkes (40) on a marine cercaria, which had a tail distinctly annelid in coaracter, with bundles of bristles disposed at intervals alongit. Compare also Schauinsland (41).
Bibliography-(1) Jacison, in Rollestop'a Forms of Animat Live, 2d edm Oxford, 1857 ; other Important text-books are Leuckart, Parasiten des Menschen, Leipsic, 1863 , now edition and English traoslation in prepsration: Kichenmeister and Zuirn, Parasiten des Benschen, Lcipslc, 1881 ; Cobbold, Entozoa, London, 1864 ; Id., Parusites, 18i9; (2) Rudolphi, Entozoorum Hist. Nat., Amsterdam, 1808-9, and Entozoorum Synopsis, Berlln, 1819 ; (8) Cuvier, Regne animal, Poris 1829; (4) Von Slebald, Archiv f. Nalurgesch., f., 1835 ; (5) Von Baer, Nova Acta Acad..Cas. Leop., zlil., 1826; (6) Steenstrup, Alternation of Generalions, Ray Society, 8vo, London, 1845; (7) Pacenstecber, Trematodenlarven sind Trematoden Fieldelberg, 1857; (8) Diesing, Systema Helminthum, Vlenne, ISto; (9) Van Beneden, "Vers Intestinaux." Comptes Eendus, Paris, 1861; (10) Somuer, Ztschr eciss. Zool., xxxiv., 1880: (11) Kerbert, Archiv f. mikr. Anot., xix., 1881; (12) Zlegler, Zischr. uciss. Zoof., xxxix., 1 S 83 ; (19) Schwarze, Op, cit., x $1 \mathrm{Jil} ., 1886$ (14) Metschnlkoff, Quart, Jou1: Liticr Sci., Exlv, 1984: (15) Frsitont, Arch. a Biol., 1., 1880, 11., 1881; (16) Pintner. Arb. Zool. Inst. Witr. ill., 1830; (1\%) Van Beneden and Lankestur, Zool. Anz., Iv., 1Ss1, v. 1882; (88) Zeiler, Zischr. wiss Zool., $5 x i j$, 1872, zxvll, 1876: (19) Pulrler, Arch. Zool. Expér., Sil., 1885; (20 Looss, Zischr", wiss. Zuol., xli., 1885: (21) Lorenz, Arb. Zool. Tnet. Wien, 1., 1878 (22) Stieda, Kelchert, and Du Rois Reymond's Archiv, 1851; ((23) Zaddach Zool. Anzo, iv., 1881 ; (24) Lang, Mitth. Zool. Stat. Yeape?, 11., 18S!; (25) Thomas Quart. Jour. Micr. Sci., xさ1i., 1883, also Jour. Roy. Ayric. Soc., xix., 1883. (28) Leuckart, Zool. Anz., $\nabla ., 1882$; (27) Jackson, Op. cit., v1., 1883: (28) Sonsano
 Aich. Ilal. Biol., vi., 1885; (29) Ercolsni, Alem. Acad. Ncl. (30) Taschenberg, Zlachr gesommt. Naturv., lil., 1879: (S1) Wlerzejski, Ztsch?: wiss, Zool., xxlx., 1 k77 (32) Huxley, Anat. Ineert. Anim., Lendon, 1877; (35) Wsgener, Areh. $\dot{\text { H. Anab }}$
 u. Phys., 1860; (38) Wright, Proc. Canad. Inst., 1., 188t; (35) Honcz, Bu/ Not
Zool. Frares, גi., 1886 ; (36) Bell, Ann. and Mag. Nat. Hist., [8], xlx., 1887 ; (37) Lool. Franes, Ni., 1886 ; (36) Bell, Anh. and Aag. Nat. Mist., [8], xix., 1887 ; (37 Paris, (7), vil., 1883 ; (39) Cumingham, Trans. Roy. Soc. Edin., $\pm x$ xil., 1884
 (40) Fewkes, Amer: Lowr, Sci., (3), Xx11., $1882 ;$ (41) Schaninsiand, Jera
Zeitschr., xvi., 1883; (42) Poirler, Arch, Zool. Exper., [2], V., 1887; (43) Von Zeilschr. XVi., 1883 ; (42) Poirler, Arch, Zool, Exper., [2], V., 1887; (48) Vor 1887; (45) Wright and Macallum, Amer. Jour. Morph., 1., 1887. (W. E. HO.)

TrenCH, Richard Chenevix (1807-1886), arch bishop of Dublin, poet, scholar, and divine, was born at Dublin, September 9, 1807, and graduated at Trinity College, Cambridge, in 1829. While incumbent of Curd ridge Chapel, near Bishop Waltham in Hampshire, be published (1835) The Story of Justin Martyr and other Poems, wbich, having been very favourably received, was followed in 1838 by Sabbation, Honor Neale, and other Poems, and in 1842 by Poems from Eastern Sources. These volumes revealed the author as decidedly the most gifted
of the immediate disciples of Wordswerth, with a warmer colouring aud more pronounced ecclesiastical sympathics than the master, and strong affinities to Tennyson, Keble, and Milues. In 1841 he resigned his living to become curate to Samuel Wilberforce, then rector of Alverstoke, and upon Wilberforce's promotion to the deanery of Westminster, in 1845, he was presented to the rectory of Itchenstoke. In 1845 and 1846 he preached the Hulsean lecture, and in the former year was made examining claplain to Wilberforce, now bishop of Oxford. He was shortly afterwards appointed theological professor and examiner at King's College, London, In 1851 he established his fame as a philologist by his charming little work on The Study of Words, originally delivered as lectures to the pupils of the Diocesan Training School, Winchester. llis purpose, as stated by himself, was to show that in words, even taken singly, "there are boundless stores of moral and historic trutlf, and no less of passion and imagination laid up" -a truth enforced by a number of most apposite illustrations. The book may bo regarded as a comment on the saying that "language is fossil poetry." It was followed by two equally delightful little volumes of similar character-English Past and Present (1855), and A Select Glossary of Enylish Words (1859). All have gone through numerous editions, and they have probably contributed more than all the labours of severer but less cultured and tasteful philologists to promote the historical study of the English tongue. Yeit Treuch did little more than indicate the existence of a vast region of research extending over all literary languages. Another great scrvice to English philology was rendered by his paper, read before the Philological Society, "On some Deficiencies in our English Dictionaries" (1857), which gave the first impulse to the great enterprise now proceeding under the auspices of Dr Murray. His adrocacy of a revised translation of tho New Testament (1858) powerfully aided to promote another great national undertaking. In 1856 he published a valuable essay on Calderon, with a translation of a portion of Life is a Dream in the origiaal metre. He had not, meanwhilo: been forgetful of professional claims apon his pea. In 1841 he had published his Notes on the Parables, and in 1846 his Notes on the Miracles, works which, containing much to gratify every school of thought, and little to offend any, obtained the most extensive popularity, and hare been resorted to by English theologians of all persuasions, who have turned the anthor to the same account as he has turned his patristic, Romanist, and Lutherau predecessors. There is, in fact, very little originality in these volumes, but they are treasuries of erudite and acute illustration, selected from various quarters with admirable judgment, and displayed with consummate taste.
In 1856 Trench was ransed to the deanery of Westuninster, probably the position in the whole church which suited him best. In January 1864 he was advanced to the more dignified but less congenial post of archbishop of Dublin. Stanley had been named, but rejected by the Irish Church, and, according to Bishop Wilberforce's correspondence Trench's appointment was favoured neither by the prime minister nor the lord lieutenant. It was, moreover, unpopilar in Ireland, and a blow to English literature; yet the course of events soon proved it to have been most fortunate. Trench, indeed, could do nothing to prevent the disestablishment of the Irish Church, though be resisted with dignity, and repelled the insidious proposal that she shonld do execution upon herself. But, when the disestablished communion had to be reconstituted under the greatest difficulties, it was found of the highest importance that the occupant of his position should be a man of a liberal and geniad spirit, able to ward off the
narrowness which would have alienated the sympathies of English ${ }^{\text {ech }}$ churchmen, and sown the seeds of schism in a body beyend all others in need of amity and nuity. This was the work of the remainder of Trench's hife; and, if less personally agreeable and of less general utility than the literary performances which might have been expected from him if be had remained at Westminster, it was much more weighty and important. It exposed him at times to considerable misconstruction and obloquy, but be came to be appreciated, and, when in November 1884 he resigned his archbishopric from infirmity, clergy and laity unanimously recorded their sense of his "wisdom, learning, diligence, and munificence." He had found time for Lectures on Mediæval Church History (1878); his poetical works were rearraaged and collected in two volumes (last edition 1885). He died in London, after a lingering illness, on March 28, 1886.

As a man Trench was universally heloved and eateemed. He was romarkable for a high apirit, munificence, and ganeral olevation of sentiment. As a prose anthor he ranksamong the most useful ard agrecable of his generation, and may almost be said to gain in both reapects by bis deficiency in originality. Both as Biblical commentator and philologist, he has done far more by popularizing the researchea of more exact acholars and more profound thimiers than he could have done by striving to make discoveries of his awn. For durable fame as a poet originality is indispensable, and here Trench fails. Tbe style of his poems is frequently admirable, but avan when not obviously derived from some other writer it wants the stamp of atrong individuality. He has written littla beyond the reach of any man uniting exquisite culture to the accomplishment of verse: the pieces where poctry scems a natural language with him are chiefly to bo found among his elegiac poems, which express real peraonel experienca, and appeal movingly to the heart.
(R. G.)

TRENCK, the name of two barons of old Gerinan extraction, who, endowed with exceptional physical powers, and each blending to a singular if not to an insane degree the hero and the Bobadil, have left startling records of not wholly dissimilar adventures and misfortunes.

1. Franz, Baron von der Trenck (1711-1749), was born at Reggio, Calabria, where his father was lieutenantcolonel in the Austrian service. After bis rough early training in the camp, he made himself so unendurable at the college of Vienna that he was speedily removed, and entered in 1727 as ensign in the Palfy regiment, from which, however, after a brief but riotous course of duelling, gambling, and love-making, be received a nêw dismissal. He returned to his father, and, on the outbreak of war between the Russians ánd Turks, raised a corps of 300 men at his own expense and joined the liussian army on the Hungarian frontier. His brilliant exploits won him the favour of his commander, but a breach of orders, followed by an assault on bis colonel, brought him under sentence of death, from which a daring feat of arms alone saved him. A sentence of exile to Siberia, incurred soon after by a second affray with a.superior afficer, was commuted to imprisonment at Kieff and expulsion from the country. His term of imprisonment having expired, he retired to his estate, where he armed and drillcd his vassals, and in a series of encounters compelled the Slavonian brigands to seek refuge in Turkish territory. From these marauders he recruited in 1740 the formidable body of pandours with which he joined the levies in aid of Maria Theresa. Repulsing the French near Linz, be penetrated into Bavaria, took Deckendorf and Reichenhall, and destroyed Cham,-the conduct of his troops leing marked not less by atrocity than by desperate courage. Recalled to Vienna to render account for the cruelties practised, he pfused to defend himself, and, being set at liberty, rejoined his men, opened in 1743 a passage across the Khine for the army, and became as much the terror of Alsace as he had been of Bavaria. On the retreat of the army to Bohemia ite covered the rear and took sereral tomns, but had his right
foot crushed by a cannon-ball. Maria Theresa sent him a surgeon, and, having made a species of triumphal entry into Vienna, he resumed his command. But in September 1745, after having boldly penetrated with his pandours to the tent of Frederick II., he suffered the king to escape him while his followers were stopping to plunder, and he was thereupon accused of laving been bribed by that monarch to release him. He was condemned on inquiry to pay an indemnity for peremptory dismissal to the officers accusing him, but he refused to acknowledge the sentence, and, raising new troops, added to the list of his expleits. His conduct leading to a renewal of the inquiry, he laid hands on the president of the court-martial and was thrown into prison, but was enabled to escape by the baroness Lestock, with whom he fled to Holland. He was brought back to Vienna, and condemned to perpetual imprisonment in the Spielberg, where, finding escape impossible, he poisoned himself, October 1749, at the age of 38.
See Lis autobiography-Merkuviirdiges Leberv und Thaten des Friciherrn Franz vond der Trenck, Yienna, 1770; also, Franz con der Tsenck, by E. F. Hïbnet, with preface by Schubart, 3 vols., 1788.
2. Friedrich, Freiherr von der Trenck (1726-1794), cousin of the preceding, born at Königsberg, 16 th February 1726. His precocions abilities won him the favour of Frederick the Great, in whose guards he was encolled at an early age as cadet, and by whom he was made cornet in 1743 and aide-de-camp for his gallantry in 1744. An intrigue with the princess Amelia, sister of the king, led to his temporary confinement until the campaign of 1745 recalled him to the army. He was again thrown into prison, however, on the discovery of a correspondence between him and his cousin, then fighting with his pandours in the service of Maria Theresa, but in December 1746, after many failures, he succeeded in escaping from the fortress of Glatz. He went to Vienna, was involved in several duels by his cousin, who was too closely confined to give expression to his animosities except by prozy, and finally accepted a company in the service of the czar. On the declaration of peace the empress Elizabeth bestowed on Lim a diamond-hilted sword, and a Russian princess left him a fortune, which was still further increased by the death of his cousin, who, on condition of his entering none but the Austrian service, made him his heir. The latter inheritance being heavily burdened, he spent the next three years in a series of lawsuits, and then, after a journey to Italy, became a captaii in an Austrian regiment of cuirassiers. At the death of his mother he revisited Germany, but was promptly seized by the unforgetful king and closely imprisoned in the fortress of Magdeburg, his efforts to escape securing him the honour of a specially constructed cell; a heavy burden of chains, and the additional pnnishment of being roused every quarter of an bour by the sentries. Still unsubdued, he found means to remove his chains in the brief intervals afforded him, and occupied himself with French and German composition. In the meantime the princess Amelia had not ceased to move in favour of his release, and Trenck, Laving been set free in 1763, returned to Vienna only to be reconfined there as a lunatic. He was speedily released by the intervention of the king, and raised to the rank of major by way of compensation; but, being by this time satiated with royal patronage and prisons, he retired to Aix-la-Chapelle, commenced business as a wine merchant, and devoted his leisure to literature and politics, publishing, among other works, a gazette entitled the F'riend of Man and an attack on Frederick II. as the "Macedonian hero." His commercial experieaces, however, were not encouraging, and, after spending three years (1774-1777) in England, he returned to Vienna, became the secret agent of Maria Theresa, and at her death withdrew to his castle of Zwer-
bach, where he gave himself to agriculture and wrote his famous autobiography. Not until 1787 was he permitted to return to his own country, where he is said to have had an affecting interview with the princess Amelia a few days before her death. The publication of his memoirs (Lebenggeschichte) in 1786, translated into French by bimself in 1789, gave him imuediate and wide notoriety, and wax effigies of the illustrious prisoner in his chains were exhibited on the Parisian boulevards à deux sous en sortant. Despite the grounds which the memoirs undoubtedly furnish for Carlyle's terse characterization of him as an "extensively fabulous blockhead," they took a strong hold of the popular imagination, and obliterated for a time the fame of his more darkly passionate pandour cousin. . The tragic elements in the story were, however, to be emphasized by a still more tragic close. His ready advocacy of the French Revolution involved bim in disgrace with the Austrian authorities, and, after defrivation of his pension and further imprisonment, he set out towards the close of 1791 for Paris. In place of an enthusiastic reception, he was arrested by order of the Committee of Public Safety as a secret emissary of the king of Prussia, and, after confinement in the St Lazarus prison, was literally dragged to the guillotine on 25th July 1794. His Sümmelliche Gedichte und Schriften were published at Leipsic in 1786.
TRENDELENBURG, Friedrich Adolf (1802-1872), one of the chief revivers of Aristotelian study in the present century, was born on November 30, 1802, at Eutin, near Lübeck. He received his education at the gymnasium of his native town and at the universities of Kiel, Leipsic, and Berlin, displaying from his earliest years an extraordinary industry and thirst for knowledge. He was introduced to philosophy by König, the rector of the gymnasium a Kantian ; and at Kiel be came under the influence of Reinhold and Von Berger, to the latter of whom, a follower of Schelling, some of his own most characteristic views may be traced. At Berlin he beard Hegel and Sckleiermacher ; but his university studies lay chiefly in the direction of classics and classical philology under Wachsmuth, Hermann, and Boeckh. The combination of the philosopher and the philologist, together with a definitely historical turn of mind, is what is most distinctive of all Trendelenburg's work. He became more and more attracted to the study of Plato and Aristotle, and his doctor's dissertation, published in 1826, was an attempt to reach through Aristotle's criticisms a more accurate knowledge of the Platonic philosophy (Platonis de Idcis et Numeris Doctivina ex Aristoctcle Illustrata). Recognizing the sphere in which his best life-work could be done, be declined the offer of a classical chair at Kiel, and accepted instead a post as tutor to the son of Herr von Nagler, postmaster-general, and an intimate friend of Altenstein, the enlightened minister of education in Prussia. He held this position for seven years (1826-33), occupying his leisure time with the preparation of a critical edition of Aristotle's De Anima, and conscientiously extending his knowledge in all directions. His acquaintance with Karl Ferdinand Becker, the philologist and scientific gram. marian, was of importance for his own views on the origin of the logical categories and the relation of thought to language. In 1833 Trendelenburg wås appointed extraordinary professor in Berlin, and four years later be was advanced to an ordinary professorship. During nearly forty years he proved himself markedly successful as an academical teacher, treating in turn all the usual philosophical disciplines, besides holding more select classes for the study of Aristotle with advanced students. . During the greater part of that time he had also to examine in philosophy and pedagogies all candidates for the scholastic profession in Prussia. He died ou the 24th of January 1872.

It was with a view to the philosophical preparation in the gymnasia that he published (1836) his Elementu Logices Aristotelicss. This useful little book contains a selection of passages from the Organon, giving in a conneoted form the substance of Aristotle's logical doctrine. The Greek text is furnished with a Latin transle. tion and notes, sud at a later date Trendelenburg supplemented this book with further explanations for the use of teachers (Erläuterungen zu den Elementen der aristotelischen Logik, 1342). The Elementa has passed througb eight editions, and the Erläuler engen through three. In 1840 appeared the first of his important works, which, under the modest title of Logische Untersuchungen, develops a coherent philosophical theory, besides acutely criticizIng other standpoints, and in particular the then dominant Hegelian Bystem. The Logische Unlersuchungen were, iudeed, an important factor in the reaction against Hegel which set in about thet time in Germeny. Two articles written by Trendelenburg in the controversy which ensued were republished separately, ander the title Die logische Frage in Hegel's System (1813). A eecoud and enlarged edition of the Logische Untersuchangenz appeared in 1862, and s third in 1870 . In 1846 be published the first volume of his "Historical Contributions to Philosophy" (Historische Beiträge zur Philosophie), containing a history of the doctrine of the categories, which forms a pendant to his own elaboration of the same anbject in the Logische Untersuchungen. A second volume of the "Historical Contributions" sppeared in 1855, and a thirl in 1867, consisting of detached essays on points of iuterest in the history of philosophy. A number of these are papers originally read before the Prussian Academy of the Sciences, of which Trendelenburg was made a member in 1846." Hewas secretary of the philoscphicohistorical section from 1847 till 1871, snd devoted much of his valuable time to the duties devolving unon him. A number of his papers dealing with non-philosophical-mainly with national and educational-subjects have been collected in his Kleine Schriflen (2 vols., 1871). In 1800 the second of his larger works appeared, N゙aturrceht auf dem Grunde. der Ethiti (second enlarged edition, 1868). In 1865 Trendelenburg became involved in a controversy with Eano Fischer on the interpretation of Kant's doctrive of epace, which was carried on with no little acrimony for a number of years. The war of 1870 drew from him a short treatise on the defects of internationel law,-Lücten im' Volkerrecht. He had always had a deeply patriotic interest in the political development of Prussia, and throngh Prussia of Germany, snd in the stormy times after 1848 had even acted for a stort period as deputy to the Prussian chamber.
Trendeleaburg's philosophizing is cond tioned throughout by his loring stndy of Plato and Aristotle, whom he regards not as opponents but as building jointly on the broad basis of idealism. His own standpoint may slmost be called a modern version of Aristotle thus interpreted. While denjing the possibility of an absolute method and an absolute philosophy, as contended for by Hegel and others, Trendelenburg was emphatically an idealist in the ancient or Platonic sense; his whole work was devoted to the demoostration of the ideal in the real. But he maintained that the procedure of philosophy must be analytic, rising from the particular facts to the universal in which we find them explained. We divino the system of the whole from the part we know, just as from a torso we may reconstruct \& work of art; but the process of reconstruction must, in the case of philosophy, remain approximative. Onr position forbids the possibility of a final system. Instead, therefore, of constantly beginning afresh in opeculation, it ahould be our duty to attach ourseives to what may be considered the permanent resnlts of historic developinent. The classical expression of these results Trendeleaburg finds mainly in the Platonico-Aristotelian system. The philosophical question is stated thus-How are thought and being united in knowledge? how does thought get at loing? and how does being enter into thought? Proceeding on the principle that like can only be known by like, Trendelenburg next reaches a doctrive peculiar to himself (though based upon Aristotle) which plays a central part in his speculations. Motion is the fundamental fact common to being and thought; the actual motion of the exteral world has its counterpart in the constrnctivo motion which is iovolred in every instance of perception or thonght. From motion he proceeds to deduce time, space, and the catcgories of mechanics and natural science. These, being thus derived, are at once subjective sad objective in their scope. It is true matter can nerer be completely resolved into motion, but the irreducible remainder may be treated like the $\bar{\sigma} \rho \omega \dot{T} \eta \eta$ ü $\lambda \eta$ of Aristotle as an alstraction which we asymptotically approach hut never reach. The facts of existence, however, are not adoquately explained by the mechanical categories. The ultimate interpretation of the universe can oaly be found in the higher category of Eud or final canse. Here Trendelenburg finds the dividing line between philosophical systems. On the one side stand those which acknowledge nove but efficient causes, -which make force prior to thought, and explain the universe, es it were, a tergo. This may be called, typically, Democritism. On the other side stands the "organic" or teleological view of the world, which interprets the
parts throngh the illea of the whole, and sees in the efficient causes only the vehicle of ideal ends. This may be called in a wide sense Platonism. Systems like Spinozism, which seem to form a third class, neither sacrificing force to thought nor thought to force, yet by their deniel of final canses inevitably fall back into the Demo critic or esscutially materialistic stand foint, leaving us with the great antagonism of the mechanical and the organic systems of philosophy. The latter view, which receives its first support in the facts of life, or organic nature as such, finds its culenination and nltimate verification in the ethical world, which essentially consiste in the realizstion of ends. Trendelenburg's Naturrechs may; therefore, be taken as in a manner the completion of his system, his working out of the idcal as present in the real. Tho ethicel end is taken to be the idea of Lumanity, not in the abstract as formulated by Fant, but in the context of the state and of history. Law is treated throughont as the velicle of ethical requirements. In Trendelenburg's trestment of the state, as the ethical organism in which the individual (the potential man) may be said first to emerge into actuality, we may trace his nurture on the best ideas of Hellenic antiquity.
(A. SE.)

TRENT (Tridentum; Ital. Trento; Germ. Trient), a city of the Austrian empire, capital of Italian or "Welsch" Tyrol, stands on the left bank of the Adige, where it is joined by the Fersina, on the Brenner Railway, 35 miles below Botzen and 60 miles above Verona. It has a very picturesque appearance, especially when approached from the north, with its embattled walls and towers filling the whole breadth of the valley, a conspicuous feature being the rocky citadel of Dos Trento (the Roman Verruca) on the right bank of the river. Of the old walls some massive remains are attributed by local tradition to Theodoric the Goth. Notwithstanding many symptoms of decay, Trent, with its numerous palaces, substantial houses, broad streets, and spacious squares, still retains the aspect of a flourishing Cisalpine town. In appearance it is quite ltalian, and the inhabitants speak Italian only. The cathedral, on the south side of the spacious Piazzaldel Duomo, was begun in its present form in 1212, and finished about the beginning of the 15 th century. It preserves, however, some Lombardic features of ornamentation in the portals and elsewhere which possibly date from the 7th or 8th century. The church of St Maria Maggiore, a simple but good example of the Italian sityle of the 15 th century, was the meeting-place of the famous council (see below), and possesses a picture containing portraits of the nuembers. Trent is the seat of a prince-archbishop, and has all the public offices according with its administrative rank. It has a museum and library, a gymnasium, a "lyceum," a seminary, and a deaf and dumb institute. The chief industries are silk-spinning and weaving, tanning, sugarrefining, and glass-blowing; and there is considerable trade in wine, grain, and fruit, as- also in marble from the extensive quarries in the neighbourhood. The population in 1880 was $19,585$.

Tridentnm is mentioned by the geographers as capital of the Tridentini, and seems uitimately to have been made a Roman colony. It suffered much during the period of berbaric invasion, but was resuscitated by Theodoric, becoming the seat successively of Gothic and Lombard dnkes and Frankish counts. In 1027 it passed under the rule of its bishops, with whom it had frequent disputes, in which it sought the favour and alliance of the lords of Tyrol. The Venetians made repeated efforts to set up the lion of St Mark within the walls of Trent, but were decisively and finelly repulsed in 1487.

TRENT, The Council or, which may be described as the watershed of Roman Catholicism and Protestantism, is the most important occurrence in post-mediæval church history. It is the culminating event in a long series of similar assemblies, convoked to remedy the evils occasioned during and by the great schism of the papacy, and by the dissolution of lay and clerical morals to which the pagan temper of the Renaissance had largely contributed. But the councils if Pisa, Constance, Basel, Ferrara-Florence, and the Lateran had met and parted without attempting to deal effectually with any of. the practical scandals and abuses in the church whicb were sapping the loyalty and
affection it had formerly enjoyed; and these repeated failures, by destroying all hope of redress at the hands of the constituted authorities, precipitated the crash of the Reformation, which was in its inception scarcely concerned with doctrina! íssues directly, but aimed mainly at faults of administration and morals.

Consequently a largely new problem presented itself for solution, and necessitated a fundamental change in the attitude of those concerned. Hitherto, whatever may have been the fierceness and bitterness of the disputes which the 15 th-century councils had attempted to allay, they were, so to speak, family quarrels between members of the same great household, accustomed to the same mode of looking at religious questions, acknowledging the same hierarchy, and accepting the same standards, and thus with a vast body of agreement to go upon as a basis of reconciliation, leaving only comparatively minor details to be adjusted. But the German and Swiss Reformation had gencrated new communions, novel alike in their polity and much of their theology, and in active revolt, not merely against this or that detail or abuse, but against the Roman Catholic Church in its entirety, hierarchical, ductrinal, and political. The movement had not bcen confined long to its earlier limits, but had spread over all western Europe, had virtually conquered Holland and Scandinavia, was making great strides in France and England, and was beginning to threaten even Italy and Spain. Thns, the task was no longer the coroparatively simple one of satisfying the demands of friendly remonstrants, but of winning back alienated pations, and, if that were too much to hope for, at least of saving the remnant of the Roman obedience from further disintegration. And for this purnose it was no. longer sufficient, as it would have been a few years earlier, to discuss administrative details alone, but a review of the whole theological fabric of Latin Christianity, no part of which had been left wholly unimpeached, became a necessary factor in any possible scheme of reconciliation. True, a precedent had been set in the theological discussions at the council of Ferrara-Florence, with its abortive effort to reunite Oriental and Latin Christendom, but the area and number of differences to be reconciled upon that occasion were incomparably smaller than those which had subsequently arisen, and the situation was thus one of extreme difficulty and delicacy, since there was alrays the danger of alienating many who had continued loyal so far, if very large concessions were made to the revolted Protestants, not a few of whom, besides, had already passed beyond the possibility of reconciliation. But, on the other hand, Luther had himself appealed to a general council from the bull "Exsurge Domine" launched at him by Leo X. in 1520, and his demand was taken up by the emperor and the princes of Germany, whether Catholics or Protestants, as the only conceivable means of terminating a crisis whoss religious and political results might prove far more serious than even the least hopefu! rentured to forecast. There was thus steady pressure from one side put upon the Roman curia to obtain the conrocation of such a council, while scarcely less resistance to the proposal was offered by two very unlike parties in the Roman Church itself. For not only did those oppose it who were interested in the maintenance of the principal abuses complained of, and who feared that sweeping measures might be taken for their abolition, but some of the ablesi champions of internal reforns, such as Cardinals Sadolet, Contarini, and Reginald Pole, were equally hostile to it, for the very different reason that they believed any such council likely to contain a majority determined on making it as abortive as those great synods had beeu which were fresh in the memory of all. Accordingly, this section gave its voice for the alternative scheme of pro-
ceeding by way of less formal conferences, at which mutual explanations and concessions might be made by Catholics and Protestants, whereby a modus virevdi could be established, with less chance of the whole effort being wrecked by the intrigues of those who desired nothing less than practical reforms. A fresh difficulty was presented by the oplosition of the German princes to the assemblage of the council at Rome or abywhere outside Germany, as they distrusted the probable action of the Italian element, certain to preponderate in that event; and, as the curia was equally bent on holding it within the sphere of direct papal influence, this dispute made it impracticable to agree even on the prelininaries during the pontificates of Hadrian VI. and Clement VII. The diet of Spires in 1529 renewed the demand for a general council, to be held in some large German city; and the diet of Augsbarg in 1530 summoned the Lutherans to return into Catholic communion at once and unconditiosally, leaving their doctrines (formulated in the Confession of Augsburg that very year) to be jndged of in a fnture council, which the emperor Charles V. pledged himself to obtain mithin a briof space. Clement VII., then pope, was displeased at this initiative on the emperor's part, bnt offered to convoke a council in some Italian city, such as Mantna or Milan, belonging to the empire, and outside the States of the Church, - expressing his wish that Charles V. should personally attend it. But he hampered this proposal with conditious which made it valueless for the main object of such an assembly, by declaring that no theological questions upon which the church had spoken could be reopened, and that, if Protestants were to be admitted to the council at all, it must be, not as disputants, but as on their trial, and pledged beforehand to submit to the decisions of the council. No result, consequently, followed upon this step, nor was an embassy which Clement sent in 1533 to the German princes and to the kings of France and England with rery similar provisions more successful, for it merely drew ont a peremptory rejection of the scheme from the Protestants assembled at Schmalkald, by the emperor's desire, for the purpose of discussing it. So the matter rested till the accession of Alexander Farnese to the papal throne as Pau! III. in 1534. A much abler nan than his predecessor, he was also more alive to the imperative need of at least appearing to approve some measure of reform, if the church was to be saved from intpending dangers (indeed, a report on this subject, drawn up at his desire by a committee of cardinals in 1536, is one of the most important documents of the era), and he was thought to be farourable to the project of a council, whereas there is little doubt that Clement VII. had weighted his acceptance of the plan with impossible conditions, in order to a roid its realization, yet so as to let the responsibility of refusal rest with others than himself Paul III. sent Vergerio as envoy into Germany, to confer with the emperor and the princes, offering to convoke a conncil at Mantua, and urging the danger of attempting to hold it in Germany, by reason of the violent lengths to which the Anabaptists were then proceeding. But, while the Catholic princes were content with this offer, it was refused by the Protestants, aud the ambassadors of France and England supported them in their attitude. Vergerio, who had also a fruitless interview with Lnther, returned to Rome early in 1536, but Paul III. was not discouraged by his failure, and proposed, in a cousistory on April 8, to ronroke a council at Mantua. This plan was in turn upset, not only by the continued resistance of the Protestants, but by the refusal of the duke of Mantua to permit the use of his city for such a purpose, unless upon conditions which the pope was uawilling to accept. Notice was accordingly given of a conucil to be opened.
at Vicenza on May 1, 1538, and legates were despatched thither to make the preliminary arrangements, and to preside 80 soon as the members shculd assemble. But when the appointed time was only five days off not one bishop had arrived, and the pope was forced to prorogue the council again and again. Meanwhile. the method which Contarini and Sadolet had recommended, that of conferences between the Catholics and Protestants, was being acted on in Germany, and meetings of this nature were convened successively at Haguensu, Worms, and Ratisbon, at the last of which, in 1541, Contarini was present as legate of the pope, and showed so much tact, moderation, and sympathy that he succeeded in securing a large measure of agreement upon the controversies in dispute, notably on the vexed questicn of Justification. But, as his concessions and explanations were promptly repudiated at Rome, no practical result followed. In 1542 Paul III. sent Murone as his envey to the diet of Spires to offer Trent as his final concession of the place of assembly, on the ground that its position in Tyrol, and its being part of the dominions of the king of the Romans, ought to meet all the reasonable requirements of the German princes. Ferdinand, king of the Romans, who presided at the diet, was content with this offer, as were the catholic princes generally, but the Protestants cont:nued to object, and refused any council which should not be completely free from papal influence and authority. However, the pope issuecl on May 22, 1542, a bull appointing the meeting of the council for November 1 followiug. He sent three legites to Trent to make prepara-tions,-Morone, Parisio, and Reginald Pole ; but they did not reach the city till three weeks later than the appointed date for opening the council, and so few bishops arrived during seven months froun that time that it was necessary to prorogue the assembly: In fact, the idea of the conncil was distasteful to a Dery large proportion of the Latin clergy, especially such a a apprehended danger to their private interests from the retorning plans of the pope, and also such as were alariued lest serious religrous innovations might be made in order to conciliate the Protestants. While this delay contiuned, another dict at Spires in 1544 resulted in great advantages to the Lutherans, who availed themsalves of the political atraits of Charles V. to extort several important concessions from him. The obnoxious edicts passed against them at Worms and Augsburg were rescinded; they were permitted to retain such ecclesiastical property as they had seized; they were made eligible for such civil and ecclesiastical ofices as had been previously barred against them ; and general toleration for the time being waz established. This policy was extremely distasteful to the pope, who addressed a brief to the emperor, strongly remonstrating against it, and renewing his offer of a council. Charles Y., who had not been a free agent in the matter, was much of the pope's mind, and proceeded to relieve himself of one difficulty in the way of reversing bis action, by concluding peace with Francis I. of France on September 8, 1544. Hereupon Paul III. directed public thanksgivings to be offered throughout the whole Latin Church, and issued a buil removing the suspension of the council, and summoning it to meet at Trent on March 15, 1545 . Unable from age and illness to be present himself, as he had wished, he named Giammaria del Monte, bishop of Palestrina (afterwards Pope Julius IIL.), Marcello Cervini (afterwards Pope Marcellus II.), and Reginald Pole as his legates. The oxperience of former abortive openings was repeated, for they found but one bishop awaiting them, and so few continued to arrive that a fresh prorogation was forced upon the legates, and the pope, in the bull authorizing this action, added a proviso that no proxies should be received,
but that all bishops summoned should attend in person, under severe penalties for contumacy. On November 7, 1545 , the legates received final instructions to open the council upon December 13, and did so with solemn coremonial, but only as a formal initiative of the proceedings, for the first session was postponed till Jonuary 7, 1546. When that time arrived, no more than aome fipe and twenty archbishops and bishops, five generals of religious orders, and the ambassadors of King Ferdinand had assembled, and none of the conciliar officers had yet been nominated, nor any programme of procedure aketched out. The most important question arising under this last head was whether the voting.should be taken by nations, as at the council of Constance, or by individuals, and the matter was referred to the pope, who gave his decision for the latter, as at once the more ancient (since Constance and Basel were the only precedents for the national vote) and the more convenient. Moreover, this ruling secured from the outset a working majority of Italizn bishops in the assembly, at once by reason of the small size of the average Italian diocese, and of the greater ease with which Trent could be reached from Italy than from any other country which sent representatives thither, besides enabling the pope to swell the majority (as in the Vatican council three centuries later) with bishops in partibus, having no dioceses or jurisdiction, thus amply justifying the objection taken all along by the German Protestants to the assemblage of the council anywhere outside Germany.
Some prcliminaries had to be settled before the second session, and the plan of holding privste "general congregations," where theologians of non-episcopal rank could ait and share in the discussion and preparstion of the decrees to be pronosed snd voted on in public session, was at once adopted and observed thenceforward. And first, the question was raised whether sny persons except bishops should be sllowed to vote upon matters of doctrine. The decision twa that the rote should bc allowed to the genersls of religious orders also, and that the right of the proxies of absent bishops to vote should be referred to the pope. The title to be given to the council at the head of the decrees in esch session was then discussed, snd a propossl to add the words "representing the church universal " (as st Basel and Constance) to the usual formula "genersl and cecumenical" was rejected at the instance of the legates, as indirectly menacing to papal autocracy. The legates also privately informed the pope that the majority of the members desired to take up the question of practical reforms before that of doctrize, and that it might he necessary to yield the point to svoid scandal or the imputation of eympathy with abuses, but thst they would insist, in that case, on msking the measures of reform apply all round, to princes and laymen as well as to ecclesiastics, which would probably damp the ardour of its edvocates.
The actuel busiuess of the second session (Jsnuary 7, 1546) was coufined to the promulgation of a decree touching the discipline to be observed by the members of the council durlog its progress, as well in the mstters of their private devotion and their food as in the conduct of the debates. The congregations which preceded the third session were mainly occupied with debating the thorny question of the order in which the discussion of fsith end of discipline was to come, and it was at last agreed to take them eimultaneously.
So few additionsl bishops had arrived up to this time that it was judged inexpedient to promulgste sny decrees in the third session (Februsry 4, 1548), and little was done except the public recitation of the Niceno-Constantinopolitan creed as the authoritative confession of the Roman Church, and, as the council worded it, "thet firm end only foundation against which tho gates of hell ehall not prevail." A fortnight after this third eession Mfstin Luther died (Februsry 18, 1546), Just as the eitustion in Germasny was becoming more strained, sud the emperor, alsrmed at the rapid sdrance of Reformed opinione snd practices (notably in the Palstinste, where the elector had made large concessions), was taking measures fot suppressing the religious revolt by force of srms. The canon of Scripture was proposed in the congregations before the fourth gession as the subject for discussion, and the three following questions were raised:-(1) Were all the books of both Testements to be approved and received! (2) Was there to be a fresh inquiry into their canonical clasracter before giving such spproval f (3) Should there be any distinction drawn between the books, as being some of them read merely for moral instraction, and others for proving the doctrines of Christian belief? The first of these questions was decided affimatively. The second led to much de-
XXIII. - 69
bate; tho conclusion arived at was that a secret examiuatiou of public actso should be made, but not suffered to appear in the tively. These congregations were the first whercin thed negaexperts and canonist, not being members of the council, were admitted to a share in the discussions. The nature and function the pope that there was a strons this time, and the legates informed the pope that there was a strong tendency in the council to set it Another burniug quastion debatell was the sole standard of a ppeal. tion and lay study of Scripture. The resnlt in the folar transla(April 8, 1546), was the promulgation of two decrees, the firet of which enacts, under anathcma, that Scripture and tradition ere to he received and venerated equally, and that the dcutero-canonical wooks are part of the canou of Scripture. The second decree de clared the Volgate to be the oole authentic and etandard Latin version, and gave it euch authority as to supersede the original texts; forbade the interpretation of Scripture contrary to the eense reccived by the chnrch, "or even contrary to the unanimous consent of the fathers"; imposed various restrictions upon printers and vendors of Bibles; made liccnces to read aoy Biblical ananu. script or publication compulsory; and prohibited the application of Scripture language to prolane and euperstitious purposes. The reformation takon up were the doctrine of original ein and the reformation of abuses coocerned with nreachers aud lecturers, which Were made the matter of two decrees in the fifth session (June 17, clause, whereby the tereate point in the former is the saving Blessed Virgin the tonet of the Immaculate Conception of the enjoins the ercetion of a collegiate churches, and monasteripo of Scripturo in all cathedrals, upon all bishops and persons with e, imposcs the duty of preaching rules as to preaching licences, and forl souls, laysdorn stringent is, the collectors of alms commissioned by the mendicant ardere to preach anywhere. There was a treaty coucluded betwcen the pope and the emperor a fow days after this session, to make war against the German Protestants on the express ground of their relusal to submit to the conncil, and from this may he dated the end of any scrious effort in the council itself to donl with the question of reconciliation, although tho original motive for its Roman cpisconate io the so little interest was felt even by the ccessions cominr to trocecdings at Trent that, instesd of fresh defections took place, recruit the small munbers present, constant any bishop to quit Trent withont formal stop this by forbidding The doctrino of Justification mat formal permission was carried. mioence given to it in Lutheran thicolory, was nuest take the prothis being, θ to spent, a ners controversy with taken up, and, to guide the council, the discussion traversy, with fersp precedents It is noteworthy that Luther's views found some supporters, and the resignation of the legateship at this tine by keginald Pole, his dissatisfaction from the council, nevor to return, is attributed to in its decree. that of the obligation of rasy question discussed at this time was and dcerees upon both thesesudence, especiully as regards bisbops; session (Jantary 13, 1547), - that on Justification bed in the sixth dogmatic treatise in sixteen chat on Justification bcing a formal on residence reviving former canons, and imporite canons; that but avoiding the solution of a question hotlr debated in the council, whether the residence of bisliops was obligatory jure divino or nerely by ecelesiastical precept. Meaorbile, Charles V. Was victorions in his war with the Protestants, and had all Germany in his power, but, instead of nsing the opportunity, as the thay expected, to put down the Reformers, be alleged that the recent war had not been one of religion, and assumed an attitude of toleration. Hereupoa Paul III., in order to break up this truce, sent instructions to the legates to press on decrees displeasiog to the rotestants, judging that the emperor's well-known interest in the conncil would causa hinn to be accounted responsible for its measures, and thus lose all credit for lis recent forbearance. In the eeventh defining the sacraments as scren in numere promulgated, -one channels of grace, also nulding sen in number, aad as being all and confirmation ; the other dealing with concerning baptism benefices, repair of churches, and fith pluralities, unions of great stringency. A more important mared matters, but with no session was the open declaration of a part of the business of this the legates had been privately po a measure which the pope and ferance of the council from Trentaning for some time, the transpapal control; for, while Trent suffena oity more directly under Protestants, yet it was found that a virtur headquartere as against Spanash, French, and Gernun hish virtual coalition batwoen the fered with the intentions of thshops to resist the Italians interellectively broken un by a change papal court, and could be most logly taken from an outbreak of digcise accasion was accord at Trent to issue a bull transferring the council to be infectious,
was read in the seventh session, while the promulgation of a decree in accordance with it formen the whole business of the eighth sessiou (March 11, 1547). When it had been passed, the legates produced a briel which thcy had obtained more than two yeare before, empoweriug them to transfer tho council as they pleased. But, while they themgelves quitted Trent the next doy, and were followed by the majority of the bishops, those of the emperor'e party continued in session at Trent, and refused to leavo it without the permission of their sovereigu, though they abstained from all conciliar ection, in order to avoid the charge of schism. Charles V., incensed at the pope日 action, e日nt a mandato approving aud conirming their cominct. The nioth session, held at Bologng (April 21, 1547), and the tenth also (June 2, 1547), were merely formal, nothing being lone ave to prorogue the council. Tà practical result of this epllit in the council was to reliere the Protestants from irmminent peril; for, while the emperor's auccesses enabled him to put sovere pressure upon them to submit to its decrees, it was itself inctuacitated for valid action, as neither the bishops at Bologes nor those ąt Trent cond claim to be the whole council, nor demand acceptance of their acts as binding. Hence Charles V. Was argent for the roturn of the entire body to 'Trent, and thrcatoned, in case of refusal, to go to Rome, and hold the council there himself. And he took an even more peremptory step hy constituting himself arbitcr of the whole con troversy, appointing Julius Pflug, bishop of Naumburg, a prelate kuown to be friendly to the Lutherans, Michael Ilolding, called Sidouius, afterwards bighop of Mersoburg, and John Agricola, a Latheran writer of some hark, to dralt an eircnicon upon the points in digpute, which was published undor the title of the "Interim," ly the emperor't anthority, at the diet of Angsburg, May 15, 1548. It proved however, inefficacious, and was formally repudiated and enswered by the Catholic princes and atates of the empire, and yet more reremptocily by the Protestants, its only result being tho "Io. terinistic controversy." It was succeeded by auother formulary concening rcformation, acceptel by the diet. While the cmperor Was endeavouring to force the "Interin" "pon his lominions, the pope, on his part, strove to remove the dead-lock of the divided thanch, and conrokel a committee to consist of members of both astical rcforms. But lizuentine eections to confor upon ecclesiwith the empero the hishops at Tront, having conmonicated fused to leangr, legatos at Bologna to ilismiss the bishops assunbled there end to anuounco the ouspension of the council, which was accordiogly done upou Soptember 17, 1549. Panl 1II. died on Norenber 10, 1549, and was succeeded on February 7, 1550, by Cardinal del III The chicf legate at the council, who took the titic of Julius these The break in the continuity of the council occasioned by was hell ass lasted til May 1, 1551, when the eleventh aceeion solo legato iu tity under the presidency of Cardinal Crescenzio, solo legato iu tite, but with two nuncios, Pighini and Lippomani, welfth scssion, on Sops. It was merely formal, 6 , was also the 11., king of France, baving quarrelle 1551. Just at this time Henry of Parma, sent an anig quarrelled with the pupe about the duchy styling it a "convention," denying its occumenical character declaxing that it was not accessible to himself or to the Frenct bishops, and notifying a protest against the validity of itg proceedings, which he desired inight he registered, and a copy of the register returned to him. No reply was mado to this demand; so Henry dismissed the papal noncio from his court, and published a manilesto to justify himsolf, at the same time thet, in order to repel any charge of eympathy with the Protestants, he prominlgated a severe edict agaiost them. But the absence of French biehops, and the comparatirely ecanty atteıdance froni Germany, threw appeared fre than ever into the hands of the Italian majorits, as (October 11, 1551), aud in promulgated in the thirteenth session logateg just before it. For the obstinate refusal of the Protestants way, and the impecognize the council mas on the point of giving way, and the imperial ambassadors demanded a eale-cooduct for such as might present themselves, with eome warranty that it decision on the afo. They also desired the postponement of any the communion of the laity in Eucharist, and espccially as regards himsolf willion of the laity in the chalice. The pope expressed was paid to to grant botu theso denuads, but no real attention Protestants, the lett of Ase. As respects the atteadence of the in Spain to Che lettors of Francis Vargas, fiscal (attordey-general) that the doing everything to preventended to desire it, avd were $\begin{gathered}\text { eccretly }\end{gathered}$ delay had been preprevent it, while the very points as to which delay had been promised were made the subject of the decrees in specially directed session. Luthe decres ou the Eucharist was recently broached, and was Lutheran and Zwinglian opinions then canons appended. It reasserted the doctrine of Transubstantiation, already defined by the fourth Lateran council in 1216, while, by
the third of the canons, which declares that the wnole gacrament is entire in each kiud, it indirectly, though effectively, ruled against the grant of the chalice to the laity; and in fact tho Reformed thesia that they were entitled to it by divine right, and could not bo debarred from it without sin, was noauimously condemned in the previons congregation. Some unimportant decrees affecting the criminal jurisdiction of bishons, and for referring the trials of bishops theinselves to the pope, were eaacted at the eame time; but more noleworthy was a decree for postponing the decision upon lay and infant comnunion, and for granting a safe-conduct to the Protestants, which was the last business transacted apon this occasion. But the safe-conduct was worded so as to excite general and reasonable suspicion ou the part of those to whom it was offered, and Vargas, who was no friend to their opinions, comments freely upon its deceptive ambiguity. In the lourteenth eession (November 25, 1551) decress upon penance and extreme unction, prepared in the congregatiom"; and embodied in twelve chapters upon the iormer and three on the latter topic, followed severally by fifteen and four canons, were promulgated. Some disciplinary enactments affectiog the clergy, and corrective of minor abusee, were enacted at the same time, the most important provisions being the sholition of the papal dispensations exempting their holders from the jurlediction of the ordinary, snd the restriction of the antion of titular bishops. But the reforming party in the council was much discuntented with the inadequacy of these measures, which added little to the rery small progress unade eo far in the revival of discipline. Although no Protestant theolegians had yet presented themselves at Trent, representatives of the duke of Wirtemberg arrived at this time, who were instructed to lay the Wurtemberg Confession before the council, and to say that Protestant divines who could give explanations of it were waiting some forty miles from 'rent, and were prepared to attend the council so soon as a safe-conduct exactly conformable with that granted to the Bohemians by the council of Basel was issued, and on the further conditions that the discussions actually going on should Le suspended and all the matters so far decided bo reopened, that the pope should cease to preside by legates or othervise, but declare his own submission to the decrees of the council, and absolve the bishops from their oath of allegiance to himself in order to secure their liberty of action. The eavoys refused to treat with the legatos at all, and conducted their negotiations through the imperial ambassadors. Crescenio was very angry, and refused all concession, eren going so far as to abstract the conciliar sal, lest the safe-conduct might be granted; but pressure was put upon him by the imperial annbasadors, and he was forced to consent to the admission of the Protestant enroys at a private congregation to be held in his own house, though he resisted the demand for introdacing then to a public session. And, when the safe-conduct was recast, it was found to differ seriously from that proposed as its model, especially by failing to give the Protestants the rights of session and suffrage, of observing their own religion in their houses, and of heing guaranteed against insults to their creed. To the rcmonstrances made in consequenco the legnte returned a peremptory reply, refusiog to make any further change, and only the instances of the emperor, then at Indsbruck, but tbree days ${ }^{2}$ journey from Trent, induced the Protestant envoya to remuin a littlolouger, to find if any better terms could be obtained. Some more Protestant envoys from Strasburg and other cities, and from Maurice of Saxon5, arrived early in 1552 , and were admitted to a congregation held on Janusry 24, where they renewed the demands already mentioned, and required also that the decrees of Constanco and Basol, declaring the pope inferior and subject to a general council, should he reaffirned. They were promised an answer in due time, and the fifteenth session was held the next day (Jannary 25, 1552), wherein the council was prorogued, and a asfe-conduct more in accordance with the Protestant demands was drawì up and pub. lished. It is remarkable, however, for one omisaion, and for ooe simbificant clause. The omission is that of toleration for the private exercise of their religion; the insertion is a proviso pledging the council not to avail itself, "for this one occesion," of any lavs or canons whatever, "especially those of Constance and Siena," as egainat the Protestants. The reference is to the canon of Constance by means of which John Huss was tried sod burnty declaring a safe-conduct no protection against trial for heresy, even if the accused has come io reliance on the gafe-condect, and would not have come without it, which canon was reaffirned at the cooncil of Siena in 1423. While the negotiations occasioned by these proceedings were in course, war broke out onew in Germady, and Maurice of Saxony obtained cousiderable euccesses oper the emperor, took Augshurg, and was marching dowu upon Tgrol, so that Charles V.fled in haste from Inushruck, and the legate convened the gixteenth session (April 28, 1552) of the council, Wherein a decree was promulgated auspending it for two yeara in consequence of the perils of war. Tbere was a general stampede from Trent at once, and the legate Crescenzio, then very ill, had just stredgth to reach Verona, where he died three days after his arnival.

So ended what is styled by some historians, and correctly, the first council of Trent, for, although thie asnal computation recognizes only one such council, yet an interruption of ten years, a widely changed personality, and a marked alteration in tone make the resumed synod virtually another assembly, and one by no means entitled to the degree of rcspect which the ability and learning of many members of that first convoked won for it. When the council dispersed, Julius III. at once in consistory repeated the policy of Paul IIL, and nominated a committee to prepare a scheme of reform, but it never took action of any kind; and at the close of the two years' suspension of the council the question was put in consistory as to the resumption of the sessions, and decided, with the pope's approval, in the negatice. Julius III. died on March 23, 1555, and was succeeded on April II, 1555, by Cardinal Marcello Cervini, one of the former legates at the council, a man of high reputation for personal devoutness and freedom from that sympathy with abuses which marked too many of the dignitaries of the time. He took the title of Marcellus II., and bis first public utterance was to intimate his purpose of reassembling the council, and of carrying out a plan of thorough reform in discipline, particularly directed to abating the pomp and luxury of the prelacy. But he was in feeble health when elected, and the fatigues of his new position brought on an attack of apoplexy which carried him off three weeks after bis accession. In his room was chosen, on May 23, 1555, Cardinal Giovanni Pietro Caraffa, who took the title of Paul IV. He was known to profess great austerity of life, to have actually founded the Theatines, an ascetic community, and to be a stern and implacable advocate for several measurcs of repression against innovators in matters of religion or impugners of papal prerogative, as he quickly showed by setting up the Inquisition in Rome, and taking care that it should not be idle. His election consequeutly caused much alarm, and was especially displeasing to the emperor; and the earlier acts of his pontificate seemed to justify tho estimate formed of his character and the fears of those who apprehended that he would proceed to reform discipline in a swifter and more crastic fashion than had bitherto been essayed. For in fact he pledged himself to this effect in the first bull published after his accession, following it up with a show of activity by at once setting some minor reforms on foot.

During these three years important eveuts had taken place in Germany. By the peace of Passau in 1552, the Protestants of the Augsburg Confession were secured from all molestation, and in the free exercise of their religion and of their civil rights, and this was followed up by a decree of the diet of Augsburg, on September 25, 1555 , that, failing a national council to settle the religious disputes, the empcror, the king of the Romans, and the other Catholic princes should not interfere in any way with the religious liberties of the Lutherans holding to the Confession of Augsburg, provided they in their turn would exhibit equal tolerance towards Catholics; that no penalty, sare the loss of benefices, should be imposed on any Catholic ecclesiastics joining the Lutheran body; and that such benefices as the Protestants bad already annexed for the support of their sclools and ministers should remain in their possession. Paul IV. was much incensed at these proceedings, and used all efforts to procure their repeal, on the failure, of which he openly broke with the emperor, formed an alliance with the French king against him, and imprisoned the cardinals and other personages of the imperial party on whom be could lay hands, confiscating the property of such as aaved themselves by fight. He continued for a time in the measures of reform with which
he began his reign, striking against jobbery, pluralities, dispensations, and laxity of clerical manners; but all this short-lived zeal was speedily neutralized by his nepotism, surpassing that of any of his predecessors, and throwing the government of the States of the Church into the hands of his dissolute nephews, upon whom he rained all the wealth, honours, and authority in his power to bestow. And, as was to be expected, he set bimself steadily to oppose every one of the class of reforms which touched doctrinal questions, just those for which the Protestants were urgent, encouraging only such as promoted the unity and discipline of the Roman Church itself, and made it more capable of effective resistance to the Reformation. He was not favourable to the reassembling of the council, not merely because of his experience of its languid action, nor even his dislike of the struggles of the non-Italian minority to assert some measure of independence against the coercive tutelage exerted by the several papal legates from the very first, but because he regarded himself as the sole and proper person to consider such matters at all, and a bull of his own promulgation a better mode of procedure, at once in fulness of authority and swiftness of formulation, than any conciliar decree. Consequently, no step for the resumption of the council was taken during his reigo, which ended on August 18, 1559. After a longer interregnum than usual, Giovanni Angelo de' Medici (not a inember of the great Florentine house, but of humble Milanese extraction) was elected on December 26, 1559, as Pius IV. Markedly unlike his predecessor in almost every personal quality, he was much his superior in practical shrewdness and tact, and had none of that dislike to a council which Paul IV. had shown. So great, too, had been the strides made by the Reformation during his predecessor's reign that he might well think Paul IV.'s policy undesirable, and he had this special motive for reversing it, that a movement was going on in France for the convocation of a national council there to consider the whole religious situation, which might very conceivahly result in a revolt like that of England from the Roman obedience. Accordingly, Pius IV. determined ou the resumption of the council of Trent, and issued a bull on November 29, 1560, convoking it anew.

But the whole face of Western Christendom, the whole religious situation, had materially changed since the original assemblage of the synod in 1545. First, the imposing personality of Charles V. was removed from the scene, and Ferdinand I., his successor, enjoyed neither his per. sonal ascendency nor his political power, and cou'd not be accounted as a possible competitor with the pope for the first place in the Catholic world, nor even as an ally with means for crushing the Reformation. Next, the Reformation itself was by this time an accomplished fact, a consummated revolt from mediæval Christianity. It had taken definite shape in various conntries; it had its 'own theological systems and traditions; besides that a whole generation had now grown up under its influence, never having had any personal associations with Latin Christianity. And, on the other hand, the very lengths to which some of the Reformers had gone in their revolt generated a corresponding reaction in the Roman Church, so that many influential persons who had been in favour of moderate reforms and of explaining disputed points of theology were convinced that no limits could be logically or practically set to concessions in this direction, and therefore that it was necessary to make a stand against any concessions at all. And, what is more, one noticeable effect of the wave of controversy which lad swept over western Europe was to accentuate points of difference, to close questions previously open, to make the current beliefs more incisive and, so to speak, legal in. form, to diminish
seriously the neutral area betreen the competing religious systems, and thus to bring them face to face as irreconcilable foes. One factor more, of greater importance at the time than any other, contributed to the revolution which is marked by the second council of Trent. As Spain took the political lead in the earlier half of the 16 th century, so it took also the lead in theology. The Spanish divines were abler and more learned than all save the very foremost in any other country, and their influence was throughout the greatest at the council of Trent on purely theological issues. Now, the political and the theological geaius of Spain had hoth just found their highest exponent in one person and the organization which he devised, Ignatius Loyola and the Company of the Jesuits. Two of his immediate disciples and recruits, Salmeron and Laynez, were chosen to be the pope's theologians at the council of Trent, and exercised a greater influence than any other divines there in the formulation of its dogmatic decrees. But the Jesuits were to do more than this. The militant spirit of their founder had nothing in common with the alarm and vacillation which had for the most part marked the action of the Roman Church in deaiing with the Lutheran and Calvinist revoit; and, instead of being content with devising schemes for stnading on the defensive, and saving the remnant yet left to the Roman obedience, he conceived the bolder and safer plan of vigorous aggres: sion, to reconquer all that had been lost, and to add fresh acquisitions thereto. The Counter-Reformation whish he initiated was in full operation when the second council of Trent assembled, and it was by this spirit that it was guided in its deliberations and decrees. 'The very thcught of compromise was abandoned in fact, if not in open expression, and the only reforms thenceforward taken into consideration were such as would remove causes of weakness and scandal in the Latin Church, enabling it, without sacrificing one of its claims, to overcome by superior mass and discipline, by closer unity and more organized enthusiasm, the heterogeneons, disordered, and already dissociated forces of Protestantism. The most obvious effect of these principles upon the second council of Trent was that the diminution, the all but disappearance, of variety of opinion amongst its members, and the resolution to crush Protestantism rather than to parley with it in any scheme of mutual concession or accommodation, tended to shorten the preliminary discussions in a marked degree, so that little is to be noted of the long and animated debates of the earlier period, and the last few sessions exhibit even tokens of actual hurry to end the matter anyhow.
There was no intention on the pope's part to proclaim the Counter-Reformation as the policy of the council, even is it may be safely assumed that he could predict its action, and he sent nuncios to the Protestant sovereigns as well as to the Catholics to signify the approaching resumption of its sittings. Francis II. of France bad died between the promulgation of the bull and its notification in France, but the young kireg Charles IX., by the advice of the parlement of Paris, directed all the bishops of the kingdom to be in readiness for journeying to Trent. Three nuncios were despatched to Germany, but the princes assembled in diet at Naumburg received thera unfavourably, asserting anew their determination to recognize no council which did not avow Scripture as its standard of appeal and give right of free discussion to Protestants, denying the right of any one save the emperor to convene a general council at all, and inveighing strongly against the papacy. The king of Denmark declined to admit the nuncio on any terms, declaring that neither be nor his father had ever had any dealings with the pope; and Martinenghi, the nuncio commissioned to Elizabeth of England, was stopped by a messenger while still on the

Continental side of the Channel, and informed that he would not be permitted to land on the English coast. The free cities of the empire also refused the summons, as did five of the Swiss cantons; and even a large number of Roman Catholic prelates, while professing unqualified obedience to the pope's commands, showed much unwillingness to act upon them, and pleaded age, illness, or diocesan business as excuses for absenting themselves from the council. In this unpromising posture of affairs the preparations for the council were pressed on, and Cardinals Ercole Gonzaga, bishop of Mantua, Seripando, Hosius, Simoneta, and (later on) Altemps, the pope's nephew, were named as legates, being directed to open the session of the council upon Easter Day, April 6, 1561. But they did not even arrive in Trent until April 16, and found no more than nine bishops awaiting them. Several causes conduced to this disappointment: the king of Spain had not yet accepted the bull convoking the council; the Frencl bishops were more than fully occupied with the rapid advances of the Reformation in their midst; and the Germans bad no great inclination for the repetition of their experience ten years before. It was thus necessary to postpone the assemblage till January 1 and then to January 18, 1562. That there might be a sufficient number of Italian bishops present to outvote any possible combination of others, the pope collected a large number of prelates, appointed thom salaries for maintenance, and sent them off to Trent. Two questions of the highest practical importance came up for discussion in the preliminary congregation, wherein ninety-two bishops were present:-(1) Was the council to be styled a "continua tion" of the previous one, or to be reckoned as a new synod ! (2) Should the unprecedented clause in the papal decree for opening the council (bat not found in the bull of convocation), "proponentibus legatis ac presidentibus," be accepted and acted on, or rescinded ? To declare the council a "continuation" of its precursor was to accept and ratify all which had been done therein; to treat it as a dew one was to make every decree or tne carlier sessions merely provisional and alterable. To adopt the novel clause cmbodied in the papal decree was to gag the council from the outset and deprive it of freedom by concentrating the initiative in the kands of the legates; and Guerrero, archbishop of Granada, pressed this objection with much urgency. On the other band, this same prelate, acting on the orders of Pbilip II., demanded that the council should bo plainly declared a continuation of its precursor, for Philip had already introduced some of the regulations of that synod into his dominions, and would lose credit if they were rescinded, or even treated as lacking full sanction. Contrariwise, the bishops of other nations present held that there was no prospect of inducing the Germans, English, and other partly alienated nationalities to send representatives, anless the proceedings so far should be regarded as capable of reconsideration and alteration at the hands of the actual assembly. The authorities ait Rome were not unprepared for some difficulty on this head, and had endeavoured to evade it by using the indeterminate word "celebrated," which might be taken either way, and the Spanish remonstrants'were privately told that it was understood that business should be taken up just where it had left off under Julius III., thus raaking the synod a continuation of the former one, but that any express statement to that effect had been carefully avoided, lest the Protestants should take offence, and thus one aim of the council might be defeated. The Spaniards were partly contented with this reply, but urged that nothing which could be interpreted as the convocation of a new council shqula be suffered to appear in the wording of the decree about to be publicly read, which was conceded.

The sereateenth session was beld (Jsnuary 18, 1562) in the presence of the legates,-106 bishops, 4 alubots, 4 generals of orders, and the dnke of Mantus, nephew of the chief legate, being present. Four Spanish bishops lodged a protest against the proposing clause -two of them unreservedly, two in a more qualified manner-and they particularly objected to the novelty of the clause, and to the manner in which it had been sprung npon the conncil, the archbishop of Granada sad the bishop of Orense pointing out that it wse not in the originsl bull, with which the subsequent decree ought to be in complete agreement, and the former adding that it was not ever in the copy of the decree chown to him. But the Italian majority was too strong, and the protest was overruled, the prorogation of the council to February 26, 1562, beiog the only further business transacted. But a very important question was laid before the congregations which followed this session, that of providing some remedy for the injury done to the Roman Catholic Church by the circulation of more or less hostile books, a difficulty made incomparably greater from the middle of the 15 th century onwards than at any previous time in history, by rcason of the inveation of priating. The council of Lateran in 1515 had made a liceace from the ecclesiastical authorities requisite before sny book could be printed, under pain of excommuaication, but this peaalty did not affect Protestant printers, and the issue of a catalogue of books forbidden to Catholics became a necessary sddition. Such a catalogue was issued by Paul IV. in 1559, but some machinery for supplementing it as fresh books poured from the press could alone meet the permsneut danger. Another matter debated in these congregations was the invitation of Protestsnts to attend, and in what character. In the eighteenth session (February 26,1562) two decrees on these subjects were promulgated, -one sppointing a committee to report to the council on the whole question of beretical books; the other publishing a safe-conduct to the German Protestants, extended by a rider to those of other nstions. The congregations beld after this oession were busied chiefly with the questions of residence and the abuse of indulgences, besides several less important details of reform. A warm debate arose as to the nature of the obligation to reside, -the Spaniarde holding it to be of divine right, the Italians to be of no more than ecclesiastical precept. So powerful a body in the council took the Spanish view that the legates were alarmed, especially as ominous speeches were made to the effect that the Roman curia must be reformed on the basis of the report of cardinals to Paul III. before anything of moment could be done in the way of resl improvement. \mid Accordiagly, they eent a messenger to the pope, bringing with him a scbedule of the proposed reforms, and asking for advice in the crisis. The pope desired them to counteract the opposition bishops, to postpone the question of resideace, if they could not suppress it altogether, and despstched Visconti, bishop of Ventimiglion as extra nuncio to the council, to report accurately to him everything said or done there, and with him sent also all the bishops who conld be collected st Rome to swell the Italian vote, sud thas defeat the opposition indirectly. There was much debate slso on the scope of the safe-conduct, as the Spaniards were anxious that it should not protect those against whom the Inquisition had taken action, while others desired to see its terms endarged sufficieatly to meet the requiremeats of the Protestants, who objected to its suspicious silence on several weighty particulars. As the French ambasssdors were expected, nothing was done in the nineteeath session (May 14, 1562) save to prorogue the council. On May 26, 1652, Do Laussac (who had been lately French envoy at Rome), Du Ferrier, and De Pibrac, eqvoys from Charles 1X., were admitted to audience, and demanded, amongst other matters, that the council should be formally declared a new one, wherein the imperial ambasssdors supported them, while Philip II. of Spain, contrarimise, insisted that it should be ojeclared a contiouation of tho former synod. The legates strove to satisfy both parties, and received contradictory directions from Rome, at first ordering them to announce the continuation of the former council, and sfterwarde leeving the matter to their discretion. So little agreement could be arived at that the twentieth session (Juae 4, 1562) was held merely to prorogue the council. The question of communion in both kinds was the next to come up for consideration. It was such a capital one, if aay hope of winaing back the Protestanta was to be entertained, that the imperisl and French ambassadors had special injuactions to forward by all means in their power an affimative decision. The Freachmen saw little prospect of carrying this matter in the temper of the Italian majority, and were for opposing the discussion which the legates had announced, bnt the imperial ambassadors were more horeful, and persuaded them to give way. While the question was being dehated in the congregations, the Venetian and Bavarian ambassadors arrired, the latter armed with a formidable schedule of complaints against prevalent abuses, sad of demands for correspondiagly drastic reforme, beginning with the pope and the curia, and making havoc amonest cardinals. dispeasations, exemptions, plaralities, office-books, exclusively Latin services, and other like inatters, thus threateniog all manoer of rested interests and long-rooted customs. The
legrates put them off, alleging the pressure of other business, notably the question of communion in both kinds, which was, in fact, beiog discussed and decided in accordance with the views of the Italians and Spauiards, and against those of the French and Germans. In the twenty-first session (July 16, 1562) a decree conched in four dogmatic chapters and four canons was promulgated apon it, to the following purport:-laymen, and priests other than the actual celebrant, are not bound hy divioe right to com. monicate in both kinds; the church has full power to make what chsoges it pleases in the mode of administering sacrameats; the whole sacrament of the Eucharist is received entire under either kind siogly; aod little children are not hound to communicate. The canons pronounce anathemas against maintainers of the contrary propositions. At the same time a decree upon reformation was enacted, most of the clauses dealing with the duties of bishops in the matters of ordination, patronage, division, and anion of beuefices, discipline of ineffective parish priests, aod visitation of monasteries, but a more permaneot interest attaches to the nioth aod concluding chepter of the decree, whereby the name and office of the "questors of alms," that is to say, the vendors of indulg. ences, are abolished on the ground of the impossibility of other. wise putting a stop to the abuses and depravity of their proceedings. All privileges and customs to the coutrery, even if of time immemorial, are rescinded; the publication of indulgences is confined thenceforth to the ordinaries of esch place, assisted by two members of the chapter; and these same officers are directed to collcct the alms and charitable donations of the people, but forbidden to receive any commission or payment for so doing. This decree is a virtual confession of the justice of the egitation against Tetzel and his fellows which served as the signal for beginaing the great religious strifo of the 16 th century; and it is noticeabla that it was the pope's own voice against the system which decided the action of the council, whercin a powerful minority was found to defend it. Several weighty matters then camn bsiore the congregations, that of residence again being pressed by the Spaniards, while the imperial and Bavarian ambassadors ronewed their requisition for perinissive communion in both kinds for the decree on that subject had gooe no further than to declare it unnecessary, and bad not explicitly forbidden it), aod the French ambassador not only supported them in their demand, but added on his own part that in France they desired vernacnlar services, the abolition of imageworship, and permission for the clergy to marry. The nuncio Visconti wrote to the pope in great alarm, expressing apprehensions at the very free language employed by the fathers of the conncil on these matters, the probability of their coaceding the emperor's demands, and of similar ones beiog advanced therenpon, all making in the same direction. An intrigue to compel the resignation of Cardinal Gonzaga, who was not thought sufficiently epposed to these measures, and who was far less percmptory in his presideacy of the council and use of the closure than Crescenzio liad been, was set on foot, and defeated only by tho sirong representations made at Rome by the archbishop of Lanciano, who said that there was already so much division in the council that it could but just hold togetlier, and would almost certainly be broken up by any step of the kind. The oext subject which rins brought on for consideration was the sacrifice of the Mass, 2.0 d the debates thereon were very animated, disclosing considerabla variety of opinion amongst the theologians,--no fewer than five clearly distiact riews of the tenet, apart from mere verbal or minor differeuces, being adduced and argued for. As sixty French bishops, to be accompanied by twelve theologians, and headed by Charles de Guise, cardioal of Lorraine, mere under orders to repair to Trent, the French ambassador pressed the legates to postpone the next sessiou till their arrival, as De l'Isle, ambassador at Fome, did the pope; but each replied evasively, referring th.s applicant to the other. The question of communion in both kinds was also very warmly discussed, and the council was warned that a negative decision would lead to the secession of multitudes who had not Jet broken with the Roman Church; but the Jesuit Laynez, who was the chief advocate for refusal, replied that to diminish the church would not destroy it, and that anythiog was better than concession io the matter. The numbers in the division taken on the question were as follows:-29 were in favour of granting communion in both kiuds; 31 agreed thereto, but desired the execution of the decreo to be left to the pope's discretion; 38 were for total refusal; 24 strove to evade responsibility by referriog the matter to the pops entirely; 19 were willing to make the concession to the Bohemians and Hungarians, but would refuse it to all others; 14 asked for a postponement; and 11 remained neutral, declining to rote any way - being a total of 166 suffrages, so split un as to make it impracticable to frame a decree. In this difficulty, the legate seized the opportunity of persuading the council to refer the matter to the pope's decision, thereby at ouce checkmating the reforming section, and indirectly ruling the vexed point of the relative auperiority of pope and council in favour of the former, and 80 virtually reversing those decrees of Constance and Basel which had long been thorns in the side of the Roman curia. In point of
fact, the pope had written some time hefore to the legates, rccommending them to yield to the eaperor's demand of the chalice for the laity, but they had replied that it fould be impolitic to make it a conciliar act, and that it would be more expedient to frame a mere general declaration that it might lie proper to make the concession in certain cases, but that the pope should be the sole judge of them. In the twenty-second session (September 17, 1562) the decree on the sacrifice of the Mass was promulgated in nine chapters aod as many canons, directed for the most part against current Protestant objections to the doctrine and ceremonial of the Missal. Rules to secure greater order and reverence io the celebration of Mass, and for the suppression of sundry superstitious observances coonected therewith, were also enacted,-besides some minor reforms of little note, and a decree referring to the pope the whole question of the coacession of the chalice. The meagreness and insignificance of the reforms eaacted thus far camsed much displcasure in France, and the kiog directed his amhassador to press once more for delay till the arrival of the French, German, and Polish bishops who were expected at Treat, as the emperor elso instructed his enroy. But the pope was busy in recruitiog the Italiao majority, and was unfavourable to this request, lest the Italiaos should be outvoted by the new-comers; yet so contentious were the debates on the sacrament of orders, and on the nature andex. tent of the rights of bishops-notably whether they were inherently above priests, aod whether they were necessarily subject to the pope, deriving their jurisdiction and other powers solely through delegation from him, or if they were not of Divine iostitution, and his colleagues rather than his deputics (which latter thesis ras steadily maintained by the Spaniards)- that it proved impossible to frame the decrees and hold the session before the arripal of the cardinal of Lorrainc, who reached Trent on November 13, 1562, accompanicd by fourteen bishops, three abbots, and eighteeu theologians.

The discussions, furtber complicated with the question of residence, wore reaewed hereupon, and long before any signs of a creemert were visible the French ambassadors laid before the legatcs a sohecule of reform in thirty-four articles, requiriog, net only the removal of various abuses in patronage, and the punishment of megligence on the part of the parochial and monastic clergy, butalso that vernacular services should be permitted, and communion ia both kinds enjoined, while all abuses and superstitions coonected with image-worship, indulgences, pilgrimsges, and relics should bo summarily aoolished. Lorraine, on being asked how far he agreed with thess demands, said that he disapproved of some of them, but that if he had not consented to take charge of them in their actual forn, they would have been made still more drastic. No definite action Was taken upon them cither at Treat or at Rome, and the proceediogs dragged on ineffectively for some months longer. On Lisrch 2, 1563, Cardioal Gonzaga, first legate, died, and *คs speedily followed by Cardinal Seripando. The imperial and . rencin ambassadors endeavoured to get the cardinal of Lorraine named as first legate and president, but he was not acceptable at Rome, and the post was given to Cardioal Morone, with whom Caraiual Navagero was associated, to fill the place of Scripaodo. All theso eyents delayed the treaty-third session motil Jnly 15, 1563 , nearly ten months later than the preceding one. A decree on the sacrament of orders, in four chapters and eight canoos, Jaid cown that there is a sacrificial priesthood of the New Testameat, instituted by Christ; that there have been seren orders in the Christian ministry from the earliest times; that holy order is a sacrament; thiat orders are indelible; that bishops are superior to priests; that a call from the laity, or from any secular authority, is unnecessary as a titlo to ordination, and that a merely lay call is invalid, while bishops appointed solcly by the pope, Without tie intervention of any other persons, are validly created. A decree of cighteen chapters on reformation, enacting, amongst much else, penalties for non-residence on the part of beoeficiaries, and providing for the erection of those theological seminaries which have ever since been the nurseries of the Latin clergy, was also promulgated in this session. The congregations which followed it were occupied chiefly with the question of matrimony, which had been mooted earlier, but with no definite result, and with framing a scheme to repress the encroachments of the civil nower upon the church in most countries, one clause of which proposed to exempt all ecclesiastics from civil jurisdiction in all cases whatever, and from the payment of taxes, with peoalty of excommunication upoo such civil authorities as contraveoed this ruling. This was never pushed to the stage of promulgation, but it was successful as a manifestation against the reforming party in the council, and actually drove the French ambassadors away, since they judged their further prosenco useless io such a temper of the assembly. Yet it was itself by oo means agreed or harmonions. The old disputes about the claim of the council to represent tho church universal, about the proposing clause, limiting the initiative to the legates, and about the need of reform in the Roman curis itself were renewed, and that with much acrimony, but with no practical result. In the tweuty-fourth session (November 11, 1563) a decree on matrimony, conched in ten chapters and eleven canons,

Was promulgated, the most noticeable points of which are the assertion that the church can constitute other impediments to matrimony besides the forbidden degrees of tha Levitical code, and can dispense with such impediments; that clerks in holy orders and regulars vowed to celibacy cancot contract valid marriage; and that celibacy is superior to matrimony. The sinultaneous decree on reformation lays down rules for the creation of bishops and cardinals, 80 as to avoid unfit promotions; directa that diocesan oynoda shall be held yearly, and provincial synods triennially, laya down rules for episcopal visitatious, and for the qualifications to be exacted of persons promoted to cathedral dignities nad canonriea; aploints the provincial synod the judga of minor causes against bishops, referring graver causcs to the pope'a decision; and enacts various other technical regulations. By this time all concerned wera thoroughly weary of the council, and tha remaining matters for discussion Fere hurriedly discussed, resulting, in the twenty-fifth and last aession (Decenber 3 and 4, 1563), in a decree, very cantiously worded, upon purgatory, the cultus of saints, and that of relica and images. In this same session was also enacted a decree in twenty-two chapters, regulating several matters affecting the discipline of convents of monks and nuns; and another decrea on reformation, in twenty-one chapters, the most important of which eujoin all cardinala and bishops to keep modest households, and not to enrich their kindred with church property; that all rirelates shall recaive and publish the decrecs of the council ; that duelling sloll be prohibited under severe penalties; and that the authorlty of the Holy Sce both is, an ia to be understood to be, untonched by any decrees of the council toucl. ing the reform of morals and discipline. On the last day of the session was passed a somewhat indefinite decree upon indulgences, forbidding all evil gains connected therewith, and directing that, Wherever abuses or superstitions are prevalent concerning them, the bishops shell collect the facta, lay them before the provincial -jnod, and after discussion there refer then to the nops for ultimata decision. Tha distinction of meats, and the due observance of festivals and fasts, were also enjoined; and a formal statement was mada that the committees which had been engaged upon the index of prohibited books, on the draft of a catechism, and on tha revision of the Missal and Breviary, thinking that the synod could not deal with them conveniently, had determined to lay their reports before the pona to ratify and publish at his pleasure. Formal acclamations, and an apathema against all heretics, closed the session; and the legates, after forbidding any bishop, under main of excommunication, to leava Treat till he had either signed his assent to the decrees, or left documentary proof of such assent, gave the blessing and dissolved the assembly.

Two hundred and fifty-five signatures were attached to the decrees, and also those of the ambassadors still remaining at 'rreat. The bull of confirmation was issued at Rome on January 26, 1564, and followed by another fixing May 1,1564 , as the date from which the decrees should be beld binding. The bull of confirmation forbade all persons whatsoever, whether ecclesiastics or laymen, to gloss or interpret the decrees upon any pretext whatever, without papal authority for the purpose. The republic of Venice was the first power to signify its reception of the decrees, followed speedily by the other Italian states (except Naples) and by Portugal ; but the king of Spain, though receiving the decrees, issued them at first in his own name, and not in that of the pope; the emperor and the king of Bohemia demanded the lay use of the chalice and the marriage of priests 29 the terms on which they would accept the council, and obtained a partial conccssion of the former demand, but were refused the latter ; and in France, while the dogmatic decrees were accepted, the disciplinary ones were not, and have never, in spite of efforts many times Ienewed, made part of French ecclesiastical law. The proFision referring the explanation of the conncil to the pope was given slape by Sixtus V., who erected in 1588 a Congregation of the Council of Trent to sit permanently at Rome, where it has ever siuce continued to be included amongst those standing committees which divide among them the administration of the pontifical government.

Two questions remain to be considered in relation to this great synod:-how far was it free, and representative of the mind of Latin Christianity at that time? and what have been its effects upon dogma and discipline? Ample materials exist for anstrering the first question, in the form of contemnorary lotters, either separately published, as
those of Vargas, or included in the great collection of documents made by Le Plat, and in the official acts of the council itself, drawn up by the secretaries Paleotto and Massarelli. From these it is perfectly clear that the council was never free for a moment, but was hampered and fettered, not merely by the permanent fact of a large Italian majority, subsidized by the pope, ${ }^{1}$ but by the method of procedure in the congregations, since by a skilful distribution of the members into groups or classes, so as to prevent combined action, and by careful packing of the sub-committees to which the preparation of business for debate was entrusted, little could be done save when and how the majority pleased ; and, above all, the vigilant supervision exercised by the legates, their constant reference to Rome of every point of any importance before they would permit it to come on for regular discussion (so that Lanssac, one of the French envoys, somewhat profanely said that the Holy Spirit was brought to the council in a carpet-bag from Rome), and their uncompromising use of their presidential authority to interrupt or silence unacceptable speakers (as frequently appears in the Acts) effectually bound the counci! hand and foot; and thus its decisions, as a whole, represent little more than the Italian and, to somy extent, Spanish opinions of the time, and not those of German, French, or Hungarian Catholics. The demeanour of the legates differed much, and there is a wide interval between the open browbeating employed by Crescenzio and the high-bred dignity of Gonzaga or the diplomatic subtlety of Morone; but the policy was alike in all cases, and its results the same. As to the dogmatic effect of the council, it went much further than merely restating the current Catholic theology of the preReformation era; for it raarks a new departure, closing many questions previously left open (nathing is more noteworthy in the debates than the manner in which several divines of unquestioned ability and loyalty delivered themselves of opinions closely allied to those advocatnd by leading Reformers, and then still tenalle within the Roman obedience), re-wording old propositions, or framing new ones, in an incisive fashion. It recovered for papal authority all it had lost, or was likely to lose, through tine action of Basel and Constance; and, above all, it unified Roman teaching for the first time, and crystallized it into rigid compactness. Thus it made concessions and explanations for the reconciliation of the revolted Protestants, although the primary cause of the council, practically impossible thenceforward, since the Romay Catholic system, thus bastily consolidated out of a fcrmer condition of partial flux, became like a "Prince Rupert's drop," from which, if the smallest fragment be broken, the mass is at once resolred into disintegrated powder. In the matter of disciplinary reform the council enacted but little of an effective nature, except in the abolition of the traffic in indulgences, and the establishment of theological seminaries, waich has proved the most effectual agency for creating that doctrinal uniformity which now prevails throughout the Roman obedience ; and the real bonours of the CounterReformation rest with the Jesuits, to whose unremitting diligence, powerful organization, and ceaseless precept and example must be attributed by far the larger part of the abatement of ecclesiastical abuses and scandals which marks the succeeding era. Doubtless, the Tridentine decrees, in strong and resolute hands, proved most useful subsidiary weapons to compel lecal reforms; but decrees of little less stringency had been enacted by presious

[^239]synods, and had rusted unused, because there was no one able and willing to put them in operation against the passive resistance of powerful vested interests.
The blbllography of the councll of Trent is very extensive, bat a comparatively small aumber of rinmes really suffices the atuleot. The frot work of lmportance is F_{0}. Paolo Sarpl'a Isloria d:l Conculio Tradenino, orlglnally pobllshed in Lundoa (1619) by Antonlo de Dominis, archblshop of Spalato, under the pseudonym of Pietro Soave Polano (an imperfect anegram of Paolo Sarpl Veneto), but of Pietro Soave Polano (an impelifect anegram of Paga sarpi eneto), but better studled in tha French verdon by Palavilno Istoria del Concilio dis notes (sea Sarpl). Tha rival work of Sforza Palavielno, 1 storia del Concilio de Trento (1656-57), whitten to order as a refutation of Sarpi s work, is also indispensable. Tra had free access to many officlal documents which Sarpi could not consult, and often corrects lim upon points of detail, but a careful reader will ind that ha confirms him far oftener than he rafutes him. It is not enoagh, as Ronke polnts out, to conpare those two, and take the mean atatement as a guide, for they are sometlmes ta blank coatradletion, and other wlinesses must he called in to decide the matter. The Acts of the councli, so far as they were drafted by Paleotto, were first pablished by Mendham in 1842 ; the complete Acts by both Paleotto and Masssrelli, Wers not accessible till published as Acta Genuina Ecumenici Concilii Tridentini by Theiner in 1874 . The vast complintion of Jodocus La Plat, Monumentorum ad Historiam Concilii Tridentini Amplissuma Collecio (7 7019. 4to, 1781-87), is full of valuabio and interesting matter. The speeches of the Jesult laynez, which had auch a powerful effect upon the councll, have been recently published under the title of Lainez, Disputationes Tridentine, 2 vols., 1886. Vurgas, Lettre: et Mémoires concernant le Conctie de Trent (1700, partiy translated in Geddes, The Council of Trent no Free Assemibly, 1714), is of much valuc. The canona and decrees of tha councll have been many times published, and are readily accessible; the best edition is that by Richter and Schulta (1853). There is a convenlent abiddgment of Palaviclno's history prefixed to tha Rev. James Woterworth"e English vorsion of the Decyees and Canons of Trent (1843), but it is n it trustwortly, for tha translator has anppressed many atatements of tho orgit al which tellin various ways agalnst the freedom of the action of the councll. To thesa may be added Sickel, Aktenstucle zur Geschuchte des Konzils ${ }_{2!}$ TVient, 1872; Calenzto, Documenti Ineditie Juovi Lavori Letterarii sul Concilto di Trento, 1874: Döllinger, Sammiung von Urkunden zur Qeschichte des Concils von Trient, 1876; and the artlcle on tha couchll in Wetzer and Weltes ${ }^{\text {a }}$ Kirchenlexicon.
(R. F. L.)

TRENTON, a city of the United States, county seat of Mercer county, Now Jersey, and capital of the State, is situated in $40^{\circ} 14^{\prime} \mathrm{N}$. lat. and $74^{\circ} 45^{\circ} \mathrm{W}$. long., 33 miles nerth-east of Philadelphia and 57 seuth-west of New York. It lies very near sea-level (under 45 feet), apon the left (easteru) bank of the Delaware river, at the head of navigation. The city is irregularly built, the streets of different sections running in various directions, without any appearance of system; this is doubtless due to the fact that different portions of the city were originally settled as independent villages. Till recently Trenton was rather backward in the matter of monicipal improvements, but an extensive system of paving and sewage has now been entered on. The water supply is obtained by pumping into a reservoir. Street cars run upon one or two of the principal streets; and the city is traversed on the main line of the New York division of the PennsyIvania Railroad. Manufactures are the leading industry, the capital invested in 1880 having been $\$ 6,966,830$ and the production $\$ 12,712,762$. In iron and steel manufactures over $\$ 2,000,000$ were invested, the industry next in importance being the manufacture of stone and earthen ware, for which this city has a national reputation. Rubber goods, watches, and woollen cloths are also made. The population, 22,874 in 1870 , was 29,910 in 1880 .

Trenton was formed by a consolidation uoder one charter of several independent villages, known as Falls of the Delaware (settled in 1680), Kingsborough, Bloomsburg, and Lamberton. The name Trenton was given to the aettlements about 1720 . Its early growth was slow. In 1790 it was selected as the Stata capital, and two years later it received a city charter. Its growth since that time has been steady, and during the past thirty years has beca very rapid.

TREPANG. See Béche-de-Mer.
TRESPASS, in law, is any transgression of the law less than treason, felony, or misprision of either. The term includes a great variety of torts committed to land, goods, or person, distinguished generally by names drawn from the writs once used as appropriate to the particular transgression, such as vi et armis, quare clausum fregit, de bonis asportats, ae uxare abducta cum bonis viri, quare filium et heredem rapuit, \&c. Up to 1694 the trespasser was regarded, nominally at any rate, as a criminal, and was liable to a fine for the breach of the peace, commuted for a small sum of money, for which 5 W . and M. c. 12 substituted a fee of 6 s . Sd. recoverable as costs agaicst the defendant. Trespass is not now crimins! except by special
statutory enactment, e.g., the old statutes against forcible entry, the Game Acts, and the private Acts of many railway companies. When, howover, trespass is carried sufficiently far it may become criminal, and be prosecuted as assault if to the person, as nuisance if to the land. At one time an important distinction was drawn between trespass general and trespass special or trespass on the case, for which see Tort. The difference between trespass and case was sometimes a very narrow one ; the general rule was that where the injury was directly caused by the act of the defendant the proper remedy was trespass, where indirectly, case. The difference is illustrated by the action for falso imprisonment : "if the defendant himsell imprisoned the plaintiff the action was trespass; if a third person did so on the information of the defendant it was case. A close parallel is found in Roman law in the actio directa under the lex Aquilia for injury caused directly, the actio utilis for that caused indirectly. One of the reasons for the rapid exteasion of the action on the case, especially that form of it called assumpsit, was no doubt the fact that in the action on the case the defendant was not allowed to wage his law (see Wager).

In its more restricted sense, trespass is generally used for entry on land without lawful authority by either a man, his servants, or his cattle. To maintain an action for such trespass the plaintiff must have possession of the premiscs. The quantum of pessession necessary to enable him to bring the action is often a question difficult to decide. In most instances the tenant can bring trespass, the reversioner only case. By the Judicature Act, 1873, a mortgagor in possession can sue for trespass in his own name. Remedies for trespass are either judicial or extra. judicial. The most minute invasion of private right is trespass, though the damages may be nominal if the injury was trivial. On the other hand, they may be exemplary if circumstances of aggravation were present. Pleading in the old action of trespass was of a very technical nature, but the old-fashioned terms alia enormia, replication de injuria, new assignment, \&c., once of such frequent occurrence in the reports, are of merely historical interest since the introduction of a simpler system of pleading, unless in thoso American States where the old pleadiog has not been reformed. The Vevee (q.v.) in trespass was formerly local, in case transitory. In addition to damages for trespass, aa injunction may be granted by the court. The power to grant injunctions against threateaed or apprehended trespass has been considerably enlarged by tho Judicature Act, 1873. The principal instances of extra-judicial remedies are distress damage feasant of cattle trespassing, and remoral of a trespasser without unnecessary violence, expressed in the terms of Latin pleading by molliter manus imposuit.
Trespass may be justificd by exercise of a legal right, as to servo the process of the law, or by invitation or licence of the owner, or may be excused by accident or inevitable nccessity, as deviation from a highway out of repair. Whera a man abuses an authority given by the law, his wrongful act relates back to his entry, and he becomes a trespasser ab initio, that is, liable to be treated as a trespasser for the whole time of his bcing on the land. More breach of contract, such as refusal to pay for wine in a tavern which a person has lawfully entered, does not constitute bim a trespasser $a b$ initio. A trespass of a permanent nature is called a continuing trespass; such rould be the permitting of one's cattle to feed on another's land without authority:
la Scots law trespass is used only for torts to dand. By the Trespass (Scotland) Act, 1865, trespassers ara liablo on summary conviction to fine and imprisomment for encamping, lighting fires, \&c., on land withont the consent and permission of the awner.

TREVES (Freach, Trèves; Germau, Trier), formerly the capital of an archbishopric and spiritual electorate of the empire, and now the seat of a Roman Catholic bishop and the chief torn of a.governmental district in the Prussian mrovince of the Fhine, is situated on the right
bsak of the Moselle, pleasantly surrounded by low vineclad hills, 60 miles south-west of Coblentz and 86 miles sonth of Cologne. It lies in the midst of a carefully cultivated and fertile plain, the rich vegetation of which forms a pleasing setting to its red sandstone walls and venerable towers. Most of the old streets of the town are quaint and irregulas ; but minch of the space enclosed within the circuits of the walls is now occupied by orchards and gardens. The population of Treves in 1885 was 26,125 , five-sixths of whom were Roman Catholics. Their chief occupations are fruit-growing and vine-dressing ; the industries of the place, including the manufacture of cotton and linen, dyeing, and tanni.g, are not very extensive. A specialty of Treves is the preparation of stones for Gothic churches, which are sent off ready to be at once placed in position. A river traffic is carried on in wine, cattle, and wood.

Treves claims to be tho oldeat town in Germany, atd It containe more important Romau remains than any other place in northern isurope. The most remarkable of these is the Porta Nigra, a huge fortified gateway, 115 lect long, 70 to 95 feet high, and 30 feet deep. It is formed of ancemented blocks of sandstone, held logether by clamps of Iron, and now blackened with time; the detaila are very rude. Opinions vary videly as to the date of its erection, but recent anthorities refer it to the lat century of tho Christian era During the Middlo Ages the strncture woa converted into two churches, one above the other; all additious have, however, now bcen remored, except the ajse of the east end. The basilica, long used as the drchiepiacopal palace and now consecrated as a Proteatant charch, probably detes from the reign of Constantine. The so-called Roman baths are in all probability the relica of en extensive imperial palace. Just outside the town are the remains of an amphitheatre, capable of accominolating 30,000 spectators, where Constantine caused eevcrel thousand Franks and Bracteri to le butchered for the public amusement. Perheps the oldest Romen remaina in Treves are some of the piers of the bridge over the Mosellc, dating from about 28 b.c. This bridgc, which is at one corner of modern Treves, lay ncar the mildle of the much more extenaive Roman city. There are alao namerous Roman antiquities iu the neighbourhood of Treves, the inost fmportant of which are the lael column, a sepulchral monnmout of the 2 d century, and tho mosasc pavements at Nennig and Flicssens.

Another group of intereating buildings belongs to the accond period of prosprity enjoyed by Treves under the rule of its medieval prelates. The cathedral, described by Lübke as tho most important example of pre-Carlovingian building in Germany, Hirrore the entire history of the town. Its kernel consists of part of a Romen basilica of the 4 th century, which seems to have Lcen converted into a Chriation church at a very early periorl. It pas restored by Bishop Nicetius about 550, and in the 11th and 12th centuries it was again restored and greatly extended by Archbishop Poppo and his anccessors. Fho adcled an apse at each end and left it substantially in its present form. The cathedral is connected by besutiful cloiaters of the 13th century with the circuler Liebfranenkirche, one of the moss interesting early Gothio churches in Germany ($1227-43$), catching up the architectural thread at the point dropped by the catheriral. Among the treasurea of the latter" is the "holy cost of Treves," belioved by the devout to bo thie ecamleus garment worn by our Saviour et the cracifixion, and said to hare been presented to the town by the empress Helena, the central figure in Treveran Christian legend. Its exhibition in 1844 attracted a million and a half of pilgrims to Treves According to recent anthorities, the earliest churches in Treves wore those of Sts Eucharius, Meximin. Matthew, and Panl, all without the walls, now rebailt or converted to secular purposes Of the modern buildings none call for special remark. The tow dilrary contains abont 100.000 volumes, including several valueble specimens of early printing. Its greatest treasure is the C'odex Aureus, a onnascript of the Gospels preseated to the ebbey of St Maximin by Ada, sister of Cherlemagne. The same building also contains an interesting collection of Roman and medirval antiquitios

A medieval legend, preserved in an inscription on the old Rothes IIans inn, places the foundation of Treves 1300 ycars before that of Rome, and ascribes it to Thelbetas, son of Ninus, king of Assyria But, fable epart, we must atill allow thet Treves has goor cleim to cell itself the oldest town in Germeny. It is a little doubtful whether the Trepiri were of Tentonic or Celtio stock. St Jerome records that the language of the Treviri of the 4 th conturs resembled that of the Ganls of Asia; but, even $1 f$ we ednuit this evidence as uunclusive of their Celtio origin, we most recognize the fact thet thoy were Celts who were lang nndel Tentonic influence. Their sutlientic history begins with the etory of their sobjection by Jnlus

Cæsaı (56 в. C.), who deacriles them as a nerlike race, with the beer cavalry in Gaul. The Romar town, Colonia Augusia Trevirornm (or Treveroraun), was probably founded by the emperor Claudius, and rapidly obtained a wealth and insportance which justified the poes Ausonins (4th century) in describing it as the second motropolis of the enpire, or "Rome beyond the Alps." It became the capital of Belgica Prima, aud during the 4th centnry was a farourita residence of Conetantine and other Roman emperors. Most of tho paleces and publio buildings, of which the remains are atill extant, were built ot this period, while the eurrounding hilla wers covered with villas. Trever was loid in ruins by Attila in 451 , and sbout 465 was permauently taken possession of by the Franka It Fas included in the kingdom of Anstrasia, and became a German city in 870. Like its prototype Rome, it attained a second era of prospority and importance as an ceclesiastical capital (ses below), and in the Middle Ages the "Sancta Civites Trevirorum" swarmed with "religions" of all kinds and graries Unlike most of the German episcopal citles, however, it did not oncceed in shaking off the ecclesiastical yoke, nor did it attain, except transitorily, the position of a frue imperial city. Wars and sieges occasionally checked but did not stop its growth. Art and science were eedulously fostered in the monastic achools, and a nuiversity, founded in 1473 , existed dowa to 1798. The importance of Treves departed with the overthrow of the ccclesiestical principality. In 1786 the last elector shiftod his residence to Coblentz, and from 1794 to 1814 Treves was capital of the French department of the Sarre. Since the latteı date it has belonged to Prussia.

The archbishorric and acclesiastical electorate of Treves, bounded by Nassau, Cologno, Luxemburg, Lorraine, the Rhenish Palatinate, Hesse-Rheinfels, and Katzenelnbogen, had an area of about 3200 square miles and a population of 250,000 to 300,000 . Its suffragan bishops were those of Metz, Toul, and Verdun, and after 1777 also those of Nancy and St Dié. As elector of the German empire the arch bishop took the eecond place, and bore th.e atyleof arch-chencellor of Gaul or Burgundy. Legend places the foundetion of the bashopric of Treves in the 1st century of the Cliristian era, hat the first bishop known to history is Agricins, who flourished abort 314. The eee appears as an archbiehopric in the 9th century, and in the Middle Ages the archbishops attained considerable temporal pover. Among the most prominent were Baldwin of Luxemburg (13971354), brother of the emperor Henry VII., who mpy be iegarted as the founder of the teriitorial greatness of the see and Richard ron Greiffenklen (1511-1531), who distinguished himself by his anccessinl opposition to the Reformation. The last archlishop way Clemens Wenccslans (1768-1802) of Saxony. The part of the erchbishopric on the left bank of the Rhine was taken by France in 1801, and the rest was secularized in favou of the prinee of JJassan Weillurg in 1803. After the fall of Napoleon the archlishuprif was incorporatcd with Prussia. A new bishopric of Treves waj instituted in 1821, the boundaries of which are almost conterminow witil those of the old archbiehopric; the bishop ia a euffragar to the archbishon of Cologne.
See "Augasta Treverorum," ar artlele by E. A. Freeman in the Ertus Quarterty Review Ior July 1877°.
treviranus, Gottfried Reinhold (1776-1837), German naturalist, was born at Bremen, February 4, 1776, studied medicine at Güttingen, in 1797 became professor of mathematics in the Bremen lyceum, and died at Bremen. February 16, 1837.
He made numerons inportant contribntions to comparative anatomy, eapecially in regard to birds and apiders Thongh noted for his lcarning and acnte observation, his stadies in geographical distribution cannot le said to heve led to any very definite results. It is rather on account of his contributions to ætiology thet he doserves to be remembered, though his work in this department hes licen to a great extent overlooked. In the first of his larger works, Biologie oder Philosophio der lebenden Natur, which sppeared from 1802-1805, he geve clear expression to the theory of "deacent with modification." He believel that simple forms (Protists), which he termed "zoophytes," were "the primitive types from which all the organisms of the higher classes hed arisen by grednal development." "Every living creature has a potentiality of endless modification of adapting its atructure to the changes in the external Forld." H_{c} also maintained that each epecies has its dey or period at the end of which it does not become extinct, hut has simply ceased to be, becanse it has become something else. That he atated the theory of descent with mach clearncss, and with a anfficient background of actual koowledge of forms, must be ackoowledged by all; the onls difficulty relates to the question of priority. The first volume of his biology was published in 1802, but he otates that this baul been written abont 1796. Now it was not till 1801 thet Lamarck first began to free himself from the traditional dogma of the lmmnta bility of speeies, and to publish his views of evolution. Neither Goothe nor Oken can be said to have done much more than follove up the ironical insingations of Buffon (1753-76) and the ingenious up the ironics insinuations of Erasinas Darwin, whose Zrenomiz was trauslatad

Into German between 1795 and 1797, while both Treviranus and Lamarek tackled the preblem not merely of the theory of descent but of the mechanism of evolution. On this point the merits of Lamarck certainly outweigh those of his contemporary. Treviranus laid down as a fundamental proposition "that all living forms arc the results of physical influences which are still in operation, and vary only in degree and direction." Like many after him, he directed attention to the influence of the male elements in fertiliza tion as a source of variation, but laid emphasis only on the intra. organismal power of adaptation to aurroundings. Whatever opinion he entertained in regard to the priority and the importance of the contribution made by Treviranus to the theory of evolution, it is at least certain that he was a leamed maturalist and au acute thinker. His most important later work of a synthetic nature was entitled Erscheinunger und Gcsctze des organischen Lebens (1831).

See Evolution ; E. Haeckel's SchöDfungsgesthiches, pp. 83-5; Carua, Geschichte der Zoologie, p. 610.
TREVISO, a town of Italy, in the province of the same nàme, lies in the ruidst of a district of great fertility, at the confluence of the Piavesella with the Sile, which is here navigable for large boats and communicates by canals with the lagoons of Venice (17 miles distant). It is an old town, with narrow irregular colonnaded streets and some good squares. The cathedral of San Pietro, dating from 1141 and restored and enlarged in the 15 th century by Pietro Lombardo, but still unfinished, contains a fine Annunciation by Titian (1519), an Adoration of the Shepherds, the nasterpiece of Paris Bordone (born at Treviso in 1500), and frescos by Pordenone. There are numerous statues and reliefs by Pietro, Tullio, and Martino Lombardo, and by Sansovioo. The Gothic church of San Niccolo (1310-52) contains a fine tamb by Tullio Lombarde, frescos by Ciovanni Bellini, and a large altar-piece by Fra Marco Pensabene and others; in the adjoining chapter-house are forty portraits of celebrated Dominicans by Tommaso da Modena (1352). The Monte di Pietà contains an Entom'~ment by Pordenone (according to others by Giorgione). The churches of S. Leonardo, S. Andrea, S. Maria Maggiore, and S. Maria Maddalena also contain precious art treasures, and the town is enriched besides by various open-air frescos. The town-ball and theatre are also conspicuous buildings. Silk and cotton goods, cutlery, majolica, and paper are the chief manufactures of the place, and an active trade is also carried on in corn, fruit, and cattle. The population in 1881 was 31,249 .
Treviso, the ancient Tarvisium, is not mentioned by any of the ancient geegraphers, though Pliny speaks of the Silis as floming "ex montibus Tarvisanis." In the 6th century it appears as an important place. From 1318 it was for a short time the seat of a university (see Universitues). In 1339 it came under the Venetian sway. In the 15 th century its walls and ramparts were renewed under the direction of Fra Giocondo, two of the gates being built by the Lombardi. Treviso was taken in 1797 by the French under Morties (duke of Treviso). In March 1848 the Austrian garrison was driven from the town by the revolutionary party, but iu the following June the town was bombarded and compelled to capitulate.

TREVITHICK, Richard (1771-1833), inventor of the locomotive, was descended from a family of great antiquity in the county of Cornwall, and was born 13th April 1771, in the parish of $11 l o g a n$. Shortly afterwards the family removed to Penponds, near Camborne, where the boy attended his first and only school, his attainments beiag limited to reading, writing, and arithmetic. Though slow and obstinate as a scholar, he spent much time drawing lines and figures on his slate, and possessed such instinctive skill in mechanics that while still a youth be was able to solve a difficulty in the correction of underground levels which had puzzled some of the mine agents. He inherited more than the average strength for which his family were famous, standing 6 feet 2 inches in height, while his frame was the very model of an athlete. His feats in wrestling and lifting and throwing weights were unexampled in the district. At the age of eighteen he began to assist his father as mine manager, and, manifesting great fertilitv of mecbas:ical in-
vention, was soon recognized as the great rival of Watt in improvemeats on the steam-engine (see vol. xxii. p. 476). On the death of his father in 1797, he succeeded him as leading engineer in Cornish mining. He married the same year. His earliest invention of importance was his improved plunger pole pump (1797), which has superseded all others for deep mining. In 1798 he applied the principle of the plunger pole pump to the construction of the waterpressure engine, which he subsequently improved in various ways. About this time he also perfected a high-pressure non-conducting steam-engine, which became a successful rival of the low-pressure steam-vacuum engine of Watt. At an early period he had begun experiments in the construction of locomotives, and a model constructed by him before 1800 is now in the South Kensington Museum. On Christmas eve 1801 his common road locomotive carried the first load of passengers ever conveyed by steam, and on 24th March 1802 he and Andrew Vivian applied for a patent for steam-engines in propelling carriages. In 1803 his locomotive was run in the streets of London, from Leather Lane by Gray's Inn Lane and along Oxford Street to Paddington, the return journey being made by Islington. The cost was, however, found too great, and his thoughts were now directed to the construction of a steam locomotive for tramways, with such success that in February 1804 he worked a tramroad locomotive in Wales, ruming with facility up aod down inclines of 1 in 50 . In 1808 ho constructed a circular railway in London near Euston Square, on which the public were carried at the rate of twelve or fifteen miles an hour round curves of 50 or 100 feet radius. The ideas of Trevithick were successfully developed by Stephenson so as to revolutionize the system of modern travelling, but Trevithick had made considerable progress towards this before Stephenson had begun his cxperiments. Trevithick applied his high-pressure engine with great success to rock boring and breaking, as well as to dredging. In 1806 he entered into a twentyone years' engagement with the board of Trinity House, London, to lift ballast from the bottom of the Thames, at the rate of 500,000 tons a year, for a payment of 6 d . a ton. The following year be was appointed along with Vazie to execute the Thames driftway, but the work was abandoned owing to disputes about payment when unexpected difficulties had occurred. He then set up workshops at 72 Fore Street, Limehouse, for the construction of iron tanks and buoys and model iroo ships. He was the first to recognize the importance of iron in the construction of large ships, and in various ways his ideas have also influenced the construction of steamboats. In the application of steam to agriculture the name of Trevithick occupies one of the chief places. A high-pressure steam threshing engine was erected by him in 1812 at Trewithen, the property of Sir Cbarles Harrkins, while, in the same year, in a letter to the Board of Agriculture, he stated his belief that every part of agriculture might be performed by steam, and that such a use of the stean-engine would "double the population of the kingdom and make onr markets the chcapest in the world." In 1814 he entered on an agreement for the construction of engines for the Peruvian mines, and to superintend their working removed to Peru in 1816. Thence he went in 1822 to Costa Rica. He returned to England in 1827, and in 1828 petitioned parliament for a reward for his inventions, but withont success. He was equally unsuccessful in his endeavours to induce the lords commissioners of the Admiralty to afford him facilities for demonstrating the value of certain improvements he claimed to have made in steam navigatior. He died 22 April 1833.

See Life of Rickard Trevithick, with an Account of his Inventions, by Francis Trevithick, C. E., 2 vols., 1572.

TRIAL, in law, is the examination of, a cause before a conrt of justice. It is the stage in the cause next after Pleading (q.v.). Advance in legal development is generally marked by difference in the mode of trial. This was especiully the case in the history of Roman law, and it has been the same in England (see Action). Many forms of trial, notably those by Ordeal ($q . v$.), by wager of battle or of law (see Wager), and by grand assize, have become obsolete, and new forns have been created by legislation in order to meet altered circumstances of eociety Up to a very recent date the tendency of the Roman and English systems was in opposite directions. In the former and in systems fernded on it, such as the Scotch, trial by the judge became the rule, in the latter trial by judge and jury. But the Judicature and Surmary Jurisdiction Acts have recently made considerable innovations upon the old common-law right to trial by JURY (q.v.) or per pais, as it was also called. The modes of trial in England are very numerous, as to a certain extent each Court (q.v.) has its own procedure. Certoin broad rules of justice are observed by all courts, such as that both sides are to be heard, or to have an opportunity of being heard, before decision, and that (unless in very oxceptional cases) the trial is to be in public.
For purroses of conveuience rather tlian as a scientific divisiou trials may be divided into civil and criminal. An ordinary trial in a civil case may ho sither in a court of appellate jurisdiction (in which case it is perhaps more properly called a hearing), in the High Court of Justica before a judge or referee, or in an inferior court. Where the trial is in a court of first instance, it may be either with or without a jury. In Chancery and Admiralty proceedings a jury is not used, and the right to a jury in tho Queen'a Bench Division has been considerably restricted by the Rules of the Supreme Court, 1883, Order xxsyi. Before these rule either party had an absolute right to have issues of fact in an action in that division tried by jury. Now, unless in certain actions, mainly of tort, in which a jury is as of right, a jury can only be obtained by application of a party to the action, subject to the power of the court to direct trial withont a jury of any issue requiring prolonged examination of documents or accounts or ecientific or local investigation: The question of Vevee (q.v.) in civil actions has ceased to Se of importance sinco tho Judicature Acts. Most courts are entitled in proper cases to the assistance of assessors. Trial with assessors is in frequent use in the Admizalty Division. A trial whether by jury or not may be by affidavit or on viva vocce evidence. The lattor is the rule where the trial is by jury. In a county conrt a jury of five is allowed in certain cascs on application. In other inferior courts of local jurisdiction a jury is aometimes tha rule, as in tho (London) Lord Mayor's Court, sometimes not, as in the Chancellor's Court at Oxford or Cambridge. In criminal casea the trial ie by jury, axcept whare a court of Sumpary Jurisdictien (a.v.) is ampowered to try offonces of a comparatively unimportant nature. The right to trial by due process of law before condemiation is secured to the subject by sec. 29 of Magna Charta. A new trial masy be ordered in civil actions and in misdemeanours (in the Latter case only after conviction of tho defendant) on various grounds, the most usual of which are misdirection by the judge, improper adinission or rejection of evidence, and the finding of a veruict agaiust the weight of evidence. In actions in the High Court nery trials are less liberally granted than was the caso beforo the Judicature Acts, Order $x x x i x$. considerably restricting the right. An application for a naw trial of an action is no Songer made by exparte motion in the first instance, as was the course before 1883, lut upon notice of motion. Besidee the ordinary modes of trial, there ara othera of an exceptional nature or of rars occurreuce. In a tial by arbitration, the tribunel is chosen by the parties themselves, and they are nat entitled to object to the trial as conducted by the arbitrator ss long as it conforms to rules of ordinary justice. Peers are tried for treason or felony before the House of Lords, or the court of the Lord High Steward if the trial takes place during the recess of parliament. A trial at bar-a survival of the universal mode of trial before the writ of $\mathbb{N I S I I}^{\text {PrIve }}(q . v$.$) was given by tha$ Statute of Westminster tha Second-takes place before three or four judges of the Queen'e Bench Division, and is in use as of right where the crown is interastad in the litigation, or at the discretion of the court in other cases where questions of unuaual importance or difficulty are raisod. The trial of a petition of right (see Pertition, voL xviii. . P 705) is now assimilated to that in civil sctions. Trialg by record, by cartificate, snd by iuspection, though not expreasly abolished, appear to have become obsolete. Impeachment' (q.v.) is etill a right of tha House of Coinmons, but has not recently bceu
exercised. Court-Martial (q.v.) is the mode of trial for offences committed by persons in the naval or military aervice of the crown.

In Scotland and the United States trials are elther with or without a jury. The most usual trials in Scotland are those before a judge of the Court of Session or the High Court of Justiciary or in a sheriff court. In the United States trials are either in a United States or a State court; in the latter case thay aro regulated by State legislation.

TRIBONIAN, the famous jurist and minister of Justinian, was bern in Pamphylia in the latter part of the 5 th century. Adopting the profession of an advocate, he came to Constantinople and practised in the prefectural courts thcre, reaching such eininence as to attract the notice of the emperor Justinian, who appointed him in 528 one of the ten commissioners directed to prepare the first Codex of imperial constitutions. In the edict creating this commission (known as Hæc Qux) Tribonian is named sixth, and is called "virum magnifcum, magisteria dignitate inter agentes decoratum" (see Hæc Quæ and Summa Reipublicx, prefixed to the Codex). When the commission of sixteen eminent lawyers was created in 530 for the far more laberious and dificult duty of compiling a collection of extracts from the writings of the great jurists of the earlier empire, Tribonian was made president and no doubt general director of this board. He had already been raised to the office of quæstor, which at that time was a sort of ministry of law and justice, its holder being the assessor of the emperor and his organ for judicial purposes, something like the English lord chancellor of the later Middle Ages. The instructions given to these sizteen commissioners may be found in the constitation Deo Auctore (Cod., i. 17, 1), and the method in which the work was dealt with in the constitution Tanta (Cod., i. 17, 2), great praise being awarded to Tribonian, who is therein called ex-qurestor and ex-consul, and also as magister officiorum. This last constitution was issued in December 533, when the Digest was promulgated as a law-book. During the progress of the work, in January 532, there broze ont in Constantinople a disturbance in the hippodrome, which speedily turned to a terrible insurrection, that which goes in history by the name of Nika, the watchword of the insurgents. Tribonian was accused of having prostituted his office for the purpeses of gain, and the mob searched for him to put him to death (Procop., Pers., i 24-26). Justiuian, yielding for the moment, removed him from office, and appointed a certain Basilides in his place. After the suppression of the insurrection the work of codification was resumed. A little earlier than the publication of the Digest, or Pandects, there had been published another but much smaller law-book, the Institutes, prepared under Justinian's orders by Tribonian, with Theophilus and Dorotheus, professors of law (see Preface to Institutes). About the same time the emperor placed Tribonian at the bead of a fourth commission, consisting of himself as chief and four others,-Dorotheus, profcssor at Beyrut, and three practising advocates, whe were directed to revise and re-edit the first Codex of imperial constitntions. The new Codex was published in November 534 (see constitution Cordi Nobis prefixed to the Codex). With it Tribonian's work of codification was completed. But he remained Justinian's chief legal minister. He was reinstated as questor some time after 534 (Procop., Pers., i. 25 ; Anecd., 20), and seems to have held the office as long as he lived. He was evidently the prime maver in the various changes effected in the law by the novels of Justinian (Novellee Constitutiones), which became much less frequent and less important after death had removed the great jurist. The date of his death has been variously assigned to 545,546, and 547. Procopius says (Arecd.4 20) that, although he left a son and many grandchildiren, Justinian confiscated part of the inheritance.

The above facts, which are all that we know about Tribonian, rest on the authority of his contemperary Procopius and of the varions imperial constitutions already cited. There are, however, two articleg in the Lexicon of Suidas under the name "Tribonianos." They appear to be different articles, purporting to refer to different persons, and have been generally so received by the editors of Suidas and by modera legal historians Some authorities, however, ae for instance Gibbon, have supposed them to refer to the same person. The first article is unquestionably meant for the jurist. It is based on Procopius, whose very words are to some extent copied, and indeed it adds nething to what the latter tells us, except the statement that Tribonian was the son of $\$ 1$ acedonianus, was $\alpha \pi \delta \delta \delta \leqslant \eta \gamma \delta \rho \omega \nu$ т $̂ v \nu \dot{v} \pi d \rho \chi \omega v$, and was a heathen and atheist, wholly averse to the Christian faith. The second article says that the Tribonian to whom it refers was of Side (in Pamphylia), was also $\alpha \pi \delta \delta \iota \kappa \pi \gamma \delta \rho \omega \nu \tau \hat{\omega} \nu \nu \dot{\nu} \pi \dot{p} p \chi \omega \nu$, was a man of learning, and wrote parious books, among which are mentioned certain astronomical treatises, a dialogue On Happincss, and two addresses to Justinian. None of these books relate to law; and the better opinion seems to be that there were two Tribonians, apparently contemporarics, though possibly some of the attributes of the jurist have been, by a mistake of the compilers or transcribers of the Lexicon of Suidas, extended to the man of letters of the same name.
The character which Procopius gives to the jurist, even if touched by personal apite, is entitled to some credence, because it is contained in the Histories and not in the scandalous and secret Anecdota. It is as follows:-"Tribonian was a man of great natural powers, and had attained as high a culture as any one of his time; but he was greedy of money, capable of selling justice for gain, and every day ho repcaled or enacted some law at the instance of people who purchased this from him according to their several needs. . He was pleasant in manner and generally agreeable, and able by the abundance of his accomplishments to cast into the shade his faults of avarice " (Pers., i. 24; 25). In the Anecdota Procopius adds as an illustration of Juatinian's vanity the story that he took in good faith an observation made to him by Tribonian while sitting as assessor, that he (Tribonian) greatly feared that the emperor might some day, on account of bis piety, be suddenly carried up into heaven. This agrees with the character for flattery which the minister seems to lave enjoyed. The charge of heathenism we find in Suidas is probahle enough; that is to say, Tribonian may well have beeu a crypto-pagan, like many other eminent coarticrs and litterateurs of the time (including Procopius himself), a person who, while professing Christianity, was at least iadifferent to its dogmas and rites, cheriahing a seutimental recollection of the older and more glorions days of the empire.

In modern times Tribonian has been, as the master workman of Justinian'o codification and legislation, charged with three offences, -bad Latinity, a defective arrangement of the legal matter in the Code and Digest, and a too free handling of the extracts from the older jurists included in the latter compilation. The first of these charges cannot be denied; but it is hard to see why a lawyer of the 6 th century, himself born in a Greek-speaking part of the cmpire, should be expected to write Latin as pure as that of the age of Cicero, or even of the age of Gaius and the Antonines. To the second charge also a plea of guilty must be entered. The Code and Digest are badly arranged according to our notions of scientific arrangement. These, however, are modern notions. The ancienta generally cared but little for what we call a philosophic distribution of topics, and Tribouian seems to have merely followed the order of the Perpetual Edict which custom had already establiahed, and from which custom would perhaps have refused to permit him to depart. He may more fairly be blamed for not having arranged the extracts in each title of the Digest according to some rational principle; for this would have been casy, and would bave spared much trouble to students and practitioners ever since. As to the third complaint, that the compilers of the Digest altered the extracts they collected, cutting out and inserting words and sentences at their own pleasure, this was a procesa absolutely necessary according to the instructions giveu them, which were to prepare a compilation representing the existing law, and to be used for the actual administration of justice in the tribunals. The so-called Emblemata (insertiona) of Tribonian were therefore indispensable, though, of course, we cannot say whether they were always made in the best way. Upon the whole subject of the codification and legislation in which Tribonian bore a part, gee Justinian.

Tribonian, from the little we know of him, would seem to have been a rcmarkable man, and in the front rank of the great oneg of his time. There is nothing to chow that he was a profound and philosophical jurist, like Papinian or Ulpian. But he was an energetic clear-headed man, of great practical force and skill, cultivated, accomplished, agreeable, flexible, possibly unscrupulous, just the gort of person whom a restless despot like Justinian finds useful. His interest in legal learning is proved by the fact that he had collected a vast legal library, which the compilers of the Digest found valuable (seo const. Tanta).
The usual criticisms on Tribonlan mav be found in the Antr.Tribontanns
(1567) of Francis Hotman, the aim of which is ohown by its alternative title, Sive discursus in quo jurisprudentiee Tribonianeas sterilitas et legum palriarurn excellentia exhibetur; and au answer to them in J. P. von Ludewig, Vita Justiniani et Theodorse, nec non Tribonianio
(J. BRe)

TRIBUNE (tribunus) was a name assgged to officers of several different descriptions in the constitution of ancient Rome. The connexion of the word with tribus, "tribe," is obvious. The original tribunes were no donbt the commanders of the several contingents of cavalry and infantry which were supplied to the Roman army by the early gentilician tribes,-the Ramnes, the Tities, and the Luceres. In the historical period the infantry in each legion were commanded by six tribunes, and the number six is probably to be traced to the doubling of the three tribes by the incorporation of the new elements which received the names of Ramnes secundi, Tities secundi, Inceres secundi. The tribuni celerum or commanders of the cavalry no longer existed in the later times of the repiublic, having died out with the decay of the genuine Roman cavalry. ${ }^{1}$ So long as the monarchy lasted these tribunes were deubtless nominated by the commander-inchief, the king; and the nomination passed over on the establishment of the republic to his successors, the consuls. But, as the arny increased, the popular assembly insisted on laving a voice in the appointments, and from 362 s.e. six tribunes were annually nominated by popular vote, while in 311 the number was raised to sixteen, and in 207 to tweuty-four, at which figure it remained. The tribunes thus elected ranked as magistrates of the Ioman people, and were designated tribuni militum a populo, while those who owed their office to the consuls bore the curions title of tribuni rufuli. The rights of the assembly passed oa to the emperors, and "the military tribunes of Augustns" were still contrasted with those nominater in the camp by the actual commanders. The obscure designation tribunus ararius, "tribune of the treasury," had also, in all probability, a connexion with the early orgazization of the army. The officer thus designated was at any rate the paymaster of the troops, and the soldier who was defranded of his pay was allowed to exact it from this tribune by a very summary process. There was still another and important class of tribunes who owed their existence toythe army. In the long struggle between the patrician and plebeian sections of the population, the first distinctions in the public service to which the plebeians forced their way were military, and the contest for admission to the consulate was in large part a contest for admission to the supreme command of the national forces. In 445 в.c., the year in which mixed marriages of patricians and plebeians were for the first time permitted, power was given to the senate (then wholly patrician) of determining from year to year whether consuls or military tribunes with consular authority (tribuni militares consulari potestate or imperio) should be appointed. But, even when the senate decided in favour of electing tribunes, no election was valid without the express sanction of the senate superadded to the vote of the centuriate assembiy. If it happened to be too invidious for the senate openly to cancel the election, it was possible for the patricians to obtain a decision from the sacred authorities to the effect that some religious practice had not been duly observed, and that in consequence the appointment was invalid. According to tradition, reconrse was had to this device at the first election, a plebeian having been successful. Forty-five years elapsed after the creation of the office before any plebeian was permitted to fill it, and it was held by very few clown to the time at which it was abolished (367 в.c.) and the plebeians were fully admitted to the consulate. The number of consular

[^240]triounes elccted on each occasion varied from three to six ; there was no jear without a patrician, and to the patrician members were probably confined the most highly esteemed daties, those relating to the administration of the law and to religion.

But by far the most important tribunes who ever existed in the Roman community were the tribunes of the commons (tribuni plebis). These, as has been explained in Rome (vol. xx. p. 736 sq .), were the most characteristic outcome of the long struggle between the two orders, the patrician and the plebeian. When in 494 b.c. the plebeian legionaries met on the Sacred Mount and bound themselves to stand by each other to the end, it was determined that the plebeians should by themselves annually appoint executive officers to stand over against the patrician officers, -two tribunes (the very name commemorated the military nature of the revolt) to confront the two consuls, and two helpers called ædiles to balance the two patrician helpers, the quastors. The came ædile is obviously connected with sedes, "a tcmple," and is an indication of the fact that there was a religious core to the insurrection, just as there was a religious core to the patrician opposition. The temple of Diana and Ceres on the Arentine Hill became for a time to the plebeians what the temple of Saturn was to the patricians, -their official centre and their record office. The insurgent leaders also pressed religion into their service in another may. The masses assembled on the Sacred Mount bound themselves by a solemn oath to regard the persons of their tribunes and ædiles as inviolable, and to treat as forfeited to Diana and Ceres the lives and property of those who offered them insult. That this purely plebeian oath was the real ultimate basis of the sanctity which attached to the tribunate during the whole time of its existence can bardly be believed, though this view has had powerful support both in ancient and in recent times. The revolution must have ended in something which was deemed by bottr the contending bodies to be a binding compact, although the lapse of time has blotted out its terms. The historian Dionysius may have been ouly technically wrong in supposing that peace was concluded between the two parties by the fetial priests, with the forms adopted by Rome in making treaties mith a foreign state. If this were fact, the "sacrosanctity" of the tribunes would be adequately explained, because all such formal fodera were "sacrosanct." But, notwithstanding that the plebeians may safely be assumed to have been conscious of baving to a large extent sprung from another race than the patricians and their retainers, it is not likely that the feeling was sufficiently strong to permit of the compact taking the form of a treaty between alien powers. Yet there must have been a formal acceptance by the patricians of the plebeian conditions; and most probably the oath which was first sworn by the insurgents was afterwards taken by the whole community, and the "sacrosanctity" of the plebeian officials became a part of the constitution. There must also have been some constitutional definition of the powers of the tribunes. These rested at first on an extr nsion of the power of veto which the republic bad introduced. Just as one consul could annul an act or order of his colleague, so a tribune could annul an act or order of a consul, or of any officer inferior to him. There was no doubt a vague understanding that only acts or orders which sinned against the just and established practice of the constitution should be annulled, and then only in cases affecting definite individuals. The tribune was to give his help against illegality in concrete instances. The cases which arose most commonly concerned the administration of justice and the levying of troops.

Although the revolution of 494 gave the tribunes a footbold in the constitution, it left them with no very definit.
resources against breaches of compact by the patricians. The traditional history of the tribunate from 494 to 451 B.c. is obscure, and, so far as details are concerned, nearly worthless; but there is a thread running through it which may well be truth. We hear of attacks by patricians on the newly won privileges, even of the assassination of a tribune, and of attempts on the part of the plebeians to bring patrician offenders to justice. The assembled plebeians attempt to set up a criminal jurisdiction for their own assembly parallel to that practised by the older centuriate assembly, in which the nobles possess a preponderating influence. Nay, more, the plebs attempts something like legislation; it passes resolutions which it hopes to force the patrician body to accept as ralid. As to details, only a few are worth notice. In the first place, the number of tribunes is raised to ten, how we do not know; but appareatly some constitutional recognition of the increase is obtained. Then an alteration is made in the mode of election. As to the original mode, the ancient authorities are hopelessly at rariance. Some of them gravely assert that the appointment lay with the assembly. of the curix-the most ancient and certainly the most patrician in Rome, even if we allow the view, which, in spite of great names, is more than doubtful - that the plebeians were members of it at any time when it still possesscd political importance. The opinion of Mommsen about the method of election is more plausible than the others. It was in accordance with the Roman spirit of order that the tribunes, in summoning their assemblies, should not ask the plebeians to come ϵn masse as individuals, and vote by heads, but should organize their supporters in bands. The curia was certainly a territorial district, and the tribunes may have originally used it as the basis of their organization. If tribunes were elected by plebeians massed curiatim, such a meeting would easily be mistaken in later times for the comitia curviata. At any rate, a change was introduced in 471 by the Publilian Law of Volero, which directed that the tribunes should be chosen in an assembly organized on the basis of the Servian or local tribe, instead of the curia. This assembly was the germ of the comitia tributa. The question by what authority the Law of Volero was sanctioned is difficult to answer. Possibly the law was a mere resolution of the plebeians with which the patricians did not interfere, because they did not consider that the mode of election was any concern of theirs. In the first period of the tribunate the tribunes almost certainly agitated to obtain for their supporters a slare in the benefits of the state domain. Aud, whatever riew may be taken of the movement which led to the decemvirate, an important element in it was of a certainty the agitation carried on by the tribunes for the reduction of the law of Rome to a written code. Until they obtained this, it was impossible for them effectually to protect those who appealed against harsh treatment by the consuls in their capacity of judges.
During the decemvirate the tribnnate was in abeyance. It was called into life again by the revolution of 449 , which gave the tribunes a considersbly stronger position. Their personal privileges and those of the ædiles were renewed, while sacrosanctity was attached to a body of men called judices decemviri, who secm to have been the legal assistants of the tribunes. The road was opened up to valid legislation by the tribunes throngh the assemhly of the tribes, but in this respect they were submitted to the control of the senate. The growth of the infucace of the tribe assembly over legislation belongs rather to the history of tho Comitia (q.v.) than to that of the tribunate. After the Hortensian Law of 287 g.c. down to the end of the repnblic nearly all the legislation of Rome was in the hands of the tribunes, The details of the history of the tribunate in itstsecond period, from 449 to 367 b.C., are hardly less obscure than those which belong to the earlier time. There was, however, on the whole, undoubtedly an advance in dignity and importance. Gradually a right was acquired of watching and interfering with the proceedings of the senate, and even with legislation.

Whether the absolnte right of veto had been achieved before 967 may well ba doubted. But the original auxitiun, or right of protecting ildividuals, was, during this period, undergoing a very remarkable expansion. From forbidding a single act of a magistrate in relation to a single person, the tribunes advanced to forbidding by anticipation all acts of a certain class, whoever the persons effected by them might prove to be. It therefore became aseless for the senate or the comitis to pass ordinances if a tribnoo was reary to torbid the magistrates to carry then out. Ultimately the mere announcement of euch au inteution by a tribune was sufficient to cause the obnoxious project to drop: that is to say, the tribunes acquired a right to stop all business both in the delibcrative assembly, tha aenate, and in the legislative assemblies, the comitia. The technical name for this right of veto is intercessio. To what extent the tribunes during the time from 449 to 367 took part in criminal prosecutions is matter of doubt. The XII. Tables had aettled that offenders could only be punished in person by the centuries, but tradition speaks of prosecutions by tribunes before the tribes where the penalty sought was pecuniery. The two main objects of the tribunes, however, at the time of which we are speaking were the opening of the consulate to plebeians and the regulqtion of the state domain in the interests of the whole community. Both were attained by tha Licinio-Sextiau Lawe of 367.
Then a coosidcrable change came over the tribunata. From being an opposition weapon it became an important wheel in the regular machine of etate. The senate became more and more plebeian, and a new body of nobility was evolved which comprised both orders in the state. Tha tribunes at first belonged to the same notable plebeian families which attained to the consulate. The old friction between senate and tribunes disappeared. It ras foond that the tribunate served to fill aome gaps in the constitution, and its power was placed by common consent on a solid constitutional besis. From 357 to 134 b.c. (when Tiberius Gracchus became tribune) the tribunate was for the most part a mere organ of eenatorial government. As the change made by the Grecchi was rether in the practice than in the theory of the tribunate, it will be convenient at this point to give a definite skotch of the couditions and privileges attaching to tho office.
Even after the difference between patrician and plebeian birth had ceased to bo of much practical consequence in other directions, the plebeian charactar was e necessity for the tribune. When the patricians P. Sulpicius Rufus and, later, P. Clodius (the antagonist of Cicero) desired to enter on a demagogic course, they were compelled to divest themselves of their patrician quality by a peculiar legal process. Even the patricians who became eo by mere fiat of the ermperors were axcluded from the tribunate. The other nccessary qualifications were for the most part such as attached to the other Roman magistracies, -complete citizenship, absence of ccrtain conditions regarded as disgracoful, fulfilment of military duties. The minimum age required for the office wes, as in the case of the quæstorship, twenty-seven. The tribunate stood outsida the round of magistracies the conditions of which were regulated by the Villian Lavy of 180 B.c. The election took place in a puraly plebeian assembly, ranged by tribes, under tha presidency of a tribune selected by lot. The tribune was bound by law to sce a complete aet of ten tribunes appointed. Tcchnically, tho tribunes wero reckoned, not as magistrates of tho Roman people, but as magistrates of tho Roman plebs; they therefore bad no special robe of office, no lictors, but only messengers (viatorcs), no official chair, like the curule seat, but only benches (subsellia). Their right to sommou the plebs together, whether for the purpose of listening to a speech (in which case the meetiog was a contio) or for passing ordinances (comitia tribuia.), was rendered absolute by the "laws under sacred sanction" (leges sacratas), which bat been incorporated with the constitution on tho abolition of the decemvirate. The right to summon the senato and to lay business before it was acquired eoon after 367, but was seldom exercised, as the tribunes bad abundant mcans of securiug what they wanted by pressure applied to the ordinary presidents, - the consuls or the urben pretor. When an interregnum came about and there were no "magistrates of the Romen poople," the plebeian tribunes became the proper presidents of the senate and couductors of ordinary state business. At the end of the republic there were interregna of several months' duration, when the tribunes beld a position of more than usual importance. A tenure of the tribunate did not, until a comparatively late period (probebly abont the time of the Second Punic War), confer a claim to a permanent seat in the senate. The condidates for the office were mainly young men of gocd family who were at the beginning of their political career, but the office was often filled by older men of ambition who were etruggling upwards with few advantages. The plebeian ædiles very soon after 367 becsme dissociated from the tribunes and associated with the curule ædiles, so that in the political hierarchy they really ranked higher than those who were originally their superior officers.

The real kernel of the tribnne's power consisted in bis inter. sessio or sight of annulling ordinances, whether framed by the senate
or proposed by a mogistrate to the comitic, or issued by a magistrate in pursuance of his office. From 367 B.C. down to the time of the Gracchi the power of veto in public matters was on the whole nsed in the interesta of tha aristocratic governing families to check opposition arising in their own ranks. A recalcitrant consul was most readily brought to obedience by an exercise of tribunician power. But, although modern readers of the aucient bistorians are apt to carry away the idea that the tribunate was au intensely political office, it is safe to say that the occasions on which tribnnes found it possible to play a prominent part in politics were extremely few, even in the late republic. On the other hand, the tribunes found a field for constant activity in watching the administration of justice and in rendering assistance to those who had received harsh treatment from the magistrates. The tribunes were in fact primarily legal functionaries, and constituted in a way the only court of appeal in republican Rome. It was to this end that they were forbidden to pass a whole night away from the city, except during the Latiu festival on the Alban Mount, and that they mere expected to keep their doors open to suppliants by night as well as by day. They held court by day in the Forum close by the Porcian basilica, and frequently made elaborate legal inquiries into cases where their holp was sought. Naturally this ordinary humdrum work of the tribunes has left little mark on the pages of the historians, but we hear of it not unfrequently in Cicero'e epeeches and in other writings which daal with legal mattere. According to the general priaciple of the constitution, magistrates could forbid the acts of magistrates equal to or inferior to themselves. For this purpese the tribunes were deemed ouperior to ell other officers. If a tribune exercised his veto no other tribune conld annul it, for the veto could not be itself vetoed, but it was possible for another tribuna to protect a definite individual from the consequences of disobelience. The number of the tribunes (ten) made it always posaible that one might baulk the action of another, except at times when popular feeling was strongly rouaed. In any case it was of little use for a tribune to move in any important matter unlesa ha had secured the co-operation or at least the neutrality of all his colleagues. The vetc was not, however, absolute in all directions. In come it was limited by statute: thus the law passed by Gaius Gracchus about the consular provinces did not permit a tribune to veto the annual decree of the scuate concerning them. When there Fas a dictator at the head of the state, the veto was of no avail against bim. One of the important political functions of the tribunes was to condnct prosecutions of state offenders, particularly ex-magistrates. These prosecutions began with a sentence pronounced by the tribuno upon the culprit, whereupon, exercising the right given him by the XII. Tables, the culprit appealed. If the tribune sought to inflict punishment on the culprit's person, the appeal was to the essembly of the centuries; if he wished for a large fine, the appeal was to the assembly of the tribes. As the tribune had no right to summon the centuries, ho bad to obtain the necessary meetings through the urban protor. In the other event he himself called together the tribute assembly and proposed a bill for fining the culprit. But the forms of trial gone through were very similar iu both cases.

It is commouly stated that a great change passed over the tribunate at the time of the Gracchi, and that from their day to the end of the republic it was used as an instrument for setting on foot political agitation and for inducing revolutionary changes. This view is an inversion of the facts. The tribunate did not create the agitation and the revolutions, but these found vent through the tribunate, which geve to the democratic leaders the hope that acknowledged evils might be cured by constitutional means, and in the desperate otruggle to realize it the best democratic tribunes strained the theoratic powers of their office to their muin. Far the bad tribunes did not hesitate to use for bad ends the powers which had been strained in the attempt to eecure what was good. But herein the tribunate only fared like all other parts of the republican constitution in its last period. The consuls and the senate mere at least as guilty as the tribunes. After a serere restriction of its powers hy Sulla and a restoration by Pompey, which gave a twenty years' lespite, the tribunate was merged into the imperial constitution, of which indeed it becam. the chief corner-stone. The emperors did not become tribunes, bu took ap into their privileges the essence of the office, the "tribunicien authority." This dis. tinction between the cssential principle of the office and the actual tenure of the office was a creation of the late republic. Pompey, for example, when be went to the East, was not made procousul of all the Eastern provincee, but he exercised in them a "pro. consular autbority" which was superior to that of the actual proconsuls, -an authority which was the prototype of the imperial authority on its military sile. Siznilarly tho emperor, as civil governor, without being tribune, exercised powers of like quality with the powers of the tribune, though of euperior force. By virtue of his tribunician authority he acquired a, veto on legislation; he hecame the supreme court of appeal for the empire, and to his pere son was attacked the aocient sacrosanctity. Augustus showed the highest atatesmanship in founding his power upoa \& metamorphosed
tribunate, rather than upon a metamorphosed dictatorship, non traditions which wera democratic rather than upon traditions which were patrician and optimate. The tribunes continued to exist till a late period, with gradually vanishing dignity and rights; but it is not zecessary here to trace their decay in detail.

The name "tribune" was once again illuminated by a passing glory when assumed by Cola di Rienzi. The movement which he headed was in many respects extremely like the early movements of the plebcians against the patricians, and his scheme for nniting Italy in one free republic was strangely parallel with the greatest dream of the Gracchi. See Rome, vol. xx. p. 800 sq.
The history of the trihunate is interwoven with that of Rome, and must, to a lerge extent, be sought for in the same sonrces. The principles attaching to the ofice are profoundly analysed by Mommsen in his staatsrecht, and are clearly set forth by E. Herzog in his Geschichte u. Systcm der römischen Staalsverfassung (Leipsic, 1884).
(J. S. R.)

TRICHINA, TRICHINOSIS. See Nematoidea, and Pafasitism, vol. xviii. p. 270.

TRICHINOPOLI, a district of British India, in the Madras presidency, lying between $10^{\circ} 37^{\prime}$ and $11^{\circ} 30^{\prime} \mathrm{N}$. lat. and $78^{\circ} 12^{\prime}$ and $79^{\circ} 30^{\prime} \mathrm{E}$. long. Its area is 3561 square miles. It is bounded on the north and north-west by Salem, on the north and north-east by South Arcot, on the east and sonth-east by Tanjore, on the south by Pudukottai state and Madura, and on the west by Coimbatore. The surface is generally flat, though diversified by masses of crystalline rock, of which the Trichinopoli rock in the fort is a well-known example. The district is well wooded, though nothing worthy of the name of forest is to be found in it. The only mountains are the Pachaimalais, which rise to 2500 feet and extend into Salem district. The Kaverr (q.v.) and its branch the Calerun are the only rivers of any importance. Trichinopoli has numerous roads, and the South Indian Railway traverses it from east to west. The climate is very hot, and not liable to great, variations; the annual average rainfall is about 38 inches.
In 1881 the population of the district was 1,215,033 (males 586,434, females 628,599), of whom Hindns numbered 1,119,434, Mohammedans 34,104, and Christians 58,809. The only town with a population exceeding 10,000 is Trichinopoli, the capital, with 84,449 inhabitants. This city is chiefly noticeable for its strong fort, perched on a granite peak 500 feet high, and the group of temples and temple bvildings situated on and around it. The town next in importance is Srirasgam (q.v.). The chief crops of the district are rice, cotton, tobacco, indigo, sugar-cane, cocoa-nut, plantain, areca-nut, and chillies; and the most important local industries are weaving and the manufacture of cigars. The principal exports are grain of all kinds, especially rice; the imports, tobacco and salt. In 1885-86 the gross revenue of the district was $£ 225,896$, the land-tax yielding $£ 185,889$. Trichinopoli district, along with the rest of the Carnatic, of which it formed part, passed to the British by treaty in 1801.

TRIC TRAC. See Bacrgammon, vol. iii. p. 199.
TRICYCLE. Though velocipedes were made and used more than one bundred years ago, none were practically successful until the brothers Starley constructed in 1876 the Coventry tricycle. One of the earliest descriptions of a cycle occurs in the Journal de Paris of 17 th July 1779. Somewhat later M. Richard invented a machine driven by mechanism almost identical with that of the modern omnicycle, but without the expanding segments. Early in the 19th century the cranked axle worked by treadles and levers came into fashion; then the heavy four-wheelers were preferred. All these machines, however, laboured under three fatal defects: it was almost impossible to drive them up-hill, to check them in going down-hill, and to prevent their overturning in rounding a corner.

It was the success of the early bicycle (see Bicycle) which suggested the belief that a serviceable tricycle could be made. One of these bicycles was specially constructed for ladies, the hind wheel being placed well on one side; but, though it could be ridden, it was not a commercial success. The brothers Starley, by putting a second small wheel in front of the large driving wheel and on the same side as the small hind wheel, gave stability to the machine;
it was steered by turning the small wheels opposite ways, and driven by the large wheel by means of cranks and connecting rods. The same machine with chain driving -the Coventry rotary-is still very largely used. In 1877 James Starley, it is believed without any knowledge of the gear used by Fowler for traction engines, re-invented the same differential gear for tricycles. By this the same force is, under all circumstances, applied to each of two equal driving wheels, and the evil effects of driving a single wheel are done away with. This gear was psed in the original Salvo tricycle, which is the type of ti, 2 e surest machine at the present day. In the early days; of the modern tricycle other designs were carried out, which have now become practically obsolete. In one form the hind wheel of a bicycle was replaced by a pair of equal wheels, one on each side, but the instability of such a construction was fatal. In another, the Challenge, the two wheels were placed in front of the large driver and turned together to steer the machine; stability was obtained by putting the rider in front of the large wheel and lower down, the power being communicated by cranks and connecting rods. But the weight of this machine and the small proportion of the load on the driving wheel were serious defects.

Single-driving rear-steerers were at this time very common, and, though highly objectionable, are still to be seen. Rear-steerers were improved by making both front wheels drivers and allowing for the overrunning of one or the other by clutch, as in the Cheylesmore, or by ratchet driving; but steering by the hind wheel is essentially wrong, and these machines are avoided by experienced riders. Rear-steerers have, however, lately been made with a through axle and differential gear (Rover), the rider being placed further back so as to increase the load on the steering wheel ; but the evil of rear-steering is, only reduced, not removed. The clutch is also employed on some front-steerers; and, though in certain respects it has an advantage over the differential gear, for general use it is not so suitable. The differential gear is an essential feature of the modern tricycle.

In 1878 Messrs Doubleday and Humber patented the Humber machine, which is both driven and steered by the two front wheels, the rider being seated on a trailing backbone and hind wheel as in the bicycle. This machine requires skill to manage: the steering is at first difficult to control and a spill over the handles is quite possible; under a skilful rider, however, the Humber is generally recognized as one of the fastest machines. It is steered by. a cross handle, like the bicycle, and this method of steering, in spite of the fact that it boxes the rider into the machine, is becoming very general in front steerers in place of the rack and pinion steering hitherto in use. The Cripper is a very popular example. The brake is an innportant feature in roadster tricycles. It is always made to act on the box of the differential gear where that is used; but in clutch or single-driven machines one or two independent band-brakes or spoon-brakes are used.

In early days the steering wheel was made small to save weight; the drivers were often 50 inches or more in diameter; and the machine was as short as possible. Owing to the discomfort attending a small wheel and a short base the tendency at present is to increase the size of the steering wheel and the length of the base, and to diminish the diameter of the drivers, two notable examples being the Quadrant and the Crescent. It is usual, especially when small driving wheels are used, to gear the machine up, just as in the old days they were commonly geared down; that is, the chain wheel on the crank axle has more or fewer teeth than that on the wheel axde, and thus the wheels turn faster or slower than the
cranks, or are equivalent to larger or smaller wheels. Twospeed gears are becoming general, among which may be especially mentioned the Cryptodynamic. By means of these it is possible to change the gear of the machine so as to have a high gear under favourable conditions and a low gear when mud, mind, or an ascent make travelling difficult. Although chain gearing is used in nearly every machine made, connecting rods, wheels, or bands are fitted instead to some machines. The necessity for such mechanism has been avoided by making the wheel axle also the treadle axle; but great instahility is the result.
Machines in which the arms instcad of the legs supply the power are made, and are of inmense service to those who lave lost the nse of their legs.
Owing to the inconvenience caused hy doorways being often too narrow to allow a tricycle to pass through, many machines are made to fold up into a narrower space or to shut up like a telescope.
It is important that the rider should be so placed that he can, without leaning forward, put most of his weight on tho treadles, and this is more than ever needed as the steepness of an ascent increases, trecause the slope of the machine has a contrary effect. Sliding seats were arranged for this purpose; but Mr Warner Jones has made use of a swinging frame which the rider can lock in any position he pleases. It is this samo swinging frame which gives such cosfort to the rider of the Otto bicycle, placing him at all times in the position most suitable for the occasion.

Carifer tricycles, in which duo provision is made for the proper distribution of the load, are largely used by the post-office and by tradesmen in their business. Tho "Coventry chair" is a kind of bath chair driven as a tricycle hy a rider beltind. When invalids have overcome a certain projudice as to the danger of this kind of vehicle, it will no doubt be more generally used.

In machines for two riders the riders sit side hy side (sociables) or one is placed before the other (tandens). Sociable machines are both front-steering and rear-stecring. Fear-steerers with each rider driving the wheel on his side only are nearly as objectionable as the single-driving rear-steerer. Front-steering sociables with dif ferential gear are safe and comfortable: but all sociables are slow machines. For nearly every nake of singlo tricycle there is a corresponding tandem. The Coventry rotary in the tandem form suffers more from the single-side driving than in the single form, the rear-steering maclines not so much, owing to the greater weight which the steering wheel has to bear. Tlie Humber is less sensitive in the steering, owing to the greater moment of inertia of the frame and the front rider. The front-steerer cannot be made safer, but an excellent tandem is formed by placing the rear-rider on a trailing tail as in the Humber. Tanclems have an advantage orer sociables and perhaps over single tricycles in the matter of speed; they are, however, not quite so safe, and their appearance alone prevents many from riding them. Many sociables and tandems are convertible into single machines with but little trouble.
The following tables of quickest times which have been accomplished up to the end of 1886 (certified by the National Cyclists' Union) will slow the comparative value of the bicycle and tricyele as racing mnchines.

On a prepared racing path.

Distance.	Time, tricyclc.	Time, bicycle.
1 mile	2 min .45 .8 sec .	2 min .32 .4 sec .
5 miles.	$14.27^{\circ} 6$	14 , 18
20	59 10.6 10	$59 *{ }^{506}$ \%
100 "	$6 \mathrm{hrs}$.43 min .32 .5 sec .	5 lirs. $50 \mathrm{~min} .5{ }^{\circ} 4 \mathrm{sec}$.

On a public road.
Land's End to Jolin o' Groats ${ }^{1}$ \{ 5 dajs 10 hiss, tricycle. (about $8 i 0$ miles) $\quad\{5,1,1,45 \mathrm{~min} .$, bicycle. Greatest distance in 24 hours $\left\{\begin{array}{l}2504 \text { miles, tricyele. } \\ 295\end{array} \quad\right.$ bicycle. \quad (C. V. B.)
TRIESTE (Germ. Triest, Slav. Trst, Lat. Tergeste), the principal seaport of the Austrian-Hungarian empire, is picturesquely situated at the north-east angle of the Adriatic Sea, in the Gulf of Trieste and at the foot of the barren Karst Hills. The old town, nestling round the hill on which the castle stands, consists of nariow, steep, and irregular streets. It is connected by the broad and handsome Corso with the well-built new town, which lies on the flat expanse adjoining the crescent-shaped bay, partly on ground that has been reclaimed from the sea. . The prevailing air of the town is Italian rather than German. The scastle, built in 1680 , is ${ }^{4}$ believed to occupy the site of

[^241]the Roman capitol (see below). Near it is the cathedral of S . Giusto, an unimposing but interesting building, mainly of the 14 th century, and incorporating fragments of a Roman temple and early Christian churches. Don Carlos of Spain (d. 1855) is interred in the south aisle, and Fouché, Napoleon's minister of police, in front of the church, while the churchyard contains the grave and monument of Winckelmann, the archæologist, who was murdcred at Trieste in 1768. The Arco di liccardo, also in the old town, derives its name from a popnlar delusion that it was connected with Richard Cœur-de-Lion, but is probably an arch of a Roman aqueduct. A collection of Roman antiquities found in or near the town has been formed near the castle. The most prominent building in the new town is the Tergesteo, a huge edifice containing the exchange and numerous shops and offices. The new municipal buildings, with the haudsome hall of the provincial diet, the Palazzo Revoltella, the offices of the Austriau Lloyd's and the handsome old exchange are also noteworthy. The church of S. Maria Maggiore is

Plan of Trieste.
a characteristic specimen of Jesuit architecture, and the new Greck church is one of the handsomest Byzantine structures in the empire. The city hospital has accommodation for 2000 patients. The huge Politeama is the largest theatre. In front of the Palazzo Revoltella is a monument to the emperor Maximilian of Mexico, who had becn an admiral in the Austrian service. His sumptuous chatteau of Miramar is one of the lions of the neighbourhood. The capacious harbour, consisting of two parts, the old and the new, is protected by extensive moles and breakwaters, and has been greatly improved within the last ten or fifteen years. From the harbour the Canal Grande extends into the town, allowing large vessels to unload at the warehouses. At the end of the Molo Sta Teresa is a lighthouse upwards of 100 feet high. The population of the town (6424 in 1758) and district of Trieste in 1880 was 144,844 , of whom 74,544 belonged to the town proper and 133,019 to the town and suburbs. The town population is very heterogeneons, but the Italian element far exceeds all the rest. There are about 5000

Germans and also numerous Greeks, English, and French. The population includes 26,000 Slavs, most of whom live in the country districts and are engaged in agriculture

Tricste bee been a free inserial port since 1719. It may be said Eo nearly mouopolizo the trade of the Adriatic, and bas loug cclipsell its ancient rival Venice. The aumual value of its exports ond inforts is about 30 millions sterling. Among the cbief imports are coffec, wine, fruit, grain, tabacco, petrolemn, cotton, coals, and manufactured goods of rarions kinds; the exports iuclude apirits, ligueurs, sugar, meal, timber, glass, and machinery. Large quantilies of fish are sent to rienna. In 1885 the port was entered by c9it vessels with an aggregate burden of $1,267,946$ tons. The trading fleet of Trieste numbers about 500 ships of 100,000 tons burder. The chicf shipping company is the Austrian Lloyd'a, fonuled in 1836, the steamers of which ply to the Mediterranean ports, Alexandria, Constantinople, the Black Sea, \&c. The extenaive wharfs and dockyards of the company lie to the sauth of the town. The chief branches of industry practised at Trieste are shipbnilding, soap, boiling, zaachine-making (especially merine engines), taning, brewing, rope-making, and the manulacture of liqueurs (rosoglio). Trieste is the seat of government for the so-
called Kuistenlond or Coast district, ami is the seat of naval and military commanders and other ofticials. The town council, presided over by the poolesti, is also the diet of the crownland of Treste (35 square miles). "Thieste is the seat of the bishop of Capo d'Istria.
History.-At the time of the foundation of Aquileia by the Romans, the district which how includes Trieste was occupied by Celtic aud Illyriau tribes; 8ud the Roman colony of Tergeste does not seem to bave been established till the reign of Vespasian. Afte: the break-11p of the Roman dominion Trieste shared the geueral fo: tunes of Istira and passed through various hands. From the en; feror Lothaire it received an independent existence under its coun:bishops, and it maintained this position down to its capture by Venice in 1203. For the next 180 years its history cousists chiefy of a series of conflicts with this city, which were finally put ai end to by Trieste placing itself in 1382 under the protection of Leopold III. of Austria. The overlordship thus established in sensibly developerl into actual possession; and except in th; Napoleonic period (1797-1805 and 1809-1813) Trieste has aine: remained an integral part of the Anstrian dominious.

TRIGGER-FISH. See File-Fish.

TRIGONOMETRY

TIRIGONOMETRY is primarily the science whirh is concerncd with the measurement of plane and spherical triangles, that is, with the determination of three of the parts of such triangles when the numerical values of the other three parts are given. Since any plane triangle can be divided into right-angled triangles, the solution of all plane triangles can be reduced to that of rightangled triangles; moreover, according to the theory of similar triangles, the ratios between pairs of sides of a right-angled triangle depend ouly upon the magnitude of the acute angles of the triangle, and may therefore be regarded as functions of either of these angles. The primary object of trigonometry, therefore, requires a classifeation and numerical tabulation of these functions of an angular magnitude; the science is, however, now understood to include the complete investigation not only of such of the properties of these functions as are necessary for the theoretical and practical solution of triangles but also of all their analytical properties. It appears that the solution of spherical triangles is effected by mans of the same functions as are required in the case of plane triangles. The trigonometrical functions are employed in many branches of mathematical and physical science not directly concerned with the measurement of angles, and lience ariscs the importance of analytical trigonometry. The solution of triangles of which the sides are geodesic lines on a spheroidal surface requires the introduction of other functions than those required for the solution of triangles on a plarre or spherical surface, and therefore gives rise to a new branch of science, which is from analogy frequently called spheroidal trigonometry. Every new class of surfaces which may be considered would have in this extended sense a trigonometry of its own, which would consist in an investigation of the nature and properties of the functions necessary for the measurement of the sides and ancles of triangles bounded by geodesics drawn on such surfaces.

History.

An account of Greek trigonometry is given under Ptolemy (g.v.).

The Indians, who were much more apt calculators than the Greeks, availed themselves of the Greek geometry which came from Alexandria, and made it the basis of trigonometrical calculations. The principal improvernent which they introduced consists in the formation of tables of half-chords or sines instead of chords. Like the Greeks, they divided the circumference of the circle into 360 degrees or 21,600 minutes, and they fonnd the length in minutes of the arc which can be straightened out into
the radus to be 3438 The value of the ratio of the circumference of the circle to the diameter used to make this determination is $62832: 20000$, or $\pi=3 \cdot 1416$, which value was given by the astronomer Aryabhata (476-550; see Sanskrit, vol. xxi. p. 294) in a work called Âyathatiya, written in verse, which was republished ${ }^{1}$ in Sanskrit by Dr Kern at Leyden in 1874. The relations between the sines and cosines of the same and of complementary arcs were known, and the formula $\sin \frac{1}{2} a=\sqrt{ } 1719(\overline{3} \overline{43} \overline{8}-\cos a)$ was applied to the determination of the sine of a balf angle when the sine and cosine of the whole angle were known. In the Sitrya-Sidillhonta, an astronomical treatisc which has been translated by Ebenezer Bourgess in vol. vi. of the Journal of the American Oriental Society (New Haven, 1860), the sines of angles at an interval of $3^{\circ} 45^{\circ}$ np to 90° are given; these were probably obtained from the sines of 60° and 45° by continual application of the dimidiary formnla given above and by the use of the complementary angle. The values $\sin 15^{\circ}=890^{\circ}$, $\sin 7^{\circ} 30^{\prime}=449^{\prime}$, $\sin 3^{\circ} 45^{\prime}=225^{\prime}$, were thus obtaincd. Now the angle $3^{\circ} 45^{\prime}$ is itself 225' ; thus the arc and the sine of $\frac{1}{8}$ th of the circumference were found to be the same, and consequently special importance was attached to this arc, which was called the right sine. From the tables of sines of angles at intervals of $3^{\circ} 45^{\prime}$ the law expressed by the equation
$\sin (\sqrt{n+1} .225)-\sin \left(n .225^{\prime}\right)=\sin \left(n .225^{\prime}\right)-\sin \left(n-1.225^{\prime}\right)$

$$
-\sin \frac{\left(n .225^{\prime}\right)}{225}
$$

was discovered empirically, and used for the purpose of recalculation. Bhâskara (. 1.1150) used the method, to which we have now returned, of expressing sines and cosines as fractions of the radius; he obtained the more correct values $\sin 3^{\circ} 45^{\prime}=100 / 1529, \cos 3^{\circ} 45^{\prime}=466 / 467$, and showed how to form a table, according to degrees, from tho ralues in $1^{\circ}=10 / 573, \cos 1^{\circ}=6568 / 6569$, which are much more accurate than Ptolemy's values. The Indians did not apply their trigonometrical knowledge to the solution of triangles; for astronomical purposcs they solved rightangled plane and spherical triangles by geometry.

The Arabs were acquainted with Ptolemy's Almagest, and they probably learned from the Indians the use of the sine. The celebrated astronomer of Batnæ, Abú 'Abdallahı Mohammed b. Jābir al-Battánı (Bategnius), who died in 929930 A.D., and whose Tables were translated in the 12 th century by Plato of Tiroli into Latin, under the title De scientia stellarum, employed the sine regularly, and was fully conscious of the advantage of the sine over the chord; indeed, he remarks that the continual doubling is sared

[^242]by the use of the former. He was the first to calculate sin ϕ from the cquation $\sin \phi / \cos \phi=h$, and he also made a table of the lengths of shadows of a vertical object of height 12 for altitades $1^{\circ}, 2^{\circ}, \ldots$ of the sun; this is a sort of cotangent table. He was acquainted, not ouly with the triangle formule in the Almayest, but also with the formula $\cos a=\cos b \cos c+\sin b \sin c \cos A$ for a spherical triangle $A B C$. Abú 'l-Wafá of Baghdad (b. 940) was the first to introduce the tangent as an independent function: his "umbra" is the half of the tangent of the double arc, and the secant he defines as the "diameter umbre." He cinployed the umbra to find the angle from it table and not merely as an abbreviation for sin/cos; this improvement was, however, afterwards forgotten, and the tangent was re-inrented in the 15 th century. Ibn Yinos of Cairo, who died in 1008, showed even more skill than Al-Battíni in the solution of problems in spherical trigonometry and gave inproved approximate iormulæ for the calcnlation of sines. Among the West Arabs, Abú Mohammed Jabir b. Aflah, known as Geber b. Aflah, who lived at Seville in the 11 th century, wrote an astronomy in nine books, whech was translated into Latin in the 12th century by Gerard of Cremona and was published in 1534. The first book contains a trigonometry which is a considerable improvement on that in the Almagest. He gave proofs of the formule for right-angled spherical triangles, depending on a rule of four quantities, instead of Ptolemy's rule of six quantities. The formule $\cos B=\cos b \sin A, \cos c=\cot A \cot B$, in a triangle of which C is a right angle bad cscaped the notice of Ptolemy and were given for the first time by Geber. Strangely enough, he made no progress in plane trigonometry. Arrachel, a Spanish Arab who lived in the 12 th century, wrote a work of which we have an aualysis by Purbach, in which, like the Indians, he made the sine and the are for the value $3^{\circ} 45^{\prime}$ coincide.
Purbach(1423-1461), professor of mathematics at Vienna, wrote a work entitled Tractatus super propositiones Ptolemxi de sinubus et chordis (Nuremberg, 1541). This treatise consists of a development of Arrachel's method of interpolation for the calculation of tables of sincs, and was published by Regiomontanns at the end of one of his works. Johannes Müller (1436-1476), known as Regionoxtants (q.v.), was a pupil of Purbach and taught astronomy at Yadua; he wrote an exposition of the Almagest aud a more important work, De triangulis planis et sphericis cum tabulis sinuum, which was published in 1533 , a later edition appearing in 1561 . He re-invented the tangent and calculated a table of tangents for each degree, but did not make any practical applications of this table, and did not use formulw involving the tangent. His work was the first complete European treatise on trigonometry, and contains a number of interesting problems; but his methods were in some respects behind those of the Arabs. Copernicus (1473-1543) gave the first simple demonstration of the fundamental formula of spherical trigonometry; the Trigohometria Copernici was published by Rheticus in 1542. George Joachim (1514-1576), known as Rhetices (q.v.), wrote Opus Pulatinum de triangudis (see Tables, p. 9 above), which contains tables of sines, tangents, and secants of arcs at intervals of 10° from 0° to 90°. His method of calculation depends upon the formulx which give sin na and $\cos n a$ in terms of the siues and cosines of $(n-1) a$ and $(n-2) a$; thus these formulæ may be regarded as dne to him. Rheticus found the formula for the sines of the Lalf and third of an angle in terms of the sine of the whole angle. In 1599 there appeared an important work by Pitiscus (1561-1613), entitled Trigonometrix sez de dimensione triangulorun; this contained several important theorems on the trigonouretrical functions of two angles, some of which had been given before hy Finck, Landsberg,
and Adriaan van Roomen. François Viète or Vieta (q.v.) (1540-1603) employ cd the equation $\left(2 \cos \frac{1}{2} \phi\right)^{3}-3\left(2 \cos \frac{1}{2} \phi\right)$ $=2 \cos \phi$ to solve the cubic $x^{3}-3 a^{2} x=a^{2} b\left(a>\frac{1}{2} b\right)$; he obtained, however, only one root of the cubic. In 1593 Tan Roomen proposed, as a problem for all mathematicians, to solve the equation
$$
45 y-3795 y^{3}+95634 y^{5}-\ldots+945 y^{43}-45 y^{43}+y^{45}=C
$$

Viete gave $y=2 \sin \frac{1}{45} \phi$, where $C=2 \sin \phi$, as a solution, and also trenty-two of the other solutions, but he failed to obtain the negative roots. In his work Ad angulares sectiones Viète gave formulæ for the chords of multiples of a given arc in terins of the chord of the simple arc.

A new stage in the development of the science was commenced after Napier's invention of logarithms in 1614. Napier also simplificd the solution of spherical triangles by his woll-known analogics and by his rules for the solution of right-angled triangles. The first tables of logarithmic sines and tangents were constructed by Edmund Gunter (1581-1626), professor of astronomy at Gresham College, London; he tras also the first to cmploy the expressions cosine, cotangent, and cosecant for the sine, tangent, and secant of the complement of an arc. A treatise by Albert Girard (1590-1634), published at The Haguc in 1626, contains the theorms which give areas of spherical triangles and polygons, and applications of the propertics of the supplementary triangles to the reduction of the number of different cases in the solntion of spherical triangles. He used the notation \sin, tan, sec for the siae, tangent, and secant of an arc. In the second half of the 17th century the theory of infinite series was developed by Wallis, Gregory, Mercator, and afterwards by Newton and Leibnitz. In the Analysis per xquationes numero terminorum infinitas, which was written before 1669 , Nerston gare the series for the arc in powers of its sine; from this he obtained the series for the sine and cosine in powers of the arc ; but these series were given in such a form that the law of the formation of the coefficients was hidden. James Gregory discovered in 1670 the series for the arc in powers of the tangent and for the tangent and secant in powers of the arc. The first of these scries was also discovered independently by Leibnitz in 1673, and published without proof in the Acta eruditorum for 1682. The series for the sine in powers of the arc he published in 1693; this he obtained by differentiation of a series with undetermined cocflicients.

In the 1 Sth century the sciecce began to take a more analytical form; evidence of this is given in the works of Kresa in 1720 and Mayer in 1727. Oppel's Analysis triangulorum (1746) was the first complete work on analytical trigonometry. None of these mathematicians used the notation \sin, cos, tan, which is the more surprising in the case of Oppel, since Euler had in 1744 employed it in a memoir in the Acta eruditorum. John Bernoulli was the first to obtain real results by the use of the symbol $\sqrt{-1}$; he published in 1712 the general formula for $\tan n \phi$ in terms of $\tan \phi$, which he obtained by means of trans fornatiou of the are into imaginary logarithms. The greatest advance was, however, made by Euler, who brought the science in all essential respects into the state in which it is at present. He introduced the present nota tion into general use, whereas until his time the trigono metrical functions had been, except by Girard, indicateo by special letters, and had been regarded as certain straigh? lines the absolute lengths of which depended on the radirs of the circle in which they were drawn. Euler's great im. provement consisted in his regarding the sine, cosine, $\cdot d c .$. as functions of the angle only, thereby giving to equations connecting these functions a purely analytical interpreta. tion, instead of a geometrical one as heretofore. Tho
exponential values of the sine and cosine, Do Moirre's theorem, and a great number of otber analytical properties of the trigonometrical functions are due to Euler, most of rhose writings are to be found in the Memoirs of the St Petersburg Academy.
The preceding sketch has bcen mainly drawn from the following sonrces:-Cantor, Gesch. d. Math.; Hankel, Oesch. d. Math.; Marie, Hist. des sc, math. ; Suter, Cesch. d. Math.; Elügel, Math. Wörterbuch.

Plane Trigonometry.

Imorine a straight line terminated at a fixed point O, and initially coincident with a fired straight lino $O A$, to -solve round O, and finally to take up any positiou $O B$. We shall suppose that, whea this r^{-} volving straight line is turning in one direction, say that opposite to that in which the hands of a clock turn, it is describing a positive sugle, and when it is turning is the other direction it Is describing a negative angle. Before Ginally taking up the position $O B$ the traight line may have passed any number of times through the position $O B$, naking sny number of completo revolutions round O in cither direction.
 Each time that the straight line makes a complate revolution round O we consider it to have described four right angles, taken with the positive or negative sign according to the direction in which it has revolved; thus, when it stops in the position $O B$, it may have reyolved through any one of an infinite sumber of positive or negative angles any two of which differ from one another by a positive or negative multiple of four right angles, and all of which have the same bounding lines $O A$ and $O B$. If $O B^{\prime}$ is the final position of the revolving line, the smallest positive angle which can have been described is that described by the revolving line making more than one-half and lcss than the whole of a complete rovolution, so that in this case we have a positive angle greater than two and less than four right angles. We have thus shown how we may conceive an ancle not restricted to less than two right angles, but of any positive or negative magnitude, to be generated.

Two syetems of numerical measuremant of angular magnitades are in ordinary use. For practical measurements the sexagesimal system is the one employed : the ninetieth part of a right angle is taken as the unit and is called a degree ; the degree is divided into sixty equal parts called minutes ; and the minute into sirty equal parts called seconds; angles amaller than a second are usually messured as decimals of a second, the "thirds," "fourths," \&c., not being in ordinary use. In the common notation an angle, for example, of 120 degrees, 17 minutes, and 14.36 seconds is mritten 120° $17^{\prime} 14^{\prime \prime} 36$. The decimal systom measnrement of angles has never come into ordinary use In analytical trigonomatry the circular measure of an engle is employed. In this eystem the unit angle is the angle subtended at the centre of a circle bs an arc equal in length to the radins. The constancy of this angle follows from the geonetrical propositions-(1) the circumferences of different circles vary as their radii ; (2) in the same circle angles at the centre are proportional to the arcs which subteod them. It thas follows that the unit mentioned above is an anglo independent of the particular circle nsed in defining it. The constant ratio of the circumference of a circle to its diameter is a quantity incommensurable with unity, nsually denoted by π. We shall indicate later on (p. 571 sq.) aome of the methods which bare been emploged to approximate to the valne of this quantity. Its value to 20 places is $3 \cdot 14159255358979323846$; its reciprocal to the same number of places is 31830985618379067153 . In circular messnre every angle is measured by the ratio which it bears to the unit angle. Two right angles are measured by the quantity π, and, since the same angle is 180°, we see that the number of degrees in an sugle of circular messure θ is obtained from the formula $180 \times \theta / \pi$. The ralue of the anit of circular measure bas been found to 41 places of decimals by Glaisher (Proc. London Mfath. Soc., vol. iv.); the ralue of $\frac{1}{\pi}$, from which the unit can be casily calculated, is given to 140 places of decimals in Orunert's Archio, vol. i., 1841. To 10 decimal places the value of the unit anglo is $67^{\circ} 17^{\prime} 44^{\prime \prime} 8062470964$. The unit of circular measure is too large to be convenient for practical purposes, but its ase introduces a simplification into the series in analytical trigonometry, owing to the fact that the sine of an angle and the angle itseif in this measure, when the magnitude of the angle is indefinitely diminished, are ultimstely in a ratio of equality.
If a polot moves from a position A to snother position B on a straight line, it has described a length $A B$ of the straight line. It is convenient to have a simple mode of indicating in which direction on the straight line the length $A B$ has been described; this may
be done by supposing that a poi:.t moving in one specified direction is describing a positive length, and when moring in the opposits direction a negative length. Thus, if a point moving from A to B is moving in the positive direction, we consider the length $A B$ as positive; add, sixce a point moving from B to A is moring in the aegative direction, we consider the length $B A$ as negative. Heñco any portion of aa infiuite atraiglt line is considered to be positive or negative according to the direction in which we suppose this portion to be described by a moving point; which direction is tha positive one isy of coarse, a matter of convention.
If perpendiculars $A L, B M$ he drawn from two points A, B on any straight line, not necessarily in the same plane with $A B$, the length $L M$, taken with the positive or negative sign according to the convention as stated above, is called the projection of $A B$ on the given straight line; the projection of $B A$ being $M I L$ has the opposite sign to the projection of $A B$. If tro points A, B be joined by a number of lines in any manser, the algebraical sunt of the projections of all these lines is $L J f_{\text {, - that }}$ is, the same as the projection of $A B$. Hence the sum of the projections of all the sides of any closed polygon, not necessarily plane, on any straight line, is zero. This principle of projections we skall apply below to obtain some of the most important propositions in trigonometry.
Let ns now return to the conception of the gencration of an angle as in fig. 1. Draw $E O B^{\prime}$ at right angles to and equal to A^{\prime}.

Fig. 2 We shall auppose that the direction from A^{\prime} to d is the positive one for the atraight line $A O A^{\prime}$, and that from $B^{\prime \prime}$ to B for $B O B^{\prime}$. Suppose O_{2}^{P} of fixed length, equal to $0 A$, sud let $P M, P N$ be drawn perpendicular to $A^{\prime} A, E^{\prime} B$ respectively; then $O M$ and $O N$, taken with their proper signs, are the projections of $O P$ on $A^{\prime} A$ and $B^{\prime} B$. The ratio of the projection of $O P$ on $\overline{B^{\prime} B}$ to the absolnte leugth of $O P$ is dependent only on the magnitude of the angle $P O A$, and is called the sine of that angle; the ratio of the projection of $O P$ on $\mathcal{A}^{\prime} A$ to the length. $O P$ is called the cosine of the angle POA. The ratio of the sine of an angle to its cosine is called the tangent of the anglc, and that of the cosine to the sine the cotangent of the angle ; the reciprocal of the cosine is called the eecsat, and that of the sine the cosecant of the angle. These functions of an angle of maguitude a are denoted by $\sin \alpha, \cos a$, $\tan \alpha, \cot a, \sec \alpha, \operatorname{cosec} \alpha$ respectively. If any straight line $R S$ be drawn parallel to $O P$, the projection of $I S$ on either of the straight lines $\mathcal{A}^{\prime} \mathcal{A}, B^{\prime} B$ can be easily secn to bear to $R S$ the same ratios which the corresponding projections of $O P$ bear to $O P$: thus, if a be the angle which $R S$ makes with $A^{\prime} A$, the projections of $R S$ on $A^{\prime} A, B^{\prime} B$ are $R S$ cos a and $R S$ ain a respectively, where $R S$ denotes the absolute length $R S$. It nust be observed that the line $S R$ is to be considered as parallel not to $O P$ bnt to $O P^{\prime \prime}$, and therefore makes an angle $\pi+\alpha$ with $A^{\prime} A$; this is consistent with the fact that the projections of $S R$ are of opposite sign to those of RS. By observing the signs of the projections of OP for the positions $P, P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}$ of P we see that the sine and cosine of the angle $P O A$ are both positive ; the sine of the angle $P^{\prime} O A$ is positive and its cosine is negative ; both the aine snd the cosine of the angle $P^{\prime \prime} O A$ are negative; and the sine of the angle $P^{p \prime \prime} O A$ is negative and its cosine positive. If a be the numerical value of the amallest angle of which $O P$ and $O A$ are bonndaries, we see that, since these straight lines also bound all the angles $2 n \pi+o_{0}$ where n is any positive or negative integer, the aines aud cosines of all these angles are the eame as the sine and cosine of α. Hence the sine of any angle $2 n \pi+a$ is positive if a is between 0 and π and negative if a is between π and 2π, and the cosine of the same angle is positive if a is between 0 end $\frac{1}{3} \pi$ or $\frac{1}{2} \pi$ and 2π and negative if α is between $\frac{z_{3} \pi}{} \pi$ and $\frac{3}{8} \pi$.
In fig. 2 if the angle $P Q A$ is a, tho angle $P^{\prime \prime \prime} O A$ is $-\alpha, P^{\prime} O A$ in $\pi-\alpha, P^{\prime \prime} O A$ is $\pi+\alpha, P O B$ is $\frac{\pi}{2}-\alpha$. By obscrring the signs of the projections me see that

$$
\begin{aligned}
& \sin (-a)=-\sin a, \sin (\pi-a)=\sin \alpha, \sin (\pi+a)=-\sin \alpha_{f} \\
& \cos (-\alpha)=\cos \alpha, \cos (\pi-a)=-\cos \alpha, \cos (\pi+\alpha)=-\cos \sigma_{5} \\
& \sin \left(\frac{1}{2} \pi-\alpha\right)=\cos \alpha, \cos \left(\frac{1}{2} \pi-\alpha\right)=\sin \alpha .
\end{aligned}
$$

Also $\sin \left(\frac{3}{3} \pi+a\right)=\sin \left(\pi-\frac{1}{2} \pi-a\right)=\sin \left(\frac{1}{2} \pi-a\right)=\cos c$ $\cos \left(\frac{1}{3} \pi+a\right)=\cos \left(\pi-\frac{\pi}{3} \pi-\alpha\right)=-\cos \left(\frac{1}{2} \pi-a\right)=-\sin \alpha_{0}$
From these equations we hara $\tan (-a)=-\tan a_{1} \tan (\pi-a)=-\tan a_{2}$ $\tan (\pi+a)=-\tan a, \tan \left(\frac{1}{3} \pi-a\right)=\cot \alpha, \tan \left(\frac{1}{2} \pi+a\right)=-\cot \alpha$, with corresponding equstions for the cotangent.
The only angles for which the projection of $O P$ on $B^{\prime} B$ is the amme as for the giver angle POA $(=a)$ are the two sets of anglea bounded by $O P, \circ O A$ and $O P, O A$; these angles aro $2 n \pi+\alpha$ an 1 $2 n \pi+\pi-a$, and are all included in the formula $r \pi+(-1)^{\prime} \alpha_{2}$, where r is any integer; this therefore is the formola for all angles laaring the ame sine as α. The only angles which hare the same cosir, as a are those bonnded by $O A, O P$ and $O A, O P^{\prime \prime \prime}$, and thes? sro all included in the formula $2 n \pi \pm$. Similarly it can la showa
that $\pi \pi+\alpha$ includes all the angles which have the same tangent as a.

From the Pythagorean theorem, the sum of the squares of the projections of any straight line upon two straight lines at rifht angles to one another is equal to the square on the projected line, we get $\sin ^{2} \alpha+\cos ^{2} \alpha=1$, and from this by the help of the definitions of the other functions we deduce the relations $1+\tan ^{2} \alpha=\sec ^{2} \alpha$, $I+\cot ^{2} \alpha=\operatorname{cosec}^{2} \alpha$. We have now six relations between the six functions; these enable us to express any five of these functions in terms of the sixth. The following table shows the values of the trigonometrical functions of the angles $9, \frac{1}{3} \pi, \pi, \frac{3}{3} \pi, 2 \pi$, and the signs of the functions of angles between these values; I denotes numerical increase and D numerical decrease.

Angle	0	0... $\frac{1}{2} 75$	$\frac{1}{2} \pi$	$\frac{1}{2} 7 . . .7$	7	W... ${ }^{\text {d }}$. 37	? π. . 2π	2π
$\sin \theta$	0	$+I$	1	$+D$	0	-I	-1	-1	0
Cosine	1	$+D$	0	-1	-1	-D	0	$+1$	1
Tangent	0	$+I$	$\pm \infty$	- D	0	$+I$	$\pm \infty$	- D	0
Cotangent	$\pm \infty$	$+D$	0	-I	$\pm \infty$	$+D$	0	-I	$\pm \infty$
Secant		$+I$	$\pm \infty$	$-D$	-1	-I	$\pm \infty$	$+D$:
Cosecant	$\pm \infty$	$+D$	1	$+I$	$\pm \infty$	$-D$	-1	-I	$\pm \infty$

The correctness of the table may be verified from the figure by considering the magnitudes of the projections of $O P$ for different positions.

The following table shows the sine and cosine of some angles for which the valnes of the functions may be obtained geometrically:-

$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\operatorname{cosine}}{4}+\sqrt{2}$	75°	$\frac{5}{12} \pi$
$\frac{\pi}{10}$	75°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2 \sqrt{5}}}{4}$	72°	$\frac{2}{5} \pi$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	60°	$\frac{1}{3} \pi$
$\frac{\pi}{5}$	36°	$\frac{\sqrt{10-2 \sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	54	$\frac{3}{10} \pi$
$\frac{\pi}{4}$	45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	45°	$\frac{1}{4} \pi$

These are obtained as follows. (1) $\frac{\pi}{4}$. The sine and cosiue of this angle are equal to one another, $\operatorname{since} \sin \frac{\pi}{4}=\cos \left(\frac{\pi}{2}-\frac{\pi}{4}\right)$; and since the sum of the squares of the sine and cosine is unity each is $\frac{1}{\sqrt{2}}$. (2) $\frac{\pi}{6}$. and $\frac{\pi}{3}$. Consider an equilateral triangle; the projection of one side on another is obviously half a side; hence the cosine of an angle of the triangle is $\frac{1}{2}$ or $\cos \frac{\pi}{3}=\frac{1}{2}$, and from this the sine is found. (3) $\frac{\pi}{10}, \frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{10}$. In the triangle constrmeted in Enc. iv. 10 each angle at the base is $\frac{2 \pi}{5}$, and the vertical angle is $\frac{\pi}{5}$. If a be a side and b the base, we have by the construction $a(a-b)=b^{2}$; hence $2 b=a(\sqrt{5}-1)$; the sine of $\frac{\pi}{10}$ is $\frac{b}{2 a}$ or $\frac{\sqrt{5}-1}{4}$, and $\cos \frac{\pi}{5}$ is $\frac{a}{2 b}=\frac{\sqrt{5}+1}{4}$. (4) $\frac{\pi}{12}, \frac{5 \pi}{12}$. Consider a right-angled triangle, baving an angle $\frac{1}{8} \pi$. Bisect this, angle, then the opposite side is cut by the bisector in the ratio of $\sqrt{3}$ to 2 ; hence the length of the imaller segment is to that of the mhole in the ratio of $\sqrt{3}$ to $\sqrt{3}+2$, therefore $\tan 5^{2} \frac{2}{2} \pi=\frac{\sqrt{3}}{\sqrt{3}+2} \tan \frac{1}{8} \pi$ or $\tan \frac{1}{12} \pi=2-\sqrt{3}$, and from this we can obtain $\sin \frac{1}{12} \pi$ and $\cos \frac{1}{12} \pi$.

Draw a straight line $O D$ making any angle A with a fixed straight
line $O A$, and draw $O F$ making an angle B with o $O D$, this angle being measured positively in the same direction as A; draw $F E$ a perpendicular on $D O$ (producel if necessary). The projection of $O F$ on $O A$ is the sum of the projections of $Q E$ and $E F$ on $O A$. Now $O E$ is the projection of $O F$ on $D O$, and is therefore equal to $O F \cos B$,
 and $E F$ is the projection of $O F$ on a straight line making an angle $+\frac{1}{2} \pi$ with $O D$, and is therefore equal to $O F \sin B$; hence
$O F \cos (A+B)=O E \cos A+E F \cos \left(\frac{1}{2} \pi+A\right)$
$=O F(\cos A \cos B-\sin A \sin B)$,
or $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$.
The angles A, B are absolutely unrestricted in magnitude, and thus this formula is perfectly general. We may change the sign of B, thus $\cos (A-B)=\cos A \cos (-B)-\sin A \sin (-B)$,
or $\quad \cos (A-B)=\cos A \cos B+\sin A \sin B$.
If tre projected the sides of the triangle $O E F$ on a straight line raking an angle $+\frac{1}{2} \pi$ with $O A$ we should obtain the formnla
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$,
which are really contained in the cosine formula, since we may put $\frac{1}{2} \pi-B$ for B. The formulæ
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B},-\cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$
sre immediately deducible from the above formulx. The equations $\sin C+\sin D=2 \sin \frac{1}{2}(C+D) \cos \frac{1}{2}(C-D)$,
$\sin C-\sin D=2 \sin \frac{1}{2}(C-D) \cos \frac{\frac{1}{2}}{2}(C+D)$,
$\cos D+\cos C=2 \cos \frac{1}{2}(C+D) \cos \frac{1}{2}(C-D)$,
$\cos D-\cos C=2 \sin \frac{1}{2}(C+D) \sin \frac{1}{2}(C-D)$,
may be obtained directly by the method of projections. Take two equal straight lines $O C, O D$, making angles C, D with $O A$, and draw $O E$ perpendicular to $C D$. The angle which $O E$ makes with $O A$ is $\frac{1}{2}(C+D)$ and that which $D C$ makes is $\frac{1}{2}(\pi+C+D)$; the angle $C O E$ is $\frac{2}{2}(C-D)$. The sum of the projections of $O D$ and $D E$ on $O A$ is equal to that of $O E$, and the sum of the projections of $O D$ and $D E$ is equal to that of $O C$; hence tbe sum of the projections of $O C$ and $O D$ is twice that of $O E$, or $\cos C$ $+\cos D=2 \cos \frac{1}{2}(C+D) \cos \frac{1}{2}(C-D)$. The
 difference of the projections of $O D$ and $O C$ Fis. on $O A$ is equal to that of $E D$, hence we have the formula $\cos D-$ $\cos C=2 \sin \frac{1}{2}(C+D) \sin \frac{1}{2}(C-D)$. The other two formule will bt obtained by projecting on a straight line inclined at an angle $+\frac{1}{2}$? to $0 A$.
As another example of the use of projections, we will find the sum Sum of of the series $\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos (\alpha+n-1 \beta)$. series of Suppose an unclosed polygon each sagle of whicl is $\pi-\beta$ to be in- cosines scribed in a circle, and let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be $n+1$ consecutive in arith angular points ; let D be the diameter of the circle ; and suppose a metical straight line drawn making an angle α with $A A_{1}$, then $\alpha+\beta$, progrea $\alpha+2 \beta, \ldots$ are the angles it makes with $A_{1} A_{2}, A_{2} A_{3}, \ldots$; we have by sion. projections
$A A_{n} \cos \left(\alpha+\frac{\overline{n-1} \beta}{2}\right)=A A_{1}(\cos \alpha+\cos \alpha+\beta+\ldots+\cos \alpha+\overline{n-1} 8)$
also

$$
A A_{1}=D \sin \frac{\beta}{2} \quad A A_{n}=D \sin \frac{n \beta}{2}
$$

nence the sum of the series of $\operatorname{cosines}$ is $\cos \left(\alpha+\frac{\overline{n-1} \beta}{2}\right) \sin \frac{n \beta}{2} \operatorname{cosec} \frac{\beta}{2}$
By a double application or the addition formule we may obtain the Formad formulæ

$$
\begin{aligned}
\sin \left(A_{1}+A_{2}+A_{3}\right)= & \sin A_{1} \cos A_{2} \cos A_{3}+\cos A_{1} \sin A_{2} \cos A_{1} \\
& +\cos A_{1} \cos A_{2} \sin A_{3}-\sin A_{1} \sin A_{2} \sin A_{3} ; \\
\cos \left(A_{2}\right. & \left.+A_{2}+A_{3}\right)=\cos A_{1} \cos A_{2} \cos A_{3}-\cos A_{1} \sin A_{2} \sin A_{3}
\end{aligned}
$$ $-\sin A_{1} \cos A_{2} \sin A_{3}-\sin A_{2} \sin A_{2} \cos A_{3} \quad$,

We can by induction oxtend these formula to the case of n angles
Assume $\sin \left(A_{1}+A_{2}+\ldots+A_{n}\right)=S_{1}-S_{3}+S_{5}-\ldots$ $\cos \left(A_{1}+A_{2}^{2}+\ldots+A_{n}\right)=S_{0}^{-}-S_{2}+S_{4}-\ldots$
Where S_{r} denotes the sum of the products of the sines of r of the angles and the cosines of the remsining $n-r$ angles; then we have

$$
\begin{aligned}
\sin \left(A_{1}+A_{2}+\ldots+A_{n}+A_{n+1}\right) & =\cos A_{n+1}\left(S_{1}-S_{3}+S_{5}-\ldots\right) \\
& +\sin A_{n+1}\left(S_{n}-S_{2}+S_{4}-\ldots\right)
\end{aligned}
$$

The right-hand side of this equation may be written
$\left(S_{1} \cos A_{n+1}+S_{0} \sin A_{n+1}\right)-\left(S_{3} \cos A_{n+1}+S_{2} \sin A_{n+1}\right)+\ldots \cdot$
or

$$
S_{1}-S_{3}^{\prime}+\ldots
$$

where S_{r} denotes the quantity which corresponds for $n+1$ sugle to S_{r} for n angles; similarly we may procecd with the cosime for mula. The theorems are true for $n=2$ and $n=3$; thos they are $\tan \pi A$
true generally. The formnla
$\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A$,
$\sin 2 A=2 \sin A \cos A, \quad \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$,
$\sin 3 A=3 \sin A-4 \sin ^{9} A, \quad \cos 3 A=4 \cos ^{3} A-3 \cos A$,
$\sin n A=n \cos ^{n-1} 4 \sin A-\frac{n(n-1)(n-2)}{\mid 3} \cos ^{n-3} A \sin ^{3} A+\cdots$

$$
\begin{gathered}
\pm(-1)^{r n(n-1) \ldots(n-2 r)} \\
\cos n A \equiv \cos n A-\frac{n(n-1)}{\frac{12}{2 r+1}} \cos ^{n-2 r-1} A \sin ^{2 r+1} A \\
+\left(-1 \sin ^{2} A+\ldots\right. \\
\frac{n(n-1) \ldots(n-2 r+1)}{\mid 2 r} \\
\cos ^{n-2 r} A \sin ^{2 r} A+\cdots
\end{gathered}
$$

may all be deduced from the addition formulx by making कise angles all equal. From the last two formula we obtain by division
$n \tan A-\frac{n(n-1)(n-2)}{18} \tan ^{5} A+\ldots+(-1)^{r} \frac{n(n-1) \ldots(n-2 \cdot)}{12 r+1} \tan ^{2 r+1} A^{\prime}+$.
$=\frac{\left.1-\frac{n(n-1)}{12} \tan ^{2} A+\ldots+(-1)^{r^{n}(n-1) \ldots(n-2 r}+1\right)}{\tan ^{2} r i t \ldots}$
In the particular case of $n=3$ we have $\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$

The ralues of $\sin \frac{1}{2} A, \cos \frac{1}{2} A, \tan \frac{1}{2} A$ are given in terms of $\cos A$ by the formulx

$$
\begin{aligned}
& \sin \frac{1}{2} A=\left(-1^{\prime n}\left(\frac{1-\cos A}{2}\right)^{\frac{1}{2}}, \cos \frac{1}{2} A=(-1)^{9}\left(\frac{1+\cos A}{2}\right)^{\frac{3}{2}},\right. \\
& \tan \frac{1}{2} A=(-1)^{r}\left(\frac{1-\cos A}{1+\cos A}\right)^{\frac{1}{2}},
\end{aligned}
$$

where p is the integrat part of $\frac{A}{2 \pi}, q$ the integral part of $\frac{A}{2 \pi}+\frac{1}{2}$, and \cdot the integral pert of $\frac{A}{\pi}$.
$\sin \frac{3}{2} A, \cos \frac{1}{2} A$ are given int terms of sinl α by the formuleo $2 \sin \frac{1}{2} A=(-1)^{p^{\prime}}(1+\sin A)^{\frac{3}{2}}+(-1)^{q^{\prime}}(1-\sin A)^{\frac{1}{2}}$,
$2 \cos \frac{1}{2} A=(-1)^{P^{\prime}} \cdot(1+\sin A)^{\frac{1}{2}}-(-1)^{Q^{\prime}}(1-\sin A)^{\frac{1}{2}}$,
where p^{\prime} is the integral part of $\frac{A}{2 \pi}+\frac{1}{4}$ and q^{\prime} the integral part of $\frac{A}{2 \pi}-\frac{1}{4}$
In any plnue triangle $A B C$ wo will denote tho lengths of the sides $B C, C A, A B$ by a, b, c respectively, and the angles $B A C$, $A B C, A C B$ by $A . B, C$ respectively. The fact that the projections of b and c ou a straight line perpendicular to the side a are equel to one anotleer is expressed by the equation $b \sin C=c \sin B$; this equation and tlie one obtained by projecting c and a on a straight line perpendicular to a may be writton $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$. The equation $a=b \cos C^{\prime}+c \cos B$ expresses the fact that the side a is equel to the aum of the projections of the sides o and c on itself; thue we obtain the equations

$$
\left.\begin{array}{l}
a=b \cos C+c \cos B \\
b=c \cos A+a \cos C \\
c=a \cos B+b \cos A
\end{array}\right\} .
$$

If we multiply the first of these equations by $-a$, the second by b. and the third by c, aud add the resulting equetinus, we ohtain the formola $b^{2}+c^{2}-a^{2}=2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$, which gives the cosine of an angle in terms of the sides. Fro:n this oxpression for cos A the formule $\sin \frac{7}{2} A=\left\{\frac{(s-b)(s-c)}{b c}\right\}^{\frac{1}{2}}, \cos \frac{1}{2} A=\left\{\frac{s^{i}(s-a)}{b c}\right\}^{\frac{2}{2}}$, $\left.\tan \frac{1}{2} A=\left\{\frac{(s-b)(s-c)}{s(s-a j}\right\}^{\frac{3}{3}}, \sin A=\frac{2}{b c}\{s(s-a)(s-b): s-c)\right\}$, whero s dedotes $\frac{1}{2}(a+b+c)$, can lie deduced hy means of the dimidiary formnla.
From any general relation between the sides and angles of a triengle other relations may he leduced by verions methods of transformation, of which we give two examplea.
(a) Io ody general relation between tho sines and cosines of the engles A, B, C of a triangle we may onbatitute $p A+q B+r C$, $r A+p B+q C, q A+r B+p C$ for A, B, C respectively, where p, q, s are any quantities ench that $p+q+r+1$ is a poaitive or uegs. tive multiple of 6 , provided that we change the aigns of all the sides. Suppose $p+q+r+1=6 \pi$, then the sum of the thrse angles $2 n \pi-(p A+q B+r C), 2 n \pi-(r A+p B+q C), 2 n \pi-(q A+r B+p C)$ is r; and, since the given relatiou followe from the condition $A+B$ $+C=\pi$, wo may sulustitnto for A, \mathcal{D}, C respectively any angles of which the sum is π; thate the trausformation is admissible.
(β) It may easily he ghown that the sides end angles of the triangle formed by joining the feet of the perpendicnlars from tha angular points A, B, C on the opposite sides of the triangle $A B C$ are respectively $a \cos A, b \cos B, c \cos \mathrm{C}, \pi-2 A, \pi-2 B, \pi-2 C$; we may therefore sulustitute these expressions for a, b, c, A, B, C respectively in any general formula By drawing the perpendiculars of this second triangle and joining their feet as hefore, we olstair a triengle of which tie sides are $-a \cos A \cos 2 A,-b \cos B \cos 2 B$, $-c \cos C \cos 2 C$ and the angles are $4-\pi, 4 B-\pi, 4 O-\pi$; we may therefore substitute these oxpressiona for tha sides and angles of the original triangle; for example, we ohtain thus the formula

$$
\cos 4 A=\frac{a^{2} \cos ^{3} A \cos ^{2} 2 . A-b^{2} \cos ^{2} B \cos ^{2} 2 B-c^{2} \cos ^{2} C \cos ^{2} 2 C}{2 b c \cos B \cos C \cos 2 B \cos 2 C}
$$

This transformation ohrionsly admits of further extension.
(1) Tho three sides of e triangle $A B C$ being given, the angles can be letermined by the formula
$I_{s} \tan \frac{A}{2}=10+\frac{1}{2} \log (s-b)+\frac{1}{2} \log (s-c)-\frac{1}{2} \log s-\frac{1}{2} \log \left(s-a_{1}\right.$ and two corresponding fonnulæ for the other angles.
(2) The tro sides a, b and the iacladed angla C being given, the engles A, B can ba determiaed from the formules

$$
\begin{aligned}
A+B & =\pi-C, \\
L \tan \frac{1}{2}(A-B) & =\log (a-b)-\log (a+b)+L \cot \frac{3}{2} C,
\end{aligned}
$$

and the side c is then obtaioed from tha formula
$\log \mathrm{c}=\log a+L \sin C-L \sin A$.
(3) The two sides a, b and the angle A being given, the value of sin B mav be found by means of the formula

$$
L \sin B=L \sin A+\log b-\log a
$$

this gives two supplementary values of the anglo B, if $b \sin A<a$. If $b \sin A>a$ there is no solution, and if $b \sin A=a$ there is one solution. In the case $b \sin A<a$, both values of B give eolutions provided $b>a$, but the acnte value onl y of B is edmissible if $b<a$.

The other side c can the be determined as in case (2).
(1) If two engles A, B end a sids a are given, the engle C is de. termined from the formule $C=\pi-A-B$ and the sido b from the formula $\log b=\log a+L \sin B-L \sin A$.
Tie area of a triaggle is half the product of a side into the perpendicular from vhe opposite angle on that sida; thna we ohtain the expressions $\frac{3}{2} b \sin A,\{s(s-a)(s-b)(s-c)\}^{\frac{2}{2}}$ for the ares of a tringle. A large collection of formule for the area of a triangle are given in the Anvals of Mathematics for 1885 by M. Baker.
Let a, b, c, d denote the leagths of the sides $A B, B C, C D, D A$ respectively of any plane quedrilateral and $A+C=2 \alpha$; we may obtain an expression for the area S of tho quadrilateral in terme of the sides and the erigle a.
W9 havo $\quad 2 S=a d$ in $A+b \dot{e} \sin (2 a-A)$ and $\quad \frac{1}{2}\left(a^{2}+d^{2}-b^{2}-c^{2}\right)=a d \cos A-b c \cos (2 a-A)$; bence $\quad 4 S^{2}+1\left(a^{2}+d^{2}-b^{2}-c^{2}\right)^{2}=a^{2} d^{2}+b^{2} c^{2}-2 a b c d \cos 2 a$. If $2 s=a+b+b+d$, the valne of S may be rritten in the form $\left.S=\{s \cdot s-a)(s-b)(s-c)(s-d)-a b c d \cos ^{2} a\right\}^{\frac{1}{2}}$.
Let R denote the radius of the ciscumscribed circle, r of tho io. Radii of ecribed, and $r_{2}, r_{2 r},{ }^{\prime}$, of the escribed circles of a triaggle $A B C$; the circamvalues of these radii are given by the following formnlæ. scribed,

$$
\begin{aligned}
& R=\frac{a b c}{4 S^{\prime}}=\frac{a}{2 \sin A^{\prime}} \\
& r=\frac{S}{3}=(s-a) \tan \frac{1}{3} A=4 R \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C, \\
& r_{2}=\frac{S}{s-a}=3 \tan \frac{1}{2} A=4 R \sin \frac{1}{3} A \cos \frac{\pi}{3} B \cos \frac{1}{2} C
\end{aligned}
$$

Sulurical Trigonometry

We shall thecughout assume each eiementary propositione in 8pherical geometry as are required for the parbose of the investiga tion of forafulm given below.

A epherical triangls is tha portion of the sarface of a sphere Defin:bounded by three ares of great circles of the sphess. If $B C, C A$, tion of $A B$ denote these arcs, the circular messare of ths erglas suhtended apherice by thesa arce respectively at the centre of tho sphere are the sides triengle a, b, c of the spherical triangls $A B C$; and, if sha portione of plases passing throngh thesa arcs and the centee of the ephere be drann, the angles hetreen tha portinos of planes intersecting at A, B, C respectively ere the anglos A, B, C of the spherical triangle. It is not necessary to consider trianglos in whici a side is greater than $\boldsymbol{v}_{\text {, }}$ since we may replace snch a side by the remairing arc of the great circle to which it belongs Since two great circles interaect eerh other in two points, there are cight trianglea of which the sides are arce of the eaine three great circles. If we consider one of these triangles $A B C$ as the fundemental one, then one of the othert is equal in all respects to $A B C$, and the remaining six lave each one side equal to, or common mith, a side of tis triangle $A B C$, the opposite anglo equal to the correspoding angle of $A B C$, and tho other sides and angles supplementary to the corresponding sides end angles of $A B C$. These triangles may he called the sssociated triangles of the fundamental one $-\{B C$. It follows that from any general formula containing the sides and angles of a spheical triangle we may obtain othar formula by replacing two eides and the two engles opposite to them by their supplements, the remaining side and the remaining engle being unaltered, for such formulm are ohtained by applying the given formnle to the associated triangles.

If $A^{\prime}, B^{\prime}, C^{\prime}$ are those poles of the arce $B C, C A, A B$ respectively which lic npon the same sides of them as the opposite angles A, B, C, then the triangle $A^{\prime \prime} D^{\prime} C^{\prime}$ is called the polar triangla of the trianglo $A B C$. The sides of the polar triangla ara $\pi-A, \pi-B, \pi-C$, and the angles $\pi-a, z-b, \pi-c$. Hence from any general formula connecting the sides and angles of a spherical triangle we mas obtain another formula by changing each sida in to the supplement of the opposite angle a ad each angle into the supplement of the op. posite side.

Let O be the centre of the sphere on which is the epherical triangle $A B C$. Draw $A L$ perpendicular to $O C$ a ad $A B$ perpaodicular to
the plene $O B C$. Then the projection of $O A$ on $O B$ is the sum of the projections of $O \Sigma$, $L M, M A$ on the samestraight line. Since $A M$

$\mathrm{F}_{16} 5$.
has mo projection on any straight line in the piane OBC, this gives O. A cos $c=O L \cos a+L I I \sin a$.

Nav $O L=O A \cos b, L A=A L \cos C=O A \sin b \cos C$;
therefore $\quad \cos c=\cos a \cos b+\sin a \sin b \cos C$.
We may obtan similar formula by interclanging the letters a, b, a
thus
$\cos a=\cos b \cos c+\sin b \sin c \cos A$ $\cos \delta=\cos c \cos a+\sin c \sin a \cos B$ \qquad
$\cos c=\cos a \cos b+\sin a \sin b \cos C$)

These formulæ (1) may be regarded as the fundamental equations connecting the sides and angles of a spherical triangle; all the other relations which we shall give below nuny be deduced analytically from them; we shsll, however, in most cases give independent proofs. By using the polar triangle transformation we have the formule $\cos A=-\cos B \cos C+\sin B \sin C \cos \alpha)$ $\cos B=-\cos C \cos A+\sin C \sin A \cos b$ $\cos C=-\cos A \cos B+\sin A \sin B \cos c)$
In the figure we have $A M=A L \sin C=r \sin b \sin C$, where r denotes the radins of the sphere. By drawing a perpendicnlar from A on $O B$, we may in a similar manner show that $A M=r \sin c \sin B$, therefore $\quad \sin B \sin c=\sin C \sin b$.
By interchanging the sides wo have the equation

$$
\frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c}=k
$$

we shall find below a symmetrical form for k.
If we climinate $\cos b$ hetween the first two formale of (1) we have $\cos c \sin ^{2} \varepsilon=\sin b \sin c \cos A+\sin c \cos c \operatorname{sia} a \cos B ;$
therefore $\cot a \sin c=\frac{\sin b}{\sin a} \cos A+\cos c \cos B$

$$
=\sin B \cot A+\cos c \cos B
$$

We thas have the six equstions
$\cot a \sin b=\cot A \sin C+\cos b \cos C$
$\cot b \sin a=\cot B \sin C+\cos a \cos C$ $\cot b \sin c=\cot B \sin A+\cos c \cos A$ $\cot c \sin b=\cot C \sin A+\cos b \cos A$
$\cot c \sin a=\cot C \sin B+\cos a \cos B$
$\cot a \sin c=\cot A \sin B+\cos c \cos B$)
When $C=\frac{\pi}{2}$ formula (1) gives $\cos c=\cos a \cos b$.
and (3) givcs $\quad \sin b=\sin B \sin c$ (β) ;
from (3) we gat $\quad \tan a=\tan A \sin b=\tan c \cos B$
The formnlæ
$\tan b=\tan B \sin a=\tan c \cos A$ and $\cos c=\cot A \cot B$ $\cos B=\cos b \sin A$
follow at once from $(a),(\beta),(\gamma)$. These are the formulae which are ased for the solntion of right-angled triangles. Napier gave mnemonical rules for remembering them.

The following proposition follows easily from the theorem in equation (3):-lf $A D, B E, C F$ are three arcs drawn throngh A, B, C to meet the opposite sides in D, E, F respectively, and if these arcs pass through a poiut, the segments of the sides satisiy the relation $\sin B D \sin C E \sin A F=\sin C D \sin A E \sin B F$; and conversely if this relation is satisfied the sres pass through a point. From this theorem it follows that the three perpendiculare from the angles on the opposite sides, the three bisectors of the angles, aud the three arcs from the angles to the middle points of the oppesite sides, each pass through a paint.
Pormnles If D be the point of intersection of the three or sine bisectors of the angles A, B, C, and if $D E$ be und co- ilrawn perpendicular to $B C$, it may be shown tue $\cap \mathrm{f}$ that $B E=\frac{1}{2}(a+c-b)$ and $C E=\frac{1}{3}(a+b-c)$,

Fig. 8. salf sud that the angles $B D E, A D C$ are supplementary. We have encles:

Hence the quantity k in (3) is
$\frac{1}{\sin a \sin b \sin c}\left\{1-\cos ^{3} a-\cos ^{2} b-\cos ^{2} c+2 \cos a \cos b \cos c\right\}^{\frac{1}{2}}(8)$.
Apply the poler triangle transformstion to the formule (5), (6), of he (7), (8) snd we obtain

$$
\begin{align*}
& \cos _{\frac{a}{2}}^{a}=\left\{\frac{\left.\left.\cos \frac{A+C-B}{2} \cos \frac{A+B-C}{2}\right)^{\frac{1}{2} B \sin C}\right\}^{\prime} \cdots}{} \begin{array}{l}
\sin \frac{a}{2}=\left\{\frac{-\cos \frac{B+C-A}{2} \cos \frac{A+B+C}{2}}{\sin B \sin C}\right\}^{\frac{1}{2}} . \\
\operatorname{tsn} \frac{a}{2}=\left\{\frac{-\cos B+C-A}{2} \cos \frac{A+B+C}{2}\right. \\
\cos \frac{A+C-B}{2} \cos \frac{A+B-C}{2}
\end{array}\right\} . \tag{9}
\end{align*}
$$

If $k^{\prime}=\frac{1}{\sin A \sin B \sin C^{1}}\left\{\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C\right\}^{\frac{1}{2}}$, we have $k k^{\prime}=1$
Let E be the middle point of $A B$; drav $E D$ at right angles to De$A B$ to meet $A C$ in D; then $D E$ bisects the angle $A D B$. Let $C F$ bisect the angle $D C B$ and draw $F^{\prime} G$ perpendiculer to $B C$, thea

$$
\begin{gathered}
C G=\frac{a-b}{2}, \angle F B E=\frac{A+B}{2}, \\
\angle F C G=90^{\circ}-\frac{C}{2}
\end{gathered}
$$

From the triangle CFO we hare cos $C F G$ $=\cos C \alpha \sin F C C O$, and from the triangle $F E B \cos E F B=\cos E B \sin F B E$. Now

the angles $C F G, E F B$ sre each supplementary to the angle $D F B$, therefore

$$
\cos \frac{a-b}{2} \cos \frac{C}{2}=\sin \frac{A+B}{2} \cos \frac{c}{2}
$$

Also $\sin C G=\sin C F \sin C F O$ and $\sin E B=\sin B F \sin E F B$;

therefore

$$
\sin \frac{a-b}{2} \cos \frac{C}{2}=\sin \frac{A-B}{2} \sin \frac{c}{2} .
$$

Apply the formulw (13), (14) to the assaciated triangle of which $a, \pi-b, \pi-c, A, \pi-B, \pi-C$ are the sides and sngles, we then have

$$
\begin{align*}
& \sin \frac{a+b}{2} \sin \frac{C}{2}=\cos \frac{A-B}{2} \sin \frac{c}{2} . \tag{15}\\
& \cos \frac{a+b}{2} \sin \frac{C}{2}=\cos \frac{A+B}{2} \cos \frac{c}{2} . \tag{16}
\end{align*}
$$

The four formule (13), (14), (15), (16) were first given by Delsmbre in the Connaissance des Temps for 1808. Formulx equivalent to these were given by Mollweide in Zaclı's Monalliche Correspondens for November 1808. They were slso given by Gauss (Thcoria notus, 1809), and are usually called after him.

From the ame figure we hare

$$
\tan F G=\tan F C G \sin C G=\tan F D G \sin P G ;
$$

Napier
therefore

$$
\begin{align*}
\cot \frac{C}{2} \sin \frac{a-b}{2} & =\tan \frac{A-B}{2} \sin \frac{a+b}{2}, \\
\tan \frac{A-B}{2} & =\frac{\sin \frac{a-b}{2}}{\sin \frac{a+b}{2}} \cot \frac{C}{2} \ldots \ldots
\end{align*}
$$

Apply this formula to the associated triangle ($\pi-a, b, \pi-c, \pi-A$, $B, \pi-C$, and we have

$$
\begin{align*}
& \cot \frac{A+B}{2}=\frac{\cos \frac{a+b}{2}}{\cos \frac{a-b}{2}} \tan \frac{C}{2}, \\
& \tan \frac{A+B}{2}=\frac{\cos \frac{a-b}{2}}{\cos \frac{a-b}{2}} \cot \frac{C}{2} . \tag{18}
\end{align*}
$$

or
If we spply these formuln (17), (18) to the polar triangle, we hsvi

$$
\begin{align*}
& \tan \frac{a-b}{2}=\frac{\sin \frac{A-B}{2}}{\sin \frac{A+B}{2}} \tan \frac{c}{2} \tag{19}\\
& \tan \frac{a+b}{2}=\frac{\cos \frac{A-B}{2}}{\cos \frac{A+B}{2}} \tan \frac{c}{2} \tag{20}
\end{align*}
$$

The farmulæ (17), (18), (19), (20) are called Napier's "Analogies" they were given in the Mirif. logar. canonis descriptio.

If tre use the ralues of $\sin \frac{a}{2}, \sin \frac{b}{2}, \sin \frac{c}{2}, \cos \frac{a}{2}, \cos \frac{b}{2}, \cos \frac{c}{2}$ giren by (9), (10) and the saslogons formulre obtsined by interchanging the letters, we obtaiu by multiplicstion

$$
\left.\begin{array}{l}
\sin \frac{\pi}{2} \cos \frac{b}{2} \sin C=\sin \frac{c}{2} \cos \frac{B+C-A}{2} \\
\cos _{2}^{a} \cos _{2}^{b} \sin C=\cos { }_{2}^{c} \cos ^{A+B-C} \\
\sin _{2}^{a} \sin \frac{b}{2} \sin C=\cos \frac{c}{2} \cos \frac{A+B+C}{2}
\end{array}\right\}
$$

These formulæ were giveu by Schnteisser in Crelle's Joumı., vol. х.
The relstion $\sin b \sin c+\cos b \cos c \cos A=\sin B \sin C-\cos B \cos C \cos a$ was given by Cagnoli in his Trigonometry (1786), and was redis. covered by Csyley (Plil. Mag., 1859). It follows from (1), (2), sad (3) thus: the right-hsod side of the equation equals siu B sin C $+\cos a(\cos -A-\sin B \sin C \cos a)=\sin B \sin C \sin ^{2} a+\cos a \cos A, 8$ nd this is equsi to $\sin b \sin c+\cos A(\cos a-\sin b \sin c \cos A)$ or $\sin b \sin c+$ $\operatorname{cus} b \cos c \cos A$.
The formulæ we have giren are sufficient to determine three parts of a triangle when the other three parts are given: moreover such formulem msy always be chosen as are sdapted to logarithmic calculation. The solutions will be unique except in the two csses (1) where two sides and the sigle opposite one of them sre the giveu parts, and (2) where two sagles and the eide opposite one of them sre giveu.

Surpose a, b, A are the giren parts. We determine B from the formuls $\sin B=\frac{\sin h}{\sin \pi} \sin A$; this gires two supplementary values of B, one acnte and the other obtuse. Then C and care determined from tho equations $\tan \frac{C}{2}=\frac{\sin \frac{a-b}{2}}{\sin \frac{a+b}{2}} \cot \frac{A-B}{2}, \tan \frac{c}{2}=\frac{\sin \frac{A+B}{2}}{\sin \frac{A-B}{2}} \tan \frac{a-b}{2}$.
Now $\tan \frac{C}{2}, \tan \frac{c}{2}$ must both be positire; heace $A-B$ and $a-b$ must have the same sign. We shsll distinguish three cases. First, supjose $\sin b<\sin a$; then we hive $\sin B<\sin A$. Hence A lies botween the two values of B, and therefore only one of these values is admissible, the acuto or the obtuse value according as a is greater or less than b; there is therefore in this case always one solution. Secondly, if sin $b>\sin \pi$, there is no solution wheu $\sin b \sin A>\sin a$; but if $\sin b \sin A<\sin a$ there are two ralues of B both grester or both Jess thau A. If a is acute, $a-b$, sud therefore $A-B$, is negative; hence theresre two solutions if A is acute and none if A is obtuse. These two solutions fall together if $\sin b \sin A=\sin a$. If a is obtuse there is no solution unless A is obtuse, sod in that case there are two, which coincide ss before if $\sin b \sin A=\sin a$. Hence in this case there are two solutions if $\sin b \sin A \leqq \sin a$ and the two jarts A, a sre both acute or both obtuse, these being coincilent in case $\sin b \sin A \equiv \sin a ;$ and there is no solution if one of the two A, a is acuto sind the other obtuse, or if $\sin b \sin A>\sin a$. Thirdly, if $\sin b=\sin a$ thed $B=A$ or $\pi-A$. If a is scute, $a-b$ is zero or negatire, bence $A-B$ is zero or negative; thns there is no solution unless A is scate, snd then there is one. Similarly, if a is obtuse, A must be so too in order that there may be a solution. If $a=b=\frac{\pi}{2}$, theie is no solution unless $A=\frac{\pi}{2}$, and theu there are an infinite number of solutions. bince the ralues of C and a become indeterminste.
The other case of s mbiguity mey be discussed in a similar manner, or the different cases nswode deduced from the sbove by the use of the polar triangle transformation. The method of classification sccording to the three cases sin $l=\sin a$ wes given by Professor Lloyd Tinner (Messenger of Math., Vol. xiv.).

If r is the angular radius of the emall circle inscribed iu the triangle ${ }^{* *} A B C$, we heve at ouce $\tan r=\tan \frac{A}{2} \sin (s-a)$, where $2 s=a+b+c$; from this we can derive the formales $\tan r=n \operatorname{cosec} s=\frac{N}{2} \sec \frac{A}{2} \sec \frac{B}{2} \sec \frac{C}{2}=\sin a \sin \frac{B}{2} \sin \frac{C}{2} \sec \frac{A}{8}(21)$, where n, N denote the expressions

$$
\left.\left.\{\sin s \sin (s-a) \sin (s-b) \sin (s-c)\}^{\frac{1}{3}}, C\right)\right\}
$$

The escribed circles are the smsll circles inscribed in three of the associsted trisagles; thus, spplying the above formula to the triangle $(a, \pi-b, \pi-c, A, \pi-B, \pi-C)$, we hare for r_{1}, the radius of the escribed circle opposite to the sagla A, the following formule
$\tan r_{1}=\tan \frac{A}{2} \sin s=n \operatorname{cosec}(s-\alpha)=\frac{1}{2} \sec \frac{A}{2} \operatorname{cosec} \frac{B}{2} \operatorname{cosec} \frac{C}{2}$

$$
\begin{equation*}
=\sin a \cos \frac{F}{2} \cos \frac{C}{2} \sec { }_{2}^{A} \tag{22}
\end{equation*}
$$

The pole of the circle circumsnribing a triangle ls that of tha circle inscribed in the polar triangle, sud the radii of the twi circles sre complementary; beace, if I be the radius of the circum. scribed circle of the trisngle, snd $R_{1}, l_{2} R_{3}$ tle vadii of the circla circumscribing the associsted trisagles, we bare by writiug $\frac{\pi}{2}$,
for $r, \frac{\pi}{2}-R_{\downarrow}$ for $r_{2}, \pi-a$ for A, \&c., in the sbore formulm
$\cot I=\cot \frac{a}{2} \cos (S-A)={ }_{2}^{n} \operatorname{cosec} \frac{a}{2} \operatorname{cosec}{ }_{2}^{b} \operatorname{cosec}{ }_{2}^{c}=-N \sec S$

$$
=\sin A \cos _{2}^{b} \cos _{2}^{c} \operatorname{coscc} \frac{a}{2} \cdots \cdots \quad \text { (2S) }
$$

$$
\begin{equation*}
=\sin A \sin _{2}^{b} \sin _{2}^{c} \operatorname{cosec} \frac{a}{2} . \tag{21}
\end{equation*}
$$

The following relstions follow from the formula just given:$2 \tan R=\cot r_{1}+\cot r_{2}+\cot r_{3}-\cot r_{1}$,
$2 \tan n_{1}=\cot r+\cot r_{2}+\cot r_{3}-\cot r_{1}$,
taur tan r_{1} taur r_{2} tan $r_{3}=n^{2}, \sin ^{2} s=\cot r \tan r_{3}$ tan r_{2} tau r_{3} $\sin ^{2}(s-a)=\tan r \cot r_{2} \tan r_{2} \tan r_{3}$.
If $E=A+B+C-\pi$, it may be shown that E multiplied by the Eorm wip square of the rsulius is the ares of the triangle. Wre give some of for the inore important expressions for the quantity \mathcal{E}, which is called spher the eplierics excess.
We lizve $\frac{\cos \frac{A+B}{2}}{\sin \frac{6}{2}}=\frac{\cos \frac{a+b}{2}}{\cos \frac{6}{2}}$ and $\frac{\sin \frac{A-B}{2}}{\cos \frac{6}{2}}=\frac{\cos \frac{a-b}{2}}{\cos \frac{c}{2}}$,
or

$$
\frac{\sin \left(\frac{C}{2}-\frac{E}{2}\right)}{\sin \frac{6}{2}}=\frac{\cos \frac{a+b}{2}}{\cos \frac{2}{c}} \text { and } \frac{\cos \left(\frac{C}{2}-\frac{B}{2}\right)}{\cos \frac{C}{2}}=\frac{\cos \frac{a-b}{2}}{\cos ^{c} 2}
$$

heare
therefore

$$
\frac{\sin \frac{C}{2}-\sin \left(\frac{C-E}{2}\right)}{\sin \frac{C}{2}+\sin \left(\frac{C-E}{2}\right)}=\frac{\cos \frac{C}{2}-\cos \frac{a+b}{2}}{\cos \frac{c}{2}+\cos \frac{a+b}{2}}
$$

$$
\frac{\tan \frac{E}{4}}{\tan ^{2} \frac{C-E}{4}}=\tan 2_{2}^{s} \tan \frac{s-c}{2}
$$

Similarly

$$
\begin{equation*}
\tan \frac{E}{2} \tan \frac{C^{2}-E}{4}=\tan \frac{s-\theta}{2}-\tan \frac{s-b}{2} \tag{25}
\end{equation*}
$$

therefore $\tan \frac{E}{i}=\left\{\tan _{2}^{s} \tan \frac{s-a}{2} \tan \frac{s-b}{2} \tan \frac{s-c}{2}\right\}^{\frac{1}{2}}$.
This formula was given by L'Euillier.
Also

$$
\begin{aligned}
& \sin \frac{C}{2} \cos \frac{E}{2}-\cos \frac{C}{2} \sin \frac{E}{2}=\frac{\cos \frac{\prime+b}{2}}{\cos \frac{6}{2}} \sin \frac{C}{2} ; \\
& \cos \frac{C}{2} \cos \frac{E}{2}+\sin C_{2}^{\prime} \sin \frac{E}{2}=\frac{\cos \frac{a-b}{2}}{\cos \frac{6}{2}} \cos \frac{C}{2} ;
\end{aligned}
$$

whence, solving for $\cos \frac{E}{2}$, we get

$$
\begin{equation*}
\cos \frac{E}{2}=\frac{1+\cos a+\cos b+\cos c}{4 \cos \frac{a}{2} \cos \frac{b}{2} \cos \frac{c}{2}} \tag{26}
\end{equation*}
$$

This formula was given by Euler (Nova actir, vol. x.). If we find $\sin \frac{E}{2}$ from this formuls, wo obtain after reductiou

$$
\sin \frac{E}{2}=\frac{n}{2 \cos \frac{a}{2} \cos \frac{b}{2} \cos \frac{2}{2}} \text {, }
$$

a formule given by Lescell (Acte Petrop., 1782).
Froin the cquations (21), (22), (23), (24) we oblain the following formula for the sphericsl excess:-
$\sin ^{2} \frac{E}{2}=\tan R \cot R_{1} \cot R_{8} \cot R_{3}$

$$
=\frac{4\left(\cot r_{1}+\cot r_{8}+\cot r_{8}\right)}{\left(\cot r-\cot r_{1}+\cot r_{2}+\cot r_{3}\right)\left(\cot r+\cot r_{1}-\cot r_{2}+\cot r_{3}\right)}\left(\begin{array}{l}
\left(\cot r+\cot r_{1}+\cot r_{2}-\cot r_{3}\right)
\end{array}\right.
$$

The formula (26) msy be expressed geometrically Let $3 r_{3} N$ be the middle points of the sides $A B_{\mathrm{s}} A C$. Then we find $\cos \mu N$ $=\frac{1+\cos a+\cos b+\cos ^{\circ} c}{4 \cos \frac{b}{2} \cos \frac{c}{2}} ;$ heoce $\cos \frac{H^{\prime}}{2}=\cos M N \operatorname{sce}_{2}^{a}$

A geometrical construction lias been given for E by Gudermann̄n (in Crelle's Journ., vi. and viii.). : It las been shomn by Cormeliv Keogh that the rolume of the perallelepiped of which the radii d
the sphere passing through the middle points of the sides of the triangle arc edges is $\sin \frac{E}{2}$

Let $A B C D$ be a spherical quadrilateral inscribed in a small circle; let a, b, c, d denote the sides $A B, B C, C D, D A$ respectively, and x, y the diagonals $A C, B D$. It can easily be shown by joining the angular points of the quadrilateral to the pole of the circle that $A+C=\bar{B}+D$. If we use the last expression in (23) for the radii of the circles circumscribing the triangles $B A D, B C D$, we have

$$
\sin A \cos \frac{\alpha}{2} \cos \frac{d}{2} \operatorname{cosec} \frac{y}{2}=\sin C \cos \frac{b}{2} \cos \frac{C}{2} \operatorname{cosec} \frac{y}{2} ;
$$

Thence

$$
\frac{\sin A}{\cos \frac{b}{2} \cos \frac{c}{2},}=-\frac{\sin C^{c}}{\cos \frac{a}{2} \cos \frac{d}{2}}
$$

This is the proposition corresponding to the relation $A+C=\pi$ for a plane quadrilateral. Also we obtain in a similar manuer the theorem

$$
\frac{\sin \frac{x}{2}}{\sin B \cos \frac{b}{2}}-\frac{\sin \frac{y}{2}}{\sin A \cos \frac{d}{2}},
$$

analogous to the theorem for a plane quadrilateral, that the diagonals are proportional to the sines of the angles opposite to then. Also the chords $A B, B C, C D, D A$ are equal to $2 \sin \frac{a}{2}, 2 \sin \frac{b}{2}, 2 \sin \frac{c}{2}, 2 \sin \frac{d}{2}$ respectively, and the plane quadrilateral formed by these chords is inscribed in the same circle as the spherical quadrilateral ; hence by Ptolemy's theorem for a plaze quadrilateral we obtain the analogous theorem for a spherical one

$$
\sin \frac{x}{2} \sin \frac{y}{2}=\sin \frac{a}{2} \sin \frac{c}{2}+\sin \frac{b}{2} \sin \frac{d}{2}
$$

It has been shown by Remy (iu Crelle's Journ., vol. iii.) that for any quadrilateral, if z be the spherical distance between the middle points of the diagonals,

$$
\cos a+\cos b+\cos c+\cos d=4 \cos \frac{1}{2} x \cos \frac{1}{2} y \cos \frac{1}{2} z .
$$

This theorem is analogous to the theorem for any plane quadrilateral, that the eum of the squares of the sides is equal to the sum of the squares of the diagonals, together with twice the square on the straight line joining the middle points of the diagonals.

A theorem for a right-angled spherical triangle, analogous to the Pythagorean theorem, has been given by Gudermann (in Crelle's Journ., vol. zlii.)

Analytical Trigonome:ry.

Penodi- Analytical trigonometry is that branch of mathematical analysis sity of in which the analytical properties of the trigonometrical functions sunctions. are investigated. These functions derive their importance in ana* lysis from the fact that they are the simplest singly periodic functions, and are therefore adapted to the representation of undulating magnitude. The sine, cosine, secant, and cosecant have the single real period 2π; i.e., each is unaltered in value by the addition of 2π to the variahle. The tangent and cotangent have the period π. The sine, tangent, cosecant, and cotangent belong to the class of odd functions; that is, they change sign when the sign of the variable is changed. The cosine and secant are even functions, since they remain nnaltered when the sign of the variable is reversed.
The theory of the trigonometrical functions is intimately connected with that of complex quantities,-that is, of quantities of the form $x+\varepsilon y(b=\sqrt{-1})$. Suppose we multiply together, by the rules of ordinary algebra, two such quantities, we have

$$
\left(x_{1}+c y_{1}\right)\left(x_{3}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\iota\left(x_{1} y_{3}+x_{2} y_{1}\right) .
$$

We observe that the real part and the real factor of the imaginary part of the expression on the right-hand side of this equation are similar in form to the expressions which occur in the addition formule for the cosine and sine of the sum of two angles; in fact, if we put $x_{1}=r_{1} \cos \theta_{1}, y_{1}=r_{1} \sin \theta_{1}, x_{2}=r_{2} \cos \theta_{3} y_{2}=r_{2} \sin \theta_{3}$ the above equation becomes
$r_{1}\left(\cos \theta_{1}+\iota \sin \theta_{1}\right) \times r_{2}\left(\cos \theta_{2}+\iota \sin \theta_{2}\right)=r_{1} r_{2}\left(\cos \overline{\theta_{1}+\theta_{2}}+\iota \sin \overline{\theta_{1}+\theta_{2}}\right)$.
We may now, in accordance with the nsual node of representing complex quantities, give a geometrical interpretation of the meaning of this equation. Let P_{1} be the point whose coordinates referred to rectangularaxes $O x, O y$ are x_{1}, y_{1}; then the point P_{1} is employed to represent the quantity $x_{1}+\iota y_{1}$. In this mode of representation real quantities are meesured along the axis of x and imaginary ones along the axis of y, additions being performed according to the parallelogram law. The points A, A_{1} represent the magnitudes ± 1, the points a, a_{1} the magnitudes \pm_{6} Let P_{2} represent the expression $x_{2}+i y_{2}$ and P the expression $\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)$. The quantities $r_{2} \theta_{1}, r_{21} \theta_{2}$ are the golar coordinates of P_{1} and P_{2} respectively referred
to O as origin and $O x$ as initial line; the above equation shows that $r_{1} r_{2}$ and $\theta_{1}+\theta_{3}$ are the polar coordinates of P; hence $O A$ $: O P_{1}$:: $O P_{2}: O P$ and the angle $P O P_{2}$ is equal to the augle $P_{1} 0$ A. Thus we have the following geometrical construction for the determination of the point P. On $O P_{a}$ diaw a triangle similar to the triangle $O_{A} P_{1}$ so that the sides
$O P_{2}, O P$ are homologous to the sides $O A, O P$, and so that the angle $P O P_{2}$ is positive; then the vertex P represents the proluct of the expressions represented by P_{1}, P_{z} If $x_{2}+\iota y_{2}$ were to be divided ${ }^{3}$. by. $x_{1}+\iota y_{1}$, the triangle $O P^{\prime} P_{2}$ would be drawn on the uegative side of P_{2}, similar to the triangle $O A P_{1}$ and having the sides $O P^{\prime}, O P_{2}$ homologous to $O A, O P$, and P^{\prime} would represent the quotient.

If we extend the abore to n comples quantities by continual repeti-
tion of a similar operation, we
have-

$$
\left(\cos \theta_{1}+t \sin \theta_{1}\right)\left(\cos \theta_{2}+6 \sin \theta_{2}\right) \ldots
$$

$=\cos \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)+\iota \sin \left(\theta_{1}+\theta_{2}+\ldots\right.$
$+\theta_{n}$).
Fig. 8.
If $\theta_{1}=\theta_{2}=\ldots=\theta_{n}=\theta_{1,}$, this equation becomes $(\cos \theta+\iota \sin \theta)$ $\cos n \theta+i$ sin $n \theta$; this shows that $\cos \theta+\iota \sin \theta$ is a value of $(\cos n \theta+$ $\iota \sin n \theta) \frac{1}{n}$. If now we change θ into $\frac{\theta}{n}$, we see that $\cos \frac{\theta}{n}+\iota \sin \frac{\theta}{n}$ is a value of $(\cos \theta+\iota \sin \theta)^{\frac{1}{n}}$; raising each of these quantitics to auy positive integral power $u, \cos \frac{m \theta}{n}+\iota \sin \frac{m \theta}{n}$ is oue value of ($\cos \theta$ $+6 \sin \theta)^{\frac{m}{n}}$. Also

$$
\cos \left(-\frac{m}{n}\right) \theta+t \sin \left(-\frac{m}{n} \theta\right)=\frac{1}{\cos \frac{m}{n} \theta+\iota \sin \frac{m}{n} \theta} ;
$$

heuce the exprcssion of the left-land-side is one ralue of $\frac{1}{(\cos \theta+\imath \sin \theta)^{m / n}}$ or of $(\cos \theta+\iota \sin \theta)^{-\frac{m}{n}}$. We lave thus De Mairie' ${ }^{\text {B }}$ theorera that $\cos k \theta+\iota \sin k \theta$ is always one value of $(\cos \theta+\iota \sin \theta)^{k}$. where k is any real quantity.
The principal object of De Moivre's theorem is to enable us to The . find all the values of an cxpression of the form $(a+c b)^{\frac{m}{n}}$, where m compter and n are positive integers prine to each other. If $a=r \cos 0$, $b=r \sin \theta$, we require the values of $r^{\frac{m}{n}}(\cos \theta+\iota \sin \theta)^{\frac{m}{n}}$. One value is immediately furnished by the theorem; but we obscrve that, since the expression $\cos \theta+t \sin \theta$ is unaltered by adding any multiple of 2π to θ, the $\frac{n}{m}$ tll power of $r^{\frac{m}{n}}\left(\cos \frac{m \cdot \theta+2 s \pi}{n}+i \sin \frac{m \cdot \theta+2 s \pi}{\imath}\right)$ is $a+t b$, if s is any iuteger; bence this expression is on of the values required. Suppose that for two values s_{1} and s_{2} of s the values of this, expression are the same ; then we must have $\frac{\mu . \bar{\theta}+2 s_{1} \pi}{n}-\frac{m . \theta+2 s_{2} \pi \text {; }}{n}$ a multiple of 2π or $s_{1}-s_{2}$ must be a multiple of κ. Therefore, if we give s the values $0,1,2, \ldots n-1$ successively, we shall get n different values of $(a+b b)^{\frac{m}{n}}$, and these will be repeated if we give s other values: heuce all the ralues of $(a+i b)^{\frac{m}{n}}$ are obtained by giving ? the values $0,1,2, \ldots n-1$ in the expression $r^{\frac{m}{n}}\left(\cos \frac{m \cdot \theta+2 \Delta \pi}{n}\right.$ $+\left(\sin \frac{m \cdot \theta \overline{+2 s \pi}}{n}\right)$, where $r=\left(a^{2}+b^{2}\right) \frac{2}{4}$ and $\theta=\arctan \frac{b}{a}$.
We now return to the geometrical representation of the complex quantities. If the points $B_{1}, B_{2}, B_{3}, \ldots B_{n}$ represent the expression $x+t y,(x+t y)^{3},(x+i y)^{3}, \ldots(x+t y)^{n}$ respectively, the triangles $O A B_{1}, O B_{1} B_{2}, \ldots O B_{n-1} B_{n}$ are all similar. Let $(x+c y)^{n}=a+\iota b$, then the converse problem of finding the 2 th root of $a+a b$ is equivalent to the geometrical problem of describing such a series of triangles that $O A$ is the first side of the first triangle and $O B_{n}$ the second side of the n th. Now it is obrious that this geometrical problem has more solutions than one, since any number of complete revolutions round O may be madel in travelling from B_{1} to B_{n}. The first solution is that in which the vertical angle of each triangle
 is $\frac{1}{n} B_{n} O A$; the second is that in which each is $\frac{1}{n}\left(B_{n} O_{X} A+2 \pi\right)$, in this case one comnlcte revolution being made round 0 ; the third
has $\frac{1}{n}\left(B_{n} O A+4 \pi\right)$ for the vertical angle of each triangle；and so on．There are n sets of triangles which satisfy the required condi－ tions．For simplicity we will take the caso of the determination of the values of $(\cos \theta+t \sin \theta)^{\frac{2}{2}}$ ．Suppase B to re－ present the expression $\cos \theta+九 \sin \theta$ ． If the angle $A O P_{1}$ is $\frac{3}{3} \theta_{2} P_{1}$ represents the root $\cos \frac{\theta}{3}+\iota \sin \frac{\theta}{3}$ ；the angle $A O B$ is filled up by the angles of the three similar triangles $A O P_{1}, P_{1} O p_{1}, p_{1} O B$ ． Also，if $P_{3} P_{5}$ be such that the angles $P_{1} O P_{2} P_{2} O P_{3}$ are $\frac{2 \pi}{3}, \frac{4 \pi}{3}$ respectively，
 the troo sets of triangles $A O P_{r,} P_{2} O p_{3}$ ， $p_{3} O B$ and $A O P_{32}, P_{3} O p_{23} p_{2} O B$ satisfy the conditions of simi－ larity and of having $O A, O B$ for the bounding sides；thus P_{2} ， P_{3} represent the roots $\cos \frac{\theta+2 \pi}{3}+九 \sin \frac{\theta+2 \pi}{3}, \cos \frac{\theta+4 \pi}{3}+九 \sin \frac{\theta+4 \pi}{3}$ respectively．If B coincides with A ，the problem is reduced to that of finding the three cube roots of unity．Oze will be repre－ sented by A and the others by the two angular pointa of an equi－ lateral triangle，with A as one angular point，inscribed in the circle．
The problem of determining the values of the nth roots of nnity is equivalent to the geometrical problem of inscribing a regular polygou of n sides in a circle．Gauss has shown in his Disquisi－ tiones arithnetice that this can always be done by the compass sud ruler only when n is a prime of the form $2^{p}+1$ ．The determins－ tion of the nth root of any complex quantity requires in addition， for its geometrical solution，the division of an angle into n equal parts．

We are now in a position to factorize an expression of the form $2^{n}-(a+b)$ ．Using the values which we have obtained above for $(a+i b)^{\frac{1}{n}}$, Te have

$$
\begin{equation*}
x^{n}-(a+b)=\stackrel{s=n-1}{P}\left[x-r^{\frac{1}{n}}\left(\cos \frac{\theta+2 s \pi}{n}+c \sin \frac{\theta+2 s \pi}{n}\right)\right] \tag{1}
\end{equation*}
$$

If $b=0, a=1$ ，this becomea

$$
\begin{align*}
x^{n}-1 & =P_{s=0}^{s=n-1}\left[x-\cos \frac{2 s \pi}{n}-\iota \sin \frac{2 s \pi}{n}\right] \\
& =(x-1)(x+1) P_{s=1}^{s=\frac{n}{2}-1}\left(x-\cos \frac{2 s \pi}{n} \pm \iota \sin \frac{2 s \pi}{n}\right) \\
& =(x-1)(x+1) P_{s=1}^{s=\frac{n}{2}-1}\left(x^{2}-2 x \cos \frac{2 s \pi}{n}+1\right)(n \text { even })(2) . \\
x^{n}-1 & =(x-1) P_{s=1}^{s=\frac{n-1}{2}}\left(x^{2}-2 x \cos \frac{2 s \pi}{n}+1\right) \quad(r \text { odd }) \quad \ldots(3) . \tag{3}
\end{align*}
$$

If in（1）we put $a=-1, b=0$ ，and therefore $\theta=\pi$ ，te have

$$
\begin{align*}
x^{n}+1 & =P=P_{s=0}^{s=n-1}\left[x-\cos \frac{\overline{2 s+1} \pi}{\pi}-\iota \sin \frac{\overline{2 s+1} \pi}{n}\right] \\
& =P_{s=0}^{s=\frac{n-2}{2}}\left[x^{2}-2 x \cos \frac{\overline{2 s+1} \pi}{n}+1\right] \text { (} n \text { even). } \tag{4}
\end{align*}
$$

$$
x^{n}+1=(x+1) \sum_{s=0}^{s=\frac{n-3}{2}}\left[x^{3}-2 x \cos \frac{\overline{2 s+1} \pi}{n}+1\right] \quad(n \text { odd })(5)
$$

also $x^{2 n}-2 x^{n} y^{n} \cos n \theta+y^{2 n}$

$$
\begin{align*}
& =\left(x^{n}-y^{n} \cos n \theta+6 \sin n \theta\right)\left(x^{n}-y^{n} \cos n \theta-t \sin n \theta\right) \\
& =P_{s=0}^{s=n-1}\left(x-y \cos \frac{\theta+2 s \pi}{n} \pm \imath \sin \frac{\theta+2 s \pi}{n}\right) \\
& =P_{s=0}^{s=n-1}\left[x^{s}-2 x y \cos \overline{\theta+\frac{2 s \pi}{n}}+y^{2}\right] \tag{6}
\end{align*}
$$

Airy and Adams have given proofs of this theorem which do not invalve the use of the symbol t（see Camb．Phil．Trans．，vol．xi．）．

A large number of interesting theorems may bo derived from Do Mlairro＇s theorem and the factorizations which we have deduced from it；we shall notice one of them．

In equation（6）put $y=\frac{1}{x}$ ，take logarithms，and then differentisto each side with respect to x ，and we get

$$
\frac{2 n\left(x^{2 n-1}-x^{-2 n-1}\right)}{x^{-n}-2 \cos n \theta+x^{-2 n}}=\sum_{s=0}^{s=n-1} \frac{2\left(x-x^{-9}\right)}{x^{2}-2 \cos \theta+\frac{2 s \pi}{n}+x^{-2}}
$$

Put $x^{2}=\frac{a}{b}$ ，then we have the expression

$$
\left(a^{2}-b^{2}\right)\left(a^{2 n}-2\left(a^{2 n}-b^{n}-b^{n}\right)\right.
$$

for the sum of the series

$$
\sum_{s=0}^{s=n-1} \frac{1}{a^{2}-2 a b \cos \theta+\frac{2 s \pi}{n}+b^{2}}
$$

We ohall now consider what meaning can bo assigned to the aymbol $e^{x+t y}$ ．The quantity e io defined as the limit of $\left(1+\frac{1}{n}\right)^{2}$ ， where n is a positive quantity，and is increased indefinitely；then， for a real value of x, z^{z} is the limit of $\left(1+\frac{1}{n}\right)^{n x}$ or of $\left(1+\frac{x}{m}\right)^{m}$ ， where $m=n x$ ，when m is increased indefinitely．We may define $e^{x+t y}$ as the limit of $\left(1+\frac{x+t y}{m}\right)^{m}$ when $2 n$ is iucreased indefinitely． To determine the ralue of this limit put $1+\frac{x}{m}=r \cos \theta \frac{y}{m}=r \sin \theta$ ； then $e^{x+t y}$ is the limit of $r^{m}(\cos m \theta+\imath \sin m \theta)$ ，and r^{m} is equal to $\left\{1+\frac{2 x}{m}+\frac{x^{2}+y^{2}}{m^{2}}\right\}^{\frac{m}{2}}$ or ultimately to $\left(1+\frac{2 x}{x}\right)^{\frac{m}{2}}$ ，which has ϵ^{x} for its limiting value．Also θ is arctan $\frac{y}{x+m}$ or $\frac{y}{x+m}$ in the limit； hence $m \theta$ is ultimately equal to y ，and thus the equation $\boldsymbol{e}^{z+\iota y}=e^{x}(\cos y+\iota \sin y)$ follows from our definition．It may be shown at once that $e^{x+t y} \times e^{x_{1}+t y_{1}}=e^{x+x_{1}+\iota\left(y+y_{1}\right)}$ ，and，if we suppose that $a^{x+t y}$ denotes $d^{(x+t y) \log a}$ ，we may ohow that complex expon． ents defined thus obey the 68 me lsws as real ones．
When the exponent is entirely imsginary we have，in accordance Expor， with the above definition， ential
$c^{y}=\cos y+6 \sin y$ and $e^{-4 y}=\cos (-y)+6 \sin (-y)=\cos y-6 \sin y$ ；valnee of we thus obtain the exponential values of the sine and cosine－

$$
\sin y=\frac{1}{2 l}\left(e^{y y}-e^{-y}\right), \cos y=\frac{1}{2}\left(e^{y y}+e^{-y}\right)
$$

If we give imaginary or complex values to the variables in alge－Expan： braical expansions we obtain anałogous trigonometrical theorems；sious of it is，however，necessary to consider the convergency of the series sines 80 obtained in order to determine within what limits the values of and the variables must lie．If me expand $e^{y y}$ and $e^{-s y}$ by putting oy cosines and $-t y$ in the series $1+y+\frac{y^{2}}{1 \cdot 2}+\frac{y^{3}}{1 \cdot 2 \cdot 3}+\ldots$ ， we obtain the series $\sin y=y-\frac{y^{3}}{[3}+\frac{y^{5}}{15}-\frac{y^{7}}{17}+\ldots$ ；

$$
\cos y=1-\frac{y^{2}}{\frac{2}{2}}+\frac{y^{4}}{4}-\frac{y^{6}}{6} \not \ldots \ldots
$$

These series are convergent for sll finite values of y ．They miry also be got from the expressions which we have obtained for the cosine snd sine of a multiple of an angle in terms of the cosine and sine of the sagle，and would thus be mudo to rest upon a hasis independent of the oymhol t ．

Consider the binomial theorem

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{12} a^{n-2 b^{2}}+\ldots \\
& +\frac{n(n-1) \ldots(n-r+1)}{\underline{r}} a^{n \rightarrow b^{r}}+\ldots+b^{n}
\end{aligned}
$$

Putting $a=e^{\iota \theta}, b=e^{-\epsilon \theta}$, Te obtain
$(2 \cos \theta)^{n}=2 \cos n \theta+n 2 \cos \overline{n-2 \theta}+\frac{n(n-1)}{\frac{\mid 2}{2}} 2 \cos \overline{n-4 \theta}+\ldots$

$$
+\frac{n(n-1) \ldots(n-r+1)}{\frac{r}{r}} \cos (n-2 r) \theta+\ldots
$$ and co． sines in series of ：ines anf cosines of multiple Eirs

When n is odd the last term is $2 \frac{n(n-1) \ldots \frac{b}{3}(n+3)}{\left\lvert\, \frac{1}{2}(n-1)\right.} \cos \theta_{0}$
and when n is even it is $\frac{n(n-1) \ldots\left(\frac{1}{3} n+1\right)}{1 \frac{3}{2} n}$ ．
If we put $a=c^{\iota \theta}, b=-c^{-\iota \theta}$ ，we ohtain the formula
$(-1)^{\frac{n}{2}}(2 \sin \theta)^{n}=2 \cos n \theta-2 n \cos (n-2) \theta+\frac{n(n-1)}{1 \cdot 2} 2 \cos (n-4) \theta-$

$$
\begin{aligned}
& \quad+(-1)^{n-r} \frac{n(n-1) \ldots(n-r+1)}{\mid r} 2 \cos (n-2 r) \theta_{\ldots}+(-1)^{\frac{n}{2} n(n-1) \ldots \frac{1}{3} n+1} \frac{1}{n} \\
& \text { when } n \text { is even, and }
\end{aligned}
$$

$\begin{aligned}(-1)^{\frac{n-1}{2}}(2 \sin \theta)^{n} & =2 \sin n \theta-n \cdot 2 \sin (n-2) \theta+\frac{n(n-1)}{1.2} \\ & +(-1)^{\frac{n-1}{2} \frac{n(n-1) \ldots \frac{1}{2}(n+3)}{1 \frac{1}{2}(n-1)}} \sin \theta\end{aligned}$
When n is odd．These formule enable us to express anv nosition integral power of the sine or casine in terms of sines or cosines e multiples of the argument．Where are corresponding formille whe n is not a positive integer．

Coneicer tha: 1 entity $\log (1-p x)+\log (1-q x)=\log \left(1-p+q x+p q x^{2}\right)$. Expand lotin sides of this equation in powers of x, and equate the cuedicients of x^{n}, we then get

$$
\begin{aligned}
& p^{n}+q^{n}=(p+q)^{n}-n(p+q)^{n-2} p q+\frac{n(n-3)}{\frac{12}{2}}(p+q)^{n-1} p^{2} q^{2}+\ldots \\
& +(=1)^{r n(n-r-i)(n-r-2) \ldots(n-2 r+1)}(p+q)^{n-2 r} p r q+\ldots
\end{aligned}
$$

If we write this series in the reverse order, we have

$$
\begin{aligned}
v^{n}+q^{n}= & 2(-1)^{\frac{n}{2}}\left[(p q)^{\frac{n}{2}} \frac{n^{2}}{\mid 2}(p q)^{\frac{n}{2}-1}\left(\frac{p+q}{2}\right)^{2}+\frac{n^{2}\left(n^{3}-2^{2}\right)}{\mid 4}(p q)^{\frac{n}{2}-2}\left(\frac{p+q}{2}\right)^{4}\right. \\
& \left.\frac{n^{2}\left(n^{2}-2^{3}\right)\left(n^{2}-4^{2}\right)}{\mid 6}(p q)^{\frac{n}{2}-3}\left(\frac{p+q}{2}\right)^{0}+\ldots+(-1)^{\frac{n}{2}} \frac{1}{2}(p+q)^{n}\right]
\end{aligned}
$$

Rhen n is even, snd

$$
\begin{aligned}
n^{n}+q^{n} & =2(-1)^{\frac{n-1}{2}}\left[n(p q)^{\frac{n-1}{2}}\left(\frac{p+q}{2}\right)-\frac{n\left(n^{2}-1^{2}\right)}{\mid 3}(p q)^{\frac{n-3}{2}}\left(\frac{p+q}{2}\right)^{0}\right. \\
& \left.+\frac{n\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{\mid 5}(p q)^{\frac{n-5}{2}}\left(\frac{p+2}{2}\right)^{6}+\ldots+(-1)^{\frac{n-1}{2}} \frac{1}{2}(p+q)^{n}\right]
\end{aligned}
$$

Then n is odd. If in these three formulæ we put $p=e^{t \theta}, q=e^{-t \theta}$, We obtain the following series for $\cos n \theta$:-
$2 \cos n \theta=(2 \cos \theta)^{n}-n(2 \cos \theta)^{n-2}+\frac{n(n-3)}{\frac{12}{2}}(2 \cos \theta)^{n-4} \ldots$

$$
+(-1)^{r} \frac{n(n-r-1)(n-r-2) \ldots(n-2 r+1)}{\underline{r}}(2 \cos \theta)^{n-2 r}+\ldots \text { (7) }
$$

When n is any positive integer;
$(-1)^{\frac{n}{2}} \cos n \theta=1-\frac{n^{2}}{12} \cos ^{2} \theta+\frac{n^{2}\left(n^{2}-2^{2}\right)}{14} \cos ^{4} \theta-\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{3}-4^{2}\right)}{16} \cos ^{6} \theta$

$$
\begin{equation*}
+\ldots+(-1)^{\overline{2}} 2^{n-1} \cos n \theta . \tag{8}
\end{equation*}
$$

when n is on even positive integer ;

$$
\begin{gather*}
(-1)^{\frac{n-1}{2}} \cos n \theta=n \cos n \theta-\frac{n\left(n^{2}-1^{2}\right)}{\frac{13}{\frac{n-1}{2}} \cos ^{9} \theta+\frac{n\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{\frac{15}{}} \cos ^{6} \theta-} \\
\ldots+(-1)^{\frac{2}{2}} 2^{n-1} \cos ^{n} \theta \ldots \ldots \ldots \ldots \ldots . . \tag{9}
\end{gather*}
$$

Fhen n is odd. If in the same three formula we put $p=e^{l \theta}, q=$ 18 ${ }^{-1 \theta}$, we obtain the following four formulæ:-
$(-1)^{\frac{n}{2}} 2 \cos n \theta=(2 \sin \theta)^{n}-n(2 \sin \theta)^{n-2}+\frac{n(n-3)}{\underline{12}}(2 \sin \theta)^{n-4}-\ldots$
$+(-1)^{r} \frac{n(n-r-1) \ldots(n-2 r-1)}{\underline{\mid r}}(2 \sin \theta)^{n-2 r}+\ldots(n$ even $)(10) ;$

$$
\begin{equation*}
(-1)^{\frac{n-1}{2}} 2 \sin n \theta=\text { the same series }(n \text { odd) } \tag{11}
\end{equation*}
$$

$\begin{aligned} \cos n \theta=1-\frac{n^{2}}{12} \sin ^{2} \theta & +\frac{n^{2}\left(n^{2}-2^{2}\right)}{\frac{14}{4}} \sin ^{4} \theta-\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{\mid 6} \sin ^{6} \theta \\ & +\ldots \frac{2^{n-1}}{} \sin ^{n} \theta \text { (xeven) }\end{aligned}$

$$
\begin{equation*}
\left.+\ldots 2^{n-1} \sin ^{n} \theta \text { (} \kappa \text { even }\right) \ldots \tag{12}
\end{equation*}
$$

$+(-1)^{\frac{n-1}{2}} 2^{n-1} \sin ^{n} \theta(n$ odd $)$.
Next consider the identity $\frac{p}{1-p x}-\frac{q}{1-q x}=\frac{p-q}{1-(p+q) x+p q x^{2}}$. Expand both sides of this equation in powers of x, and equate the coefficients of x^{n-1}, then we ohtain the equation
$\frac{p^{n^{2}} q^{n}}{p-q}=(p+q)^{n-1}-(n-2)(p+q)^{n-8} p q+\frac{(n-3)(n-4)}{\frac{12}{2}}(p+q)^{n-8} p^{2} q^{2}-$.

$$
+(-1)^{r(n-r-1)(n-r-2) \ldots(n-2 r)} \frac{1 r}{}(p+q)^{n-2 r-1} p^{r} q^{r}+\ldots
$$

If, as before, we write this in the reverse order, we have the series

$$
\begin{aligned}
&(-1)^{\frac{n}{2}-1}\left[n\left(\frac{p+q}{2}\right)(p q)^{\frac{n}{2}-1}-\frac{n\left(n^{2}-2^{2}\right)}{\frac{\mid 3}{n}}\left(\frac{p+q}{2}\right)^{8}(p q)^{\frac{n}{2}-3}\right. \\
&\left.+\frac{n\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{15}\left(\frac{p+q}{2}\right)^{5}(p q)^{\frac{n}{2}-5}+\ldots+(-1)^{\frac{n}{2}-1}(p+q)^{n-1}\right]
\end{aligned}
$$

When n is even, and
$(-1)^{\frac{n-1}{2}}\left[(p q)^{\frac{n-1}{2}}-\frac{n^{2}-1^{2}}{12}\left(\frac{p+q}{2}\right)^{2}(p q)^{\frac{n-3}{2}}\right.$

$$
\left.+\frac{\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{14}\left(\frac{n+q}{2}\right)^{4}(p q)^{\frac{n-5}{2}}+\ldots+(-1)^{\frac{n-1}{2}}(p+q)^{n-1}\right]
$$

Then n is odd.
[f we put $p=c^{\iota \theta}, q=e^{-t \theta}$, we obtain the formola
$\sin n \theta=\sin \theta\left\{(2 \cos \theta)^{n-1}-(n-2)(2 \cos \theta)^{n-3}+\frac{(n-3)(n-4)}{\underline{2}}(2 \cos \theta)^{n-1}\right.$

$$
\left.+(-1)^{r} \frac{(n-r-1)(n-r-2) \ldots(n-2 r)}{\mid r}(2 \cos \theta)^{n-9 r-1}+\ldots\right)(14)
$$

where n is any positive integer ;
$(-1)^{\frac{n}{2}-1} \sin n \theta=\sin \theta\left\{n \cos \theta-\frac{n\left(n^{2}-2^{2}\right)}{\frac{13}{15} \cos ^{9} \theta+\frac{n\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{15} \cos ^{5} \theta \ldots n}\right.$

$$
\left.+(-1)^{\frac{n}{2}-1}(2 \cos \theta)^{n-1}\right\}(n \text { even }) \ldots \ldots \ldots \ldots(15)
$$

$(-1)^{\frac{n-1}{2}} \sin n \theta=\sin \theta\left\{1-\frac{n^{2}-1^{2}}{\underline{\underline{2}} \cos ^{2} \theta+\frac{\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{\underline{4}} \cos ^{3} \theta-\ldots ~}\right.$

$$
\begin{equation*}
\left.+(-1)^{\frac{n}{2}-1}(2 \cos \theta)^{n-1}\right\}(n \text { odd }) . \tag{16}
\end{equation*}
$$

If we put in the same three formula $p=e^{\iota \theta}, q=-e^{-\iota \theta}$. we obtain the series
$(-1)^{\frac{n-2}{2}} \sin n \theta=\cos \theta\left[\sin ^{n-1} \theta-(n-2) \sin ^{n-5} \theta+\frac{(n-3)(n-4)}{2} \sin ^{n-8} \theta-\ldots\right.$

$$
\left.+(-1)^{r} \frac{(n-r-1)(n-r-2) \ldots(n-2 r)}{\mid r} \sin ^{n-2 r-1} \theta+\ldots\right](n \text { even })(17) ;
$$

$$
\frac{n-1}{2}
$$

$(-1)^{2} \cos n \theta=$ the same series (n odd) $\ldots . .$. (18);
$\sin n \theta=\cos \theta\left\{n \sin \theta-\frac{n\left(n^{2}-2^{2}\right)}{13} \sin ^{9} \theta+\frac{n\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{14} \sin ^{5} \theta+\right.$

$$
\begin{equation*}
\left.\ldots+(-1)^{\frac{n}{2}-1}(2 \sin \theta)^{n-1}\right\}(n \text { even }) \ldots \tag{19}
\end{equation*}
$$

$\cos n \theta=\cos \theta\left\{1-\frac{n^{2}-1^{2}}{12} \sin ^{2} \theta+\frac{\left.i n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{14} \sin ^{4} \theta-\ldots\right.$

$$
\left.+(2 \sin \theta)^{n-1}\right\}(n \text { odd })
$$

We have thus obtained formulæ for $\cos n \theta$ and $\sin n \theta$ both in ascending and in descending powers of $\cos \theta$ and $\sin \theta$. Viète obtained formulm for chords of maltiple arcs in powers of chords of the simple or complementary arcs equivalent to the formulx (13) and (19) sbove. These are contained in his work Theorenzata ad angulares,sectiones. James Bernoulli found formule equiralent to (12) and (13) (Mem. de l'Acadénie des Sciences, 1702), and transformed these series into a form equivalent to (10) and (11). John Bernoulli published in the Acta eruditorum for 1701, among other formule already found by Viète, one equivalent to (17). These formula have been extended to cases in which n is fractional, negative, or irrational; seo a paper by D. F. Gregory in Camb. Math. Journ., vol, iv., in which the series for $\cos n \theta, \sin n \theta$ in ascending powers of $\cos \theta$ and $\sin \theta$ are extended to the case of a fractiona value of n. These series havo been considered by Euler in a memoir in the Nova acta, vol. ix., by Lagrange in his Calcul des fonctions (1806), and by Poinsot in Recherches sur l'analyse des sec. tions angulaires (1825).

The general definition of Napierian logarithms is that, if $e^{x+t y}$ Theory $=a+b b$, then $x+t y=\log (a+\imath b)$. Now we know that $e^{x+t y}=e^{x} \cos y$ of loga $+e^{x} \sin y$; hence $e^{x} \cos y=a, e^{x} \sin y=b$, or $e^{x}=\left(a^{2}+b^{2}\right)^{\frac{1}{2}}, y=$ rithmes $\arctan \frac{b}{a} \pm m \pi$, where m is an integer. If $b=0$, then m must be eveu or odd according as a is positive or negative; hence

$$
\log _{\theta}(a+b)=\log _{0}\left(a^{2}+b^{2}\right)^{\frac{3}{2}}+c\left(\operatorname{arotan} \frac{b}{a} \pm 2 n \pi\right)
$$

or $\quad \log _{e}(a+b)=\log _{e}\left(a^{2}+b^{2}\right)^{\frac{3}{2}}+\iota\left(\arctan \frac{b}{a} \pm \overline{2 n+\pi}\right)$,
according as a is positive or negative. Thus the logarithm of any complex or real quantity is a multiple-valued function, the differ. ence between successive values being $2 \pi t$; in particular, the most general form of the logarithm of a real positive quantity is obtained by adding positive or negative multiples of $2 \pi t$ to the srithmetical logarithm. On this subject, see De Morgan's Trigonometry and Double Algebra, chap. iv., and a naper by Prof. Cayley in vol. ii. of Proc. London Math. Soe.
We may euppose the exponeutial values of the sine and çosine extended to the case of complex arguments; thus we accept $\frac{e^{\imath(x+\iota y)}+e^{-\iota(x+\iota y)}}{2}$ and $\frac{e^{\iota(x+\imath y)}-e^{-\iota(x+\imath y)}}{2 t}$ functions $\cos (x+t y), \sin (x+t y)$ respectively. If $x=0$, we have $\cos t y=\frac{c^{y}+e^{-y}}{2}$ and $\sin t y=\frac{1}{2}\left(e^{y}-e^{-y}\right)$. The quantities $\frac{e^{y}+e^{-y}}{2}$ $\frac{e^{y}-e^{-y}}{2}$ are called the hyperbolic cosine and eine of y and are written $\cosh y, \sinh y$; thus $\cosh y=\cos \imath y, \sinh y=-\iota \sin t y$. The functions $\cosh y$, sinh y arc connected with the rectangular hyperbola in a menner analogous to that in which the cosine snd sine are
connected with the circle. We may easily show from the definitions that

$$
\cos ^{2}(x+y)+\sin ^{2}(x+(y)=1
$$

$$
\begin{aligned}
\cosh ^{2} y-\sinh ^{2} y & =1 \\
\cos (x+y y) & =\cos
\end{aligned}
$$

$\cos (x+c y)=\cos x \cosh y-\iota \sin x \sin l_{1} y$,
$\sin (x+t y)=\sin x \cosh y+6 \cos x \sinh y$,
$\cosh (\alpha+\beta)=\cosh \alpha \cosh \beta+\sinh \alpha \sinh \beta$,
$\sinh (\alpha+\beta)=\sinh \alpha \cosh \beta-\cosh \alpha \sinh \beta$.
These formulæ are the basis of a complete hyperbolic trigonometry. The conmexion of these functions with the hyperbola was first pointed out by Lamihert.
If wa equate the coeftirients of n ou looth sides of equation (13), 4we get

$$
\begin{equation*}
\theta=\sin \theta+\frac{1}{2} \sin ^{3} \theta+\frac{1.3}{2.4} \sin ^{8} \theta+\frac{1.3 .5}{2.4 \cdot 6} \frac{\sin ^{5} \theta}{7}+\ldots \ldots \tag{21}
\end{equation*}
$$

θ must lie letween the values $\pm \frac{\pi}{2}$. This equation nay also be written in the form

$$
\begin{aligned}
& \text { the form } \\
& \arcsin x=x+\frac{1}{2} \frac{x^{3}}{3}+1.3 x^{5} \\
& 2.4 \frac{1}{5}+\frac{3.5 a^{7}}{2.4 .6} 7^{+\ldots}
\end{aligned}
$$

when x lies between ± 1.
By cquating the coefficiente of x^{2} on hoth sirles of equation (12) we get

$$
\begin{equation*}
\theta^{2}=\sin ^{2} \theta+\frac{2}{3} \frac{\sin ^{4} \theta}{2}+\frac{2.4}{3.5} \sin ^{6} \theta+\frac{2.4 .6}{3.5 .7} \frac{\sin ^{8} \theta}{4}+ \tag{22}
\end{equation*}
$$

whiclı may also be writtea in the form

$$
\left(\arcsin \boldsymbol{A}^{6}\right)^{2}=2^{2}+\frac{2}{3} \frac{x^{4}}{2}+\frac{2.4}{3.5} \frac{2}{3}+\frac{2.4 \cdot 6}{3.5 \cdot 7 \frac{x^{8}}{4}}+\ldots
$$

when x is lectween ± 1. Differentiating this cquation with regard to x, we get

$$
\frac{\arcsin x}{x^{1}-x^{2}}=x+\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot x^{7}+\ldots ;}
$$

if we put aresin $x=\arctan y$, this equation becomes

$$
\text { arc tan } y^{\prime}=\begin{gather*}
y \tag{23}\\
1+y^{2}
\end{gather*}\left\{1+\frac{2}{3} \frac{y^{2}}{1+y^{2}}+\frac{2 \cdot 4}{3 \cdot 5}\binom{y^{2}}{1+y^{2}}^{2}+\ldots\right\}
$$

This equation was riven with two proofs by Euler in the Nova acta for 1793.

We have

$$
\frac{1}{2} \log _{1-x}^{1+x}=x+\frac{\rho^{3}}{3}+\frac{\partial^{3}}{5}+\frac{x^{7}}{i}+\ldots
$$

 or $\begin{aligned} & \text { arc tan } y \\ & \text { 土al }\end{aligned}$;
hence arctan $y \pm n \pi=y-\frac{y^{3}}{3}+\frac{y^{5}}{5}-\frac{y^{7}}{7}+\ldots$
The sorics is convergent if y lies hetween ± 1; if we suppose arc tan y restricterl to values between $\pm \frac{\pi}{4}$, we lave

$$
\begin{equation*}
\underset{\text { arcten } y=y-\frac{y^{3}}{3}+\frac{y^{8}}{5}-\ldots .}{\text { series. }} \tag{24}
\end{equation*}
$$

Which is Cregory'a series.
Various series derived from (24) have been employed to colenlate the value of π. At the end of the 17th century π was calculated to 72 places of decimals by Abraham Sharp, by means of the meries olitained by putting arctan $y=\frac{\pi}{6}, y=\frac{1}{\sqrt{3}}$ in (2t). The calculation is to lic found in Sherwin's Mallomatical Tables (1742). About the ssme time Machin employed the serics obtained from the equation 4 arc $\tan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}$ to calculate π to 100 decimal places. Long ofterwards Euler employed the serics obtoined from $\frac{\pi}{4}=\arctan \frac{1}{2}+\arctan \frac{1}{3}$, which, however, gives loss rapidly converging series (Intrad., Anal. infin., vol. i.). Lagny employed tha formula arctan $\frac{1}{\sqrt{ }} 3=\frac{\pi}{6}$ to calculate π to 127 places; the result was communicated to the Paris Acalemy in 1719. Tega calculated π to 140 decimal places by means of the sories obtained from the aquation $\frac{\pi}{4}=5 \arctan \frac{1}{7}+2 \arctan \frac{3}{10}$. The formula $\frac{\pi}{4}=\arctan \frac{1}{2}+$ arctan $\frac{1}{5}+\arctan \frac{1}{8}$ was used by Dasa to calculate π to 200 derimal places. Rutherford used the eçustion $\pi=4 \arctan \frac{1}{5}-\arctan \frac{1}{70}+$ $\arctan { }^{1} 99^{\circ}$

If in (39° we put $y=\frac{1}{3}$ and $\frac{1}{7}$, we hare

$$
\begin{aligned}
& \pi=9 \arctan \frac{1}{3}+4 \arctan \frac{1}{7}=2 \cdot 4\left\{1+\frac{2}{3} \cdot \frac{1}{10}+\frac{2.4}{3.5} \frac{1}{10^{2}}+\ldots\right\} \\
&+56\left\{1+\frac{2}{3} \cdot 2+\frac{2}{3.4}\binom{2}{100}^{2}+\ldots\right\}
\end{aligned}
$$

a rapidly convergent series for π which was first given by IIutton in Phil. Trans. for 1776, and afterwards by Enler in Nova acta for 1793. Euler gives an equation deduced in the same manner from the identity $\pi=20 \arctan \frac{1}{7}+8 \arctan \frac{3}{79}$. The calculation of π has been carried out to 707 pleces of decimals; see Pror. Roy. Soc., xxi. ahd xxii. ; also Squ゙ariNo the Crrcle (vol. axii. j. 435 sq .).

We shall now obtain expressions for ain $\%$ and $\cos x$ es infinite products of rational factors. We havo
$\sin x=2 \sin \frac{x}{2} \sin \frac{5+\pi}{2}=2^{5} \sin \frac{x}{4}$ ain $\frac{x+\pi}{4} \operatorname{ain} \begin{gathered}x+2 \pi \\ 4\end{gathered}$ sin $\frac{x+3 \pi}{4} ;$ procecding continually in this way with each factor, we obtain

$$
\sin x=2^{n-1} \sin \frac{x}{x} \sin \frac{x+\pi}{x} \sin \frac{x+2 \pi}{n} \ldots \text { ain } \frac{x+\overline{n-1} \pi}{n}
$$

where n is any positive integral $2 \times$ rer of 2 . Now

$$
\sin \frac{\gamma+r \pi}{n} \sin \frac{r+n-r \pi}{n}=\sin \frac{r+r \pi}{n} \sin \frac{r \pi-x}{n}=\sin ^{2} \frac{1 \pi}{n}-\operatorname{ain}^{2} \frac{x}{x}
$$

and

$$
\sin \frac{x+\frac{1}{2} \pi \pi}{n}=\cos \frac{r}{n}
$$

Henca the alore mey he written

$$
\begin{gathered}
\sin \varepsilon=2^{n-1} \sin ^{x}\left(\sin ^{2} \frac{\pi}{n}-\sin ^{2} \frac{x}{n}\right)\left(\sin ^{2} \frac{2 \pi}{n}-\sin ^{2} \frac{2}{n}\right) \ldots \\
\\
\left(\sin ^{2} \frac{\pi \pi}{n}-\sin ^{2} \frac{x}{n}\right) \cos ^{x},
\end{gathered}
$$

Where $k=\frac{1}{2} n-1$. Lat x be indefinitely small, then we have

$$
1=\frac{2^{n-1}}{n} \sin ^{2} \frac{\pi}{n} \sin ^{2} \frac{2 \pi}{n} \ldots \sin ^{2} \frac{k \pi}{n}
$$

hence
$\sin 2:=n \sin \frac{x}{n} \cos \frac{x}{n}\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} \pi / n}\right)\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} 2 \pi / n}\right) \ldots\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} k \pi / n}\right)$. We may write this

$$
\operatorname{ain} x=u \sin \frac{x}{n} \cos \frac{x}{n}\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} \pi / n}\right) \ldots\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} m \pi / n}\right) n_{1}
$$

where R denotes the product

$$
\left(1-\frac{\sin ^{2} \frac{x}{n}}{\sin ^{2} \overline{m+1} \frac{1}{n}}\right)\left(1-\frac{\sin ^{2} \frac{x}{n}}{\sin ^{2} \frac{m+2 \pi}{n}}\right) \cdots\left(1-\frac{\sin ^{2} \frac{x}{n}}{\sin ^{2} \frac{k \pi}{n}}\right)
$$

and m is any fixed integer independent of n. It is necessary, when we make n infinite, to determine the limiting value of the quentity n; then, aince the limit of $\frac{\sin x}{n \sin \frac{x}{n} \cos \frac{x}{n}}$ is $\frac{\sin x}{x}$, and that of $\frac{\sin n l \pi / n}{m \pi / n}$ is unity, we hare

$$
\frac{\sin x}{x}=\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{2 \pi^{2}}\right) \ldots\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) R
$$

Now R is less than unity, since $\sin \frac{x}{\pi}$ is less than $\sin \frac{m+1}{9} \pi$, sin $\frac{n+2}{n} \ldots$; also by an elementary algebraical proposition R is grater than $1-\sin ^{2} \frac{2}{n}\left(\operatorname{cosec}^{3} \frac{\overline{n+1} \pi}{n}+\ldots+\operatorname{cosec}^{2} \frac{k \pi}{n}\right)$ and $\operatorname{cosec} \theta<\frac{\pi}{2 \theta}$, if $\theta<\frac{\pi}{2} ; R$ is therefore greater then

$$
1-\frac{x^{2}}{4}\left(\frac{1}{m+11^{2}}+\frac{1}{m+21^{2}}+\ldots+\frac{1}{h^{2}}\right)
$$

or than $1-\frac{x^{2}}{4}\left\{\frac{1}{m}-\frac{1}{m+1}+\frac{1}{m+1}-\frac{1}{m+2}+\ldots+\frac{1}{k-1}-\frac{1}{k}\right\}$,
or than $1-\frac{x^{2}}{4 m}$. Henca $R=1-\frac{\theta x^{2}}{4 m}$, where θ is some proper fraction; whence

$$
\sin x=x\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right) \ldots\left(1-\frac{x^{2}}{m^{2} \pi^{2}}\right)\left(1-\frac{\theta x^{2}}{4 m}\right)
$$

When m is indefinitely increased this becomes

$$
\sin x=2\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right) \ldots=x_{n=-\infty}^{n=+\infty}\left(1+\frac{x}{n \pi}\right) \quad \text { (25). }
$$

The expression for $\cos x$ in factors may be found in a similar inanger by means of the equation $\cos x=2 \sin \frac{\pi-2 x}{4} \cos 3 \pi-2 x$, or may be deduced thus

$$
\begin{array}{r}
\cos x=\frac{\sin 2 x}{2 \sin x}=\frac{P\left(1-\frac{4 x^{2}}{n^{2} \pi^{2}}\right)}{P\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)}=\left(1-\frac{4 x^{2}}{\pi^{2}}\right)\left(1-\frac{4 x^{2}}{3^{2} \pi^{2}}\right)\left(1-\frac{4 x^{2}}{5^{2} \pi^{2}}\right) \ldots \\
=P=+\infty \tag{26}\\
n=-\infty
\end{array}\left(1+\frac{2 x}{2 n+1 \pi}\right) \ldots \ldots \ldots \ldots \ldots(26) .
$$

If we change x into $b x$, wo hava the formulæ for ainh $x, \cosh x$ as infinite products-

$$
\operatorname{ainh} x=\underset{n=0}{n=\infty}\left(1+\frac{x^{2}}{n n^{2} \pi^{2}}\right), \cosh x=P_{n=0}^{n=\infty}\left(1+\frac{4 x^{2}}{2 n+11^{2} \pi^{2}}\right) .
$$

In the formula for $\sin x$ as an infinite product put $x=\frac{\pi}{2}$, wo then get $1=\frac{\pi}{2} \cdot \frac{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \ldots}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \ldots}$; in we stop after $2 n$ factors in tha numerator and denominator, we obtain the approximate equation

$$
1=\frac{\pi}{2} 1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 4^{2} \cdot 6^{2} \cdots(2 n-1)^{2} \cdot(2 n+1)
$$

or $\frac{2 \cdot 4.6 \ldots 2 n}{1.3 .5 \ldots 2 n-1}=\sqrt{n \pi}$, where n is a large integer. This ex. pression was obtained in a quite different manner by Wallis (Arith. metica infinitorum. vol. i. of $O p p$.).
We have

$$
\frac{\sin (x+y)}{\sin x}=\frac{(x+y) P\left(1+\frac{x+y}{\pi \pi}\right)}{x P\left(1+\frac{x}{n \pi}\right)}
$$

or $\cos y+\sin y \cos x$

$$
=\left(1+\frac{y}{x}\right)\left(1+\frac{y}{x+\pi}\right)\left(1+\frac{y}{x-\pi}\right)\left(1+\frac{y}{x+2 \pi}\right)\left(1+\frac{y}{x-2 \pi}\right) \ldots
$$

Equating the coefficients of the first power of y on both sides we obtain the series

$$
\cot x=\frac{1}{x}+\frac{1}{x+\pi}+\frac{1}{x-\pi}+\frac{1}{x+2 \pi}+\frac{1}{x-2 \pi}+\cdots \quad \ldots \ldots \text { (27). }
$$

From this we may dednce a corresponding eeries for $\operatorname{cosec} x$. for, since $\operatorname{cosec} x=\cot \frac{x}{2}-\cot x$, we obtain
$\operatorname{cosec} x=\frac{1}{x}-\frac{1}{x+\pi}-\frac{1}{x-\pi}+\frac{1}{x+2 \pi}+\frac{1}{x-2 \pi}-\frac{1}{x+3 \pi}-\frac{1}{x-3 \pi}+\ldots$
By reselving $\frac{\cos (x+y)}{\cos x}$ into factors we should obtain in a similar manner the sericg
$\tan x=\frac{2}{\pi-2 x}-\frac{2}{\pi+2 x}+\frac{2}{3 \pi-2 x}-\frac{2}{3 \pi+2 x}+\frac{2}{5 \pi-2 x}-\frac{2}{5 \pi+2 x}+\cdots$.(29), and thence

$$
\sec x=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)-\tan x=\frac{2}{\pi-2 x}+\frac{2}{\pi+2 x}-\frac{2}{3 \pi-2 x}
$$

$$
-\frac{2}{3 \pi+2 x}+\cdots
$$

These four formulay may also be derived from the product formulme for $\sin x$ and $\cos x$ by taking logarithms and then differentiating. Glaisher has proved them by resolving the expressions for $\frac{\cos x}{\sin x}$ and ${ }_{\sin x^{3} \ldots \text { as prodncts into partial fractions (see Quart. Journ. }}$ Mall., vol. xrii.). The series for cot x may also be obtained by a continued use of the equation $\cot x=\frac{1}{2}\left(\cot \frac{x}{2}+\cot \frac{x+\pi}{2}\right)$ (see a paper by Dr Schröter in Schlomilch's Zeitschrift, vol. xiii.).
Series for Various scries for π may be derived from the series (27), (28), (29), σ derived (30), and from the series obtained by differentiating them one or more from times. For example, in the formula (27) and (28), by putting series for $x=\frac{\pi}{\pi}$ we get
cosec.

$$
\begin{aligned}
& \pi=n \tan \frac{\pi}{n}\left\{1-\frac{1}{n-1}+\frac{1}{n+1}-\frac{1}{2 n-1}+\frac{1}{2 n+1} \cdots\right\} \\
& \pi=n \sin \frac{\pi}{n}\left\{1+\frac{1}{n-1}-\frac{1}{n+1}-\frac{1}{2 n-1}+\frac{1}{2 n+1} \cdots\right\} ;
\end{aligned}
$$

If we put $n=3$, theso become

$$
\begin{aligned}
& \pi=3 \sqrt{3}\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{8}+\ldots\right), \\
& \pi=\frac{3 \sqrt{3}}{2}\left(1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{8} \ldots\right) .
\end{aligned}
$$

By differentiating (27) we get

$$
\operatorname{cosec}^{2} x=\frac{1}{x^{2}}+\frac{1}{(x+\pi)^{3}}+\frac{1}{(x-\pi)^{2}}+\frac{1}{(x+2 \pi)^{2}}+\frac{1}{(x-2 \pi)^{2}}+\ldots,
$$

fut $x=\frac{\pi}{6}$, and we get $\pi^{2}=9\left\{1+\frac{1}{5^{2}}+\frac{1}{5^{2}}+\frac{1}{11^{2}}+\ldots\right\}$.
These series, among otlers, were given by Glaisher (Quart. Journ. Mrath., vol. xii.).

We have $\sinh \pi x=\pi x P\left(1+\frac{x^{2}}{n^{2}}\right)$, $\cosh \pi x=P\left(1+\frac{x^{3}}{2 n+11^{2}}\right)$; if we differentiate these formulæ after taking logarithms, we obtain the series

$$
\begin{aligned}
& \frac{\pi}{2 x} \operatorname{coth} \pi x-\frac{1}{2 x^{2}}=\frac{1}{1^{2}+x^{3}}+\frac{1}{2^{2}+x^{2}}+\frac{1}{3^{3}+x^{2}}+\cdots \\
& \frac{\pi}{2 x} \tanh \pi x=\frac{1}{1^{2}+x^{4}}+\frac{1}{3^{3}+x^{3}}+\frac{1}{5^{2}+x^{2}}+\cdots
\end{aligned}
$$

These series were given by Kummer (in Crcllc's Journ. vol. xvii.). The sum of the more general series $\frac{1}{1^{2 n}+x^{2 n}}+\frac{1}{2^{2 n}+x^{2 n}}+\frac{1}{3^{2 n}+x^{3 n}}$ +..., has been found by Glaisher (Proc. Lord. Mruth. Soc., vol. vii.).
If in the series (12) and (13) we put $n=2 x, \theta=\frac{\pi}{6}$, we get

$$
\begin{aligned}
& \cos \frac{\pi x}{3}=1--\frac{x^{2}}{\frac{12}{2}}+\frac{x^{2}\left(x^{2}-1^{2}\right)}{\frac{14}{2}}-\frac{x^{2}\left(x^{3}-1^{2}\right)\left(x^{2}-2^{2}\right)}{\frac{16}{6}}+\ldots \\
& \sin \frac{\pi x}{3}=\sqrt{3}\left\{x-\frac{x\left(x^{2}-1\right)}{\frac{13}{13}}+\frac{x\left(x^{3}-1^{2}\right)\left(x^{3}-2^{2}\right)}{\frac{5}{2}} \ldots\right\}
\end{aligned}
$$

These series were given by Schcllbach (in Crelle's Journ.. vol. zlviii ; If in the same series (12), (13) we put $\theta=\frac{\pi}{2}, n=\frac{2 x}{\pi}$, we get $\cos x=1-\frac{4 x^{3}}{1.2 \pi^{2}}+\frac{4 x^{2}\left(4 x^{2}-2^{2} \pi^{2}\right)}{1.2 .3 .4 \pi^{4}}-\frac{4 x^{2}\left(4 x^{2}-2^{2} \pi^{2}\right)\left(4 x^{2}-4^{2} \pi^{2}\right)}{1.2 .3 .4 .5 .6 \pi^{6}}+\ldots$ $\sin x=\frac{2 x}{\pi}-2 x\left(4 \cdot \bar{x}-\frac{\left.\pi^{2}\right)}{2 \cdot}+\frac{2 x\left(4 x^{2}-\pi^{2}\right)\left(4 x^{2}-3^{2} \pi^{2}\right)}{1.2 .3 .4 \cdot 5 \pi^{5}}-\ldots\right.$
Wo have of course assuraed the legitimacy of the substitutious made. These last scries have been discussed by M. David (Bull. Soc. Jrath. de France, vol. xi.) and Glaisher (Mess. of Math., vol. vii.)
If U_{m} denotes the sum of the series $\frac{1}{1^{m}}+\frac{1}{2^{m}}+\frac{1}{8^{m}}+\ldots, V_{m}$ that of the series $\frac{1}{1^{m}}+\frac{1}{3^{m}}+\frac{1}{5^{m}}+\ldots$ and W_{m} that of the series $\frac{1}{1^{m}}-\frac{1}{3^{m}}$ $+\frac{1}{5^{m}}-\frac{1}{7^{m}}+\ldots$, we obtain by taking logarithms in the formalm (25) and (26)
$\log (x \operatorname{cosec} x)=U_{2}\left(\frac{x}{\pi}\right)^{2}+\frac{1}{2} U_{4}\left(\frac{x}{\pi}\right)^{4}+\frac{1}{3} U_{0}\left(\frac{x}{\pi}\right)^{6}+\ldots$,

$$
\log (\sec x)=V_{2}\left(\frac{2 x}{\pi}\right)^{2}+\frac{1}{2} V_{s}\left(\frac{2 x}{\pi}\right)^{4}+\frac{1}{3} V_{6}\left(\frac{2 x}{\pi}\right)^{6}+\ldots
$$

and differentiating these seriee we get

$$
\begin{align*}
& \frac{1}{2} \cot x=\frac{1}{2 x}-\frac{U_{9}}{\pi^{2}} x-\frac{U_{4}}{\pi^{4}} x^{3}-\frac{U_{6}}{\pi^{6}} x^{5}-\ldots \ldots \ldots \ldots . . \tag{31}\\
& \frac{1}{2} \tan x=\frac{V_{3}}{\pi^{3}} 2^{2} x+\frac{V_{4}}{\pi^{4}} 2^{4} x^{3}+\frac{V_{0}}{\pi^{6}} 2^{6} x^{5}+\ldots \ldots \ldots \ldots \tag{32}
\end{align*}
$$

In (31) x must lie between $\pm \pi$ and in (32) between $\pm \frac{1}{2} \pi \quad$ Writ. equation (30) in the form

$$
\sec x=\Sigma(-1)^{n} \frac{(2 n+1) \pi}{\left(\frac{2 n+1}{} \frac{\pi}{2}\right)^{2}-x^{3}}
$$

and expand each term of this series in powers of x^{3}, then we get

$$
\begin{equation*}
\sec x=\frac{2^{2} W_{1}}{\pi}+\frac{2^{4} W_{3} x^{3}}{\pi^{3}}+\frac{2^{6} I V_{5} x^{4}}{\pi^{5}}+\ldots \tag{33}
\end{equation*}
$$

where x must lie between $\pm \frac{1}{2} \pi$. By comparing the series (31), (32), (33) with the expansions of $\cot x, \tan x, \sec x$ obtained otherwise, we can calculate the values of $U_{2}, U_{4} \ldots V_{2}, V_{4} \ldots$ and $W_{1}, W_{3} \ldots$ When U_{n} has been found, V_{n} nay be obtained from the formula $2^{n} V_{n}=\left(2^{n}-1\right) U_{n}$.

For Lord Brounker's series of π, see Squarino the Circle (rol. Conxxii. p. 435). It can be got at once by putting $a=1, \bar{b}=3$, tinued $c=5 \ldots$ in Euler's theorem $=\frac{1}{a}-\frac{1}{b}+\frac{1}{c}-\ldots . .=\frac{1}{a+} \frac{a^{2}}{b-a+} \frac{b^{2}}{c-\bar{b}}+\cdots$ farton for

Sylvester gave (Pril. Mag., 1869) the continued fraction

$$
\frac{\pi}{2}=1+\frac{1}{1+} \frac{1.2}{1+} \frac{2.3}{1+} \frac{3.4}{1+} \cdots
$$

which is equivalent to Wallis's formula for π. This fraction was originally given by Euler (Comm. Acad. Petropol., rol. xi.); it is also given by Stern (in Crelle's Journ., vol. x.).

It may be shown by means of a transformation of the series for Con. $\cos x$ and $\frac{\sin x}{x}$ that $\tan x=\frac{x}{1-} \frac{x^{3}}{3-} \frac{x^{2}}{5} \frac{x^{3}}{7-} \ldots$ This may be ulso tinued easily shown as follows. Let $y=\cos \sqrt{x}$, and let $y^{\prime}, y^{\prime \prime} \ldots$ denote for trigo the differential coefficients of y with regard to x, then by forming nometrithese we can show that $4 x y^{\prime \prime}+2 y^{\prime}+y=0$, and thence by Leibnitz's tions. theorem we have

$$
4 x y^{(n+2)}+(4 \pi+2) y^{(n+1)}+y^{(n)}=0 .
$$

Therefore $\frac{y}{y^{\prime}}=-2-\frac{4 x}{y^{\prime} / y^{\prime \prime \prime}} \frac{y^{(n)}}{y^{(n+1)}}=-2(2 n+1)-\frac{4 x}{y^{(n+1) / y^{(n+2)}}}$;
hence $\quad-2 \sqrt{x} \cot \sqrt{x}=-2-\frac{4 x}{-6-} \frac{4 x}{-10-} \frac{4 x}{-14-} \ldots$
Replacing \sqrt{x} by x we have $\tan x=\frac{x}{1-} \frac{x^{2}}{3-} \frac{x^{2}}{5-} \ldots$
Eeler gave the continued fraction
$\tan \pi x=\frac{n \tan x}{1-} \frac{\left(x^{2}-1\right) \tan ^{2} x}{3-} \frac{\left(n^{2}-4\right) \tan ^{2} x}{5-} \frac{\left(n^{2}-9\right) \tan ^{2} x}{7-} \ldots$,
this was published in Mérn. de $T_{\text {' } A c a d \text {. de St Petersb., vol. vi. }}^{\text {Nis }}$ Glaisher has remarked (Mess. of Math., vol.v iv') that this may be derived by forming the differential equation

$$
\left(1-x^{0}\right) y^{(m+2)}-(2 m+1) x y^{(m+1)}+\left(n^{3}-m^{2}\right) y^{(m)}=0
$$

Where $y=\cos (n \operatorname{arc} \cos x)$, then replacing x by $\cos x$, and proceeding as in the former caso. If we put $n=0$, this becomes

$$
x=\frac{\tan x}{1+} \frac{\tan ^{2} x}{3+} \frac{4 \tan ^{2} x}{5+} \frac{9 \tan ^{2} x}{7+} \ldots
$$

Whence we have

$$
\arctan x=\frac{x}{1+} \frac{x^{2}}{3+} \frac{4 x^{2}}{5+} \frac{9 x^{3}}{7+} \ldots+\frac{n^{2} x^{3}}{2 \pi+1+} \ldots
$$

It is possible to make the investigation of the properties of the simple circular functions rest on a purely analytica basis. The sind
of x would be defined as a function such that, if $x=\int_{0}^{y} \frac{d y}{\sqrt{1-y}}$, then $y=\sin x$; the quantity $\frac{\pi}{2}$ would be defined to be the complete integral $\int_{0}^{1} \frac{d y}{\sqrt{1-y^{2}}}$. We chould then have $\frac{\pi}{2}-x=\int_{0}^{1} \frac{d y}{\sqrt{1-y^{2}}}$. Now change the pariable in the integral to z, where $y^{2}+z^{2}=1$, we then have $\frac{\pi}{2}-x=\int_{0}^{x} \frac{d z}{\sqrt{1-z^{2}}}$, and z must be defined as the cosine of x, and is thus equal to $\sin \left(\frac{\pi}{2}-x\right)$, satisfying the equation $\sin ^{2} x+\cos ^{2} x=1$. Next consider the differential equation

$$
\frac{d y}{\sqrt{1-y^{2}}}+\frac{d r}{\sqrt{1-z^{2}}}=0
$$

This is equivalent to

$$
d\left(y \sqrt{1-\frac{z^{3}}{2}}+z \sqrt{1-y^{2}}\right)=0
$$

hence the integral is

$$
y \sqrt{1-z^{2}}+z \sqrt{1-y^{2}}=\text { a constant. }
$$

The constant wiu he equal to the value u of y when $z=0$;
whence
$y \sqrt{1-z^{2}}+z \sqrt{1-y^{2}}=u$.

The integral may also be obtained in the form
Let $\quad \alpha=\int_{0}^{y} \frac{y z-\sqrt{1-y^{2}} \sqrt{1-z^{n}}=\sqrt{1-u^{2}}}{\sqrt{1-y^{2}}}, \quad \beta=\int_{0}^{2} \frac{d r}{\sqrt{1-z^{2}}}, \quad \gamma=\int_{0}^{u} \frac{d u}{\sqrt{1-u^{2}}} ;$
we have $\alpha+\beta=\gamma$, and $\sin \gamma=\sin \alpha \cos \beta+\cos \alpha \sin \beta$,
$\cos \gamma=\cos \alpha \cos \beta-\sin \alpha \sin \beta$,
the addition theorams. By mesns of the addition theorems and the values $\sin \frac{\pi}{2}=1, \cos \frac{\pi}{2}=0$ we cen prove that $\sin \left(\frac{\pi}{2}+x\right)=\cos x_{1}$ $\cos \left(\frac{\pi}{2}+x\right)=-\sin x ;$ and thence by another use of the addition theorems that ain $(\pi+2)=-\sin x \cos (\pi+x)=-\cos x$, from whick the periodicity of the functions $\sin x, \cos x$ follows.
We have also $\int \frac{d y}{\sqrt{1-y^{2}}}=-t \log _{z}\left(\sqrt{1-y^{3}}+t y\right)$;
whence $\log _{e}\left(\sqrt{1-y^{3}}+t y\right)+\log _{e}\left(\sqrt{1-z^{2}}+t z\right)=$ a constant.
Therefore $\quad\left(\sqrt{1-y^{2}}+(y)\left(\sqrt{1-z^{2}}+t z\right)=\sqrt{1-u^{2}}+t u\right.$,
eince $u=y$ when $z=0$; whence we have the equation
$(\cos \alpha+\iota \sin \alpha)(\cos \beta+\iota \sin \beta)=\cos (\alpha+\beta)+\iota \operatorname{in}(\alpha+\beta)$,
from which De Moirre'e theorem followe.
(E. W. H.)

TRILOBITES. See Crustacea, pol. vi. p. 659 sq.
TRLNCOMALEE, a town and naval station in the island of Ceylon, is situated on the north-east coastwhich is bold, rocky, and picturesquely wooded-by road 113 miles north-north-east of Kandy, in $8^{\circ} 33^{\prime \prime} 30^{\prime \prime}$ N. lat. and $81^{\circ} 13^{\prime} 10^{\prime \prime} \mathrm{E}$. long. It, is built on the north side of the Bay of Trincomalee, on the neck of a bold peninsula separating the inner from the outer harbour. There is a lighthouse on the extremity of Foul Point at the southern side of the bay, and another on the summit of Round Island. The inner harbour is landlocked, with a safe anchorage and deep water close to the principal wharyes; the outer harbour has an area of about 4 square miles, with a depth of about $\tau 0$ fathoms. There is an admiralty dockyard, and the town is the principal naval station in the Indian seas. The breadth of the streets and esplan. ades samewhat atones for the mean appearance of the houses, but the town generally bas a gloomy and impoverished aspect. Pearl oysters are found in the lagoon of Tambalagam to the mest of the bay. The Government buildings include the barracks, the public offices and residences of the civil and naval authorities, and the official house of the officer commanding-in-chief in the Indian seas. There is an hospital and outdoor dispensary, and aiso a friend-in-need society. The population of Trincomalee in 1881 was $10,180$.
The town was one of the earliest settlements of the Malabar race in Ceylon, who at a very early period erected on a height at the extremity of the peninsula, now crowned by Fort Frederick, a temple dedicated to Konatha, or Konasir, named the "temple of a thousand columns."r The building was desecrated and destroyed in 1622, when the town wes taken hy the Portnguese, who made nse of the materials for the erectiou of the fort. The town was successively held by the Dutch (1639), the French (1673), the Dutch (167t), the French (1782), and the Dutch (1783). After a siege of three weeks it aurrendered to the British fleet in 1745, and with other Dutch possessions in Ceylon was formally ceded to Great Britain by the treaty of Amiens in 1801. Its fortificatiuns have lately been strengthened.

TRLNLDAD, a West Indian isiand, lying nortb-east of Fenezuela, between $10^{\circ} 3^{\prime}$ and $10^{\circ} 50^{\prime} \mathrm{N}$. lat. and $61^{\circ} 39^{\prime}$ and $62^{\circ} \mathrm{W}$. long., being the most southern of the chain of islands separating the Atlantic from the Caribbean Sea. Its area is 1754 square miles, or nearly $1,123,000$ acres. In shape the island is almost rectangular, but from its north-west and south-west corners project two long horns towards Venezuela, eaclosing the Gulf of Paria. The north-west horn terminates in several islands, in one of the channels between which (the Boca Grande) lies the small British island of Patos. The general aspect of Trinidad is lerel. But three parallel ranges, varying from 600 to 3100 feet in height and clothed with forests, rud from
east to mest. The plains are matered by numerous streams, and the mountains are deeply furrowed by innumerable ravines. The rivers falling into the gulf are somewhat obstructed by shallows, especially the Caroni and the Coura. Geologically, as well as botanically acd zoologically, Trinidad differs little from the adjacent mainland, with which at one time it probably was connected. .The soil, which is

Map of Trinided.
fertile, consists of clay, loam, and alluvial deposits. The Moriche palm and mountain cabbage, as well as the cedar and the balata, are prominent objects. Poisonous and meaicinal plants grow everywhere, and the woods contain an inexhaustible supply of timber: There are two mineral springs. The most curious natural feature of the island is the pitch lake ${ }^{1}$ in La Brea, 90 acres in extent, which furnishes an important export. The climate is healthy, the mean temperature belng in January 76° Fahr, and in Soptember 79°; it occasionally reaches 90°.

The population, which numbered 109,638 in 1871 , was retarned in 1881 at 153,128 (83,716 males and 69,412 females), and in 188 d at 171,914. Of these about 100,000 aro matives of the island, prind cipally of African race, 50,000 are coolies introduced from lndid (an industrious and prosperous element of the population), whild the remainder includes the English and other European settlers. About 2000 coolies are introduced annually. Many French families from other parts of the West Indics settled in Trinidad many years ago, and traces of this and of the Spanish occupation are obvions in laws, municipal arrangements, language, and population. The two priacipal towns aro Port of Spain and San Fernando. The former (34,000 inhabitants), the capital of the island, is built on a gently inclined plain near the north-east angle of the Gulf of Paria,
${ }^{1}$ This is vividly described by Charles Kiogsley in At Lass..
and is a fine and eafo port. In the town there are two cathedrale (the Roman Catholic and the Anglican), and eutside it a botanical garden. San Fernando, ebout 30 milea southward, with a population of 7000 , is sn important shipping place.
Of the total area about 300,000 acres are cultivated. The principal productions of the island are sugar and cocoa; coffee is also becoming inportant. Trinidad has suffered much from the effect of foreign etate bonntiee, especially the export premiuns of Germany and France. The eugar production in 1871 was E3,000 tons, in 188144,000 toдs, and in 188564,000 tons. The principal exporta in 1885 were-sugar, 64,000 tons (valne £684,675); rum, 72,525 galla. (£7878) ; molasses, 2,416,761 galla. (£45,835); cocoa, $14,904,840 \mathrm{lbs}$. ($£ 421,974$) ; coffee, $20,270 \mathrm{lba}$; asphalt, 28,505 tona raw "and 6731 tons boiled; cocoa-nuts, $9,645,700$; bitters (Angostura and othora) end liquors, 32,240 galla. ; the total value was $£ 2,246,664$, including $£ 707,421$ вpecio and bullion. The imports in 1885 (including bullion and specie) were $£ 2,241,478$. Among the principal itoms are cottons, linens, woollens, and textiles generally (largely from the United Kingdom), £235, 895 ; fiah, flour, and provisions (principally from the United States), $£ 270,000$; lumber (from Canada), $£ 43,075$; rice (half from India), £113,940: hardware and machinery (principally from the United Kingdome, £116,894; gold (principally from Venezuels in tranait), £651,398. The sailing reasela entering Trinidad ports in 1885 had a burden of 150,219 tons, the stesmers a burden of 385,950 tons. The total public revenue in 1885 was $£ 429,307$, of which $£ 240,444$ was for customa and excise. The tetal expenditure was $£ 443,920$. There are 145 public schoola, of which 61 are Government and 61 assistad, with a total attendance of 13,282 scholara. The priacipal towna are connected by railway lines.

Trinidad was discovered by Columbus on 31et Jnly 1496. It remained in Spanish possession (although its principal town, San José de Oruüa, was burnt by Sir Walter Raleigh in 1595) nntil 1797, when a Britiah expedition from Martinique caused its canitu: lation, and it was fimally, ceded to Great Britain in 1802 by the treaty of Amiens. Ita real starting-point as a productive country was in 1781, when the Madrid Govermment hegan to attract forcigu immigrants Trinidsd is otill strictly a crown colony of Great Britain. The legislative council includes the governor as president, and six official and eight unofficial memberb, all appointed by the crown. During the labour crisis caused by omancipation and the aubsequent equalization of the British duties on free and slavesrown augar, the colony was greatly assisted by the ekilful administration of Lord Harris, governor from 1846 to 1851.
See De Verteuil, Trintdad; Colontal ofice List; Guppy, Trindiad Almanao; and Government Genlogical Survey.
TRINITARIANS (Ordo Sancto Trinitatis et Captorum), a religious order instituted about the year 1197 by Innocont III., at the instance of John de Matha (1160-1213) and Felix de Valois (ob. 1212), for the ransom of captives among the Moors and Saracens. The rule was the Augustinian, the dress white with a red and blue cross. De Matha was the first general and De Valois the first abbot of the mother house at Cerffroid near Meaux, where the idea of the institution had originated in a miraculous apparition. By 1200 as many as 200 Christians had been redeemed out of slavery in Morocco by the order, which accordingly spread rapidly not only in France but also in Italy and Spain. Further favoured by Honorius III. and Clement IV., the Trinitarians epread into Portugal, the United Kingdom, Bohemia, Saxony, Poland, and Hungary, and even into America. In the 18 th century they had in all about 300 houses; but the order is now almost extinct. . About the middle of the 17 th century it was stated that in France the "redemptions" up to that time had numbered 246 , the number of prisoners bought off being 30,720 ; for Castile and Leon the corresponding figures were 362 and 11,809. The order is sometimes spoken of as the "ordo asinorum" from the circumstance that originally its members were not permitted to use any other beast of burden. - In France they were known as Mathurins from the chapel of St Mathurin or Mathelin in Paris, which belonged to them.
TRINITY hoUSE, Corporatien of. An association of Euglish mariners, which originally had its head-quarters at Deptford in Kent. In its first charter, received from Henry VIII. in 1514, it was described as the "guiid or fraternity of the most glorious and undividable Trinity of Sit Clement," the court being made to consist of master,
wardens, and assistants, numbering thirteen in all and elected annually by the brethren. Deptford having been made a royal dockyard by Henry VIII., and being the station where outgoing ships were supplied with pilots, the corporation rapidly developed its influence and usefulness. By Henry VIII. it was entrusted with the direction of the new naval dockyard. From Elizabeth, who conferred on it à grant of arms in 1573, it received authority to erect beacons and other marks for the guidance of navigators along the coasts of England. It was also recognized as the authority in the construction of vessels for the royal nary. In 1604 a select class was constituted called elder brethren, the other members being called, younger brethren. By the charter of 1609 the sole management of aftairs was conferred on the elder brethren, the younger brethren, however, having a vote in the election of master and wardens. The practical duties of the fraternity are discharged by the acting elder brethren, who have all had experience in naval affairs; but hs a nark of honour persons of rank and eminence are admitted as elder brethren and now form a large proportion of the members. In 1647 the corporation was dissolved by parliament, but it was reconstructed in 16.60, and the charter was renewed by James II. in 1685. A new hall and almshouses were erected at Deptford in 1765; but for some time the offices of the corporation had been transferred to London, and in 1798 their headquarters were removed to Trinity House, Tower Hill, built from the designs of Wyatt. By an Act of 1836 they received powers to purchase from tho crown, as well as from private proprietors, all interests in coast lights. For the maintenance of lights, buoys, \&c., they had power to raise money by tolls, the ourplus being devoted to the relief of old and indigent mariners or their near relatives. In 1853 the control of the furds collected by the corporation was transferred to the Board of Trade, and the money over which the brethren were allowed independent control was ultimately reduced to the private income derived from funded and trust property. Their practical duties in the erection of lighthouses, buoys, and beacons remain as important as ever, the number of persons employed in their service being over 800 . They also examine navigating lieutenants in the royal navy, and act as nautical advisere in the High Court of Admiralty.
TRINITY SUNDAY, which immediately follows Whitsunday, was in the older liturgies regarded merely as the "Octave" of Pentecost. The habit of keeping it as a distinct festival seems to bave sprung up about the 11th century. According to Gervaso of Canterbury, it was Thomas Becket whe introduced it into England in 1162. The universal enservance of it was established by Pope John XXII. in 1334.

TRIPOLI, a North African state, bounded by the Mediterranean on the north, by the desert of Barca (or Libyan Desert), which separates it from Egypt, on the east, by the Sahara and Fezzan on the south-east, south, and south. west, and by Tunis on the north-west. The country is made up of a strip of fertile soil adjacent to the sea, with vast sąndy plains and parallel chains of rocky mountains, which finally join the Atlas range near Kairwán in Tunis. It is naturally divided into five parts, viz.,-Tripoli proper, to the north-east of which is the plateau of Barca and Jebel al-Akhdar, to the south the oasis of Fezzan, to the south-east that of Aujala, and to the south-west that of Ghadames. ${ }^{1}$ It is very badly watered: the rivers are

[^243]small and the desert wells and watering places are often dry. As regards the coast, it is extremely difficult to fix the exact border between Egypt and Tripoli. The seaboard of the Libyan Desert is so little known to Europeans that the spacious harbours of Tebruk (Tabraca and Tabarka) and Bomba (Bombæa) have almost escaped notice. The land bordering the sea to the west of Cape Rás al-Tín does not partake of the sterile character of the wastes of Barca. The district of Jebel al-Akhdar ("the Green Mountain"), which intervenes between Rás al-Tín and Bengházi, abounds in wood, water, and other resources; but its ports are scarcely worthy of the name, except Derna (Darnis), where vessels from Alexandria call to embark honey, wool, and wax. From Mersí Suza (Apollonia, later Sozusa), now a mere boat cove, but once a powerful city of Cyrenaica, to Bengházi the coast abounds in extensive ruins. Benghazi itself, on the Bay of Sidra (Syrtis Major), is an insignificant fortified town trading in cattle and other produce. The principal products of the country are corn, barley, olives, saffron, figs, and dates, -these last being perhaps the finest in the whole of North Africa. Fruitalso is abundant in certain parts, and so are many kinds of vegetables. The horses and mules, though small, are capable of much hard work. The native tissues and pottery are almost as good as those of Tunis. Great quantities of castor oil come from Tadjura. In consequence of recent events in Tunis, Tripoli has become the last surviving centre of the caravan trade to Northern Africa. It is at least 250 miles nearer the great marts of the interior than either Tumis or Algiers. A large proportion of the commerce of Tripoli is in the hands of British merchants or dealers in British goods, who send cloth, cutlery, and cotton fabrics southwards and receive in return esparto grass, ivory, and ostrich feathers. The sirocco blows with great force at times during the autumn, and the heat is as a rule much greater than in Tunis. The climate is very variabie; cold nights often succeed warm days; storms are of frequent occurrence; and rain is at times wanting for many months. In addition to the capital Tripola (see below), called Tarábulus al-Gharb to distinguish it from the town of the same name in Syria, the only important places are Murzuk and Ghadámes in the interior and Bengházi (Beremice) on the coast. The population of the country consists of Moors, Arabs, Kabyles, Kuluglis (descendants of Turkish fathers and Moorish mothers), Turks, Jews, Europeans, and Negroes. Nothing like a census has ever been attempted, and the number of inhabitants is purely a matter of conjecture. In the interior the population is very scattered, and it is not probable that the total exceeds from 800,000 to a million. The Europeans (2500 or 3000) on the coast are nearly all Maltese. There is a Jewish colony of about 4000 in the capital, and the trade is almost entirely in their hands and in those of the Maltese. ${ }^{1}$
Since 1835 Tripoli has lost the semi-independent character of a regency which it formerly enjoyed in common with Tunis, and has become a vilayet or outlying province of the Turkish empira. For 1 dministrative purposes it is divided into fiva districts, which are again subdivided into twenty-five cantons, the former being governed by motasarrifs and the latter by csimscams. Esch village has its sheikh, who is assisted by a sort of municipal council. Since tha invssion of Tunis by the French, the Turkish garrison of Tripoli has been considerably reinforced, snd many now fortifcations are partially erected on the coast. The chief judga or cadi is nominated by the Porte; the muft is are subject to his authority. There sre also a criminal court, and a commercial sribunsl. The taxes are collected by a recciver-general, also nominated from Constantinople, and thay presa very heavily on all classes of the
${ }^{1}$ The best known English work on Tripoli is F. W. and H. W. Beechey's Proceedings of the Expedition to Expiore the Northepn Coast of Africa from Tripoli Eastucards, London, 1828: Admirsl W. H. Smyth's Mediterranean, London, 1854, contains a description of the coast. See slso Rie, Country of the Moors, London, 1877, snd Broad. ley, Tunis Past and Present, London and Edinburgh, 1882.
inhabitants. The principal sources of revenue are the ususl Mohammeden taxes. The constant succession of Turkish governors, each of whom invariably follows a different policy from that of his predecessor, has been fatal to the mstcrial progress of the conntry. There sre few elementary schools in the capital, and instruction in the interior is entirely limited to the Korsn.

Mistory.-After falling-successively iuto tha hsnds of the Phoenicians, Romans (a foursided trimplial arch, erected in honour of Aurelius Antoninus and Aurelims Yius, still stands near the Marina gate), Vandals, snd Greeks, Tripoli was finally conquered by tha Araba twelva centurica ago, aud hss remained a Moslem state ever since. lu 1510 Ferdiuand the Catholic of Spain took it, and thirteen years later it was given to the Knights of St John, who were expelled in 1553 by the I'urkish corsairs Dragut and Sinan. Dragut, who afterwards fell in Malta, lies buried in a much venerated fiubba close to one of the mosques. After his decease the conmaxion between Tripoli and Constantinople seema to have been considerably weakened. But the Tripolitsn pirates soon becam 3 the terror and scourge of the Mediterrancan; half the states of Europe seem at soma time or other to hsve sent their fleets to bombard tha capital. In 1714, when Hosain ibn "Ali founded the present line of the beya of Tunis, ${ }^{2}$ Ahmed Pasha Caramanli achieved independence, and his descendanta governed Tripoli until 1835. In that year the Turks took advantage of a civil war to reassert their authority, snd since that date Tripoli has been governed by representatives of the sultau.

The khouan (ikhwan) or semı-religious semi-political fraternities which exercise such considerable influence in Tunis, Algeria, and Morocco are perhaps still more powerful in Tripoli. The most ramarkable is that of the Senuisiya, the centra of whose authority is Jaghbub or Jerabuh, north-west of the oasis of Siws. The sectaries of Senuisiga are found in all parts of North Africa, but exist in unusual force in Tripoli, and particularly iu Ghadsmes and Murzuk. A. certain halo of romance surrounds the history of this powerful sect; but its chief has, up to the present time (1887), not played any conspicuous part in tha"affairs of the Soudsn. or in those of the North African littorsl. Mohemmed el-Senuei came originally in 1830 from Mostaghánem in Algeria. He acquired a high reputation for sanctity at Fez in Morocco. After a visit to Mecca and the holy places he started a záwiya or convent-college at Alexandria, but, being excommunicated hy tha sheikh al-Islam at Csiro, he fled across the Libyan Desert to the Jebel al-Akhdar near Bengházi. He afterwards removed to Jaghbub, which has never been visited by any European trsveller. Here he estsblished his záwiys in the midst of palm-groves and soon gathered nesrly a thousand followera. His sustere doctrines are received with enthusiasm in tha Moslem statea of Northern and Centrsl Africa. He established some one hundred sanctuaries in every considerable place between Morocco and Mecca, snd appointed muksddemin or fieutenants in naarly every part of Islam. Senusi the elder died in 1860 and wss succeeded by his son, who bore the title of AlMshdi. Under bis rule the prosperity of the záwiya st Jersbub is said to have grestly increased. Pilgrims to Mecca from North Africa, as well as those coming from Bornou and the Salisran provinces, flock there to seek his blessing. He not only receives caravans of ivory snd ostrich feathers from tha different sultans of the interior, but cargoes of arma and ammunition often srrive for him at the almost unknown harbours of the coast. Rohlts, Dachtigal, and Duveyrier found their passage barred by Senusian agents. It was confidently expected Senusif would make eome demonstration at the beginning of the 14 th century of the Hijrs (November 1882). His followers were, however, doomed to disappointment. Most of the Tripolitan sheikhs are affliated to the Sentisiya confrateruity.

From an archæological point of view Tripoli possessea an interest equal to, if not greater than, that which attaches to Tunis. On this subject the fullest information is afforded by the book of the Beecheys, and in a less degree by that of Mr Rae. Tha former is illustrated by numerous plans and engravings and still affords the safest guide to the antiquities of Tripoli.

TRIPOLI, the capital of the above country, is situated in $32^{\circ} 53^{\prime} 40^{\prime \prime} \mathrm{N}$. lat. and $13^{\circ} 11^{\prime} 32^{\prime \prime} \mathrm{E}$. long., on a promontory stretching out into the Mrediterranean and forming a small bay. Its crenellated enceinte wall has the form of an irregular pentagon. A line of small half-ruined forts is supposed to protect one side of the harbour, and the castle of the governor the other. The desert almost touches the western side of the city, while on the east is the verdant oasis of Meshiga, where are still to be seen the tombs of the Caramanlian sultanas and the twelvc-domed marabout of Sy Hamod da. In the town itself there are seven
${ }^{2}$ The Letters (London, 1819) of Richard Tully, who was consal at Tripoli from 1783 to 1793 , throw s strange and vivid light on Tripolitan life during the 18 th cantury.

TRI-TRI

principal mosques, six of them possessing lofty minarets in the Turkish style. The atreets are narrow, dirty, and unpaved; there is no European quarter properly so called : Tripoli is still a typical Moorish city. Its population numbers about 20,000.

TRIPOLI (Tarabulus), a town of Syria, capital of Liwā, on the river Kadisha or Abu ' Al , in $34^{\circ} 26^{\prime} \mathrm{N}$. lat. and $35^{\circ} 50^{\prime}$ E. long., is situated in a fertile maritime plain covered with orchards and dominated by a castle over: hanging a gorge of the river, some parts of which are, perhaps, the work of the crusaclers. The port (Al-Miná) is about two miles distant, on a small peninsula. The population is estimated at 17,000 , with the port at 24,000 or a little more. Nearly half of these are Christians, the Maronites preponderating. There is a considerable export of silk cocoons and a native silk manufacture; the sponge fishery is a large industry; tobacco is exported; and soap is made from the olive oil of the district. There are eighteen churches, and several monasteries, nunneries, and large kháns.

The ancient Phœenician city which we know only by its Greck name of Tripolis was the seat in Persian times of the federal council of Sidon, Tyre, and Aradus, each of which cities had its separate quarter in the "triple town" (see vol. xviii. p. 809). In the second and first centuries B.o. it struck coins, on which it is designated a "holy and autonomons" city. These are succeeded by imperial coins ranging from 32 B.c. to 221 A.D. About 450, and again in 550, it was destroyed by earthquake. The Arabs took it in 638 after a prolonged siege, the inhabitants withdrawing by sea. It appears from Beladhori (p. 127) tbat at this time the city still consisted of three fortified places. Mo'áwiya recruited the population by a colony of Jews and gave it fortifications and a garrison sgainst the nsval attacks of the Greeks, who, notwith. otanding, retook it for a brief space in the time of Abdalualik (Beladh., ut sup.). It was again taken by the Greeks in the war of $966-69$ and was besieged by Basil II. in 995, after which date it was held by a garrison in the pay of the Fatimite caliphs of Egypt, who treated the city with favour and maintained in it a trading fleet. At this time, according to the description of Násiri Khosazau (ed. Schefer, p. 40 sqq.), who visited it in 1017, it lay on the peninsula of Al-Mina, bathed on three sides by the sea, and had about 20,000 inhahitants and important industries of sugar and paper-makiug. Of the great sea-walls and towers thero are atill imposing remains. From this date till it was taken by the crusaders, after a fire years' siege, in 1109, the ruling family was that of 'Ammã", who founded a library of over 100,000 volumes. Under the crusaders Tripoli continued to flourish, exported glass to Venice, and had 4000 looms (Quatremère, IIist. des Sultans Mamlouks, ii. 103). In 1289 it was taken and destroyed by the sultan Kalaún of Egypt, and a new city was begun on the present site, which rapidly row to importance (Ibn Batúta, i. 137). Its medixval prosperity has obliterated most relics of remoter antiquity. See Renan, Mission de Phenicie, p. 129 sqq.
TRIPOLITZA, officially Tripolis, a town of Greece, capital of the nomarchy of Arcadia, is situated in a plain 3000 feet above sea-level, 22 miles' south-west of Argos. The name has reference to the three ancient cities of Mantinea, Pallantinm, and Tegea, of which Tripolitza is the modern representative. Before the war of independence it was the capital of the Morea and the seat of a pasha, with about 20,000 inhabitants; but in 1821 it was taken and sacked by the insurgents, and in 1825 its ruin was completed by Ibrahim Pasha. The town has since been rebuilt, and now (1887) contains about 10,000 inhabitants.

TRISMegistus. See Hermes Trismegistus.
TRISTAN. Sce Romance, vol. xx. p. 644 sq.
TRISTAN DA CUNHA, a group of three small volcanic islands, situated in the South Atlantic nearly midway between the Cape of Good Hope and the coast of South America, the summit of the largest being in $37^{\circ} 5^{\prime} 50^{\prime \prime} \mathrm{S}$. lat. and $12^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{W}$. long. They rise from the low submarine elevation which runs down the centre of the Atlantic and on which are likewise situated Ascension, St. Paul's Rocks, and the Azores; the average depth on this ridge is from 1600 to 1700 fathoms, while depths of 3000 fathoms are found on each side of it. The depth between
the islands is in some places over 1000 fathoms. Tristan, the largest and northernmost island, is nearly circular in form, about 7 miles in diametcr, with a volcanic cone in the centre (7640 feet). Precipitous clifis, 1000 to 2000 feet in height, rise directly from the ocean on all sides, except on the north-west, where there is an irregular plain, 100 fect above the sea, and $2 \frac{1}{2}$ miles in length and $\frac{1}{2}$ mile in breadth. The crater of the central cors is said to be filled with a freshwater lake which never freezes. Inaccessible Island, the westernmost of the group, is about 20 miles from Tristan. It is quadrilateral in form, the sides being about 2 miles long. The highest point (1840 feet) is on the west side; all round there are perpendicular cliffs 1000 feet in height. At the base of these are in some places narrow fringes of beach a few feet above the sear level. Nightingale Island, the smallest and most southern of the group, is 10 miles from Inaccessible Island. Its coasts, unlike those of the other two islands, are surrounded by low cliffs, from which there is a gentle slope up to two peaks, the one 1100 feet, the other 960 feet high. There are two small islets-Stoltenkoff (325 feet) and Middle (150 feet)-and several rocks adjacent to the coast. The rocks are feldspathic basalt, dolerite, augite-andesite, sideromelane, and palagonite; some specimens of the basalt have porphyritic augite. The caves in Nightingale Island indicate that it has been elevated several feet. On almost all sides the islands are surcounded by a broad belt of kelp, the gigantic southern sea-weed (Macrocystis pyrifcra), through which a boat may approach the rocky shores even in stormy weather. There is no good or safe anchorage. The beaches and lower lands are covered with a dense growth of tussock grass (Spartina arundinacea), 8 to 10 feet in height, which shelters millions of penguins (Eudyptes chrysocoma), which there form their rookeries. There is one small tree (Phylica nitida), which grows in detached patches on the lower grounds. Independently of introduced plants, fifiy-five species have been collected in the group, twenty-nine being flowering plants and twenty-six ferns and lycopods. A majority of the species are characteristic of the present general flora of the south temperate zone rather than any particular part of it: botanically the group is generally classed with the islands of the. Southern Ocean. A finch (Nesospiza acunhx), a thrush (Nesocichla eremita), and a water hen (Gallinula nesiotis) are the only land birds-the first two being peculiar to the islands. In addition to the penguins numerous other sea birds nest on the islands, as petrels, albatrosses, terns, skuas, and prions. One or two land shells, a few spiders, several Coleoptera, a small lepidopter, and a few other insects are recorded, but no Orthoptera or Hymenoptera. The prevailing winds are westerly. December to March is the fine season. The climate is mild and on the whole healthy, the temperature averaging 68° Fahr. in summer, 55° in winter, - sometimes falling to 40°. Rain is frequent; hail and snow fall occasionally on the lower grounds. The sky is usually cloudy. The islands have a cold and barren appearance The tide rises and falls about four feet.

The islands were discovered and named by the Portugnese in 1506. The Dutch described them in 1643. D'Etcheverri landed on them in the year 1767, when he gave Nightingale and In. accessible Islands their names. Their exact geographical position was determined by Captain Denham in 1852, and the "Challenger" completed the exploration of the group in 1873. When first discovered the islands were uninhabited. Towards the end of the 18th and in the beginning of tho 19th century several sealers resided on them for longer or shorter periods. In 1816 the islands were taken possession of by Great Britaid. In 1817 the garrison was withdrawn, but Corporal William Glass, his wife and family, and two men were sllowed to remain. This small colony received additions from time to time from shipwrecks, from whalers, snd from the Cape of Good Hope. In 1826 there were 7 men and 2 women

besides children. In 1873 there were 84 inhabitants, in 188697. They possess cattle, shecp, and gecse. There are usually good potato crops. Tho settlement has always been on the flat stretch of land on the north-west of Tristan, and is called Edinburgh. Two Germans lived for several years on Inaccessible Island, but with this exception there have been no settlements either on this or on Nightingale Island.
TRITON. The genus Triton was constituted by Laurenti, in his Synopsis Reptilium, and the uame was adopted by nearly all writers on Amphibia. In Brit. Ifus. Cat.: Batraehia Gradientia, by G. A. Bonlenger, the genus is expanded and called by the name Afolge, which was used by Merrem in his Tentamen Syst. Amphibia, 1820. The genus belongs to the division Mecodonta of the family Salamandrida in Strauch's classification (see Amphibia, vol. i. p. 771). The definition of Molge given by Boulenger, which closely agrees with that of Triton adopted by Strauch, is as follows. Tongue free along the sides, adhcrent or somewhat free posteriorly. Palatine teeth in two straight or slightly curved series. Fronto-squamosal arch prescnt (except in M. cristatus), ligamentous or bony. Toes five. Tail compressed. In Bell's British Reptiles, 2d ed., 1849, four species were described as occurring in Britain. According to Boulenger, there are cnly three British species, Molge cristata, Boul. (Laurenti), Mf. vulgaris, Boul. (Linn.), and M. palmata, Boul. (Schncider). We give a short account of these under the names Triton eristatus, T. eulgaris, and T. palmatus respectively.
The name Triton cristatus for the first spccies has been resed by a graat number of authoritativo writers on Annphibia, including Laurenti, Tschudi, Bonaparte, Duméril and Bibron, and Strauch, and also by Bell and Fleming among stulents of British fauna. ${ }^{1}$ The diagnosis of T. cristatus is as follows:-The males have a dorssl crest which is toothed ; the fron to-squamosal arch is absent ; the colour of the ventrsi surface is orange with black spots. This species is commonly known as the great water-newt. The avcrage length of the adult is 6 inches. The colours are mest brilliant in the male, and more dercloped in the breeding season-spring and summer-than in winter. The back is blackish or yellowish brown, with round black spots; the sides of the tail are white. The dorsal crest of the malo is separated entircly from the tail crest, and both disappear in winter. The skin is covered with warty tubercles. There are no parotids; hut glandular pores are present over the eyes and in a longitudinal series along each sidc. The spectes is pretty common in ponds and ditches in most parts of Britain, but more abundant in the south than in the north; in the neighbourhood of London it is found in great numbers. Its food consists of aquatic insecta and other small animals; in the spring it devours tho young tadpoles of the frog with avidity, and occasionally it feeds on the smaller species, T. vulgaris. In winter it hibernates, either quitting the water nnd hiding under stones or remaining torpid at the bottom of the water. It brecds chiefly in May and June. As in all Salamandrida, a true copulation takes place and the fertilization of the ova is internal. The fermale deposits each egg separately in the fold of a leaf, which she bends by means of her hird fect; the adhesive slime surrounding the vitellus keens the leaf folded. The tadpole when first hatched is much more fish-like in form than that of the frog, the body diminishing in thickness gradually to the end of the tail. A continuous median fin runs along the back from the head, round the end of the tail, along the ventral median line, to the region of the gills, thns extcnding, as in many fish larvæ, in front of the anus, The larva possesses three pairs of branched external gills, and in front of these a pair of processes by which it can adhere to fixed objects in the water. T. crislatus is abundant throughont Europe, ranging from Sweden and Russia southwards to Greece, and from Britain to the Caucasus.

The diagnosis of T. vilgaris, the Lissotriton punctatus of Bell, is :-Males with a dorsal crest continnons with the caudal, and festooned; belly not brillianily coloured; back spotted. This species, often called the common or small newt, has a smooth skin, no glandular pores on the sides, but two patches on the head. It is as abundant in Britain as the former, or more so, but differs somerwinat in habits, in autumn and winter being almost entirely terrestrial, and only living in water during tho breeding season. Like the former species it is carnivorous. It is found in most parts of Britain, and throughont Europe, except in the south of France, Spain, and Portugal; it also extends into temperate Asia.
T. palmatus Tschndi (Schneider), the Lissotriton yalmipes of Bell, is thus distinguished :-Nalo with dorsal crest, which is low

[^244]with an even margin and continuous with the caudal fronto. squamosal arch long; toes in male webbed. Other less distinctive features are that the back is flattened, with a raised line on each side, and the tail in the male truncate, terminating in a short slender filament. This species is not so common in Britain as the other two; it is widely distributed throughout Europe. It was first discovered in Eritain in 1843."

Boulenger recognizes nincteen species of Molge, of which nine besides those found in Britain are European. Only two species occur in America. Strauch gives twenty species.
TRIUMPH, an honour awarded to generais in ancient Rome for decisive victories over foreign enemies; for victories in civil war or over rebels a triumph was not allowed. The power of granting a triumph rested with the senate; and it was a condition of granting it that the victorious general, on his return from the war, should not have entered the city until le entered it in triumph. Lucullus on his return from Asia waited outside of Rome three years for his triumph. The triumph consisted of a solemn procession, which, starting from the Campus Martius outside the city walls, passed through the city to the Capitol. Rome was en fëte, the streets gay with garlands, the temples open. The procession was headed by the magistrates and senate, who were followed by trumpeters and then by the spoils, which included not only arms, standards, statues, \&cc., but also representations of battles, and of the towns, rivers, and mountains of the conquered country, models of fortresses, \&c. Next came the victims destined for sacrifice, especially white oxen with gilded horns. They were followed by the prisoners who had not been sold as slaves but kept to grace the triumph; they were put to dcath when the procession reached the Capitol. The chariot which carried the victorious general (triumphator) was crowned with laurel and drawn by four horses. The general was attired like the Capitoline Jupiter in robes of purple and gold borroved from the treasury of the god; in his right haud he held a laurel branch, in his left an ivory sceptre with an eagle at the point. Above his head the golden crown of Jupiter was held by a slave who reminded him in the midst of his glory that he was a mortal man. Last came the soldiers shouting Io triumphe and singing songs both of a laudatory and scurrilous kind. On reaching the temple of Jupiter on the Capitol, the general placed the laurel branch (in later times a palm branch) on the lap of the image of the god, and then offered the thank-offerings. A feast of the magistrates and senate, and sometimes of the soldiers and people, concluded the ceremony, which in earlier times lasted one day but in later times occupied several. A naval or maritime triumph was sometimes celebrated for victories at sea. Generale who were not allowed a regular triumph by the senate had a right to triumph at the temple of Jupiter Latiaris on the Alban Mount.
TRIVANDRUM, a town of India, capital of the native state of Travancore (q.v.), is situated in $8^{\circ} 29^{\prime} 3^{\prime \prime}$ N. lat. and $76^{\circ} 59^{\prime} 9^{\prime \prime}$ E long., near the coast, not far from Cape Comorin. It is the residence of the maharajah, and contains an observatory and a museum, besides several other fine buildings. Commercially it is inferior in importance to Aleppi, the trade centre of the state. In 7.881 it had a population of 37,652 .

TROAD and TROY. The Troad (η T Tpuás), or land of Irrey, is the north-western promontory of Asia Minor. The uame "Troad" is never used by Homer,-who calls the land, like the city, Tpoin,--but is already known to Herodotus. The Troad is bounded on the nortb by the Hellespont and the westernmost part of the Propontis, on the west by the Ægean Sea, and on the south by the Gulf of Adramyttium. The eastern limit was variously defined by ancient writers. In the widest acceptation, the Troad was identified with the whole of western and southwestern Mysia, from the Esepus, which flows into the

Propontis a little west of Cyzicns, to the Caicus, which Hows into the Ægean south of Atarueus. But the true eastern boundary is undoubtedly the range of Ida, which, starting from near the south-east angle of the Adramyttian Gulf, sends its north-wcstern spurs nearly to the coast of the "Propontis, in the region west of the Nsepus and east of the Granicus. Taking Ida for the eastern limit, we have the definition which, as Strabo says, best corresponds with the actual usage of the name Troad. Ida is the key to the physical geograply of the whole region; and it is the peculiar character which this monntain-system inuparts to the land west of it that constitutes the real distinctness of the Troad from the rest of Mysia. Nature has here provided Asia Minor with an outwork against invaders from the north-west; and as in the dawn of Greek legend the Troad is the scene of the struggle between Aganemnon and Priam, so it was in the Troad that Alexander won the battle which opened a path for his further adrance.

The length of the Troad from north to south-taking a straight line from the north-west point, Cape Sigeum (Yeni Shehr), to the sonth-west point, Cape Lectum (Babà-Calessi) -may be roughly given as forty miles. The breadih, from the middle point of the west coast to the nain range of Ida, is not much greater. The whole central portion of this area is drained by the Mendere (the ancient Scamander), which rises in Ida and is by far the most important river of the Troad. The basin of the Mendere is divided by hills into two distinct parts, a southern and a northern plain. The southern-anciently called the Samonian plain -is the great central plain of the Troad, and takes its modern name from Bairamitch, the chief Turkish town, which is situated in the eastern part of it near Ida. It is of an elongated form, the extent from north to south being large in proportion to the average width, and is enclosed by hills which, especially towards the south, are low and undulating. From-the north end of the plain of Bairamitch the Mendere winds in large curves through deep gorges in metamorphic rocks, and issues into the northern plain, stretching to the Hellespont. This is the plain of Troy, which has an average length of seven or eight miles from north to south, with a breadth of some two or three from east to west. The hills which enclose it on the south and east are quite low, and towards the east the acclivities are in places so gentle as to leave the limits of the plain somewhat indefinite. Next to the basin of the Mendere, with its two plains, the best marked feature in the riversystem of the Troad is the valley of the Touzla, the ancient Satniois. The Touzla rises in the western part of Moant Ida, south of the plain of Bairamitch, from which its valley is divided by hills; and, after flowing for many miles almost parallel with the sonth coast of the Troad, from which, at Assus, it is less than a mile distant, it enters the Ægean about ten miles north of Cape Lectun. Three alluvial plains are comprised in its course. The easternmost of these, into which the river issnes from bugged mountains of considerable beight, is long and narrow. The next is the broad plain, which is overlooked by the lofty site of Assus, and whicly was a ferite source of supply to that city. The third is the plain at the embonchure of the river on the west coast. This was anciently called the Halesian ('A $\lambda \dot{\eta} \sigma \circ \circ$) plain, partly from the maritime salt-works at Tragase, near the town of Harnaxitus, partly also from the bot salt-springs which exist at some distance from the sea, on the north side of the river, where large formations of rock-salt are also found. Maritime salt-works are still in operation at the mouth of the river, and its modern name (Touzla $=$ salt) preserves the ancient association. A striking feature of the southern Troad is the high and narrow plateau which
runs parallel with the Adramyttian Gulf from east to west, forming a southern barrier to the valley of the Touzla, and walling it off from a thin strip of seaboard. This plateau seems to have been formed by a volcanic upheaval which came late in the Tertiary period, and covered the limestone of the south coast with two successive flows of trachyte. The lofty crag of Assus, washed by the sea, is like a tower standing detached from this line of mountainwall. The western coast is of a different character. North of the Touzla extends an undulating plain, narrow at first, but gradually widening. Much of it is covered with the valonia oak (Quercus Rgilops), one of the most valuable products of the Troad. Towards the middle of the west coast the adjacent ground becomes higher, with steep acclivities, which sometimes rise into peaks; and north of these, again, the seaboard subsides towards Cape Sigeum into rounded hills, mostly low.
The timber of the Troad is supplied chiefly by the pine- Natura: forests on the slopes of Mount Ida. But nearly all the prodicit plains and hills are more or less well wooded. Besides the valonia oak, the eln, willow, cypress, ind tamarisk shrub abound. Lotus, galingale, and reeds are still plentiful, as in Homeric days, about the streams in the Trojan plain. The vine, too, is cultivated, the Turks making from it a kind of syrup and a preserve. In summer and antumn water-melons are among the abundant frnits. Cotton, wheat, and Indian corn are also grown. The Troad is, indeed, a country highly favoured by nature-with its fertile plains and valleys, abundantly and continually irrigated from Ida, its numerous streams, its fine west seaboard, and the beauty of its scenery. Under a good government, it could not fail to be exceedingly prosperous. Under Turkish rule, the natural advantages of the land suffice to mitigate the poverty of the soarse population, but have scarcely any positive result.
In the Homeric legend, with which the story of the Early Troad begins, the people called the Troes are ruled by a history king Priam, whose realm includes all that is bounded by "Lesbos, Phrygia, and the Hellespont" (It., xxiv. 544), i.e., the whole "Troad," with some extension of it, beyond Ida, on the north-west. According to Homer, the Achæans under Agamemnon utterly and finally destroyed Troy, the capital of Priam, and overthrew his dynasty. But there is an Homeric prophecy that the rule over the Troes shall be continued by Æneas and his descendants. From the "Homeric" Hymn to Apkrodite, as well as from a passage in the 20th book of the Iliad (75-353)-a passage undoubtedly later than the bulk of the book-it is certain that in the seventh or sisth century b.c. a dynasty claimirg descent from Æneas reigned in the Troad, though the extent of their sway is unknown. The Homeric tale of Troy is a poetic creation, for which the poet is the sole witness. The analogy of the French legends of Charlenagne warrants the supposition that an Achæan prince once held a position like that of Agamemnon. We may suppose that some memorable capture of a town in the Troad had been made by Greek warriors. But we cannot regard the Iliad in any closer or more exact sense as the historical document of a war. The geographical compactness of the Troad is itself an argument for the truth of the Homeric statement that it was once united under a strong king. How that kingdom was finally broken up is unknown. Thracian hordes, including the Treres, swept into Asia Minor from the north-west about the beginning of the seventh century b.c., ard it is probable that, like the Gauls and Goths of later days, these fierce invaders made bavoc in the Troad. The Ionian poet Callinus has recorded the terror whick they caused furthel south.
A new period in the history of the Troad bcgins with the foundation of the Greek settlements. The earliest
and most important of these were Eolic. Lesbos and Cyme in Eolis seem to have been the chief points from which the first Eolic colonists worked their way into the Troad. Commanding positions on the coast, such as Assus and Sigeum, wonld naturaliy be those first occupied; and some of them may lave been in the hands of Eolians as early as the 10 th century b.c. It appears from Herodotus (v. 95) that abont 620 b.c. Athenians occupied Sigeum, and were resisted by Kolic colonists from Mytilene in Lesb.os, who had already cstablished themselves in that neighhourhood. Struggles of this kind may help to account for the fact noticed by Strabo, that the earlier colonies had often migrated from one site in the "Troad to another. Such changes of seat have been, he observes, frequent causes of confusion in the topography; and the fact has an inportant bearing on attempted identifications of the more obscure ancient sites.

Among the Greek towns in the Troad, three stand out with especial prominence-Ilium in the north, Assus in the south, and Alezandria Troas in the west. The site of the Greek Ilium is marked by the low mound of Hissarlik ("place of fortresses") in the Trojan plain, about three miles frem the Hellespont. The early Greek settlers in the Troad naturally lored to take Homeric names for their towns. The fact that Homer places the town of Dardania far inland, on the slopes of Ida, did not hinder the founders of the Eolic Dardanus from giving that name to their town on the shores of the Hellespont. The site of the historical Thymbra, again, cannot be :cconcilcd with that of the Honeric Thymbra. Similarly, the choice of the name Ilion in no way justifies the assumption that the Greek settlers found that spot identified by tradition with the sits of the town which Homer calls Hlios. It does not even warrant the hypothesis that they found a shrine of Athene Hias existing there. For them, it would be enough that the sounding name could be safely appropriated, - the true site of Homeric Ilias being forgotten or disputed, -and that their town was at least in the neighbourhood of the Homeric battlefields. Tbe Greek Ilium may have been founded abont 700 b.c. It is noticeable that no ancient writer suggests a later date than the time of Cresus (c. 550 b.c.); and Strabo says that the establishment of the colory at Hissarlik-after previous occupution of a different site-took place "in the time of the Ljdiaus" ($\left.\epsilon_{\pi}^{*} \pi i \Lambda v \delta \omega \nu\right)$. It would be reasonable to infer that the Greek Ilium preserved some well-marked traces of Lydian influence, perhaps in architecture or art, perbaps in manners or traditions. The traces of Lydian workmanship found in the exeavations at Hissarlik are thus easily explained, without recourse to the shadowy hypotbesis of a distinet Lydian settlement on the spot. When Xerxes visited the Trojan plain, he "went up to the Pergamon of Priam," and atterwards sacrificed to the Ilian Athene (Herod., vii. 42). It is doubtful whether the "Pergamon" meant was at the Greek. Ilium, or at another site (to be mentioned presently), Bunárbashi ; strong reasons in favour of the latter have lately been adduced by Mr George Nikolaides, in his 'Idıáóos ETpat $\eta \gamma \iota \kappa \grave{y}$ $\Delta u \sigma \kappa \epsilon \mathrm{~m}_{1}$. In the 4th century Ilion is mentioned among tho towns of the Troad which yielded to Dereyllidas (399 в.c.), and as captured by Cbarideraus (359 в.c.). It possessed walls, but was a petty place, of little strength. In 344 b.c. Alexander, on landing in the Troad, visited Ilium. In their temple of Athene the Ilians showed him arms which had served in the Trojan war, including the whicld of Achilles. Either then, or after the battle of Granicus, Alexander directed that the town should be enlarged, and should have the rank of "city," with political independence, and exemption from tribute. The battle of 1 psus (301 b.c.) added north-western Asia Mingr to the
dominions of Lysimachas, who executed the intentions of Alexander. He gave Ilinan a wall a miles in circum: ference, incorporating with it some decayed towns of the neighbourhood, and built a bardsome temple of Athene. In the 3d century b.c. Ilium was the head of a federal league (kotróv) of free Greek towns, which probably in clnded the district from Lampsacus on the Hellespont to Gargara on the Adramyttian Gulf. Twice in that century Ilium was visited by Gauls. On the first oceasion (278 B.c.) the Gauls, under Lutarius, sought to establish a stronghold at Ilium, but speedily abandoned it as being too weak for their purpose. Forty years later (218 в.c.) Gauls were brought over by Attalus I. to help him in hiss war against Acheus. After deserting his stardard they proceeded to pillage the towns on the Fellespont, and finally bes:eged Ilium, from which, however, they were driven off by the troops of Alexandria Troas. At the heginning of the 2 d centiny b.c. llimm was in a state of decay. As Demetrius of Seepsis tells us, the houses "had not even roofs of tiles," but merely of thatch. Such a loss of prosperity is sufficiently explainerl by the ineursious of the Ganls and the insecure state of the Tread during the latter part of the 3 d century. The temple of the Ilian Athene, however, retained its prestige. In 192 b.c. Antiochus the Great visited it befors salling to the aid of the Etolians. In 190 B.c., sloortly before the battle of Magnesia, the Romans came into the Troad. At the moment when a Roman arny was entering Asia, it was politic to recall the legend of Roman deseent from Eneas. Luelus Scipio and the llians were alike eager to do so. He offered sacrifice to the Ilian Athene; and after the peace with Antiochus (189 b.c.) the Romans annexed Rhoeteum and Gergis to Ilium, "not so much in reward of recent services, as in memory of the source from which their nation sprang." The later history of Ilium is little more than that of Roman benefits. A disaster befell the place in 85 e.c., when Fimbria took it, and left it in ruins; but Sulla presently caused it to be rebuilt. Augustus, while confirming its ancient privileres, gave it new territory. Caracalla (211-217 A.D.) visited Hinum, and like Alexander paid bonours to the tomb of Achilles. The latest coins found on the site are those of Constantius II. (337-361). In the 4 th eentury, as some rhetorical "Letters" of that age show, the llians still did a profitable trade in attracting tourists by their pseudo-Trojan memorials. After the 4th century the place is lost to view. But we find from Constantine Porphyrogenitus (911-959) that in his day it was one of the places in the Troad which gave names to bishoprics
While the Greek Ilium at Hissarlik owed its importanceasens to a sham pretension, which amused sight-seers and oceasionally served politicians, Assus, on the south coast, has an interest of a more genuino kind, and is, indeed, a better type of ancient town-life in the Troad. Its situation is one of the most magnificent in all the Greek lands. The seaward faces of the isolated und sea-washed rock on which Assus stood are carved to soath and south-west into terraces. The natural cleavarge of the trachyte into joint planes had already searped out shelves which it was comparatively easy for human- labour to shape; and sc, bigh up ry this cone of trachyte, the Greek town of Assus was buil with its colonnades, batbs, theatre, its public walks and its monuments of the dead, mounting tier above tier, till the summit of the crag was crowned with a Doric temple of Athene. Tho view frons the summit is not only very beautiful but also of great historical interest. In front is Lesbos, one of whose towns, Methymna, is said to have sent forth the founders of Assus, as early, perhaps, as 1000 or 900 b.c. The whole south coast-line of the Troad is seen, and in the south-east tho ancient territory
of Pergamum, from whose masters the possession of Assus passed to Rome by the bequest of Attalus III. (133 B.c.). The great heights of Ida rise in the east. Northward the Touzla is seen minding through its rich valley from a rocky defile in the east to the oak-forests in the western hills. This valley was traversed by the road which St Paul must have followed when he came overland from Alexandria Troas to Assus, leaving his fellow-travcllers to proceed by sea. The north-mest gateway of Assus, to which this road led, is still flanked by two massive towers, of Hellenic work, and of an age which leaves no doubt that they are the same between which St Paul entered the town. On the shore below, the ancient mole at which he embarked for Mytilene with his companions can still be traced by large blocks under the clear water. Assus affords the only harbour on the 50 miles of coast bet ween Cape Lectum and the east ond of the Adramyttian Gulf ; hence it must always have been tho chief shipping-place for the exports of the southern Troad. Too much off the highrays to become a centre of import trade, it was thus destined to be a commercial town, content with a modest provincial prosperity. The great natural strength of the site protected it against petty assailants; but, like other towns in that region, it has known many masters, Lydians, Persians, the kings of Pergamum, Romans, and Ottoman Turks. From the Persian wars to about 350 b.c. Assus enjoyed at least partial independence. It was about 348-3:5 b.c. that Aristotle spent three years at Assus with Hermeas, an ex-slave who had succeeded his former master Eubulus as despot of Assus and Atarneus. Aristotle has left some verses from an invocation to Arete (Virtue), commomorating the worth of Hermeas, who had been seized by Persian treachery and put to death. Under its Turkish name of Beibram, Assus ${ }^{1}$ is still the commercial port of the southern Troad, being the place to which loads of valonia (acorn-cups for tanning) are conveyed by camels from all parts of the country. The recent excarations at Assus, conducted by explorers representing the Archroological Institute of America, have yielded results far more valuable for the history of Greek art and architecture than any excavations yet undertaken in the Troad. The sculptares form one of the most important links yet discovered between Oriental and early Greek art, especially in respect of the types of animals. The later Hellenic tomn-walls of Assus also well repay the uew study which they have received. With their ramparts, towers, and posterns they form the finest and most instructive evtant specimen of Greek military engineering. The director of the exploration, Mr J. T. Clarke, publisked in 1882 an exceilent report on the work lso far as it had then becn carried.

Alexandria Troas stood on the west coast at nearly its middle point, is little south of Tenedos. It was luilt by Artigonus, perlhaps about 310 b.c., and was called by him Antigonia Troas. Early in the next century the name was changed by Lysimachus to Alexandria Troas, in honour of Alexander's memory. As the chief port of north-west Asia Minor, the place prospered greatly in Roman times, and the existing remains sufficiently attest its former importance. The site is now covered with valonia oaks; but the circuit of the old walls can be traced, and in several places they are fairly well preservt i. They had a circumference of about 6 English miles, and were

[^245]fortificd with towers at regular intervals. Remains of some ancient buildings, including a bath and gymnasium, cau be traced within this area. The karbour had two large basins, now almost choked with sand. A Roman colony was sent to the place, as Strabo mentions, in the reign of Augustus. The abridged name "Troas" (Acts xvi. 8) was probably the current one in later Roman times. The site is now called Eski Stambul.

Many classical sites of less note in the Troad have been identified with moro or less certainty. Neandria seems to be rightly fixed by Mr F. Calvert at Mount Chigri, a hill not far from Alexandria Troas, remarkable for the fine view of the whole Troad which it commands. Cebrene has been conjecturally placed in the eastern part of the plain of Bairamitch, Palescepsis being further cast on the slopes of Ida, while the new Scepsis was near the site of Bairamitch itself. The evidence for this, however, is ambiguous. At the village of Kulaklee, a little south of the mouth of the Touzla, some Corinthian columns and other fragments mark the temple of Apollo Smintheus and (approximately) the site of the Homeric Chryse. Colonæ was also on the west coast, opposita Tenedus. Scamandria occupied the site of Enel, in the middle of tho plain of Bairamitch, and Cenchrex was probably some distance north of it. The shrine of Palamedes, mentioned by ancient writers as existing at a town cailed Polymedium. has been discorered by Mr J. T. Clarke on a site hitherto unvisited by any modern traveller, between Assus and Cape Lectum. It proves to have been a sacred enclosure (temenos) on the acropolis of the toms; the statue of Palamedes stood on a rock at the middle of its southern edge. Another interesting discovery has been made by Mr Clarke,-viz, the existence of very ancient town walls os Gargarus, the highest peak of Ida.

The modern discussion as to the site of Homoric Troy Site c: may be considered as dating from Lechevalier'e visits io il cmern the Troad in 1785-86. Homer describes Troy as "a great Proy town," "with broad streets," and with a high acropolis, or "Pergamus," rising above it, from which precipitous rocks descend abruptly to the plain beneath. These are the precipices over which the Trojans proposed to hurl the wooden horse, "when they had dragged it to the summit." Homer marks the character of the acropolis by the epithets " lofty," "windy," and more forcibly still by " beetling." One site in the Trojan plain, and one only, satisfies this most essential condition. It is the hill at its southern edge called the Bali Dagh, above the village of Bunárbashi. It has a height of about 400 feet, with sheer precipices descending on the south and south-west to the ralley of the Scamander (Mendere). Remains found apon it-though it has never yet been thoroughly exploredshow it to have been the site of an ancient city. Homer describes two natural springs as rising a little to the north-west of Homeric Troy. A little to the north-west of Bunárbashi these springs still exist. "This pair of rivulets are the immutable mark of nature by which the height towering above is recognized as the citadel of Hium" (E. Curtius).

The low mound of Hissarlik-the site of the Greek Ilium-stands only 112 feet above the level of the open plain in which it is situated. To call it "beotling" (íфpróeroa) would have been a travesty of poetical licence on which no poet could have ventured, and to describe it as "lofty" or "windy" would have been not less strange. There are no natural springs near it, such as Homer mentions. The Elolic settlers, having called the place Ilion, naturally persisted in maintaining its identity with Troy. Polemon, a native of the Greek Ilium, who lived about 200 B.c., declared that his fellow. townsmen could shaw the very stone on which-Palamedes
ad given lessons in the game of draughts. The onls other ancient writer who is known to have admitied the Hlian claim is Hellanicus of Lesbos (c. 452 -397 B.c.), who, as Strabo remarks, wished "to gratify the Ilians, as is bis wont." Like the Ilians, Hellanicus was of Eolian origin; and in compiling the local legends of rarious places be is knewn to have been wholly uncritical, merely repeating what was told to him as le lad heard it. On the other hand, the claim of the Greek Ilium to stand on the site of Troy was decisively rejected by the general consent of those ancient writers who had any claim to critical authority. The orator Lycurgus (c. 332 B.o.) speaks of the site of Troy as deso!ate, and this at a moment when the recent visit of Alexarder the Great to the Greek Ilium ($33 \pm$ b.c.) had drawn attention to the claim made by its inhabitants. Demetrius, a native of Scepsis in the Troad, who flourished about 160 B.c., wrote a book entitled「Гршїко̀s Δ са́коб μ оs ("The Marshalling of the Trojans"), an exhaustive commentary on the catalogue of the Trojan forces in the secoud book of the Iliad. Demetrius knew the topography of the Troad as thoroughly as ke knew the text of Homer. The extant notices of his work, which had a great reputation in antiquity, warrant the belief that he was not only learned but acute. In the Diacosmus, which was the chief work of his life, he muse have bestowed much thought on the question as to the site of Homeric Troy, -the central point of his subject. He pronounced decidedly, as we know from Strabo, against the claim of the Greek tlium. It has been suggested that Demetrins rcjected the Tlian claim beeause, as a natire of Scepsis, he was jealous of Ilium, -a suggestion which is not only absurd in itself, since it assumes that such a motive would have induced Demetrius to mar his bife's work, bit also betrays ignorance of Strabo's text. Scepsis was not a possiblo claimant of the coutested honour, siuce it was not in the plain of Troy but in the plain of Bairanitch; and further, Demetrius had already provided in another manner for the Homeric dignity of Scensis by makiug it the royal seat of Eneas on the strength of its position relatively to Lyrnessus. The verdict of Demetrius against the Ilian claim was aiso the general verdict of the other ancient writers consulted by Strain, as the latter's language shows. From the passage in which Strabo notices the various defnitions of the Troad (xiii. § 4) it appears that among such writers were the foilowing historiars and geograplers :-Charon of Lampsacus (fior 500 e.c.), Damastes of Sigeum (400 b.c.), Scylax of Caryanda (350 b.c.), Ephorus of Cyme (340 в.c.), Eudoxus of Cyzieus (130 в.c.). It is to such writers as these that Strabo refers when he indicates the general consent of his authorities. In favour of the claim of the Greek Ilium, on the other land, there are only two literary witnesses, and these, as we have secn, are alike worthless. Equally valueless from a critical point of siew is the fact that the Ilian claim was sometimes allowed by soldiers or statesmen who wished to utilize Trojan memories. They required an official Troy, and they cared not where they found it. Nothing could more curiously illustrate the extreme poverty of the case for the Greek Ilium than the fact that some of its adrocates have been reduced to arguing as if Alexander and Lucius Scipio, when they led their armies through the Troad, had boen conducting archicological excursions, and as if their acquiescence in a convenient local myth had the weight of independent eritical testimonies.

In negativing the Ilian clain the conclusion of ancient criticism has been confirned by a great preponderance of modern opinion. Since Lechevalier visited the Troad in 1785-86 an overwhelming majority of competent judges have favoured his belief that the Bali Dagh above Bunár-
bashi was the Pergamus of the Homeric yoet's conceptiou. Before Leake's visit this opinion had been expressed by Cheiseul-Gouffier, Morritt, Hawkius, Geil, and Hami'ton. Leake spoke with a decision which derives adzitional weight from the habitual sobriety of his acute jarigment, and from the care with which, in this case, bo bad examined the alleged objections to the riew rhich lio finaïy adopted. He remarks that no one accustomed to observe the sites of ancient Greek towns could fail to fix on Bundrbashi "for the site of the chief place of the surrounding country." So Mr Tozer, in Lis Highlands of Turkey, says: "A person accustomed to observe the situation of Hellenic cities would at once fix on this as far more like', to bave recommended itself to the old inhabitants of the country than any other in the neighbourhood." Count von Mloltke has expressed the same opinion, that "he knew do other site in the Trojan plaia for a chief town of ancient time." Another supporter of Buuárbashi is Forchhanmer. Auother is Kiepert. The opinion of Ernst Curtius has been already cited. But space precludes more names; it is enough to say that the correspondence of the Bali Dagh with the Homeric Pergamus - a correspoudence absolutely unique in the Trojan plain-has been recogrized with virtual unanimity by modern travellers who have patieutly inspected the scenery of the Iliadl, having competent knowledge, and being free from bias in favour of a theory formed before their visit. Partial excavatious on the summit of the Bali Dagh lasve beer more than once undertaken, with the result of discovering ancient walls. Pottery, too, Ehas been found there, part of which is allowed on all lands to be probably as old, at least, as 900 b.c. But the Eali Dagh kas never yet been explored with any approach to thoroughness.

The result of the excaratious conducted by Dr Schli: mann on the mound of Hissarlik has been to lay bare the remains of the Greek Ilium, and also, below these, some prehistoric remains of a rude and poor kind ir. Troy, his fret book on the sulject, the explorer beld that the remains of the Greek Ilium ceased at a depth of 6 feet below the surface, and that all the other remains, dumn to $52 \frac{1}{2}$ feet, were prehistoric He distinguished the latter into five groups, represeatiug five prelistoric "cities" which had succeeded each other on the site; and in his second work, Illoo, he adided to these a sixth prelistoris city, on the streagth of some scanty restiges of supposed Lydian worknanship, found at a depth of $6 \frac{1}{2}$ feet. In both books, Homeric Tiroy was ideutificd with the third prehistoric city from the bottom, which was supposed to have been destroyed, though not tetally, by fire. Professor Jebb was the first to show (1) that the lines of demarcation between the alleged prekistoric strata, as drawn in Ilios could not be accurate, and (2) that, if any part of the prehistoric remains could be supposed to represent Homeric Troy, it must be that part which Dr Schliemanu had called the second city from the bottom, and the destruction of which by fire appeared to have been total. In 1889 the architects employed by Dr Schliemann proved that the stratification given in llios bad in fact been incorrect. The errors, too, affected precisely that region of the deposit which was most important to the Trojan hypothesis, viz., the lower strata. In Dr Schliemann's third volume. Troja, these errers were admittcd; and Troy was now ideutified, no longer with the third city, but with the second, of uhich the supposed area was now enlarged. Another fact to which the English critic had drawn attention was that the reraains of the Greek Ilium must extend to a considerably greater depth than 6 feet below the surface. Further examination confirmed this view also. It showed that the remains on the mound at Hissarlik belong to the folluwing periods or groups. (1) At the top, the remains of the Greek Ilium as it existed iu the Roman age, i.e., as rebuilt
after its destruction by Fimbria in 85 b.c. (2) A city which, like the former, extended beyond the mound of Hissarlik (its acropolis) over the adjacent plain. This corresponds with the Greek Ilium of the Macedonian age, as embellished and enlarged by Lysimachus, c. 300 в.c. (3) A smaller city, probably confined to the mound. Here we may recognize the Greek Ilium as it existed before the Macedonian age. It was a small and poor place, as appears from the known incidents of its history in the 5 th and 4 th centuries b.c., owing its chief importance to the shrine of Athene Ilias. (4) A petty town or village, confined to the mound, and poorly built. The cvidence of architecture fails to decide whether it was Hellenic or not; if Hellenic, it might represent the primitive settlement of the 不olic colonists, perhaps c. 700 b.c. It was a small honse in this village that Dr Schliemann at first identified with Priam's palace. The ground-plan shows four rooms, of which the largest measured 24 feet 4 inches by 12 feet. (5) A large town, to which the mound was only acropolis, and which extended to some distance south and south-east over the plain. These remains are unquestıonably prehistoric. (6) A few remains of a small settlement which, if indeed distinct from No. 5, preceded it. The reason for distinguishing 6 from 5 is that some of the acropolis buildings of 5 are above those of 6 , and seem to lave been built on carefuliy levelled ground. Apart from architectural evidence, objects found in the excavations prove that the remains of the historical age extend much below 6 feet. One of these was a terra-cotta disk, stamped with the head of a warrior, in an advanced style of workmanship, found at 26 feet 3 inches below the surface (Troy, p. 294). Another is a terracotta ball, found at 26 feet, which cannot be older than c. 360 b.c. Then, at 20 feet, was found another terra-cotta, marked with the Greek letter I. A piece of ivory, lelonging to a seven-stringed lyre, and therefore not older than c. 660 b.c., was found at 26 feet. Thus we have at Hissarlik the remains of the Greek Ilium in three successive phases,-Roman, Macedonian, and Elic, and below these the remains of at least one prehistoric settlement, the age and origin of which are unknown.
Their re- We can no longer either prove or disprove that theso ation to prehistoric remains are those of a town which was once - ${ }^{2}$ mer. prehistoric remains are those of a town which was once legend of Troy. But most certainly it is not the "lofty" Troy of which the Homeric poet was thinking when he embodied the legend in the Iliad. The conception of Troy which dominates the Iliad is based on the site at Bunarbashi, and suits no other. The sole phrase in the epic which favours Hissarlik occurs in book xx. (216 sq.), where Dardania is said to lave been built on the spurs of Ida, when Ilios "had not yet been built in the plain"; and this phrase occurs in a passage which, as the best recent critics agree, is one of the latest interpolations in the Iliad, having been compnsed after the Grcek Ilium had actually arisen "in the plain." Its purpose was the same as that which appears in the Hymn to Aphrodite, viz., to glorify reputed descendants of Æneas, and it probably belongs to the same age, the 7 th century b.c. The tactical data of the Miad-those derived from the incidents of the war-cannot be treated with such rigour as if the poem were a military history. But Nikolaides has shown that they can at least be brought into general agreement with the site rat Bunarbashi, while they are hopelessly incompatible with Hissarlik. The Iliad makes it clear that the general description of the Trojan plain was founded on accurate knowledge. At this day all the essential Homeric features can be recognized. And it is probable that the poet who created the Troy of the Iliad knew, personally or by description, a strong town on the Bali Dagh above Eunar. bashi. The legend of the siege may or mav not have
arisen from an older town at Hissarlik, which had then disappeared. The poet might naturally place his Troy in a position like that of the existing strong city on the Bali Dagh, giving it a "beetling" acropolis and handsome buildings, while he also reproduced the general course of the rivers and that striking feature,-an indelible mark of the locality, - the natural springs at the foot of the hill, just beyond the city gates on the north-west. But, while be thus imagined his Troy in the general likeness of the town on the Bali Dagh, he would retain the privilege of a poet who was adorning an ancient legend, and whose theme was a city that had long ago vanished. Instead of feeling bound to observe a rigorous accuracy of locail detail, he would rather foel impelled to avoid it; he would use his liberty to introduce some traits borrowed from other scenco known to him, or even from imagination. To this extent, and in this sense, his topography would be celectic. Such a consideration might suffice to explain the fact, well known to those who have studied this question on the spot, that neither Punarbashi nor any other one site can be harmonized with every detail of the poem. The recommendations of Bunárhashi are, first, that it satisfies the capital and essential conditions, while no other site does so, and secondly, that the particular difficulties which it leaves unsolved are relatively slight and few. This character of Homeric topography becomes still easier to understand, if, as most critics would now concede, our Iliad contains twork of various hands and ages. Few questions, perhaps, of equal literary interest have been so much confused by inattention to the first conditions of the problem The tale of Troy, as the Iliad gives it, is essentially a poetical creation; and we have no evidence other than the Iliad. That is, our sole data are (1) of the mythical class, (2) of inadequate precision, and (3) af uncertain origin. But they show a general knowledge of the ground ; and the question is how far particular features of the ground can bo recognized in the poem. It may be doubted whether the case admits of any solution more definite than that which has been indicated above.

Bibliograpky.-1. Works dealing with the Troad generally,Strabo, bk. xiii. ch. 1, is the principal source for the ancient Troad. Of booka by modern travellers in Asia Minor the following may be mentioned:-Philıp Barker Webh, in the Italian Biblioteca Accrbi, June and July, 1821, whose studies are better known through the French edition, Topographie de lu Troade, 1844; W. M. Leake, Journal of a Tour in Asia Minor, London, 1824; P. de Tchihatchef, Asie Mineure, \&c., Paris, 1853-69; R. Virchow, "Beitrage zur Landeskande der Troaa " in Trans. of Berli» Arad., 1879 ; H. F. Tozer, The Highlands of Turkcy, 1869; H. Schliemann, Rcise dev Troas in Mai, 1881 ; Joseph T. Clarke, Neport on the Investigations at Assos, Boston, U.S.A., and London, 1882, including "Notes on the Geology and Topography of the Troad "by J. S. Diller, and on "Bunarbashi," \&c., by W. C. Lawton and C. H. Waiker. J. T. Clarke's "Notes on Greek Shores," in the Report of the Archæo. logical Institute of America for 1850, are also valuable.
2. For the question as to the site of Troy, see-Lechevalier, Voyage de la Troade, Paris, 1802 ; Gustave D'Eichthal, Le Site de Troie selon Lechcvalier, \&c., Paris, 1875; H. Schliemann's Troy (1875), Mios (1880), Troja (1884), which contain many good plans and illustrations; E. Brentano, Zur Lösung der troianischen Frage, Heilbramu, 1881, and Troia und Neu-Thion, ibid., 1882 ; R. C. Jebb, "Schliemann's Ilios," in Edinb. Rev., No. ccexiv., April, 1881 ; Irl., "Homeric and Hellenic Isimm," in Journ. of Hellenic Studies, vol. ii. pp. 7-43, 1881; IJ., "The Ruins at Hissarlik," ibid., iii. 185-217, 1812; Id., "Homeric Troy," in Fortnightly Revicw, April, 1884 ;
 Forchhammer, Erklärang der Ilias, auf Grund der in der beigegc. benen Original-Karte von Spratt and Forchhammer dargcstcllten topischen und physischon Eigenthümlichkeiten der Troischen Ebenc, Kiel, 1884; and W. J. Stillman, "Les Découvertes de Schliemann," in the journal L'Homme, Paris, October, 1884.
(R. C. J.)

I.Egend of Troy.

According to Greek legend, the oldest town in the Troad was that fourded by Teucer, who was a son of the river Scamander and the nymph Idrea. Tzetzes says
that the Scamander in question was the Scanander in Crete, and that Teucer was told by an oracle to settle wherever the "earth-born ones" attacked him. So when he and his company were attacked in the Troad by mice, which gnawed their bow-strings and the handles of their shields, he eettled on the spot, thinking that the oracle was fulfilled. He called the town Sminthium and built a temple to Apollo Sminthius, the Cretan word for a mouse being sminthius. In his reign Dardanus, son of Zeus and the nymph Electra, daughter of Atlas, in consequence of a deluge, drifted from the island of Samothrace on a raft or a skin bag to the coast of the Troad, where, having received a portion of land from Tencer and married his daughter Batea, he founded the city of Dardania or Dardanus on high ground at the foot of Mount Ida. On the death of Teucer, Dardanus succeeded to the kingdom and called the whole land Dardania after himself. He begat Erichthonius, who begat a son Tros by Astyoche, daughter of Simois. On succeeding to the throne, Tros called the country Troy and the people Trojans. By' Callirrhoe, daughter of Scamander, he had three sons,-Ilus, Assaracus, and Ganymede. From Ilus and Assaracus sprang two separate lines of the royal house, - the one being Ilus, Laomedon, Priam, Hector; the othe: Assaracus, Capys, Anchises, Eneas. Ilus went to Phrygia, where, being victorious in wrestling, he received as a prize from the king of Phrygia e spotted cow, with an injunction to follow her and found a city wherever she lay down. The cow lay down on the hill of the Phrygian Ate ; and here accordingly llus founded the city of Ilios. It is stated that Dardania, Troy, and Ilios became one city. Desiring a sign at the foundation of Ilios, Ilus prayed to Zcus and as an answer he found lying before his tent the Palladium, a wooden statue of Pallas, three cubits high, with her feet joined, a spear in her right hand, and a distaff and spiudle in her left. Ilus built a temple for the image and worshipped it. By Eurydice, daughter of Adrastus, he had a son Laomedon. Laomedon married Strymo, daughter of Scamander, or Placia, daughter of Atreus or of Leucippus. It was in his reign that Poseidon and Apollo, or Poseidon alone, built the walls of Troy. In his reign also Hercules besieged and took the city, slaying Laomedon and his children, except one daughter Hesione and one son Podarces. The life of Podarces was granted at the request of Hesione ; but Hercules stipulated that Podarces must first be a slave and then be redeemed by Hesione ; she gave her veil for him ; hence his name of Priam (from priasthai to buy). Priam married first Arisbe and afterwards Hecuba and had fifty sons and twelre daughters. Among the sons were Hector and Paris, and among the daughters Polyxena and Cassandra. To recover Helen, whom Paris carried off from Sparta, the Greeks under Agamemnon besieged Troy for ten years. (Sea A chilles, agameynon, Ajax, Hector, Helen, Paris.) At last they contrived a wooden horse, in whoso hollow belly many of the Greek heroes hid themselves. Their army and fleet then withdrew to Tenedos, feigning to have raised the siege. The Trojans conveyed the rooden horse into Troy; in the night the Greeks stole out, opened the gates to their returning friends, and Troy ras taken.
See Homer, $\Pi .$, vii 452 s7., xx. 215 sq., xxi 446 sq. ; Apollodorus, ii 6, 4, iii. 12; Diodorus, iv. i5, v. 48 ; Tzetzes, Schol. on Lycophron, $29,72,1302$; Conon, Xarral., 21; D́ionysus Halicarn, Anciq. Rom., i. 68 sq. The liad deals witb a period of fifty-ous daya in the tenth year of the war. For the wooden horse, see Hnmer, Od., iv. 271 sq.; Virgil, ERi., ii. 13 sq.
TROGLODYTES ($\tau \rho \omega \gamma \lambda 0 \delta \dot{c} \tau a \iota$), a Greek word meaning "cave-dwellers." Caves have been widely used as human babitations both in prehistoric and in historic times (sce Cave), and ancient writers speak of Troylodytes in various parts of the world, as in Mresia near the lower

Danube (Strabo, vii. $5, \mathfrak{i} .318$), in the Caucasus (Id., xi. 5, 1. 506), but especially in various parts of Africa from Libya (Id., xvii. 3, p. 828) to the Red Sea. Herodotus (iv. 183) tells of a race of Troglodyte Ethiopians in ioner Africa, very swift of foot, living on lizards and creeping things, and with a speech like the screech of an cwl. Tho Garamantes honted them for slaves. It has been supposerl that these Troglodytes may be Tibbus, who still in part are cave-dwellers. Aristotle also (Hist. An., vii. 12) speaks of a dwarfish race of Troglodytes on the upper course of the Nile, who possessed horscs and were in his opinion the Pygmies of fable. But the best known of these African caved wellers were the inhabitants of the "Troglodyte country" on the coast of the Red Sea, who reached as far north as the Greek port of Berenice, and of whose strange and savage customs an interesting account has been preserved by Diodorus and Photins from Agatharchides. ${ }^{1}$ They were a pastoral people, living entirely on the flesh of their herds, or, in the season of fresh pasture, on mingled milk and blood. But they killed only old or sick cattle (as indeed they killed old men who could no longer follow the flock), and the butchers were called "unclean"; nay, they gave the name of parent to no maa, but only to the cattle of which they had their subsistence. This last point seem= to be a confused indication of totemisn. They went almost naked; the women wore necklaces of shells as amulets. Marriage was unknown, except among the chicfs, -a fact which agrees with the prevalence of female kinship in these regions in much later times. They practised circumcision or a mutilation of a more serious kind. The whole account, much of which must be here passed by, is one of the most curious pictures of savage life in ancient literature.
The Biblical Horim, who iuhabited Mrount Seir beforo the Edom.' ites, bore a name which means cave-divellès, and may prohably have been a kindred people to the Troglodytes on the other side of the Red Sea. Jerome, on Obadiah 5, glpeaks of this region as containing many cave-dwellings, and such habitationa aro still sometimes used ont the bordera of the Syro-Arabian desert.
TROGON, a word apparently first used as English ${ }^{2}$ by Shaw (Mus. Leverianunt, p. 1iT) in 1792, and now for many years accepted as the general name of certain birds forming the Family Trogonidx of modern ornitholory, tho species Trogon curracui of Linnæus being its type. But, since doults exist as to whether this is that which was subsequently called by Vieillot T. collaris or the T. melenurus of Swainson, though evidence is in favour of the former (cf. Cabanis, Mus. IIeineanum, iv. p. 177, and Finsch, Proc. Zool. Society, 1870, p. 559), several recent writers have dropped the Linnwan specific terın.
The Trogons are birls of moderate aize: the smaliest is harily bigger then a Thrush and the largest less bulky than a Crow. In most of then the bill is very wide at the gape, which is invariably beset bp recurved bristles. They seize most co the:r food, whether caterp:llars or fruits, on the wing, thongh their alar power is not exceptionaily great, their flight being described as short, rapid, and epasmodic. Their feet are weak and of a unique structure, the second toe, which in most lirds is the inner anterior one, beling icverted, and thus the Trogons stand alone, since in all other birds that have two toes before and two belind it is the outer toe that is turned backward. The plumage is very remarkable and characteristic. There is not a species which has not beauty beyond most birda, and the glory of the group culminates in the QuEzaL ($q . v$.). But in othera golden green and stecly hluo, rich crimson ${ }^{3}$ and tender
${ }^{1}$ See also Artemidorus io Strabo, xvi. 17, p. 785 sq.
${ }^{2}$ Trogonen! (the oblique case) occurs in Pliny ($H . N ., x, x, 16$) as the uanje of a bird of which he knew nothiog, sare that it was mentioned by Hylas, ad augur, whose work is lost ; but seme would read Trygonent (Turtle-Dore). In 1752 Mohriog (Av, Feneru, p. 85) applied the name to the "Curicui" (prooounced "Siruquí" fide Bates, Nat. Amazons, i. p. 254) of Marcgrave (IIst. N'at. Brasilie, p. 211), who described and figured it in 1648 reeognizably. Io 1760 Brisson (Ornithologic, io. p. 164) adopted Trogon as a geveric Leron, and, lid. neus hariug followed bis example, it bas since been univessally accepted.

3 iI. . Inatola Bogdenoff determined the red pignent of the fenthers
pink, yellow varying from primrose to amber, via with ona another in vivid coloration, or contrasted, as happens in many apecies, with . warm tawny or a sombre slaty gray-to say nothing of the delicato freckling of black and white, as minnte as the markings of a moth'a wing-the whole set off by bands of white, producing an effect bardly equalled in any group. It is impossibla within brief apaca to describa its glowing tints; but tha plumaga is further remarkabls for the larga size of its contour-feathers, which ara extremely ooft and so loosaly seated as to come off in scores at a touch, and there is no doma. Tha tail is generally a rery characteristic feature, the rectrices, thongh in soma cąses pointed, being often curiously squared at the tip, and when this is tha casa thay are usmally barred ladderlika with whits and black ${ }^{1}$ According to Gould, they ara larger and mora pointed in tha young than in the old, and grow aquarer and hava the white bands narrower at each ancceeding moult. Ho also asserts that in tha species which hava the wing-coverts freckled, the freckling becomes finer mith age. So far as tas been observed, the nidification of thesa birds is in holes of trees, wherein are laid without any bedding two roundish eggs, generally whita, but certainly in ons species (Quezal) tinted with bluish grean.

Tha Trogons form a very well-marked Family, belonging to tha multifarious group treated in the presant aeries of articlea as Picaris; but, instead of being (so far as is known) like all the rest of them and, as Prof. Huxley Believod, "desmognathous," they have been shown by W. A. Forbes (Proc. Zool. Society, 1881, p. 836) to be "achizognsthous"-thus demonstrating, in the worda of tha latter, "that the etructure of the palata has not that aniqne and pecnliar signifcance that hes been claimed for it in the classification of birds." Perbaps the explanation of this anomaly may lie in the fact that tha Trogons ara a very old form. Tha remains of one, T. gallicus, have been recognized by Prof. A. Milna-Edwards (Ois. foss. de la France, ii. p. 395, pl. 177, figs. 18-22) from the Miocena of the Allier, and it may not be too much to aupposa that the echizognathons structure was more ancient than tha desmognathous. Again too this fortnnate discovery of that eminent palæontologist scems to account for the remarkable distribution of the Trogona at the present day. Whila they chiefly abound, and hare developed their climaz of magnificanca, in the tropical parts of the Naw World, they yet occur in tha tropical parts of the Old. The apecies now inhabiting Africa, forming tha group Hapaloderma, can hardly be apparated generically from thosa of tho Neotropical Trogon, and tha differenca between the Asiatic forms, if aomewhat greater, is still comparatively alight. It is plain then that the Trogone ara an exceptionally persistent typa; indaed in the whole Class few aimilar instances occur and perhaps none that can bo called parallcl. Tha extremo development of tha type in tha Naw World just noticed also furnishes another hint. While in aoms of the American Trogons (Pharomacrus, for instance) the plumaga of the famales is not very much less beautiful than that of the males, there are others in which the hen birds retain what may be fairly deomed a mora ancient livery, whils the cocks flaunt in brilliant attire. Now tha plumaga of both eexes in all but ons ${ }^{2}$ of the Aaiatic Trogons, Harpactes, resembles rather that of tha yonng and of those females of the American species which ara modestly clothed. Tha inferenca from this fact would aaem to ba that tha general coloration of tha Trogona prior to the establishment, by gaographical estrangament, of tha two types was a russet similar to that now worn by the adults of both aexes in the Indian region, and by a portion only of the iemales in the Neotropical. Tha Ethiopian type, as already said, very closely agrees with the American, and therefora would ba likaly to have been longer is connexion therewith. Again, whila the sdults of most of the American Trogons (Pharomacrus and Euptilotis excepted) have the edges of tha bill aerrated, their young hava them smooth or only with a single notch on either eide near thatip, and this is ohservabla in tha Asiatic Trogons at all ages. fit the sama time the most distinctiva features of tha whole group, which ara assily taken in at a glance, but are diffeult to express brielly in words, ara equally possessad by both branches of the Family, showing that they were in all likelihood-for the possibility that the peculiaritios may have baen avolved apart is not to be over-lookad-reached before tha geographical sundaring of these branches (whareby they aro now placed on opposite sides of the globa) was effected.
It remains to say that about sixty species of Trogons are recognized, which Gould in the second edition of his ITonograph of the Family (1875) divides into seven genera; but their characters are hardly laid down. Pharomacrus, Euptiotis, and Trogon inhabit the mainland of tropical

[^246]America, no species passing to the northward of the Rio Grande nor southrard of the forest district of Brazil, while none occur on the west coast of Peru or Chili. Prionotelus and Tmetotrogon, each with one species, are peculiar respectively to Cuba and Hispaniola. The African form Hapaloderma has tro species, one found only on the west coast, the other of more general range. The Asiatic Trogons, Harpactes (with eleren species according to the same authority), occur from Nepal to Malacca, in Ceylon, and in Sumatra, Jara, and Borneo, while one species is peculiar to some of the Philippine Islands.
(A. N.)

TROGUS, Cn. Poxperids, a Roman historian, nearly contemporary with Livy. Although the cpitome of his historical writings by Justin, and a fow fragments, are all that hare come down to us, there is abundant reason to believe that he deserves a place in the history of Roman literature by the side of Sallust, Livy, and Tacitus. Oi his life little is known He was almost certainly of Greek descent. His grandfa'her served with Pompey in the war against Sertorius, and received through the influeuce of that general the Roman citizenship; hence the name Pompeius, which was adopted as a token of gratitude to the benefactor. The father of Trogus was an officer of Cæsar. Trogus himself seems to have been a man of encyclopædic knowledge. He wrote, after Aristotle and Theophrastus, books on the natural history of aninals and plants, used by the elder Pliny, who calls Trogus "one of the most precise among authorities" (auctor ipse e severissimis). But the principal work of Trogus consisted of forty-four Libri Historiarum Philippicarum. This was a great history of the world, or rather of those portions of it which came under the sway of Alexander and his successors. The tale began with Ninus, the founder of Nineveh, and censed at aboat the same point as Liry's great work, viz., 9 A.D. The last event recorded by the epitomator Justin (q.v.) is the recovery of the Roman standards captured by the Parthians (20 в.c.). The history of Rome was treated as merely subsidiary to that of Greece and the East. The work was based upon the writings of Greek historians, such as Theopompus, Ephorus, Timæus, Polybius. It has been contended that Trogus did not gather together the information from the leading Greek historians for himself, but that it was already combined into a single book by some Greek, whom Trogus followed closely with some superficial errors. But the assumption appears improbable in itself, merely on a review of the remains of the historical writings, and is moreorer inconsistent with what we know of the works in natural history, for which Trogus certainly went back to what were re garded in his time as frst-hand authorities. It is generally admitted that Trogus had genuine qualifications for writing history, though he could not rid himself entirely of the faults of his authorities. His idea of history was more severe and less rhetorical than that followed by Sallust and Livy, whom hc blamed for putting elaborate specches in the mouths of the characters of whom they wrote. Yet his own Latin style had a vivid force which is still to be rccognized in the extracts made by Justin. For the ancient history of the East, Trogus, even in the present mutiated state of his historical work, often prores to.be an authority of great importance.

The chief modern editions are those of Gronorius (Leyden, 1719 and 1760); Frotscher (Leipsic, 1827-30); and Jeep (Leipsic, 1859 and 1862). In Engelmann's Bibliotheca Scriptorum Classicomem, ii, under Jnstin and Trogus, will be found a large nomber of references to scattered modern articlea. Perhaps the most important is that of A. F. Gntschmid on the sources of the history of Trogns, in tha second supplemontary vol of the Jahrbb. f. class. Philol. (Leipsic, 1857).

TROITST, a district town of Russia, in the goverament of Oreaburg, sifuated in \& fertile stcppo 392 miles to the
north-east of Orenburg, on the Siberian highmay, is one of those towns which have grown rapidly of late in the south-east of Russia. The Troitskiy fort, erected in 1743, became a centre for the exchange trade with the Kirghiz steppe and Turkestan, and in that trade Troitsk is now second only to Orenburg. Cotton, silk, and especially horses and cattle are imported, while leather, cotton, and woollen and metal wares are exported. An active trade in corn for the Ural gold-mines is carried on. The population in 1884 was 13,000 .
TROLLOPE, Anthony (1815-1882), English novelist, was born in Keppel Street, Russell Square, London, according to most authorities, on 24 th April 1815 ; in his own sutobiography he merely gives the year. His father, a barrister, who bad been fellow of Nex College, Oxford, brought limself and his family into the sorest straits by unbusincss-like habits, by quarrelling with his profession, or at least with the attorneys, and by injudicious speculations, espccially in farming. Trollope's mother, Frances Milton, according to her sun, was nearly thirty when she married in 1809. By ner husband's wish she made a strange journey to Arnerica in 1827, for the purpose of setting up a kind of fancy shop in Cincinnati, which failed utterly. Her visit, however, furnished her with the means of writing The Domestic Manners of the Americans. This at once brought her in a considerable sum, and thenceforward she continued to be the meinstay of her family. Her husband being obliged at last actually to fly the country from his creditors, his wife maintained him by ber pen, at Bruges, till his death there in 1835 . For some time Mrs Trollope wrote chiefly travels; but she soon became known as a novelist, and was very industrious. Her novels, the best of which are probably The licar of Wrexhill and The Tidoro Barnaby, are now rarely read, and indeed were never at their best above good circulating library level : they are written with cleverness indeed, and \& certain amount of observation, but with many faults of taste, and with an almost total want of artistic completeness and form. Her late beginning, her industrious career (for she wrote steadily for more than thirty years, till her death in October 1863, at Florence), and the entire absence in her of any blue-stocking or feninue-savante weakness would have made ber remarkable, eren ii she had not transmitted, as she undoubtedly did transmit, her talent, much 1 ncreased, to her children.
Anthony Trollope was the thard son. By his own account fer English men of lcters have had an unhappier childhood and youth. He puts down his own misfortunes, at Harrow, at Wirchester, at Harrow again, and elsewhere, to his father's pecuniary circumstances, which made his own appearance dirty and shabby, ard subjected hin to various lumiliations. But it is permissible to suspect that this was not quite the trath, and that soine peculiarities of temper, of which in after life he had many, contributed to his unlopularity. At any rate be seems to lave reached the verge of manhood as ignorant as if he had had no education at all. While living abroad he tried ushership; but at the age of nineteen he was pitchforked by favour (for he could not pass even the ridiculous examination then usual) into the post-office. Even then his troubles were not over. He got into debt; he got into ridiculous entanglements of love affairs, which he has very candidly avowed; he was in constant hot water with the authoricies, and he seems to lave kept some very queer company, which long afterwards stood him in stead as models for some of his novel 1 ictures. At last in August 1841 he obtained the appointinent of clerk to one of the post-office surveyors in a remote part of Ireland, with a very small nominal salary. This balary, however, was practically quadrupled by allowances; living was cheap; and the life
suited Trollope exactly, being not office work, which he always hated, buta kind of travelling inspectorship. And here he not only began that habit of hunting which (after a mànner hardly possible in the stricter conditions of official work nowadays) he kept up for many years even in England, but within three years of his appointment engaged himself to Miss Rose Heseltine, whom he had met in Ireland but who was of English birth. They were married in June 1844. His headquarters had previouslv beer at Banagher ; he was now transferred to Clonmel.

Trollope had always dreamt of novel-writing, and his Irish experiences seemed to supply him with promising subjects. With some assistance from his mother he got his first two books, The Macdermols of Ballycloran and The Kiellys and the O'Kellys, published, the one in 1847, the other the next year. But neither was in the least a success, though the second perlaps deserved to be; and a third, La Vendée, which followed in 1850, besides heing a much worse book than either, was an. equal failure. Trollope made various other literary attempts, Lut for a time ill fortune attended all of them. Meanwhile he was set on a new kind of post-office work, which suited him even better than his former employment-a sort of roving commission to inspect rural post deliveries and devise their extension, first in Ireland. then throughout the west of England and South Wales. That he did good work is undeniable ; but his curious conception of official duty (on his discharge of which he prided himself immenseiy) is exhibited by his confessions that be "got his hunting out of it," and that he felt "the necessity of traveliing miles enough [he was paid by mileage] to keep his horses." It was during this work that he struck the vein which gave him fortune and fame-which might perhaps have given him more iame and not much less forture if he had not worked it so hard-by conceiving The IVarden. This was published in 1855. It brought him little inmediate profit, nor was even Barchester Towers, which followed, very profitable, though it contains his freshest, his most original, and, with the exception of The Last 'Chronicle of Barset, his best work. The two made him a reputation, however, and in 1858 he was able for the first time to sell a novel, The Three Clerks, for a substantial sum, £250. A journey on post-offce business to the West Indies gave him material for a book of travel, The Thest Indics and the Spanish Main, which he frankly and quite truly acknowledges to be much better than some subsequent work of his in the same kind. From this time his production (mainly of novels) was incessant, and the sums which he received were very large, amounting in one case to as much as $£ 3525$ for a single book, and to nearly $£$ i 0,000 in the twenty jears between 1859 and 1879. All these particulars are given with great minuteress by himself, and are characteristic. The full high tide of his fortunes began when the Cornkill Magaine waz established in the autumn of 1859. He was asked at short notice to write a novel, and wrote Framley Parsonage, which was extremely pupular ; two novels immediately preceding it, The Bertrams and Casile Richmond, had been much less successiul.

As it will be possible to notice few of his subsequent works in detail, the list of them, a sufficiently astonishing one, may be given here:-Tales af All Cmuntries (3 series, 1351-1870); Orles, Farm, Varth Ancrica (1862) ; Rachacl Ray (1863); The Small If nuse as Allingtan, Can You Furgive Her ? (1864) ; Miss Mackenzie (1865); Tho Claverings, Nina Balatka, The Last Chranicle of Barset (1867); Linda Trcssel (1868); Phincas Finn, He Krew He IF as Right (1862); Brawn, Jones, and Robinsan, The Vicar of Bullhwmplan, An Editars Talcs, Casar (1870) ; Sir Harry Hatspuer of Liumbletincaile, Ralph the Ileir (1871); The Galden Lian of Granpere (1872) ; The Eustace Diamands, Australia and Ncw Zealand(1873); Phineas Redux, Harry Heathcatc of Gangoil, Lady Anna (1874); The Way We Live Navo (1875) ; The Prime Minister (1876); The American Senalor (1877); Is Ho Popenjoy'S South Africa (1878); John Caldigate, An Eye fur
in Eyc, Cousin Henry, Thackeray (1879); The Duke's Children, Cicero (1880); Ayala's Angel, Dr Worlle's School (1881); Frau Frohmann, Lord Palmersion, The Fixed Period, Kept in the Dark, Marian Fay (1882); Mr Scarborough's Family, The Land Leagucrs (1883) ; and An Old Man's Love (1884).

How this enormous total was achieved in spite of official work (of which, lightly as he took it, he did a good deal, and which he did not give up for many years), of hunting three times a week in the season, of whist-playing, of not a little going inte general society, he has explained with his usnal curious minuteness. He reduced novel-writing to the conditions of regular mechanical work-so much so that latter!y he turned out so many words in a quarter of an hour, and wrote at this rate so many hours a day. He divided every book beforehand into so many days' work and checked off the tallies as he wrote.

A life thus spent could not be very eventful, and its events may be summed up rapidly. In 1858 he went to Egypt also on post-office business, and at the end of 1859 he got himself transferred from Ireland to the eastern district of Englancl. Here be took a house at Waltham. He took an active part in the establishment of The Fortrightly Reviern in 1865; he was editor of St Paul's for some time after 1867; and at the end of that year be resigued his position in the post-office. He stood for Beverley and was defeated; he received from nis old department special missions to America and elsewhere (he had already gone to America in the midst of the Civil War). He went to Australia in 1871, and before going broke up his household at Waltham. When he returned he established himself in Iondon, and lived there till 1880, when he removed to Harting on the confines of Susses and Hampshire. He had visited South Africa in $18 i 5$ and travelled elsewhere. On 3rd November 1882 he was seized with paralysis, and died on 6th December.

Of Trollope's personal character it is not necessary to say much. Strange ds his conception of official duty may seem, it was evidently quito honest and aincere, and, though he is eaid to hare been as an officis! popular neither with auperiore nor inferiors, ha no doubt did much good work Privatoly he was much liked and much disliked, -a great deal of real kindness being accompanied by a blastering and overbearing manner, and an egotism, not perhaps moro deep than other men"s, but more vociferous. His literary work needs more notice. Nothing of it but the novels is remarkable for merit. His Casar and the Cicero are curions examples of a man'e undertaking work for which he was not in the least fitted. Thackeray exhibits (though Trollopa appears to have both adnired Thackeray as an artist and liked hiro as a man) grave faulto of taste and judgment and a complete lack of real criticism. The booke of travel are not good, and of a kind not good. Nina Balatka and Linda Tressel, published anonymously and as experiments in the romantic style, have been better thought of by the author and by soine competent judges than by the public or the publishers. Brown, Jones, and Robinson was still more disliked, and is certainly very bad as a whole, but bas touches of curious originality in parts. The rest of the novels have been judged very differently by different peraons. Thare is mo doubt that their enormous volume prejudiced readers against them even long before the author let the public into the secret of their manufactura, which has made the prejudice deeper. There is also no doubt that Trollope seldom or never creates a character of the first marit (Mr Crawley in the Last Chronicle of Barset is the one possible exception), and that not oue of his books can bo called a work of genius. At the same time no one probably has produced anything lika such a volume of anything like such merit. He claims for himself that his characters are always more or less alive, and they are. After his first failures lie never produced anything that was not a faithful and sometimes a very amusing transcript of the sayings and doings of possible men and woutn. His charactera are never marionettes, much less sticka. Ho has some irritating mannerisms, notably a trick of repetition of the same form of words. He is sometimes absolutely vulgar. that is to say, he does not deal with low life, but shoms, thongh always robust and pure in morality, a certain coarseness of taste. Ho is constantly rather trivial, and perhaps nowhere out of the Barset series (which, howaver, is of itself no inconsiderable work) las he produced books that will live. The very faithfulness of his representation of a certain phase of thought, of cultivation, of sociaty, uninformed as it is by any higher spirit, in the long run dameged, as it had frat helpod, the popularity of his work. But.
allowing for all this, it may and must still bo said that he held up his mirror steadily to nature, and that the mirror itself was fashioned with so inconsiderable art.
(G. SA.)

TROMBONE, a musical instrument of brass. It has a cupped mouthpiece, and is formed of two principal parts -the bell, the bore of which gradually widens, and the slide, which is composed of two cylindrical tubes parallel to each other, upon which two other tubes, communicating at their lower extremities by a pipe curved in a half-circle. glide without loss of air. The mouthpiece is adapted to one of the upper ends of the slide and the bell to the other end. When the slide, which is mored by the right hand, is closed, the instrument is at its highest pitch ; the note is lowered in proportion as the column of air is lengthened by drawing out the slide.

Formerly the trombone was known as the sackbut; its modern designation-great trumpet-comes from the Italian. The Germans call it posaune. It is diffcult to say where or at, what epoch the instrument was invented In a manuscript of the 9 th century, preserved at Boulogne, there is a drawing of an instrument which bears a great resemblance to a trombone deprived of its bell. Virdung ${ }^{1}$ says little about the trombone, but he gives an engraved representation of it, under the nanse of busaun, which shows that early in the 16 th century it was almost the same as that employed in our day. By that time the trombone had come into rogne in England: the baud of musicians in the service of Henry VIII. included ten sack. but players, and under Elizabeth, in 1587, there were six English instrumentalists then enjoyed a certain reputation and were sought for by foreign courts; thus in 1604 Charles III. of Lorraine songht to recruit his sackbut players from English bands. Pratorius ${ }^{2}$ classes the trom. bones in a complete family, the relative tonalities of which were thus composed:-1 alt-posaun, 4 geneine rechle posa unen, 2 quart-posaunen, 1 octav-posaun,- 8 in all. The alt. posaun was in D With the slide closed it gave the first of the accompanying harmonics: The gemeine rechte posaunen, or ordinary trombones, were in
A. Without using the slide they gate the subjoined sounds:
 The quart-posaun was made either in E , the fourth below the gemeine rechte posaun, or in D , the lower fifth. In the latter case it was exactly an octare below the alt-posaun. The octav-posaun was in A. It was constructed in two different fashions: either it had a length double that of the ordinary trombone, or the slide was shortened, the length of the column of air being still maintained by the adaptation of a crook. The first system, which was invented by Hans Schreiber four years before the work of Pratorius appeared, gave the instrumentalist a slide by which he could procure in the lower ortare all the sounds of the ordinary trombone. The second system, which Prætorius had known for years, was distinguished from the first, not only by modifications affecting the form, but also by a larger bore. Mersenne ${ }^{3}$ calls the trombone trompette harmonique, but he does not appcar to have made himsel! acquainted with its construction, for we can scarcely find an allusion in the confused text of his work to the tonality of the trombone then in vogue. He established this fach however, that it was customary in France to lower the instrument a foufth below the pitch of the ordinary trombone by means of a torili, a kind of crook with a donlle turn that was fitted between the bcil and the slide, "in order," he said, "to make the bass to hautbois conccrts." The compass of the trombone is not limited to the nere harme

[^247]now obtained by fearicg the nnstrument at its shortest lengththat is, with the slide close np; it in fact comprises seven positions, which are obtaned by shifting the slide es many lengths and in such a way that each of these produces a series of harmonics a semitone lover than the length which has preceded. This system, so simple and rational, might have been expected always to scrve for the hasis of the technique of tha instrument; but from the middle of the 18 th century the art of playing the trombone became the object of purely empiric teaching. Only four positions were made use of. ${ }^{1}$ By the first-that is, with the slide close up-there was obtained from the ordinary trombone, thien called the tenor trom. bone, the first series of the suhjoined harmonics (the aumerals indicating the order):
the fundamental or first note boing difficult to obtain ; the second position produced

and the forth In thus lowering by semitones, the gave the tenor trombone a diatonic scale from This scale was formed with notes that could be perfectly just, but the result rouid have
been less satisfactory to the ear if the player had atrictly observed the rules laid down by the teaching of that period for the production of the chromatic intervale. Thus to pass from a note furnished by one of the four positione to another a semitone lower it was uecessary to lengthen the slide by two fingers; if the semitone higher was required the slide had to be shortened to the eame extent. ${ }^{3}$ A consideration of the laws affecting lengths of pipes will show the viciousness of that rule.

Of all wind instruments the trombone has perhaps been least modified in form; changes have occasionally been attempted, but for the most part with only trifling auccess. The innovation which has had the most vogue dates from the end of the 18th century; it consisted in bending the tube of the hell in a half circle above the head of the executant, which prodnced a very bizarro effect. It also gave rise to very serious inconveniences: by destroying the regularity of the proportions of the bell it prejudicially affected the quality of toue and intonation of the instrument. For a long time the curved bell with its serpent's mask was maintained in military music, and it is only about twenty years ago that it was completely given up. By giving a balf turn more to the bell tube its opening was directed to the back of the executant; but this form, in fashion for a little while ahout 1830, was not long adhered to, and the trombone reassumed its primitive form, which is atill maintained. As appears from a patent derosited by Stölzel and Blimel at Berlin on 12th April 1818, the application of ventils or pistons was then made for the first time. ${ }^{3}$ The ventils, at first two in number, effected a decided lengthening of the instrument. The first augmented the length of the tube by a tons, lowering by as much the natural harmonics. The second produced a similar effect for a semitone, and the simultanecus em. ployment of the two pistons resulted in the depression of a tone and a bali. The principle, therefore, of the employment of ventils or pistons is the same as that.which governs the use of slides. For instance, a trombone is provided with three pistons, and without their help it produces the first of the following sets of harmonics (the numbers indicating the order). Thea by pressing dowa the serond piston we obtain a lengthetuag of the column of air that lowers tho in. strument by a semitone and makes it produce the second set of harmonics here shown ; with the aid of the first piston we relengthen the column, so as to get a whole tone lower, producing the third set of sounds; the third piston, in the same way, lowers the iustrument a tone and a half, as in

(4) ; by the simultaneous employment of the second and third pistons we arrive at two tones, as in (5); (5)
($)$ ene the combination of the frst and
two tones and s half, as shown in (6);

[^248] finalyy, uniting the three pistans lowers the trombone three tones and a balf, as shown in (7). Notwithatanding the increased facility obtained by the use of pistone, they are very far from having gained the
suffrages of all players: many prefer the alide, beliering that it gives a facility of emission that they cannot ohtain with a piston trombone. For this illustratiou of the use of pistons, we have taken a tenor trombone in Bb ; the flat tonalities having been preferred for military music aince the commencement of the 19th century, the pitch of each variety of trombones has heen raised a eemitoue. At present six trom: bones are more or less in use, viz., the slto trombone in F, the alto in Eb (formerly in D), the tonor in Bb (formerly in A), the bass in G, the bass in F (formerly in E), the base in Eb (formerly in D). This transposition has no reference to the number of vibrations that may be officially or tacitly adopted as the standard pitch of any country or locality. A trombone an octave lower than the tenor has recently been reintroduced into the orchestra, principelly by Wagner. The different varieties just cited are con. etructed with pistons or elides, as the case may be.
(V. M.)

TROMP, the name of two famous Dutch admirals.

I. Martin Harpertzoon Tromp (1597-1653) was born at Brielle, South Holland, in 1597. At the age of eight he made a voyage to the East Indies in a merchantman, but was made prisoner and spent several jears on board an English cruiser. On making his escape to Holland he entered the navy in 1624 , and in 1637 was made lieutenantadmiral. In February 1639 he surprised, off the Flemish coast near Gravelines, a large Spanish fleet, which he completely destroyed, and in the following September he defeated the combined fleets of Spain and Portugal off the English coast-achievements which placed him in the first rank of Dutck nasal commanders. On the outbreak of war with England Tromp appeared in the Downs in command of a large fleet and anchored off Dover. On the approach of Blake he weighed anchor and stood over towards France, but suddenly altered his course and bore down on the English feet, which was much inferior to his in numbers. In the engagement which followed (19th May 1652) he had rather the worst of it and drew off with the loss of two ships. In November he again appeared in command of eighty ships of war, and a convoy of 300 merchantmen, which he had undertaken to guard past the English coast. Blake resolved to attack bim , and, the two fleets coming to close quarters near Dungeness on the 30th November, the English, after severe losses, drew off in the darkness and anchored off Dover, retiring next day to the Downs, while Tromp anchored off Boulogne till the Dutch merchantmen had all passed beyond danger. The statement that he sailed up the Channel with a broom at his masthead in token of his ability to sweep the seas is probably mythical. In the following February (1653), while in charge of a large convoy of merchantmen, he maintained a running fight with the combined English fleets under Blake, Penn, and Monk off Portland to the sands of Calais, and, though baflling to some extent the purposes of the English, had the worst of the encounter, losing nine ships of war and thirty or forty merchantmen. On 3d June he fonght an indecisive battlë with the English fleet under Dean in the Channel, bu: the arrival of reinforcements under Blake on the following day enabled the English to turn the scale against him and he retired to the Texel with the loss of seventeen ships. Greatly discouraged by the results of the battle, the Dutch sent commissioners to Cromwell to treat for peace, but the proposal was so coldly received that war was immediately renewed, Tromp again appearing in the Channel towards the end of July 1653. In the hotly-contested conflict which followed with the English under Monk on the 29 th Tromp was shot by a musket bullet through the heart. He was buried with great pomp at Deift, where there is a monument to his memory in the old church
II. Cornelits Trosp (1629-1691), the second son of the preceding, was born at Rotterdam on 9 th September 1629. Ai the age of nineteen he commanded a small squadron charged to pursue the Algerian pirates. In 1652 and 1653 he served in Van Galen's fleet in the Mediterrapean, and after the action with the English fleet off Leghorn, 13th March 1653, in which Van Galen was killed, Tromp was promoted to be rear-admiral. On 13th July 1665 his equadron was by a hard stroke of ill fortune defeated by the English under the duke of York. In the following year Tromp served under De Ruyter, and on account of De Puyter's complaints of his negligence in the action of 5 th August he was deprived of his command. He was, however, reinstated in 1673 by the stadtholder William, afterwards king of England, and in the actions of 7th and 14th June, against the allied fleets of England and France, manifested a skill and bravery which completely justified his reappointment. In 1675 he visited England, when Charles II. created bim a baron. In the following year he was named lieutenant-admiral of the United Provinces. He died at Amsterdam, 29th May 1691, ehortly after he had been appointed to the command of a fleet ggainst France. Like his father he was buried at Delft.
See H. de Jager, Het Ceslacht Tromp, 1883.
TROMSÖ, a town of Norway, capital of the amt of the same name and an episcopal see, stands on the eastern shore of a low fertile islet of the same name between Hraloe and the mainland, in $69^{\circ} 38^{\prime} \mathrm{N}$. lat. and $18^{\circ} 55^{\prime} \mathrm{E}$. long. It consists principally of one wide street of wooden houses ; the chief public buildings are the town-hall, the national shurch, the Roman Catholic church, and the museum, which contains a good zoological collection. The town has a high school and a normal seminary. The main specialty of the place is bears' skins and other kinds of fur. The herring fishery of Tromsö is very productive, and the activity of the town is further increased by the circumstance that it is the port of cell for ships making for the seal fishing and walrus bunting on Spitzbergen and Nova Zembla. Tromsö was founded in 1794. The population, which in 1816 did not exceed 300 , was 5409 in 1882.
TRONDHJEM. Ses Throndijem.
TROPIC-BIRD, 80 called of sailors from early times, ${ }^{1}$ because, as Dampier (Toyages, i. p. 53) among many others testifies, it is "never seen far without either Tropick," and hence, indulging a pretty fancy, Linnæus bestowed on it the generic term, continued by modern writers, of Phaethon, in allusion to its attempt to follow tie path of the sun. ${ }^{2}$ There are certainly three wellmarked species of this genus, but their respective geographical ranges have not yet been definitely laid down. All of them can be easily known by their totipalmate condition, in which the four toes of each foot are united ty a web, and by the great length of the two middle tail-quills, which project beyond the rest, 80 as to have gained for the birds the names of "Rabijunco," "Paille-en-queue," and "Pijlstaart" among mariners of different nations. These birds fly to a great distance from land and seem to be aitracted by ships, frequently hovering round or even settling on the mast-head.
The Yellow-billed Tropic- bird, P. favirostris or candidus, appeare to have hahitually the most northerly, as well, perhaps, 89 the
${ }^{1}$ More recently aailors have taken to call it "Dostamain-bird"a name probably belonging to a very different kind (cf. SkJa).
${ }^{2}$ Occasionally, perhaps throngh violent etorms, Tropic-hirds wander very far from their proper haunte. In 1700 Leigh, in his N. H. Lancashire (i. pp. 164, 195, Birds, pl. i., fig. 3), described and figured a "Tropick Bird" found dead iu that county. Another is said by Mr Lees (Zoologist, eer. 2, p. 2666) to have bean found dead at Cradley near Malpern-apparently before 1850 (J. H. Gurney, jun., op. cit., p. 4786)-Which, like the laet, would eeem (V. H. Heston, op. cit., p. 5086) to have been of the epecies known as P. aethereus. Naumanu was told (Rhea, i. p. 25) of its supposed occurrence at
widest range, visiting. Bermuda yearly to breed there, but also occurring numerously in the southern Atlantic, the Indian, and a great part of the Pacific Ocean. In some islends of all these three it breeds, sometimes on trees, which the other apecies are not known to do. However, like the rest of its congenere, it lays but a single egg, and this is of a pinkish white, mottled, opotted, and omeared with brownish purple, often oo closely as to conceal the ground colonr. This is the emallest of the group, and hardly exceeds in size a large Pigeon; but the epread of its wings snd its long tail meke it appear more bulky than it really is. Except some blsck markings on the face (common to all the species known), a large black patch partly covering the scapulars and wing-coverts, sud the black shafts of its elongated rectrices, its ground colour is white, glossy as astin, and often tinged with roseate. Its jellow bill readily distinguishes it from its larger congener P. acthercus, but that has nearly sll the upper surface of the body and winge closely barred with black, while the shafts of its elongated rectrices are white. This opecies has a range almost equally wide as the last ; but it doee not seem to occur in the western part of the Indian Ocesn. The third and largest species, the Red-tsiled Tropic-bird, P. rubricauda or phenicurus, not only has a red bill, but the elongated and very attenuated rectrices are of a bright criman sed, and when adult the whole bocy ghowe a deep roseate tinge. The yonng aro beautifully barred above with blsck arrow headed markings. This opecies has not been known to occur in the Atlantic, but is perhaps the most numerous in the Indian and Pacific Oceans, in which last great value used to be attached to its tail-festhere to be worked into ornaments. ${ }^{3}$
That the Tropic-birds form a distinct family, Phaethontides, of the Steganopodes (the Dysporomorphes of Prof. Huxley), was originally maintained by Brandt, and is now generally admitted, yet it cannot be denied that they differ $\&$ good deal from the other members of the group ${ }^{4}$; indeed Prof. Mivart in the Zoological Transactions (x. p. 364) will hardly allow Fregata and Phaethon to be steg. anopodous at all; and one curious difference is shown by the eggs of the latter, which are in eppearance so wholly unlike those of the rest. The osteology of two species has been well described and illustrated by Prof. Alph. Milne-Edwards in M. Grandidier's fine Oiseaux de Mada. gascar (pp. 701-704, pls. 279-281a).
(A. N.).

TROPPAU (Slavonic Opava), the chief town of Austrian Silesia, is a busy commercial place on the right bank of the Oppa, close to the Prussian border. A welli-built town with extensive suburbs, it has two market-places and contains six charche's, an old town-house recently restored ir the Gothic style, and numerous educational, benevolent, and commercial institutions. The site of the former fortifications is laid out in pleasant promenades. Troppau manufactures large quantities of cloth, especially for the army; and its industrial establishments include a large sugarrefinery and manufactories of machines and stoves. In 1880 the population was 20,562 . German is spoken in the town proper, but a dialect of Polish prevails in the suburbs.

Troppau was founded in tho 13 th century; but almost its ouly claim to historical menticn is the fact that in 1820 the monarche of Austria, Rassia, and Prussia met bere to deliberate on the tendencies of the Neapolitan revolution. This congress of Troppau, however, left nearly the whole matter to be considered and decided o.t Laibach. The former principality of Troppau is now divided between Austria and Prussia, the latter holding the lion's share.

TROTZENDORFF, or TROCEDORFIDS, VALENTIN Friedland (1490-1556), called Trotzendorff from his birthpiace, near Görlitz, in Prussian Silesia, was born on 14 th February 1490, of parents 80 poor that they could not keep him at school. Tho boy taught himself to read and write while lerding cattle; he made paper from birch bark, and ink from soot. When difficulties were orercome and he was sent for education to Görlitz, his mother's last

Heligoland, and Col. Legge (13. Ceylon, p. 1174) mentions one taken in India 170 miles from the cea. The case cited by MM. Degland and Gerbe (Ornith. Europeenne, ii. p. 363) seems to be that of an Albatros.

A fourth species, P. indicus, has been described from the Gulf of Omnu, lut doubt is expressed as to its validity (cf. Legge, ut supra, pp. 1173, 1174).

- Sulidg (Gannet), Pelecaniug (Prlican), Plotide (Snafe-birn), Phalucrocoraida (Cormorant), and Fregatide (Frioate-bird).
words were "stick to the school, dear son." The words determined his career : he refused all ecclesiastical promotion, and lived and died a schoolmaster. He became a distinguished student, learned Ciceronian Latin from Peter Mosellanus and Greek from Richard Croke, and after graduation was appointed assistant master in the school at Görlitz. There he also taught the rector and other teachers. When Luther began his attack on indulgences, Trotzendorff resigned his position and went to study under Luther and Melanchthon, supporting limself by private tuition. Thence be was called to be a master in the school at Goldberg in Silesia, and in 1524 became rector. There he remained three years, when he was sent to Liegnitz. He returned to Goldberg in 1531 and began that career which has made him the typical German schoolmaster of the Reformation period. His system of education and discipline spcedily attracted attention. He made his best elder scholars the teachers of the younger classes, and insisted that the way to learn was to teach. He organized the school in such a way that the whole ordinary discipline was in the hands of the boys themselves. Every month a "consul," twelve "senators," and two "censors" were chosen from the pupils, and over all Trotzendorff ruled as "dictator perpetuus." One hour a day was spent in going over the lessons of the previous day. The lessons were repeatedly recalled by examinations, which were conducted on the plan of academical disputations. Every week each pupil had to write two "exercitia styli," one ia prose and the other in verse, and Trotzendorff took pains to see that the subject of each exercise was something interesting. The fame of the Goldberg school extended over all Protestant Germany, and a large number of the more famous men of the following generation were taught by Trotzendorff. He died on 20th April 1556.
See Herrmann, Merkcoürdige Lebensogeschichte eincs beriühmtes Schulmans, V. F. Trotzendorfs, 1727; Frosch, V. F. Trotzendorff, Ieftor $\approx u$ Goldberg, 1818 ; Pinzger, V. F. Trotzendorff (with tbe Goldarerg portrait, and a complete list of his writings), 1825 ; Kochler, V. F. Trotzendorff, ein biographischer Versuch, 1848 . These biographies appear to take all their facts from a funeral or memorial oration dolivered by Balthasar. Rhau in the university of Wittenberg on 15 th August 1564, and published in an edition of Trotzendorff's Rosarium, 1565.
troubadours. See Provençal Literature, vol. xx. p. 873, and France, vol. ix. p. 646.

TROUGHTON, EDWARD ($1753-1835$), instrument maker, was born in the parish of Corney in Cumberland in October 1753. He joined his elder brother John in carrying on the business of mathematical instrument makers in Fleet Street, London, and continued it alone after his brother's death, until he in 1826 took W. Simms as a partner. He died in London on 12th June 1835.
Trougbton was very successful in improving the mechanical part of most nautical, geodetic, and astrononical instruments. He was completely colour-blind, which prevented hin from attempting ex. periments in optics. The first modern transit circle (see RoEmer) was constructed by him in 1806 for Groombridge; but Troughton was dissatistied with this form of instrument, which a few years sfterwards was brought to great perfection by Reicherbach aud Repsold (qq.v.), and designed the mural circle in its place. The first instrument of this kind was erected at Green wich in 1812, and ten or twelve others were subsequently constructed for other observatories; but they were ultimately superseded by Troughton's earlier design, the transit circle, by which the two coordinates of an object can be determined eimultaneously. He also made transit instruments, equatorials, \&c.; but his failure to construct an equatorial mounting of large dimensious, and the consequent lawsuit with Sir James South, embittered the last years of his lifo.

Trout. See Salmonide; also Avgling, vol. ii. p. 41.
TROUVILLE, a fashionable seaside town of France, chef-lieu of the department of Calvados, and a port of the English Channel, is situated at the mouth of the river Touques, on the right bank, 136 miles west-north-west of Paris and 34 north-east of Caen by rail. The climate is raild, and the neighbourhood well wooded; there are villas
in all styles of architecture, a casino, and vast stretches of sand where the visitors (15,000 in 1881) bathe and walk. With Havre, which lies on the other side of the estuary of the Seine, 8 or 10 miles off, there is continual steamer communication. In 1886 the population was 5750 (commune 6300). Deauville, on the left bank of the Touques, opposite Trouville, is remarkable for its casino, terrace, and fine mansions, but, except during the race-week in August, is comparatively deserted. In 1886 its population was 2100 (commune 2220). In 1866 a dock, 985 feet in length by 262 in breadth, with 24 feet of depth at high water, was constructed between Trouville and Deauville; in 1882292 vessels (54,391 tons) entered and 283 (53,510 tons) cleared.
TROVER, or trover and conversion, the name of a form of action in English law no longer in use, corresponding to the modern action of conversion. It was brought for damages for the detention of a chattei, and differed from detinue in that the latter was brought for the return of the chattel itself. The name trover is due to the action having been based on the fictitious averment in the plaintiffs declaration that he had lost the goods and that the defendant had found them. The necessity for this fictitious averment was taken away by the Common Law Procedure Act, 1852. An action of trover lay (as an action of conversion still lies) in every case where the defendant was in possession of a chattel of the plaintiff and refused to deliver it up on request, such refusal being prima facie evidence of conversion. The damages recoverable are usually the value of the chattel converted. In an action for detention of a chattel (the representative of the old action of detinue), the plaintiff may have-judgment and execution by writ of delivery for the chattel itself or for its value at his option. An action for conversion or detention must be brought within six years. The corresponding action in Scotch law is the action of spuilzie. It must be brought within three years in order to entitle the pursuer to violent profits, otherwise it prescribes in forty years.

TROWBRIDGE, an ancient town of Wilts, England, is situated on the river Mere or Biss, a feeder of the Avon, and on a branch of the Great Western Railway, 33 miles north-west of Salisbury and $97 \frac{1}{2}$ west of London. The parish-church of St James is an ancient stone structure in the Gothic style, with a west square tower, surmounted by a spire 159 fect in beight, and a baptistery (1885). The site of the ancient castle was at the mound called Courthin, but all traces of it have long disappeared, it having been demolished before the reign of Henry VIII. Among the charitable institutions are the Edward and Yerbury almshouses (1698), the old men's almshouses, and the cottage hospital (1886). There are a market house and a town hall. Public gardens 4 acres in extent were opened in 1884. A water company (incorporated in 1873) supplies the town with water from the chalk hills in the neighbourhood of Biss. The principal industry is the manufacture of kerseymere and of broad and other woollen cloths, established as early as the reign of Henry VIII. The town is governed by a local board of health of twentyone members. The population of the urban sanitary district (area 2080 acres) in 1871 was 11,508, and in 1881 it was 11,040 .
The town was defended in bebalf of Matilda against Stephen by Humphrey de Bohun. By Lelsnd it is called Throughbridge or Thoroughbridge. Anciently it was a royal manor forming part of the duchy of Lancaster, having been grauted by the crown to John of Gaunt. Afterwards it reverted to the cruwn and was given by Henry VIII. in the 28th year of his reign to Sir Edward Seymour. It again lapsed to the crovn under Elizabeth, and in tho 24th year of her reign was assigned to Edward, earl of Hertford. By marriage it passed to the Rutland family, who, however, crentually sold i t. It formerly gave the title of baron to the Seymour family. The poet Crabbe was rector of the parisll from 1814 to 1832.

TROY. See Troad.
TROY, a city of the United States, county seat of Rensselaer county, New York, is situated in $42^{\circ} 44^{\prime} \mathrm{N}$. lat. and $73^{\circ} 41^{\circ}$ W. long., upon the east bank of the Hudson river, at the head of tide water. It is nearly north of New York City (147 miles) and somewhat north of west from Boston (136 miles). The city, which has a length of about 4 milles, with an average breadth of 1 mile, is built mainly upon a level terraco slightly elevated above the river, but of late years the residence portion has extended up the hills (rising to 400 feet) which limit this plain on the east. It is in the main regularly laid out, and is traversed by street railways. Troy is situated at what is practically the terminus of the Erie Canal, connecting the Hudson river (here navigable for vessels of 8 to 10 fect draught) with Lake Erie, and of the Champlain Canal. It has three railroads, by which it is connected with New York on the south, Buffalo on the west, and also with the east and north. The principal industries, which in 1880 gave employment to 22,434 persons, are metalworking, especially in iron and steel, and tho making of stoves and liuen goods. The value of the products was $\$ 26,497,163$. The city is the seat of the Rensselaer Polytechnic Institute, which was for many years the leading engineering school of the United States, and still maintains a high reputation. The population, which in 1810° was only 3895 , had in 1830 risen to 11,556 , and by 1880 to 56,747 (27,154 males and 29,593 females, the excess of the latter being explained by the large number of women employed as factory operatives). The proportion of foreign born $(16,938)$ was large.

The city was founded in 1787 by the Dutch, under the name of Vanderheyden, and two years later the present name was adopted. In 1794 it was incorporated as a village, and in 1816 it recoived a city charter. The opening of the Erie and the Champlain Canals in 1823 insured its prosperity and rapid growth.

TROY, Jeaf Françols de (1679-1752), a French painter, highly endowed by nature, was born at Paris in 1679. He received his first lessons from his father, himself a skilful portrait-painter, who afterwards sent his son to Italy. There his amusements occupied him fully as much as his studies; but his ability was such that on his return he was at once mado an official of the Acadeny and obtained a large number of orders for the decoration of public and private buildings, executing at the same time a quantity of easel pictures of very unequal merit. Amongst the most considerable of his morks are thirtysix compositions painted for the hotel of De Live (1729), and a series of the story of Esther, designed for the Gobelins whilst De Troy was director of the school of France at Rome (1738-51), -a post which he resigned in a fit of irritation at court neglect. He did not expect to be taken at his word, but found himself forced to return to France, and was making ready to leave when he died suddenly (24th January 1752) of an attack on the lungs.
His desire to make a figure in the world led him to neglect his more serious duties and injured his professional reputation. The life-size painting (Louvre) of the First Chapter of the Order of the Holy Ghost held by Fenry IV., in the church of the Grands Augustins, is one of his most complete performances, and his dramatic composition, the Plague at Marseilles, is widely known chrough the excelleat engraving of Thomassin. The Cochins, father and son, Fessard, Galimard, Bauvarlet, Herisset, and the painters Boacher and Parrocel Lave engraved and etched the works of De Troy.

TROY, West. See West Troy.

TROYES, a town of France, formerly the capital of Champagne, and now chef-lieu of the department of Aube, and an episcopal see, is 104 miles south-east of Paris by the railway to Belfort, at the junction of the line from Orleans to Challons. Several arms of the Seine and also
the Haute-Seine Canal run through the town. The cathedral of St Peter and St Paul, the building of which lasted from 1206 till the 16 th century, still wants the south tower. Ths choir, the end chapels, and the sacristry were restored in 1849-1866. The 16th-century façade, witl mutilated bas-reliefs and statues, is surmounted by the tower of St Peter (230 feet). The choir, one of the most beautiful in France, belongs to the 13 th century, as does also its remarkable glass. The treasury contains gospels of the 11 th and 12th centuries, precious stones brought from the East at the time of the crusades, and ancient and beautiful lace. The unfinished church of Sit Urban, begun in 1262 at the expense of Urban IV., is a charming specimen of the best period of Gothic architecture, the side portals being remarkably light and delicate. The church of St Madeleine, built at the beginning of the 12 th century, enlarged in the 16 th, and recently restored, contains a rich rood-screen by Jean de Gualde (1508). In 1420 the treaty of Troyes was signed in the church of St John, where Henry V. of England and Catherine of France were subsequently married. The church of St Remy, with a Romanesque tower, the churches of St Nizier and St Nicholas, both of the 16 th century, and that of St Pantaléon, of the 16 th and 17 th, should also be noticed. There are some curious fireplaces in the town hall (17 th century), and the municipal archives contain the correspondence of the dukes of Lorraine and Guise. The old abbey of St Loup is occupied by the library (80,000 volumes and 2720 manuscripts) and a museum containing numerous collections; that relating to natural history is rich in ornithology and entomology, and has many aerolites. Blost of the old honses of Troyes are of wood, but some of stone of the 16 th century are remarkable for their beautiful and original architecture. The chief industry of Troyes and the surrounding district is the manufacture of cotton and woollen hosiery, which is woven almost entirely by hand, and is exported to America and Switzerland. One-fourth of the population live by subsidiary industries. There are 14 cotton mills with 10,000 spindles, bleaching, dressing, and dye works, workshops for making looms, needle factories, iron and copper foundries, 8 flour mills, and nursery and market gardens. A trade is carried on in pork and cheese. A few miles from the town stands the curious church of St Andrew (16th century), with a remarkable portal. The population in 1886 was 46,972 (46,067 in 1881).
At the beginning of the Roman period Troyes (Augustobona) π Tas the principal settlement of the Tricassi. It was christianized in the 3rd century, and its bishop St Loup (426-479) founded renowned schools, and averted the fury of Attila. In 484 Troyes passed into the hands of Clovis, and belonged sometimes to Neustria, sometimes to Austrasia, till all Gaul was united under Charles Martel. In 878 Pope John VIII. presided at a council in Troyes. The town was fired and sacked by the Saracens in 720, and by the Normans in 889 and 903 . In 1229 Theobald IV., besieged in his capital, ras delivered by king Lauis IX., and in 1230 he granted the inhabitants a municipal eharter. From this time the fairs of Troyes became celebrated. During the captivity of King John in England, Troyes resisted all attacks, and after Agincourt took the part of the Burgundians. In 1417 the sule of Queen Isabeau of Bavaria was establisheú in Troyes, where in 1118 the parlement of Paris met ; and on 21st May 1420 Henry V. of England, Charles VI. of France, Isabeau, and Philip of Burgundy signed the famous treaty of Troyes. On 9th July 1429 the town capitulated to Joan of Arc. In the 16th century Protestantism made rapid progress, but in 1562 the Hinguenots were forced to retire to Bar-sur-Seine; after the massacre of Si Bartholomew in Paris, the Calvinists in the prisons of Troyes met the same fate. In 1577 the inhahitants joined the Lcague, and only opened their gates to Henry IV. in 1594. In 1787 the parlement of Paris again met here. In 1814 both the allied and the imperial armies occupied Troyes; and iu 1870 the town was occupied by the Germans.

TROYES, Chrestien de. See Chrestien de Trozes, and Romance, vol. xx. p. 645.

TRUCE OF GOD. The orderly administration of justice and the unirersal peace, which the Roman empire
established from the Euphrates to the Atlantic, did not long survive the inroads of the Teutonic tribes who in western Europe divided the inheritance of the Latin world. All the early Teutonic codes, being based, howerer remotely, on the right of private war and private vengeance, might discourage, but were powerless to abolish, the instinct which impels the merabers of half-civilized communities to avenge their own wrongs. Hence the pax Romana died with the empire ; nor could the splendid organization of Charlemagne do more than effect a very partial resuscitation of it. Throughout the 9 th and loth centuries, as the life-benefices of the later Carolingian kings became gradually transformed into hereditary fiefs, the insecurity of life and property grew greater; for there was no central power to curb the injustice of the petty dukes and counts who warred and pillaged at their will. At this moment, when western Europe threatened to sink back into the chaos from which it had been won by Rome, the church came forward to arrest the process of its dissolution. Speaking at frst in her own interest and in that of the poor, whose great protector she claimed to be, she decreed a special peace for the unarmed clerk and the industrious husbandman. The council of Charroux in Poitou led the way in 989 . With the opening of the next century the movement spread over Aquitaine and the rest of France. Everywhere the bishops set themselves to exact from the whole diocese, noble and simple alike, a novel oath to abstain from violence and to respect the sanctity of churches. William V. of Aquitaine, the most powerful lord of southern France, lent his inîuence to the cause at the councils of Limoges (994) and Poitiers (999). The latter council prescribed the methods by which all who violated their solemn engagement should be punished. The times, however, were bardly ripe for the inauguration of an era of peace. Gerard of Soissons, perhaps, was not the only bishop who eyed this dream of universal harmony askance, as tending to encroach on the king's prerogative (see Bouquet, x. 201); and, on the whole, it may be said that the "Peace of God"was at best but a somewhat ineffectual protection to churches, priests, and labourers. If there was any hope of restraining the mutual feuds of the barons it must be by other means. And here the church again, reeognizing the impossibility of absolutely stopping all feudal warfare, endeavoured to limit it. This limitation of the right of perpetual warfare, reduced to writing, sanctioned by an oath, and confirmed by the decrees of councils, assumed the name of the "Truce of God" (treva or treuga Der). The truce of God seems to have been first established at the synod of Tuluges, near Perpignan in Roussillon, on 16th May 1027. In accordance with its decrees all warfare was to be suspended from noon on Saturday till prime on Monday; and the peace of God was permanently extended to all monks, clerks, bishops, and churches. Like the pax ecclesix, this laudable example was soon followed elsewhere. About 1041 it extended itself over Aquitaine and all France; in 1012 the council of Caen, under the sanction of Duke William, established it in Normandy-a country in which, according to a contemporary writer (Rodolph Glaber, $\mathrm{\nabla}$. 1), it was not at first accepted. By this time its terms had been much enlarged; and we may perhaps tale the provisions of a sccond synod at Tuluges (1041) as representing its normal form. According to this synod the treuga Dei was to last from the Wednesday evening to the Monday morning in every week, from the beginning of Advent to the octare of the Epiphany, from the beginning of Lent till the octave of Pentecost, for the feasts of the Holy Cross, the three great feasts of the Virgin, and those of the twelve apostles and a fewt other saints. More usually the interral between tle Epiphany netave and Lent and that from Easter to

Rogations recte left subject to tho weekly truce only. Thus from being a mere local institution it spread rapidly over all France, and seems to have crossed into Germany, Italy, Spain, and England. It had also its special courts and methods of procedure. Excommunication and banishment for seven or thirty years were its penalties. Defors long both the pax ecclesix and the treuga $D \in i$ were sanctioned by the holy see. Special clauses were added to protect pilgrims, women, merchants, monks, and clerks; while the cattle and agricultural implements of the peasant -his ox, horse, plough, and even his olive-trees-were covered by the ægis of the church. The first clause of the council of Clermont (1095), at which Urban II. preached the first crusade, proclaimed the weekly truce for all Christendom, and perhaps enjoined it in its most extended form, adding also a clanse by which the oath was to be rencwed every three years by all men above the age of twelve, whether noble, burgess, villain, or serf. ${ }^{1}$ The same council seems to have accorded safety to all who took refuge at a wayside cross (cap. 29) or at the plough (homines ad carrucas fugientes). The truce of God was most powerful in the 12th century, during which period it was sanctioned hoth by local and papal councils, such as that held at Rheims by Calixtus Il. in 1119 , anci the Lateran councils of 1139 and 1179 . With the 13 th century its influence began to decline, as the power of the king gradually led to the substitution of the king's peace for that of the church.
For an exhaustive account of the whole question, see M. Semichon's book, to ribich the above article is largely indebted.

TRUCK SHS'FEM. See LABour, vol. siv. p. 172, and Wages.

TRUFFLE, the name of several different species of subterranean fungi which are used as food. The species sold in ${ }^{\circ}$ English markets is Tuber æstivum; the commonest speciez of French markets is T. melanosporum, and of Italian the garlic-scented ${ }^{T}$. magnatum. Of the three, the English species is the least excellent, and the French is possibly the best. The truffo used for Perigord pie (paté de foie gras) is T. melanosporum. When, however, the stock of T. melanosporum happens to be deficient, some manufacturers use inferior species of Tuber, such as the worthless or dangerous Choromyces meandriformis. Even the rank and offensive Scleroderma vulgare (one of the puffball series of fungi) is sometimes used for stuffing turkeys, sausages, \&r. Indeed, good truffes, and then only T. astivum, are seldom seen in English markets. The taste of T. melanosporum can be detected in Perigord pie of good quality. True and false truffes can easily be distinguished under the microscope.

Tubor æstivum, the English truffe, is roundish in shape, covered with coarse polygonal warts, black in colour outside and brownish and veined with white within; its average size is about that of a amall apple. It grows from July till autumn or winter, and prefers beech, oak, and birch woods on argillaceous or calcareous soil, and bas sometimes been observed in pine woods. It grows gregariously, often in company with T: brumale and (in France and ltaly) T. melanosporum, and sometimes appears in French markets with these two species, as well as with T. nicsentericum. The odour of T. æstivum is very strong and penetrating ; it is generally esteemed powerfully fragrant, and its taste is considered agreeable. Its price in England is two or three shillings a pound. The common French trufle, T. melanosporum, is a winter species. The tubers are globose, bright brown or black in colour, and rough with polygonal warts; the mature flesh is blsckish grey, marbled within with white veins. It is gatbered in autumn and winter in beech and oak moods, and is frequently seen in Italian markets, wlicre it is sometimes sold for $12 s$: 6 d . a pound. The odour of T. melanosporum is very pleasant, especially when the tubers are young, then somewhat resembling that of the strawberry; with age the smell gets very potent, but is never considered really unpleasant. The come mon Italian trufle, T. magnutum, is pallid ochreous or brownish buff in colour, smooth or minutely papillose, irregularly globosc. and lobed; the interior is a very pale brownish liver colour reined
${ }^{1}$ Labba'a Concilia; $x x .816$; with which of. Semichon, Lx Paix ot la Tréve de Dieu, Paris, 1869, p. 125.
with white. It grows towards the end of autumn in plantations of willows, poplars, and oaks, on clayey soil. Sotnetimes it occurs in open cultivated felds. The odour of the mature fungus is very potent, and is like strong garlic, onion, or decaying cheese. I'. brumale, referted to above, grows in Britain. It is a winter truffle, and is found chiefly under oaks and abele trees from October to Decomber. It is black in colour, globose, more or less regular in shape, and is covered with sharp polygonal warts; the mature flesh is blackish grey marbled with whito veios. The odour is very strong and lasts a long time; the taste is generally esteemed agreeable. Chevomyces meandriformis, which occurs in Britain, is sometimes sold for T. magnatum, the colour of the flesh of both species being somewhat similar. Scleroderma vulgare, the "false trufle," is extremely coramon on the surface of the ground in woods, and is gathered by Italians and Frenchmen in Epping Forest for tha inferior dining-rooms of London where Continental dishes are served. It is a worthless, offensive, and possibly dangerons fungus. A true summer truHfe, T. mesentericum, fonnd in oak and birch woods on calcareous clay soil, is frequently eaten on the Continent. It is esteemed equal to T. æstivum. It probably grows in Britain. Another edible species, T. macrosporum, also grows in Britain, in clayey places nuder young beeches and oaks, on the borders of streams and roads, and sometimes in fields; more rarely it grows in plantations of willow and poplar. It has a strong scent of onions or garlic. Terfezia leonis, a famous truffle of Italy, Algeria, Sardinia, \&c., resembles externally a potato. It grows in March, April, and May. Som persons eat it in a raw state, sliced, and clipped in oil or egg. It is not scented, and its taste is generally considered iosipid or soapy. Sometimes an ally of the puff.balls, and therefore (like Scleroderma) not a true truffe, Melanogaster vuriegatus, is eateu in England and France. It has been, and possibly still is, occasionally sold in England under the name of "red truffe." It is a small ochreous brown species with a strong aromatic and pleasant odour of bitter almonds. When the plant is eatom raw the tasto is sweet and sugary, but when cooked it is hardly agreeable. The odour belonging to many truffes is so notent that their places of growth can be readily detected by the odour exhaled from the ground. Squirrels, hogs, and other animals commonly dig up trumes and devour them, and pigs and dogs have long been trained to point out the places where they grow. Pigs will alrays eat truffles and dogs will do so occasionally; it is therefore usual to gire the trained pig or dog a small piece of cheese or some little reward each time it is auccessful. Truffes are reproduced by apores, bodies which serve the same purpose as seeds in flowering plants; in true truffles the spores are borne in transparent asci or sacs, from four to eight spores in each ascus. The asci are

Spores of the chief European truffes. Eularged 500 dianetere. 1 , Tuber estivum; 2, T. brumale; 3, T. melanosporum; 4, T. mesentericum; 5, T. magnatum; 6, Charomyces meandrivormis, 7. Scleroderma vulgare; 8, Melanagas. ter variegatus.
embedded in vast numbers in the flesh of the truffle. In false trutiles the spores are free and are borne on minnte spicules or supports. The spores of the chief European truffles, true and false, enlarged five hundred diameters, are shown in the accompanying illustration. Many references to truffes occur in classical authors. The truffe Elaphomyces variegatus was till quite recent times used, under the name of Hart's nut or Lycoperdon uut, on account of its supposed aphrodisiac qualities.

TRUMBULL, the surname of more than one individual of note in the literature, art, and politics of America.

1. Benjamin Trombull was born at Hebron, Connecticut, on 19th December 1735, and died at North Haven, Connecticut, on 2d February 1820. He graduated at Yale in 1759, and entered the ministry. His literary work was considerable, the most important being the standard H istory of Connecticut to 1764.
2. Joan Trumbull was born at Waterbury, Connecticut, on 24th April 1750, and died at Deiroit, Mlichigan, on 12th May 1831. He graduated at Yale in 1767, and became a lawyer and anthor of high reputation. His best
work is Mc Fingal, a Hndibrastic poem, intendel to strve the Whig side in the Anerican Revolution.
3. John Trumbull, son of the following, was born at Lebanon, Connecticut, on 6 th June 1756, and died at New York City, on 10th November 1843. He graduated at Harvard in 1773 , studied painting with Benjamin West in London, and left at his death a number of historical works. The earlier of these are the better; the later and larger were painted for the capitol at Washington.
4. Jonathan Trombole was born at Lelanon, Connecticut, on 10th June 1710, and died at the same place on 17 th August 1785. He graduated at Harvard in 1727, and became a lawyer and coionial politician. His place in American bistory was gained as governor of Connecticut from 1769 until 1783, through the whole period of the American Revolution. He was a trusted supporter and confidential adviser of Washington, who was accustomed to speak of him as "brother Jonathan," and the term has since passed into popular use as equivalent to the people of the United States.
5. Jonathan Trumbull, son of the preceding, was born at Lebanon, Connecticut, on 26th March 1740, and died at the same place on 7th August 1809. He graduated at Harvard in 1759, and served as member of congress, 1789-95 (being speaker of the house of representatives during the last two years of his term), as United States senator, 1795-96, and as governor of Connecticut, 1798-1809.

TRUSIPET, a musical instrument, consisting of a long, narrow brass tube, cylindrical for the greater part of its length: the fusiform development which terminates in the bell or opening of the lower end only begins at a point that varies from a third to a fourth of the total length from that extremity. The air inside is set in vibration by the lips (which act as true reeds) applied to the edges of a basin-like mouthpiece fitted to the upper part of the instrument. The material has nothing to do with the production of that brilliant quality of tone by which the trumpet is so easily distinguished from every other mouthpiece instrument: the difference is partly due to the distinct form given to the basin of the mouthpiece, but principally to the proportions of the column of air determined by the conical or cylindrical form of its envelope.

The possibility of producing sonorous disturbance of a mass of air throngh a mouthpiece, or more simply through the orifice of the tube, has been known from a very early period, - a shell bored at its extremity, or a horn with the point removed, being without doubt the most ancient instrument for producing sound. Nearly all the nations of antiquity had mouthpiece instruments; but the greater number of these, though grouped under the general designation of trumpets, have only a very distant relationship to the modern instrument The Romans had four such instruments, - the tuba, buccina, cornu, and lituus. The tuba, represented in the bas-reliefs of the triumphal arch of Titus, was a kind of straight bronze clarion, with a conical column of air. It is ordinarily designated the Roman trumpet, and was about 39 inches long; its compass șhould not go beyond the first six proper notes of the harmonic scale. The Roman tuba and the Greek salpinx are supposed to be one and the same instrument. The buccina was also of bronze, with a tube measuring fully 11 feet in length. The tube is only slightly conical, and the quality of tone bears a striking resemblance to that of the bass trombone in G; the proper tones for harmonics were those subjoined. ${ }^{1}$ The cornu was
 often made of a bullock's horn, but bronze wass also employed,

[^249]ss in a specimen in the British Museum. This instrument measured 4 feet 6 inches in length, and the scale was that herewith shown. The Roman cornu was probably like the Greek keras. The three preceding instruments were used in giving signals to the infantry. The caralry calla were given with the lituus, a specimen of which exists in the muscum of the Vatican, found in 1827 in a tomb at Cerveteri (Cære). The tube is cylindrical for the greater part of its length, its conical development beginning only at the lower end, where the instrument begins to curve. The lituus easily produces the accompanying $=$ proper notes; its quality of tone is like that of a trumpet
in G. In Ireland and Denmark numerous mouthpiece instruments in bronze have been found, sixteen different specimens being preserved in the museum of the Rojal Irish Academy at Dublin, and six (of which facsimiles exist in South Kensington Nuseum) in the museum at Copenkagen. But none of these hare the proportions of a trumpet; all, by the conical development of the tube as well as by the eurved form, recall their first model, the hern, successive transformations of which have given rise to the clarion and the numerous family of bugles.

We have no precise information as to the form which the lituus, the ancestor of the modern trumpet, assumed during the Middle Ages. A miniature in the Bible ${ }^{1}$ presented in 850 to Charles the Bald places the lituus in tho hands of one of the comprnions of King David, but we are not-warranted in concluding from this that the Etruscan instrument was in use in the 9th century. The carliest representation of the trumpet with its present proportions of tube and form of beil seems to belong to the 15th century. Fra Angelico (d. 1 155) has painted angels with trumpets having either straight or zigzag tubes, the shortest being about 5 feet long. The perfect representation of the details, the exactness of the proportions, the natural pose of the angel players, suggest that the artist painted the instruments from real models.

The credit of having bent the tube of the trumpet in three paraliei leanches, thus creating its modern form, has usually been claimed for a Frenchman named Maurin (1498-1515). But the transformation was really made in Italy about the middle of the 15 th century, as is prored by the bas-reliefs of Luca della Robbia intended to ornament the organ chamber of the cathedral of Florence (see rol. xx. p. 588) ; there a trumpet having the tube bent lack as just described is very distinctly figured. From the beginning of the 16th century we kave numerous sources of information. Virdung ${ }^{2}$ cites three kinds of nouthpiece instruments-the felterunet, the clareta, and the thurner horn; unfortunately be does not mention their distinctive characters, and it is impossible to make them out by examination of his engravings. Probably the felttrumet and tho clareta closely resembled cach other ; but the compass of the former, destined for military signals, hardly went beyond the 8th proper tone, while the latter, reserved for high parts, was like the clarino (see belom7. The thuruer horn was probably a kind of जarino or clarion used by watcimen on the towers. The wuminet and the jüger trommet are the only two mouthicee instruments of the trumpet kind cited by Preterius. ${ }^{3}$ ce frst was tuned in D at the ciamber pitch or "kamI orton," but with the help of a shan's it could be put i) C, the equivalent of the " ahorton" D, the two differ$\because g$ about a tone. Sometimes the trummet mas lowered

[^250]to B and eren By. The jäger trommet, or "trompette de chasse," was composed of a tube bent several times in circles, like the posthorn, to make use of a comparison employed by Prætorius himself. His drawing does not make it clear whether the column of air was like that of the trumpet; there is therefore some doubt as to the true character of the instrument. The same author further cites a wooden trumpet (hözern trommet), which is no other than the Swiss alpen-horn or Norwegian luur. Mersenne's ${ }^{4}$ information is not sery instructive; but he gives a description of the sourdine, a kind of mute or damper introduced into the bell, already employed in his time, and still made use of to weaken the sound. The shape of the trumpet, es seen in the bas-reliefs of Luca del.a Robbia, was retained for more than three hundred years: the first alterations destined to revolutionize the whole technique of the instrument were made about the middle of the 18 th century. Notwithstanding the imperfections of the trumpet during this long period, the performers upon it acquired an astonishing dexterity.
The usual scale of the typical trumpet, thest in D, is

Pretorins exceeds the limits of this compass in the higher range, for he says a good trumpeter could produce the subjained notes. (f) en en
in a trumpet solo which ends the
cantata "Der Himmel lacht," wrote up to the twentieth of these sounds. So considerable a compass could not be reached by one instrumentalist : the trampet part bad therefore to be dividcd, and each division was designated by a special name. ${ }^{\text {. The fundamental or first }}$ proper note was called flattergrob, the second grobstimme, the third faulstimme, the fourth mittelstimme. The part that was called principal went from the fifth to the tenth of these tones. The higher region, which 1 ad received the name of "clarino," was sgain divided into two parta: the first began at the eighth proper tone and mounted up towari the extreme high limit of the compass, according to the skill of "he executant; the second, beginning at the sixtl proper tone, rarely went beyond the twelfth. Each of these parts was confided to a special trumpeter, who ezecuted it by using a larger or a smaller mouthpiece.

Playing the clarino differed essentially 1 rom playing the militar trumpet, which corresponded in compass to that called principal. Compelled to employ rery small moutbpieces to facilitate the emis. sion of rery high eounds, clarino players could not fail to slter the tone of the instrument, and instead of getting the brilliant and energetic quality of tone of the mean register they were only able to produce more or less donbtful notes without power and eplendour. Apart from this inconvenience, the clarino presented nnmerous deviations from just intonation. Hence the players of that time failed to obviate tho bad effects incritably resulting from the natursl imperfection of the harmonic scale of the trumpet in that extreme part of its compass; in the execution, for instance, of the works of Rach, where the trumpet ehould give sometimes -2 0 , and $\Rightarrow-20$, the instrumentalist could only com-解 Further, the thirtecath proper tone, for which is really too flat, and it is absolutely im- possible to remedy this defect, since it entirely depends
 upon the laws of resonance affecting columns of air.
Sirice the abandonment of the clarino (about the middle of the 18th cenlury) onr orchestras have been enriched with trumpets that purmit the execution of the old clarino parts, no* ouly with perfect justuess of intonation, but with a quality of tome that is not defieicnt in character when comparcd with the mean register of the old principal instrument. The introdaction of the clarinet or little clarino is one of the causes which led to tlio abandonment of the older instrument and may explain the prcference given by the composers of that epoch to tho mean register of tho trumpet. The clarino laving disappeared befors Mozart' 8 day, he hed to change the trumpet parts of Hardel and Bach to allow of their execation by the performacrs of his own time. It was now that irooks began to be frequently nsed. Trumpets were made in F instead of in D, furnished with a scrics of shanks of increasing length for the tonalities of $E, E\rangle, D, D_{D}^{\prime}, C, B, D h$, and sometimes even A.

[^251]The first attempts to extend the limited resourees of the instrument in its new employment srobe out of Hempel'g ides of lowering the harmonic sounds by introducing the hand into the bell. But, instead of fixing the shanks between the mouthpiece snd the upper extremity, they were adapted to the body of the instrument itsolf by a double slide, upon the two branches of which tubes were inserted bent in the form of a circle and graduslly lengthened as required. This modifed instrument became known ss tho "invention horn." This system was applied to the trumpet by aichel Woegel (born at Rastait in 1748), whose "invention trumpet" bad a great success, notwithstanding the unaveidable imperfection of a too great disparity in quality of tone between the open and the closed sounds. The idea of applying the trombone slide to the trumpet is obvious. The slide trumpet is mentioned by T. E. Altenburgs ${ }^{1}$ who compares it, snd with reasen, to the alto trombone: and thero are grounds for identifying it with the "tromba da tirarsi" employed by J. S. Each in some of his compositions. The slide trumpet is still used in England in a somewhat modified form. About 1760, Kolbel, a Kussian musician, applied a key to the horn, and soon afterwards the trumpet received a similar sddition. By opcning this key, which is placed near the bell, the instrument was raised a distonic semitone, and by corrocting errors of intenation by the pressure of the lips in the mouthpiece the following diatonic succession was obtained. in 1801 by Weidinger, trumpeter to the imperial court at Vienna, whe increased the number of keys and thus mede the trumpet chromatic thoughout its scale. The instrument shown in the accompanying figure is in G; the keys are five in number, and ss they open one after another or in combination it is pessible to connect the second proper tone with the third by chromatic steps, and thus produce the following succession. The number者产 gaps between the oxtreme sounds of the interval of a fifth; and a like result was arrived st more easily for the intervals of the fourth, the major third, \&c., furnished by the proper tones of 3,4 , 5 , \&c. But, though the koyed trumpet was a notable improvement on the invention trumpet, the sounds sbtained by means of the latoral openings of the tube did not pessess the qualities which distinguish sounds cansed by the resenance of the air-column vibrating in its entirety. But iu 1815 Stölzel made a genuine chromatio trumpet by the invention of the ventile or piston; for this ingenious mechanism, see Tronsone The siluple trumpet is now no longer employed except in cavalry regiments. It is usually in Eb. The bass trumpot in Eb, which is an actere lower, is sometimes, but rarely, nsed. Trumpets with pistons are generally constructed in F , with crooks in E aud Ej . In Germany trumpets in the high B b with a crook in A are very often used in the orchestra. They are easier for cornet à piston players than the trumpet in F. The present writer has recently constructed for the concerts of the Conservatoire at Brussels trumpets in the high D, an octave above the old trumpet in the same Key. They permit the execution of the high trumpet parts of Handel and J. S. Bach. The bass trumpet with pistons used for Wagaer's tetralogy is in Eb, in unison with the ordinary trumpet with crooks of D and C; but, when constructed so as to allow of the productien of the second proper toue as written by this master, this instrument belongs rather to the trombones than to the trumpets. (V. M.)

TRUMPET, Speaking and Hearing. The speaking trumpet, though some instrument of the kind appears to have been in earlier use in more than one part of the world, is connected in its modern form with the name of Athanasius Kircher and that of Sir Samuel Morland, who in 1670 proposed to the Royal Society of London the question of the best form for a speaking trumpet. Lambert, in the Berlin Memoirs for 1763 , seems to have been the first to give a theory of the action of this instrument, based on an altogether imaginary analogy with the behaviour of light. In this theory, which is still commonly put forward, it is assurned that sound, like light, can be propagated in rays. This, however, is possible only when the aperture through

[^252]which the wave-disturbance passes into free air is large compared with the wave-length. If the fusiform mouth of the speaking trumpet were half a mile or so in radius, Lambert's theory might give an approximation to the truth. But with trumpets whose aperture j_{3} only a foot in diameter at most the problem is oue of diffraction; and it has not yet been seriously studied from this point of view.

In the case of the hearing trumpet, the disturbance is propagated along the converging tube much in the same way as the tide-wave is propagated up the estuary of a tidal river.

Until the theory has been rigorously worked out the only safe course to adopt in manufacturiug either class of instruments is to be guided by the results of varied trials.

The theoretical foundations of the subject will be found in Lord Rayleigh's Sound and in Sir G. Airy's Tides and Waves, respectively. In speaking and hearing trumpets alike all reverberation of the instrument should be avoided by making it thick and of the least elastic materials, and by covering it externally with cloth.

TRUMPETER, or Trumpet-Bird, the literal rendering in 1747, by the anonymous English translator of De la Condamine's travels in South America, (p. 87), of that writer's "Oiseau trompette" (Mém. de l'Acad. des Scicnces, 1745 , p. 473), which he says was called "Trompetero" by the Spaniards of Maynas on the upper Amazons, from the peculiar sound it utters. He added that it vas the "Agami " of the inhabitants of Yara and Cayenne, ${ }^{2}$ wherein be was not wholly accurate, since those birds are specifically distinct, though, as they are generically united, the statement may pass. But he was also wrong, as had been Barrere (France Equinoxiale, p. 132) in 1741, in identifying the "Agami" with the "Macucagua" of Marcgrave

White-winged trumpcter (Psophia leucopiera), After Mitchell
for that is a Tinamou (q.v.) ; and both still more wrongly accounted for the origin of the peculiar sound just mentioned, whereby Barrere was soon after led (Ornith. Spec. Novum, pp. 62, 63) to apply to the bird the generic and rulgar names of Psophia and "Petteuse," the former of which, being unfortunately adopted by Linnæus, has ever since been used, though in 1766 and 1767 Pallas (Miscellanea, p. 67, and Spicilegia, iv. p. 6), and in 1768 Vosmær (Descr. du Trompette Américain, p. 5), showed that the

[^253]notion it conveys is erroneous. Among English writers the name "Trumpeter" was carried on by Latham and others so as to be generally accepted, though an author may occasiona!!y be found willing to resort to the native "Agami," which is that almost always used by the French.
Messrs Sclater and Salvin in their Nomenclator (p. 141) admit 6 species of Trumpet-Birds-(1) the original Psophia crepitans of Guana; (2) P. napensis of eastern Ecuador (which is very likely the original "Oiseau trompette" of De la Condamine) ; (3) P. ochroptera from the right bank of the Rio Negre ; (4) P. leucoptcra from the right bank of the upper Amazons; (5) P. viridis from the right hank of the Madeira ; and (6) P. obscura from the right hank of the lower Δ mazons near Para. And they have remarked in the Zoological Proceedings (1867, p. 592) on tha curieus fact that the range of the aeveral species appeara to be separated hy rivera, a atatement coafirmed by Mr Wallaca (Geogr. Distr. Animals, ii. p. 358); and in connexion therewith it may be observed that these birds have abort wings and aeldom fly, hut run, though with a peculiar gait, very quickly. A saventh species, P. cantatrix, from Bolivia, has aince been indicated ly Prof. W. Blasius (Journ. f. Ornith., 1884, pp. 203-210), whe has given a monegraphic summary of the whole gronp very worthy of attention. The chief distinctions between the species lie in colour and aize, and it will be here enough to describe briefly the best known of them, P. crepilans. This is about the aize of a large barndoor Fowl ; hut its neck and lega are longer, so that it is a taller bird. The head and neek are clothed with ahort velvety feathers; the whole plumage is black, except that on the lower front of the neck the featbers are tipped with golden green, changing according to the light into violet, and that a patch of dull rusty bromn'extends across the middle of the back and ming-coverts, pessing into ash-colour lower down, where they lisng over and conceal the tail. The lega are bright pea-green. The hisbits of this hird are very wonderful, and it is much to he wished that fuller accounts of them had appeared. The curious sound it utters, noticed by the earliest observers. has heen alreädy mentioned, and by them also was its singularly aocial disposition towards man described; but the information aupplied to Buffon (Oiscaux, Iv. pp. 496.501) by Manoncour and De la Borde, which lias been repeated in many works, is still the best we have of the carious way in which it becomes aemi-domesticated by the Indians -nd colonists and shows strong affection for its owners as well as for their living property-poultry or sheep-though in this reclaimed condition it seema never to breed. 1 Indeed nothing can be positively asserted as to ats mode of nidificatton; hut its eggs, according to Mr E. Bartlett, are of a creamy white, rsther round, and about the size of Bantams'. Waterton in his W'anderings (Second Journey, chap. iii.) speaks of falling in with flecks of 200 or 300 "TWaracahas," as he called them, in Demerara, but added nothing to our knowledge of the species; while the contributions
 (Mue. Nol. History, ser. 2, ii. pp. 490-492) as regards its habits only touch upon them in captivity.

To the Trumpeters must undoubtedly be accorded the rank of a distinct Family, Psophiida; but like so many other South-American birds thev seem to be the less specialized descendants of an ancient generalized group -perhaps the common ancestors of the Rallidx and Gruedx-and they are therefore rightly placed in Prof. Huxley's Geranomorphes. ${ }^{2}$ The structure of the syrinx is stated by Trail (ut supra) to be quite unique; but his description of it is unsatisfactory, and he clearly had not an adult male to dissect or he would have hardly failed to notice the curious arrangement of the trachea in that ser made known by Hancock (ut supra). This, though different from that described in any Crane (q.v.), suggests an early form of the structure which in some of the Gruidx is so marvellously developed, for in Psophia the windpipe runs down the breast and belly immediately under the skin to within about an inch of the anus, whence it returns in a similar way to the front of the sternum, and then enters the thorax. Analogous instances of this formation occur in several other groups of birds not at all

[^254]allied to the Psophiidx. The skeleton and some of tire detached bones are figured in Ejton's Osteol. Avium (pls. xxix. and 5 k).
(A. N.)

TRURO, a city, municipal borough, and port of Cornwall, England, is situated on a kind of peninsula formed by the river Allen and Kenwyn, which below the town unite with a branch of Falmouth harbour called Truro creek or river. Truro is 300 miles south-west of London by the Great Western Railway, and 11 north of Falmouth to which there is a branch line. The town is regularly built, chiefly of granite, with spacious streets, through.the principal of which there flows a stream of water. The new cathedral of St Mary by Mr Pearson, R.A., one of the mosi important modern ecclesiastical buildings in Englana, is a fine example of Early English at its best period. The olv south aisle of the church previously existing is ingeniously incorporated in the new edifice. The secular buildings include the town-hall and market-house in the Italian style (1846), the corn exchange, the theatre, the public rooms, the music-hall, and the county library (1792). There is also a theological library, presented by Bishop Phillpotts in 1856 and largely augmented by a bequest of books in 1883. Among the educational and benevolent institutions are the grammar-school (founded by a member of the Borlase family, and haring two exhibitions at Exeter College, Oxford), the cathedral divinity schools, the Wesleyan middle schools, the litemry institution, the royal Cornwall infirmary, the dispensary, and a hospital for ten widows. There is sufficient depth of water in the channel of Truro creek to permit vessels of 70 tons burden to come up to the town quay. The principal imports are coal from Wales and timber from Norway, and the exports consist of tin, iron ores, lead, and zinc, from the mines in the neighbour hood. The population of the municipal borough (area 1171 acres) in 1871 was 11,049 , and 10,619 in 1881.
Truro is ono of the oldest towns in England. It is the seat of the stannary and other courts connected with the dachy of Cornwall (see Cornwall, vel. vi. p. 427). It was one of the ancient privileged tin coinage tomas. Anciently it was called Tueura, Treurs, and Truruburgh. It was a horough by prescription, but w3s incorporated by Reginald, earl of Cornwall. In the 12th contury it belonged to Richard de Lucy. In a charter of Henry VII. it is called the "rille de Tcuro." The gevernment was yested in a mayor and burgesses by Elizaheth, who gave the corporation juris. diction over the port of Fslmouth, the port dues of that torru heing collected by them until its incorporation by Charles II. Norden, writing of Trure in 15\%4, says, "there is not a towne in the west part of the shire more commendable for neatness of buyldinges, nor mere discommendahle for the pride of the people." In 1642 Sir Ralph Hepton levied here a large body of men for the king. By the Municipal Act Truro Tas divided into two wards, and is governed by a major, six aldermen, and eighteen councillers. The corpor, stion act as the urben sanitary anthority. Truro sent two representatives to parliament from the 23d year of Edward I., but ceased to be separately represented in 1885. By Act 39 and 40 Vict c. 54 it was constituted the head of a new diocese comprising th archdeaconry of Cornwall.

TRUST. In Roman and English law alike that leg relation between two or more persons implied in the mord trust was of comparatively late growth. The trust of English law is probably based upon a combination of the Roman conceptions of usus and fideicommissum. To usus is perhaps due the name as well as the idea of that right over property, coordinate with the right of the nominal owner, possessed by the person haring the use. To fideicommissum appears to be due the name as well as the idea of that confidence reposed in another which is the essence of the modern trust. Usus was in Roman law a personal servitude, or right of one person over the land of another, confined to his personal wants and without the right to the produce and profits which ususfructus carried. It' has little in common with the use of English law but the name and the conception of a dual orrership. The fideicommissum is more important; see Rousan Law, pul. xx. p

Dy the legislation of Justiman the law of Iegata was practically assinilated to that of indeicommissm. The only thing that distinguished the one from the other was the mode in thich the gift was made: if by words of direct bequest, it was a legatum, if by precatory words, a fideicommissum. It may be noticed, as an illustration of the course afterwards taken by the law in England, that fideirommissa in favour of the church were so far favoured over others that if paid over by mistale they could not be recorered. In addition to usus and fideiconmissum, the Roman division of ownership into quiritary and bonitary (to use words invented at a later time) may perhaps to some eztent have suggested the English division into lepal and equitable estate. The two kinds of ownership were analgamated by Justinian. Legal and equitable estate are still distinct in England, though attempts have been marle in the direction of amalgamation. The gradual naunter iu which the beneficiary became subject to the burdens attaching to the property of which he enjoyed the benefit was a feature common to both the Roman and the English system.
U'ses in Eurly English Lrvo. - The uso or trust ${ }^{2}$ is said to have Leen the invention of ceelesiasties well acquainted with Roman lav, the object being to eseape the provisions of the laws against Nurtmais (q qu.) by obtaining the convegance of an estate to a frieud on the understanding that they should retain the use, the actual profit and enjoyinont of the estate. Uses were soon extended to other purposes. They were found raluable for the defeat of creditors, the aroiling of attainder, and the charging of portions. A use had also the advantage of being freo from the incidents of feudal tenure: it could be aliensted inter rizos by seeret convesance, and could be devised by will. In many cases the feoffee ${ }^{2}$ to uses, as he was called, or the person seised to the uso of another. seems to have been specially cliosen on account of his rank and station, which would enable hinn to defy the common law and protect the tstate of his cestrici quc use, or the person entitled to the beneficial enjeywout. Tho Aet of 1 Ric. II. c. 9 was directed agaiost the choice of such persons. This alienation of land in nse was looked upon with great disfavour by the common law courts, in whose ejes the cestui que use was only a tenant at will. Pessibly the cround of their refusal to reeognize uses was that the assizes of tl:s Ling's court could only be grauted to persons who stood it a fendas eclation to the king. The denial of the right followed the denis! of the remody. The use was on the other hand supported by the Conirt of Chancery, and execution of the confidence reposed in the fcofies to uses was enfored by the court in virtue of the general furisdiction which as a sourt of conscience it ciaimed to exercisr iper breach of faith. Jurisdiction was no doubt the more readily assumed hy eeclesiastical judges in favour of a system by which the enureh was generally the gainer. A double ownership of land thus graluaily arose, the nowinal and ostensible owuershi p, 一the ouly ene acknowledged in the courts of common lave, -and the beneficial cwnership protected by the Ceurt of Chansery. The reign of Henry \searrow. to a great exteut corresponds with that "f Aapurel us at Roine, as the point of time at which legal recognition was giveal to rinst had previously been binding only in honour. The weans of briaging the feoffee to uses before the court was the writ of subpene, said to have been invented by John de Wattham, bshhop of Salisbury and taster of the rells in the reigu of lichard II. Dy meane of this writ the feoffiee to uses could be compelied to auswer on oath the claina of his cestui que use. The doctrine of the Court of Chancery es to the executiou of a uso varied according as thero was transmntation of possession or not. In the former case it was Lrnecessary to prove consideration ; in the latter, generally a case of bargain and sale, tho court would not cmforce the use unless it was executed in law, that is, unless there was a valuable consideration, even of the smallest anmount. Where wo consideratiou crull be proved or implied, the use resulted to the feofor. This theery Led to the insertion up to a recent date in deods (especially in the lease of the lease and release peried of conveynacing) ot a nemmal consideration, generally five shiillings. Lands eitber in possession, reversion, or remainder could be granted in use. Most persens could be feeffees to uses. The king and coriorations aggregate

[^255]worc, however, exceptions, and were entitied to hold the lands discharged of the use. Ou tho accession of Lichard III., who from his position of authority had heen a favourite feoliee, it was necessary to pass a special Act (1 Ric. I1I. c. 5), vesting the lands of which ho had been feoffee either in his co-feolfecs or, io the albence of sofeoflees, in the cestui que use. The practical convenicuce of uses was so obvious that it is said that by the reign of Heary VII. most of the land in the kingdem was held in use. The freedom of uses from liabilicy to forfenture for treason must have led to their general adopition during the Wars of the Roses. ${ }^{3}$ The secrecy with which a use could be trausferred, coatiary aa it was to the publieity required for livery of Seisin ($q . v_{0}$) at common law, led to the interforence of the legislature on several ocrasions hetween the reigns of RichardII. and Hemry VIIf, the general tendeney of the legislation being to make the cestui yue use more and more suoject to the burdeus incident to the ownership of land. One of the most important statutes was the Statute of Mortmain (15 Ric. II. c. 5), forbidding evasion of the Statute De Religiosis of Edward I. oy means of leotiments to uses. Other Acta enabled the cestui que use to transfor the use witheut the eoncurrence of the feaflee to uses (1 Ric. III. c. 1), made a writ of formedon maintainatle against him (1 Hen. VII. c. 1) rendered bis heir liable to wardship and relief (4 Hen . TII. $\mathrm{c}_{\text {. }}$ 17), and his lands liable to execution (19 HeL VII. c. 15). At length in 1535 the famous Statute of Uses (27 Hen. ViII. c. 10) was passed. ${ }^{4}$ Tho prearulle of the statute enumerates the mischiefs which it was cousidered that the universal prevalence of uses had occasioned, among others that by fraud ulent fooffaents, fines, recoverirs, and other like assurances to uses, confictences, sud trusts lords lost their feudal aids, men their tenancies by the curtesy, momen thrir dower, manifest periuries in trials were committed, tho king linst the profits of the ?ands of persons attuin ted or enfeoffed to the use cf alrens, and the kiog and lords their rights of year, day, and waste, and of eacbeats of ielons' lands. To remedy this state of things it was enacted, zoner alia, that, where any person was seised of any bereditaments to the use, confidence, or trust of any other furson by ary uneans, the person having such use, confidence, or trusi should be seised, deetned, and adjulged in lawful seisir, estate, and possession of such hereditarmenta. Fuil legal ronedies were given to the ceatui que use by the statute. Ile was crabled to distrain for a rent charge, to have action, entry, cendition, \&c. The effect of this edretment was to make the cestui que use the owaer at law as well as in equity (as had been cono onee before under the oxceptional circuastances which led to 1 Ric. III. O. 5), provided that the use was one which before the statute would lave been enforead by the Cou't of Chancery. For some timo alter the passing of the statute an equitable as distinet from a legal estate did not pist lunt the somewhat narrow construction of the statute by the common law courts in 'Tyrrel's ease (1557) enabled estates coguizable ouly in equity to be again created. In that case it was lield that a use upon a use could not be exceuted; therefore in a feoffment to A and his heirs to the use of B and his heirs to the use of C and his heiry only the first use was executed by the statute. The use of B lieing executed in him, that of C was not nekuowleelged by the common daw judges; but equity regarded C as beneficially entitled, ano his mote:cst as an equitable estate lield for him in trust, corvesponding to that whirh 13 would have had liffoco ibe statute. The position taken by lue Cou't ct Chancery i: trusts maj be conpared with that taken in Montgace (q.v.). Ithe Julicature Act, 1873, while oot going as far as the Statute of Uses anl combunure the legal and equitable cstales, makes eyuitalla rights cognizallo in atl nomrts From the decision in 'lyrrel's Hole anolern iaw of uses and trusts. lu modern legal lar.नunege nse is restricted to the creation of legal estate under

Statuli. of l"ses, trust is confineut to the equitable estate of the cestui yure turst or bunediciary.
Ust since 1535. - The statuto of Uses is still the hasis of conveyancug. A grant in a deed is stial, a fer the alterations in the law mado by tho Conreyancing Act, 1881 , made to and to the uso of A." The statute does sot, however, apply iudiscriminately to ail eases, ga nuly ceriain uses are executed by it. It doos not apply to leas holeis or cojyholus, or to cases where tho graratee to uses is anythine more than a mere passive instrumat, e \because g., where thero is any direction to him to sell the property. Tho seisin, too, to be excoute 1 by the statute, must be in another thant him who has tho nse, for where A is seised to the use of A it is a common law grant. The dill rence is important as far as regards the doctrine of Possession (q.v.). Constructive possession is ghven ly a deod operating mader the statute even before entry, Lut not by a common law grant (at any rate sufficient to entitle the grantee to be registered as a voter), until actual recejpt of ront by the

3 The use, as in later times the trust, was, however, forfeited to the crown on attainder of the feofiee or trustee for treasen.

4 it was adopted in lreland exactly a century iater by 10 gon: 1. c. 1 (lr.). The law of usea and trusta io Ireland is practieally tbo as nur as tlat, in England, the main differeners heing in procellure rather Hiay iv substantive law.

- Dyer's Reports, 155 n.
gannlep. The operatiou of the Statute of Uees was supplemented by the itarute of Inrc!ments and that of Wills. (See WILL.) The Statute of Lusolments (27 Hen. VIII. c. 16) enacted that D ? bargain aul sale should pass a freehold unless by deed indented and involed within six months after its date in one of the courts at Westininster or with tho custos rolulorum of the county. As tho statute referred only to freeholds, a bargain and sale of a leasehold interest passed without inrolment. Conveyancers took advantage of this omission (whether intentional or not) in the Act, and tho practical effect of it was to introduce a modo of secret alienation of real property, tho lcaso and release, which was the general form of conveyanco up to 1845 . (See Real Estate, Saleo) Thus the pubiicity of transfer, which it was the special object of the statiute of Uses to effect, was alnost at oace defeated. In addition to the grant to uses there were other modes of conveyance under the statute which are now obsolcte in practice, viz., the covenant to stand seised and the bargain and salc. Wider the statute, as before it, the use bas been found a raluab? means of limiting a remainder to the person creating the use and of making an estato take effect in derogation of a former estato by means of a slifting or epringiug use. At common law a frechold could not bo nuade to commence in futuro; but this end moy bo attained by a shifring ase, such as a grant (commoa in marriago settlements) to A to the ase of E in fee sinple until a marriage, and after the celebration of the marrisge to other uses. Au example of a springing use would he a grant to A to such uses as B shouid appoint and in default "I and until appointment to C in fee simple. The difficulty of leciding where the scisin was during the suspension of the uso led to the inveution of the old theory of scintilla juris, or continued possibility of seisin iu the grantee to uses. This theory was holished by 23 and 21 Vict. c. 38 , which enacted that all uses should take effect by force of the estate and seisin originally vested in the person seised to tloe uses. The most frequent instances of a springing nse are powers of appointment, usual in wills and settlements. There liss been inucb legislation on the subject of powers, tho main efect of which has been to gire greater facilities for tlicir exccution, relcase, or abandomment, to aid their defective exccution, and to abolish tize old doctrine of illusory appointments.

Trusts.-A trust in Englisb law is defingd by Mr Lewin, adopting Coke's definition of a use, as "a contideuce reposed in some other, not issuingout of the lard, but as a thiug collateral, annexed in privity to the estate of the land, and to the person touching tbe land, for which cestui guee trust bas no remedy but by subpoena in Chancery." The termi er isist or trust csiate is also used to denote the beueficial interest of the cestui que trust. The term truster is not nsed, as it is in Scotland, to denote tho creator of the trust. A trust lias some features in common with Costract (q.e.); but the great clifference between them is that a contract can only be enforced by a party or one in the position of a party to $i t$, while a trust can he, and generally is, enforced by one not a party to its creation. It has more resemblance to fideicommissum. But the latter could unly we created by a testamentary instruneut, while a trust can be created either by will or inter viros; nor was there any trace in Ronau law of that permanent legal relation which is suggested bj the position of trustec and cestui que trust. The heir, too, in Roman law was entitled, from 50 A.d. to the reign of Justinian, to one-fourth of a hereditas fulcicommissaric as agaiust the benelieiary, while the very essence of the trust is its gratuitous character. Trusts may be divided in more than oue way, according to the ground taken as the basis of division. One division, and perLajis the oldest, as it rests on the authosity of Bacon, is into simple aod specint, the first being where the trust is simply vested in a trustee \&ill the asture of the trust left to construction of law, the sewind where there is an act to be performed by the trustee. Ansther divisiou is intc. lavoful and unlauful, and corresponds to Bacons division into i.ntents or confideuces and frauds, covins, or collusions. A third division is into public and private, tho former beiug synonymous rith charitable trusts. A division often adopted in wuderu text-books, snd recognized by parliament in the Trustce Act, 1850 , is into express, iinplich, and construclive. An express trust is determined by the person creatiug it. It may be either exerated or cxecutory, the furmer where tha limitations of tho equitali, interest are completra and final, the latter whero such limita. tinus are intended to setvo merely as minutes for perfecting the settiement at some futuro period, as in the caso of marriage articles drawn op, na a basis of a marriage settlement to be in conformity with thelu. An implien? trust is forunded upon the intention of the jerson creating it ; examples of it are a resultiag trust, a precatory trust, aud the trust beld by the vendor on behalf of tho purchaser of an estate after contract and beforo oonveyance. In this case the vendor is sometimes calle da trusteo sub modo and tho purchaser a costui yue trust sub muilo. A constructive trust is judicially created frolu a considerati un of a persou's conduct in order to satisfy. the demanils of ulstice, without reference to intertion. The distinction herween an im" very ronsistently mesmetainel. Thus ths josition of a vendor towarls a purchisp:r after contract is sometinies called a construc-
tive trust. The pressnt lary goreming trusts rests upon the doctrines of equity as altered by legislation. Its great importance bas led to its beceming one of the most bighly develeped derrartments of equity. Tho devolution of successive interests in wills and settleinonto is almaat wholly attained by means of trusts.

Who may be a Trustee or Cesiui que Trust. - The mocorn Trust is considerably more exteusive in its operation than the ancient nse. Thus the crown and corporations aggтegato can bo trustees, and personalty can bo beld in trust. Provision is made lyy tho Manicipal Corporations Act, 1859, for tho administration of charitabls and special trusts by municipal corporations. The cromi does not appear to be a trustes to as complote a desres as a subject may be. Unsuccessful attempts luave recently beea made to impress the cromn, or a secretary of state as agent of the crown, mith trusts of funds voted by parliament for the public service, of booty of war granted by rcyal marrant, and of money paid over by a forsign state in pursuance of a treaty. There ars cortain persons who for obvious reasons, even if not legally disqualifed, ought not to be eppointed t.ustees. Such are infants, lueatics, persons domiciled abroad, felons, bankrupts, and cestuis quetrusicnt. The appointment of any sucb persow, or the falling of any existing trustee into eucb a position, is gencrally gronnd for application to the court for appointment of a new trustee in his place. Any cne may ba a'cestui que trust except a corporation aggregate, which cánnot bo a cestui que trust of rcai estate without a licenco from the cromb.

Creation and Extinction of the Trust. - A trust may be created either by act of a party or by operation of law. Where a trust is created by act of a party, the creation at common law yeed not be in writing. Tho Statute of Frauds (sce Fraud) altered the commou law by enacting that all declarations or. creations of trusts or confidences of auy lauds, tonements, or bereditaments shall be manifested and proved by some rriting, signed by the party who is by law cnabled to declare such trust, or by his last will in briting, or elso they slall be ntterly void and of none effect. Trusts arising or resulting by inıplication or construction of law are excepted, and -it has beet beld that tho statute applies ouly to real estate and cbattels real, so that a trust of personal chattels may still be declared by parol. The declaration of a trust by the crown must be by letters patent. Trusts created by will must conform to the requiremeats of the Wills Act (see Will). Except in the case of charitable trusts, the cestui que trust must be a definite persou. A trust, for instance, merely for keepiag op family tombs is void. Aiteration of tho trust estate by alpointmeut of a new trusteo conld up to 1360 ouly bo male whero tho instrument creatng the trust, gare a power to so appoint, or oy order of tho Court of Chancery. Eut now by tho Conveyancing Act, 1881 (superseding Lord St Leonards"s Act of 1860), the surviving or continuiug trustee or trustees, or the personal representatire of the last surviving or continuing trustee, may nominate iu writing a netw trustee or new trustees. On such appointment the number of trustees may be increased. Existing trustees may by deed consent to the discharge of a trusteo wishing to retire. Trust property may be vested in wew or continuing trustees by a sinple declaration to that effect. By the Conveyancing Act, 1882, a seprarate set of trmstees may be appoisted for any part of the property beld on distinct trusts. Trusts created by operathon of law are either those which are tho etfect of the appication of rules of equity or those which liare been constituted by a judicial authority. Tley include resulting and constructive tiosts. A resulting trust is a species of implied trust, and consists of so much of the equitable interest as is murlisposed of by tle instrument creating the trust, which is sail to result to the creator and his representatives. An example is the purchase of an estate in the namo of the parcliascr aud others, or of otbers only. Tiere the bene氏cial interest is the purcliaser"s. An cxauple of a construetive trust is a resewal of a lease by a trustee in lis own namse, where tho trustee is held to be constructively a trusteo for those intercsted in the benefcial term. An instance of a constnative trust unon rhich the courts have ofter beeu calied mpon to lecide is the fiduciary relation between the promoter of a lreposed joint-stock company and the members of tho company when forment. The other trusts falliug uor?er tlae head of trusts by operation of law wonld be those imposed upoar a trustee by order of a court, even th:ougb they are imposed in pursuanco of provisions contained in a trust created by a party. Such would be the trusts which bare como within the cognizance of tho court by virtue of tho Trustee Act, 1850, or in any other way. The powers of tlee court orer trusts have been much exteniled by legislation. Tho Act of 1850 (13 and 14 Tict. c. 60) enabled the Court of Chavcery to alppiut new trustees whero expectient, and to make vesting orders in many coses whero such orders could not pueviously care beca made, as where a trustee was a lunatic, or an infant, or refused to convey. Fhis Act was extended by tho Trustee Extension Act, 1852 (15 and 16 Vict. c. 5... By the Conveyancing Act, 1881, a trusteo ar. pointed by the Chancery Division is to liave the samo powers as if ho had hean originally appointed a trustce by the iustruannt creating the trust. The Bankuptcy Act, 1883 , eaables tho court to appoint a new tustes in the place of a baukrupt trustee. Bo-
sides being daly created, it is necessary for tho validity of the trust that it should be a lawful one. An unlawful trust is one which contravenes the policy of the law in any respect. Examples of such trusts aro trusts for a corporation without licence, for a perpetuity, and for purposes subversive of morality, such as trusts for !legitimate children to be hereafter born. Superstitious uses (see Foman Catholio Church, vol. xx. p. 632) also fall under this head. There are also certain trusts which are avoided by statute mader j articular circumstances, sueh as settlements in fraud of alitor (see Bankruptcy, Settlement). The law cannot be
aded ly attempting to constitute a secret trust for an unlawful purpose. If an estate be devised by words prima facie carrying the beneficial interest, with an understanding that the derisee will toid the estate in trust fer sueh a purpose, he may be compelled t. answer as to the secret trust, and on acknowledgment or proof of it there will be a resulting trust to the heir-at-law. In the case of' an adrowson suspected to be held for the benefit of a Roman Catholic patron, there is a special enactment to the same effect (see Quare Impedit). Tho rules of equity in charitable trusts (which include all those mentioned in the preamble to 43 Eliz. c. 4) ${ }^{1}$ are less striet than those adopted in private trusts. Charitable trusts must be lawful, e.g., they must not contravene the Statutes of Mortmain ; but a wider latitudo of construction is allowed in order to carry out the intentions of the founder, and they will not be allowed to fail for want or uncertainty of objects to be benefited. The court, applying the doctrine of cy pres, will, on failure of the original ground of the charity, apply the funds as nearly as possible in the same manner. On this prineiple gifts originally made for purely charitable purposes have been extended to educational purposes. Further, trustees of a charity may act by a majority, but ordinary trustees cannot by the act of a majority (unless specially empowered so to do) bind a dissenting miuority or the trust property. A trust estate is subject as far as possible to the rules of law applicable to a legal estate of a corresponding nature, in pursuance of the maxim, "Equity follows the law." Thus trust property is assets for payment of debts, may be taken in execution passes to creditors in bankruptcy, and is subject to dower and curtesy, to the rules against perpetuities, and to the Statutes of Limitation. This assimilatiou of the legal and equitable estates has been produced partly by judicial decisions, partiy by legisla tion. A trust is extinguished, as it is created, either by act of a party or-by operation of law. An example of the former mode of extinction is a release by deed, the general means of discharge of a trustee when the purposes of the trust have been accomplished. Extinetion by operation of law takes place when there is a failure of the objects of the trust: $\varepsilon_{0} g_{\text {. }}$, if the cestui que trust die intestate without heirs or next of kin, the trustee jetains the property discharged of the trust if it be real estate, if it be persoualty it falls to the crown. Equitable interests in real estate abroad are as a rule subject to the lex loci rei sitz, and an English court has no jurisdiction to enforce a trust or settle a scheme for the administra tion of a cbarity in a foreign country. An English court has, however, jurisdietion to administer the trusts of a will as to tho whole real and personal estate of a testator, cven though ouly a very small part of the estate, and that wholly persoual, is in England. This was decided by the House of Lords in a well-known case in $1883 .{ }^{2}$

Rights and Duties of the Trustce.-The principal general properties of the office of trustec, as given by Mr Lewin, are these:-(1) A trustee having once accopted the trust cannot afterwards renounce. (2) He cannot delegate it. (3) Iu the case of co-trustees the offico must be exercised by all the trustees jointly. (4) On the death of one trustee there is survivorship : that is, the trust will pass to the survivors or survivor. (5) One trustee shall not be liable for the acts of his co-trustee. (6) A trustce shall derive no personal benefit from the trusteeship. The office cannot be renounced or delegated, because it is one of personal confidence. It can, however, be resigned, and recent legislation, as lias been already stated, has given a retiring trusteo large powers of appointing a successor. Iu the case of the death of a single or last surviving trustee of real estate, the trust estate by the Conveyancing Aet, 1831, now derolves unon his personal representative instead of upon his heir or devisee. The liability of one trustee for the acts or defanlts of another often raises rery difficult questions. A difference is made between trustees and oxecutors. An executor is liable for joining in a reccipt pro forma, as it is not necessary for him to do so, one executor baring authority to act without his co-executor; a trusteo can show that he only joined for conformity, ad that another received the money. A trustee's receipt in writing is, under tho Conveyancing Act, 1881 (superseding Lord St Leonards's Act of 1860), \approx sufficient discharge, and exonerates the person paying from seeing that the money paid is duly applied according to the trist. If one trustee be cognizant of a breach of trust committed by another, and conceal it or do not take active measures to protect the cestui que trust's interests, he will be liable for the breach of trust. An inderonity

1 See Charities, where the preamble of the statute is set out in full.
2 Ewing v. Orr-Ewing, Law Reports, 9 Appeal Cases, 34.
clause is now implied by statute in every trust deed, but this does not protect a trustee against liability which would attach at law. A trustec, if he commit a breach of trust at the request of his cestui que trust, may secure himself by an indemnity, provided that the cestui que trust has been fully informed of the faets of the ease, and is not under any disability to consent, such as infancy. The rulo that a trustee is not to benefit by his office is subject to some exeeptions. He may do so if the instrument creating him trustee specially allows him remuneration, as is usually the case where a solicitor is appointed. Where the trust entirely fails, as has beeu said above, the trustee is indireetly remunerated by his right to retain the trust estate. The main duties of trustees are to place the trust property in a proper state of security, to keep it (if personalty) in safe custody, and to properly iavest and distribute it. A trustee mast bo carcful not to place himself in a position where his interest micht elash with his duty. As a rule he cannot safely purchase from his cestui que trust while the fiduciary relation exista between them. In all purchases with trust money he is bound to olitain the best price, unless where an Act of Parliasnent, like the Housing of the Working Classes Aet, 1885, specially authorizes sale at an under value. Investments by trustees demand special notice. The general rulo is that a trustee must take as much care of the trust property as of his own. He is, therefore, justified in following the usual conrse of business adopted by prodent men in making investments, e.g., by employing a stock-broker in the ordinary way. At tho same time he has not an uncontrolled power of investment, for (unless authorized by the instrument creating the trust) he cannot lend trust money on personal security or invest in shares of a private company. A trustee of shares may be liable as a beneficial owner, even thongh his name appears on the register of the conipany as a irustee. By recent legislation trust. ees, where not expressly forbidden by the instrument ereating the trust, have either an absolute or qualified right to invest in certain securities. They have an absolute right to invest in real securities in the United Kinglon (but not on a second mortgage), in charges or mortgages under the Improvement of Land Aet, 1864, in consols, exchequer bills. or any security the interest whereon is guaranteed by parliament, in Bank of England, Bank of lreland, East India, and Metropelitan Board of Works stock. They have a qualifed power of investment (that is, an extension of poners already given in the instrument) in debentures or debenture stock of railway and other compauies, and of corporations and local authorities under the Local Loans Act, 1875, in mortgage deben. tures uhder the Mortgage Debenture Acts of 1865 and 1870 , and in securities of the Isle of Man Government. Trustees under the Settled Land Act, 1882, have somewhat larger powers as to railway stock. lo many cases there are restrictions on investment in stock certificates payable to bearer, although in authorized securities. A power of varying investments is generally implied, though not erpressly giren by statute, as in Scotland. The duties of trustees in the distribution of trust funds have been made less onerons by the Trustee Relief Acts of 1845 and 1849, whicl enabled trustees or a majority of them to pay iuto the Baak of England to the account of the rarticular trust any moneys belonging to the trust, thus bringing the property within the jurisdiction of the court, from which it can only he obtained on petition. Similar powers were conferred upon trustees of charities by 18 and 19 Vict. c. 124. By more recent Acts (22 and 23 Vict. c. 35,23 and 24 Viet. c. 38) application for advice may be made by a trustee to a judge of the Chancery Division on a petition or summons. The liability of a trustee to his cestui que trust on any elaim for property held on an express trust or in respect of breach of such trust is not barred by any statute of limitations, 36 and 37 Vict. c. 66 , s. 26 (2). The powers of trustees have lately been considerably extended by the Conveyancing Act, 1881, and the Settled Land Act, 1882, in other matters besides those that have been already noticed. One of the mast important of the new yowers is that of compounding, compromising, or abandoning claims relating to the trust. For the trustee in bankruptcy, see Bankrdptcy. The trustee to preserve contingent renainders, at one time common in conveyancing, has ceased to be necessary (see Remainder, Term). A bare trustee is one to whose office no duties were criginally attached, or who, though such duties were attached, would on the requisition of the cestui que trust be compellable to convey the estate to him or by his direction. The term is used in some Acts of Parliament, for instance the Vendor and Purchaser Act, 1874. ${ }^{3}$

Rights and Duties of the Cestui que Trust.-These may be to a great extent deduced from what has been already said as to the correlative dutics and rights of the trustee. The cestui que trust has a general right to the due management of the trust property, to proper accounts, and to enjoyment of the profits. He can as a rule only act with the concurrence of the trustee, unless he seeks a remedy against the trustee himself. Thus the trustee must be a party to an action brought in respect of the trust estate, and must join in presenting a petition in bankruptcy on account of a debt
3 The phrase "hare trust" oceurs as long ago as 1086 , Nevil v. Saunders,
1 Vernnn"s Ren. 415 .

Sue to the estate, but the cestui que trust on giving indemnity can tequire the trustee to lend his name as a party. He may also require the trustee to execute conveyances of the legal estate according to his directions. Trust property, if parted with by the trustee in fraud of the trust may be followed by the cestui que trust, even into the hands of a purchaser for value with notice of the trust. The cestui que trust may lose his rights by fraud, by laches, and by concurrence or acquiescence in a breach of trust. Though no lapse of time bars his remedy against the trustee personally, he cannot, by the terms of the Real Property Limitation Act, 1874, recover land or reut vested in a trustee upon an express trust sfter twelve years from the time when the right accrued or six years after the cesser of any dissbility. The equitable right of the cestui que trust has sometimes been recognized by statute in cases There it mould be manifestly unjust that be ahould suffer disability by virtue of his having merely an equitable interest. The cestui que trust has the right of voting for members of parliament, and is qualified to serve as a juror. On bankruptcy of the trustee the trust estate is not affected. Nor was it affected even before the Felony Act, 1870 , by the conviction and attainder of the trustee for felony. Attainder of the trustee for treason involved, however, forfeiture of a trust estato of inheritance. (See Treason.) The recognition of the cestui que trust as owner is otill not complete. Thus no notice of a trust is recognized in certain public documents, as the books of the Bank of Engiand and the registers kept under the Merchant Shipping Act, 1854, the Companies Act, 1862, the Land Transfer Act, 1875, sind the Colonisl Stock Act, 1877.
Procedure. - This $1 s$ regulated almost entirely by legislation. Proceedings relating to a trust may be brought in different courts of first.instance, -(1) the Chancery Division of the High Court of Jastice or the Chancery Court of the County Palatine of Lancaster, (2) a court of bankruptcy, (3) a county court, (4) a criminal conrt. (1) By the Judicature Act, 1873, § 34, the execntion of trusts, charitable or private, is assigned to the Chancery Division. The rules of the Sapreme Court, 1883, provide for epecial indorse. ment in an action on a trust, for the parties to the action, for interrogatories and pleading, and for proceeding by originating summons. (See Sumarss.) Forms of pleading are given in the appendix to the rules. An injunction rather than an action may eometimes be the proper remedy, as in the case of threatened breach of trust. The Trustee Relief Acts, the Trustee Act, and Lord St Leonards's Act of 1855 provide for proceeding by petition or summons. Applications nuder the Conveyancing Act must be in chambers in the first instance, and so must applications under the Trustee Relief Acts rhere the money or securities in conrt do not exceed $£ 1000$ or $£ 1000$ nominal value. The procedure in charitable trusts differs to some extent from that in use in private trusts. The most nsnal course of proceeding is by information in the name of the attorney-gencral. Another mode is by petition under Sir Samnel Romilly's Act, 52 Geo. IlT. c. 101 , supereeding the cumbrous procedure by commission which had been previously in use under 43 Eliz. c. 4. A third mode is under the potiers of the Charitable Trusts Acts, the first of mbich was passed in 1853 . No proceeding under these Acts can be taken without the suthority of the charity commissioners. (2) The equitable dett due from the trustee to the cestui qne trust will support a petition in bankruptcy, and is a debt provable in bankruptcy. An order of discharge in bankruptcy does not release the bankrupt from any debt or liability inourred by means of fraudulent breach of trust, nor does it release a co-trustee of the bankrupt. (3) The County Courts Equitable Jurisdiction Act, 1865, confers on county colurts the authority of the High Court in the execution of trusts and proceedings under the Trustee Acts where the trust estrate dees not exceed £500 in smount or value. By the County Ccurts Act, 1867, applications may be made at chambers for transfer to a county court of an action pending iu the High Court where the property does not exceed $£ 500$ in amount or value. The same Act allows trust funds not exceeding that limit to be paid into the post office savings bank in a county court town in the name of the registrar. A county court has jurisdiction in charitable trusts where the income of a charity does not exceed $£ 50$. The county conrt rnles, 1886, contain orders regulating the practice with respect to both privace and charitsble trusts. Powers similar to those given to connty courts in England have been conferred upon the civil bill courts in Ireland. (4) At common lav trustees committing a fraudulent breach of trust could not be punished criminally. This was altered by the Fraudulent Trustees Act of 1857, now euperseded by the Larceny Act, 1861, under which a trustee on en express trust, wiother public or private, created by deed, sill, or instrument in writing, who with intent to defraud converts to his own nse or benefit or the nae or benefit of any other person than the cestui que trust, or for any purpose other than the public or charitable purpose, or otherwise disposes of or destroys such property or 3ny part thereof, is guilty of misdemeanour and punishable with penal servitude for a term not exceeding seven years. No prosecution is to be commenced without the sanction of the attorney.
general or-where civil procecdings have been already taken against the trustee-without the sanction of the civil court. The offence cannet be prosecuted at quarter sessions. ${ }^{1}$
Scolland.-The history of the lew differs considerably from that of England, though perhaps the position of the Scotch trustee is now not very different from that of the trustee in England. The Statute of Uses did not apply to Scotland, since neither fhat nor any similar legislation was necessary in a syotem in which law and equity were administered by the same tribunals. Trusts seem to have existed from time immemorial, and have been frequently regulated by statute. The policy of the English Statute of Frauds was no doubt intentionally imitated in the Act $1696, \mathrm{c} 25$, enacting that no action of declarator of trust should bo sustained as to any deed of trust made for thereafter, except upon a declaration or back bond of trust lawfully subscribed by the person alleged to be trustee and against whom or his heirs or assiguees the declarator should be intended, or unless the same were referred to the eath of the party simpliciter. The Act daes not apply to all cases, hut only to those in which by the act of parties documents of title are in the name of a trustoe, but the beneficial interest. in snother. The person creating the trust is called the trustcr, a term unknown in England. On the other hand the term cestui que trust is unknown in Scotland. The office of trustee is prima facie gratuitous, as in England, it being considered to fall under the contract of mandate. Some of the main differences between English and Scotch law are these. There is no presumption in Scotland of a resulting trust in favour of a purchaser. A trust which lapses by the failure of a beneficiary goes to the crown as ultimus heres, not to the trustee. The office of trustee is not a joint office, therefore there is no right of eurvivorship, and on the death of a trustee the survivors are incompetent to act, unless a certain number be declared or presumed to be a quorum, or the office be conferred on trustees and the accedors and survivors of them. Sometimes the concurrence of one trustee is rendered absolutely necessary by his being named sine quo non. The Court of Session may appoint new trustees, but generally appoints a judicial factor. There has been a considerable amount of recent legislation, chiefly in the direction of extending the powers of trustees and of the court, in trust matters. By 24 and 25 Vict. c. 34 (amended by 26 and 27 Fict. c. 115) an appointment of gratuitous trustees by deed or local act was to be held to include certain provisions usually included in deeds of sppointment, i.e., powers of resignation and of assumption of new trustees, and provisions that the majority of crustees accepting and surviving should be a quorum, and that each tustee ehould only be liable for his own acts and intromissions and should not be liablo for omissions. The Trusts Act, 1867 (30 and 31 Fict. c. 97), sdded to the common law powers of trustees by giving them authority to appoint factors and law agents, to discharge trustees who lave resigned, to grant leases for a limited period, to uplift, discharge, or assign debts, to compromise claims, to grant all necessary deeds, and to pay debts due by the truster or the trust estate. It also gave the Court of Session power (exercisable by the lord ordinary in the first instance) beyond what it possessed by its nobile officiun, in cases of expediency, of selling the trust estate, of granting feus or long leases, and of borrowing and excambion. Power was given to trustees to appoint additional trustees by dced of assumption, and where such assumption could not he made the court might appoint. Anthority was conferred upon the beneficiary of a lapsed trust to complete title on petition. The powers of investment given to trustees have since been largely increased by the Trusts Amendment Act, 1884. They are now much the same as those allowed in England. The principal differences are that in Scotland there is a statutory porer to vary securities, and that statutory investment by a Scotch trustee is not allowed in Bank of Ireland stock or on real security in Ireland. The Titles to Land Consolidation Act, 1868 (31 and 32 Vict. c. 101), contained provisions as to the mode of completing title by a judicial factor on a trust estate and by trustees in seqnestration and as to the vesting in trustees of heritable property conveyed for religious or educationsi phrposes. The Conveyancing Act, 1874 (37 and 35 Vict. c. 94), dea?t with compositions payable by trustees on the death of a vassal, and with completion of title by the heir of a sole or last surviriar trustee, by a successor of an ex officio trustee, and by trustees where words of conveyance are not expressed to be in favour of euch trustees. Forms of documents relating to trust property will bs found in Juridical Styles and in the schedules to the Acts of 1867, 1868, and 1874. A conveyance in trust may be either absolute with a back-bond or in form a conveyance in trust. A trustes is responsible for the due execution of the trust, snbject to the limitations contained in 24 and 25 Vict. c. 84. The provision $=6$ tbe Companies Act, 1862 , that no trust is to be entered on the

1 The principal authority is Lewin's Law of Trusts (Sth ed., 1885). The powers of trustees under the Converancingand Settled Land Acts will be fourd anmmarized in the treatises on these acts by Wolstenholme ond Tarner. Tho principal authorities on charitatle trusts are Shelford and Todor (1802). For the history may be conaulted Bacon, Law Tracts; Reading, On the Statute of Uses; Gilbert, On Uscs; Sanders, On C Ses and Trusts; Spence, Equitable vir
diction, vol. 1. p. 435 ; Digby, Hist of the Law of Real Pronerty, chapa vi. vi.
register, does not apjly to Siotland. A trustee, a member of a pint-stock company, though entered on the register as a trust disponee, may incur pursonal liability as a partuer, unlesa the cou. trary be cxpressed. Liability under such circumstances was established ide the litigation which followed the ouspension of the City of Glasgow Bank in 1878. ${ }^{1}$ A sheriff court las jurisdiction over actions of declarator, relating to queations of leritable right or title, where the value of the subject in disputa loes not exceed $£ 50$ by the year or $£ 1000$ in value (40 and 41 Vict. c. 50). A judicial factor may be appoiuted by the sheriff court where the yearly value of the estate does not exceed $£ 100$ (43 and 44 Vict. c. 4). Fraululent trustees aro criminally liable at common law, not liy statutory eunctment, as in England. Adjudieation on a trust bond is a mode of obtaiuing the decision of tlie Court of Session ou a bond by a fictitious creditor, for the purpose of giving title to the heir, hy preventing hia liability to possible passive representatiou. It is regulated by 1695, c. $24 .{ }^{2}$

United Slates. - In New York and some other States uses and trusts have been abolished (with certain exceptious), and every oitate, subject to thooo exceptions, is deemed a legal right cogniz. able in courts of law. The exceptiona are in New York implied tuusts and express truste to sell land for the bosetit of creuitors, to sell, inortgage, or lease laıds for the benefit of legatees, or for the parpose of satisfying any charge thercon, to recqive the rents and profits of lands and apply them to the use of any person duriug the life of such persou or any shorter term, or to receive such sents and profts, and accumulate the aanno within the linits allowed by the law. Trusts of porsoualty for public purposes aro wery generally allowed in States where mivate trusts do not exist. I'rovisions simalar to those of the English Statute of Frands have been generally adopted by the Statea which recognize private trasts. Some States go further thau the statute and allew the creation of trusts (other than those arising by implication or operation of lar) euly by means of will or deed. Where the trust is of real estate, the deed must gencrally be registered (sce Registratron). Forma of deeds of trust are given in the Statutes of Virginia and other States. The English doctrine of cy pres ceems to have been edopted ouly in Ponusylvauia. Conveyences in trust for the settlor are geuerally void against creditors by the policy of the Acts of Elizabeth. By tho legislation of some States a freehold may commence in feturo without the operation of the Statute of Uses. Societies of professional trustees, receiving a percentage of the incoms of the property as paymeut for their tromble and liability, are frequently recoguized by law. Such societics are geuerally moder an obligation to make periodical returns of their receipto and expenditure. A pubicic trustee as a corpuration sole exists in soine Stateg. Trustee process in the New England States is what is gemerally known as garnishee procesa in Eugland, that is, a means of reaching property and credita of a debtor in the liands of third persous for the wenefit of an attaching creditor. ${ }^{8}$
(J. W W.)

TSARITSYN, a district town of the government of Saratoff, Russia, situated on the right bank of tho lower Volga where it suddenly turns towards the south-east, only 40 miles distant from the Don. It is the terminus of a railway line which begins at Riga ard, running southtastrards, crosses all the main lines which radiate from Moscow to the south. It is also connected by rail with Katatch on the Don, where merclandise ifrom the Sea of Azoff is disembarked and transported by rail to Tsaritsyn, to be sent thence by rail or steamer to different parts of Russia. Corn from Middle Russia for Astrakhan is trausferred from the railway to boats at Tsaritsyn; timber and wooden wares from the upper Volga are unloaded hero and sent by rail to Katatch; and fish, salt, and fruits sent from Astrakhan by boat up the Volga are here unloaded and despatched ly rail to the interior of Jussia. The town has grown rapidly since the completion of the railway system, an d has a large trade in maplitha from Baku, which is shi pped up the Volga to Tsaritsyn and sent thence by rail to the interion of liussia. The railway betweeu the Basknncliak salt lakes of Astrakhan and the Volga Las mado Tsaritsyn also a àputt for tho salt trade. In $188210,000,000$ ewts. of merchandise, valued at one million sterling, were landed at 'Tsaritsyn, and since then the

[^256]figures have notally increased. In addition Tharitsyn is the contre of thie trade connected with the mustard plantations of Sarepta, Duborka, and the neighbourhood; 170,000 cwts. of mustard seed are eitber ground or converted into oil annually, the exports being 70,000 cwts. of mustard and half the corresponding quantity of oil (valued at $£ 250,000$). The fisheries of the place arc also important. The population (6750 in 1861) numbered 31,220 in 1882. It is still larger in summer, Tsaritsyn having becoune the gathering-place of poor people in search of work, and the misery and filth in its poorer quarters are very great. The luildings of the town do not improve proportionatcly with the increase of wealth. They include a (wooden) theatre, a public library, and two gymnasia for loys and girls. The old church of St John (end of 16 th century) is a fine specimen of the architec 'ure of its period.

Tsaritsyn was founded in the 16 th century, when a fort was orected to prevent the incursions of the fuce Cossacks and runaway serfs who gathered on the lower Volga, as also those of the Kalmucks and Circassians. In 1606 Tsaritsyn took part in the rising in favour of the false Demetrins, and Raziu toak the town in 1670. The Kaluucks and Circassiaus of the Kubañ attacked it repcatedly in the 17 th century, so that it had to be fortified by a strong earthen and palisaded wall, traces of which are still visible.

TSARSKOYE SELO, a district tewn of Russia, in the government of St Tetersburg, and an imperial residence, 18 miles to the south of the capital, is situated on the Duderbof Hills and consists of the town proper, surrounded by several villages and a German colony, which are summer resorts for the inhabitants of St Petersburg, and the imperial parks and palaces. The tomn is built according to a regular plan, and its houses, a great number of which have been erected by the crown, are nearly all surrounded by gardens. The cathedral of St Sophia is a miniature copy of that at Coustantinople. The town has two gymnasia for boys and girls. The imperia! parks and gardens cover 1680 acres; the chief of them is the "old" garden containing the "old palace," built by Rastrelli, the gallery of Cameron adorned with fine statues, and numerous pavilions and kiosks. The population numbered 15,000 in 1885.

Wheu l'eter I. took possesaion of the mouth of the Nera a Finnish village, Saari-mois, stood ou the sito now occupied by the torn, aud its Russified name Sarskaya was changed into Tsarskoye when Peter I. presented it to his wife Catheriue. It was especially em. bellished by Elizaheth. Under Catherine II., a town, Sophia, was built close by, but its inhabitants were transforred to Tsarskoyo Selo under Alexander I. The railway counecting the town with St Petersbarg (1833) was the first to Le constructed in Russia.

TSCHUDI, or SceUDY, the name of one of the oldest and most distinguished families of the land of Glarus, Switzerland. From 1029 to 1253 a member of the clan leld the office of stemard of the abbess of Sïckingen on the Phine, the lady of the manor ; and after Glarus joined the Swiss Confederation in 1352 various members of the family held high political offices at home, and were distinguished abroad as soldiers and in other ways. In literature, its most eminent nember was Giles or AGIDIUs Tscnudi (1505-1572), who, after baving served his native land in various offices, in 1553 became the chief magistrata or "landammann." Originally inclined to moderation, be became later in life moro and more devoted to the causo of the counter-lieformation. It is, however, as the historian of the Swiss Confederation that he is best known; by incessant wanderiugs and unwearied researches amongst original documents he collected material for three great works, which therefore can never wholly lose their value, though his researches have been largely supplemented and corrected by those of more recent students. In 1538 his book on Rlıetia, written in 1528, was published in Latin and in German-De prisca ac vera Alpina Rhxtia, or. Die uralt vouhrhaffig Alpisch Rhȧtia.

His oither works were not published until long after lins death.

The Beschrcibung Gallix Comate appeared under Gallati＇s editorslip in 1758 ，and is mainly devoted to a toporraphical，historical，and antionarian deacription of ancient Helvetia and Rhatia，the latter part beiug his early work on Rhætia revised and greatly enlarged． This book was designed practically as an introduction to his mag－ numplomes，the Chronicon Helveticum，part of which（from 1100 to 1470）was published by J．R．Iselin in two stately folios（1734－36）； the rest（to 1564）consists only of rough materials．The value of the work rests very largely on the constant use of original docu－ ments，no fewer than 750 being printed in Iselin＇s edition，though the transcripts do not always in point of accuracy come up to the standard demanded by the modern critical historian．Many ballads are incorporesed and also many oral traditions，both being employed to give life and picturesqueness to his story，though often at the expense of historical truth，the stock instance of which is the manner in which he completed and elaborated the Tell legend（see Tell）． In many ways his boek，save in its flowing aud quaint German， is rather like the work of a 14th－century chronicler thas a critical history；but it las been tle source from which all later Swiss writers have drawn their information，and in many cases preserves the evi－ dence of original documents which have since disappeared．It is in short a history rather resembling that of Livy than that of Hallam or Stubbs．
Suhjoined is a list of other prominent members of the family． Dominic（1506－1654）was a Benedictine monk at Muri and wrote a painstaking work，Origo et gencalogia gloriosissimorum comitum de Habsburg（1651）．JOSEPH，a Benedictine mouk at Einsiedcln， wrote a nseful history of his abbey（1823）．The family，which be－ came divided in religious matters at the Reformation，also includes several Protestant miuisters，－JOHN HENRT（1670－1729），who wrote Beschreibung des Lands Glarus（1714）；Jons Twosas（1714－1788）， who left behind him several elaborate MSS．on the local history of Glarus ；and John James（1722－1781），who compiled an elaborate fanily history from 900 to 1500 ，and an account of other Glarus families．JOHN Louis（d．1784），who settled in Metz and contri－ butcd to the Encyclopedic，and Frienricy（1820－1886），the author of Das Thicrlcben der Alpenwolt，rere distinguished naturalists． Among the soldiers may be mentioned CHRISTOPHER（1571－1629），a knight of Malta and an excellent linguist，who served in the French and Spanish armier；while the brothers Louis Leonard（1700－ 1779）and Josegh Anthony（1703－1770）were in the Neapclitan service．Valentine（1499－1555），the cousin of Giles，was，like the latter，a pupil of Zwingli，whom he afterwards suceeeded as pastor of Gla．us，and by his moderation gained so much influence that during the thirty jears of his ministry his services where attended alike by Catholics and Protestants．
TSE－NAN FOO，the capital city of the province of Shan－ tung in China，stauds in $36^{\circ} 40^{\prime} \mathrm{N}$ ．lat．and $117^{\circ} 1^{\prime} \mathrm{E}$ ． long．It is situated in one of the earliest settled districts of the empire，and figures repeatedly in the records of the wars which troubled the country during the six centuries that preceded the Christian era．On the establishment of the Han dynasty（b．c．206）it had the name which it now bears；but during the next 200 years it was known at different periods as P＇ing－yuen，Ts＇ien－sh＇ing，and Po－hai． In the 4th ceutury its name was changed to Tse；and by the founder of the T＇ang dynasty（618－907）it was christened Lin－tsze，by which name it was known until the overthrow of the Mongol dynasty in the l4th century， when the name of Tse－nan was restored to it．The city， which lies in the valley of the present clanuel of the Yellow river（Hoang－Ho），and at a short distance from its banks，is surrounded by a triple line of defence．First is the city wall，strongly built and careiully guarded，outside this a granite wall，and beyond this again a mud rampart． The streets are full of good shops，among which book， picture，and flower shops are conspicuous．There are two une examination halls，one for bachelors of arts and the other for doctors of law，several handsome temples，and a metropolitan＂drum＂tower．The most noticeable feature about the city is three springs outside the west gate，which throw up as many streams of tepid water to a height of about 2 feet．This water，which is pleasant to the taste，and is highly prized for its bealing qualities， flews in such abundant quantities that it fils the moat and forms a fine lake in the northern quarter of the city． With the taste which Chinamen always show in such ruatters，the lake is divided into a rumber of water avenues by＿trating banker．on whicb flowers and trees are skilfully
arranged，and is further adorned with several picturesque summer houses，which form points of attraction to picnic parties and pleasure－seckers during the warmer months． Its waters abound with many species of edible fish．The population of the town is reckoned at about 100,000 ， among whom are 2000 Moharmmedan families．The city is the centre of a Roman Catholic see，and has opened its gates to several Protestant missionary bodies．

See Williamson，Jormeys in North China，Lendon， 1870.
TSETSE FLY（Glossina morsitans）．The tsetse fly，so much dreaded by the traveller in South Africa，belongs to the sub－family Muscinx and is closely allied to Stomoxys． It is searcely larger than the common house fly，which it resembles in its general shape．It can，however，be easily distinguished by its colour and the position of its wings These are longer than the abdomen，and when at rest they project hehind it，overlapping one another at their tips． This gives the ify a longer and narrower ontline than that of the house fly．The colour is somewhat like that of the honey bee：the thorax is chestnut brown with four longltudinal black stripes，the abdomen light yellow with transverse bars of dark brown on its doisal surface． The proboscis，with which the fly inflicts its sting，is grooved and contains two long styles；and it is guarded by a pair of setose palps．At the base of the proboscis is a dilated horny bulb， and in this swelling it is supposed that the poison is secreted．The bite of the tsetse is innocuous to man and is not
 more painful than that of a gnat．Large game，goats， and apparently all animals whilst suckling，are also un－ affected by it．But to the horse，ox，and dog it is fatal． The poison may take cffect after a few days，or the animal may remain apparently unaffected for some months；but eventually symptoms of poisoning appear． These symptoms seem to be rather variable；as a rule swellings arise under the jaws and around the navel，the eyes and nose begin to run，and，although the animal con－ timues to graze，it becomes more and more emaciated， suffers violently from purging，aud at length succumbs to extreme exhaustion．Post－mcrtem examination chows that the muscles，and especially the heart，are in a ver， soft and flabby condition．The lungs and liver are affected， the gall bladder distended with bile．The fat is of a greenish yellow colour and oily consistency，the blood small in quantity and very thin，with hardly any power of staining．At present no cure is known for the bite，nor does inoculation seem to afford any protection．The fly is said to avoid animal excreta，and in some parts a paste composed of milk and manure is smeared on cattle which are about to pass through the＂fly－belts．＂Thiş affords a certaiu amount of protectios．Lion＇s fat is used in the same way，and is said to be efficacious．
The fly is found as a rule in tlio neighbourhood of water，and its h．bitat is usually sharply defined．Often it occurs on one side of a stream but not on the other．The limits of the＂fly－belts＂are well known to the natives，and travellers can ensure comparative saicty to their cattle by passing through these districts after sun－ down．The northern limits of the area inhabited by the tsetse are not known．It is found throughout the vailey of the Limpopo river，but docs not come much south of this，except in the eastern borders of the Transraal．Here it extends far south of Delagoa Bay，and iufests the Lobombe Mountains and the Amatonga country，reaching to the confines of Santa Lucia Bay．It appears to be gradually retreating northwards，following the big game．
The Ay is figured in Proc．Zool．Soc，1850，and by Frank Oates，Matabele Land and the tictoria Falls， 1881 ．
TUABI，a market town and episcopal city of Galway Ireland，is the terminus of the Athenry and Tuam Railway and lies 20 miles north－east of Galway and 129 west of Dublin．An abbey was founded here towards the end of ths

5 th century, and in the beginnung of the 6th an episcopal see by St Jarlath. The new Protestant cathedral of St Mary occupies the site of the original cathedral, built in 1130 , and includes the chancel.arch of the ancient building, now forming the great doorway,-a very fine specimen of the old Romanesque. The Roman Catholic cathedral in the later Early English style is one of the finest modern Catholic churches in Ireland. Adjoining it is the Roman Catholic college of St Jarlath, usually called the "New College," founded in 1814 for the education of candidates for the priesthood. To the west are the archbishop's palace and a convent of Presentation nuns. The other public buildings are the workhouse, the dispensary, and the market-house. The town has a considerable retail trade, and is a centre for the disposal of agricultural produce. From 4223 in 18 :l the population decreased to 3567 in 1881
The see of Tuan was raised to an archbishopric about 1152. Under the Church Temperalities Act of 1839 it was reduced to a bishopric, but is still the e日at of a Roman Cathelic archbishop. It receired its first charter in the 11th year of James I. It formerly returned two members to parliament, but was disfranchised at the Union.
TUAMOTU ARCHIPELAGO, ${ }^{1}$ a broad belt of seventy coral islands lying between $14^{\circ} 5^{\prime}$ and $23^{\circ} 22^{\prime} \mathrm{S}$. lat. and $134^{\circ} 25^{\circ}$ and $148^{\circ} 40^{\prime} \mathrm{W}$. long., and now under the protection of France. They trend in irregular lines in a northwest and south-east direction, and cover 1500 miles of the Pacific, the easternmost Tuamotus being 3600 miles from Peru. ${ }^{2}$ With the exception of a few insignificant islands the archipelago consists of atolls (see Corals and Pacific Ocean), mostly chains of low islets that crown the reefs and sometimes also obstruct the deep lagoons which they uncircle. The largest island, Nairsa (Dean's Island), with a lagoon 45 miles long by 15 wide, is made up of twenty islets. Fakarava, the next in size, consists of fifteen islets, and its oblong lagoon affords the best anchorage in the group. Hao has fifty islets, and its lagoon is dangerously studded with coral. The symmetrically placed eleven islets of Anao suggested to Captain Cook the name of Chain Island. Matahiva, Niau, and Mururoa aro good specimens of the horse-shoe-shaped atoll. Nengonengone, Fangataufa, and Marutea, true lagoon islands, form unbroken rings round their lake-like lagoons. In a few of the smaller atolls the lagoons have been completely silted up. To the south-east lie the Gambier Islands, a eluster of four larger and many smaller rolcanic islets, enclosed in one wide reef. The wooded crags of Mangareva, the largest islet, 5 miles in length, rise to a height of 1300 feet and are covered with a rich regetation, quite Tahitian in character; but, as in the other Tuamotus, there is a dearth of animal life. This group was discovered by Captain Wilson of the Lo.ldon Missionary Society in 1797. Tahitian teachers were sent thither in 1834 ; hut Catholic missionaries followed in 1836, and converted the entire population. The natives, once very numerous, now number less than a thousand, and are still decreasing. Cannibalism was formerly prevalent. In physique, language, religion, and custom the Gambier Islanders closely resemble the Rarotongans. Beechey surveyed the group in 1826, and D'Urville in 1838. Pitcairn Island and a fer uninhabited rocks lie still farther to the south-east. The Tuamotus are healthy and as a rule have a lower mean

[^257]temperature tnan Tahiti. The easterly trade winds prevall. Rain and fogs occur even during the dry season. The stormy season lasts from November to March, when devastating hurricanes are not uncommon and a southwesterly swell renders the western shores dangerous. Plants and animals are very meagrely represented, eveu more so than in the atolls of Micronesia. Cocoa-palms and the pandanus thrive on many of the islets, and the bread-fruit, banana, pine-apple, and arum have been introduced from Tahiti into the western islands. Mammals are represented by a rat; among land-birds a parakeet, a thrush, and a dove are noticeable; and of reptiles there is only one lizard. Insects are scarce. But the sea and lagoons teem with turtle, fish, mollusks, crustaceans, and zoophytes. Coral grows luxuriantly everywhere. From the abundance of pearl-oysters the archipelago gets its name of Pearl Islands; pearl-fishing indeed is the only remunerative indnstry. Under French control the newest appliances for obtaining shells have now mostly superseded the laborious diving of the natives. The Tuamotus are very thinly inhabited by a fine strong Polynesian race, more muscular and mostly darker-skinned than that inhabiting Tahiti. In the west considerable intermixture with other races has taken place. Of the habits of the people little is known, and many of the islands are still marked "hostile inhabitants" on the English Admiralty" charts. In the eastern islands cannibalism existed Tattooing is not universal. Clothing and ornaments areivery scanty. The huts aro mean square buildings, often mere shelters of leaves. Good outrigger and single and donble canoes are built, the larger ingeniously stitched together of small pieces of drift mood. Fishing with net and hook is much practised. Food besides fish consists almost exclusively of cocoa-nuts and pandanus fruit. Water is scarce.
Marellan's first discovery of laud after reaching the Yacitic in 1520 was one of the Turmetus. Varieus pertiens of the archipelago were in tura crossed by Queiros (1605), Lemaire and Schouten (1616), Roggereen (1722), Byron (1765), Wallis (1767), Bougainville (1768), Cook (1769), the "Duff" (1797), Krusenstern (1803), Lotzebue (1816), Fitzroy (1835), D'Urville (1838), and Belcher (1840). The first systematic sliryey was instituted in 1818 by Bellinghauseu, and was continued in 1823 by Duperry, in 1826 by Beechey, and in 1839 by Wilkes. Thanks to these many explorers, the islauds hare been clisistened and rechristened with a chaos of Spanish, Dutch, English, French, German, and Russian nsmes.
See the narratives of the varions explorers cited above, and Meinicke, Inseln des stillen oceans (Leipsic, 18:6); for general statistics and an sccount of the pearl-fisheries, see Notices Coloniales, Paris, 1856.
TUBERCLE. See Pathology, vol. xviiı. p 405, and Pathisis.
TUBEROSE. The cultivated tuberose (Polianthes tuberos α) is allied to the Mexican agares and is a native of the same country. The tuberous root-stock sends up a stem 3 feet in height, with numerous lanceolate leaves and terminal racemes of white furnel-shaped, very fragrant flowers. Each flower is about $1 \frac{1}{2}$ inches long, with a long tube and a six-parted limb. The stamens are six in number, emerging from the upper part of the tube, and bear linear anthers. The ovary is three-celled; but the mature fruit and seed are not botanically known. The plant is largely grown in the United States and at the Cape of Good Hope for export to England, as it is found that imported bulbs succeed better than those grown in the United Kingdom. The cultivated plants have double flowers and require a rich soil, considerable heat, and, at first, abundance of water.

TUUBINGEN, the university zown of Würtemberg, is picturesquely situated on the lilly and well-wooded banks of the Neckar, at the junction of the Ammer and Steinlach, 18 miles south of Stuttgart, and on the S.E. border of the Black Forest. The older town is irregularly built and unattractive, but the newer suburbs, the chief of rhich is the Wilhelmsstrasse, are Lendsome. The mor*
conspicuous building is the old ducal castle of Hohentubingen, built in 1507-1540 on a hill overlooking the town, and now containing the university library, observatory, chemica! laboratory, \&c. Among the other chief buildings are the quaint old Stiftskirche (1469-83), and the new aula and numerous institutes of the university, all of which are modern. A monument was erected in 1873 to the poet Uhland (1787-1862), who was born and is buried here. Tübingen's chief claim to attention lies in its famous university, founded in $14 i T$ by Duke Eberhard. The university adopted the Reformed faith in 1534, and in 1536 a Protestant theological seminary - the so-called Stift-was incorporated with it. In 1817 a Roman Catholic theological faculty (the "Convict") and a faculty of politics and economics were added, and in 1863 a faculty of science. The leading faculty has long been that of theology, and an advanced school of theological criticism, the founder and chief light of which was F. C. Batr (q.v.), is known as the Tübingen school. Melanchthon was lecturer at Tübingen before he was summoned to Wittenberg. The university is attended by about 1400 students, a considerable proportion of whom are foreigners, and has a teaching staff of 53 professors, 17 extraordinary professors, and 10 lecturers. The commercial and manufacturing industries of the town are slight. Printing, book-selling, the manufacture of surgical and philosophical instruments, and the cultivation of hops, fruit, and" vines are among the leading occupations of the inhabitants. The population in 1885 was 12,660 (11,708 in 1880). The country in the neighbourhood of Tübingen is very attractive; one of the most interesting points is the former Cistercian monastery of Behenliausen, founded in 1185, and now a royal hunting-chateau.
Tübiugen is montioned as a strons fortress in 1078. In 1342 it was purchased by the count of Wirtemberg, whose descendanta afterwards acquired the title of duke. The treaty of Tiuhingen is tho name given in German history to an arrangement made in 1514 between Duke Ulrich and his subjects, wy which the latter acquired rarious rights and prixileges on condition of relieving the Cormer of his debts. The town was captured by the Swabian League no 1519, hy Turenue in 1647, and again in 1688 by the French, who destroyed the fortifications. Tübingen was male a garrison town in 1875.

TÜCKER, Abraham ($1705-17$ T4), holds a place of his own among the English moralists of the 18th century. He was born in Loudon, of a Somerset family, on 2d September 1705 . His father, a wealthy city merchant, died in his son's infancy, leaving hiu to the guardianship of his uncle, Sir Isaac Tillard, a man of a rare integrity of character, to whom Tucker never failed to acknowledge deep debt of gratitude. In 1721 Tucker entered Merton College, Oxford, as a gentleman commoner. Here he devoted himself chiefly to philosophical and mathematical studies, झut also found leisure to master French and Italian, and to acquire considerable proficiency in music. He afterwards studied law at the Inner Temple, but as his fortune made him independent of a profession he was never called to the bar. In 1727 he bought Betch worth Castle, near Dorking, where he passed the remainder of his life, occupied, in addition to his favourite studies, with the usual pursuits of a well-to-do country'gentleman. He took no part in politics, however, and even wrote a panphlet, The Country Gentleman's Advice to his Son on the Suljeet of Party Clubs (1755), cautioning young men against the dangers of rashly pledging themsel res to political principles and measures of which their riper judgruent may disapprove. In 1736 Tucker married Dorothy Barker, the daughter of a neighbouring landed proprietor. His wife, to whom he was fondly attached, died in 1754, leaving him with two daughters. "As soon as the first excess of his grief was somewhat mitigated," we are told, "he occupred himself in collecting together ull the letters that bul passed hetween
them at periods when they were acculentally separated from each other, wiich he transcribel twice over, under the title of 'The Picture of Artless Love.' One coply he gave to Mr Barker, his father-in-law, and the other he kept, aul frequently read over to his daughters." He tock an active part in the education of his daughters, and from this time ouward began to occupy himself with the composition of the work by which he is known-The Light of Nature Pursued. He made sereral sketches of the plan of his work, one of which-in dialogne-he went the length of printing before finally decidmg on the method he should pursue. He also solyght to «tralify himself for anthorship by the study of the unt felegant Greek and Latin classics and by translating the most adluired passages of Cicero, Demosthenes, and Pliny several times over. MLoreover, after his work was written, he twice transcribed it with his own hand. In 1763 he published a specimen under the title of "Free Will." The strictures of a critic in the Monthly Review of July 1763 drew from him a lamphlet called Mur in Quest of Himself, by Cuthbert Comment. This, as its sub-title states, is "a defence of the indipiduality of the human mind or self"; it has been repriuted in Parr's Metaphysical Tracts (1837). In 1765 the first four volumes of his work were published under the pseudonym of Edward Search. The remaining three volnmes did not appear tull after his death. His eyesight failed him completely in 1771, but his cheerfulness did not leave him. He contrived an ingenious apparatus which evabled him to write so legibly that the result could easily be transcribed by his daughter. In this way he completed the later volumes, which were ready for publication when he was seized by his last illness. He died on 20th November 1774.

A second edition of The Light of Nature spypeared in 1805, with a short life of the author by liis grandson, Sir H. 1'. St Johu Mildmay, which forms the sole biegraphical sentre. The work has since been repeatedly re-publislied in two large closely printed volumes. A nseful abridgment was published (anonymeusly) lyy Hzzilitt in 1807; for, as he truly says, it is "sswelled out with endless renetitious of itself. The author was a private gentleman, who wrote at his ease, and for his own amusement. When a eubject presented itself to him, he exhausted all he had to say upou it, and then dismissed it for anether. If the same subject recurred again in a different connexion, he turned it over in hiis thoughrs efresh ; as his ideas arose in his mind, he committed them to paper ; he repeated the same things over again or inserted any new observation or example that suggested itself to him in confirmation of his argument; and thas by the help of a new title, and by giving a different application to the whole, a new chapter was completed. By this means, as he himself remarks, his writings are rather a tissue of loose essays than a regular work." In opite of Tucker's elaborate care in composition, there is no doubt that this fairly characterizes the rambling prelixity of his book; but it may be questioned whether an epitome can convey the real merits of such a style and treatment-qualitica which have earned for Tucker frow Sir James Mackintosh the designation of a "metaphysical Montaigue." These are his sound bearty conimon sense, the originality of a mon who looks at everything for himelf completely untrammelled by system, a remarkable aptness in illustration, and occasional gleams of a mill humour. Thongh the The Light of Nature embraces in its scope many psychological and more strictly metaphysical discussions, it is chiefly in connection with ethes that Tucker'e speculations are remembered. This is the subject which the author puts into the foreground himself; from his earliest youth, he tells us, his thoughts took a tur'n "toward searching into the foundations and measures of right and wrong." In some important points Tucker anticipates the utilitarianium shortly afterwards systematizel hy Paley, and Paley, it may be noted, expresses in the amplest terms his ohligations to his prenlecessor. "Every•mau's own satisfaction" Tucker holds to he the ultimate end of action ; and satisfaction or pleasure is one and the same in kind, however much it may vary in dcgree. This mirersal motire is further conncted, as by Paley, througl the will of God, with the " general good, the root where out all our rules of cenduct and sentiments of honour are to brauch." Tucker adopts from Hartley the principle of association, or, as he calls it, "translation," to explain the formation of the moral sentiments and the phenomena of disnnterested action generally. In his genemal analysis of the mind he professes to follow Locke, though with greal latitude in letsils, and eren in much that is not matter of detail.

TUCKER, Jos1ä ($1711-1799$), dean of Gloucester from 1758, a sagacious and candid writer on politics and political economy. See Polrtical Economy (vol. xix. p. 365).

TUCSON, a city in Pima county, Arizona Tenitory, United States, is situated in $32^{\circ} 13^{\prime} \mathrm{N}$. lat. and $110^{\circ} 53^{\prime}$ W. long. at an elevation of 2403 feet above the sea, upon the Santa Cruz river and on the Southern Pacific Railroad, about 70 miles from the Mexican frontier. The surrounding country is arid and barren, except where it has been fertilized by irrigation. The climate is exceedingly hot and dry. The principal industries of Tucson, besides stockrcaring, are connected with mining, as it is a supply point for mining districts in the ncighbouring mountains and has several smelting works. The population, which in 1860 was 915 , in 18703224 , had grown by 1880 to 7007, and in 1887 was estimated to number nearly 10,000 . About one-half are of \{oreign birth, a large proportion being Mexicans. Tucson is one of the oldest settlements in the United States, laring been founded as a Jesuit mission by the Spaniards in the 17 th century.
tucuman, or, more fully, San Miguel de Tucuman, capital of the province of Tucuman, in the Argentine Republic, is a straggling town, on the right bank of the Tala (a subtributary of the Rio Salado), at the eastern base of the Sierra de Aconquija, in $26^{\circ} 50^{\prime}$ S. lat. and $64^{\circ} 35^{\prime} \mathrm{W}$. long. It is connected by rail with Cordova and Rosario. The surrounding district is fertile, and also produces excellent timber. Leather and sugar are the principal objects of industry. The population was recently estimated at 17,000.

TUDELA, a city of Spain, in the province of Navarre, is situated on the right bank of the Ebro where it is joined by the Queyles, and on the railway from Zaragoza to Pamplona, about 50 miles to the north-west of the former city. The Ebro is here crossed by a fine old bridge, 400 yards in length, consisting of seventeen arches. The only building within the town of any interest is the fine church of Santa Maria, founded in 1135 and consecrated in 1188, the doorways and cloisters being specially rich in sculptural ornamentation. The manufactures of the place (cloth, silk, pettery) are unimportant. There is some trade in wine and oil. The population within the municipal bouncararies in 1877 was 10,086 .
Tudela, anciently Tutela, was the hirthplace of the celebrated medieval travcller Bentanix ($q . v$.) of Tudela. It was made an -piscopal see in 1783 , which was supprcssed in 1851.
tudor, House of. See Henry Vii. and Lancaster, Hodse of, vol. xiv. p. 257.

TUKE, SANUEL (178.4-1857), English philanthropist, son of Henry Tuke, born at York in 1784 , greaily advanced the cause of the amelioration of the condition of the insane, and devoted himseli largely to the York Retreat, the methods of treatment pursued in which he made more widely known by his Description of the Retreat near. York, ifc. (York, 1813). His writings on the construction of asylums and on other subjects connected with the insane are well known. He died in 1857.

TUKE, Wmliant (1732-1822), English philanthropist, was born at York in 1732. He devoted himeelf to many philantliropic objects, but his name is more especially known in connexicn with the humane treatment of the insane, for whose care he projected in 1792 the Retreat at York, which became famous both abroad and in Great Britain as an institution in which a bold attempt was made to manage lunatics without the excessive restraints then regarded as essential. Not less remarkaole was the departure from the beaten track of treatment in regard to copions bleedings and the frequent administration of emetics and depressing remedies. The asylum was entirely under the management of the Socity of Friends, and
remains so at the present time, but there are a large number of inmates not connected in any way with this body. Tho original character of the methods pursued at the Retreat attracted much attention, and its marked success led to comparisons being made between it and other establishments, the abuses in some of which became so notorious as to be brought ander the notice of parliament, and led to more stringent legislation in the interests of the insane. The condition of this unfortunate class became greatly improved in consequence. William Tube did not live to see tho most dimportant of the Acts passed, but When he died, in 1822, the superiority of the traatment adopted at the Retrcat was fully acknowledged.

See Report of the Select Corn mittec of the House of Commons, 1815. 1816; Dr Conolly, Treatmert of the Insane without Mechanical Restraints, 1856 ; Dr Hack Tuke, Criapters in the LYistory of the Insare in the British Isles, 1882.
Hexry Tuke (1756-1814), son of the preeeding and father of Samuel Take, co-operated with his father in the reforn at the York letreat. He was the author of sereral moral and theological treatises, which have been trinslated into German and French.

TULA, a government of central Russia, bounded by Moscow on the N., Ryazaĩ on the E., Tamboff and Orel on the S., and Kaluga on the W., has an area of 11,950 square miles. It is intersected from south-west to northeast by a gently undulating plateau, frora 950 to 1020 feet in height, which separates the drainage area of the Oka from that of the Don. The average elevation of Tula is about $S 00$ feet, and its surface is an undulating plain; but the rivers flow in ralleys so deeply cut and so scored with ravines that in their neighbourhond the country assumes the aspect of a hilly region. Devonian limestones, dolomites, and sandstones appear chiefly in the south-west; Lower and Middle Carboniferous limestones and clays occupy the remainder of the area. The former contain deposits of coal, which are now worked (chiefly at Malevka and Noroselsk) to the extent of nearly one and a half million ewts. annually. Jurassic clays are found in patches here and there. Glacial boulder clay covers most of the region, while Lacnstrine deposits are widely spread in the valleys and depressions. Iron-ore is found all over the government; limestone, fire-clay, and pottery clay are also obtained. The soil is black earth in the sonth and east and clay or sandy clay in the north-west. Tula is watered chiefly by the Oka and its tributaries (Upa, Zusha, Osetr, and Pronya). The Don rises in Lake Iran-Ozero (which feeds also a tributary of the Ola), and has a course of 35 miles within Tula. It is not navigable, and Peter I.'s attempt to counect it with the Oka by means of a canal was never carried out. Lakes and inarshes (chiefly in the north-west) are fow. Forests (8 per cent. of the area) are rapidly disappearing. The climate is less rigorous than that of Moscow, the arerage yearly temperature being $40^{\circ} .2$ Fahr. (January, $13^{\circ} .8$; July, $67^{\circ} 5$).
The flora of Tula degcrees some attention as marking the trans. ition from that of the south-east steppes to that of north-west Russia. A line drawn on the northern slope of the water-parting already mentioncd (a few miles to the south of the city of Tula, divides the province into two parts, of which the southern is a black earth region and the ather is chiefly covered with bouleles clay. The boundary is marked hy a scries of crown forestsformerly a means of defence against the nomad tribes, whence their name Zasycka-which at the same time constitute a line that in not passed by several species characteristic of the steppe region, such as the Lilia of the steppes, Lilium Martagon, Linum flurzm, Lathyrus pisifarmis, Geranium sanguineum, Pyrethrum corym. bosum, and Serratula helcrophyila. On the other hand, screral northern species, which are quite common in the narshes of Moscorr, do not penetrate into Tula, and several athers, such as Linnaa borealis, Viola palustris, Cirsium palusire, Pcdicularis palustris, do not cross the Zasyeha. The same forests shelter several northern species which do not appear either in northern or southern Tula, as also sereral southern herbaceuns plants which are now only occasionally met with in the black earth steppes of sonth Russia Scveral West-Euronean plants (Sanicula europæa, Carex romota,

Ceprialantrere ensifolia, Allium ursinum) find their eastern limits In Tula Another interesting feature is the extension down the valley of the Oka, not ouly of pine forests, which are not found elsewhere within the province, but also of many herbaceous plants originally from the snuth or south-weet. The steppe flora of Tula is being rapidly impoverished in consequence of the epread of agriculture: many steppe plants are now found only in their last retreats on the dry nucultivated limestone crags.
The population of the goverament (750,000 in 1777) in 1883 was 1,360,000, of whom 1 15,570 were urban. They are all Great Russians, and either Orthoroz Grcelss or Raskolniks. Their chief occupation is agriculture, i) por cent. of tho area being arable. Nearly one-half of the soil be-ongs to landiords and merchants, and the other half to the peasant conmmunties ($5 \$$ per cent. of the area, and 58 per cent. of the land un.ler culture). The crops for 1883-85 averaged $7,574,200$ quarters of grain and $10,172,000$ bushels of potatoes, largely used for distilleriss. Beet-root culture is increasing (8520 acres in 1885, yielding 59,850 cwts of sugar). The growth of tobacco is also epreading ($10,006 \mathrm{cwts}$. in 1885). There wero in 1883 380,620 horses, 203,500 cattie, and 786,000 sheep. Maunfactures aro rapidly developing; their eggregate production was valued at $£ 1,649,720$ in 1883 (distileries $£ 293,956$, sugar-works $£ 601,827$, tanneries $£ 148,356$, iron wurks, brass works, \&c., about $£ 150,000$). Petty trades, especinlly the manufacture of tea-nrns, small brass ware, and harmonicms, and a/so weaving, are extensively carried on and support a lively export trade ; timber, raw metals, and various mańufactured weres are imported. The government is traversed by the Moscow and Sebastopol and the Ryazhsk and Vyazemsk Railways, as well as by the Oka. The government is divided into twelve districts, the chief towns of which, with their population in 1882, are Tola (see pelow), Alexin (4960), Bogoreditsk (8030), Byeleff (9300), Epifan (3820), Efremoff (7Ti0), Kashira (4610), Krapivna (1560), Norosil (4600), Odoeff (5140), and Tcherã (2675). Byeleff, Alexin, and Kashira are important loading places ou the Oka. The rillages Malevka (cual-mlaes) and Nikitino have more than 5000 inhabitants each.
History.-Before the Slaronic immigration, the territory of Tula was inhabited by the Mordres on the north and the Mestchers in the sonth. The Slavs who occupied the Oka belongcd to the branch of. the Vyetichis, who were soon compelled to pay a tribute to the Khazars. Sulsequently the territory on the Oka belonged is the principality of Tchernigoff, thus maintaining its connexion with south.west Russia Io the luth century pait of it fell onde the rule of Ryazañ and Moscow, while the remainder was under Lithnanian dominion till tha 15 th century. Several of the towns of Tula were founded in the 12th century, but the colonization of this fertile region went on slowly on account of the raids of the Tatars.

TULA, capital of the above government, is situated on the Upa, 120 miles by rail to the south of Moscow. Other railway lines connect it with Ryazañ and Orel. It is built in the broad but low, marshy, and unhealthy ralley of the Upa and is divided into three parts,-the Posad on the left bank, the Zaryetskaya or Oruzheinaya on the right bank, and Tchulkora between the Upa and the Tulitsa. It is an old tomn of Old Russia, but its growth began only towards the end of the 18 th century after the manufacture of arms had commenced, and now (1887) its population has reached 65,100 (63,500 in 1882). They are employed chiefly either at the imperial gun factory or at numerous private factories (about 130 , with 4350 men) and small workshops. The main branch of the industry is the making of rifles (from 20,000 to 30,000 annually). Next in importance comes the manufacture of samovars (tea-urns), in which more than 5000 persons are engaged. All sorts of cutlery and ironmongery are manufactured in the small workshops of Tula, which have a high repute in Russia. No ferer thau 240,000 harmoniums are turned out annually; nearly 150,000 cwts. of steel, iron, and brass are imported every year for this industry alone.
The town of Tula is first mentioned in 1147 ; but ita former site seems to have been higher up the Tulitsa. Its wooden fort was replaced in 1514-1521 by a stone "kreml," which still exista. Boris Godunoff founded a gun factory at Tula in 1595 , and in 1632 a Dutchman, Winius, established an iron fonadry. Michael Alexis and Peter I., especially the last-mamed, took great intercst io the gun factories, and large establishments wcre built in 1705 and 1714 , which soon turned out 15,000 rifes in a ycar. Catherine II. and Paul I. further improved the manufactures, which during the wars with France supplied more than haif a million siffes.

TUL1P (Tulipa), a genus of bulbous herbs belonging to the Liliaces. The species are found wild along the
northern shores of the Ifediterranean, in the Levant, Armenia, Caucasus, Persia, Cential Asla, and Afghanistan. The cup-shaped flowers have six regular segments in two rows, as many free stamens, and a three-celled ovary with a sessile stigma, which ripens into a leathery many-seeded capsule. The species are numerous, and are distinguished one from another by the scales of the bulb being woolly or smooth on the inner surface, by the character of the flowerstalks, by the filamerts being hairy or otherwise, and by other characters. Owing to the great beauty of the flowers they have been favourites in European gardens for two or three centuries, and have been crossed and recrossed till it has become almost impossible to refer the plants to their original types. The early flowering "Yan Thol" tulips, the segments of which are mostly scarlet with jellow edges, are derived from T. suaveolcns, a native of the Caspian region. T. Gesneriana, a nativo of Armenia and central Russia, is the origin of some of the later flowering varieties. T. pubescens, thought by Mr Baker to be a hybrid between the two species just named, is the source of some of the early flowering kinds known as "pottebakker," dc. T. oculus solis and T. Clusiana are lovely species, natives of southern France, and T. silvestris, with elegant yellow pendulous flowers, is a doubtful natire of England. During the last fow years, owing to the exertions of Russian naturalists, a large number of new species have been discovered in Turkestan, and introduced into Europe. Some of these aro very beautiful, and render it probable that by intercrossing with the older species still further difficulties will be presented in the way of identification. These difficulties are further enhanced by the fact that, quite apart from any cross-breeding, the plants, when subjected to cultivatiou, vary so greatly in the course of two or three years from the original species from which they are directly descended that their parentage is scarcely recognizable. This innate power of variation has enabled the florist to obtain, and ultimately to "fix," so many remarkable varieties. At the present day tulips are less fashionable than they once were, and consequently the enormous prices given for new or improved varieties no longer obtain, though, even now, two and three guineas are asked for special bulbs. It must, however, be remembered that the "tnlipomania" of the 17 th century was really a form of gambling, in which admiration of the flower and interest in its culture were very secondary matters. Tulips were introduced into the Low Countries in the 16 th century from Constantinople and the Levant by way of Vienna and Vence. There is a legend that au Antwerp merchant, to Whom bulbs were sent, cooked them for onions; and to this day the natives of some parts of Persia and Afghanistan use the bulbs of Tulipa chrysantha for food. The mode of growth of a tulip bulb is worthy of attention. In spring, at tho flowering period, each bulh is a composite structure. It consists, first, of the bulb of the Jear, which produces the flowers and the leaves. From the axil of one (or more) of the scales of the flowering bulb emerges a secondary bulb, destined to form leaves and flowers for the next season's growth. In like manner from the side of the second generation are prontuced tertiary bulbs, which flower in the third year after their formation. Each bulb, therefore, has an existence of three years, flowering in the third year, and dying aftermards, so that the bulb planted in the autumn is not the same ono that Howered in the spring, but a second generatiou. For tho cultivaticer cf tulips, see Horriculiure, vol. xii. p. 259.

TULLE, a tuwn of France, chef-lich of tho departmerat of Corrèze and a bishop's see, is 61 miles east-north-east of Périgneux by tho railway from Bordeaux to Clermond Ferrand. The tows rises picturesquely on loth banks o: the Corrèze, a sub-tributary of the Dordogne. The Correze,
crossed by four bridges, flows between enbankments, and the narrow streets on the steep left bank are connected by stairs. Of the 12 th-century cathedral only the porch and the nave of six bays remain, the choir and transept having been destroyed in 1793 ; but there is a 14 th-century tower, with a fine stone steeple. The neighbouring cloister (13th century) is being restored. 'The abbot's house (15 th century) has a carved doorway and well-preserved windows; and somo curious houses of the 12 th, 13 th, and 14 th centuries still exist. Tulle possesses normal schools for male and female teachers, and is the headquarters of the Historical Society of Lower Limousin. The principal industry is the manufacture of fircarms. The Government establishments employ from 1500 to 3000 workmen, and can turn out 70,000 guns annually. Manufactories for the variety of lace called "tulle" were first estahlished here. There is a collection of the firearms of all nations. The population in 1886 was 10,635 (commune 16,275).

Tulle (Tutcla Lemovicum) owed its importance in the Middle Ages to an abbey founded by St Martin, or, according to another authority, in the 7th century, which was raised to a bishopric in 1317. Mascaron was bisbop in the 17 th century. The town was taken by the English in 1346, and was subsequently ravaged by the Black Death. It was again conquered by the English in 1369; but, when the inhabitants succeeded in freeing themselves, they were exompted from all imposts by Charles V. The viscount of Turenne, leader of the Protestants, tried in vain to seize 'fulle iu 1577, but was successful in 1585.
TULLE, a term restricted in England to a fine bobbinnet of silk, used for veils, scarves, millinery purposes, and trimmings of ladies' dresses, \&c. The French used the word to mean all machine-made lace the basis of which is tho intertwisted net-work made on the bobbin-net machine. The word is derived from the town of Tulle in France (see above).

TULLOCH, JoHn (1823-1886), Scottish theologian, was born at Bridge of Earn, Perthshire, in 1823, went to school at Perth, and received his university education at St Andrews and Edinburgh. In 1845 he became minister of St Paul's, Dundee, and in 1849 of Kettins, in Strathmore, where he remained for six years. His literary gifts, shown in his contributions to various reviews, as well as his taleut for society drew attention to him, and in 1854 he was appointed to the principalship of St Mary's College, St Andrews. Tho appoinṭment was imnediately followed by the appearance of his Burnet prize essay on Theism. At St Audrews, where he held along with the principalship the post of professor of systematic theology and apologetics, his work as a teacher was distinguished by several features which at that time were new. He lectured on comparative theology and treated doctrine historically, as being not a fixed product but a growth. From the first he secured the attachment and admiration of his students. In 1862 he was appointed one of the clerks of the General Assembly, and from that time forward be took a leading part in the councils of the Church of Scotland. In 1878 he was chosen moderator of the Assembly. No one, except perhaps Dr Robert Lee, has done more during the last generation to widen the national church. Two nositions on which he repeatealy insisted in the Assembly have taken a firm hold of the mind of that church, -first, that it is of the essence of a church to be comprehensive of various views and tendencies, and that a national church especially should seek to represent all the elements of the life of the nation; secondly, that subscription to a creed can bind no one to all its details, but only to the sum and substance, or the spirit, of the symbol. For three years before his death he was convener of the church interests committee of the Church of Scotland, which had to deal with a great agitation for disestablishment. He was also deeply interested in the reorganization of education in Scotland, both in school and university, and acted as one
of the temporary board which settled the primary school system under the Education Act of 1872. His death took place at.Torqnay on 13th Fehruary 1886.

Tulloch's best known works are collections of biographical sketches of the leaders of great movements in church history, such as the Reformation and Puritanism. His most important book, Rational Theology and Christian Philosophy (1872), is one in which the Cambridge Platonists and othertleaders oi lispassionate thought in the 17 th century ore similarly treated. He delivered the second series of the Croall lectures, ou the Doctrine of Sin, which were afterwards published. He also published a small work, The Chrisb of the Gospels and the Christ of History, in which the riews of Renan on the gospel history were dealt with ; a monograph on Paseal for Blackwood's Foreign Classics series; and a little work, Beginning Life, addressed to young men, written at an earlier period. A Life of Tulloch by Mrs Oliphant is in preparation.

TULLUS HOSTILIUS, third legendary king of Rome, is represented as having reigned for ihirty-two years (670-638 b.c.). His successful wars with Alba, Fidenæ, and Veii shadow forth the earlier conquests of Latian territory and the first extension of the Roman domain beyond the walls of Rome. See Rome, vol. xx. p. 733.

TUMKUR, or Toomeoor, a district of India, in the west of the Nandidrúg division of Mysore, situated between 12° 43^{\prime} and $14^{\circ} 10^{\prime} \mathrm{N}$. lat. and $76^{\circ} 10^{\prime}$ and $77^{\circ} 30^{\prime} \mathrm{E}$. long., with an area of 3420 square miles. It is bounded on the north by the Bellary district, on the east by Kolar and Bangalore, on the south by Mysore, and on the west by Chitaldrúgr and Hassan. Tumkar consists chiefly of elevated land intersected by river valleys. A range of hills rising to nearly 4000 feet crosses it from north to south, and forms the water-parting between the systems of the Krishna and the Kaveri. The principals streams are the Jayamangala and the Shimsha. The mineral wealth of Tumkur is considerable: iron is obtained in large quantities from the hill sides; and excellent building. stone is quarried. The slopes of the Devaráy-durga Hills, a tract of 18 square miles, are clothed with forests, in which large game are numerous, including tigers, leopards, bears, and wild hogs. The climate of Tumkur is generally considered as equable and healthy; the average annual rainfall amounts to nearly 33 inches. The Mysore State Railway enters the district at the south-east corner and traverses it to the west.

In 1881 the population of Tunkur numbered 413,183 (males 203,253, females 209,930), embracing 395,443 Hindus, 17,130 Mohanmedans, and 603 Cbristians. Tumkur town, situated at the base of the Devaráy-durga Hills; 43 miles north-west of Bangalore, with a population of 9909 , is the administrative headquarters. The cultivated products consist chiefly of rigi, millet, wheat, sugarcane, varions, pulses, and oil seeds. Of the total area 745 square miles are cultivated and 1544 cultivable. The chief industries are the making of coarse cotton cloths, woolleu blankets, and ropes The ezports compriso rigi, unlusked rice, cocoa-nuts, areca-nuts, earth silt, pulses, and vegetables; the imports include European picee grods, rice, spices, cotton, \&c.

Tho history of Tumkur is common to the rest of Mysore. After the assumption of the administration of Myscre by the Briţish in 1832 the district received its present name ond limits.

TUMOUR. See Pathology, vol. xviii. D. 367, and Surgery, rol. xxii. p. 687.

TUMULUS. See Architecture, vol. ii. v. 38t, and Barrows, vol. iii. 397.

TUNBRIDGE, or Tonbridge, a town of Kent, England, is situated on rising ground above the Medray, and on the South-Eastern Railway, 41 miles (by rail) south-east of London and 33 north-west of Hastings. The Medway is crossed by a stone bridge, erected in 1775. The town consists chiefly of one long main street and a large number of suburban villas. The church of St Peter and St Paul, chiefly Decorated and Perpendicular with some portions oi an carlier date, has lately beeu restored. The grammar school, founded by Sir Andrew Judd, an alderman of London, in the 1st year of Edward VI., was rebuilt in 1865 , remodelled in 1880, and extended in 1887. Amorig other public buildings are the town hall and market louse, the
public hall, and the free library. Some traffic is carried on by the Medway, which has been made navigable for barges. Tumbridge ware, chiefly sold at Tunbridge Wells, is largely manufactured. There aro gunpowder mills on the banks of the Medway; and wool-stapling, brewing, and tanning are carried on. The population of the urban sanitary district (area-1200 acres) in 1871 was 8209 and in 1881 it was 9317.
Tunbridge owed its early importance to the castle built by Richard, earl of Clare, in the reign of Henry I. The castle was besieged by William Rufus, was taken by John in the wars with the barous, and again ly Prince Edward, son of Henry III. Subsequently it became the property of the Staffords, and on the attainder of the duke of Buckingham in the reign of Henry VIII. was taken possession of by the srowu. It was dismantled during the Ciril War. The remains now consist chiefly of a finely preserved gateway flanked by two round towers. Formerly it was defeuded by three moats, oue of them formed by the Medway. The lords of the castle had the right of attending the archbishops of Canterbary on etate occasions as chief butlers.

TUNBRIDGE WELLS, an iuland watering-place of England, chiefly in Kent but partly in Sussex, is situated in the midst of charming and picturesque scenery, on the South-Eastern Railway and at the terminus of a branch line of the London, Brighton, and South Coast Railway, 46 miles (by rail) south-east of London and 5 soutb of Tunbridge. It owes its popularity to its chalybeate spring and its romantic situation The wells are situated near the Parade (or Pantiles), a walk associated with fashion since the time of their discovery. The houses and shops in the Parade somerthat resemble the Rows at Chester. It was pared with pantiles in the reign of Queen Anne. The town is built in a picturesquely irregular manner, and a large part of it consists of districts called "parks," occupied by villas and mansions. On Rustball common, about a mile from the town, is the curiously shaped Toad Rock, and about a mile south-west the striking group called High liocks. The principal public buildings are the pump-room, the town-hall, the corn exchange, the public hall, the mechanics' institute, the friendly society's hall, the dispensary and infirmary, and the prorident dispensary. The Tunbridge Wells sanatorium is situated in grounds sixty acres in extent, and is capable of receiving 150 visiters. There is a large trade in Tunbridge ware, which is made chiefly at Tunbridge, and includes work tables, boxes, toys, \&c., made of hard roods, such as beech, sycamore, holly, and cherry, and inlaid with mosaic. The town is governed by a local board of twenty-four members. The population of the urban sanitary district (area 3351 acres) in 1871 was 19,410 and in 188124,308 .

The town owes its rise to the discovery of the medicinal springs by Dudley, Lord North, in 1606. Henrietta Maria, wife of Charles I., retired to drink the waters at Tunbridge after the birth of her eldest son Charles. Soon after the Restoration it was visited by Charles II. and Catherine of Braganza. It was a favourite residence of Agne previous to her accession, and from that time became one of the special resorts of London fashion. It reached the beight of its comparative popularity in the latter half of the 18 th century, and is speciplly associated with Colley Cibber, Samuel Johnson, Cumberland the dramatist, Garrick, Richardson, Reynolds, Eeau Nash, Miss Chadleigh, and Mrs Thrale. The Tunbridge of that period is sketched with uucb graphic humour in Thackeray's Vir. ginians. Though it still attracts an increasing number of visiters, its importance in reference to London society has considerably declined.

T"UNG-CHOW, a sub-prefectural city in Chih-li, the meiropolitan province of China, is sitnated on the banks of the Peiho in $39^{\circ} 54^{\prime}$ N. lat. and $116^{\circ} 41^{\prime} \mathrm{E}$. long., about 12 miles south-east of Peking. Like most Chinese cities, T'ung-Chow has appeared in history under various names. By the founder of the Han dynasty (206 b.c.) it was called Lu -Hien; with the rise of the T'ang dynasty (618 A.D.) its name was changed to Heuen-Cbow ; and at the beginning of the 12 th century, with the adv-nt of the Kin dynasty to power, Heuen-Chow became T'ung-Chow. The
city marks the highest point at which the Peiho is navigable, and here reerchandise for the capital is transferred to a canal, by which it reaches Peking. The city, which is faced on its eastern side by the river, and on its other three sides is surrounded by populous suburbs, is upwards of 3 miles in circumference. The walls are about 45 feet in height and about 24 feet wide at the top. They are being allowed to fall into decay. Two main thoroughfares run through the city, one connecting the north and south gates; and the other the east and west gates. The place derives its importance from the fact that it is the port of Peking. Its population was estimated at about 50,000 in 1887.

It was at T'ung-Chow that Sir Harry Parkes, Sir Henry Loch, and their escort were treacherously taken prisoners by the Chinese when they were sent forward by Lord Elgin to negotiate terms of peace after the troubles of 1860 .

TUNGSTEN (Germ. wolfram, or, antiquated, scheel), one of the metallic elements of chemistry. The suineral tungsten (meaning in Swedish "heary stone") used to be taken for a tin ore until this mas disproved by Cronsted. Scheele showed in 1781 that it is a compound of lime with a peculiar acid, the metallic nature of which was recognized in the same year by Bergmann. It ocrcurs only as a component of a number of relatively rare minerals, the most important of which are wolfram or wolframite, (Fe, Ma) $\mathrm{O} . \mathrm{WO}_{3}$, and scheelite (tungsten), $\mathrm{CaOWO} \mathrm{O}_{3}$ (see Mineralogr). The metal is prepared from the pure oxide WO_{3} by reduction with hydrogen in a platinum tube at a high むemperature. It forms resplendent tin-white or grey plates, or a dull black powder similar to hydrogen-reduced iron. Sp. gr. $=19 \cdot 129$, water of $4^{\circ} \mathrm{C} .=1$ (Roscoe). It is more difficult to fuse than even Manganese (q.v.). It is unalterable in ordinary air ; oxygen and even chlorine act upon it only at a high temperature. Hydrochloric and sulphuric acid do not attack it. Nitric acid attacks it slowly, aqua regia readily, with formation of the triozide WO_{3}. Impure tungsten is now being prepared industrially for the production of a peculiar kind of steel (see Iron, vol. xiii. p. 352).

Chlorides.-Tungsten forms four chlorides, $-\mathrm{WCl}_{2}, \mathrm{WCl}_{4}, \mathrm{WCl}_{5}$, WClso. The highest, WCle, is obtained by heating the pure pordery metal in a carrent of absolutely pure chlorine. In the presence of moisture or air oxy-chlorides are produced. It sublimes off as a dark red liquid, freezing into crystals. Thes9 fuse at $275^{\circ} \mathrm{C}$. 3nd resolidify at 270°; the liquid loils at $346^{\circ} \cdot 7$. The sp. gr. of the vapour is in accordance with the formula at 350°; at higher tempera. tures it dissociates into WCl_{5} and $\mathrm{free}^{\mathrm{Cl}} \mathrm{Cl}_{2}$ (Roscoe). When the vapour of $\mathrm{WCl}_{\mathrm{f}}$ is passed over heated trioxide, the two bodies unite, TO_{3} with $2 \mathrm{WCl}_{\text {g }}$ into $3 \mathrm{WOCl}_{4}$, forming magnificent red needles, which fuse at $210^{\circ} .4$ and boil at $227^{\circ} \cdot 5 \mathrm{C}$. (Wöhler). Both compounds, WCl_{6} and WOCl_{4}, are decomposed by water, the oxy-chloride more readily, with formation of hydrochloric acid and trioxide. For other chlorides and oxy-chlorides, see the ordinary hand-books of chemistry.
Oxides, WO O_{2} and WO $_{3}$, and Compounds of These with Each Other. - The trioxide, popularly known as tungstic acid, is the more - important. Impure trioxide is producible by treating sch helito ($\mathrm{WO}_{3} \mathrm{COO}$) with hot hydrochloric scid. Wolframite is not so readily decomposed; but when fused with twice its weight of chloride of calcinm it passes into lime salt, obtainable as an insoluble residue by lixiviation of the fuso with water. The oxide obtained forms a yellow powder insoluble in water and in hydrochloric acid. To purify it, it is washed, dissolved in aqueous ammonia, and the filtered solution eraporated, when an acid tungstate of ammonia separates out in scales of great purity. These, when heated in air, leare belind them a pseudo-morphose of pure yellow oxide. Trioxide of tungsten combines with basic sxides into tungstates; but the proportion in which it unites with 3 given base is subject to great variation: for instance, the quantity $\mathrm{T} \varepsilon_{2} \mathrm{O}$ of soda unites into so many definite tungstates with $1,1,2,2 \frac{1}{2}, 2 \frac{2}{2}, 2 \frac{1}{2}, 4$ times WO_{3} and in each case more or less of water. To each of these soda salts corresponds theoretically a certain tungstic acid,- - to the salt $\mathrm{Na}_{2} \mathrm{OW}_{2} \mathrm{O}_{8}$ for instance, the acid $\mathrm{H}_{2} \mathrm{OW}_{3} \mathrm{O}_{8}$ or $\mathrm{H}_{2} \mathrm{~W}_{3} \mathrm{O}_{7}$. But few of theso hydrates sctually exist, and they are not individual acids in the sense in which the three phosphoric acids are, except perheps that remarkable substance known as motatungetic acid,
$\mathrm{H}_{2} \mathrm{~W}_{4} \mathrm{O}_{13}+7 \mathrm{H}_{2} \mathrm{O}$. This acid forms crystals of the stated composition; it dissolves in water and the solutiou unites with bases into meeta-tungstates. Most meta-tungstates are soluble in water; of the tungstates proper only the alkali salts are so solubla. The soda tungstate, $5 \mathrm{Na}_{2} \mathrm{O} .12 \mathrm{WO}_{3}+x \mathrm{H}_{2} \mathrm{O}$, known as para-tungstate of soda, is 1oada industrially by fusiug wolframite with carbonate of soda and lixiviating the fuse with water. The insoluhle oxides of iron and mangaoese are filtered off ; the filt rate, while still hot, is nearly neutralized with hydrochloric acid and allowed to crystallize. It forins large crystals contaning tweuty-ouc, twenty-five, or twentyeight times $\mathrm{H}_{2} \mathrm{O}$ according to the temperature at which they ere formed. The salt has been recomrmended as a mordant in dyeing and calico-printing, but has not taken root in these industries. Oppenheim and Versmann recommended it before 1862 as the best aneana for rendering textile fabrics uninflamaabla. If a colution of the para-tungstate is boiled with hydrated tuagstic acid (as obtained by precipitating any ordinary alkaline tuogstata solution with hydrochloric acill in the heat), or is simply mixed with excess of acetic acid, the meta-tungstate is formed; in the latter case it separates out as a heavy oil. Meta-tungstate of soda forms octahedral crystals of the composition $\mathrm{Na}_{2} \mathrm{O} .4 \mathrm{WO}_{3}+10 \mathrm{H}_{2} \mathrm{O}$. If concentrated warm solutions of this salt and the equivalent quantity of chloride of bariun are mixed and allowed to cool after addition of a litule hydrochloric acid, meta-tungstate of barium crystallizes out as $\mathrm{BaO} .4 \mathrm{WO}_{3}+9 \mathrm{II}_{2} \mathrm{O}$, in large quadratic pyramids which are very easily eoluble in water. From this salt the free acid is easily produced by addition of the exact quantity of sulphuric acid required to precipitate the baryta, and from it any other metatungstate is easily produced. Meta-tungstic acid solution is a sensitive and characteristic precipitant for almost all alkaloids (strychnine, quinine, \&c.). The alkaloid, whatever its name, goes down as a flocculent insoluble meta-tungstate. Tungstic acid combinss with phosphoric acid and with silicic acids into highly complex phospho-tungstic acids and silico-tungstic acids. Of the former there is quite a series, cach consisting of one $\mathrm{P}_{2} \mathrm{O}_{5}$ united with respectively fourtecn, sixteen, cighteen, twenty, twenty-two, twentyfour times WO_{3} and eix $\mathrm{H}_{2} \mathrm{O}$ of basic water. Of silico-tungstic acids three are known, amely, one $4 \mathrm{H}_{2} \mathrm{O} . \mathrm{SiO}_{2}, 10 \mathrm{WO}_{3}+3 \mathrm{Aq}$ and two $\mathrm{SiO}_{3} .12 \mathrm{WO}_{3} \mathrm{xH}_{2} \mathrm{O}$. All these complex acids (both kinds) are easily eoluble in water. The phospho-acids are delicate precipitauts for all alkaloids.
The binoxide, WO_{2}, is obtained when the trioxide is reduced by hydrogen at a dull red heat. This oxide is very prone to pase into trioxide or tungstate. An interesting and beautiful class of componnds of WO_{3}, WO_{2}, a a d hases are known as tungsten bronzes. The first of these was discovered by Woller. Normal tungstate of soda, $\mathrm{Na}_{2} \mathrm{OWO} \mathrm{O}_{3}$, is fused, and trioxide added to it as long as it dissolves. The product is then heated in hydrogen os long as water gocs a way, and the substauce thus reduced is exlisusted successively with water, hydrochloric acid, caustic potash ley, and again with water. A residue of the ccapposition $\mathrm{Na}_{2} \mathrm{O}$. $\mathrm{W}_{2} \mathrm{O}_{6}+\mathrm{WO}_{2}$ remains in the ehape of magnificent goldelike lustrous cubes, of specific gravity 6.617 , which conduct electricity liko a metal. Only hydrofluoric acid dissolvee this soda-tuogsten bronze. There are a number of other tungsten bror zes, all distinguished by metalic lustre and magnihicent purple, red, yellow, or blue coluurs.
Analysis. - Oxides of tungsten dissolve in fused microcosmic ealt, $\mathrm{Na}_{2} \mathrm{OP}_{2} \mathrm{O}_{5}$; the bead becomes blue in the reducing flane, in the presence of iron blood-red, and in the oxidizing flame colourless. When heated on charcoal with (not too much) carbonate of soda or cyanide of potassium in the reducing llame, they yield a grey heavy powder of metal, ohtainable by elutriation. The process fails in the presence of too much alkali. Insoluble tungstates (e.g., the ordiuary tuigsten minerala) are disintegrabio by fusion with alkaline carbouta ; the fuse, when treated with water, rields a solution of alkaline tungstate. This solution, when nixed with excess of hydrochloric acid, gives a whito precipitata of hydrated trioxide, which on boiling becomes yellow by partial dehydration. The yellow unignited precipitate is soluble in aqueous ammonia. If tuogstate of alkali solutions are mixed with hydrochloric acid and then treated with metallic zinc, they become blue through the formation of a compound of WO_{3} and WO_{3} or rather the respective chloride; this reaction gains in defioitencss through the preseuce of phosphoric acid.
(W. D.)

TUNGUSES, a wide-spread Asiatic people, forming a main branch of the Mongol division of the Mongol-Tatar family. They are the Tung-lu of the Chinese, probably a corrupt form of tonki or donki, that is, "men" or."people.". The Russian form Tungus, wrongly supposed to mean "lake people," appears to occur first in the Dutch writer Massa (1612); but the race has been known to the Russians ever since they reached the Yenisei. The Tungus domain, covering many lundred thonsand square miles in central and east Siberia and in the Anur basin, stretches from
the Yenisei eastwards to the Pacific, where it occnpies most of the seaboard between Corea and Kamchatka. It also reaches the Arctic Ocean at two points, in the Nisovaya tundra, west of the Khatanga river, and in a comparatively small enclosure in the Yana basin over against the Liakhoff (New Siberia) Archipelago. But the Tunguses proper are chiefly centred in the region watered by the three large eastern tributaries of the lenisei, which from them take their names of the Upper, Middle or Stony, and Lower Tunguska. Here the Tunguses are known to the Samoyedes by the name of Aiya or "younger brothers," implying a comparatively recent immigration (confirmed by other indications) from the Amur basin, which appears to bo the original home both of the Tunguses and of the closelyallied Manchus. The Amur is still mainly a Tungus river almost from its source to its mouth: the Oroches (Orochus), Daurians, Birars, Golds, Manegrs, Sanagirs, Ngatkons, Nigidals, and some other aboriginal tribes scattered along the main stream and its affuents, -the Shilka, Sungari, and Usuri, -are all of Tungus stock and speech. On the Paciee the chief subdivisions of the race are the Lamuts, or "sea pcople," grouped in small isolated hunting communities round the west coast of the Sea of Okhotsk, and further south the Yu-pi-ta-tze ("fish clad"), the Tazi of the Russians, between the Amur delta and Corea. The whole race, exclusive of Manchus, numbers probably about 80,000, of whom 15,000 are in the Amur basin, the rest in Siberia.

The Tuugus type is essentially Mongolic, being characterized by broad flat leatures, small nose, wide mouth, thin lips, small hack and somewhat oblique eyes, black lank hair, dark olive or bronze complexion, low stature, averaging not more than five feet four inches; they are distinguished from otber Mongolic peoples hy the square shape of the skull and the slina, wiry, well-proportioned figure. This deseription applies more especially" to the Tunguska tribes, who may bo regarded as typical Tunguses, 'and who, unlike most ather Mongols, betray no tendcacy to obesity. They are classed by the Russians, according to their various pursnits, as Reindecr, Horse, Cattle, Dog, Steppe, and Forest Tunguses. A few have become settled agriculturists; but the great bulk of the race are still essentially forest hunters, using the reindecr both as mounta and as pack animals. Nearly all lead nomad lives, in pursuit of fur-bearing animals, whose skins they supply to I mssian and Yakut traders, in exchange for provisions, clothing, and other necessaries of life. The picturesque and even clegant national costume shows in its ornamentatiou and general style decided Japanese influence, due no doubt to long-continued intercoursa with that nation at some period previous to the spread of the race from tha Amur valley to Siberia. Many of the Tungus tribes have been baptized, and are, therefore, reckoned as "Greek Christians"; but Russian orthodoxy has not penetrated far below tha surface, and most of them are etill at heart Shamanists and natuse-worshippers, secretly keeping the teeth and claws of wild animals as idols or amulets, and observing Christian rites only under compulsion. But, whether Cluristians or pagans, all alike are distioguished above other Asiatics, perhaps above all other peoples, for their truly noblo moral qualities. All observers describe them as "cheerful under the most depressing circumstances, persevering, open-hearted, trustworthy, modest yet self.reliant, a fearless race of hunters, born amidst the gloom of their dense pine-forests, exposed from the cradle to every danger from wild beasts, coll, and hunger. Want aud hardships of evory kind they endure with surprising fortitude, and notbing can induca them to take service under the Russians or quit their solitary woodlauds' (Keana's Asia, p. 470). Their numbers are steadily decreasioy oming to the ravages of small-pox, scarlet fever, and especially famine, their most dreaded enamy. Their domain is also being contiuually encroached upon by the aggressive Yakuts fron the uorth and cast, and fron the south by the Slavs, now settled in compact bodies in the province of Irkutsk about the upper course of the Yenisei. It is remarkable that, while the Russiaus often show a tendeucy to become essimilated to the Yakuts, the most vigorous and expansive of all the Siberian peoples, the Tunguses everywhere yield beforo the advance of their more civilized neighbeurs or become ahsorbed in tha surrounding Slar communities. In the Amur valley the aame fate is overtaking the kindred tribes, who are disappearing before the great waves or ©hinese migration from the south and Russiad encroachments both from the east end west. In 1880 the Orocles were already reduced to about 260, and tho Tazi to a little over 200. For the philplogical relations of the Tunguses, see vol. xviii. p. 770.

TUNICATA

THIS group of animals was formerly r agarded as constituting along with the Polyzoa and the Brachiopoda the invertebrate class Molluscoidea. It is now known to be a degenerate branch of the Chordata, and to be more nearly related to the Tertedrata than to any group of the Inveríberata

History. ${ }^{1}$

More than two thousand years ago Aristotle gave a short account of a Simple Ascidian under the name of Tethyum. He described the appearance and some of the more important points in the anatomy of the animal. From that time onwards to little more than a century ago, although tarious forms of Ascidians had been briefly described by writers on marine zoology, comparatively little advance was made upon the knowledge of Aristotle. Schlosser and Ellis, in a paper containing a description of Botryllus, published in the Philosophical Transactions of the Royal Society for 1756, first brought the Compound Ascidians into notice; but it was not until the commencement of the 19th century, as a result of the careful anatomical investigations of Cuvier (I) upon the Simple Ascidians and of Savigny (z) upon the Compound, that the close relationship between these two groups of the Tunicata was conclusively demonstrated. Up to 1816, the date of publication of Savigny's great work (2), the few Compound Ascidians then known had been generally regarded as Alcyonaria or as Sponges; and, although many new Simple Ascidians had been described hy O. F. Müller (f) and others, their internal structure had not i,amarck been investigated. Lamarck (3) in 1816, chiefly as the result of the anatomical discoreries of Savigny and Cuvier, instituted the class Tunicata, which he placed between the Radiata and the Jermes iu his system of classification. The Tuncata included at that time, besides the Simple and the Compound Ascidians, the pelagic forms Pyrosoma, which had been first made known by Péron in 180t, and Salpa, described by Forskal in 1775.

Cham-

 aso ond alternason of zenerations.circala.
sion.

Milce-
Edwar:

Chamisso in 1820 made the important discovery that Salpa in its life-history passes through the series of changes which were afterwards more fully described by Steenstrup in 1842 as "alternation of gcremtions"; and a few years later Kuhl and Van Hasseltemwetigations upon the samé animal resulted in the discorery of the altermation in the directions in which the ware ot contraction passes along the heart and in which the blood cinalates through the body. It has since been formd that his obsuration holds good for all groups of the T'unisutu. In 1826 II. MilneEdwards and Audouin made a series of observations on living Compound Ascidians, and amongst other discoveries they found the free-swirmming tailed larva, and traced its lerelopment into the young Ascidian. Milne-Edwards (5) also founded the group of "Social" Ascidians, now known as the Clavelinidx, and gave a classification of the Compound Ascidians which was unitersally accepted for many years. From the ycar 1826 onwards a number of new and remarkable forms were discovered, as, for instance, some of the Bolteninr (Macleay), Chelyosoma (Brodcrip and Sowerby, and afterwards Eschricht), Oikopleura (Mertens), Perophora (Lister), Pelonaia (Forbesand Goodsir), Chondrastachys and Diplosoma (Denis Macdonald), Diazona (Forbes and Goodsir), and Rhodosoma (Ebrenberg, and aiterwards Lacaze-Duthiers).

In 1845 Carl Schmidt (6) first announced the presence

[^258]in the test of some Ascidians of "tunicine," a substance rery similar to cellulose, and in the following year Lüwig and Kölliker (7) confirmed the discovery and made some additional observations upon this substance and upon the structure of the test in general. Huxley (8), in an irn. portant series of papers published in the Transactions of the Royal and Linnean Societies of London from 1851 onwards, discussed the structure, embryology, and affinities. of the pelagic Tunicates Pyrosoma, Salpa, Doliolum, and Appendicularia. These important forms were also in vestigated about the same time by Gegenbaur, Vogt, H. Müller, Krohn, and Leuckart. The most important epoch in the history of the Tunicata is the date of the publication of Kowalevsky's celebrated memoir uson the derelopment of a Simple Ascidian (0). The tailed larva had heen previously discovered and investigated by several naturalists-notably H. Milne-Edwards (5), J. P. van Beneden (10), and Krohn (II) ; but its minute structure had not been sufficiently examined, and the meaning of what ras known of it had not been understood. It was reserved for Kowalevsky in Relation1866 to demonstrate the striking similarity in structure stip to and in development between the larval Ascidian and the Verte. rertebrate embryo. He showed that the relations between brates. the nervous system, the notochord, and the alimentary canal are much the same in the two forms, and have been brought about by a rery similar course of embryonic development. This discovery clearly indicated that the Tunicata are closely allied to Amphioxus and the Vertebrata, and that the tailed larva represents the primitive or ancestral form from which the adult Ascidian has been evolved by degeneration, and this led naturally to the view usually accepted at the present day, that the group is a degenerate side-branch from the lower end of the phylum Chordata, which includes the Tunicata (Urochorda), Amphi. oxus (Cephalochorda), and the Vertebrata. Kowalevsky's great discotery has since been confirmed and extended to all other groups of the Tunicata by liupffer (12), Giard Kupfer, (13 and 15), and others. Important observations upon Gara, se the process of gemmatiou and the formation of colonics in Gerama various forms of Compound Ascidians have been made by tion.
Krohn, Metschnikoff, Kowalevsky, Ganin, Giard, Della Yalle, and others, and have gradually led to the establishment of the general principle, that all the more importan' layers of the bud are derived more or less directly from the corresponding regions in the body of the parent.

In 1872 Fol (144^{4}) added largely to the knowledge of the Fol, sc Appendiculariidx, and Ciard (15) to that of the Compound Ascidians. The latter author described a number of new forms and remodelled the classification of the group. Fhe most important additions which have been made to the Compound Ascidians since Giard's work have been those described by Von Drasche (16) from the Adriatic and those discovered by the "Challenger" expedition (57). The structure and the systematic arrangement of tho Simple Ascidians have been mainly discussed of receut years by Alder and Hancock (18), Heller (19), Lacaze-Duthiers (20), Transtedt (21), and Herdman (57,22). In 18is Ussoff (23) investigated the minute structure of the nervou: system and of the underlying gland, which was first dis covered by Hancock, and showed that the gland bas a duct which communicates with the front of the brarchial sac or pharynx by an aperture in the dorsal (or "olioctory") tubercic. In an important paper published in 1880 Julis (24) drew attention to the similarity in structure and rels. tions between this gland and the hypophysis cerebri of the vertebrate brain, and insistcd upon their homology. Ho suggests that they perform a renal function. The Thaliacew
have of late years been the subject of severa, very important memoirs. The researches of Todaro, Brooks (25), Salensky (26); and others have elucidated the embryology, the gemmation, and the life-history of the Salpidx; and Grobben, Barrois (27), and more especially Uljanin (28) have elaborately worked out the structure and the details of the complicated life-history of the Doliolidx. Finally, in an important work published in 1886 on the morphology of the Tunicata, E. van Beneden and Julin (30) have, mainly as the result of a close comparison of the embryology of Ascidians with that of Amphioxus and other Chordata, added considerably to our knowledge of the position and affinities of the Tunicata, and of the exact relations of their organs to the corresponding parts of the body in the Vertebrata.

Anatony.

As a type of the Tunicata, Ascidia mentald, one of the larger species of the Simple Ascidians, may be taken. This species is found in most of the European seas, generally in shailiow water on a muddy bottom. It has an irregularly ovate form, and is of a dull grey colour. It is attached to some foreign object by one end (fig. 1). The opposite end of the body is usually narrow, and it has a terminal opening surrounded by eight rounded lobes. This is the mouth orbranchial aperture, and it always indicates the anterior end ${ }^{1}$ of the mimal. About half-way back from the anterior end, and on a rounded projection, is the atrial or cloacal aperturean opening surrounded by six lobes-which is always placed upon the dorsal region. When the dscidian is living and undisturbed, water is being constantly drawn in through the branchial aperture and passed out through the atrial. If coloured particles be placed in the water near the apertures, they are seen to be sucked into the body through the branchial aperture, and after a short time some of them are ejected with considerable force through the atrial aperture. The current of water passing in is for re- Fra. 1. - Ascid.a mentetata from the rishe spiratory purposes, and it apertue; ; t testre (Criginal.) also convers food into the animal. The atrial current is mainly the water which has been used in respiration, but it also contains all excretions from the body, and at times the ova and spermatozoa or the embryos.

The outer grey part of the body, which is attached at cr near its posterior end and penetrated by the two apertures, is the "test." This is a firm gelatinous cuticular secretion from the outer surface of the ectoderm, which is a layer of flat cells lining its inner surface. Although at first produced as a cuticle, the test soon becomes organized by the migration into it of cells derived from the ectoderm (see fig. 2).. These test cells may remain as rounded or fusiform or stellate cells imbedded in the gelatinous matrix, to which they are constantly adding by secretions on their

[^259]surfaces; or they may develop vacuoles in their proto plasm, which become larger and fuse to form a hinge ovate clear cavity (a "bladder cell "), surrounded by a delicate film of protoplasm and having the mucleus still visible at one point ; or they mayform pigment granales in theprotoplasm; or, lastly, they may deposit carbonate of lime, so that one or several

Fig 2.- Diagrammatic section of part of mantle and lest of an Ascidian, ahowing the formatiou of a vessel and the structure of the test m, mantle ; e_{3} ectoderrs ; ic test cell; $t m$, matrix; blc, bladder cell; s, s, blood ainns in mantle being drawn out into test; me, mantle cells y, septum of vessel. (From Herdman, Chailenger Report.
of them together produce a calcareous spicule in the test Only the unmodified test cells and the bladder cells are found in Ascidia mentula. Calcareous spicules are found chiefly in the Didennidx, amongst Compound Ascidians; but pigmented cells may occar in the test of almost all groups of Tunicata. The matrix in which these structures are imbedded is usually clear and apparently homogeneous; but in some cases it becomes fizely fibrillated, especially in the family Cynthiid dx. It is this matrix which contains tunicine. At one point on the left side near the posterior end a tube enters the test, and then splits up into a number of branches, which extend in all directions and finally terminate in rounded enlargements or bulbs, situated chiefly in the outer sayer of the test. These tubes are known as the "vessels" of the test, and they contain blood. Each vessel is bounded by a layer of ectoderm cells lined by connective tissuue (fig. 3, B), and is divided into two tubes by a septum of con-

nective tissue. The septum does not extend into the terminal bulb, and consequently the two tubes com-

Fic. 3. -4 , a vessel from the test. B, dla grammatic transverse section of a ves. sel c, ectoderm; $c \alpha$, connective tissse s, s, the tivo tubes; ψ, septum ; $l k$, ter minal bulu. (originil.)
municate at their ends (fig. 3, A). The vessels are formed by an outgrowth of a blood sinus (derived originally from the blastoccele of the embryo) from the body wall (mantle) into the test, the wall of the sinus being formed by connective tissue and pushing out a covering of ectoderm in front of it (fig. 2, s'). The test is turned inwards at the branchial and atrial apertures to line two funnel-like tubes, -the branchial siphon leading to the branchial sac and the atrial siphon leading to the atrial or peribranchial cavity.
The body wall, inside the test and the ectoderm, is formed of a layer (the somatic layer of mesoderm) of connective tissue, inclosing muscle fibres, blood sinuses, and nerves. This layer (the mantle) has very much the shape of the test ontride it, but at the two apertures it is drawn out to form the branchial and atrial siphons (fig. 4). In the walls of these siphons the muscle fibres form powerful circular bands, the sphincter muscles. Throughout the rest of the mantle the bands of muscle fibres form a rude irregular network. They are numerous on the right side of the body, and almost totally absent ou the left. The museles are all formed of very long fusiform non-striped fibres. The connective tissue of the mantle is chiefiy a clear gelatinous
matris, containing cells of various shapes; it is frequently pigmented and is penetrated by numerous lacunæ, in which the blood flows. In. side the mantle, in all parts of the body, except along the ventral edge, there is a cavity,-the atrial or peribranchial cavity, -which opens to the exterior by the atrial aperture. This cavity is lined by a layer of cells derived originally frem the ectoderm 1 and directly continuons with that layer through the atrial aperture (fig. 5) ; consequently the mantleis covered both externally and internally by ectodermal cells.

The branchial aperture (mouth) leads into the branchial siphon (buccal cavity or stomodæum), and this opens into the anterior end of a very large cavity (the branchial sac) which extends nearly to the

Fic. 4.-Diegrammatic dissection of A. mentula to show tue anstomy. at, atrisl eperturo; br bannchial spertura; a, anns; brs bronchal asc; $d l$, Corsal lamina; $d t$, dorsal tubercie: end. evdostyle; h, heart; i, intestiue; π, Lantle; ra, nerva ganglion; on, cesophagus; ada, osenphageal aperture; or, ovary; por, perihranclaal eavity: r, rectum; st, stomacb; test; in, tentacles; va, vas deferene; ngi, anboeural gland. (Original.)
posterior end of the body (see figs. 4 and 5). This branchial sac is an enlarged and mouiticea pharyma, ata is therefore properly a part of the alimentary canal. The œesophagus opens from it far back on the dorsal edge (see below, p. 612). The wall of the branchial sac is pierced by a large number of vertiral slits, -the sfigmata, -placed in numerous transverse rows. These slit3 place the branchial sac in communication with the

Fig. 5.-Diagramatic longitudinal (A) and transverse (B) sectons carongh Ascidia to show the position of the ectoderin end the relations of the branchial and peribranchial cavitics. The lettering is the same as for fig. 4. B represents a aection taken along the dotted lina $A-B$ in A. (Original.)
perihranchial or atrial cavity, which lies outside it (fig. 5 , B) Between the stigmata the wall of the branchial sac is traversed by blood-vessels, which are arranged in three regular series (fig. 6),-(1) the transverse vessels, which run horizontally round the wall and open at their dorsal and ventral ends into large longitudinal ressels, the dorsal and ventral sinnses ; (2) the fine longitudinal vessels, which run vertically between adjacent transverse vessels and open into them, and which bound the stigmata; and (3) the internal longitndinal bars, which run vertically in a plane

[^260]internal to that of the transverse and fine longitudinal vessels. These bars communicate with the transverse vessels by short side branches where they cross, and at these points are prolonged into the lumen of the sac in the form of hollow papille. The edges of the stigmata are richly set with cilia, which drive the water from the branchial sac into th3

A peribranchial cavity, and so cause the currents that flow in throngh the branchial aperture and out through the atrial.

Alongitsventral edge the wall of the branchial

Fro. 6. - A. Part of branchial sac of Ascidia from inside B. Transverse eection of same. tr, transverae vessel ; cl , connecting duct; km , honzontal membrane; il, Internal iongitudinel bar; l_{2}, ine longitnđinal vessels; p, p^{\prime}, papillap; sy, stigmats. A and B are drawn to diferent ucales. (From Herdman, CLallenger Report.) sac is continuous externally with the mantlo (fg. $5, B$), white internally it is thickened to form two parallel longitndinal folds bounding a groove, the "endostyle," hypobranchial groore, Endor ventral furrow (igs. 4, 5, end). The endodern cells etyls which line the eiuostyle are greatly enlarged at the bottom and on parts of the sides of the furrow so as to form projecting pads, which bear very long cilia it is generally supposed that this organ is a gland for the prodnction of the mucous secretion which is spread round the edges of the branchial sac and catches the food particles in the passing current of water; but it has recently been pointed out that there are comparatively few gland cells in the epithelium of the endostyle, and that it is more probable that this furrow is merely a ciliated path along whech the mucous secretion (rroduced possibly by the subneural gland) is conveyed posteriorly along the ventral edge of the branchial sac. At its anterior end the edges of the Pen endostyle become continuous with the right and left halves pharyo of the posterior of two circular ciliated ridges,-the peri- Eand pharyngeal bands,-winch run parallel to one another round the front of the branchial sac. The dorsal ends of the posterior peripharyngeal band bend p steriorly (en- Darma: closing the epibranchial groove), and then join to form lamine the anterior end of a fold which rnns along the dorsal edge of the branchial sac as far as the esophageal aperture. This fold is the dorsal lamina (figs. 4, 5, $d l$). It probably' serves to direct the stream of food particles entangled in a string of mucus from the anterior part of the dorsal lamina to the œesophagus. In many Ascidians this organ, instead of being a continuous membranous fold as in A. mentula, is represented by a scries of elongated triangular processes-the dorsal languets,-one attached in the dorsal median line opposite to each transverse vessel of the kranchial sac. The anterior peripharyngeal band is a complete circular ridge, having no connexion with either the endostyle or the dorsal lamina. In front of it lies the prebranchial zone, which separates tho branchial sac belind from the branchial siphon in front. The prebranchial 7one is bounded anteriorly by a muscular band-the posterior edge of the sphincter muscle,-whica bears a circle of long deiicate processes, the tentacles (figs. 4, 7, 8, tn). Thess Froject inwarda at rigbt angles so as to form a network across the entrance to the branchial sac. Each tentacle consists of connective tissue covered with epithe-
linm (endoderm), and contains two or more cavites which are continuous with blood sinuses in the mantle. In the dorsal median lino near the anterior end of the body, and imbedded in the mantle on the ventral surface of the nerve ganglion, there lies a small glandular mass-the subneural gland-which, as Julin has shown (24), there is reason to regard as the homologue of the hypoplysis cerebri of the vertebrate brain. Julin and E. van Beneden have suggested that the function of this organ may possibly be renal. ${ }^{2}$ The subncural gland, which was first noticed by Hancock, communicates anteriorly, as Ussoff (23) pointed out, by means of a narrow duct with the front of the branchial sac (pharynx). The opening of the duct is enlarged to form a funncl-shaped cavity, which may be folded upon itself, convoluted, or even broken up into a number of
Dorsal tulercles a complicated projection, called the dorsal tubcrele, situated in the dorsal part of the prebranchial zone (fig. i). The dorsal tubercle in A. mentula is somewhat horse-shoe-shaped (fig. 8); it varies' in form in most Ascidians according to the genus and species, and in some cases in the individual also. Possibly, besides being the opening of the duct from the subneural gland, it may be a sense-organ for testing the quality of the water entering the branchial sac.
Nervous The single elongated ganglion in
syotem. the median dorsal line of the mantle between the branchial and atrial siphons is the only nerve-centre in A. mentuld and most other Tunicata. It is the degenerate remains of the anterior

Fio. 8,-Dorsal tubercle alte veighbouriog organs of A. mentuta. Lettering as before ; egr, epitranchial grocvo ; \approx, prebranchiial zone. (origina.).
part of the cerebro-spinal nervous system of the tailed larval Ascidian (see helow, p. 614). The posterior or spinal part has entirely disappeared in most Tunicata. It persisis, however, in the Appendiculariides, and traces of it are found in some Ascidians (e.g., Clavelina; see Julin). The ganglion gives off distributory nerves at both ends,

[^261]which run through the mantle to the neighbourhood of the apertures, where they divide and subdivide. The only sense-organs are the pignuent spots between the branchial and atrial lobes, the tentacles at the base of the branchial siphon, and possibly the dorsal tubercle and the languets or dorsal lamina. These are all in a lowly developed condition. The larval Ascidians on the other hand have welldeveloped intra-cerebral optic and auditery sense-organs; and in some of the pelagic T'unicate otocysts and pigment spots are found in connexion with the ganglion.

The mouth and the pharynx (branchial sac) hare already been described. The remainder of the alimentary canal is a bent tube which in A. mentule and most other Ascidians lies imbedded in the mantle on the left side of the body, and projects into the peribranchial cavity. The œesoplagus leaves the branchial sac in the dorsal middle line near the posterior end of the dorsal lamina (see fig. 4, $\propto a$). It is a short curved tube which leads ventrally to the large fusiform: thick-walled stomach. The intestine emerges from the ventral end of the stomach, and soon turns anteriorly, then dorsally, and then posteriorly so as to form a curve-the intestinal loop-open posteriorly. The intestine now curves anteriorly again, and from this point-runs nearly straight forward as the rectum, thus completing a second curve-the rectal loop-open anteriorly (see fig. 4). The wall of the intestine is thickened intelnally, to form the typhlosole, a pad which runs along its entire length. The anus opens into the dorsal part of the peribranchial cavity near to the atrial aperture. The walls of the stomach are glandklar; and a system of delicate tubules with dilated ends, which ramifies over the outer wall of the intestine and communicates with the cavity of the stomach by means of a duct, is probably a digestive gland.
A mass of large clear vesicles which occupies the rectal Excreloop, and may extend over the adjacent walls of the in-tory testine, is a renal organ without a duct. Each vesicle is organs the modified remains of a part of the primitive coelom or body-cavity, and is formed of cells which eliminate nitrogenous waste matters from the blood circulating in the neighbouring blood-lacuna and deposit them in the cavity of the vesicle, where they form a concentrically laminated concretion of a yellowish or browu colour. These concretions contain uric acid, and in a large Ascidian are very numerous. The nitrogenous waste products are thus deposited and stored up in the renal vesicles in place of being excreted from the body. In other Ascidians the renal organ may differ from the above in its position and structure; but in no case has it an excretory duct, unless the subneural gland is to be regarded as a renal organ.
The heart is an elongated fusiform tube placed on the Blood. ventral and posterior edge of the stomach, in a space (the vasculas pericardium) which is part of the original coelom or body- system cavity, the rest of which exists merely in the form of lacune celore and of the cavities of the reproductive organs and renal vesicles in the adult Ascidian. The wall of the heart is formed of a layer of epithelio-muscrilar cells, the inner ends of which are cross-striated; and waves of contraction pass along it from end to end, first for a certain number of beats in one direction and then in the other, so as to reverse the course of circulation periodically. At each end the heart is continued into a vessel (see fig. 9), a large sinus or lacuna, lined with a delicate endothelial layer. The sinus leaving the ventral end of the heart is called the branchio-cardiac vessel, ${ }^{2}$ and the heart itself is merely the dufferentiated posterior part of this sinus and is therefore a ventral vessel. The branchio-cardiac vessel, after giving off a branch which, along with a corresponding branch from the cardio-visceral vessel, goes to the test, runs along the

[^262]ventral edge of the branchial sac externally to the endostyle, and communicates laterally with the veniral ends of all the transverse vessels of the branchial sac. The sinus leaving the dorsal end of the beart is called the cardio-visceral vessel, and this, after giving off to the test the branch above mentioned, breaks up into a number of sinuses, which ramify over the alimentary canal and the other viscera. These visceral lacunæ finally conmunicate with a third grsat simus, the viscero-branchial vessel, which runs forward along the dorsal edge of the branchial sac externally to the dorsal lamina and joins the dorsal ends of all the transverze vessels of the branchial sac. Besides these three chief systems there are rumerous lacunæ in all parts of the body, by means of thich anastomoses are established betweon the different currents of blood. All these blood spaces and lacunæ are to be regarded as derived from the blastoccele of the embryo, and not, as has been usually supposed, from tho coelom (30). When the heart contracts ventro-dorsally, the course of the circulation is as follows : the blood which is flowing through the vessels of the branchial sac is collected in an oxygenated condition in the branchio-cardiac vessel, and, after receiving a stream of blood from the test, enters the heart. It is then propelled from
 the dorsal end of the Fio. 0. - Tiagram nf circulution in Astrin. Lettering as be
 the cardio et, vessels sto test. (Original.)
viseeral ressels, and so reaches the test and digestive and other organs ; then, after circulating in the visceral lacunæ, it passes into the viscero-branchial vessel in an impure coudition, and is distributed to the branchial vessels to be purified again. When the heart on the other hand contracts dorso-ventrally, this course of circulation is reversed. As the test receives a branch from each end of the beart, it follows that it has afferent and efferent vessels whichever way the blood is flowing. In some Ascidians the vessels in the test become very numerous and their end branches terminate in swollen bulbs close under the outer surface of the test. In this way an accessory respiratory organ ${ }^{2}$ is probably formed in the supericial layer of the test. The blood corpuscles are chiefly colourless and anoeboid ; but in most if not all Ascidians there aro also some pigmented corpuscles in the blood. These are generally of an orange or reddish. brown tint, but may be opaque white, dark indiga blue, or of intermediăte colours. Precisely similarly pigmented cells are found throughout the connective tissue of the mantle and other parts of the body.
A. mentula is hermaplrodite, and tho reproductive organs lie, with tiee alimentary canal, on the left side of the body. The ovary is a ramified gland which occupies the greater part of the intrastinal loop (see fig. 4). It contains a cavity which, along with the cavities of the testis, is derived from a part of the crigizal ceelom, and the ora are formed from its walls and fill when mature into the cavity. The oviduct is coniinusus with the cavity of the ovary and leads forwards alougsint the rectum, finally opening near the anus into the peribranchial cavity. The testis is compozed of a great numior of delicate branched tubules, which ramify over the ovary and the adjacent parts of the intestinal wall. Thoso tubules terminato in ovate swellings. Near the commencement of the rectum the larger tubules unite to form the vas deferel \} a tube of considerable size, which runs forwards alongside the rectum, and, like the oviduct, terminates by opening into the peri-

[^263]branchial cavity closo to the anus. The lumen of the tubules of the testis, like the cavity of the ovary, is a part of the original ceelom, and the spermatozoa are formed from the cells lining the wall. In some Ascidians reproductive organs aro present on both sides of the body, and in others (Polycarpa) there are many complete sets of both male and female systems, attached to the inner surface of the mantle on both sides of the body and projecting into the peribranchial cavity. ${ }^{2}$

Embryolooy ${ }^{3}$ and Life History.

In most Ascidians the cgga are fertilized in the peribranchial cavity, and nudergo most of their develomment before leaving the parent; in como cases, however, the eggs aro laid, and fertilization takea place in the surronnding water. Tho scrmentation is complete and regular (fig. $10, A$) and results in tio formation of a apherical blastula, which then undergoes invagination (fig. 10, B). The embryo elongates, and the blastopore or invagination opening comes to be placed on the dorsal edge near the posterior end (fig. $10, \mathrm{C})$. The hypoblast cells lining the archonteron are columbar in form, while the epiblast cells are mora cubical (fig. 10, B, C, D). The dorsa! surface of the embryo now becomes flattened and then depressed to form a lougitudinal groove, cxtending forwarda from tho blastopore to near the front of the body. This "medullary groove" מow becomes converted into a closed canal by its aide Walls growing up, arching over, and coalescing in the median dorsal

Fio. 10.-Stagee in the embryology of a Simple Ascidian (afier Kowalevsky) A to F. Longitndinal vertical aections of embryos, ell placed with the dorsa, anriace uppermost and the anterior end at ths fight. A. Early blssiu's atage, during begmentation. B. Earls gastruls stage. O. Stage efter gas trula, showing commencement of notocbord. D. Later atage, showing forme tien of notochord and of nearal canal. E. Embryo showing body and té and completely formad naural canal. F. Larya just Latcled; end of tai cut off. O. Transvarae aection of tail pf larva.
$a d p$, adhering papillm of larva ; at, epiblestic (atrial) involntion; au, auditory organ of larva; ar, archenteron ; be, blastocale ; bp, blastopore; ch, notochord; $c p$, epiblast; $h y$, bypoblast; $n c$, nearal canal; rec, neurenteric canal ; oc, ocular organ of lerva; g, galatinous investment of embryo; m, runscle cella of tail: mes, mesenteron; mc, mesocierm cells: nr, cerebraj vesicle at anterior end of noural cansl.
line (fig. 10, D). This union of the lamine dorsales to form the neural canal commences at the posterior end bchind the blastopore and gradually extanos forwards. Consequently the blastopore comes to open into tho posterior end of the neural canal (fig. 10, D), while the anterior cnd of that cavity remains open to tha exterior. In this ray tho archenterou communicates indirectly with the exterior. The short canal leading from the neural cansl to tha archenteron is known as the neurenteric canal (fig. 10,
${ }^{2}$ For structure of other forms, see p. $61 \pm$ sa. below.
3 For reproduction by gemmation, see under "Classification,"
6148% below.

D, nec). Previous to this stage some of the hypoblast cells at the front edge of the blastopore and forming part of the dorsal wall of the archenteron (fig. 10, C, ch) have become separated off, and then arranged to form an elongated band, two cells wide, underlying the posterior half of the ncural canal (fig. $10, \mathrm{D}, \mathrm{E}, \mathrm{ch}$.). This is the origin of the notechord. Outgrowths from the sides of the archenteron give rise to latcrally placed massea of colls, which are the origin of the mesoblast. These masses show no trace of metameric segmentation. The cavities (reproductive and renal reaicles) which are formed later in the mesoblast represent the colom. Consequently the body-cspity of the Tunicata is a modified form of enterocole. The anterior part of the embrye, in front of the notochord, now becomes enlarged to form the trunk, while the posterior part elengates to form the tail (fig. 10, E). In the trunk the antcrior part of the srchenteron dilates to form the mesenteron, the greater part of which becomes the branchial sac; st the aame time the anterior part of the neural canal enlarges to form the cerobral vesicle, and the opening to the exterior at the front end of the canal now closes. In the tail part of the cmbryo the neurs] canal remsins as a narrow tube, while the remsins of the wall of the archenteron-the dorsal part of which becomes the notechord-are converted into lateral 10 uscle bands (fig. 10, G) and a ventrsl cord of cells, which eventually hreaks up to form blood corpuscles. As the tail grows longer, it becomes bent round the trunk of the embryo inside the egg-membrane. About this period the cpiblast cells begin to form tbe test as a cnticular deposit upon their outer aurface. The test is at first deveid of cells and forms a delicaie gelatinous investment, but it alhortly afterwards becomes cellular by the migration into it of test cellis formed bv oreliferation from the epiblast. ${ }^{3}$

The embryo 18 hatched about two or three days after fertilization, in the form of a tadpole-like larva, which swims sctively througli the aea by vibrating its long tail. The anterier end of the hody is provided with thres adhering papilla (fig. 10, F, adp) in the form of epiblastic thickeings. In the free-swimming tailed larva the nervous system, formed from the walls of the neural canal, becomes considersbly differentisted. The anterior part of the cerebral vesicle remains thin-walled (fig. $10, \mathrm{~F}$), and two unpaired sense organs develop from its wall and project inte the cavity. These are a dorsally and posteriorly placed optic organ, provided with retina, pigment layer, lens, and cornes, and a ventrally placed suditory organ, consisting of a large spherical partially pigniented otolith, attached by delicate hair-like processes to the summit of a hollow crista acoustica (fig. 10, F, au). The posterior part of the cerebral vesicle thickens to form \& oolid ganglionic mass traversed by a narrow central canal. The wall of the neural canal behind the cerebral vesicle becomes differentiated into an anterior thicker region, placed in the poaterior part of the trunk and having a auperficial layer of nerve fibres, and a pesterior narrower part which traverses the tail, lying on the dorsal surface of the notochord, and gives off aeveral pairs of nerves to the muscles of the tail. Just in front of the anterior end of tha nervons system a dorsal involution of the epiblast breaks through into the upturned anterior end of the mesenteron and thus forms the mouth opening. Along the ventral edge of the mesenteron, which becomes the branchial sac, the endostyle is formed as a narrow groove with thickencd side walls. It probably corresponds to the median portion of the thyroid bedy of Vertebrata. A curved ontgrowth from the pesterior end of the mesenteron forms the alimentary canal (œesophagua, atomach, and intestine), which at first ends blindly. An anus is formed later by the intestine opening into the left of two lateral epiblastic involutions (the atria), which rapidly become larger and fuse dorsally to form the peribranchial cavity. Ontgrowths from the wall of the branchial asc meet these eniblastic involutions and fuse with them to give rise to the first formed pair of stigmata, which thus come to open into the peribranchial cavity ; snd these slone correspond to the gill clefts of Amphioxus and the Vertebrata.

After a ahort free-swimming existence the fully developed tailed larva fixes itself by its anterior adhering papillas to some foreign object, sud then undergees a remarkable series of retrogressive changes, which convert it into the adult Ascidian. The tail atro. phies, until nothing is left hut aome fatty cells in the posterior part of the trunk. The sdhering papillæ disappear and are replaced The nervous system with its sense organe neighbouring oljects. duced to the single small its sense organs atrophies until it is repharynx, and a slight nerve cord running for dorsal cdge of the teriorly (Van Beneden and Julin). Slight chance distance posof the body and a further growth snd diferentianges in tbe shape sac, peribranchial cavity, and other organ tiation of the branchial the structure found in the adult Ascidian The most important points in conne.
levelopment and metamorphosia connexion with this process of cidjan embryo all the more important forganing. (1) In the nuural cansl, archenteron) are formed in osaentigi, notochord, I Some of tha first test cells ara also probably derived from the epithelian
of tha egg follicle.
manner $8 s$ they are in Amphioxus and other Chordata. (2) The free-awimming tailed larva possesses the essential characters of the Chordata, inasmuch as it hes a longitudinal skeletal axis (the notochord) separatlng a dorsally placed nervons systcm (the neural canal) from a ventral alimentary canal (the archenteron); and therefore during this period of its life-history the animal belongs to the Chordata. (3) The Chordate larva is more highly organized than the adnlt Ascidian, and therefore the changes by which the latter is produced from the former may be regarded as a process of degeneration (31). The important conclusion drawn from all this the primitive Chordata (see below p. 618).

Classification and Characters of Grours.

Order I. -LARVACEA.

Free-swimming pelagic forms provided with a lorge locomotory appendsge (the tail), in which there is a skeletal sxis (the urochord). A relatively large test (the "Haus") is formed with great rapidity as a sccretion from the ectoderm; it is morely a temporary structure, which is cast off and replaced by snother. The branchial aac is aimply an enlarged pharnyx with two ventral ciliated openings (stigmata) leading to the exterior. There is no scparate peribranchial cavity. The nervous system consists of a large dorsally placed ganglion and a long nerve cord, which stretches backwarda over the alimentary canal to reach the tail, along which it runs on the left side of the urochord. The anus opens rentrally on the eurface of the body in front of the stig. mata. No reproduction by gemmation or metamorplosio is known in the life-history.
This is one of the most in. teresting groups of the Tunicata, ss it shows more completely than any of the rest the characters of the original ancestral forms. It has undergane little or no degen. eration, and consequently corresponds more nearly to the tailed-larval condition than to the sdult forms of the other groups. The order Fio. I1.-Oikopleura cophocerea in "Hans" includes a singlo family, the (after Fol), seen from right side, magnified APPENDICULARIIDE, all the
six times. The arrows indicate the course men of the water; x, lateral ndiciculated course members of which are minute "Haus." ter; x, lateral reticulated parts of and free-avimming. They
"Haus. occur on the surfece of the sea in most parts of the world. They possess the power to form Strucwith great rapidity au enormonsly large investing gelatinous layer ture of (fig. 11), which corresponds to the test of other groups. This was Appen-

Fio. 12.-Serai-diagrammatic view of A ppendicularia from the right. a, anus. al, one of the atras apertures; opp, tail; br, branchial aperture; brs, branchial sac ; dt, dorsal tubercle; end, endostyle; h, heart; i, intestine; m, muscle band of tail ; n, serve cord in body ; n, derva cord in the tail; a, , cesophagus; ot, otocyst; ov, ovary; pp, peripharyngeal band; $n g$, cerehral ganglion ; $n g^{\prime}$, csudal ganglion; Mo', enlargenient of merve cord in tail; so, sense organ (tactile) on lower lip; sg, ciliated apertura in pharynu; st, atomach ; tes, testis ; u, urochord; u^{\prime}, its cut end. (Original.)
first described by Von Mertens and by him named "Haws." It is only loosely attached to the body and is frequently thrown of eoon after its formation. The tail in the Appendicularider is at. tached to the ventral surface of the body (fig. 12), and usually
points more or less anteriorly. It shows distinct traces of meta. meric segmentation, having its muscle bands broken up into myotomes, while the nerve cord presents a series of enlargements from which distributary nerves are given off (ig. 12, $n g^{\prime \prime}$). Near the baso of the tail there is a disinct elongated ganglion (fig' 12, inf'). The anterior (cerebral) ganglion has connected with it an otocyst, a pigment spot, and a tubular process opening into the branchial sac and representing the dorsal tubercle and associsted parts of an ordinary Ascidian. The branchial sperture or mouth leads into the branchial sac or pharynx. There are no tentacles. The endestyle is short. There is no dorsal lamina, and the peripharyngeal bands run dorsally and posteriorly. Tho wall of the branchial sac hss only two ciliated apertures. They are homologous with tho primary stigmsta of the typical Ascidians and the gill clefts of Vertebrstes. They aro placed far back on the ven-
tral surface, one on each side of the middle line, and lead into short funnel-shaped tubes which open on the surface of the body hehind the anus (fig. 12, at). These tuhes correopond to the right and left atrial involutions which, in sn ordinary Ascidian, fuse to form the peribranchial cavity. Tho heart, sccording to Lankester, is formed of two cells, which are placed st the opposite ends and connected by delicats contractile protoplasmic fibrils. The large ovary and testis are placed at the posterior end of the body. The remainder of tha structural details can be msde out from fig. 12.

The family Appendiculariids comprises the genera, - Oikoplcura (Mertens), and Appendicularia (Cham.), in both which ths body is short and compact and the tail relatively long, while the cndostyle is"atraight ; Fritillaria (Q. and G.), in which the body is long and composed of anterior and posterior regions, the tail relatively short, the endostyle recurved, sud an ectodermal hood is formed over the front of the body; and Kowalevskia (Fol), s remarkable form described by Fol (54), in which the heart, endostyle, sud intestino re said to be absent, while the branchial sac is provided with four Cors ef ciliated tooth-like processes.

Order II.-THALIACEA.

Free-swimming pelagic forms which msy be either simple or compound, and the sdult of which is never provided with a tail or a notochord. The test is permanent and may be either well developed or very slight. The musculature of the mantle is in the form of more or less complete circular bands, by the contraction of which locomotion is effected. The branchial sac has either two large or many small spertures, leading to a single peribranchial cavity, into ' which the arus opens. Altcrnstion of generations occurs in the lifehistory; and may be complicated by polymerphism. The Thaliacea comprises two eroups, Cyclomyaria and Hemimyaria.

Sub-order 1.-Cyclomyaria.

Freo-swimming pelagic forme which exhibit alternation of geucra. tions in their life-history but never form permanent colonies. The body is cask-shaped, with the branchial snd strial apertures at the opposite ends. The test is more or less well developed. The mantle has ita musculature in the form of circular bands surrounding the body. The branchial sac is fairly large, occupying the anterior half or more of the body. Stigmata are usually present in its posterior part only. The peribranchial cavity is meinly posterior to the branchial sac. The slimentary canal is placed veutrally close to the posterior end of the branchial sac. Hermaphrodite reproductive organs are placed ventrally near the intestine.

This group forms one family, the Dolioliden, including two genera, Doliolum (Quoy and Gaimard) and Anchinia (C. Vogt).

Doliolum, of which several species are known from varions seas, hss a cask-shaped body, usually from 1 to 2 cro. in length. The terminal branchial and atrial apertures (fig. 13) are lobed, and the lobes are provided with sease organs. The test is very slightly developed and contains no cells. The mantle has eight or nine circular muscle bands surrounding the body. The most anterior and posterior of these form the branchial and atrial sphincters. The wide branchial and strial apertures lead iute large branchial and peribranchial cavities, separated by tho posterior wall of the branchial sac, which is pierced by stigmata; conscquently there is a free passage for the water through the body along ita long exis, and the animal swims by contracting its ringlike muscle-bands, so as to force out the contained water posteriorly. Stigmata may also be found on the lateral walls of the branchial sac, and in that case there are corresponding anteriorly directed diverticula of the peribranchial cavity. There is a distinct endostyle on the rentral edge of the branchial sac and a peripharyngeal band surrounding its anterior end, but there is no representative of the dorsal lainina on its dorwal edge. Thee cesophagus commences rather on the ventral cdge of the posterior end of the Lranchial sac, and runs bavkwrds to open into the stomach, which is followed by a curved intestive opening into the peribranciial cavity. The alimentary canal ss a whole is to the right of the middle line. The Lermaphrodite reproductive orgars are to the Wit of the middle line alongside tle alimentary cana:. They open
into the peribranchial cavity. Tho ovary is nearly spherical, while the testis is clongated, and may be continued anteriorly for a long distance. The heart is placed in the middle line ventrally, bs-

Fic. 13.-Doliolum denticulatum, sexusl geveration, from the left slde. Letter ing 89 for f. $12 ; m^{1}-m 8$, muscle hands; ng, nerve ganglion; ${ }^{80}$, stigmata ; sgl, subneural gland ; pbr, peribranchial cavity; atl, strial lobe9: so. sease organa; brl, branchial lobes. (Original.)
tween the posterior end of the endostyle and the cesopnageal aperture. The nerve ganglion lies about the middle of the dorsal edge of the body, and gives of many nerves. Under it is placed the subucural gland, the duct of which runs forward ond opens into the anterior cnd of the branchial sac by a simple aperture, surrounded by the spirally twisted dorsal eud of the peripharyngeal band ($\mathrm{fig} .13, d t$).
The ova of the sexual generation produce tailed larva; these Developr develop into forms known as "nurses" (blastozooids), which are ment of asexual, and are characterized by the possession of nine muscle Doliobands, an auditory sac on the left side of the body, a ventrally-lum placed stolon near the hcart, upon which buds are produced, and a dorsal outgrowth near the posterior end of the body. The buds give rise eventually to the sexual generation, which is polymerphous, having three distinct forms, in two of which the reproductive organs remain undeveloped. Tho buds rhile still very young migrate from their place of origin on the stolon, divide by fission, and become sttached to the dorsal outgrowth of the body of the nurse, where they develop. The three forms produced are as follows. (1) Nutritive forms (trophozooids), which remain permanently attached to the nurse and serve to provile it with food; they have the body elongated dorso-ventrally, and the musculature is very slightly developed. (2) Foster forms (phorozooids), which, like the preceding, do not bccome sexually mature, but, unlike them, are set free as cask-shaped bodies with cight muscle bands and a ventral outgrowth, which is formed of the stalk ty which the body was formerly united to the nurse. On this outgrowth the (3) forms (gonozooids) which become sexually mature are attached while still young bads, and after the foster forms are set free these reproductive forms gradually attain their complete development, and are eventually set free and lose all trace of their conuexion with the foster forms. They resemble the foster forms in having a cask-shaped body with eight muscle bands, but differ in baving ne outcrowth or process, and in having the reproductive organs fully developed. ${ }^{\text {d }}$

Anchinia, of wbich only one species is known, A. rubra, srom Anchinior
the Mediterranean, has the sexual forms permaneutly attached te pertions of the dorsal ourgrowth from the body of the unknomn nurse. The body is elongated dorso-ventrally. The test is well developed and contains branched cells. The musculature is not se well developed as in Doliolum. There are tiro circular bands at the anterior end and two at the posterior, and two on the middle of the body. The stigmata aro confined to tho obliquely placed posterior end of the branchial sac. The alimentary canal forms a U-shaped curre. The reproductive organs are placed on tho right side of the body. The life-histery is still imperfectly known. As in the case of Doliolum the sexual generation iz polymorphous, and has three forms, two of which remain in a rudimentary condition so far 85 the reproductive organs are concerned. In Anchinia, however, the three forms do not occur together on one stolon or outrrewth, but are produced successiveiy, the reproductive forms of the sexial generation being independent of the "foster forms" (see Ba-rois, 27).

Sub-order 2.-Hemimyaria.
Free-wimming pelagic forms which exhitil slternation of generitions in their life-history and in the sexual condition form colonies. The body is more or less fusiform, with the long axis antero-posterior, and the branchial and atrial apertures nearly terminal. The test is well developed. The musculature of the mantle is in the fore of a series of transversely-running bands, which do not forme cem. plete independent riugs as in the Cyclomyaria. The branchial and

1 For further details see U\Jania (25).
peribranchial cavities form a continuous space in the interior of the body, opening externally by the branchial and a trial apertures, and traversed obliquely fromi the dorsal and anterior ond to the ventral and posterior by a long narrow vascular band, which represents the dorsal lamina, the dorsal blooci-vessel, and the neighbouring part of the dorsal elge of the branchial sac of an ordinary Ascidian. The alimentary eanal is placed ventrally. It may cither bo stretched out so as to extend for some distance anteriorly, or-as is more usual-be concentrated to form along with tho jeproductive organs a rounded opaquo mass near the posterior end of the body, known as the visceral mass or "nucleus." The embryonic develonment is direct, no tailed Jarva being formed.
This sub-order contains two very distinet families, the SalpIDE, wich aro the typical nembere, and the Octacnemider, including a single very remarkable f.rm (Octacnconus bythius), which in some respects docs not conform whth tho characters given above.
The Salpidez includes tho single genus Salpa (Forskål), which, however, may bedivided in to two well-marked groups of spocies,-(I) those, such is.S. pinnata, in which tho alimentary canal is stretched
out along the veatral surface of the body, and (2) those, such as
 S. fusiformis (fig. 14, A), in which the alimentary canal frms a compact globular mass, the About fifteen specres altorcther of the body. About fifteen species altogether are linown; they are all pelege forms and ore found in forms-the solitary asex. forms-the solitary asex. the argrregated sexual (proles gragaria)-vhiel are usually quito unlike one another. The solitary form (fig. $14, \mathrm{~B}$) gives rise by internal gemmation to a complex tubular etolon, which contains processes from all the more important organs of tho parent body and which becomes seg. mented into a series of Fto. 14- -Salpa rumonnfa fusi/ormis. A. Agme- buds or cmbryos. As
gated form. B Solitary form. Lettering ss gated form. B solitary form. Lettering ss the stolon elongates, the
hefors; 19, muscle bacds; cm , embryo; gcm, gemmiparous stolon, m, mantle; viac, riscern mass (nucleus). (Original.),
lopment are set free in groups, which remain attached torether livlopment are set freo in groups, which remain attached together ly so as to form "chains" (fig. 15). Each member of tho chain is a Salpa of the sexual or aggregated form, end when mature may-ertleer stild attached to its neighbuurs or separated from them (fig. 14, A)produce one or several embryos, which derelop into the solitary Salpa. Thus the two forms alternate regularly. The more important points in the structure of a typical Salpa are shown in fig. 16. The branchial and atrial apertures are at oppocite ends of the body, und each eads into a large cavity,
the branchial and the branchial and peribranchial tion which are in free communicarunning dorsal lamina or " gill" running dorsal lamina or "gill", adheres closely to the surface of

F10. 15. - Posterior part of aolitary form of Salja democratica-mucronata, showing a chsin of embryas nearly resdy to be set free. gem, young sggrcgated Salpe forming the chain: si, stolon: m, musele bavd of the mantle. (Original.) the mantle. The muscle bands of encircle the body. Theyare present dorsally
and laterally, and laterally, but the majority do not reach the veniral surfree. In many cases neigh. bouring bands join in the median dorsal line, (fig. 14). The anterior end of the dorsal lamina is prolonged to form

Fio. 16, - Semindlaærammatic represeutation of Salpa from loft side. Lettering as before ; cmo, embryo; m, msntle;
l, languet; sy, duct of subneurml gland; bands of mantle ; ψ, thickening of test over nueieunselo gill or branchia. (Original.) a promincut tent
a prominont tentacular organ, tho langnet, pro-

Jecting into the branchial sac. The nerve ganglion, subneural gland, dorsal lanina, peripharyngeal bands, and endostyle are placed in the usual pooitions. A pigment spot and an otocyst are found in connection with the ganglion. The large spaces at the sides of the dorsal lamina (eften called the gill or branchia of Salpa), by means of which the cavity of the branchial sac is placed in frco communication with the paribranchial cavity, are to lateral walls of gigntic stigmata fozmed by the suppression of the lateral walls of the branchial sac. Fig. IC represents an aggre-
gated or sexual Sutua which was ance it shows a tcstis and a developing cmbryo. in number, usually only one) appear at a very carly (always fow developing chain Selpe, while it is still a pery carly period in the stolon in the body of the solitary Selpa. This gave rise to the riew put forward by Brooks (25), that the ovary gave rise to the tho solitary Salpa, which is therefore a fomale producing a series of males by aserual gcramation, and depositing in cach of these an ovam, which will afterwards, when fertilized, develop in the body of the malo into a solitary or female Salpa. Thie itea rould of courso cntirely desiroy the view that Sulpa is an example of alternation of generations. The sexual or chain Solpa, although really hermaphrodite, is almays protogynons: i.e., the female elements or ova aro produced at an earlier period than the nale o. ran or testis. spermatozoa of an oldcr sation. The ovum is icrtilized by the Develor spormatozoa of an older Salpa belonging to another clain, and ment of
the embryo is far advanced in its development beforo the tectis is Sal formed. At an earyy period in its development beforo the testis is Salpa. becomes separated off, alor in its development a part of the embryo in which it lies, to form alorg with a part of tha wall of the cavits the maternal blood stroans cireulate in in which the cmbryonic and coalesco during one period) and so allow of the proximity (or actually to the dereloping period) and so allow of the passage of nutriment cells placed at the posterior cnd of the body alourgide number o nucleus become filled up with ail- of the body alongside the future material- the clooblast -with oil-globules to form a mass of nutrient ment. Many sugections bave been und later on in the develop. the clooblast. The most probable is that it is the homelogy of rudiment of the tail fonnd in the larval condition ine disappearing
The fanily Ocfacnemidx includcs the single remarkable form. Octacncmus Vythius, fotnd do ring the "Challenger" expalition form Octa. first deseribed by
Moseloy (20). It is Mloscloy (29). It is apparcuty a dcepp-
sea representative of the pelagic Salpides, and may pessibly be fixed, The body is somewhat discoid, with its margin proionged to form eight tapering processcs, on to which the muscle bands of the mantle are continued. The ali-

of Octacnemus buthitie vertical longitudinal section sperture: \quad octas bythius (after Moscley). br, bramehial aperture; m, opening of asophagus; r, rectuma : at, mh, muscles of mucleus. m, muscles of nucleus; g, respirators membrane; s, thickened margin of bass of test; pa, pediele of
mentary canal forms a compact nucleus (fig. 17); the endostyle is production and life-history ere entirely unkuown.

Order III.-ASCIDIACEA.

Fised or free-swimming Simple or Compound Ascidians which in Ascid. tho adult are never provided with a tail and lase no trace of a iacca. Asochord. The free-swimming forms are colonies, the Simple Ascicians being always fixed. The test is permanent and well dereloped; as a rule it increases with the age of the individual. The branchial sac is large and well developed. Its walls are perforated by mumerous slits (stigmata) opening into the perihranchial cavity, which conmunicates with the exterior by the a trial aperture. Mlany of the forms reproduce by gemmation, and in most of them the sexually-proluced embryo develops into a tailed larya.
the Compound Ascidians, and the free-swimming celonial Ascidians,

Sul.order 1.-Aecidia Simplices.

Fixed Ascidians which are solitary and very ravely meproduce by gemmation: if colonies are formed, the nembers are not buried in a common investing mass, but each has a distinct test of its own. No strict line of demarcation can be drawn betivecn the Simple and
the Compound Ascidians, and one of the the Compound Ascidian's, and one of the families of tho former gromp the typical Simple forms, which Ascercr reproduce fy a transition to the Compound forms, which always do (seo produce by gemmation, Asciatie Simplices nay be diviled into the following families : The
Family Y.-Clavelinides, Simplo Aseidians which repioduce by gemmation io form small colonies in which each ascidiozooid has a distiznt test, but all are counected by a commnn ulood-gystem,

Buds formed on stelons which are vascular outgrowths from the pos. terior end of the body, containing prolongations from the cctoderim, mesoderm, and endoderm of the asciliozooid. Branchial sac not folded; internal lengitudinal bara usually sbsent; stigmata straight; tentacles simple. This family contains three genera: Ecteinascidia (llerdman), with internal longitudinal bars in braochial sac; Clavelina (Savigny), with intestine extending behind branchial saa; and Perophora (Wiegmann), with intestine alongside branchial sac. Family II.-Ascidninc. Solitary fixed Ascidians with gelativous test ; branchial aperture usually eight-lobed, atrial aperturo usually six-lobed. Branchial sac not folded; internal longitudinal bars usually present; stigmsta straight or curved; tentacles simple. This family is divided into three sections:-
Sub-family I.-Hypobythisiz. Branchial ace with no internal longitudinal bars. One genus, Hypobythius (Moseley).
Sub-family 2.-Ascinine. Stigmata straight. Many genera, of which the followiog are the more importsot:-Ciona (Fleming), dorsal languets present; Ascidia (Linoæus, =Phallusia, Savign:j), dorsal lamiaa present (see figs. 1 to 10) ; Rhodosoma (Ebrenberg), anterior part of test modified to form operculum ; Abzssascidia (Herdman), iateatine oo right side of branchial sac.
Sub-fsmily 3.-Corellines Stigmata curved. Threegenera:Corella (Alder and Hancocki, test gelatincus, body sessile; Corynascidia (Herdman), test gelatineus, body pedunculated; Chelyosoma (Brod. and Son:), test madified into horny plates.

Family III.-CyNTIIMDE Solitary fixed Aacidians, usualiy with leathery test; branchidl and atrial apertures osually both four-lobed. Branchial sac loogitudinally folded; stigmata straight; tentacles simple or compound This family is divided into three sections:-Sub-family l.-Strelinse, not more than four folds on each side of branchial sac; tontacles simple. The more important genera are -Styela (Mscleay), stigmata normal, and Bathyoncus (Herdmsn), stigmata absent or ruodified.

Sub-f.mily 2. -Cynthine, more than eight folds in branchial sac; t atacles compound; bedy sessile The chief
genus is Cinthia (Ss. genus is Cynthia (Ss.
vigay), with a large number oi species.
Sub.fanily 3. - Boz. TENINE, more than eight folds in bracchial sac; teatacles compound ; body pedunculsted (fig. 18, A). The chief geoera sre-Bolienia (Savigny), branchial aperture fourlabed, stigmata normal; and Culcolus (Herd. Fio. 18. - Culeolus willemast. A. Entle body, man), branchial aper- matural size. B. Part of braschial aac mag. ture with less than four lobes, stigmata absectro modified (fig. 18, B). This last is a deep-sea
 genus discovered by the "Challenger" expedition (see 17).

Family IV.-Molaulides. Solitary Ascidians, sometimes not fixed; branchisl aperture six-lobed, atrial four-lobed. Teat usually iacrusted with sand. Branchial sac longitudinally folded; stigmata more or less curved, usually arraaged in spirals; teataclea compound. The chief geoera sre-Molgula (Forbes), with distinct folda in the branchial sac, and Eugyra (Ald. and Hanc.), with no distinct folds, but mercly broad internal longitudinal bars in the branchial sac. la some of the MFolgulidx (geaus Ancrella, Lacaze-Duthiers, 20) the eubrye does not become coaverted iata a tailed larva, the development being direct, without metamorphosis. The embryo when hatched assumes gradually the adult structure, and neper shows the features characteristic of larval Ascidiana, such as tbo urociord and the median sense-organs.

Sub-order 2.-Ascidiz Compooitis.

Fixed Ascidians which reproduce by geromation, so as to forru colonies in which the ascidiozooids are buried in a common investiog mass and have no separate tests. This is probahly a somervhat artificial assemblage formed of two or threo groups of Ascidians which produce colonics iu which the ascidiozooids are so intimately united that they possess a common test or inresting mass. This is the only character which distinguishes them from the Clavelinidæ, but the property of reproducing by gemmation separates then fion the rest of tho Ascidiz Simplices. The Ascidias Compositis may be divided into the following families:-

Family I.-Distomide. Ascidiozooids divided into two regions, thorax sind abdomen; testes numerous; vas deferens not spirslly ceilcd. The chief genera are-Distoma (Gaertner) ; Distaplia (Della Valle) ; Colclla (Herdman), forming a pedunculated colooy (see fig. 19, A) in which the ascidiozoonds devclop incubatory pouches, connected with the perabranchial cavity, iu which the embryea anderge their development (57) ; and Chondrostachys (Macuonald).

Family II.-Cglocormider Colony not tixed, having a large axial cavity with a terminal aperture. Branchial epertures five-lobed. This includes one species, Colocormus huxlcyi (IIcrdnan), which is a transition form between tho ordinary Cowpound Aacidians (c.g., Distomidx) and the Ascidix Salpiformes (Fyrosoma).

Farnily III.-DiDemide Colony usually thinsna incrustang Test containing stellate calcarcous syicules. Testis singlc, large; vas defercns spirally coiled. The chicfgenera are-Didcmuum (Savigny), in which the colony is thick aod fleshy and there aro only three rows of atig. mata meach side of the braochial sae; and Leptoclinum
 (Milne-Edwards), in which tbe colony is thin and iocrusting (fig. 19, B) snd there are four rows of stignata on eaca sida of the branchial sac.

Fa:nily IV.-Diplosomidz. Test reduced in amount, rarcly containines spiculcs. Vas deferens not spirally coilcd. Iu Diplosoma (Macdonald), the most important genus, the larva is gemmiparous.
Family V.-Polyclinide. Ascidiozooids divided into three regions, -thorax, abdomen, and post-abdomen. Testes numerous; vas defereńs not apirally coiled. The chief geners sre-Pharyngodietyou (Herdman), with stigmsta absent or modifed, containing one species, Ph. mirabilc (fig. 19, C), the only Compound Ascidian known from a depth of 1000 fathoms ; Polyclinum (Savigay), with a smooth-malled stomach; Aplidium (Savigny), with the stomach wall longitudinally folded; sod Amaroucium (Milne.Edwards), in which the ascidiozooid has a long post-abdomen and a large atrial languet.

Family VI.-Botryllide. Asciarezooids having the intestine and reproductive organs alongside the braocbial sac. Dorsal lamina present ; ioternal longitudiasl bars present in branchisl sac. The chief genera are-Botryllus (Gaertn. and Psll.), with simple stellate ayatems (fig. 19, D), aod Botrylloides (Milne-Edwards), with elongated or ramified systems.

Family VII. - Polystyelide. Ascrarozooids not groupea in syatems. Branchial and atrial spertures four-lobed. Branchial sac may be folded; internal longitudinsl bars present. The chief generit are-Thylacium (Carus), with escidiozooids projecting sbovo general surface of colony; Goodsiria (Cunniogham), with sscidiozooids completely imbedded in investing mass; and chorizo. cormus (IIerdnan), with ascidiozooids united in little groaps which are connected by stolons The last gemus contains one species, Ch. reticulatus, a transition form between the other Polystyelides and the Styelinse amongst Simple Ascidians.
The metboda of reproductiou by gemma. tion differ in their detaila in the various groups of Compound Ascidians; but in all cases the process is easentially a giviag off from the parent body of groups of cells reresentiog the ectoderm, the mesoderm, and the endoderm, which develop into the correspendiag layers of the bud. The first ascidiozooid of the colony produced by the tailed larva docs not form sexnal reproductive organs, but raproduces by gemma. tion so as to make a colong. Thus there is altornation of generations in the lifehistory. In the most completely formed colooies (e.g., Botryillus) the ascidiozooida are srranged in groups (systems or cœoobii), and in each system are placed with their atrial aperturcs torzards one another, and all communicating with a common cioscal cavity which opens to the exterior in the centre of the system (fig. 19 D).

Sub-order 3.-Ascidiz Salpiformes.
Free-swimming pelarric colonies haring the form of a hollow cylinder clescd atooe end. The ascidiozooids forming the colony are imbedded in the common test in sucha on the outer surface sad the strisl apertures on the inner surfaco next to the central cavity of the colony. The sacidiezooids are produccd by gemmation from a rudimentary larva (the cyathozooid) developed sexually.

Repro-

 duction by gem

Fro. Ro.- Pyrosoma e?gans, patural size. A. Side view
of entire colony. B. End of extire colony. B. End vien of op=n extremity. vievt of op
(Original.)

This suh-order includes a aingle family, the l'rrosomide, containing ona well-marked genus, Pyrosoma (Péron), with several species. They are found awimming near the aurface of the sea, chiefly in tropical latitudes, and are brilliantly phosphorescent. A fully developed Pyrosoma coleny may be from an inch or two to upwards of four feet in length. The shape of the colony is seen in fig. 20. It tapers sligbtly towards the clesed end, which is reunded. The opening at the opposite end is reduced in size by the presence of a membranous prolengation of the common test (fig. 20, B). Tha branchial apartures of the ascidiozoeids are placed upon short papille projectins from the general aurface, and mest of the ascidiozooida have long conical processes of tha teat projecting outwards beyond their branchial apertures (figa. 20, 21, and 22). There is only a single layer of ascidiezoeids in the Pyrosoma colony, as all the fully developed ascidiozooida are placed with their anteropostarior exes at right angles to the surfaca and communicate by their atrial apertures with the central cavity of the colony (fig. 21).

F10. 21.-Part of a longltudibal aection through wall of Pyrasoma, showing arrangament of ascidiozooida, magnifled (partly after Sarigny). af, atrial spertures; br, branchial apertures ; asc, young ascidiozooid of a fature colony produced by budding from cy, cyathozooid; em, embryos in various stage日; t, teat ; tp, proceasea of teat ; brs, brsnchial ssc; yas, young ascidiozooid.
Their dersal eurfaces are turned towards the open end of the celeny. Tha more impertant pointa in the atructure of the ascidiozooid of Pyrosoma are shown in fig. 22. A circle of tentacles, of which one, placed ventrally (fig. 22, $t n$), is largor than the rest, is found juat inside tha branchial aperture. From this print a wide cavity, with a faw circularly-placed muscle banda running round its walla, leads back to tha large branchial eac, which accupies tha greater part of tha body. The stigmata are elongated tranaversaly and crossed by internal langitudinal bars. The dersal lamina is repre. sented by a series of eight langueta (l). The nerve ganglion (on which is placed a small pigmented sensa organ), the subneural glaud, the dorsal tubercle, tha peripharyngeal bands, and the endostyle aro placed in tha usual pesitions. On each side of the anterior end of the branchial aac, close to the paripharyngeal bands, is mass of rounded gla cence. The alimgand cella which are the source of the phosphoresary canal is placed posteriorly to the branchial sac, and tha anus opens into a larga peribranchial (or atrial) cavity, of which only tha median pesterier part is ahown ($p b r$) in fig. 22 . The repreductive organs ara developed in a diverticulum of the peri-
hranchial cavity, and consist of a lebed testis and a single orum at a time. The developmant takes place in a part of the peribranchial cavity (fig. 21, cm). The segmeutation is meroblastic, and an elengated embryo is formed on the surface of a mass of yelk. The embryo, after the formation of an alimentary cavity, a tubular nerrous system, and a pair of laterally placed atrial tubes, dividea inte an anterior and a posterior part. Tha anterior part then aegments into four pieces, which afterwards develop into the first ascidiezooids of the coleny, While the pasterior part remains in a rudimentary condition, and was called by Huxley the "cyathezooid" ; it aventually atrophies. As tha four ascidiozoeida increasa in size, they grow round the cyathozooid and soon encircle it (fig. 21, ase and cy). Tha cyathozooid absorba the nourishing yolk upen Which it liea, and distributes it to the ascidiezooida by means of a heart and system of vessels which have heen manwhile formed. When the cyathozooid atrophies and is absorbed, its original atrial apertura remains and deepens to become the central cavity of the young colony, which now consists of four ascidiozooids placed in a ring, around where the cyathezoeid was, and enveloped in a comroon test. The colony gradually increases by the formation of buds from these four original ascidiozooids.

Peilogent.

The accompanying diagram ebers graphically the probable origin and coursa of evolution of the varieus groups of Tunicata, and therefore exhibits their relations to one another much more correctly than any system of linear classification can do. The ancestral Proto-Tunicata are hera regarded ${ }^{1}$ as an offshoat from the Prolo-Chordata-the common ancestors of the Tunicata (Urochorda), Amphioxus (Cephalochorda), and the Vertsbrata The ancestral Tunicata were probably frao swimming forns, not very unlika tha existing Appendiculary ide, and are represented in the lifc history
of nearly all aections of the Tunicata by the tailed larval atage. Tha Larvacea are? the first offshoot from the ancestral forms which
 5
 gave two linea of descendanta, the Prolo-Thaliacea and the ProtoAscidiacea. The Proto-Thaliacea then split into the ancestera of the existing Cyclomyaria and Femimyaria. The Proto-Ascidiacca gave up their pelagio mode of lifa and became fixed. This ancestral process is rapeated at the present day when tha free-swimming larva of the Simple and Compeund Ascidians becomes attached. The Proto-Ascidlacea, after tha change, are probably most nearly repre. sented by the existing genus Clavelina. They hava given rise directly or indirectly to the various groups of Simple aud Com. pound Ascidians and the Pyrosomide. These groupa form two lines, which appear to have diverged close to the pesition of the family Clavelinidse. The one line leads to the mors typical Compound Ascidians, and includes tha Polyclinidx, Distomides, Didcmnide, Diplosomide, Colocormidæ, and finally the Ascidiæ Salpiformes. The second line gave risa to the Simple Ascidians, and to the Botryllids and Polystyclidx, which are, therefore, nol closely allied to the other Compeund Ascidiana. The later ProtoAscidiacea were probably colonial forms, and gemmation was ratained by the Clavelinidæ and bs the typical Compound Ascidians (Distomids, \&c.) derived from them. The power of forming colonies by budding was lost, hewever, by the primitiva Simple Ascidians, and must, therefore, hava been regained independently by tha ancestral forms of the Botryllidre and the Folystyelida. If this is a correct interpretation of the coursa of evolution of the Tunicata, we arrive at the following important conclusions. (1) The Tunicata, as a whele, form a degenerate branch of the ProtoChordata; (2) the Ascidies Salpiformes (Pyrosoma) ara much more closely related to the typical Compound Ascidians than to the other pelagio Tunicata, viz., the Larvacea and the Thaliacea; and (3) the Ascidir Composita form a polyphyletic group, the sectiong of which have arisen at eeveral distinct points from the encestral Simpla Ascidians.
Bibliography.-(r) CuFler, "Mém. a. Jes Ascldles," sc., In Mim. d. Mus., voh 11. p. 10, Paris, 1815; (2) Savigay, Mémoires sur les Animaux sans Vertebres, pt 11. Pasc. 1., Psria, 1816 ; (3) Lamarck, Hist. Nat. d. Anim. sans Vertebres, lat ed., Paris, 1815.23 ; (() O. F. Muller, Zool. Danica, vol. iv. 1806 ; (5) Sillne.Ed.
wards, "Observ. s. lea Ascidiea Composés," \&c., in Mem. Acad. Sci., Parla, vol. zriu., 1842; (O) Schmidt, Zur vergl. Physiol. d. wirbellos. Thiere, Brums

[^264] in Ann. Sc Naso, ser. jil. (Zool.), vol. v., 1840; (5) Huxley, Jhul. Trars., 1531 : (o) Kowalersky, "Entwlekel. d. einf Ascid.," in Hfem. St Pctersb. Accd. Sc., ger. Fil vol. I., 1866 ; (ro) J. P. van Beneden, "Rech. 8. l'Emhryolog., \&c., d. Asc. Slmp. in Mem Aoad. Roy. Bel, vol x, 1847 ; (rf) Krohn, in Trieg mano and Muller's, Archiv, 1852: (12) Kupfer, Archo fo mihr. Anat., 1809° 1872; (13) Giard, "Etude d. trav. Embryolog. d. Tur., ic." in Arch. Zooh Expét., vol. L., 1872 ; ($1 \uparrow$) Fol, "Ettodes aur les Appendicalaires do Détrolt de Messine," in Mim. Soc. Phys. Hist. Nat. Genire, vol Exi. ; (15) Oiard, "Recherches s. 1. Asc. Comp." in Δ Tch. Zool. Erpét., vol. 1., 18\%2; (io) Von Drasche, Die Synoscidien der Bucht ton Rovigno, Vieons, 188 ; (17) Herdman, "Report opon the Tunicals of the Challenger Expedition," pto i io Zooh Chall. Exp., vol FL, 1Ess ; pt it. Io Zool. Chath. Erp., Yol. ェiv. 18s6; pt. jij., not yet poblished : ((5) Aldcrand Hancock, in A nr. Mag. Nat. Hist., 1863, 18:0; (rg) Heller,
"Untersuch. ㄴ. d. Tonic d. Adriat. Meeres. in Dentachr. d. L. Aiad. Wiss. 1975-"7: (20) Lacaze-Duthters, "Asc. Simp. d. Cotes d. L. Mamche," in Areh Zool. Exper., 18i4, 18i7; (27) 1raustedt, in Vidensk, Mcdd. Nafrih. Foz., Copen. hagen, 1S31-84; (27) Berdman, "Notes on British Tunicala, sc." io Journ, Linth Soc., Zool., vol Xv., 18S0; (23) Ussoff, In Proc. Imp. soc Niat. Hist., Moscer, rol. xvi土i., 1876 ; (24) Julin, "Pech. s. l'Ogg. d. Asc Simp., io Arch d. Biol., vol. $11 ., 1881$; (35) Brooks, "Development of Salpa," in Bull. Mus. Comp. Zool., Herverd, vol iii. p. 291; (26) Salensky, Ztschr. f. wits. Zook., 1877; (27) Barrois, Journ d. TAnat. et Phys., vol. xxi., 1855; (29) Ulianio Fauric. Lic, d. Golfes von Nieapeh, vol. x. 1984 ; (aq) Moseley, "On Deep-See Ascid." io Trane Linn. Suc., ser. 11., voL L., 18.6 ; (30) E. van Benedeo sod Julin, " Morph. d. Tuniclers," in Arch d. Biol., vol. ฟi., 2886 ; (3i) Lankester, Degeneration (Nature aeries), London, 1850 ; (3a) Dohrn, "Stud. z Ureesch d. Firbelth, "" in Mitth 2 col Stat. Neapel.

TUNING FORK, a small bar of cast tool stcel with tolerably defined edges, bent into a fork with two prongs. A handle of the same metal extending from the bend of the fork serves as a sound-post to transmit the vibrations of the fork to any resonance board or body convenient for reinforcing the sound. The fork is set in vibration by striking one of the prongs against any hard substance, by pressing the prongs together if the fork is a light one, or, if it is large, by drawing a double bass bow across one of the prongs. The larger forks are sometimes made with a worm upon the handle in order that they may be screwed into a resonance box, the dimensions of which should agree with the pitch of the fork. The ordinary use of a tuning fork is to serre as a pitch carrier or standard, for which it is particularly suited owing to the permanence mith which it maiutains the pitch to which it may be tuned. It is flattened by heat and sharpened by cold about 1 vibration in 20,000 for every degree Fahr., so that the exact pitch always depends npor the temperature. A tuning fork is tuned by fling the ends of the prongs or between them near the ends to make it sharper, or by filing between them near or at the bend to make it flatter. Less filing is required to flatten than to sharpen. It should bo allowed to rest after tuning, on account of the disturbance of the molecular structure by the filing, and after a few days should be compared again with the pitch required, and corrected. The tuning fork is also of value in certain physical investigations, from the constancy of its rate of ribration. In England it is generally tuned to C in the treble clef, because organ-builders start their tuning from that ncte; in France it is tuned to A in the treble clef, which is the note of the third open string of the violin. The French diapason normal is tuned to A at $15^{\circ} \mathrm{C} .\left(=59^{\circ}\right.$ Fahr.) and is fixed at 435 double vibrations in a second. The inventor of the tuning fork was John Shore, rojal trumpeter in 1711, sergeant trumpeter at the entry of GeorgeI. in 1714, and lutanist to the chapel royal in 1715.

According to Chladni, whose analysis of the tuning fork has been gezerally accepted, it has two nodes or points of least vibration at the bead, with a veatral or vibrating loop between, by which its ribrations are trensmitted to the handle. That this is not the case has been shown by Mr W. F. Stanley. ${ }^{1}$. The fundamental note appears to be on octave below the note which the ear recognizes as the pitch of the fork. -Helmholtz, Tyndall, and others accept the latter as the fundamental, and Helmholtz expressly says that each prong may be regarded as an elastic rod fixed at one end ${ }^{3}$ The fork is really a bent elastic rod vibrating at both ends, with a node at the bend, throngh which, and in the same way as with the bridge of any etringed instrument, the vibrations are conducted. As well es the efcond partial, the third and fourth are in large forke frequently distincuishable, bot sucb partials above the octave are very weak. In addition to the lower harmonic partials it is generally easy to produce with a blow a very high inharmonic tinkle or ringing metallic note, that will continue to sonnd for some time withont biending rith the trae note of the fork. The precise interval varies, but is nscally tro octaves and between 6 fat fifth and a major exth above the recognized pitch of the fork With ordinary tuining forks this tinkling note is so bo found amongst the highest treble notes of lo pianoforte. Theorists give other sharmonic proper tones in dre ascending order; they are derived from calculation on the assumption that they proceed as the squares of the odd nambers, but are bejond practical verification oring to

[^265]their extreme position in the scale of masical sounds and the rariation of power in different ears to distinguish them.

The tuning fork was ased by Schcibler (1777-1837) as the easiest mesns for correctly determining the pitch numbets of ribrations To make a Scheibler tonometer, take a fork in which the octare can be easily heard and intercalate 83 many forks $6 s$, giving conntable beata with each other, will fill up the octave. The addition of the whole number of beats and their fractions in the octare will be the ribrating number, in double vibrations per secoud, of the lower fork. In order to measuro the fractions of vibrations accu. rately forks ehould be chosan that are audible for 40 , or st least 20 scconds. For instance, 60 beata conated in 20 seconds rould he 3 a sccond, and 65 in the same time 325 . The forks shonld remain for toree montha after filing before their differences are finally determined, and the whole examination ehould be conducted in a known, aniform temperature. Scheibler considered four beats a second between two forks a good number for counting; but Mr A. J. Ellis, who has used Scheibler's in reation as a basis for an exhaustive historical statement of musical pitch ${ }^{3}$ and as the novel and exact means for determining the non-harmonic musical scales of various nations, especially Lastern nations,4 considers three beats a second the best counting number. This mould increase the number of intermediate forks.

Attempts have becn made to nas tuning forks instead of strings for key-board instrumenta, the object being to obtain permanence of tuning with the soft, unexciting quality of tone furnished by the fork. The inventions of Clagget, London, 1788, of Rifflsen (the melodikon), Copenhagen, 1803, and of Schuster (the adiapbonou), Vienna, 1819, were of this uature. The latest adaptation of a key. board to tuning forks bas been effected by Mr Machell of Glasgow; it mas shomn at tho Iaventions Exhibition, South Kensington, Loudon, 1885.

TUNIS, Regency of, formerly one of the Barbary states Pate \mathcal{F}_{0} of north Africa, but since 1881 a dependency of France, whose resident-general excrcises all real authority in the nominal dominions of the bey. Is bounded on the west by Algeria, on the north by the western basin of the Mediterranean, on the east from Cape Bon to the Gulf of Gabes (Kabis) by the eastern basin of the same sea, and on the south-east by the province of Tripoli. On the south the boundary is the Sahara and the frontier line is indefinite. The greatest breadth from east to west is about 150 miles, the length from north to south about 300 miles. The population does not exceed a million and a half.

Physical Foatures.-Tunis is formed by the prolongation towards the east of the two great mountain chains of Algerla ($q . v$.), and closely resembles that country in its physical features, products, and climate; see Arrica, rol. i. p. 265. The northern Algerian chain (the Little Atlas) is prolonged through Tunis to Ras Sidi 'Ali al-Makky, the highest summits never attaining an altitude of 4000 fect. It forms a picturesque, fertile, and well-watered region, with extensive cork woods in its western parts, and separated from the southern mountains by the valley (the ancicnt Zeugitana) of the Mejerda (the ancient Bagradas), the most important river of north Africa, which after a tortuous course of nearly 300 miles falls into the Gulf of Tunis at Porto Farina. Tho basin of the Mejerca, winch is now tra versed by the railway from Algiers to Tunis, is very fertile, and many important ruins testify to its prosperity in Roman times. The rich lacustrine deposits in the Dakhila, or plain of Bulla Regia, show that it was only in relatively recent times that its upper waters found a passage to the sea by

[^266] Narch 8nd 21 April 1880 ; see also 7th January 1881.
"Oo Mrusical Scales," ibil., 27th March and 30tk October 1885.
cutting a deep gorge through the cretaceous barrier that shnts in this upland plain upon the east. The southern wall of the Mejerda valley and of the Guif of Tunis is formod bry a branch of the southern Algerian chain, connected with Jebel Aurás (Mount Aurès) by the plateau of Tebessa (Theveste) and running north-east to Cape Bon. Its highest summits (Zilk and Zaghwán) rise above 5000 foot. Another branch of tho southern chain runs frem the Sehara side of Mount Aures south-east towards the head of the Lesser Syrtis or Gulf of Gakes. Between these two branches lies a mountainous plateau, whose waters descend eastward but do not reach the sca. Arrested by a line of hills running parallel to the coast, they form a chain of lakes and marshes, which for tiae most part dry up in summer. It is to this recion of inland drainage (the ancient Byzacene) that the plain of Kairwan belongs. Its southern part from Sbeitla (Sobaitala) to the Syrtis is relatively sterile, and even in antiquity appears to have formed an exception to the general fertility of the country, which was one of the granaries of Rome. The upland district from Tebessa southward sinks into the desert by step-like series of great plateaus, separated by rugged walls of variegated marls, sands, and alluvium, torn into fantastic shapes, and scored with deep ravines by streams which at some remote period of copious rainfall poured down into the Sahara. Farther east the plateans disappear and the mountains rise like a rampart from the Sibâkh (sing. Sebkha), or Saharian marshes and salt-flats. The depression to which the Sibakh belong terminatea to tho east in the Shott (Shatt) al-Jerid, which is separatel from the Lesser Syrtis only by a narrow isthmus; see Sabara, vol. exi. p. 151. Even the Sahara of Tunis abounds in fertilo oases.

Climate. -The mean annnal temperature at Susa is $75^{\circ} \mathrm{Fahr}$.; the mean of the winter or rainy scason 60° and of the hot season 97. At Tunis the temperature rarely exceeds 90°, except with a wind from the Sahara. The provailing winds from May to Beptember are east and north-east and during the rest of the year northwest and eact. A rainy peason of about two months usually beging in January; the spring season of verdure is over in May; eumnoer ands in October with the first rains. Violent winds are common st both equinoxes.

Flora and Fauna.-Both are geverally tho same 23 thoso of alaeria (q.v.). The lion and panther are almost extinct, but the sportsman finds in abundance the wild boar, partridge, Carthage fowl, quail, and snipe. The African mouffon still exists in the oonthern mountains. Herds of bufaloes are found in the distriot of Mater. The stag occurs in the eastern districts. The camel, now θ important, was hardly known here before the Roman soveroigaty. Red mnllet, tunny, and other fish abound around the coast ; and fishing stations are numerous. The town of Bizerta and the Kerkenna Islands are mainly depencent on their fisheries. The coral and sponge fisheries, of which Sfax and the island of Jerba (Djerba) are centree, are also considerable. Of noxious creatures may be named the scorpion, much more formidable than that of Algiers, a venomous tree enake (Ech is carinata), in the eandy lande botween Kafsa and Sfax, and a species of python called taguerga, which infests some parts of ths southern mountains.

Cork and "zen" trees cover about 360,000 acres towards the Algerian frontier, and the pine and deciduous oak almost as large au ares outh of tho Mejerda; but the country is mouch less wooded than in antiquity. The richness of the grain crops ls etill remarkable, in spite of imperfect cultivation. Olives aud many excellent fruits are largely produced, and vineyards have been much extended since the French occupation. Esparte grass abounds in the uplands. The oases of the Jerid are deveted to the date palm and produce the hest dates known in the European market.

Minerals. - The mineral wealth of Tunis, like that of Algeria, is considerable, but it has been imperfectly explored. The iron mioes of the northern mountains and the argentifercus lead mines of Al-Resás near Tunis were worked in antiquity, as were aiso the marble quarrics of Simittui (Chcinton), on the upper Mcjerda, which are now in the hands of a Belgian company. The thermal eprings of Hammam al-Anf on the Bay of Tunis are siapposed to hars hesling virtues; they are now connected with the capital by rail.

Inhabilants. - The industrious Berbers (Kabyles), the oldest siock in the country, are less sharply marked off from the Arabs than in Algeria, but are distingushable by their lighter complexion and often fair hair. They form a large part of the population in the
northern and easterr mountains, and in the island of Jeroa (Jirba). They are orgauized in tribcs with purely demerratis selfgovermment, and laws of their own, which ale not those of the Koran. The pastoral Arab nomads are descended from the second Arab invasion, which began in the 11th century (see below). They have little agriculture and are still as indolent and unruly as their ancestors. The Arahs of the towns are nsually known às Mcors; among them the Spanish Moors, descendants of the Andalusian refugees, form an exclosive and aristoctatic class. The pure Turks and the Kuluglis (sons of Turkish fathers by Moorish women or alave girls) are no longer numerous. Of Europeans there are some 10,000 Italians, 8000 Naltese, and 4000 French (exclusire of the army). The Jews number some 50,000 , of whom perhaps half are in the capital. The trade of the conntry is largely iu their hands.

Towns.-For the capital Tunis, see below. Of tha coast towns SFAX and Susa have separato notices; Bizerta (Lenzert), the ancient Hippo Zarytus, is the chief place on the north coast, with 5000 inhabitauts. It stends on a canal connecting the sea witi a lake which might easily be converted into a magnifirent land-locked harbour. On the east coast are Hammamet (Hamimat), with 9700 inhabitants ; Monastir, with 5600 inlabitants and a texde in cereale and oils; Mahdiys (Mehedia), with 6300 inhalitants, the fallen city of the Fátimites, which eince the French occupation tas bemun to riso arrain, and has a new harbour ; and Gabea (Kibis) on the Syrtis, a group of small villages, with an aggregate population of 14,000 , the port of the shott country and a depot of the esparto trade. Of the inland towns the holy city of Karrwan (q.v.) is the most remarkable. Its fine mosques are now open to visiters. Sbeitla (Lat. Sufetula), in the wountains bouth-west of Kairwan, is remarkable for its maguificent Roman renains, the triumphal arch of Constantine, and the three temples which form the hieron. The principal towns of the Mejerda basin are Bedja (BÁja), the anciont Vaga, an important corn market, and higher up, near the border, the fortress of Kéf (Sicca Vezeria), with 4000 inhabitants, boldly perched on the steep slope of a voicanic mountain.

Commerce. -The total importa of the regency in 1885 wero valued ot $£ 1,098,047$, of which abont 27 per cent were British goods, chiefly cotton fabrics. In 1884 the imports were valued at $£ 1,157,182$ Tho most important export is clive cil, and after it como wheat, esparto grasa, barley, sponges. The value of the tatal exporto in 1884 was $£ 745,554$, end is $1885 £ 852,946$. In 18851,035 ve9sels (71,133 tons) entered tbe port of Goletta, and the entries at other ports were 3033 (55,650 tons).

History. - The history of Tunis hegins for us with the establish. ment of the Phonigian colonieg; see vol. xviii. p. S06, Pbexncia and Carthage. The Punic settlars Semitized the coast, but left the Berbers of the interior almost untouched. The Romans entered into the heritare of the Carthaginians and of the vassal kings of Numidia, and Punle epeech and civilization gave way to Latin, a change which from the tirae of Cossar was bc!ped on by Italian colonization. Rich in corn, in herds, and in later times also in oil, and posscssing valuable fisheries, mincs, and quarties, the province of Africa, of which Tuis was the most impertant part, attained undor the empire a prosperity to which Roman remsins in all parts of the country still bear vitness. Carthage was the second city of the Latin part of the empire, "after Rome the busicst and nerhaps the most corrupt city of the West, and the chief centro of Latin culture and letters." In the early history of Latin Christianity Africa bolds a more important place than Italy. It was here that Christian Latin literature took its rise, and to this province belong the names of Tertullian and Cyprian, of Arnobius and Lactantius, above ell of Allgustine. Lost to Rome by the intasion of the Vandals, who took Carthage in 439, the province was recovered by Belisarius a century later (533-4), and semained Roman till the Arab invasion, for which see vol. xvi. p. 567. The con. queror 'Okha founded the city of Kairwan (c. 670), which was the residence of the governozs of Africa under the Omayjads and thereafter the chpital of the Aghlabite princes, the eonguerors of Sicily, who ruled in merely nominal dependence on tho 'Abbásids (see vol. xvi. p. 579).

The Latin element in Africa and the Christian 「aith disappeared in a single generation; the Berbers of the mountains, who had never been Latinized and never really Úhristianized, accented Islam without difficulty, but ahowed their subbborn nationality, net onsy in the character of their Mohammedanism, which has alrays been mized up with the worship of living as well as dead saints (marabouts) and other peculiarities, but also in political movements The empire of the Fatimites (see vol xvi. p. 587) rested on Berber support, and from that time forth till the advent of the Turks the dynas ${ }^{t \cdot 3}$ of north Africa were realiy native, even when they claimed desccat fion some illustrious Arab etock. When the seat of the Fátimice empire was remeved to Egypt, the Zírites, a house of the Sanlaja Berbers, ruled as their lieutenants at Mahdíya, and about 1059 Mo'izz the Ziritc, is connexion with a religions movement against the Shi'ites, transferred his very nominal allegiance to the Abbasid caiiphs. The Fátimites in revenge let loose upon Africa a vast horde of Bedouins from. Upper Egypt (B. Hilal and Solairo
the ancestors of the modern nomads of Barbary. All Africa mes ravaged by the invaders, who, though unable to fonnd an cmpire or overthrow the settled goveroment in tho towna, forced the agricul. tural Berbers iato the mountaios, and, retaining from generation to generation their lamless and predatory habits, have evor sinco made order and prosperity almost impossible in the open parts of the country. The Zírite dynasty was finally extinguished by Roger 1. of Sicily, who took Mahdija in 1148 and established bis authority over all the Tuaisian cozit. Even Moalem historians speak favourably of the Norman rule in Africa; but it was brought to so early end by the Almohade caliph ' \AA bd al-Mu'min, who took Mahdiya ia 1160. The Almohade \in mpire soan began to decay, and in 1336 Ahủ Zakariy's, prince of Tuais, was able to proclaim himself indionandeat aud found a dywasty, which subsisted till the advent cf the Turks. The Hafsites (so called from Abú Hafs, the ancestor of Ahú Zakarýá, a Berber chieftain who had been ciee of the intimato cisciples of the Almohade mahdi) assumed the title of Pribee of the Faithiul, a dignity which was ackuowledsed even at Mecca, when in the days of Mostansir, the second Hafsite, the fall of Baghdad left lsham without a titular head. In its best days the empire of the Hafsices extended from Tlencen に Tripoli and they received homaga from tho Merinids of Fcz; they beld their own against repeated Frankish iavasions, of which tha moat notabla wero that which cost St Louis of France lis l:fo (12:0) and that of the duke of Bourbon (1390), whea English troops took part in the unsuccessful siege of Mahdiya. They adorned Twisis with noosques, schools, and other institutions, favoured letters, and in gencral appear to have risen above the nsual level of Hostews sovereigns. But their rula was troubled by continual rara aod insurrections; the support of the Bedouin Arahs was imperfectly secured by pensions, which formed a heary burden on the livances of the state; ${ }^{1}$ and in later times the dynasiy was weakened by faurily dissensions. Leo Africanus, mriting early in the 16th century, gives a favourable picture of the "greait city" of Tunis, waich bed a Courishing manufacture of fine cloth, a prosperons colony of Christian traders, sud, including the suburbs, niae or ten thonsand hearths; bat he speaks also of the decay of once Rourishing provizsial tomes, and especially of agriculture, the greater part of the open country lying waste for fear of the Arab marauders. Taxation was heavy, and the revenue very considerable: Don John of Austrie in a report to Philip II. states that the land revenue alono under the last Hafsite mas 375,935 ducats, but of this a great part wert in pensions to the Arabs.

Th:3 conquest of Algicrs by the Turks gavo a dangeroua meiginhour to Tenis, and after tho death of Mohammed the Hafite in 1525 a disputed succession supplied Khair al-Din Barbarossa with a pretext for occupying the city in the name of the sultan of Constantinonle, Al-Hasan, the son of Mohammed, seught hel? from the emperor, snd was restored in 1535 as a Spanish vassil. hy a force whiç Charles V. commanded in person, while Andrea Loria was admiral of the fleet. But tbo conquest was far from complete, and was uever consolidated. The Speniards remained at Coletta and made it a strong fortress ; but the interior was a frey to anarchy and civil war, until in 1570 "Ali Pasha of Algiers utterly defeated Hamid, the sou and successor of Hasmn, and occupied Tmis. In is 153 the Turks again retreated on tho appreach of Don John, tro kad dreans of making himself king of Tumis; but this auccess was not followed up, end in the next year Sultan Sclim II. eent a strong expedition, which drove the Spaniards irom Tunis and Coletia, and reduced the country to a Turkish province. The civil admioistration was now placed under a pasha; but in a few years a military revolution transferred the supreme power to a dey elected by the janissarics, whe forned the army of occupation. Tho goverument of tho deys lasted till 1705, but mas sooo narromed cr crershadowed by the authority of the beys, whose proper functiou was to manage the tribes and collect tribute. Frors 1631 to 1702 the affice of bey was hereditary in tie aescentants of Moríd, a Corsican racgegade, and their rivalry mith the deys and internai dissensions kept the country in coustant diserder. Ibrahim, the last of the deys (1702.1505), destroyed the houss of Murid and absorbul the lieyship in his onsn office: lut, when lo fell is lattlo with th: Algeriang, Mosain h. 'Ali, the son of a Creek renegade, tras proclaimed sovereigo by the troops under the title of "bey," amil, heing a prince of encegy and ability, was able to establisi the letc livary envereignty, which has lasted witlout change of dynasty to the preseat time.
Frequent ware with Algiers, which need not detain us, form the chiof incidents in the internal history of Tunis under the beya Under deys and beys alile Tunis was esseatially a pirate state. Occasional acts of chastiscment, of wbich the bombardment of Porto Farina by Blake in 1655 was the most notahle, and repeated treaties, extorted by Europcan powers, checiked from time to time, bet never put an end to, the labitnal piracies, on which iodeed the public revenue of Tunis was rainly dependent.' The powers were

[^267]gencrally less concerned for the captives than for the acquisition of trading privileges, and the beys took advantage of the commercial rivalry of Englaod and France to playy off the one pomer agaiust the other. The release of all Christian slaves was not effected till after the bombardment of Algiers; and tho defnite abandonment of piracy may bo dated from the presentation to the hey in 1819 of a collectivo note of the powers assemhled at Aix-las Chapelle. The Government had not elasticity enough to adapl itself to so profourd a change in its ancient traditions; the finances became more and more hojelessly embarrassed, in spite of ruinoue taxation; and altempts at European ionovations in the court ane army made matters only worse, so long as no attern twas made to improve the interaal condition of tho couniry. In the thirs quarter of the 19th century not moro thau a tenth 1 art of ti: fertile land was under cultivation, and the jearly charge on to. public deht exceeded the whole anoual rorenue. Jo these circum. etances only the rivalry of tho European percrs that hed interezts in Tunis protracted from year to year the incvitable revolution. The French kad long regarded the dominioue of the bey as their natural inheritance, aud in 1881, havidg got a gricrance against the bey in a commercial transaction of tho Frencl African Societrs with tho exceution of which he had interfeed (the afficir of the Enfida estate), a Freach force crossed the Algerian frontier under pretezt of clastising the independeat Froumir or Ehomair tribes in the yorti-east of the rcgency, and, quickly dropping the nask, adraoced on the capital and compelled the bey to accept the French protectorate. The actual conquest of the country was not efiected without a 8 erious struggle with Moslem fanaticism; but all Tunis was brought completcly upder Freuch juristicticy and aiministra. tion, supported by military posts at every imporiant yinat. Tbs power of the hey is uull and his dignity morcily nominal, -a fact acknomledged by Great Eritain by the surscader in 1883 of Her Majesty'a consular jurisenction in the regency.
Lilcroatro--Of Arabic sources accessiblo in +onslations the peogranhical

 to the 10th, 11 th, sad 12th centuries respectively; the history of lla Khald ung (II ist. des Rerkeres, by De Slane, 4 vols., Algiers, 1552 -56) inclutía the earlict Hafsites, that of Al-Kairawanf (Uist. de l'Afripuc, by Pellissier and Remuast Parle, 1845, in Exph, scient. do l'Aljerie, Tol viin; Arabic text, Tunis, 1230 A.n.) deals especially with Tunis, and goes down to 1cs1. The geography of Tunis is treawd by E. Pellissier (Explor, Scicnl. do 7 Alditic, vol. xivi, Paris, $1 \in 3$),
 Eicndhook, by Sir li. Plasfair (1887), who has also published Travels in the F jol steps of Bruce in Al], and Tunis London, 1887). A French survey is in progr tys, and eome of the mas are published. For the modern listor, see Ioussian Annales Tunistenates (Algiers, 1804), snd Brosdiey, Tunis Past and Present (Ediaburgh, 1889); for the archæology, Davis, Carthage and her Renains (Lon. don, 1860), Gueria, Vosage Archéologigue (1862), sud D'Herisson, MI ission Arcréol. en Tunisie (Parie, 1881). Tio excellent description of Africa by Leo Africanus is in Ramusio and Purchas. Sbaw'e Travels (1738) pay still be consulted. Of other books of travela fítitzan's feise (Leipsic, 18:0) deserves mention

TUNIS, capital of the regeacy of the same name, in $36^{\circ} 50^{\circ} \mathrm{N}$. lat, and $10^{\circ} 12^{\prime} \mathrm{E}$. long., is situated ou au istbmus betweeu tro salt lakcs, a marily scbkha to the south-west and the shallow Eolucira to the north-east. The latter is twelre miles in circumference, and on the side opposite Tunis is connected with the Bay of Tunis at the port of Goletta (Hals al-Wād) by a short canal. The old town, of whic - the walls have in great part disappeared, lies between tro suburbs, the Ribat al-Soweika or the north and the Ribát Lab al-Jezira on the south. These suburbs were surrounded by a wall in the begrinaing of the 19th century. Between the old town and the Marine Gate on the Boheira a European quarter, containing the palece of the resident, public offices, the 1 ,rorisional cathodral, and huge blocks of new houses in the Fheuch style, has sprung u_{1}. At the cxtreme west-of the old town is the citadel, now used as barracks, whose lofty circuit includes the mosque built by Abri Zakarifé the Hafsite in 1232. To the same century belongs the great mosque of the Olive Tree (Jami al-Zcituna) in the centre of the town, with its many domes and spacious cloister, which possesses a library and serves as a college for somo 450 students of Muslem learning. Tp the north near the walls of the old town rises the dome of the mosque named after Sidj Mahrez, a renowned saint of the 5th century of the. Flight, whose tomb gives it a right of sanctuary for debtors. There are many other mosques and chapels, but all are closed against Curistians. TLe palace of the bey, between the citadel and the mosque of the Olive Tree, is partly in bad French taste. but contains sozne rooms of tho 18 th ceutury with dulun:
able Moorish decoration in the delicate stucco arabesque work for which Tunis was formerly famous. The chief attraction of the old town lies in its bazaars, which retain their Oriental character unimpaired. Water is supplied to numerous fountains by an ancient aqueduct from Jebel Zaghwan, repaired at a cost of half a million sterling by the late Bey Molummed al-Sádik. The principal educational establishments besides that of the great mosque are the Sadikiya college, founded in 1875 for gratuitous instruction in Arabic and European subjects, the college of St Charles, conducted by priests and open to Christians and Moslems alike, and the normal school, founded in 1884 by the bey to train teachers in the French language and European ideas. The population of Tunis is about 125,000 , of whom onefifth are Jews and one-fifth Europeans, chiefly Maltese and Italians.
The envitons of Tunis are admirable from the beautiful viens they present; the finest prospects are from the hill on the southeast, which is crowned by a French fort, and from the Belveder on the north of the town (Jebel al-Tíba), on which stande a very ancient fortress. Half-en-hour's drive west of the town is the decaying palace called the Bardo, a little town in itself, remarkable for the " lion court " and some apartments in the Moorish style. The port of Goletia, with 4000 inhabitants, is connected with Tunis by a railway 10 miles long. The older or sonthern part of the town next the canal has a fortress, now used as barracks, built by the Turks on the site of the Spanish fortress destroyed in 1574. The ruins of Carthage lie a few miles north of Goletta. The chief manufactures of Tunis are still textiles, as in the time of Ler Africanus. The manufacture of silk dates from the settlement of Moorish refngees from Spain abont 1600. Tbere are also tanneries, a tobacco factory, and some minor industries. The annual exports of grain, oil, stuffs, hides, and essences are valued at $£ 720,000$, and the imports, chiefy of cotton goods, at $£ 560,000$. There are two French steamers weekly between Marseilles and Goletta, and the coast tomis are served and connected with Malta both by Froach and Italiau packets.
History.-Tunis was a Carthaginian city and is repeateclly mentioned in the history of the Punic wars. Strabo speaks of its hot baths and quarries. Under tle: Arabs it rose to importance, hecame the usual port for those going from Koirwau to Spain, and was one of the resideuces of the Aghlabites. In the 10th ceutury it suffered severely, and was repeatedly pillaged in the wars of the Fátimites with Ahi Yazid and the Zenáta Berbers. For its later fortunes see above in the history of the country, of which siuce the accession of the Hafsites it has been the capital.
TUNNELLING. The process of making a more or less horizontal underground passage, or tunnel, without removing the top soil is known as tunnelling. In former times any long tube-like passage, however constructed, was called a tunnel. At the present day the word is sometimes popularly applied to an underground passage constructed by trenching down from the surface to build the arching and-then refilling with the top soil ; but a passage so constructed, although indistinguishable from a tunnel when completed, is morə correctly termed a "covered way," and the operations "cutting and covering," instead of tunnelling. Making a small tunnel, afterwards to be converted into a larger one, is called "driving a beading" and in mining operations small tunnels are termed "galleries," "driftways," and "adits." If the underground passage is vertical it is a shaft; if the shaft is commenced at the surface the operations are known as "sinking," and it is called a "rising" if worked upwards from a previously constructed heading or gallery.

Tunnelling has been effected by natural forces to a far greater extent than by man. In limestone districts innumerable swallow-holes, or shafts, have been sunk by the rain water following joints and dissolving the rock, and from the bottom of these shafts tunnels have been excavated :o the sides of hills in a manner strictly analogous to the ordinary method of executing a tunnel by sinking shafts at intervals and driving headings therefrom. Many rivers find thus a course underground. In Asia Miner one of the rivers on the route of the Mersina Railway extension pierces
a hill by means of a natural tunnel, whilst a little south at Seleucia another river flows through a tunnel, 20 feet wide and 23 feet high, cut 1600 years ago through rock so hard that the chisel marks are still discernible. The Mammoth cave of Kentucky aad the Peak caves of Derbyshire are cxamples of natural tunnelling. Mineral springs bring up vast quantities of matter in solution. It has been estimated that the Old Well Spring at Bath has discharged since the commencement of the 19th century solids equivalent to the excavation of a 6 feet by 3 feet heading 7 miles long; and yet the water is perfectly clear and the daily flow is only the 150th part of that pumped out of the great railway tunnel under the Severn. Tunnelling is also carried on to an enormous extent by the action of the sea. Where the Atlantic rollers break on the west coast of Ireland, on the seaboard of the western Highlands of Scotland, and elsewhere, numberless caves and tunnels have been formed in the cliffs, beside which artificial tunnelling operations appear insignificant. The most gigantic subaqueous demolition hitherto carried out by man was the blowing up in 1885 of Flood Rock, a mass about 9 acres in extent, near Long Island Sound, New York. To effect this gigantic work by a single instantaneons blast a shaft was sunk 64 feet below sea level, from the bottom of which four miles of tunnels or galleries were driven so as to completely honeyconb the rock. The roof rock ranged from 10 feet to 24 feet in thickness, and was supported by 467 pillars 15 feet square; 13,236 holes, averaging 9 feet in length and 3 inches in diameter, were drilled in the pillars and rcof. About 80,000 cubic yards. of rock were excarated in the gaileries and 275,000 remained to be blasted away. The holes were charged with 110 tons of "rackarock," a more powerful explosive than gunpowder, which was fired by electricity, when the sea was lifted 100 feet over the whole area of the rock. Where natural forces effect analogous results, the holes are bored and the headings driven by the chemical and mechanical action of the rain and sea, and the explosive force is obtained by the expansive action of air locked up in the fissures of the rock and compressed to many tons per square foot by impact from the waves. Artificial breakwaters have often been thus tunnelled into by the sea, the compressed air blowing out the blocks and the waves carrying away the debris.

With so many examples of natural caves and tunnels in existence it is not to be wondered at that tunnelling was one of the earliest works undertaken by man, first for dwellings and tombs, then for quarrying and mining, and finally for water supply, drainage, and other requirements of civilization. A Theban king on ascending the throne began at once to drive the tunnel which was to form his fiual resting place, and persevered with the work until death. The tomb of Menptah at Thebes was driven at a slope for a distance of 350 feet into the hill, when a shaft was sunk and the tuncel projected a further length of about 300 feet, and enlarged into a chamber for the sarcophagus. Tunnelling on a large scale was also carried on at the rock temples of Nubia and of India, and the architectural features of the entrances to some of these temples might be studied with advantage by the designers of modern tunnel fronts. Petrie has traced the method of underground quarrying followed by the Egyptians opposite the Pyramids. Parallel galleries about 20 feet square were driven into the rock and cross galleries cut, so that a hall 300 to 400 feet wide was formed, with a roof supported by rows of pillars 20 feet square and 20 feet apart. Blocks of stone were removed by the workmen cutting grooves all round them, and, where the stone vas not required for use, but merely had to be removed to form a gallery, the grooves were wide enolgh for - man to stand up in.

Where granite, diorite, and other hard stone had to be cut, the work was done by tube drills and by suws supplied with corundum, or other hard gritty material, and water, -the drills leaving a core of rock exactly like that of the modern diamond drill As instances of ancient tunnels through soft ground and requiring masonry arching, reference may be made to the vaulted drain under the southeast palace of Nimrúd and to the brick arched tunnel, 12 feet ligh and 15 feet wide, under the Euphrates. In Algeria, Switzerland, and wherever the Romans went, remains of tunnels for roads, drains, and water-supply are found. Pliny refers to the tunnel constructed for the drainage of Lake Fucino as the greatest public work of the time. It was by far the longest tunnel in the world, being more than $3 \frac{1}{2}$ miles in length, and was driven under Monte Salviano, which necessitated shafts no less than 400 feet in depth. Forty shafts and a number of "cuniculi" or inclined galleries were sunk, and the excavated material was drawn up in copper pails, of about ten gallons capacity, by windlasses. The tunnel was designed to be 10 feet high by 6 feet wide, but its actual cross section varied. It is stated that 30,000 labourers were occupied eleven years in its construction. With modern appliances such a tunnel could be driven from the two ends without intermediate shafts in eleven months.

No practical advance was made on the tunnelling methods of the Romans until gunpowder came into use. Old engravings of mining operations early in the 17th century show that excavation was still accomplished by pickases or hammer and chisel, and that wood fres were lighted at the ends of the headings to split and soften the rock in advance (see fig. I). Crude methods of ventilation by

Fle. 1.- Method of mining, 1621. (From De Re Betallica, Basel, 1621 .) shaking cloths in the headings and by placing inclined boards at the top of the shafts are also on record. In 1766 a tunnel 9 feet wide, 12 feet high, and 2880 yards long was commericed on the Grand Trunk Canal, England, and completed eleven years later; and this was followed by many others. On the introduction of railways tunnelling became one of the ordinary incidents of a contractor's work; probably upwards of 4000 railway tunnels have been executed.
Subaqueous Trunneliing. - In 1825 Branel commenced and in 1843 completed the Thamies tunnel, which was driven ot llointa throngh liquid mud by the sid of a "shield " at a cost of about £1300 per lineal yard. It is now used by the East London Railway. In 1872 Chesborongl began tunnelling under the Detroit river, hetween Canada and Slichigan, U.S., but the work was abandoned nuring to continued irrnptions of water after some 600 yards of
hieadings had beea drivea.

The most umportant subaqueous work yet accomplished-the Severn tunnel, $4 \frac{4}{3}$ miles in length-was commenced in 1873 and finished in 1886, Messrs Hawkshaw, Son, Hayter, and Richardson being the engineers and Mr T. A. Walker the contractor. The bed of the Severn is formed principally of marls, sandstones, and conglomerates in nearly horizontal strata, overlying highly inclined coal measures, shales, and sandstones, which are also exposed in the bed of the river. The tunnel is made almost wholly in the Trias and Coal Measure formations, but for a short distance at its eastern end it passes through gravel. The lowest part of the line is below the "Shoots," where the depth is 60 feet at low water and 100 feet at high water, and ths thickness of Pennant sandstone over the brickwork of the tunnel is 45 feet. Under the Salmou Pool, a depression in the bed of the river on the English side, there is a cover of only 30 feet of Trias marl. Much water was niet with through. out. In 1879 the works were flooded for some months by a large land spring on the Welsh aide of the river. The water which eupplied the spring came from fissures in the carboniferous limestone, which was met with only at this place , and it is now conveyed by a side heading parallel to the tunnel to a shaft 29 feet in diameter, in which are fixed punpps of adequate power. On another occasion the works were flooded by water which burat through a hole in the river bed at the Salmon Pool. This hole, which was in the Trias marl and had an area of 16 feet by 10 feet, was sulssequently filled with clay and the works were completed beneath it. The tunnel is for a double line of rail way and is lined throughout with vitrified bricks set in Fortland cement mortar. A heading was first driven entirely across the river to teat the ground and subsequently another heading at a lower level. "Breakups" were made at intervals of two to five chains and the arching was carried on at each of these points. All parts of the excaration were timbered, and the greatest amount excavated in any one week was 6000 cubic yards. Owing to the inrush of water it was frequently necessary to completely roof tbe timbering with felt or corrugated iron before the bricklayers could commence the arching. The total amount of water raised at all the pumping stations is abont $27,000,000$ gallons in twenty-fonr hoira ; but the total pumping power provided is equal to $66,000,000$ gallons in twenty-four hiours. The ventilation is effected by a fan of the Guibsl pattern, 40 feet in diameter and 12 feet wide, making forty-three revolutions and drawing 447,000 cubic feet of air per minute from the tunnel through an 18.-feet shaft at Sudbrooke (Mionmouth).
Aiother example of subaqueous tunneling, second only in importance to the foregoing, is the Mersey tunnel, the length of which between the purnping shafts on each side of the river is 1 mile. From each ghatt a drainage heading was driven through the red sandstone with a rising gradient towards the centre of the river. This heading was partly bored out by a Beaunount machine to a diameter of 7 feet 4 inches, and at a rate attaining occasionally 65 lineal yards per week. All of the tunnel excavation, amounting to 320,000 cubic yards, was got out by hand labour, since heavy blasting would have shaken the rock. The minimnm cover between the top of the arch and the bed of the river is 30 feet. Pumping machinery is provided for $27,000,000$ gallons per day, which is more than donble the usual quantity of water ; and ample ventilation is secured by two 30 - feet diameter and two 40 . fcet diamoter Guibal fans. Messrs Brunlees and Fox were the engineers, and Messrs Waddell the contractors for the works, which were opened in 1886, about 6 years after the commencement of operations.
Proposals for the construction of a tunnel about 30 miles in length to connect England and France have been brought forward periodically from the commencement of the 19 th century, but nothing was done until 1881, when preliminary works of some inportance were commenced by Sir Eaward Watkin and the SouthEastern Railvay Company. At the proposed point of crossing the deepest part of the channel is 210 feet, and, as the beds on the English side and those on the Frenclh side, so far as relates to the grey chalk and chalk marl, are each 225 feet thick, it is assumed that those strata are continnous and that the tunnel सuald be driven through a water-tight material. Shafta have been sunk ncar Folkestone, and experimental headings have becu driven 2000 yards under the sea, on the line of the tnnnel. The heading, 7 fcot in diameter, was cut by a Beaumont boring machine, having two arms with steel teeth, and driven by compressed air ; the nsnal rate ot progress was 15 lineal yards per day.
A partially constructed snbaqneous tunnel now ries urownea under the Hudson river at New York. An sttempt was made to drire a double tunnel througll the mud and silt forming the river bed. In 1880, when about a hundred sarda had been completed, the water burst in, and twenty men were drowned. Work was subsequently resnned on the following plan (see fig. 2): A pilot tunnal, consisting of an iron tube of 6 feet 6 inches in diameter, was advanced from 30 to 40 feet ahead of the main tunnel, to forna a frm support for the iron plates of the latter by means of radial screws. Compressed oir, pumped into the tunnel at a pressure of about 20 th per square inch, prevented the weigit of silt and water from crushing the plating and flowing into the tuunel. 'fle cxcavated
ailt was mixed with water and ejected by compressed air. Between the shafts the length of the proposed tunnel is 1 mile, and about

Fia. 2.-Hudson river tumbel-method of work.
3ne-cighth of the distance had been accomplished when the worka were stopped for financial reasons.

Small subaqueous tunnels havo heen driven through ciay vithout difficulty under Lakes Michigan and Eric, and elsewhere in Amerca. In England a heading मras driven uearly across the Thames in 1807, and eighty years later two 10 feet 6 inch iron-lined tunnels were constructed under the river close to the foundation of Londun Eridge by Mr Greathead, with the aid of a simple annular shield aivanced by six hydraulic presses. Where open gravel or water has to be tumnelled tbrough a diaphragm must be fitted to the s?iseld. Mallet proposed in 1858 to carry in this way a tubular tunnel across the English Channel. Varioue plans have beeu sugrested for the remural of the soil in advance of the shield. Mr Greathead would effect it by the circulation of a closed eurrent of water, carrying the atuff through the shichl from front to back; and an American plan provides for forcing it bodily out of the way by a pluugh-shaped shicld, aided by jets of water at a rery high pressure.

Tunnelling through Alountains. - Where a great thickness of rock orerlies a tunuel, it is vecessary to do the nork wholly from the two enda, withont iuternediate shafts. The problem resolves itself into devising the most expeditions way of excavating and romoving the rock, and thero are none of the nncertaintieg and difficulties which make subaqueons tunnelling of so ligh an interest. Experience has led to great edrances in speed and economy, as will bo seen from the following particulars of the three tumels through the Alps, the longest yet conatriacted.

Tunnel.	Length.	Progress per Daj.	Cost.
	Miles.	Innea? Yards.	Per Lineal Jard.
Mont Cenis...............	$7{ }^{7}$	2.57	£206
	9f	6.01	1.13
Arlberg	06	$9.0{ }^{\circ}$	105

In 1857 the first blast was firel in connexion with the Mont Cenis works; in 1861 machine drilling was introduced; and in 1871 the tunnel was opened for traflic. With the exception ol about 300 yerds the tunnel is lined throughout with brick or stone. Iittle interest now attaches to the ineihod of tunnclling adopted at Mont Cenis, as it is in ocveral respects obsolete. During the first four years of liand labour the average progress fias not more than 9 inches per day on each sille of the Alps; but with compressed. air rock-drills tho rate towarls the eud was five tinoes grcater.

In 1872 the St Gettharil tunnel was commenced and in 1881 the first locomotive ran through it. Mechanical drills wero used from the commencenent, Tunnelling was carrier on by driving in advance a top leading about 8 feet square, then ellarging this sideways, and finally sinking the excavation to invert luvel (see Sgs. 3 and 4). Air for norking the rock-drills was compressed to seven atmospheres by turhines of about 2000 horse-jower. Six to to eight Ferroux drills, making about 180 blows a minute, were mounted on a carriage and pushed up to the point of attack. From thirteen to eighteen boles were drilled by the machine and its sixteen attendants to dep,tha of from $2^{\prime} 7^{\prime \prime}$ to $4^{\prime} 3^{\prime \prime}$ in three to five hours, and the work of charghg with dynamite, firing, and clearing away was then done by twenty -two men in three to fonr hours, The charge per 'iole averaged is to, aud after firing a strong current
of compressed air was directerl over the face of the excavation. Four aots of bolea wero minder farourable rircumstances drilled in

twenty-four bours, which rendered a progress of 13 feet yer day in such roek as gneiss attainable in each hearling.

The driving of the Arlberg tunnel was colvmenced in 1880 and the work was completed in litele more than three ycars. The main heading was driven aloug the hottom of the tunnel and shafts were opened up 25 to 70 yards apart, from which emaller headings were driven right and loft. The tunnel mas enlarged to its full section at different points simultaneonsly in lengths of 8 yarla, the excava. tion of each occupying about twenty days, and the masonry 14 days. Ferronx percussion air drills and Braudt rotary hydraulic drills were uspd, and the performance of the latter was especially satisfactory. After each blast a fine spray of pater wes injected, which assisted the ventilation materially. In the St Gothard tunnel the discharge of the air drills was relied on for ventilation. In the Arlberg timinel over 8000 cubic fect of eir per minute wore thrown in by ventilators. In a long tunnel the quick transport of materials is of equal importance with lapid dilling ond blasting. In the Arlberg, to keep pace With the misers, 900 tons of excavated material liad to be removed, and 350 tons of masonry to be is:troduced, daily at each end of the tumel, which neecssitated the transit of 450 wagons. This traffic was carrice on as er a length of $3 \frac{1}{3}$ miles on a singio track of 27 -inch gauge u ith two didings. When the locomotives ran into the tunnel the fires were damped down, and, as the pressure in tho boiler was fifteen atmosphares, the stored. up heat in the water furnished the necessary power. The cost per lineal yard varied according to the thickness of mase nry lining and the distanco from tho mouth of the tunnel. For the first 1000 yards from the entrance the prices per linsal yard were $£ 11,8 \mathrm{~s}$. for the lower heading; $£ 7,12 \mathrm{~s}$. for the upper one ; £30, 10 s , fo: the unlined tunnel: $£ 45$ for the tunnel with a thin lining of masonry; and f124, 反s. with a lining 3 feet thick at the arch, 4 feet et the sides, and 2 feet 8 inches at the invert.

Long Tunnels--Tho new Croton aqueduct tuanel from Crnion dam to the reservoir in New lork is worthy of note both for its great lengh and the rapid progress made with it. The distance is $33 \frac{1}{d}$ miles and practically the whole is tunnelled through rock. Shafts were ounk about $1 \frac{1}{2}$ miles apart and headings driven cach way. Ingersoll drills were clitefly used, and the rato of advance with the heallings was in 1856 it males per month. "The old Croton aqueduct was 7 feet 8 inclius wille ly 8 feet 5 iuches high; the new one is 13 feet 7 incios in width anel height.

Tennelling in Toons, - Where tumels have to be carried through aoft soil and in proximity to valuable buldings special precaution,

Mias. © and 6.-Grent Northeru Ral!way tusae!. Method of tunnel. ling inder the Motropolitan cattle matket, London.
have to be taken to avoid ocitlement. The important Metropolitan tunnels constructed by Sis John F'owler Lave already been de. scribed under Railway (vol. xx. p. 235;. Ancther successful ex-
ample of auch work is the tunnel driven in 1886 by Mr Jolinson, the Great Northern Company'a engincer, under the Metropolitan cattle market. Where clear of buildings the tunnel was executed in 12 feet lengths measured from the finished brickwork, the excavation extending another 5 feet. The face of the excavation was carried out in four sections, the first between the head trees and the first sill was formed with a rake of 1 in $4 \frac{1}{2}$, the aecond and third with a rake of 1 in 6 , and the fourtl was vertical, the whole face being close boarded (see figs. 5 and 6). The areh and side walls were eight rings and the invert six rings thick. A 12 -fect length was completed in 12 to 14 days, and the oubsidence in the ground was about $3 \frac{1}{2}$ inches. Under buildings and roads the tuanel was executed in 6 -feet lengths. The crown bars, 15 inches in diameter, alternating six and seven in number, were built in with solid brickwork in cement and bard wood wedging. The skeleton centies for the arching were supporterl by props notched into the ribs and provided with wedges for tigbtening up. A 6 -feet length was built in six days, and the surface subsidence, consequent upon tbe inpossibility of exactly fitting the poling boards to the clay, was only from 1 incli to $1 \frac{3}{4}$ inches. Several heavy buildings were tunnelled under without any structural damage arising.

Where open ballast and running sand heavily charged with water are met with a tun. nol cannot be driven on the ordinary system without seriously endangering adjoining buildings. To nieet such cases, and also to provide a safe means of tunnelling under dock basins, canals, and rivers, the pneumatic shield (see fig. 7) was designed by Mr Benjamin Baker. The shicld is supported against external pressure by vertical girders about 6 feet apart. Horizontal shelves of steel plates with cutting edges are spaced about 4 feet apart, and the face of the shield is clesed by vertical plates and slides; the arrangement is

Fio. 7.-Mr B. Baker's pneumatic abield. snch that any slide can be opened to admit of the ballast or sand being excavated, whilst the compressed air filling the tunnel prerents the influx of water during the process. Where hard watertight clay is encountered, sections of the shield plates are unbolted to admit miners. When sufficient material bas been excarated the sbicld is advanced by bydraulic pressure and the brick arching built.
See Aquedect and Rallwar; also Drinker's Tunnelling, New York, 1878 (a most important work); and Proa Inst. Civ. Eng., art. "Tunnels." (B. B.)

TUNNY (Thynnus thynnus), one of the largest fishes of the family of Mackerels, belongs to the genus of which the Bonito (Th. pelamys) and the Albacores (Th. albacora, Th. alalonga, \&c.) are equally well-known members. From the latter the tunny is distinguished by its much shorter pectoral fins, which reach backwards only to, or nearly to, the end of the first dorsal fin. It possesses nine short finlets behind the dorsal, and eight behind the anal fin. Its colour is dark bluish above, and greyish, tinged and spotted with silvery, below. The tunny is a pelagic fish but periodically approaches the shore, wandering in large shoals, at least in the Mediterranean, within well-ascerfained areas along the coast. The causes by which its wanderings are regulated in the Atlantic Ocean are much less understood; it not unfrequently appears in small companies or singly in the English Channel and in the German Ocean, probably in pursuit of the shoals of pilchards and herrings on which it feeds. The regularity of its appearance on certain parts of the coasts of the Mediterranean has led to the establishment of a systematic fishery, which has been carried on from the time of the Phonicians to the present day. Immense numbers of tunnies were caught
on the Spanish coast and in the Sea of Marmora, where, however, this industry has much declined. The Sardinian tunnics were considered to be of superior excellence. The

Tunny (Thynnus thynnus.
greatest number is now caught on the north coast of Sicily, the fisheries of this island supplying most of the preserved tunny which is exported to other parts of the world. In ancient times the fish were preserved in salt, and that coming from Sardinia, which was specially esteemed by the Romans, was known as Salsamentum sardicum. At present preference is given to tunny preserved in oil. Many of the fishes, especially the smaller ones, are consumed fresh. The tunny occurs also in the South Pacific; but several other species seem to take its place in the IndoPacific Ocean. It is one of the largest fishes, attaining to a length of ten feet and to a weight of more than a thousand pounds.

On the tunny fisheries of ancient and modern times, see Cavier and Valenciennes, Hist. Nat. des Poissoms (vol. viii. pp. 71-92).

TUNSTALL, a market tow is situated on a branch line of the London and NorthWestern Railway and on the Trent and Mersey Canal, 4 miles north-west of Stoke and 168 north-west of London. Among the public buildings are the market ($18^{\circ} \mathrm{5} 8$), town hall (1884), old court-house (now used as a free library and reading room), and board schools (1880). The chief manufactures are those peculiar to the Potteries district; there are also large iron-works (coal and iron being obtained in the neighbourhood), and brick and tile works. The town is chiefly the growth of the 19th century, and in 1811 numbered only 1677 inhabitants. In 1885 it was included for parliamentary purposes in the borough of Newcastle-under-Lyme. It is governed by a local board of twenty-four members. The population of the urban sanitary district (area 690 acres) was 13,540 in 1871, and 14,244 in 1881.

TURANIAN. This word means etymologically no more than "not Iranian," and in this sense the word Turan was used by Sasanian monarchs to cover those parts of their realm that did not belong to Iran. The application of the word to denote the Ural-Altaic family of languages is extremely unfortunate and seems to be falling out of use. See Philology, vol. xviii. p. 779.

TURB1NE. See Hxdromechanics, vol. xii. p. 524.
TURBOT, ${ }^{1}$ the largest and best known of a genus of fat fishes, Rhombus, which bears the appropriate systematic name of Rh. maximus. The turbot has great width of body, and is scaleless, but is covereu with conical bony tubercles. The eyes are on the left side of the body, the lower being slightly in advance of the upper; the mouth is large and armed with teeth of uniformly minute size. The turbot is found all round the coasts of Europe (except in the extreme north), preferring a flat sandy bottom with from 10 to 50 fathoms of water. The broad banks off the Dutch coast are a favourite resort. It is a voracious fish, and feeds on other fish, crustaceans, and mollusks. It

[^268]seems to constantly change its abode, wandering north ward during the summer, and going into deeper water in the cold season. Some thirty years ago it was estimated that the Dutch supplied turbet to the London market to the palue of $£ 80,000$ a year. At present (1887) the value of turbot annually sold in London cannot be ascertained; but it must be several times that amount, and is principally earned by English line-fishermen and trawlers. Although the turbot abounds off the west coast of Ireland, the fishing is not carried on with the same energy and success as in the English Channel and German Ocean. The turbot is also common, though not abundant, in the Mediterranean, and is replaced in the Black Sea by an allied species with much larger bony tubercles ($R h$. mæoticus). Both species grow to a large size, being usually sold at from 5 to 10 fb ; but the common turbot is stated to attain to a weight of 30 D. Both from its size and the excellent flavour of its flesh it ranks next after the codfish among British sea-fishes.
turenne, Henri de la Tour d' Auvergne, Vicomite de (1611-1675), a famous French general of the 17 th century, was the second son of Henri, Duc de Bouillon, by Elizabeth, danghter of William I, prince of Orange, and was bern at Sedan on 11th September 1611. He was carefully educated in the strictest doctrines of the Reformed religion, and at the age of thirteen was sent to learn war from his uncles Manrice and Henry of Nassau in the campaigns of these princes against the Spaniards. In 1626 he received a commission as captain of infantry in the service of Holland, and by 1630 had shown such military capacity that Richelieu invited him back to France and appointed him colonel of a regiment. He was present at the relief of Casale, and on 21st June 1635 was made a maréchal de camp for his services at the siege of La Motte in Lorraine under De la Force. In that jear he took command of a division in the army under Cardinal La Valette in the defence of Mainz, and, wheu the cardinal's army had to fall back on Metz from want of provisions, Turenne commanded the rear-guard, covering the retreat with admirable skill. In 1636 he was present under La Valette at the siege of Saverne, where he was wounded, and in the campaign in Franche Comté; in 1637 he served under the same commander in Flanders, took Landrecies, and drove back the cardinal infant from Maubeuge. In 1638 he served under Bernhard of Saxe-Weimar at the siege of Breisach, and in the following year was transferred to the army of D'Harcourt in Italy. It was at this epech that the established his fame as a general. In November 1639 he covered the retreat of the army, and fought a famous engagement, known as the battle of the "route de Quiers"; in 1640 he saved Casale, and insisted upon net abandoning the siege of Turia, which town surrendered on 24th September; in 1641 he took Coni, Ceva, and Mondevi; and on 11th March 1642 he was prometed to the rank of lieutenant-general. After he had served for a short time in Roussillon, he was appointed by Richelieu in 1643 to the command of the army in Italy, under Thomas of Savoy, although his brother, the Duc de Bouillon, had just before been arrested as an accomplice in ihe conspiracy of Cinq Mars. Mazarin did not exbibit euite so much confidence in Turenne, and in December 1643 removed him from Italy, sending him to collect the remains of Bernhard of Saxe-Weimar's army and form them once more into an organized force; but he softened the transference by creating Turenne a marshal of France on 16 th May 1644.

Tu:enne's four campaigns in Germany, which largely contributed to the peace of Westphalia, have always been regarded as models in the art of war. In June 1644 he crossed the Rhine at Breisach, and was marching against the Comte do Mercy, the Imperialist general, who was at Freiburg, when he was superseded by the Duc d'Enghien,
better known by his later title of the Prince de Conde D'Enghien, after fighting the three days' battle of Freiburg, left the army again to Turenne, who took Philippsburg and Mainz, and then went into winter quarters. In May 1645 Turenne was surprised by Mercy at Marienthal and defeated; but he skilfully cencentrated the remains of his army and retreated into Hesse, where he was soon joined by D'Enghien. The two marshals, having reorganized their army, marched against Mercy and totally defeated him at Nördlingen on 3d August 1645, when Mercy was killed. D'Enghien again left the army to Turenne, whe in conjunction with the Swedish army under Wrangel overran Franconia and Swabia, taking all the fortresses there in 1646. In 1647 he conducted a still more masterly campaign, and after beating the Bavarians and Imperialists in two engagements he and the Swedes occupied Bararia, and drove the old duke out of his deminions.

When the troubles of the Fronde (see France, vol. ix. p. 572, and Mazariv) broke out, Turenne, whe was in command of the reteran troeps of Bernhard of Saxe-Teimar in Alsace, hesitated which side to take, till the Duchesse de Longuehlee ($q . v$.), with whom he fell violently in leve, persuaded him to side with the parlement. But his troops refused to follow him, and he had to fly with her to Flanders. He there took a command in the Spanish army under Don Estevan Gomar, and, when trying to raise the siege of Réthel, was utterly defeated by Du Plessis-Praslin. But in 1652 he defeated Coudé at Gien, and nearly annihilated his army in the battle of the Faubourg St. Antoine. When the troubles of the Fronde were over, Turenne marched upon the frontier, and in several campaigns defeated the Spaniards over and over again, by these victories paving the way for the peace of the Pyrenees (1659), the natural complement of the peace of Westphalia. In these campaigns he had once more to fight against Condé, general-in-chief of the armies of Spain, and in 1654 he showed his superiority by raising the siege of Arras and driving the Spaniards from their lines. In 1656 Condé, assisted by Don John of Austria, won an exactly similar victory and relieved Valenciennes, which Turenne was besieging. The prolonged contest between the two was decided in 1658 by Turenne's victory of the Dunes, in which Cromwell's contingent of 6000 soldiers took part.

Louis XIV. now began to rule in reality, and one of his first acts was to create Turenne in 1660 marshal-general of the armies of France. Seven years later Turenne occupied French Flanders and took all the fortresses in that province, though the king was nominally in command of the army,-an exploit equalled in the following year by Condés rapid occupation of Franche Comté. It was in 1668 that Turenne made his noterious change of faith. Born of Calvinist parents and educated a Protestant, he had in compliance with the tenets of his religion refused to marry one of Richelieu's nieces in 1639, and had eventually married a daughter of the Protestant Marshal de la Force. But it can hardly be believed that he was converted at the age of fifty-seven from religious convictions. In 1672 the second great European war broke out, brought about by the ambition of Louis XIV. Turenne once mere took command of the army, which the king accompanied, and speedily occupied the greater part of Holland, which, hewever, they were forced to evacuate owing to the Dutch cutting their dykes. In the following year Turenne marched into Westphalia to oppose the imperialist forces, and, though his army was swall compared to that of M.ontecuculi, the imperialist general, he managed to make head against both him and the elcetor of Brandenburg. In 1673 he was compelled to act on.tho defensive; but in 1674 in spite of his inferiority of numbers
he boldly resumed the aggressive. Crossing the Rhine at Philippsburg in June, and marching rapidly to Sinsheim, he defeated the imperialist general Caprara and the duke of Lorraine. He then retired for a time, but in December of the saine year he nade a sudden rush into the enemy's winter quarters and utterly routed the elector of Brandenburg, who was then general of the imperialists, at Colmar. Between the battle of Sinsheim and the dash at Colmar, Turenne, undes orders from Louvois, committed the acts which are the greatest blot upon his fame by devastating the Palatinate. After the rout of Colmar, and the dcfeat of Türkheim which followed it, he laid waste the greater part of Alsace, as a defensive measure against another advance of the imperialists. He then advanced into the heart of Germany, and again met Montecucnli, who had succeeded the elector of Brandenburg as general-in-cbief. The two generals manceuvred for four months in much the same way as Wellington and Marmont marched and counter-marched before the battle of Salamanca; at last, on 27 th July 1675 , their field of battle was chosen, and, as Turenne was directing the position of a battery, he was struck by a cannon ball and killed on the spot. The news of his death was received with universal sorrow; Fléchier, Mascaron, Saint-Évremond, and Lamoignon wrote cloges of him; and Madame de Sevigné describes the consternation caused by his sudden loss. His body was taken to St-Dénis, and buried with the kings of France. Even the extreme revolutionists of 1793 respected it , and, when the bones of the sorereigns were thrown to the winds, the remains of Turenne were preserved at the museam of natural bistory until 23 rd September 1800, When they were removed by order of Bonaparte to the church of the Invalides at Paris, where they still rest.
Turenue's fastae rests on his military achievements; as a man he was not more distinguished for his virtues than the duke of Marllorongh, whom in many respects ho resembled. He had indeed tbe calmness of all philosophic, cold-minded temperaments, but ferv other praiserorthy qualities. As a politician he hoids no high place.
(H. M. S.)

TURGAI, a Russian province in Central Asia, formerly a part of the Kirghiz steppe, and norv embodicd in the governor-generalship of the Steppes, is bounded by Uralsk and Orenburg on the W. and N., by Akmolinsk on the E., and by Syr-Daria and the Sea of Aral on the S. This extensive and irregularly-shaped territory, which has an area (176,800 square miles) as large as that of Caucasia and Transcaucasia taken together, belongs to the AralCaspian depression. It has, however, the Mugojar Hills on its western border and includes a part of the southern Urals; and from Akmolinsk it is separated by a range of hills which runs between the two chief rivers of the Kirghiz steppe-the Turgai and the Sary-su. In the north it includes the low belt of undulating land which stretches from the Mugojar Hills towards the north-east and separates the rivers belonging to the Aral basin from those which flow towards the Arctic Ocean, and beyond this range it embraces the upper Tobot. The remainder is steppe land, sloping gently towards the Sea of Aral. The Mugojar Hills consist of an undulating plateau nearly 1000 feet in beight, built up of Permian and Cretaceous deposits, and deeply grooved by rivers. They are not the independent chain which our maps make them out to be ${ }^{1}$: they merely continue the Urals towards the south, and are connceted with the Ust Urt plateau by a range of hills which was formerly an island of the Aral-Caspian Sea. Their northern extremity joins the undulating plateau (400 to 600 feet), built up of sandstones and marls, which scparates the tributaries of the Tobot from those of the Ural, and falls by a range of steep crags-probably an old

[^269]shore-line of the Aral basin-towards the steppes. The steppe land of Turgai is only some 300 feet above the sea-level, and is dotted with lakes, of which the Tchotgardenghiz, which receives the Turgai and its tributary the Irghiz, is the largest. The Turgai was, at a recent epoch, a large river flowing into the Sea of Aral and receiving an extensive system of tributaries, which are now lost in the sands before joining it. Remains of aquatic plants buried in the soil of the steppe, and shells of Irytilus and Cardium, both still found in the Sea of Aral, show that during the Glacial period this region was covered by the waters of the Aral-Caspian Sea.

The climate of Turgai is exceedingly dry and continental. Orsk, a town of Orenburg, on its north-western horder, has a January as cold as that of the west cosst of Nova Zembla (-4° Fahr.) while in July it is as hot as July in Morocco (73°); the corresponding fgures for Irghiz, in the centre of the province, are 7° and 77°. At Irghiz and Orsk the anuual rainfall is somewhat under 10 and 12 inches respectively (3 inches in summer). The west winds are desiccated before they reach the Turgai steppes, and the northeast winds, which in winter briug cold, dry snows from Siberia, raise in summer formifable clouds of sand. A climate so dry is of course incompatible with a vigorous forest growth. There is some timber on the southern Urals, the Mugojar Hills, and tho waterparting of the Tobot ; elsewhere trces are rare,-only shrubs, snch as the wild cherry (Cerasus Champcerasus) and the dwarf almond (Amygdalus nana) growing on the hilly slopes, while the rich blackearth soil of the steppe is chiefly covered with feather grass (Stipa peuzata), the well-known oruanent of the south Russian steqpes. In spring the grass regetation is luxuriant, and geese and cranes are attracted in vast numbers by the fields of the Kirghiz from the depth of the steppe. The jerboa (Dipus jaculus) and the marnot (Spermophilus rufescens) are characteristic of the fauna of the region; another species of "18rmat (Aretomys bobac) and the Canis corsac are common; and the saiga autelope of Central Asia is occa. sionally met with. Further suuth the black carth disappears and with it the feather grass, its place being taken by its congener, Slipa capillata. Trees disappear, ani among the bushes along the banks of the rivers willows and the pseudo-acacia or Siberiaus pea tree (Caragana microphyla) are most prevalent. In the middle parts of the province the clayey soil is completcly clothed with wormwood (Artcmisia fragrans and A. monogyna), with a few grassy plants on the banks of the rivers and lakes (Lasiagrostis splendens, Alhagi camelorum and A. Kirghizorum, Obione portulacoides, Halimodendrum argenteum); while large areas consist of shifting sands, salt clays clothed with a rich carpc: of various Salsolacex, and dried beds of oid lakes. Such lakes as still exist, notwithstanding the rapid desiccation now going on, are surrounded by rush thickets, -the retreat of wild boars. Turgai is thus the borderland between the flora of Europe and thast of Central Asia.

In 1882 the population of Turgai was estimated at 323,110, all nomad Kirghiz, with the exception of some 3600, who are settled in four villages officially described as towns. Agriculture is in its earliest stage of development ; but some 100,000 quarters of corn are raised in the scuth-west by the Kirghiz, who sell some of it in Orenburg. Cattle-breeding is tho chief occupation, and within the province there aro some 800,000 horses, 335,000 cattle, about 200,000 camels, and more than two million shecp. But the want of fodder in spring occasious violent murrains, wbich sometimes restlt in actual famine among the Kirghiz. Endeavours have recently been made to induce the people to make communal stores of hay, but the $300,000 \mathrm{crts}$. yearly collected in this way are insufficient. The Kirghiz of the southern parts go in winter to the better shelterel parts of Syr-Daria, while in the summer some 30,000 kibitkas (felt tents) of nomads como from tho neighbouring provinces to graze their cattle on tho grassy steppes of Turgai. Some 30,000 cwts. of salt are annuslly got from the lakes. The four settlements of the province are Turgai, chief town and seat of the provincial administration, with less than 400 inhabitants, and the "district towns" of Irghiz (920), Ak-tube (400), and Karabutak (300), the last two being more or less fortified. Several merchants in these carry on trade with the Kirghiz, exchanging manufactured goods for wool and skins, which are sent to the fronticr settlemente of Orenburg. Thero is a brisk caravan traffic through Turgai.
turgot. Anne Robert Jacques Turgot, Marquis de l'A line (1727-1781), French statesman and economist, was born at Paris, 10th May 172\%. He was the third sou of Michel Etienne Turgot and of Madeleine Françoise Martineau. His family, which was ancient and noble, is said to have been originally Scottish, but had long been settled in Normandy. His ancestors parly abandoned the
sword for the robe. Both his father and grandfather had been in the civil service of the state: his father was "prévôt des marchands" at Paris, and won a high reputation as a magistrate and administrator. Turgot in his childhood was timid, and showed in company an absent and combarrassed air, from which he never afterwards entirely freed himself, and which in later life was sometimes unjustly attributed to hauteur. His mother, through excessive or injudicions efforts to correct these fault, appears to have aggravated them. He obtained his early education at the College Louis-le-Grand, and was afterwards a student of the Collége du Plessis. He then entered the seminary of St Sulpice, and thence passed to the Sorbonne with the view of taking his licence in theology. But he decided finally in 1751 not to fellow the ecclesiastical profession. His opinions were inconsistent with that calling, and he said "he could not consent to wear a mask all his life." He showed at this time an enthusiastic love of literature and powers of memery which are described as "prodigious," as well as a penetrating intellect and a sound judgment. We have the testimony of the Abbe Morellet, who was then his intimate acquaintance and constant companion, to the singular purity, the simplicity, modesty, and frank gaiety which characterized him.
As prior of the Sorbonne (an honorary office conferred annually on some distinguished student) he wrote and delivered publicly in 1750 two remarkable pieces,-one On the Benefits which the Christian Religion has conferred on Mankind, the other On the Historical Progress of the Human Mind. Having chosen the law as his profession, he was appointed in 1752 "conseiller substitut du procureur général," and afterwards "conseiller au parlement." The controversy arising from the refusal of the sacraments to the Jansenists by the archbishop of Paris being then agitated between the parlement and the clergy, Turgot wrote (1753) Letters to a Vicar-General on Toleration and a pamphlet entitled Le Conciliateur, in favour of religious liberty and against the interference of the temporal power in theological disputes. In 1753 he became "maitre des requêtes." He discharged his professional duties with scrupulous purity and conscientious industry. He continued at the same time his studies in ancient and modern literature (including English and German), mathematics, astronomy, chemistry, and natural history, and frequented the salons of Madame de Graffigny (authoress of Les Lettres Péruviennes), Madame Geơfrin, and Madame du Deffand. Whilst he enjoyed the acquaintance and society of D'Alembert, Baron d'Holbach, Raynal, Marmontel, Morellet, Galiani, Helvétius, and other notabilities of the time, he maintained his intellectual independence and refused to connect himself with any party or political group. About this time he also entered into relations with Quesnay and Gournay-the principal members of the physiocrats. He was attracted to them by the similarity of their sentiments on social questions and their opinions on economic policy to those which he himself entertained. Turgot accompanied Gournay in 1755 and 1756 in his official tours of inspection as intendant of commerce, and on Gournay's death in 1759 he wrote his Eloge. He then made a short visit to eastern France and a part of Switzerland. When he arrived at Genera he went to see Voltaire at Les Délices, and formed with him what proved to be a lasting friendship. He contributed about this period several articles to the Encyclopédie. In 1761 the controller-general Bertin appointed him intendant of the généralité of Limoges. In that district the mass of the people were sunk in poverty and barbarism ; the corvees for the construction of roads snd the transport of military equipages were oppressive; the country was depopulated by the requisitions for the militia - the taxation was excessive and unfairly distri-
buted; the state of the roads was wretched; ana the general condition of agriculture was deplorable. Turgot's administration of the district lasted for thirteen years, and was marked by a steady pursuit of the public grod, and a firm resistance to inertia, prejudice, and corruption. In particular he strongly maintained the cause of the industrious poor, and insisted on a more equitable assessment of the public charges which pressed undnly upon them. With nobly disinterested spirit be refused to be transferred to other généralités in which the salary was higher and the administration easier. Rising above the common prejudices of the philosophes, he sought the cooperation of the clergy, both to inform him of everything relating to the circumstances of the people which it was desirable for him to know, and to explain to their flocks the nature and objects of the measures he proposed to jut in operation; and he acknowledges that he found in them earnest and active auxiliaries. But he was not seconded as he ought to have been by the central Government, and had often to remonstrate with the Abbe Terray, minister of fanance. During the scarcity of 1770 and 1771, which was particularly severe in Limousin, he devoted himself with untiring assiduity to the relief of the distressed, and, when he had exhausted such public funds as were available, incurred for the same object a personal debt of more than 20,000 lirres. Shortly after the accession of Louis XVI. Turgot was airininted by Maurepas (19th July 1774) minster of marine, and in that capacity began at once to initiate important reforms and to conceive far-reaching projects. But he filled the post only for five weeks, being then (21st August) promoted to the ministry of finance. In his new office he addressed to the young king a declaration of the principles by which he intended to be guided: "No bankruptcy, no increase of taxation, and no borrowing." Economy and wise management were to be his only resources. Fearing the opposition he must encounter, he appealed to Louis to support him. By a decree of the 13 th September 1774, he re-estallished free trade in grain within the kingdom, which had been suspended by Terray, and authorized the importation of supplies from abroad; the traffic in other alimentary substances was also relieved of many impediments, and various monopolies and exelusive privileges were abolished; the octroi taxation was reformed, public works promoted, and improvernents in agriculture encouraged. Some of these measures were made the pretext for disturbances, known as la guerre des farines, which Turgot always suspected the Prince de Conti of having fomented. The riots had to be suppressed by armed force, and the energetic action of the minister against them was made a ground of attack by his enemies The parlement had been weakly recalled by Louis from the exile to which in the preceding reign Maupeou had condemned it. It now constituted itself the organ of the resistance of menaced interests to the measures of Turgot, who would gladly have abolished it, providing in its place better political securities and courts of justice on a new plan. In January 1776 he presented to the king a memoir proposing, amongst other things, the abolition of the corvée, to be replaced by a territorial tax, from which the privileged classes were not to be exempt, and the suppression of the jurandes (exclusive trade corporations). The edicts for these purposes were submitted to Miromesnil, keeper of the seals, a secret enemy of Turgot, who, spurred on ly Maurepas, wrote a memoir against them, and opposed them in the king's council. The courtiers, the nobility, the clergy, and the leading members of the industrial corporations now combined against the minister, and were joined by a large part of the common people, who did not understand his policy. The Count de Provence, afterwards Louis XVIII., wrote a pamphlet, entitled The Dream of M. de

Maurepas, against Turgot. The parlement refused to register the decreer; but the king held a lit de justice, which Voltaire proposed to call a lit de bienfaisance, and conpelled the registration. This forced submission only aggravated the rancour of Turgot's enemies, and the king had not the firmness to sustain his minister against the coalitiou. A vile conspiracy laving poisoned Louis's mind against hinn, he addressed to the king an eloquent letter in which he pointed out the grave perils inpending over the throne and the state, and warned Lonis that princes who are tempted to give themselves up to the direction of courtiers should remember the fate of Charles I. The minister received his dismissal on the 12th of May 1776 . He had been in office only twenty months, of which he had lost six in repressing sedition, and for seven nore had been confined to his bed by the gout; lut he had done during his tenure an extraorlinary amount of work. Voltaire. howevir. nobly avenged Turgot on his enemies in his Epittre \dot{a}_{1}, Homone. The fallen minister deroted his rewaining yurn to his favourite stndies, especially to lhysical science and tue ancient poets; lie enjoyed the society of Lavoisier, D'Liembert, Condorcet, Bossut, Rochon. and Ronelle. and attcurled the meetings of the Acadenny of Inscriptions, of whicth he was elected vice-director in 17i7. He also corresponded with Price and Frauklin, ancl, if we may believe Coudorcet, with Adam Sinith, whose acquaintaince be lard mado at Paris in $1766 .{ }^{1}$ Turgot lied at Paris on 18th March 1781.
Turgot's official career is for ever menorable in the history of su' al politics. Ncver diel a public man give hinnself to the service of ,he cominunity with niore earnest and nnselfish devotion. He maile it his ohject to conrince before commanding, in orrler that hi: qius might the better understood and bis directions nore aurely olcyeel; and, in issung any instruction, making any decision, or airisising any legislative act, he stated fully, by way of preamble. the groonds on which he proceeded. In the documents which he prepared on these occasions ne hare a borly of raluahle materials on admiuistrative and economic questions ; sonme of them coutain the sabstunce of chayters in the Merthth of Aations. When he became minister, the finances wero in what seemed a deaperate condition, and the general stato of affars justifed the prediction of Lonis XY. -" apres noi le deluge." Turgot franed a vast plan of reform, at once administrative and econonic, as the only hope for the salvation of the state. He fyeaks of his system of measures as intended for "the regulatiun of the kingrooro", thus showing that he contempinted nothing less than a pacific rerolution. But the first condition of success in such an efforl was wanting, nautely, the entire confidence and unfaltering support of the king, and the energetic exercise of the royal porter in caits ing out a policy of thorough reform aysoinst all allver.e iulluences ${ }^{2}$ Thrgot's struggle, though it failed from causes indlevendent of himself, canmot he regarided without profound sinnpathy aud adniration. Non was it without a large neasure of Bummediate success Whilst Fe sermpuloosly observed ail the pecuniary olli yoations of the state, he greatly diminished the crushing deficit wlich he found on his accession to office, and re-established the public credit in such a degree that the Dutch hankers offered hini a loan of sixty millione of livres at less than 5 per cent. His fiuancial and otler plans, of course, fell with him, and his most important toeasures nere annulled; but liis policy and lis writings exercised s lasting iufluence, and nany of his projects were realized ly the Rerolutivo. Turgot is altogether one of the most massive and imposing figures of the 18th century. His whole character and public action are marked ly an air of austere grandeur. Single-mindectness and veracity were of the very essence of his nature. Absolutely nonliased ls selfish cods, he lived only for France. for truth, and for his duty. Believiog intensely in a definite system of aocial and economic principles, whichl he layd carly formed by independent study and reflexion, he was prepared to carry theni out with dauntless determinatiou,

[^270]and with a lofts contempt for the interested or prejudiced opposition they were sure to eucounter. He has heen accused of a doctrinaire rigidity, and it is possible that, as a practical man, he wanted flexibility; yet he was often willing, not indeed to disguise his convictione, but to postpone the realization of his plans. In his public acts be alwass showed a lively. concern for the poor and the suffering ; in private life le was humane and benevolent; in his relations with his frieuds, amiable and affectionste. Malesherbes, the only other minister of his time who was worthy to be his colleague. said of him that "he had the head of Bacon and the heart of L'Hôpital." and, on the moral sile at least, this was no exaggerated estimate.

Possessed of a many-sinerl culture, Turgot wrote on a great variety of subjects-philosophic, scientitic, and literary-though political economy is the brancls of koowledge with which his nane must always he most closely associated. Already in 2749, whilst a sturent at St Sulpice, he addressed to his friend, Abbé de Cicé, alterwards bishol, of Auxerre, a Lelter on Paper Money, in which he asserter, in opposition to the viewe of Law and his followers, doctrines similar to those now accepted by all competent authorities. In oue of his discourses at the Sorbonne in 1750 , moving into the higher regions of the phiiosoplyy of society, he makes a remarkable attennt to work out the pregnant conception, already enunciated by Pascal, of the continnity of the intellectual movenient of our race, thus prelaring the way for C'nndorcet's Esquisse, and ultimately for the sociology of Comte. In 1753 he translated under the title of Questions Importantes sur le Commerce, a tract of Dr Josiah Tucker on the expedieucy of uaturalizing foreigners. He contributed to the Encycloperlie the articles Etymologie, Existence, Exparsibilite, Foudations, and Foircs et Marches. The first of thess contains much that is just as well as interesting, though in the lime of Turgot the subject could not yet be treatesl on genuinely scientific bases. In the second he undertakes a refutation of the Derkeleian theory. The third contains some ingenious suggestions iu practical pbysics. The article on foundations maintains the right of the Govermment to dispose of them for the public good, suppressing them if hurtinl, and directing the funds to more useful objects; the policy edrocated in it was afterwards carried into effect by the constituent assembly. In the paper on fairs and markets he argues that these are institutions arlapted only for an inmature state of cominercial relations, and that more good would Le done by liberating trade from the legiolative fetters which everyWhere iupeder it than by bestowing apecial privileges or other cncouragements on particular localities as ceutres of exchange. In the Eiloge of Gournay he combines with his tribute to the memory of his friend a vindication of the principle of industrial freedom, which that friend had condensed in the oft-repeated maxim, "Laissez faire; laissez passer." To the period of 7"urgot's intendance belong his unfinished Valeurs et Mfonnaies, intedded to form an article in the Dictionnaire de Commerce of Morellet ${ }^{-}$; his Lelters (to the Ahle Terray) on the Frecdom of the Conr-Trade; his menoir Sur lcs Prêts đ'Argent, in which he insists on the necessity of leaving free the iuterest on loans; and that on the principles which should direct legislation respecting mines and quarries, as well as the work on which his reputation as a systematic economist mainly rests, namely, his Reflexious sur la Formation el la Distribution dcs Richesses. This treatise was written for two Chinese youths who had been sent orer by the Jesuit missionaries to study in France. T山e nork was first published in 1766 in the Ephénérides du Citoyen. edited by Dupont de Nemours, and speedily passed through four editious. It gires in brief compass a Inminous statement of same of the nost important principles relatiug to the economic constitution of societies-the division of labour, the origin and use of mones, the nature of capital and the different modes of its enployment, the necessary rise of capitalist chiefs of industry, the legitimacy of interest on loans, and the impossibility of arbitrarily fixing the rate of that interest. It unfortunately contains, along with many tritiss, the erroneons doctrines of the physiocrats on the exclusive productireness of agriculture and on the consequent propriety of imposing taxes only on the land of a country. This book was erroneously represented by Condorcet as "the germ of the Wealth of Nations," and has becn spaken of by others as "anticipating some of the leading principles" of Smith. The truth is, most of what it contains had either been fully set forth by the earlier economista or was familiar to Quesnay and his group. It is, in fact, not a work of research but of exposition, aud, recgarded in this light, has real originality and may justly be pronounced a masterpiece.
Fuller informstion on the life, administrative lsbours, and writings of Turgot will be fonnd in the following works:-Dupont de Nemours. Notes et Nemoires sur la V'ie, l Administration, et les Ouvrages de Turgot, 1rs2, sud enlarged in his edition of Turgot'a works mentioned below; Condorcet, 'ie de Turgot, $1: 86$ A. Batbie, Turgot, Ph ilosophe, Economiste, Admiristraterr, 1361 ; J. Tissot. Turgo, sa Vie, son Administrafion. ses Ourrages (s memoire couran re, 1862 ; A. Neymarck,
Turgot el ses Doctrines, 1885 . The last-named contains the most complete treatTurgot el ses Doctrines, 1885. The last-named contains the most complete treat ment if the subjech. See slso an Floge by Duriuy (17e1) in the Memoires de $r_{\text {Acadlmis des Inscriptions ot Felles- Leltres, vol. xlv.; L de Lavergne, Les }}$

writings was published for the frst time by Dupont in 9 vols. (Paris 1808.11); this most complete and in every respect best edition is that contained in the Collection des Principanax Economistes of Coquelia and Guillaumin, 2 vols., 1844, with g.biographical notice by Eugene Daire. An English translation of The Formation and Distribution of Weclith was published in London in 1793, and was reprinted in 1859 in Lord Overstone's Select Collection of Scarce and Valuable Economical Tracts, edited by J. R. JI'Culloch.
(J. K, 1.)

TURIN, a city of northern Italy, formerly the capital of Piedmont and the Sardinian states and now the chief town of a province in the compartimento of Piedmont, is situated in $45^{\circ} 4^{\prime} 8^{\prime \prime} \mathrm{N}$. lat. and $7^{\circ} 48^{\prime} 22^{\prime \prime}$ E. long. in the alluvial valley of the Po, just above the confluence of the Dora Riparia. By rail it is 54 miles from the Mount Cenis tunnel. The communal palace stands 788 feet above the sea. The Monte dei Cappuccini in the neighbourhood reaches 922 and La Superga 2405 feet. As viewed from the east the city stands out holdly against the Alps. Taken as a whole Turin may be described as a very modern city, with broad and regular streets, and large squares and public gardens. The cathedral of St John the Baptist is a cruciform Renaissance building dating from the close of the 15th century. The site was first occupied by a church erected, it is said, by the Lombard duke Agilulf (7th century). Behind the high altar of the cathedral (from which it is separated by a glass screen) is the chapel of the Sudario or Sidone, built (1557-1694) by Guarini as a royal burialplace. The "sudario" from which it takes its name is asserted to be the shroud in which Joseph of Arimathea wrapped the body of Jesus. La Beata Vergine della Consolata, another of Guarini's works, has a tower which originally belonged to the church of St Andrew, founded by the monk Bruning in 1014, and attracts attention by Vin-

cenzo Vela's beautiful kueeling statues of Queeu Maria Teresa and Queen Maria Adelaide, as well as by the image of the Madoma, which has the credit of having warded off the cholera in 1835. Other churches of some note are San Felippo Neri (1672-1772), the dome of which fell in jnst as it was approaching completion under the hands of Guarini, and La Gran Madre de Dio, erected to commemorate the return of the royal family in 1814. Of the secular buildings the more interesting are the Madama palace, first erected by William of Montferrat in the close of the 13th century, and the extensive royal palace begun in the 17 th century The university, founded in 1400 by Lodovico di Acaja, has faculties of jurisprudence, medicine and surgery, literature and philosophy, and the mathematical. vhysical,
and naiural sciences. The number of students enrolled was 2132 in 1886. About 1876 the old university buildings erected in 1713 by the Genoese architect Ricca began to prove too small for their purpose; and at the present time (1887) new buildings, fitted more especially for the medical and scientific departments, are being erected. The area of the botanical gardens has also been extended and the observatory enlarged. The medical school derives advantage from the number of important hospitals in the city. The royal lunatic asylum can accommodate 980 patients. Turin has a prison on the cell system (672 cells) and a female penitentiary for 300 , besides two houses of correction. The academy of sciences was founded in 1757. It occupies a building erected in 1687 by Guarni as a Jesuit college. The museum of antiquities and the picture gallery, of which it has the custody, are both of high in-terest-the former for the local antiquities of Piedmont and Sardinia (notably from Industria) and for the Egyptian treasures collected by Donati and Drovetti, and the latter for its Van Dycks. There is a museum of zoology and mineralogy in the royal palace (another of Guarini's buildings), and the Castello palace contains the royal armoury (a collection made by Charles Albert in 1833) and the royal library with its rich manuscript collection and its 20,000 drawings, among which are sketches by Raphael, Michelangelo, and Da Vinci. The civic museum has a great varicty of artistic and literary curiosities, among them a remarkable collection of autographs and the Lombard missal (1490). The Jewish synagogue, a striking and conspicuous building, erected in 1863 by Alessandro Antonelli, was purchased by the municipality in 1879 for a Renaissance museum. Other public institutions are the Alhertine academy of the fine arts, the geographical society, and the Alpine club.
The industries of Turin and its suburbs give empleyment to 17,936 persons (13,305 men, 4631 women). Spinning-mills, weav-ing-factories, "vesta" factories (De Medici), breweries, and ironworks are among the more extensive establishments. The com. mercisl relations of the city are very extensive. It is the seat of the central offices of the North Italian Railway, and the central station is one of the most imposing huildings of its class in the country. The mean annual temperature at Turin (1866-84) is 53° Fabr. (Jan. 36°, July 74°), with a maximum of 96° and a minimum of $4^{\circ} \%$. Mista are frequeat in the wioter mornings, and to a less degree in autumn. Snow seldom falls in any great quantity, and on an average only on 7 days per anmum. The rainfall, distributed over 100 days, reaches 32 inclies-December being 1.6 and April 4.3. Water of good quality is brougbt to the city from a distance of 15 miles. The population of Turin was only about 4200 in 1377 and 9000 in 1580 ; but by 1702 it was returacd вs 43,866 . In 1848 it had risen to 136,849 , and in 1861 to 204,715 . In spite of the changes caused by the remeval of the capital, first to Florence and then to Rome, the census of 1881 slowed 233,124 inhabitants (cominuze 252,832).
Turin, Augusta Taurinorum, took its name from the Taurini or Taurisei, an ancient Ligurian pcople. The town is first alluded to (but not distinctly by name) in the year 218 b.o., when it was captured by Hannilal after a three days' siege, being at that tione a place of great strength. A colony of Reman veterans was introdueed into the city, possibly after the battle of Philippi, or at any rate after the battle of Actium. It was assigned to the Stellatino tribe. Of Roman architecture scarcely any trace remains even in the oldest parts of Turin, but the arrangement of the streets of tho old town recalls the aligoments of the Roman military settlement. The Palazzo delle due Torri, often designated the Porta Palatina, is probally part of a building of the 8 th century. Turin centinued to be a place of importance and military strength under mumerous vicissitudes, till at length it was made the chief town of Piedmont by Amadeus, first duke of Savoy. Under Emmanuel Philibert it became the usual resideuee of the ducal family, and iu 1515 the bishopric was raised to metropolitan rank by Leo X. Between 1536 and 1562 Turin was occupied by the French, and in 1630 it lost 8000 of its citizens by the plague. The French were masters once more from 1640 to 1706 , and again from 1798 till 1814, when the Sardinian states were restored to the house of Savoy. Between 1859 and 1865 Turin was the capital of united Italy. Ameng the many met of mark born in Turin it is enough to mention Lagrange, Gioberti, Cesare Balbo, Cavour, Marochetti the sculptor, D'Azeglio, and Sommellier.

TURKESTAN

TVFE terms "Thirkestan" and "Central Asia" are often used indiscriminately to describe the whole of the immense territory t, the east of the Caspian, comprised between Siberia on the north and Khorasan (Persia), Afghanistan, and "Tibet on the south, or to designate eeparate, sometimes arbitrarily determined, parts of the same region. In the beginning of the 19 th century the whole of the territory just named, with its great variety of altitudes, climate, inhabitants-these last differing as much in their history as in their present characteristicswas comprised under the rague denomination of High Tartary, or High or Interior Asia. After the appearance of Humboldt's first draft of Asic Centrale in 1831, the term "Central Asia "came into favour. But Humboldt's limits of Central Asia were too mathernatical (from $39 \frac{1}{2}^{\circ}$ to $49 \frac{1}{2}^{\circ}$ N. lat.), and were further unsatisfactory because ínfluenced by his erroncous conception of the mountains of Central Asia, which he supposed to run either along parallels or along meridians. Richthofen made an attempt to limit the sense of the term, proposing to apply it only to that region-embracing the Tarim drainage area and the Gobi -which has no outlet either towards the ocean or to the Sea of Aral and Lake Balkash (Balkhash), and which constitutes the Hang-hai of the Chinese and the supposed bed of the Tertiary Asiatic Mediterranean. But this terminology, besides the drawback of including within Central Asia the steppes of the Gobi as far east as Transbaikalia and the Great Khingan, notwithstanding the broad differences by which they are distinguished from the drainage area of the Tarim, was open to another objection, which has been pointed out in M. Mushketoff's Turkestan. It excluded from Central Asia Turkestan proper, which nevertheless bas had the same recent geological history as the Tarim region, and therefore has so many features in common with it as regards soil, climate, flora, fauna, population, aad even civil history. On the other hand, if Central or Interior Asia were to include West Turkestan, and its limits to be determined by those of the drainage-areas which have no outlet to the ocean, the basins of the Volga and Ural, -that is, territories purely European in character, -would have to be comprised under the same denomination. The fact is that in Asia, as so often elsewhere, hydrographical considerations alone furnish no sound basis for geographical delimitations, and that these last must result from a complicated variety of considerations, chiefly orographical, inasmuch as orographical are indicative of other physical characters, such as geology, climate, flora, fauna, and so on. Such were the views of Ritter and Humboldt, and we are now brought back to their conceptions, but corrected into accordance with improved knowledge of the Asiatic continent. The name Central Asia can still be used with great advantage to designate that immense portion of the continent to the east of the Caspian and the Ust-Urt plateau which is limited on the north by the important climatic and geo-botanic boundary of the Irtish and Aral water-parting and the Great or Ektagh Altai, on the east by the eastera Gobi, and on the south by the northern border of the Khor plateau (Attyn-Tagh and Kuen-Lua), the Hindu-Kush, and the Kopet-Dagh. Extensive as it is, this territory has its own climatic and geobotanic features; it forms a distinct part of the coatinent, when the orography of Asia is broadly vicwed; and its inhabitants have a number of common characteristics resulting directly from the physical features of the territory. But this immense area must be subdivided; and its subdivisions become apparent as soon as the orographical features are grasped.

Two great plateans constitute the two backbones, as it were, of the orographical structure of Asia,-that of eastern Asia, an immense triangle stretching north-eastwards, having the Himalayas for its base and the peninsula of the Tchuktchis for its apex; and that of western Asia, which extends at right angles to the above from the lower Indus to the Black Sea. The Hindu-Kush connects these two massive swellings, both contineats of the oldest formation in Asia. Both are fringed on their northern edges by lofty chains of mountains. The Tian-Shan, the Altai, the Sayan, and the Vitim Mountains rise in a long succession on the borders of the former, while a serics of chains, which might be described under the general name of Kopet-Dagh, continued into the Transcaucasian chains, rise on the north-eastern edge of the western plateau.

Aa immense trapezoidal depression occupies the angle west on the west where the great plateaus meet, and this de- Turk pression is West Turkestan. Its south-eastern limits are ${ }^{\text {estap }}$ the Hindu-Kush and the Tian-Shan; on its south-western edge it has the Iranian plateau; and its north-west and north-east boundaries correspond with the edge of the UstUrt and the Irtish and Aral water-parting, which separates it from Siberia. The trapezium is 1100 miles long from south-west to north-east, and. 900 miles wide from southeast to north-west. It thus includes, not only the depression at the junction of the two plateaus, but also the girdle of alpine tracts which fringes them, and in whose deep and sheltered ralleys the Turkish and partly Iranian population of Turkestan find a fertile soil and plenty of water for their fields, while their herds graze on the rich alpine meadows in the very heart of the Tian-Shan. Not orographically only but also in respect of its recent geological past, its climate, flora, fauna, and inhabitants, this regiou forms a geographical domain by itself, quite distinct from the steppes of south-eastern Russia, the prairies of Siberia, and the two great plateaus by which it is inclosed; and, although it is easily subdivided into two parts-the dry lowlands of the Transcaspian depressiou and the plains and highlands of Turkestan proper-it presents one geographical whole when contrasted with the surrounding regions. Some doubt may arise as to the propriety of including in it the plateau of Pamir ; but its flora and fauna are so closely connected with those of the Tian-Shan that, although better treated as a separate sub-region, like the Transcaspian Turcoman steppes, it cannot be separated from the abore. For the orographer, the "Roof of the World " is merely a succession of the wide syrts or alpine plateaus that are characteristic of the Tian-Shan. Most of this territory has within recent years been annexed to the Russian empire. Bokhara, with its rassal khanates in the gorges of the Pamir slopes, and Khiva, although they are still described as independent, are in reality rapidly becoming dependencies of Russia, and the railway from the Caspian, which is about to connect Merv with Samarkand, will complete the annexation of Bokhara. West Turkestan, therefore, is often called Russian Turkestan, as distinguished from Chinese or East Turkestan.

This second great region of Central Asia also has well. defined limits. A glance at any receat map shows that there is in the great eastern plateau a depression bordered by the deep slopes of the Pamir (Humboldt's Bolor) on the W., the border-ridges of Tibet (Kuen-Lun and AltynTagh) on the S., the eastern Tian-Shan on the N., and the western Gobi on the E. ${ }^{1}$ Although we call it a depression,

[^271]because it is much lower than the surrounding plateaus, it is itself a plateau, ranging from 3000 to 4000 feet above sea-level. This depression-the Hang-hai of the Chinese, which, during the later Tertiary and earlier Quaternary period, was covered by a sea, of which a very small survival still exists in Lob-Nor-is now drained by the Tarim. Its deserts, in which human settlements are now very rare, though formerly the population was much denser, have been described under a variety of names (Littlo Bokhara, Alty-shar or Jity-shar, Kashgaria, and so on); but the name of East Turkestan has prevailed, and there is no reason for abandoning it, provided it is not confounded with Dzongaria (q.v.) in the north and the great Desert of Gobi in the east. Dzungaria is a deep trench leading from the lowlands to the central plateau, and has special physical
features and a history of its own. The Mongolian Cobi, on the other hand, owing to its position on the lower terrace of the plateau of castern Asia, must be regarded as a separate unity. In fact, it appears to be more closely connected with the plateau of the Selenga on the north and that of Ordos on the south than with East Turkestan; and it, too, has its own physical features, its own inhabitants, and its own history.

The expression Central Asia thus includes the following countries. (A) West Turkestan, compnsing the Tian-Shan highlands, the Balkash plains, and the Aral-Caspian lowlands, politically divided into Russian Turkestan (the general-governorship of Turkestan and the Aral-Caspian slope of Turgai and Akmolinsk), the Chinese oasis of Kulja (Kuldja), the Transcaspian region, Khiva, Bokhara and

Map of East and West Turkestan. ${ }^{1}$
its vassal khanates, and parts of Afghan Turkestan. (B) In height second only to that of Tibet; the immense comEast Turkestan, comprising the Tarim region as far east as Lob-Nor, (C) Dzungaria, limited on the north-east by the Tarbagatai, Altai-Nauru, Irdyn-ula, and Artsa-bogdo Mountains.

West Turkestan.

As comprised within the above limits, West Turkestan has an aret of nearly $1,080,000$ square miles, and a population of nearly $8,500,000 .^{2}$ It presents a very great variety of aspects, including the lonely plateau of Pamir,

[^272]plex of alpine tracts described under the general name of Tian-Shan (three times as long as the Alps of Europc), which lift their snow-clad peaks four and nearly five miles above the sea, and feed huge glaciers, while their deep valleys and gorges partake of almost every variety of climate and vegetation; rich prairies and still wider lowlands descending bclow the level of the occan; and deserts where the winds, burning hot or icy, but always dry, hare free scope to modify the surface, which is bare of vegctation.

Nevertheless West Turkestan is sharply divided into two Highlum parts,-the highlands in the south-east and the plains and region. 's deserts in the north-west. The former cover an area nearly 1000 miles long by 270 broad, of which the northern parts are described under the general name of Tian-Shan (properly, Than-Shañ). Their distinctive feature is that, like the highlands of Siberia they constitute a high border-
ridge, running W.S.W. to E.N.E. on the edge of the great plateau of eastern Asia. This plateau is fringed on its onter side by a complex of shorter ranges, which mostly run parallel to the border-ridges and send off a series of isolated chains, due to a later system of upheaval, through the plains and steppes in a north-western direction. Down to the middle of the 19th century these highlands were almost absolutely unknown, and the orography of Central Asia as shown on our maps was quite hypothetical. Numerous surveys by Russian and British explorers have, however, recently disclosed the real structure of those regions; and it has now become possible to discriminate the leading features of the orographical conformation of the country. The Hindu-Kush, with its snow-clad summits of 18,000 and 20,000 feet, limits the highlands of Turkestan to the south-east. It appears now to be settled that this ridge runs from north-east to south-west, as far at least as the latitude of Cabul, and possibly still farther south; and the last Russian surveys of the Pamir show that it extends north-east as far as Tash-Kurgan ($37^{\circ} 45^{\prime} \mathrm{N}$. lat., $75^{\circ} \mathrm{E}$. long.). At the foot of its north-western slope it has the plateau of Pamir-the "Roof of the World,"-with an area of about 37,000 square miles. A series of chains, gently sloping and dome-shaped, rising 4000 or 5000 feet above the level of the plateau, traverse it from south-west to north-east, with a remarkable parallelism, dividing it into a series of broad parallel flat-bottomed grooves or valleys, which do not sink below 10,000 , and sometimes 14,000 , feet above sea-level. Thus the features of the lower plateaus of north-eastern Asia reappear here on a greater scale, having the same characters and the same direction in the plaitings of the earth's crust.

Nearly 150 miles to the north-west of the Hindu-Kush lies the north-western border of the Pamir, fringed by the lofty Trans-Atai Mountains. Their crest, covered with onow, rises nearly 4 miles above the sea (Kaufmann Peak 23,000 feet); but the traveller appreaching them from the south would hardly guess their height, because their southern slope towards the wildernesses of the plateau, themselves 13,000 feet high, is very gentle. The great elevation of the border-chain is only realized when it is seen from the Atai valley on the north, where its steep and deeply furrowed sides tower up like a dark wall, from 11,000 to 14,000 feet high, above the high and broad valley of the Kizil-su. The geological structure of the Atai valley must not be inferred from its orographical features, otherwise we should describe it as longitudinal. It is watered by the Kizil-su, which flows towards the west-eouth-west and joins the Amu-Daria under the name of Vaksh (or Wakhsh). On the north it has the lofty AtaiTagh range, also partially snow-clad. On our best maps the Trans-Atai Mountains are figured as an isolated range, some 120 miles in length; and it cannot yet be affirmed with certainty which chains of the Tian-Shan, possessing the same border-ridge characters, ought to be considered as its continuations. Further research is needed to determine whether it is continued south-west by the Darvaz, or Lahor, Mountains, where the group of lofty Sel-tau peaks feed the extensive Fedtchenko glacier, or by the Hoja-Mahomet chain on the left bank of the Amu-Daria. ${ }^{1}$ Thus the real north-western limits of the Pamir are still unsettled. As for the northeastern continuations of the Trans-Atai, the present writer is inclined to trace-them, not in the Kokshat-tau, but in the Terskei Ala-tau and the high mountains of Sary-yassy, whete the Khan-Tengri lifts its snow-clad granitic cap 24,000 feet above the sea, and is surrounded by numerous vast glaciers (Semenoff's and Mushketoff's Muz-art). It would thus separate, broadly apeaking, the drainage area of the Tarim from those of See G. Grum-Grimailo, in Izvestia of Russ, Geog. Soc., vol. xxii., 1886.

Lake Balkash and the Sea of Aral. Thus the border-ridge of the Central Asian plateau would have a length of more than 1000 miles from the Amu to Kulja, and the valleys of the upper Naryn and Tekkes would therefore be homologous with that of the Ałai.
A girdle of alpine tracts, from 150 to 180 miles in width, which fringes the outer edge of the Pamir plateau, consists of shorter chains running parallel to the border ridge and ranging from 11,000 to 17,000 and 20,000 feet in altitude. They are separated by deep valleys, mostly with three separate foldings of Azoic rocks. Some of these ranges are covered with perennial snow and feed great glaciers, among which Schurovsky and Fedtchenko glaciers around the lofty Kok-su group are especially worthy of mention. These subsidiary chains all belong to the oldest system of upheavals, which have had a north-east direction, and which at four different places are modified by more modern ones having a north-western direction. In lat. 47° N . the orographical structure becomes more complicated, the alpine region being pierced by the broad Dzungarian trench, which leads from the lowlands of the Irtish to the heights of the Central Asian platean. A high ridge-the Tarbagatai-continued in the Tchinghiz (Jinghiz) and Karkaralinsk Mountains, branches off north-westwards, separating iurkestan from Siberia. Further east the TianShan is continued on our maps in an eastern direction; but our knowledge of it still remains very imperfect. ${ }^{2}$

A series of deep depressions,-Balkh, Ferghana, Issyk- Lacaso kul, and Kulja,-sinking to low levels amidst the Tian-Shan trine highlands follow one another in a north-east direction. That hasins of of Issyj-kul is occupied by the lake of the same name Tian(5000 feet above the sea), while the second and fourth, now desiccated, are lacustrine basins. A great number of smaller lacustrine basins, mostly filled with Tertiary conglomerates, occur higher up in the mountains. For the orographer and the geologist they are homologous with those of the Altai and east Siberia (Bukhtarma, Us, Irkut, Barguzin, and others). The rivers that issued from the high alps had to pierce many parallel ridges in order to reach the plains, and they frequently expanded into wide lakes before cleaving through the chains of mountains the narrow and deep transverse gorges by yhhich they descended to the lower terraces.

Like the highlands of Siberia, those of Turkestan are Lowland fringed by a girdle of plains, having an altitude of from plaina 1000 to 1500 feet, and these again are skirted by an immense lowland area reaching only 400,300 , and 150 feet, or even sinking below the level of the ocean. These plains and lowlands cover nearly 650,000 square miles. Some geographers divide them into two portions,-the higher plains of the Balkash (the Ala-kul and Balkash drainage areas) and the Aral-Caspian depression, which occupies nearly two-thirds of the whole and has been ably described by M. Mushketoff under the appropriate name of Turanian basin,-the Kara-tau Mountains being considered as the dividing line between the two. The Balkash plains, more than 1000 feet above the sea, and corered with clay, with a girdle of loess at their foot, are well watered by the tli and other feeders of Lake Balkash (see Semiryetchense) and on their rich prairies are the homes of numerous Kirghiz. In the south-west the clayey soil becomes saline. There is the Famine steppe (Bek-pak-data), while in the Ak-kum steppe, which surrounds Lake Kara-kul, large areas are covered with sands, partly shifting. A gulf of clayey plains penetrates up the Ili into the in-

[^273]terior of the mountains, and its thick layers of loess form the Kulja oasis. Another gulf, penetrating much more deeply into the highlands up the trench occupied by Lakes Ebi-Nor and Ayar, and joining the trench of the upper Irtish, leads by an imperceptible gradient up to the plateau of Central Asia. It is known as the "Dzungarian Gate," and a gate it has been since the dawn of history for whole nations of nomads who have migrated from the rapidly desiccating plateau down to the grassy prairies of Siberia and Russia. The plains and lowlands of the Turanian basin are subdivided by a line drawn from north-east to south-west along a slight range of hills running from the sources of the Ishim towards the south-east corner of the Caspian (Bujnurd and Elburz edge of Khorasan). This low range, which most probably separated the lowlands of the Aral-Caspian region (submerged during the Post-Pliocene period) from the higher plains which had emerged by the end of the Tertiary period, now divides the Transcaspian steppes from the somewhat different higher plains (see Transcasplan Region). In the Turanian basin the contrast between desert and oasis is much stronger than in the Balkash region. Fertile soil, or rather soil which can be rendered fertile by irrigation, is limited to a narrow terrace of loess along the foot of the mountains (see Syr$D_{A R I A}$), and is surrounded by barren deserts. Even where the loess spreads over terraces at some distance from the mountains, as in the south-east Transcaspian region, it can be cultivated only when irrigated. The dryness of the climate is excessive : rain falls only where the hills cause the clouds to condense, the soil elsewhere being moistened only occasionally by a few showers. Two rivers onlythe Syr and the Amu-succeed in crossing the desert and reaching the Sea of Aral. But their former tributaries no longer run their full course: the glacier-fed Zerafshan dries up amidst the gardens of Bokhara soon after emerging from the highlands; and the Tejer̈, the Murghab, and the Andkho lose thermelves amidst the fields of the Turcomans. The only tributaries which the Amu retains are those which have the whole of their course in the highlands. In the north such formerly important tributaries of the Syr-Daria as the Tchu, with its subtributary the Sary-su, now dry up some hundreds of miles distant from the main stream. The arid desert absorbs every drop of running, water which reaches its borders.
The whole area is now undergoing geological changes on a vast acale. Rivers have changed their courses, and lakes their outlines. Far away from their present shores the geologist finds indubitable traces of the recent presence of the lakes in the shells they have left amidst the sands. Traces of former rivers and channels, which were the main arteries of prosperous regions within the period of written history, have now disappeared. Of the highly developed civilizations which grew up and flourished in Bactriana, Bokhara, and Samarkand the last traces are now undergoing rapid obliteration with the desiccation of the rivers and lakes. The great "Blue Sea " of Ceutral Asia, the Sea of Aral, which at a recent epoch (Post-Glacial) extended eouth-west to Sary-kamysh, and the shells of which are found north and east of its present shores from 50 to 200 feet above its present level (162 feet above the ocean, and 245 above the Caspian), now occupies but a small portion of its former extent. It covers a shallow depression, some 23,000 square miles in area, which is drying up with astonishing rapidity, so that the process of desiccation can be shown on surveys separated only by intervals of ten gears; large parts of it, like Gulf Aibughir, bave dried up since the Russians took possession of its shores. Steamers regularly ply on its waters and ascend both its tributaries. The whole country is dotted with lakes, which are rapidly disappearing under the hot winds of the deserts; and the
clayey takyrs of the steppes give evidence of thousanas of lakes which have quite recently ceased to exist, leaving beds of clay kept wet by the condensed moisture of winter and the ferr rain-showers of early spring.
Like the highlands of eastern Asia, those of Turkestan are mostly built up of Azoic gneisses and metamorphic slates, resting upon granites, syenites, old orthoclase porphyries, and the like. These upheavals date from the remotest geological ages; and since the Primary epoch a triangular continent haring its apex turned towards the north-east, as Africa and America have theirs pointing soutliward, rose in the middle of what now constitutes Asis. It is only in the outer foldings of the highlands that Primary fossiliferous deposits sre found, - Devouian, Carboniferous, and Permo-Carbonic. Within that period the principsl valleys were excsvated, snd their lower parts have been filled up subsequently with Jurassic, Cretsceous, and Tertiary deposits. One of the most striking instances of this is the very thick Cretaceous and Tertiary deposits which cover the bottom of the valley of the V sksh (right tributary of the Amu) and are continucd for about 300 miles to the north-east, as far as the Ałai valley,-probably along the edge of the Pamir platesu. The deposits of the Secondary period have not msintained their horizontal position. While upheavals having a north-eastern strike continued to take place after the Carboniferous epoch, ${ }^{1}$ another series of upheavals, having a north-western strike, and occasioned by the expansion of dishases, dolerites, melaphyres, and andesites, occurred later, subsequently at least to the close of the Tertiary period, if not also before it, dislocating former chains and raising rocks to the highest levels by the addition of new uphesvals to the older ones. Throughout the Triassic and Jurassic periods neerly all Turkeetan remained a continent indented by gulfs and lagoons of the south European Triassic and Jurassio ses. Immense fresh-water lukes, in which were deposited layers of plants (now yielding coal), filled up the depressions of the country. Cretaceoue and Tertiary deposits occur extensively along the edge of the highlands. Upper and Middle Cretaceous, containing phosphates, gypsum, naphtha, sulphur, snd alum, attain thicknesses of 2000 and 5000 feet in Hissar. Representatives of all the Tertiary formations are met with in Turkestan ; but, while in the highlands the strata are cosst-deposits, they assume an open sea character in the lowlands, and their rich fossil fuuns furnishes evidence of the gradual shallowing of that sea, until at last, after the Sermasthian period, it became a closed Mediterranean. During the Post-Pliocene period this ses broke up into several parts, united by narrow straits. The connexion of Lake Balkssh with the Sea of Aral can hardly be doubted ; but this portion of the great sea was the first to be divided. While the Sea of Aral remeined in connexion with the Caspian, the desiccation of the Lake Balkash basin, and its break-up into smaller eeparsto basins, were elready going on. The Quaternary epoch is represented by vast morisinic deposits in the valleys of the Tisn-Shan. About Khan-Tengri glaciers descended to 8 level of 6800 feet above the sea, ${ }^{2}$ and discharged in to the wide open valleys or syrts. It is most prohable that, when allowance has been made for the obliteration of glacial markings, and the region hes been better explored, it will appear that the glaciation of Turkestan was on a scale at least as vast as that of the Himalayas. In the lowlands the Arsl-Caspian deposits, which it is difificult to separste sharply from the lster Tertiary, cover the whole of the area. They contain shells of molluscs now inhabiting the Sez of Aral, and in their petrogrsphical festures are exactly like those of the lower V olga. The limits of the Post-Pliocene Aral-Caspian see have not yet been fully traced. It exterded some 200 miles north sud more thsn 90 miles east of the present Aral ehores. A nariow strait connected it with Lake Balkssh. The UstUrt platean and the Mrugojar Mountains (see Turasi) prevented it from spreading north-westward, and a narrow channel connected it along the Uzboi (see p. 512 supra) with the Caspian, which sent 2 broad gulf to the east, spread up to Yolge, and was connected by the Manytch with the Black Sea bssin. Great interest, geological and historical, thus attaches to the recent changes undergone by this bssin ; but much still remains to be done before the numerovs questions arising in connexion with it can be settled. Since the theory of geological cstaclysms was abandoned, and that of slow modificstions of the crust of the earth accepted, new data have been obtained in the Aral-Caspian region to show that the rate of modification after the close of the Glacial period, although still very slow, was faster than had been supposed from the eridence of similar changes now going on in Europe and America. The effects produced by desiccating agencies are beyond all comparison more powerful than those which result from the earthquakes that are so frequent in Turkestan. All slong the base of the highlands, from Khojend ts Vycrnyi, earthquskes are frequent ${ }^{3}$ but, however destructive of life, their effects lie beyond the scope of our observstionsl methods

Musiketoff's Turkestan (pp. 35, 681) seems to justify this conclusion.
${ }^{2}$ See I. Ignatieff, in Izvestic of Russ. Geogr. Soc., pol. xxiii., 1887.
${ }^{3}$ For a list of them, see Izvestio of Russ. Geogr. Soc., vol. xxiii., 1887; also Orloff, in Mem. of Kazan Naturalists, 1873, iii.

The climate of West Turkestan is exceedingly dry and continental. Although the country is comprised within the latitudes of Sicily and Lyons, it has a south Norwegian Janusry and Persian summer. Temperstures of more thsn $100^{\circ} \mathrm{Fahr}$. in the shade are common, and the hest is rendered still more unbearahle by the reflexion from a soil destitute of vegotation. The winter is for the most part so cold that the average tempersture of January is below the freezing point, and even resches 0° Fshr. Snow falls for several months on the lower Syr-Daris, and, were it not blown away by the winds, sledge-communication would be possihle. This river is frozen for an average of 123 days every year in its lower parts, and nearly 100 days at Perovsk. At Tashkend there is snow during two months and temperstures of -10° Fahr. have been measured. In 1876, on 24 th October, almond-trees, vines, snd cotton crops were buried under a heavy snowfall. To the south of Khojend the winter becomes more clement. Absence of rain is tho distinctive feature of the climste. Although it raina and snows hearily on the mountains, only 11 inches of rain and snow fall throughout the year at Tsshkend, at the base of the highlands; and the steppes of the lower Amn have less than 3 inches. A few ohowers are all that fall from the almost invarishly cloudless sky above the Transcaspian ateppes. The following table will illus. frate the climate of Turkestan :

	Latl. tude.	Height in feet	Aversge teloperature.			Raio Io inches.
			Yesr.	January.	July.	
Akmollosk	${ }^{81} 1^{\circ} 12$	1020	$28^{\circ} \cdot 8$	0.0 -0.0	$60^{\circ}-9$ $72^{\circ} \cdot 5$	$9 \cdot 2$ $7 \cdot 7$
Gempalatiosk	${ }^{80} 0^{\circ} 24^{\prime}$	${ }_{6}^{690}$	$27^{\circ} \mathrm{O}$ $21^{\circ} \mathrm{B}$	- $0^{\circ} \cdot 7$ $8^{\circ} \cdot 4$	$7{ }^{7} 72^{\circ} \cdot{ }^{\circ} \mathrm{B}$	
Irghiz	${ }^{48^{\circ} 87^{\prime}} 4{ }^{\prime}$	360 100	$211^{\circ} \cdot 8$ $45^{\circ} .5$	8.04 10.0	$78^{\circ} \cdot 0$	$8 \cdot 1$
Kazaluask .	45° $44^{\circ} 85^{\prime}$ 88^{\prime}	100 -80	$81^{\circ} \cdot 6$	$25^{\circ}{ }^{\circ}$	$78^{\circ} .0$	7
Alexandrovsk	440 53°	2100	$48^{\circ} \cdot 7$	$14^{*} \cdot 4$	$78^{\circ} .5$	\cdots
Nukus	$43^{\circ} 27^{\prime}$	215	$63^{\circ} 0$	$19 \cdot 4$	$70^{\circ} 8$	$2 \cdot 9$
Petro-Alexandrovsk	$41^{\circ} 28^{\prime}$	825	${ }^{650 \cdot 0}$		$\cdots{ }^{\circ} \mathrm{O}$	$2 \cdot 4$
Tashkeod	$41^{\circ} 19^{\prime}$	1480	$68^{\circ} \cdot 3$	$23^{29}{ }^{\circ}$		11.3
Krasoovodsk	40. 00^{\prime}	-70 4120	$58^{\circ}{ }^{\circ} 8$ $54^{\circ} 2$	$21^{\circ} \cdot 3$	$81^{\circ} 7$..

The fauna of Turkestan belongs to the great 200 -geographical domain of northern Asia, and is only differentiated by the presence of species which have disappeared from the peripherio parts of the Cld World and now find a refugo in the remotest regions of the nninhabited platesu. From the great Palæoarctic region it is distinguished by the presence of Himslayan species. The distinetive animal of the Psmir plateau is the magnificent Ovis poli (conjectured to be the ancestor of our common sheep), mentioned by Yarco Polo and rediscovered by Syevertsoff, It hreeds by thousands on the Pamir, climbing the lighest ridges, whioh it prefers to the valleys. The region to which it is confined has the shape of an ellipse, vrith its longer sxis running aouth-west to north-east. The animsl is rsre on the upper Naryn, and never penetrates to the west of Sel-su. In tho alpine tracte of the Tian-Shan, on the borders of the Pamir, their horns snd skulls are frequently met with, but there the place of the species is now taken by Ovis karelini. The wild horse, which occurred in Polsud a few centuries ago, hss been discovered by Prejeralsky in the highlands of Dzungaria and described as Eques prjevalskiti by Polyakoff. The wild camel inhabits the lonoly plateaus south of the Ala-Shan ; but no description of it has been puhlished. The other mammals of Turkestsn are mostly those which sre met with elsewhere in north Asia. The large light-coloured Himalayan bear (Ursus isabcllinus) has its home on the Pamir, and the amsller, strong, white-clswed Leuconyx ap to the highest levels on the Tian-Shan. Antelopes, Lcpus Lehmanni, Lagomys rutilus, various species of Arvicols, snd the Himalayan long-tailed marme.t (Arctomys caudatus), the most characteristic inhabitant of the alpine mesdows, are the only memmals of the Pamir proper. In the slpine region sre found the badger (Meles laxius), the ermine (Fotorius ermineus) and air other Mfusulide, the wild dog (Canis alpinus), the common and the blackeared fox (C. melanotis), while the corsac fox (C. corsac) is met with only on the plains. Two species of lynx, the cheatah (Felis jubata), Felis manul, and Felis irbis, this lsst axtending westwards as far as the Persian Gulf and eastwarde as far as the river Amur, must be added to the above. The tiger is met with only on the lower Amu-Daria, except when it wanders to the alpine region in pursuit of the maral deer (Cerves maral). Tho jackal is characteristic of the steppes; it bsnishes the wolves and foxes Hares ere ropresented by aeversl apecies, Lepus lehmanni being the most charscteristic. Both the common and the long-tailed marmot (A. baibacinus and A. cauciatus) are found at the foot of the mountains, as also four species of Spcrmophilus, three of voles, two of the mouse, and three of the hamster. The Meriones (four apecies) and the jerbos (five species) are only mat with in the ateppe region. Of ruminsnts, besides the aheop (O. poli, O. Karelini, O. nigrimonlana, O. heinsii), we find one muflon (Musimon vignei), formerly known ouly in the Himslayas, the Chineso sntelope (Antilope subguturosa) and the saiga antelope in the ateppes, the Siherian ibex and another goat, the yal, the zebu or Indian ox, the common ox, the camel,
and the dromedary. The wild boar is common in the reed thickets along the rivers and lakes, where it atays during the winter, migrating to the highlands in summer. The hedgehog and porcupine are common in the plains.

It would be impossible to descrihe in a few words the svifsuna No fewer than 385 species are recorded, most of them being middleEuropean and Mediterranean. A large number were formerly known only in the Himalayas, or in Persia, while others have their origin in east Asia. The commonest are mostly European scquaintances. As for the very rich iusect fauna, of which full descriptions are now accessible, it is worthy of note that among the Lepidoptera of the Pamir there is an interesting mixture of Tisu-Shan with Himalayan apecies. M. Grum-Grzimsilo found on the Psmir the Colias nastes, a apecies characteristic of Labrsdor and Laplsnd; like the alpine plants which bear witness to a Glacisl period flors in the Himalayss, this hutterfly is a survirsl of the Glacial period fauns of the Pamir. ${ }^{1}$

As a whole the fiors of Tukestan belongs to thst of Central Aai:' Which was formerly continued hy geo-hotsnists as far west as thi steppes of Russia, but which must now he considered as a separate region subdivided into two,-the Centrsl Asian proper and tuat of the Gobi. It has its own habitus, notwithstanding the number of species it has in common with Siberis and south-east Russis on the ons hand and with the Himalayas on the other, and this habitus is due to the dryness of the climate and the consequent changes nadergone by the soil. Towards the end of the Glacial neriod the Tian-Shsa Mountaing had a flora very like that of northern Caucasus, combining the characters of the floras of the Europesn Alpe and the Altai, while the prairies had a flora very much like that of the south Russian stoppes. During the Stone Age the human inhabit. ants lired in forests of maple, white beech, and spple trees. But the gradusl desiccstion of the country resulted in the immigration from the Central Asian plateau of such species as could adapt themselves to the dry climate end soil, in the disappearance of European sud Altaic species from sll direr parts of the region, in the survival of steppe spocies, snd in the adaptation of many of the existing apecies to the needs of an srid and extreme climate and a saline soil. At present the flora of Turkestan hss a variety of chsracters, dependiug on the rarious physical aspects of the separate regions, the Pamir vegetation and that of the Aral-Caspian steppes constituting two types with numberless intermediate gradations.
There is no arboreal vegetation on the Pamir, except a few willows sud tamarisks slong the rivers. Mountain and valley alike are covered with soft carpets of grass, various species of Festuca predominating almost to the exclusion of all others. In the immediate vicinity of water the ryang (Carcs physoides) grows, and a few patches are covered with Allium. To these may be added a few Ranunculacex, some Ifyosolis, low Scabioss, the common Taraxacum, one species of Chamomilla, snd \& fer Leguninose. In the north and west the Stipa of the Russian steppes supersedes Festuca and affords splendid pasture for the herds of the KaraKirghiz. In the gorges and on the better-watered slopes of the mountains the herbaceous vegetation becomes decidedly rich. Besides the above-nsmed there sre many other Graminese, such as the beautiful Lasiagrostis splendins, and whole aess of Scabioss. Ercmurus, of a vsriety of colours and 6 to 7 feet in height, forms thickets slong with the tall Scorodosma fotida. The northern alopes of the Atai chain are richer in trees. Up to 12,000 feet fullgrown specimens occur of the artcha (Junipcrus pseudo-Sabina), charscteristic of the whole northern slopes of ihe Turkestan highlands, the poplsr, a very few hirches (B. Sogdiana), and a rich nnderwood of shrubs familiar in European gardens, auch as Rhododendron chrysanthum, Sorbus aucuparia (rowsn), Berberis heteropoda (berberry), Lonicera Tatarica (honeysuckle), and Crategus (hswthorn). Farther esst and north comes the Turkestan pine (Picca Schrenkianc), while at lower levels there grow numerous willows, black and white poplars, tamarisk, large Celtis, as well as shrubs of Eľ'agnus (wild olive), Hippophae rhamnoides (6allow thorn), Rubus fructicasus (black berry), Prunus spinosa (blackthora), snd P. Armeniaca (apricot). The characteristic poplar, Populus diversifolity, which does not aeem to have found yet the shape of leaves best suited to the climate, and therefore produces them in most striking Fariety, snd the dwsrf Acer Lobclii-very different, however, from the European maple-also occur.
The above spplies to most of the highlands of the Tian-Shan. The drier aouthern slopes are quite devoid of arboresl vegetation.

[^274]On the northern slopes, at the higher levels, only the Juniperus pseudo-Sabina growa on the mountains, and rich meadow grasses cover the syrts. Lower down, et about 7500 to 8000 feet the conifer zone begins, characterized by the Picca Schronkiana, which furnishes the inhabitants with timber and fuel. Of course the artcla and a few other deciduous trees also occur. The richest zone is that which comes next, extending downwards to 5000 and 4500 feet. There woods of birch, several species of poplar, the maple (Accr Semenoviri), and a rich underwood spread over the mountain slopes, Orchards of apple and apricot surround the villages. The meadows are covered with a rich vegetation, -numberless bright Pæonix, variegated Scabiosæ, large Convolvulacca, all kinds of Campanula, dark-coloured Eremurus, splendid Umbcllifcræ, yellow-flowered Galliunn, a mass of Rosaccæ, Althcæ, Glycyrrhizæ, ligh-stemmed Scorodosma fotida, and tall Gramincer. But, as soon as the soil loses its fertile humus, it produces only a few of Phlomis, Alhagi camclorum, Psamma, Salsolacea, Arlemisix, Peganunn, and some poppies and Chamomilla, but only in the spring. The invading steppe plants appear everywhere in patches in the Turkestan meadows. Very often-almost invariably on the drier sonthern slopes of the mountains-the steppe vegetation climbs up to the level of the alpine. Nowhere, perhaps, is the effect of various soils-locss, clay, salt clay, and sand-upon vegetation better observable than in the receutly*emerged and arid regions of markestan.
The "culture" or "apricot" zone is folloved by the prairie belt, in which black-earth plants (Stipa and the like) struggle for existence agaiust invading Central Asian forms. And then come the lowlands and descrts with their moving sandy barkhans, shors, and takyrs (seo Transcaspian Region). Two species of poplar (P. pruinosa and P. diversifolia), Elæagnus angustifolia, the ash, and a few willows grow along the rivers. Large areas are wholly destitute of vegetation, and after crossing 100 miles of such a desert the traveller will occasionally come upon a forest of saksaut (Anabasis Anmodendron). Contorted stems, sometimes of consider able thickness, very hard, and covered with a grey cracked bark, rise out of the sand, bearing green plumes of thin branches, with small greyish leaves and pink fruit. Sametimes the tree is a mere knot peeping above the sand with a crown of thin branches. But even these fantastic growths are rapilly being destroyed by the Kirghiz berdsmen, who use them for fuel. ${ }^{1}$ In spring, however, the steppe assumes quite another aspect, being covered, except where the sands are shifting, with a rich vegetation. Persian species penetrate into Bokhara and the region of the upper Amu.

As already stated (p.635), the climate of Turkestan varies considerably from north to south. In Akmolinsk and Semiryetchensk most of the kinds of corn which characterize Niddle Russia are grown. South of the Tchu and the Syr-Daria gardening is a considerable industry; and, although rye and wheat continue to be the chief crops, the culture of the apple, and especially of the apricot (uryuk), aciuires importance. Attempts are also made to cultivate the vine. The inhabitants of the neighbourhond of Tash. kend and Samarkand, as well as those of the much more northem but better sheltered Kulja oasis, ald the cultivation of the almond, nomegranate, and fig. Vines are grown and cotton planted in those districts. Finslly, abont Khojend and in Ferghana, where the climate is milder still, the vine and the pistachio tree cover the sills, while agriculture and horticulture have reached a high degrec of perfection. Successful attempte are now being made to grow the tea-plant in the Transcaspian region.

The arable lsod, being limited to the irrigated terraces of loess already spoken of, occupies less than a fiftieth of the whole area of West Turkestan, even when the Transcaspian deserts are left out of account. The remainder is nearly cqually divided between pasture land and desert (sandy steppe and barren mountain). Owing to a very equitalle distribution of irrigation water in accordance with Moslem law, agriculture and gardening have reached a high stage of derclopment in the oases. Two crops are usually taken every yesr. ${ }^{2}$ Wheat, barley, millet, pease, lentils, rice, sorglrum, lncerne, and cotton are the chief agricultural prollucta. Carrots, melons, vegetable marrows, and onions are extensively grown. Rye and oats are cultivated in Kazalinsk and Kopat. Corn is exported. Owing to the irrigation, total failure of crops and consequent famines are unknown, unless among the Kirghiz shepherds. The kitchen gardens of the Mohammedans are, as a rule, adnurably kept. Potatocs are grown only by the Russians. The cultivation of cotton is rapidly extending (32,000 acres in 1886), as also is sericulture, which is chiefly carricd on in Ferghana, whence silk cocoons are an important item of export. Cattle-breeding is extensivcly pursuet, and in Russian Turkestan alone recent estimates slow 400,000 camels, $1,600,000$ horses, $1,200,000$ cattle, and $11,000,000$ sheep. This last figure, however, is but a very rongh estimate, -the flocks on the Kirghiz steppe being so large that the proprietors themselves do mot know their

[^275]exact numbers. Murrains are of frequent occurrence; a recent on resulted in a terrible famine among the Kirghiz. Live cattle hides, wool, camel-hair, tallow, felt. and leather are exported to a considerable extent.

The mineral wealth of Turkestan is considerable. Traces of suriferons sands have been discovered at many places, but the per. centage of god is too poor to make the working remunerative. Silver, lead, and iron ores occur at several places; but the want of fuel is an obstacle to their exploitation. The vast coal-beds of Kulja and several inferior obes in Turkestan are not yet serionsly Norked, the total jearly output being only some 120,000 cwts. The naphtha wells of Ferghana and the layers of graphite about Sairam-Nor are also neglected. There are abundant deposits of gypsum, alum, kaolin, marble, and sinilar materials. Notwithstanding the salt springs of Ferghana and Syr-Daris, the salt lakes of the region, and the rock-salt strata of the Alexandrovsk Mountains, salt is imported.

Turkestan bas no manufacturing industry carried on by means of machinery, except a few distilleries and two establishments for dressing raw cotton. But there is a great variety of artisan mork, which, however, has been for some time declining and now stands at a rather low level. ${ }^{3}$ Trade is very actively carried on. Its importance may be julged by the fact that in 1876 27,900 camela nere uscd for the transport of wares to Tashkend. This town and Bokhara are the chicf conmercial centres, the principal articles of export to Russia, ric Orenburg and Semipalatinsk, being raw cotton and silk, cattle and their products, while mantufactured wares are imported in return. There is also an import and export trade to and from Ürumtehi and China, via Kulja and Ak-su.
Turkestan has been the theatre of so many migrations and con- Ethaoquests that its present population could not fail to be very mixed. graphy. Roth Aryans and Mongols (especially the Ural-Altaic branch) have their representatives there, the former settled for the most part, the latter chiefly nomad. The Ural-Altaians, or Turanians, are mmerically the predominant element, and consist of Turcomans, Kirghiz, Uzbegs, and Sarts. The Turcomans inhabit chiefly that part of Turkestan which is now known as the Transcaspian Region (q.v.). They number less than one million. The Kara. Kalpaks ("Black Bonnets") may number about 50,000 in Turke. stan, and some 300,000 in the Russian empire altogether. Very little is known of their history. They are supposed to be bit recent immigrants to Syr.Daria, having come from the former Bulgarian empire on the middle Volga. Their language and haluits are the same as those of the Kirghiz; but for the last century aod a half they have had some acguaintance with agriculture. Their pacifio temper exposed them to the raids of the Kirghiz, who compelled them first to settle in Dzungaria, then to change their dwellings several times, and ultimately (in 1742) to recognize the sovereignty of Russia. Even since that time they lave been driven by the persecutions of their old enemies to cross the Aral-Caspian steppes and seek refuge near Astrakhan. The real masters of the steppes and highlands of Turkestan are the Kirghiz, of whom there are two branches, -the Kazak (Cossack) Kirghiz and the Kara (Black) Kirghiz or Burut (see Kirohiz) The Uzbegs, who played a predominant political part in Turkestan before the Russian conquest, are of Turco-Tartar origin and sjeak a pura Jagatai dialect; but they are mixed to a great extent with Persians, Kirghiz, and Mongols. They are subdivided into clans and lead a semi-nomadic life, ,reserving most of the attractive features of their Turkish congeners-especially their honosty and independedce. When settled they aro mostly designated as Sartg-a name which has reference more to manner of life than to anthropological elassification, althongh a much stronger admixture of Iranian blond is evident in the Sarts, who also speak Persian at Khojend and Samazkañ. Tarantchi or Taranji ("]abourer" in Chinese) is the name given to those Sarts who were settled in the Kulja region by the Chinese Government after the rising of 1758 . They constitute about two-fifths of the population of Knljs. After defeating the Dzungañs in the ycar 1865, they took the political power in Kulja into their own liands, offering shelter to the Kirghiz who made inroads on the Rnssian dominions. This was made a pretext for the andexation of Kulja by Russia in 1871; but it has been since restored to China. The origin of the Dzungañs is somewhat problematical. They number nearly 20,000 , and inhabit the valley of the Ili in Kulja and partly are scttled in Russian 'furkestan. They are Mohammedans, but have adopted Chinese manners of life. The Mongolian brancl is represented in Turkestan by Kalmucks and Torgontes (Torgod) in the north-east and in Kulja, where they are mixed with Solons, Sibos, and Chincse. The Aryan Tajak (sce TAJAK), the aborigines of the fertile parts of Turkeatan, were subdued by the Turco-Nongolian invaders and partly compelled to emigrate to the mountains, where they are now known as Galtchas. They constitute the intellectual element of the country and are the principal owners of the irrigated land, -the Uzbegs being their labourers, -merchants, and mollahs or priests $\frac{\text { They are Sunnite Mussulmans. The other representatives of Aryan }}{\text { B See N. Mayeff"a Turkestan Ezh iblion of } 1886 \text {, Tashkend, } 1886 \text {. }}$
race in Turkestan are a few Persians, mostly liberatid ole res; Indians, who carry on trade and nsury in the citics; a few Gipsies; and the Russians. Among these last two distinct clements must be noticed, -the Cossacks, who are settled on the borders of the Kirghiz steppe and heve assumed many Kirghiz festures, ${ }^{1}$ and the peasant-settlers who sre beginning to colonize the valley of the Ili and to spread farther south. Exclusive of the military, the Russians nnmber about 75,000, nearly two-thirds being in Semiryetcliensk (Cossacks and peasants).

Turkestan has no lack of populous citien, which, notwithstanding reeent vicissitudes, continue to be important for their trade, while several athers are widely famons for the part they Lave played in history. . Khokand, ${ }^{2}$ Margmilan, Namangan, sad Andijan in Ferghans; Tashkend and Khojend in Syr-Daria; Samarkand in Zersfshan; Bokhara sud Kiniva in the independent khsnates have esch from 30,000 to 100,000 inhabitants.

Populous cities adorned with fine monuments of Arabian architecture, nomerous ruius of cities decayed, grand irrigation canals now lying dry, and written monuments of Arabian litersture testify to a time when civilization in Turkestan stood at a mach higher lovel than at present. This period was during the first centuries after its conversion to Islam. Now all is in decay. The beantiful mosques and madrasas are dilapidated; no astronomera watch the sky from the tops of their miasrets; and the scholars of the madrasas waste their time on the most deplorably puerile schnlasticism. The inspiration of early belief has disappesred; the ruling motive of the mollahs (priests) is the thirst for personal enrichment, and the people no longer follow the khojas (see p. 639 below). The agricultural labourer has preserved the nprightness, diligence, and sobriety which characterize the Turkish peasant in Asis as well as in Enrope; but the richer inhabitants of the cities are grossly sensual. Centuries of wars, followed, by massacres and cruel vengesnce, an unceasing civil strife between parties dispoting for supremacy in the name of religion, conspiracies, appesls to foreigners, snd endless intrigues have hastened the decay of Mahammedan civilization in the khanates of Turkestan and paved the way for Russian conquest.

It remains, however, an open question whether the Rinssians will be sble to bring new vigour to the conntry and awaken intellectual life. They have failed to do eo in eastern Rassia, at Kazan, and elsowhere, where both civilizstions-the European and the Asiatic -ramain as tharoughly estranged from one another as they were three centuries ago. This estrangement is not merely religious, but social end economical. The followers of Islam, whose common Isw and religion know only of a temporary possession of the land, which belongs wholly to the Prophet, cannot accept the principles of unlimited property in land which European civilization has borrowed from Roman law; to do so would put an end ta all public irrigstion warks, and to the syatem by which water is nsed accarding to each family's needs, and so wonld be fatal to sgriculture. When taking possession of Turkestan, the Russians began to grant deeds establishing property rights over land in eccordance with Roman law. Butastudy of the Mohsmmedan ayotem soon pat en end to so erraneons a policy, and Mussulman law is still respected. The Russisns have sbolished elavery in Turkestan; and their rule has put an end to the interminable intestine struggles, which had weakened and desolated the whole region. The barbsrnns tartures and executions which rendered Khiva notorious in the Fast ara no longer heard of; and the continual sppeals of the khojas for "holy" war against their rivals find no response. But the Russian rule has imposed many new taxes, in return for which Torkestan only gets troops of Russian merchants and officisls, who, instead of becoming the exponents of what is best in European civilization, toa often eccept the worst festures of the depraved Mnssulman civilization of the higher classes of the country. New tribunals and new justices of the peace are sbout to be introduced (1887) ; schools are being diligently spread; but the wants of the natives are set behind those of the children of the Russian officials and merchants and the supposed necessities of Rnssification. A consulting lospital for Mohsmmedsn momen has recently been opened by women graduates in medicine at Tashkend.

East Turkestan.

As. already stated, by this name we designate that rast depression in the great plateau of eastern Asia which lies between ihe Tian-Shan Mountains in the north-west; the steep slopes of the Pamir and of the Tibet plateau, bordered by the Kuen-Lun, in the south-west and south; the Attyn-Tagh in the south-east as far as Lake Lob-Nor; and in the north-east the still imperfectly known mountains

[^276]which run east-south-east from the Tian-Shan, having the Bagratch-kul on their northern slope. ${ }^{3}$ F'arther east the Kuruk-Tagh and the steep slope of the Gashuũ Gobi separate East Turkestan from the higher terrace of the plateau, so that about Lob-Nor the Tarim depression is narrowed to a width of about 100 miles ; and on the 98 th meridian, at Lake Tchin-shen-ho, the steep edge of the Gobi meets the spurs of the Nan-Shañ Mountains. ${ }^{4}$ This region has been and still is designated by a variety of names, such as the Tangut Plain, West Gobi (a most inappropriate name, as already pointed out by Ritter), Altyshar or Jity-shar (the land of six or seven cities), Little Bokharia, Kashgaria, and so on. In its physical features it forms a connecting link between the Chinese territories and the Aral-Caspian depression. It covers about 465,000 square miles, but has hardly more than $1,000,000$ inhabitants.

Although lying at a high altitude (Kashgar 4000 feet Puselcer and Yarkand 4120 feet), it has the character of a depres fatura sion in comparison, not only with the mountains, but also with the lofty plateaus which surround it,-Tibet,. Pamir, and the Tian-Shan syrts. It has a general slope towards the east, and its lowest portions (formerly occupied by a great lacustrine basin) are only 2600 feet above the sea. ${ }^{5}$ At its north-east edge, i.e., at the foot of the remotest offshoots of the Tian-Shan, M. Prjeralsky measured an altitude of only 2600 feet. Its average altitude ranges from 3100 to 3700 feet, increasing to 4200 at its outer rim. No mountains or hills diversify its surface, which is that of a high plain. All the mountains which enclose it rise to considerable heights, far above the snow line. The steep slopes of the Pamir culminate in Tagharma Peak (25,360 feet). In the north the snowclad Kokshat-tau and Kirghiznyn Ala-tau form a series of uninterrupted chains, which reach a height of 24,000 feet in the KhanTengri and have at their southern base the broad and higt alpine plateaus, or syrts, of which the Yułduz, dotted with lakes, has acquired historical fame as the meeting place of the armies of Timur before his Dzungarian march. On the southern borders of East Turkestan, in the KuenLun and Karakorum Mountains, is the Dapsang-one of the highest peaks of the globe ; and farther east the AttynTagh and the Nan-Shañ (with Humboldt and Ritter ranges), which are among the highest mountains of Asia, separate it from the lofty Chaidam or Tsaidam plateau. ${ }^{6}$ East Turkestan is thus secluded by high mountains and plateaus from the rest of the continent. Even the few Pasmes passes which lead to it climb to altitudes of. 14,000 feet. It is open only towards the east, where it is connected with the Gobi depression. Its position as the highway from China to West Turkestan and the Dzungarian empire bas made it known, though only very imperfectly until lately, through Chinese documents, the narratives of the journeys of Buddhist missionaries, and the travels of Marco Polo, Rubruquis, and a few Jesuits. From a remote antiquity it was crossed by caravans going from China to Lake Balkash, Ferghana, and the Oxus. The route, after crossing the Gobi, proceeded either to the Dzungarian Gate, or, via Kashgar, to the high passes of Terek-Davan and Muz-art, which led to Ferghana and Issyk-kul. Both passes have a wide renown in Central Asia, the latter especially, on account of its difficulties, one of which is a

[^277]nuge gracier, waycn has to be ascended with the help of the ice axe.
One river only, the Tarim-now lost in the marshes of Lob-Nor-and its tributaries, water this region. It is formed by the confluence of several rivers flowing from the semicircle of mountains which fence in East Turkestan on the south, west, and north. The Kashgar-Daria rises under the name of Kizil-su on the Atai. The YarkandDaria has its origin in a high valley between the KuenLun and Karakorum Mountains, at the base of Dapsang, from several streams, such as the auriferous Zerafshan, which is fed by the glaciers of the Karakorum pass; after piercing the Knen-Lun, it enters the plain, where its waters are soon diverted to the fields and gardens of the Yarkand oasis. The Kbotan-Daria rises farther east in the same valley, and also pierces the Kuen-Lun, its two branclesthe Kara-kash and Urung-kash-being renowned for their "black" and "white" jade. This river only reaches the Tarim during the summer. The Tian-Shan Mountains contain the sources of several feeders of the Tarim; but some of them no longer reach the main stream. The Kizil-Kunghei disappears after having watered Uteh-Turfan (Uj-Turfan) ; the Ak-su meets the Khotan-Daria at its junction with the Tarim; but the Baidu-gol and the Kutcha are lost in Lakes Baba-kul and Sary-kamyeh. From the Yułduz plateau comes the Haidu-gol, which flows past Kara-Shar and enters the Bagratch-kul Lake, whence it issues under the name of Kontcha-Daria, and, crossing the east of East Turkestan from north to south, joins the marshes of Lob-Nor ; thus the long-doubted connexion between these two lakes-the northern and the southern-really exists. The Tarim is navigable for steamers from the confluence of the Yarkand and Khotan rivers all the way to Lob.Nor. ${ }^{1}$ These rivers, however, do not bring life to the immense deserts, the aspect of which recalls partly the Aral-Caspian depression and partly the Mongolian Gobi. Their undulating surface is covered with a gravelly soil, ont of which all the finer particles have been winnowed by the wind, and it resounds under the hoofs of the passing hordes; grass covers it only in the beginning of spring. Here and there occur clayey deposits with an efllorescence of salt, which is hard in summer but impassable after rains. Then come immense areas of loose sand, which is raised in clouds by storms of wind, and the hills of which, moving on like waves, invade the cultivated fields that have been conquered by laborious effort from the desert. The features with which the traveller in the Sabara, or on the plateau of eastern Iran about Lake Zareh (Hamun) is familiar, are here reproduced on the same large scale: The Takla-makan desert north of Khotan covers 93,000 square miles-an area nearly equal to that of Great Britain. As one approaches Lob-Nor, and thus touches upon territory that has emerged at a still more recent epoch, the desert becomes still drearier and still less passable on acconnt of the shifting sands. Lob-Nor now consists of two basins: but the largest of them, although it has an area four times as large as that of the Lake of Geneva, can hardly be called a lake, since its greatest depth is less than 20 feet, while reeds rise 20 feet above the thin film of water and extend far beyond its shores. In fact the whole of the region, notwithstanding its considerable altitude above the ocean, has but recently emerged from under water. During the later portion of the Tertiary period it was covered with an immense Mediterranean sea, and even during the Post-Pliocene period was occupied by a lake. But, as we see on a smaller scale in Finland and Sweden, where the higher

[^278]lacustrine depressions are more advanced in ras process of desiccation than those situated at lower levels, so in Central Asia the more elevated Tarim region is more advanced in its desiccation than the Balkash basin, and this latter again is in a more advanced stage of the same process than the Aral-Caspian depression. The desiccation of East Turkestan must have gone on, however, within historical times at a much more rapid rate than geologists seem prepared to admit. East Turkestan has not always been the desert it now is. Many cities, in which Greek and Byzantine coins have been found, lie buried beneath the sands, and in one of these Buddhist statues have been discovered. Indeed it is very probable that the great migration of the first centuries of our era resulted from the necessitv of abandoning East Turkestan.
The clinate is sovere : a cold winter follows a burning summer. Clitasta A few allowers slightly moisten the surface in spring; but the summer and autumn are rainless. The sir.is continuslly chsrged with dust, and often with sand.
The vegetation of the interior of East Turkestan is very poor, Florm being the seme as that of the eteppes of West Turkestan. On the eaudy hilla are some tamarisks and Elxagnus, rapidly being used up as fuel ; along the rivers are copses of poplara, which have diff. culty in maintaining themselves, because no humus gathers in their shade, the dry leaves being hlown away hy the atorma and ecattered as dust over the desert ; and, finally, along the old beds of rivers and lakes grow dense and rank beds of reede, where the wild boar has his habitat. Immense areas are covered with Salsolacees, and the gravelly ground is clothed in spring with a rich carpet of grass The oases possess all the plants which are cultivated in West Turkestan, - the mulberry, walnut, pear, apple, a pricot, olive, and vine. Cotton, rice, maize, millet, and whest are grown; and Middendorffa ${ }^{2}$ remark, that on the edge of the desert we find the hest cultivated fielde and the richest gardens, is atill more applicable to the oasea of East than to those of West Turkeetan. But outside the oases desolation reigns. Wind frcely modifies the surface, carrying away the fincst particles of the gravelly aoil, breaking down the barkhans as soon as man has destroyed the vegetation which grew on them, snd lifting the sand into the air snd whirling it along in columns of the most fantastic shapes
As a rule, the mammals are not numerous, and the faunz closely resemblcs that of the Tian-Shan. It seems to be owing to the loneliness of its deserts that East Turkestan has preserved the wild ancestors of our domestie animals. Besides the wild ass (Equus hcmionus), Prjoralsky discovered in the Dzungarian ateppes the wild horse-the ralal ancestor of our domestic horse-and on the plateau of Tsaidam the wild camel and the wild yak.a
Raw cotton and ailk are exported to a considerable smount; bot Indos. of manufceturcd cottons only s rough mata is sent to Semiryecthenak tries and for the Kirghiz Some silk wares, carpets, and ailk "grain" sre minerah exported from Khotan, leather-ware from Yarkand, polished and copper ware from Ak -sit, and amall iron ware from Kutcha. Stockbrceding is of paramount importance, and cattle, asses, camele, and sheep are reared in considerable numbers. Mineral resources are not wanting, hut the mining industry is in a primitive condition. Gold is obtained from alluvial deposits at Kiria, coal at Kashgar, jade in Khotan, and sulphur and aaltpetre at Utch-Turfan.
It is only along the bass of the mountains, where there is a fringe of loess, and where streama bring the nceessary moisture, that luman aettlements have aprung up, or rather maintained themaslves until now. The eeries of oases akirts the base of the TianShan and the Kuen-Lun. Kashgar stands at the apex of the angle made by those two ranges, while Yanghi-hissar, Yarkand, Khotan, and Kiria lie along the Kuen-Lun, and Utch-Turfan, $\Delta \mathbf{k}$-su, Bai, Kutcha, Kurła, Karaslar, and Turfan along the Tian-Shan. Many miles of desert separate these oases from each othar ; and their population could be, and has been, much greater than it is, for there is no lack of water in the streams which rise beneath the snow covering of the mountains. The various oasee, which are named after their chicf towns, have slwaye been nearly independent of each other. Still, in the course of their much disturbed history, Khotan, Yarkand, Kashgar, and $\Delta \mathrm{k}$-su, one sfter snother acquired a kind of supremacy over the rest. At present Yarkand and Kashgar are the most important. The city of Yarkand has nearly 80,000 inhabitante ; it is surrounded by walls, and has a separate fort, Yanghi-lissar; ruins of old settlements are scattered around. Its Chinese merchants carry on an setive trade, and the Turkish population are bresders of cattlo on gn extensive scale. Wheat, barley, rice, beans, zorghum, mulberries, and a variety of fruit trees are

[^279]grown in the gardens. FASEOAs (q.v.), surrounded by a series of populous villages, is the chief commercial centre, owing to ita position on the highway to Lake Issyk-kul It is surrounded by forts, one standing at the conflnence of the Kasingar and Yarkand rivers. Khoran ($g . j$.) or Iltchi (also Iu-thian), o very populous city under the Ban dynasty of China ($206 \mathrm{~B}, 0.1 \mathrm{~A} . \mathrm{D}$.), hes much declined of late. It is renowned for its gold mines, nad especially for its jade and its mask. Copper kettles, carpeta, soma silk, and felt waro nro manufectured. Sanju (7000 houses), Kilisn, Pialms, Guma, Kargatyk, and Posgan, on the slopes of the Kuen-Lun between Yarkand and Khotan, are the richest parts of the region. Naya, Kiris, Tchira, all on small rivers flowing from the Kuen-Lon, continue the line of oases towards the east, terminsting in Tchertchen, which now consists of but \& few score of houses. The oases st the base of the Tian-Shan are Utch-Turfan (Uat-Turfan), Ak-su (formerly the capital of Sairam), Bai, Kutchs with Shah-yer, Bugur, Kurta, Karashar, and Turfan. Their inhabitants grow corn to a considerable amount, and keep numerous berds of cattle and flocks of aheep. The ehief exports are wool, fowle, and the horns of the maral deer. On the lower Tarim, where s few sottlements, supported chiefly by fishing, continue to etruggle against the encroaching desert, the ruips of formerly populons towns testify that the region was not always the dreary waste it now is.

The popalation is mixed, Aryans and Turanians being thoroughly intermingled. On the elopes of the Pamir, abor, Sary-kol, there is a purely Aryan population of Persian Galtch. Kirghiz and Kars-Kirghiz inhabit the slopes of the Tian-Shan. Kklmucks occur in the north-east ; and in the central parts the population cousista of Turkish Sarts and Uzbegs and of Persian Tajak,-the Mongolian element inereasing towards the north-east. The language ia Turkish, like that spoken in West Turkestan, with several varieties of patois and a considerable sddition of Chinese words. As a rule, the inhabitants of East Turkeetan have an air of poverty. There are no rich mosques in their towns, auch as thoee of Samarkend and Bokhara; the houses are of nubaked brick and poorly furnished. The dross is that customary in West Turkestan. But the habits of the people differ to some extent and the women enjoy greater liberty than in other Mohammedan countries: they go in the atreets unveiled; free marriages, contracted for short terms, sre not unfrequent. As a rule, the position of women is more independent -a fealure noticed even by the earliest travellers in the country.

The aggregate population of East Turkestan, estimated between 575,000 and $1,500,000$ in 1825, is now (1887) hardly more than 1,000,000. Kuropatkin estimatcs it at 1,200,000, Forsyth at 600,000 . The population of the chief towns may be stated approzimately as follows-Yarkand, 60,000; Kashgar, 50,000; Khotan, 40,000; Sanju, 35,000; Ak-8u, 20,000; Kiris, 15,000; Yanghi-hissar. 10,000; Kargatyk, 10,000 ; Kurta, 6000.

It appears very probable that at the dawn of history Esst Turkeatan was inhahited by an Arysn population, the ancestors of the present Slavonic and Teutonie races, snd that a civilization not inferior to that of Bactriana had already developed at that timo in the region of the Tarim Our knowledge, however, of the history of the region is very fingmentary until about the beginning of the Christian era. When the Huns (Hiong-nu) occupied vest and east Mongalia in 177 B. o., they drove before them the Yue-chi (Yutee, Yetes, or Chetes), who divided into two bordes, one of which invaded the valley of the Indus, while the other met the Sacæ in Esat Turkestan and drove them orer the Tian-Shan into the valley of the Ili. Thus by the beginning of our era the Tarim region had a mised population of Aryans and Ural-Altaians, some being settled agriculturista and others nomsds. There were also several independent cities, of which Khotan was the most important. One portion of the Arysns emigrated and settled in what is now Wakhan (on the Pamir platesu), the present language of which seems very old, dating anterior to the separation of the Vedic and Zend languages. In the lat century the Chinese extended their rule westwards over East Turkestan ss far as Kashgar. But their dominion seems to have been merely nominal, for it was coon shaken off. By the end of the 5th century the western parts foll under the sway of the "White Huns" or Ephthalites, while the eastern parts were under Tangut (Thygun) dominion. The Chinese, however, still retained the region about Lob.Nor. Buddhism penetrated into the country at an early date; but in East Turkestan there were also followers of Zoroastrianism, of Nestorian Christianity, and even of Manichrism. An active trade was carried on by means

1 Such ia the conclusion reached by Lassen (Indische Atterthumskunde), aod sapported by M. Grigorieff (Rither"a Asien in Russ. transl. : Addeoda to "East Torkestao, In Russian). In connexinn with the objcetion based upon the onb-boreal character of the regions which were tha cradle of the Aryaus, as proved by tha ao-called palseontology of the Aryan languages, it - 8 g bs observed that by the end of tha Glacial, sod duriog the earijer Lacustrioe (PostGlacial) period, tha vegetation of Turkestan and of Ceotral Asia was qoite different from what it is now. It was Siberiso or oorth Europeas. The researches by M. Krasnoff (sea above, p. 635) as to the characters of the former Alore of tha Tian. Shan, snd the changes it has undergoue in consequence of the ln all apeculations founded apon the testimony of langnage as to the original
home of the aryane.
of nomerous caravans. Tho civilization and political organization of the country were dominated by the Chinese, but were also infuenced to some extent loy Greco-Baetrian civilization. Buddhism spread rapidly in the south-west, and the study of Peli became widely diffused Our information as to the state of the country from the 2d century to the first half of the 7 th is slight, and is chiefly derived from the Journeys of the Buddhist pilgrim Fs-hien in 399 , S.ng-yrn in 518, and Hwen-t'sang in 629 . By this time Buddhism had reached its culminating point: in Khotan there were 100 monasteries and 5000 monks, and the Indian saered litersture was widely diffused; but already there were tokens of its decay. Even then the eastern parts of the Tarim basin seem to have been gr wing less and less populous. To the east of Khotan cities which wero prosperous when visited by Song:yun had a centary latcr fallen into ruins, whils their inhabitants had migrsted westwards. Legend has it that all the ichabitants of Go-lao-lo-tsia were buried in a sandstorm, and this seems to bebut a poetical way of representing a phenomenon which was steadily going on in East Turkestan.

Little is known about these regions during the 7th, 8th, and 9th centuries. In the 7 th century the Tibetan king, Srong-btsan, with the help of the western Turks, subjugated the western part of the Tarim basin. During the following century the Dobammedans under Kotaiba, after several excursious into West Turkestan, took Samarksnd, Ferghans, Tashkend, and Khokand (712-713), and invaded East Turkestan, penetrating as far as Turfan and Shina, The Chinese supremacy was not shaken by these inrasions. But, on the outbreak of internal disturbances in China, the Tibetana took possession of the western proviuees of Clina, and intercepted the communications of the Chinese with Kashgaria, so that they had to send their troops through the lands of the IIui-khe (Hoei-ke, or Hoei-hu). In 790 the Tibetans were masters of East Turkestan; but their rule was never strong, and towards the 9th century we find the country under the Hoi-he. Who these people were is somewhat uncertain According-to Chinese documents, they cams from the Selcaga; but most Orientalists identify them with the Uigurs. In the opiniou of M. Grigorictf, whom we follow in this akoteh, ${ }^{2}$ the Turks who succeeded the Chinese in the western parts of East Turkestan were the Kalluk Turks, who exteuded farther south-west up to Kashmir, while the north-esstern parts of the Tarim region were subdued by the Uigurs. Soon Mongolian hordes, the Kara-Kitais, entered East Turkestan (11th century), and then penetrated into West Turkestan, Khive falling under their dominion. During the following contury Jenghiz Khan overran China, Turke. stan, India, Persia, Hussia, and Hungary; Kashgaria fell under his rule in 1220 , though not without strenuous resistance followed by massacres. The Jongolian rule was, bowever, not vory heary, the Mongols merely exacting tribute. In fact, Kashgaria flourished under them, and the fanatieism of Islam was considerably sbated. Women again ecquired greater independence, and the religions toleration then established permifted Christisnity and Buddhism to spread freely. This state of affairs lasted until the 14 th century, when Tughlak Timur, who extended his dominions to the KuenLun, aceepted Islam. He transferred his capital from Ak-su to Kashgar, and had a summer residence on the bauks of Issyk-kul. His son reigned at Samerkand, but was overtlirown by Timur-lang (see TimणR), and the reign of the great conqueror was a ferci source of suffering to the region. To put an end to the attacks of the wild Tian-Shan tribes, he undertook in 1389 his renowned march to Dzungaria, which was devastated; East Turkestan slse ouffered severely

The re-introduction of Islam was of no benefit to the Tarim region. In the 14 th and 15 th centuries Bokhara and Samarkand lecame centres of Moslem scholarahip, and sent great numbers of their learned doctorg to Kashgaria. Rubruquis, who visited East Turkestsn in 1254, Marco Polo between 1271 and 1275, and Hoils in 1680 , all bore witness to great religious tolerance; but this entirely disappeared with the invasion of the Bokharian mollahs. They created in East Turkestan the power of the khojas, who sfterwards fomented the many intestine wars waged between the rival factions of the White and the Black Mountaineers. In the 17th century a powerful Kalmuck confederation arose in Dzungeria, sad eztended its sway over the Ili snd Issyk-kul basins, having its capital on the Ili. To this power or to the Kirghiz the "Whites" and "Blacks" alternately appealed in their struggles, in which Yarkand supported the latter and Kashgar the former. These otruggles pared the way for a Chinese invasion, which was supported by the White Lhojas of Kashgar. The Chinese entered Dzungaria in 1758 , and there perpetrated a terrible massacre, the victims being estimated ε t one million. The Kalmucks fled and Danngaria became a Chinese province, with a military colonization of Sibos, Solons, Dahurs, Chinese criminals, and Moslem Dzungars. The Chinese next re-conquered East Turkestan, marking their progress by massacres and transporting 12,500 partisans of independence to the Ili valley. Hereupon the dissentient khojas fled to Khokand snd there gathered armics of malcontents and fanatic followers of ${ }^{2}$ See Rittar's Asicn," East Turkestan" (Russ. trans.), ii. 232; also Kuropatkin's Ľashgaria.

$T \mathrm{U}$ R-T U R

Islam. Several times they succeeded in overthrowing the Chinese rule-in 1825, in 1830, and in 1847-but their auccesses were never permanent. After the "rebellion of the aeven khojas" in 1847 Dearly 20,000 families from Kashgar, Yarkand, and Ak-日u fled to West Turkestan through the Terek-Davan pass, many of them perishing on the way. In 1857 anotber insurrection broke out ; but a few montha later the Chinese again took Kashgar (for the details bee Kashaar). In the course of the Dzungarian outbreak of 1864 the Chinese were again expelled; and Yakub Beg became master of Koshgar in 1872. But five years later he had ggain to sustain wor with China, in which he was defeated, and East Turkastan once more became a Chinese province.

Bibliography. - The literature on Turkestan hss of Jate years become very voluminous, espeeially to the form of papers scsttered through the periodiesls voluminous, especialiy in the format papers scsttered through the periocieas
published by the Europeso Geographical Socisties and othar acleatific bodies. publighed by the Europeso Geographical Societies and othar acientific badies. Vola. vi. and vii. of Eliséa Reclus's Geographie Universelle contain Inaps ahowiag Vola, vi, and vii, of Elisés Reclus's Geographie Cnivarselle contain inaps ahowiag the routes of the chief explorers, Prof, Mushketofr s Turkestan (in Rusaian,
vol. I. 18s6) containg an excellent critical anslysis of all expluratious of Turkevol. i. 1886) contains 30 excellent critical a aslysis of all expluratious of Turke. stan and works thereupon, and the information they contaln with regard to the physical geography and geology of Wevt Turkestan. Prof. Origorieffa
researches into the geography and history of East Turkestan down to 1873. $A m u$ and Uzbot (Saratolf, 1879), by the chief of the Amu-Daria expeditiou, and Bogdanoffa Review of Expeditions and Explorations in the Aral-Caspizn Region from 1720 to 1374 (St Petershurg, 3875) ara most uscful works. Prof. Lenz'a paper "Ueber ded fruheren Lanf des Amu-Daria, in Mem. Acad. Sco. So Petersburg, discusses valuzble information borrowed from ancieut sources Mezhofrs Turkestanskiy Sbornik ls a catalogue of the Central-Asian lihrary at Tashkend, and his annual "Index" contains full classified lists of Russian reocraphical literatura. Of works of a general character, with descriptions of both regions (apart froin travels), the following, arranged io chronological ordor, are worthy of niention:-Semenoffe "Tian-shan," being rol, i, of Riter" Asien (Rues, trans, 1856): Qrigorleffa "East Turkestan," forining two vola of Ritter's Asien (Russ, tranal, 1869 and 1873); Syevertsoft a "Vertical and Hori2ontal Distribution of Mammalia in Turkestan "in Izvesfic Lub. Est. of Moscow 1873. Weniukotts Die Ruseisch-Asiatischen Grenzlando (trana frot Russian by Kat Krahner, Leipsic, 187 . Kuropstkio's Kasharia 1879 (urtielly translated into French) ; Kostenko's Turkestanskiy Krai, \& vols. 1880 , very copious translationa Freoch); Kostenko'a rurkestanskiy Krai, volse, 1880 , very copious translationa rotoly combing less nseful information. Schlacintweit' Reisen too jotiund Hochasier, vol. dii., East Turkestan: Prjevslaky's threa journeya to und Hochasien, vol. H., East Turkestan, Prjevsisky's thrse journeye to Fedtchenko'a Album of Views of Russ, Turk 1885; Nalivkin's History, Of the Fhanate of Kokand (in Russ.) Kazan, 1885; Vambery's Das Türkenvolk is85. Khanate of Ko and (nistuss.), Kazan, 1885; (smbery's Das Turkenvolk, 1885 : toff a Turkestan, vol. 1. (in Russian), 18s6. (I. A. K.)

T U R K E Y

Part I.-History.

SOMEWHERE about the second decade of the 13th century the little Turkish tribe which in due course was to found the Ottoman enipire fled before the Mongols from its original home in Central Asia, and, passing through Persia, entered Armenia, under the leadership of Suleymán Er-Togl-Shahh, its hereditary chief. His son, Er-Toghrul, who sul. succeeded him as head of the tribe, when wandering about the country with his warriors came one day upon two armies engaged in a furious battle. Er-Toghrul at once rode to the assistance of the weaker party, who were on the point of giving way, but who through the timely aid thus rendered not only regained what they had lost but totally defeated their enemies. The army thus saved from destruction proved to be that of 'Ala-ud-Din, the Seljuk sultan of Asia Minor, and their adversaries to be a horde of marauding Mongols. By way of recompense for this service 'Alá-ud-Dín granted to Er-Toghrul a tract of land on the Byzantine frontier, including the towns of Sugut Dosmán. and Eski Shehr. 'Osmán, the son of Er-Toghrul and the prince from whom the race derives its name of 'Osmanli (see Torks, p. 661 below), corrupted by Europeans into Ottoman, was horn in Sugut in 1258 (A.H. 656). While still young 'Osmán won from the Greeks Karaja Hisisár (Karahissar) and some other towns, on which account he received from his suzerain, the Seljúk sultan of Konya (Konieh), the title of heg or prince, along with the drum and the horsetail standard, the symbols of princely rank.

Early Tarkish princi. palities.

In 1300 (699) the Seljuk empire (see Seljoks) fell to pieces under the onslaught of the Mongols, who were, however, powerless to replace it by any government of their own. Thereupon ten separate Turkish dynasties arose from its ruins : that of Karasi sprang up in ancient Mysia, the houses of Saru Khan and Aydin in Lydia, of Mentesha in Caria, of Tekka in Lycia and Pamphylia, of Hamid in Pisidia and Isauria, of Karaman in Lycaonia, of Kermiyan in Phrygia, of Kizil Ahmedli in Paphlagonia, and of 'Osman in Phrygia Epictetus. These principalities were all eventually merged in that of the "Osmánlis, once the least among them, and the inhabitants assumed the name of Ottoman. Hence by far the greater portion of the people palled Ottomans owe their name to a series of political events. On the collapse of the Seljuk power the Greeks retained hardly any possessions in Asia except Bithynia and Trebizond. Armenia was abandoned for a time to roving Tatar or Turkman trihes, till some sixty or seventy years later one or two petty local dynasties sprang up and founded short-lived states.

The year 1301 (700), in which 'Osmán, who shortly
before had succeeded his father, first coined money and Pourdcaused the khutba, or public prayer for the reigninging of monarch, to be read in his name-the two prerogatives of Ottoman an independent sovereign in the East-may be regarded as the birth-year of the Ottoman empire; and it was about this time that his followers and subjects began to call themselves 'Osmánlis, or, as we might render it, 'Osmanites. Having thoroughly established his authority in his capital of Yeni Shehr, 'Osman began to wrest from the Greeks many of the neighbouring towns and strongholds, among others Ayina Göl and Koyun Hisári, routing before the last named a large Byzantine army. He then turned his attention to the administration of his state, and such was the feeling of security he succeeded in establishing that large numbers of people from the surrounding districts flocked into his dominions and became his subjects. After six years of peace several of the Byzantine castellans of the neighhourhood, instigated by the governor of Brusa (Broussa), made a simultaneous attack upon the Ottomans, but 'Osmán totally defeated them and sent in pursuit Kara 'Ali Alp, who took possession of all their domains. Gházán, the khan of the Mongols, who had entered into an alliance with the emperor of Constantinople, sent to all the Turkish princes an arrogantly worded message forbidding them to do any hurt to the Byzantine territories. .To show how light he held this menace, 'Osmán assembled an army forthwith, marched to Nicæa and thence to the Bosphorus, laying waste the country as he went and taking possession of a number of towns and villages. Michael, called by the Turkish historians Kösa Mikhál or Michael Scantbeard, the governor of one of these, embraced Islam and became one of the most trusted officers of 'Osmán and of his son and successor Orkhan. The descendants of this Michael were the hereditary commanders of the akinjis, a corps of light cavalry who played a great part in the early Ottoman wars. The first service on which Michael was employed was to destroy, along with Orkhan, a Mongol horde that had taken and pillaged the Ottoman town of Karaja Hisár. Meanwhile "Abd-ur-Rahmán and Akcha Koja, two of 'Osmán’s generals, were adding to the Ottoman dominions in the north, capturing several towns and laying siege to the city of Nicæa. The Ottoman chiefs next resolved to acquire Brusa, the natural capital of these parts. So they built round it a series of towers, in which they placed garrisons, with the view of intercepting communications and eventually starving the city into submission. At length, in 1326 (726), after a desultory siege of eight years, the keys were, through the intervention of Mikhál, handed over to Orkhan, who was in command of the Ottomans, and the townspeople were allowed to ransom
themselves for 30,000 sequins. Very soon after this 'Osmán died, aged seventy, at Sugut, whence his remains were carried for burial to Brusa. 'Osmán was distinguished for piety and generosity as well as for equity and courage. He cared nothing for amassing wealth, and on his death his personal efiects were found to consist of two or three suits of clothes, a ferw weapons, some horses, and a flock of sheep. And so high was his reputation for justice that, we are told, many of the Asiatic subjects of the Cæsars fled to him for that protection which their own rulers would not or could not give them.
Orkhan, who succeeded his father 'Osmán, continued the war against the Greeks, taking from them Nicomedia, Nicæa, and many of the towns which they still retained in Asia. Hitherto the Ottomans had not interfered with the other Turkish states; but now Orkhan, granting a short respite to the Byzantines, took advantage of a dispute regarding the succession to the throne of Karasi, entered that principality, and annexed it to his own dominions. To his son Suleymán the Ottomans owe their first establishment in Europe: one night that prince, accompanied by a few companions, crossed the Hellespont on a raft and surprised the town of Galipoli (Gallipoli). The next day he brought over a number of Turkish troops, with whose assistance he possessed himself of many of the neighbouring towns and villages; but his career was cut short by a fatal fall from his horse when out hunting. Orkhan did not long survive his son, grief at whose untimely end is said to have hastened his own death, in 1359 (761). This monarch is celebrated for the number of mosques, colleges, and other public institutions that he founded. During his reign the Ottoman army was thoroughly organized, and a body of regular paid soldiers was raised, which formed the nucleus of the military power of the state, though the old irregular militia was still called out whenever a campaign was to be undertaken. The famous corps of the janissaries (Turkish yeni cheri, i.e., "new troop") was instituted at this time. It consisted of the children of Christian subjects, who were educated as Mussulmans and brought up to a military life.
Having taken the city of Angora from certain territorial lords who, incited by the prince of Karaman, had attacked the Ottoman dominions, Murád I., the son and successor of Orkhan, found himself free to extend his possessions across the Hellespont. He forthwith passed over into Europe, where he and his genezals soon reduced almost all Roumelia, capturing Adrianople, Philippopolis, and many other places of importance. These successes alarmed the Christian princes, who determined to make a vigorous effort to drive the Turks back into Asia. The kings of Bosnia, Hungary, and Servia accordingly marched with a large army upon Adrianople, but were surprised during the night and completely deieated by an inferior Turkish force. Some time after this victory Murad returned to Asia, where he celebrated the wedding of his son Byyezid with the daughter of the prince of Kermiyán, a large portion of whose territory was made over to the 'Osmánli monarch as the dower of the bride. Next year, when Murád set out to inspect his new possessions, he met the prince of Hamid, whom he constrained to sell all his dominions. The Karaman prince, ever the jealous rival of the Ottoman, now stirred up some of the Turkman tribes to ravage his enemy's land; but Murad was beforehand with him, and, entering his country, defeated him and annexed the district of Ak-Shehr to his own kingdon. The Bosnian and Bulgarian princes having allied themselves against the sultan, the Turkish commander in Europe invaded Bulgaria, which was speedily subdued and added to the Ottoman possessions. Murád next entered Servia and advanced to the plain of Kosovo, where he found awaiting him the
levies of Servia, Bosnia, Hungary, Albania, and Walachia. The Turks, though far inferior in number to their adversaries, gained a complete victory, 1389 (791), but it was purchased with their sovereign's life. After the battle Murád was riding over the field with sorne of his people, when a wounded Servian, who was iying among the slain; sprang up and stabbed him so that he died almost immediately afterwards. In consequence of this battle Servia became subject to the Turk.

Báyezid I., surnamed Yildirim, "Thunderbolt,"on accour'九 of the fury of his attack and the rapidity of his movements, received the oath of fealty on the battlefield of Kosovo. He did much to secure the position of the Ottomans, in Europe, taking many of the towns which still remained to the Christians in Roumelia. In Asia he annexed the remaining Turkish principalities, and pushed his conquests as far as Cesarea and Sivás. The Christians made another great effort to free themselves from their Eastern foes: whilst Bayyezid was a'sent in Asia, the king of Hungary led a powerful army, in the ranks of which were many knights of France and Germany, into the Ottoman dominions and laid siege to Nicopolis. Bayezid sped to the rescue, and inflicted an overwhelming defeat on the Christians. He next turned his attention to Constantinople, the reduction and annexation of whick he had long meditated, when he was summoned to meet Timur, the Tatar conqueror, who had invaded his Asiatic. dominions and taken Sivás. The Ottoman and Tatar hosts encountered each other outside Angora, and there the former sustained their first disastrous overthrow, Bayezid being taken prisoner and his army practically annihilated. Next year, 1403 (805), he died in captivity ; the story of his having been imprisoned in an iron cage is not confirmed by the Turkish historians, and is most probably fictitious. After this victory Timúr overran the Ottoman territories in Asia, taking and sacking Brusa, Nicæa, and many other cities. With a view to the complete annihilation of the 'Osmánli power, he restored the independence of the Turkish principalities which Bayezid had annexed, and placed them under the rule of their former emirs.

On the withdrawal of TYmúr from Asia Minor the four surviving sons of Bayezid fought for what was left of their father's kingdom; after ten years of civil war success finally rested with Muhammed, who alone of the four is Muhan reckoned among the Ottoman sovereigns. The attention of the new sultan, whom his people called Chelehi Muhammed or Muhammed the Debonair, was turned rather to the restoration of his father's empire than to the conquest of neighbouring countries. In Europe he lived on amicable terms with the Byzantine emperor, and the Christian kings further north did not venture to make any serious attack upon him. But in Asia he had to contend with many enemies, the most formidable of whom was the emir of Karaman, who, having been defeated and made prisoner, was gencrously pardoned and restored to liberty. Another difficulty with which Muhammed bad to deal was a strange religious outbreak: a vast number of fanatic dervishes, headed by an apostate Jew and a Turkish adventurer of low birth, rose in revolt, and were only dispersed after several bloody battles. This sultan, who was much beloved by his subjects and is spoken of with praise by the Byzantine historians, was stricken wilh apoplexy while riding in Adrianople, and died almost inmediately in the thirt--third year of his age, 1421 (824).

The first care of his son and successor Murád II. was to rid himself of a pretender to the throne who, aided by the Greek emperor, had made a descent upon the Asiatic shore of the Dardanelles. This adventurer was soon defeated and pursued to Adrianople, where he was taken and hanged. In revenge for the assistance rendered to
XXIII. - 8 r
his enemy, the sultan invested Constantinople, but he was compelled to relinquish the siege in order to subdue a revolt headed by his brother, which had broken out in Asia. Murád again annexed all the Turkish principalities which had been restored by Tímúr, except those of Kizil Ahmedli and Karaman, which did not finally become incorporated with the empire till the time of Muhammed II. The Turks were now called upon to face the most formidable Christian enemy they had yet encountered, namely Hunyady, the illegitimate son of Sigismund, king of Hungary. This famous general, after haying inflicted several severe though not very important defeats upon his adversaries, invaded European Turkey with a large army of Hungarians, Poles, Servians, Bosnians, Walachians, and Frankish crusaders, the last-named being under the command of Cardinal Julian. The Ottoman army was utterly routed, Sophia taken, and the chain of the Balkans forced; and Murid was compelled to sign a treaty for ten years, by which he resigned all claims to Servia and gave over Walachia to Hungary. Weary of the cares of state, and thinking that peace was, for a time at least, secured, Murad abdicated in favour of his young son Muhammed and sought a quiet retreat in the town of Magnesia. But he was not allowed to enjoy repose for long: the Christian princes, incited by Cardinal Julian and in direct violation of the treaty, assembled their forces, and, under Hunyady as commander-in-chief, without declaring war, ontered the Turkish dominions and took many of the Ottoman strongholds in Bulgaria. When the news reached Murad he resumed the imperial power, put himself at the head of his troops, and advanced to meet the invaders, who had just captured Varna. Outside that town a great battle was fought, in which a copy of the violated treaty, raised high upon a lance, formed one of the standards of the Ottomans. The conflict, which was long and bloody, resulted in the total overthrow of the Christians, the Polish king, Ladislaus, and Cardinal Julian being among the slain, 1444 (848). Murád again abdicated and sought the retirement of Magnesia ; but once again he had to take up the reins of gevernment. This time the janissaries and sipáhis, accustomed to the firm rule of the victor of Varna, had refused obedience to the young Muhammed. The sultan remained at the head of the state until his death, which occurred in 1451 (855).
Huham- Muhammed II., who now ascended the throue for the mad II. third time, determined to accomplish the long-cherished design of his house, and make Constantinople the capital of the "Osmánli empire. He easily found a pretext for declaring war against Constantine Palæologus and in the spring of 1453 (857) led an immense army to beleaguer Fall of the city. His troops covered the ground before the land-Constan- ward walls between the Sea of Marmora and the Golden tinople.
the Ottomans advanced to storm the city. The Christians offered a desperate resistance, but in vain. The emperor died fighting in the forefront of the battle, and at noon Muhammed rode in triumph into his new capital and went straight to the cathedral of St Sophia; there, hefore the high altar, where the preceding night Constantine had received the Holy Sacrament, he prostrated himself in the Moslem act of worship. The capture of Constantinople is not the only exploit to which Muhammed owes his surname of Fátih, or the Conqueror: he also reduced Servio and Bosnia, overthrew and annexed the Greek empire of Trebizond and the Turkish principality of Karaman, acquired the suzerainty of the Crimea, and won many of the islands of the Greek Archipelago from the Venetians and Genoese. But before Belgrade, which he had besieged as the first step to an attack upon the northern kingdoms, he suffered a serious defeat, leing driven wounded from the field by Hunyady and John Capistran, with the loss of 300 cannon and 25,000 men. Rhodes, whither an Ottoman force was despatched, was the scene of another failure : here the Knights of St John gallantly end suc. cessfully withstood their Muhammedan foes, and compelled them to retire from the island. In Albania a long and for a time, successful resistance was offered to the Turkish arms by the famous George Castriot, the Iskender Beg of the Turks. This chieftain had been in his youth in the service of Murád II., and was by him appointed governor of his native Albania, whereupon he revolted and tried to restore the independence of his country. Among the favourite designs of Muhammed were the subjugation of Italy and the establishment of the Mussulman dominion in the capital of Western Christendom. A Turkish army crossed the Adriatic and stormed the city of Otranto ; but its further progress was stopped, and for ever, by the death of the Conqueror, which occurred a few months later, in 1481 (886). The Muhammedan soldiers besieged in Otranto, being unsupported from Turkey, were, after a long and brave defence, forced to surrender.

Bayezid II. was hardly seated on the throne before he Bay was called upon to face a formidable revolt raised by his IL younger brother Jem. This youthful pretender, who was both talented and high-spirited, was, after a number of adventures, finally compelled to fly the country. He sought the protection of the Knights of St John at Rhodes, who, however, retained him a prisoner, and made an arrangement with Bayezld whereby they received from that monarch a yearly sum of 45,000 ducats as the price of the compulsory detention of his brother. After thirteen years of captivity the unfortunate prince was murdered by Pope Alexander VI. (Borgia), who, it is said, received 300,000 ducats from the sultan as the reward of his crime. Though frequently compelled to engage in defensive wars, Bayezid was of a peace-loving and unambitious disposition, and a few torms in the Morea were all the additions made to the empire while he was on the throue. It was during his reign, however, that the Ottoman fleet began to be formidable to Christendom, the desperate battle off Sapienza, won by Kemál Re's against the Venetians, being the first of the Turkish naval victories over the Mediterranean powers. Báyezid, whose paoific habits had alienated the sympathies of the janissaries, was in 1512 (918) forced by these dreaded guards to abdicate in favour of Sclim, the youngest of his three sons. This prince had already been in open revolt against his father; but his determined and warlike character had won for him the esteem of the Turkish pretorians. Báyezid's hcalth, which had long been failing, gave way under this blow : and the old sultan died three days after his deposition, at a little village on the way to Demitoka, whither he was going to end his life in retirement.
Selím I. was personally the greatest of the Ottoman
monarchs: lis unfinching courage and tireless rigoir were not more remarkable than his political sagacity and his literary and poetic talents; but so merciless was he that he has altrays been known in Turkish history as Yawuz Selím or Selim the Grin. Happily for Europe he turned his attention to the neighbouring Juhammedan states and left the Christian powers in peace. Having caused both his brothers to be put to death, he marched against Persia, the king of which country had given refuge to the family of one of the hapless Turkish princes. The quarrel between them was further embittered by religious hatred: the shath of Persia was the pillar of the Shi'ites, as the Ottoman sultan was of the Sunnites. Selim in his fanatical zeal had ordered a massacre of his Shi'ite subjects, in which forty-five thousand persons suffered death. The sháh was eager to avenge the slaughter of his co-religionists. The janissaries showed signs of insubordination upon the march, but Selím resolutely maintained order and reduced them to submission. At length they came upon the Persian host drawn out on the plain of Chaldiran, where a great battle was fought, which ended in the rout of the Persians and left the way to Tabriz, the residence of the Persian king, open to the sultan. Thither Selím proceeded; but eight days later he set out on his homeward march. The battle of Chaldiran brought no addition of importance to the empire; but the districts of Diyár-Bekr (Diarbehr) and Kurdistan, through which the army bad passed on the way to Persia, were completely suldued and annexed to the Ottoman dominions. Selin's next important campaign was against the Menlúks of Egypt. This hody of Easterif chivalry offered a most gallant resistance to the 'Osmanlis; bur, possessing no artillery, which they disdained as unbeconing men of ralour, they were defeated in a series of ergagements, and Selím and his army entered Cairo as conqueroro in 1517 (923). The results of this war were momentous and far-reaching: the Ottoman empire was greatly increased by the addition of Egypt, Syria, and the Hejaz, of all of which the Memluks lad been lords; the caliphate of Islám was won for the house of 'Osmán, Selím constraining the representative of the old 'Abbasid family, who resided, a purely spiritual prince, at Cairo, to make over to him and his heirs the rights and privileges of the successors of the Prophet. The sultan at the same time acquired from hin the sacred banner and other relics of the fonniler of Islam, which had been handed down to the Arabian prince from his fathers, and which are now preserved in the seraglio at Constantinople. On his return Selím set himself to strengthen and improve his fleet, doubtiess with a view to the conquest of Rhodes. He died, however, in 1520 (926), before his extensive preparations were completed. This sultan reigned only eight years, but in that short time he almost doubled the extent of the Ottoman empire.
Suleymán I., who succeeded his father Selim as sultan, bad not been long on the throne before he fonnd himself involved in a war with the king of Hungary. He marched northwards with a powerful army and wrested from the enemy several places of importance, including the strongly fortified city of Belgrade. Having left a large garrison. in this city, which was regarded as the key to the Christian lands north of the Danube, the sultan returned to Constantinople, where he continued his father's work of creating a strong and efficient Ottoman. fleet. When all was ready Suleymán set out for Rhodes, determined to mipe a way the disgrace of his ancestor's second failure, as he had done clat of his first. The conquest of Egypt had, moreover, rendered the possession of Rhodes necessary to the Turks, as the passage between Constantinople and their nerr acquisition conld never be safe so long as that island reuained in hostile hands. The Knights of St

John met the attack in a manner worthy of their illustrious order; but the overwhelming force of the Ottomans and the hopelessness of any relief compelled them to accept the sultan's terms. These were highly honourable to the defenders, who were permitted to retire unmolested, whilc. Suleymán pledged himself to respect the Christian religiori in the island, which now, 1522 (929), became his. Four years after the conquest of Rhodes the sultan again invaded Hungary, where in the renowned battle of Mohacz he annihilated the army of the Magyars and slew their king. Thence he marched along the Danube to BudaPesth, which opened its gates to him, and there he rested a little while before starting on his homeward way. The disturbed state of Asia Minor hastened Suleymann's departure; but in three years (1529) he was back at Buda, ostensibly as the ally of Zapolya, an Hungarian who claimed the throne left vacant by Louis, who fell at Mohacz. Ferdinand of Austria bad opposed the claim of Zapolya, who thereon had applied to the sultan for aid, which that monarch was most willing to accord. The troops of Ferdinand being driven from Buda, Suleymán, accompanied by his protégé, adranced upon Vienna. On 27th September 1529 the rast Turkish host, under the personal command of one of the greatest of the family of 'Osman, laid siege to the capital of the German empire, and on the 14th of the following month, after a most desperate assault carried on for four days, the invaders were compelled to retire, leaving the city in the possession of its heroic defenders. The terrent of Turkish military might had now reached its northern limit: once again it vainly swept round the walls of Vienna, but further it never went. Suleymán next directed his arms against Persia, from which country he won a large portion of Armenia and 'Irák as well as Baghdád, the old capital of the 'Abbásid caliphs. In 1542 be was again in Hungary, having been appealed to by the widow of Zapolya on behalf of her infant son against the pretensions of Ferdinand. Suleyman promised to place the child upon the throne when he should be of a proper age ; in the meantime he treated Hungary as an Ottoman province, dividing it into sanjaks or military districts, and garrisoning Buda and other important cities with Turkish troops. Six years later a truce for five years was concluded between the sultan and Ferdinand, whereby almost all Hungary and Transylvania were made over to the former, who was also to receive a yearly present, or more correctly tribute, of thirty thonsand ducats. The Turks, now at the zenith of their power, were the terror of all around them. The achievements of the Ottoman nary during the reign of Suleymán were hardly, if at all, less remarkable than those of the army. Khayr-ud-Din, the Barbarossa of the Europeans, won Algiers for Turkey, and held the Mediterranean against the fleets of Spain and Italy ; Torghud added Tripoli to the empire ; and Piyala routed the gaileys of Genoa, Florence, Naples, and Malta off the isle of Jerba. But fortune did not always smile upon the crescent. In 1565 (973) Suleymán sustained the second great check he was destined to encounter. The Turks once more measured swords with the Knights of St John and drove them from Malta, which had neen given to the order by Charles V. on its expulsion from Rhodes. A powerful Turkish army and fleet, commanded by officers of renown, were accordingly despatched to win Mfalta for the Otteman crown ; but so valiantly was it defended that the Turks were forced to withdraw with a loss of twenty. five thousand men. Suleymán died in harness. In 1566 (974), when seventy-six years of age, he entered Hungary for the last time, summoned thither to aid his vassal, young Sigisnıund Zapolya. Sziget, a place which had foiled the Turks on previcus ocrasions, was the first object of attack Count Zrinyi, the eovernor, determined to resist to the last
so the Ottomans found themselves compelled to undertake the siege of this comparstavely unimportant town. There on the night of 4 th Septentber the great sultan died, and a few hours later Count Zrinyi and his brave companions perished amid the smoking ruins of the fortress they had most nobly held. Under Suleymân I., whom European historians call the Magnificent, but whom his own people style Kánunín or the Lawgiver, the Turkish empira attained the summit of its power and glory. The the great disasters, at Vienna and Malta, were eclipsed by the number and brilliancy of the sultan's victories, by which large and important additions were made to the empire in Europe, 'Asia, and Africa.

Selim II., the unworthy son and successor of the Magnificent Suleymán, was the first Ottoman monarch who shran!s from leading his army in person. He was a man of mean and ignoble character, whose sole pleasure seems to have consisted in the indulgence of his degraded tastes and vicious appetites. The first conflict between the Turks and the Russians occurred in his reign. In view of a threatened war with Persia, the grand vizier Sokolli conceived the idea of uniting the rivers Don and Volga by a canal, by means of which an Ottoman fleet could be sent into the Caspian. But in order to carry out this scheme it was necessary that the town of Astrakhan should be in the hands of the Turks. A considerable force was acco Iingly despatched from Constantinople to take possession of that city; but the Russian army which Ivan the Terrible sent to its relief drove back the Turks and their Tatar allies from before the walls, 1569 (977). Cyprus was the next object of attack. This island, which belonged to Venice, was assailed and taken, though not without heary loss, at a time of peace between the republic and the Porte, 1570-71 (978). The Christian powers of the Mediterranean were roused and alarmed by this act of treachery, and a maritime league was formed through the efforts of Pope Pius V., with Spain, Venice, and Malta for its most important members. On 7th October 1571 the Christian fleet, under the command of Don Joha of Austria, encountered the Ottoman ships, led by the galley of the kapudan pasha, Mu'ezzin-záda 'Ali, just outside the Gulf of Lepanto. A furious conflict ensued, which resulted in the utter defeat of the Turks, their admiral being killed and their fleet almost annihilated. This famous fight, although it brought little immediate material advantage to the victors, was of the highest moral value to them ; for it broke the spell of Barbarossa, and showed that the Ottoman was no longer invincible on the seas. The only other event of importance during this reign was the final conquest of Tunis for Turkey by Kilij 'All, who won it from the Spaniards in 1574 (982). Selím II. died miserably the same year.

Murad III., who now succeeded to the Ottoman throne, was no improvement upon his father; he ruled in name only, all real power being in the hands of worthless favourites. As a natural consequence the empire began rapidly to decay ; corruption infected all ranks of official society, the sultan himself selling his favours for bribes; while the other great curse of old Turkey, military insubordination, showed itself in a more threatening aspect than ever. ;The janissaries mutinied on several occasions, and each 'time compelled the weak Murad to accede to their demand. Notwithstanding this wretched state of affairs, some extensive and important, though not permanent, additions were made to the empire. These, consisting of Azerbijan and Georgix-the latter had been in alliance with Persia-were the risult of a campaign against the last-named country, the muernal condition of which was then even worse than that of Turkey. Transylvania, Moldavia, and Walachia rose in revolt, encouraged by the war which broke out in

1593 between Turkey and Austria. Iu 1594 hostilities with Persia were resumed; and early in the followiug year Murad died, leaving the empire to his eldest son Muhammed III.
Things had been going very badly in the war with Austria, when in June 1596 the grand vizier and the muful, joining their voices with that of Sa'd-ud-Dín the historian, prevailed upon the new sultan, whose character resembled only too closely that of his father, to place himself at the head of the Ottoman army which was about to march into Hungary. Four months later Muhammed met the imperialists under the archduke Maximilian, and the Transylvanians led by Prince Sigismund, on the marshy plain of Keresztes, where a battle lasting three days took place. Although at one time things looked so hopeless for the Turks that the sultan would have fled but for the entreaties and remonstrances of Sa'd-ud-Din, the 'Osmanlis gained a complete and decisive victory. But nothing came of it; for Muhammed, instead of following up his success, hastened back to Constantinople to receive the congratulations of his courtiers and to resume his indolent and voluptuous life. Nothing else worthy of note occurred during his inglorious reign. He died in 1603 (1012).

Muhammed III. was the last heir to the Ottoman throne who was entrusted with the government of a province during his father's lifetime ; henceforth all the sons of the sultan were kept secluded in a pavilion called the Kafes or cage in the seraglio gardens. This new system, which was necessarily very prejudicial to the character of the future rulers, had its origin in the same dread of rivals that caused a sultan in those times to pat all his brothers to death immediately on his accession.
The reign of Ahmed I . is not marked by any event of Abmald importance. The peace of Sitavorok (Zsitvatorok) between Turkey and Austria, 1606 (1015), made no change of any moment in the territorial possessions of either power, but is interesting as being the first treaty in which an Ottoman sultan condescended to meet a Christian prince on a footing of equality. Hitherto the Turkish monarchs had affected to grant merely short truces to their European enemies. But this peace was to be permanent ; the annual payment or tribute of thirty thousand ducats by Austria was to be discontinued; and the ambassadors sent from the Porte were now to be officials of rank, and not, as formerly, menials of the palace or camp.

Ahmed died in 1617 (1026) and was succeeded by his Mustafo brother Mustafa I. Up till this time the succession had I. been regularly from father to son; but, as Mustafa's life had been spared by his brother on his accession, that prince now ascended the throne in preference to 'Osmán, the eldest son of Ahmed I . This arose from the peculiar nature of the Turkish law of succession, which gives the throne to the eldest male relative of the deceased sovereign. Mustafa was, however, imbecile ; so after a reign of three months he was deposed, and his nephew 'Osmán, though only fourteen years of age, seated on the throne in his stead.

An unsuccessful war with Persia, which had been going on for some time, was now brought to an end by a treaty which restored to the shah all the territories conquered since the days of Selim II. In 1621 the sultan !ed nis troops against Poland, partially with the Jiew of weakening the janissaries, whom he justly regarded as the most deadly enemies of his cmpire. This expedition was not attended by any important results, neither Tuiks nor Poles gaining a decisive advantage. On his return 'Osmán formed another plan for freeing himself from his tyrannical soldiery: he gave out that he was going to make the pilgrimage to Mecca, but his real intention was to proceed only as far as ${ }^{5}$ amascus, there place himself at the hear
of an Asiatic army, and march against the janissaries and sipshis in Constantinople. But the janissaries heard of this design and rose in revolt. Incited by a vizier whom -Osmán had deposed, they seized their sovereign and dragged him to the state prison of the Seven Towers, where shortly afterwards he was foully'murdered by the traitor minister, 1622 (1031).

The wretched Mustafa was again raised to the throne, only to be deposed fifteen months afterwards in favour of Murád, the eldest surviving brother of 'Osmán.

In Murad IV., who succeeded to the supreme power in 1623 (1032), when a child of eleven years, Turkey bad once more a sultan of the old 'Osmánli type. Since the death of Suleymán the empire had been cursed with a succession of rois fainéants, under whom it bad rapidly fallen to decay. The vigour and courage of the new sultan stayed it for a while upon its downward course, and reatored to it something of its bygone glory. While still quite young, Murád had been compelled by the mutinous janissaries to deliver into their cruel hands his favourite vizier, Háfiz Pasha. This embittered him against that corps, and, when soon afterwards the soldiers began openly to discuss his deposition, Murad swiftly and suddenly cut off the ringleaders and all others whom he suspected of disloyalty; this struck fear into the bearts of the disaffected soldiers, who, finding themselves without any to organize or direct them, returaed to their allegiance. Murad next turned his attention to checking the intolerable corruption and abuses which pervaded every department of the state. He had but one simple though terribly drastic method of reform,-the execution of every official whom he even suspected of any malpractice. Having restored some sort of order in his capital, Murád marched against Persia and recaptured the city and district of Erivan. In 1638 (1048) he undertook a second and more important campaign against the same power. His object was the recovery of Baghdád, which had been taken by the shâh's troops some sixteen years before. The Persians resisted long and gallantly, but at length the Turks carried the city by storm, when Murad disgraced himself by the slaughter of a vast number of the inhabitants. By the peace which followed Turkey restored Erivan to Persia, but retained Bagbddd, which has been in its hands ever since. Murad on his return entered Constantinople in triumph. This sultan died in 1640 (1049); his death is said to have been hastened by habits of intemperance, which he had contracted towards the close of his life.

Ibrabim, the brother of the late sultan, now mounted the Ottoman throne. He was another of those wretched princes who gave themselves up to the indulgence of their own follies and vices without bestowing a thought upon the welfare of their people or the prosperity of their country. All the evils that had been curbed for a time by the stern hand of Murád broke out afresh and in worse form than before. The sultan himself was the most venal of the venal. Shut up in the seraglio, he thought of nothing but the gratification of his own and his favourites' caprices; gem-encrusted coaches and pleasure-boats, and carpets and hangings of richest sable for his rooms, were among the objects for which he plundered his people and sold every office to the highest bidder. This went on for eight years, till at length his subjects, weary of his cxactions and tyranny, deposed him, and made his son Muhammed, then only seven years of age, sultan in his room. The only events of note that occurred during Ibrahín's tenure of power are the capture of Azoff from the Cossacks and the occupation of Crete. This island, which was then in the hands of Venice, was soon overrun, but it was not till well on in the next reign, after a siege of twenty years, that the Ottomans succeeded in taking Candia the capital.

The mirority of Muhammed IV., who became sultan in 1648 (1058), was marked by all the troubles and evils that might have been anticipated, until the grand vizierate was conferred on Köprili Muhammed in 1656 (1067). This statesman, who was seventy years old when he entered upon the duties of prime minister of Turkey, was the founder of an illustrious family of viziers, whose integrity and strength of character did much to counteract the per nicious influence of degenerate sultans and to prop up for a season the declining empire. Old Köprili accepted the unice of grand vizier only upon condition of receiving absolute power; this be employed much in the same way as Murád IV. had done when he set about the work of reform: he executed every one who fell under his suspicion. He died in 1661 (1072), leaving the vizierate to his son Fázil Ahmed. Alimed was, like his father, a man of great ability, and happily for Turkey he enjoyed the complete confidence of the young sultan, who cared for nothing but the chase, whence he is called in the Ottoman histories Avji Muhammed or Muhammed the Huntsman. Before long Ahmed was called on to lead the Turkish army against Austria. He took Neuhäusel and several places of little importance ; but near the convent of St Gotthard (on the Raab) he was completely defeated in 1664 (1075) by a smaller Christian force under Montecuculi. A truce for twenty years on the basis of the treaty of Sitavorok was the result of this battle; the Ottomans, however, retained Neuhäusel. Ahmed next appeared in arms in Crete, for the purpose of bringing to a close the siege of Candia, which had been going on ever since 1648 ; but it was not till other three years bad passed that the brave garrison opened the gates to the grand vizier, in 1669 (1079). The sultan himself was induced to bead the next campaign, which was undertaken on behalf of the Cossacks of the Ukraine, who had craved the protection of the Porte against Poland. The Turks took the cities of Kamenetz and Lemberg, whereupon King Michael sued for peace, 1672 (1083), and promised to make ove= Podolia and the Ukraine to Turkey and to pay an annual tribute of 220,000 ducats. The sultan accepted these terms and returned home in triumph; but the Poles refused to be bound by them, and under the command of Sobieski they attacked and defeated the troops of Ahmed Pasha. The war lasted till 1676, when it was brought to an end by the treaty of Zurawno, which left the sultan in possession of Podolia and almost all the Ukraine. Three days after this peace was signed Ahmed Pasha died. Few men bave done more to ruin their country than Kara Mustafa, who succeeded Ahmed in the grand vizierate. His pet scheme was the conquest of Germany and the establishment of a great Turkish province between the Danube and the Rhine, with bimself as nominal viceroy but virtual sovereign. He accordingly marched with an enormous army, probably not far off half a million strong, against Vienna. In the summer of 1683 (1094) this mighty host appeared before the walls of the Austrian capital. For an account of the siege, see vol. xix. p. 296. A few weeks after his discomfiture Ķara Mustafa was executed at Belgrade by the sultan's orders." Venice and Russia now declared war against Turkey; misfortune followed misfortune; city after city was rent away from the empire; the Austrians were in possession of almost the whole of Hungary, the Italians of almost all the Morea. At length a severe defeat at Mohacz, where Suleymán had triumphed years before, exhausted the patience of the soldiery, and Muhammed IV. was deposed in 1687 (1039).

The first year of the reign of Suleymann II., who succeeded his brother, was marked by a serious mutiny of the janissarics of the capital, who, aided by the dregs of the population, created a reign of terror_in Coustantinonle.
during which they pillaged the palaces of the principal officers of the government and murdered the grand vizier, along with many of the members of his household. The Anstrians, under Charles of Lorraine, Louis of Baden, and Prince Eugene, were carrying all before them in the norith: Erlau, Belgrade, and Stuhlweissenburg fell into their hands; and by the end of 1689 the Ottomans had lost almost all their former passessions beyond the Danube. Meanwhile the Venctian leader, Morosini, was equally successful in the Morea, completing the conquest of that province, which he added to the dominions of St Mark. When matters had come to this pass, the sultan summoned an extraordinary meeting of the divan to consult on the measures to be taken to mect the danger threatening on every hand. By the unanimous advice of his ministers, Suleymán appointed to the grand vizierate Köprili-zida Musṭafa, another son of old Köprili Muhammed, This statesman, whe had been trained in the duties of office under his father and brother, worthily upheld the high name of his house. He gave up the whole of his gold and silver plate to be coined into money wherewith to pay the troops; he sought out the best men to fill positions of trust and responsibility in the arny and navy ; and he exercised and encouraged a wise and just policy of toleration tewards the Christian subjects of the sultan. Such was the cenfidence which his high character and illustrious connexion inspired that large numbers of volunteers bastened to join the Turkish hosts; and in a very few weeks from the time when he took command of thi army Mustafa had driven the Austrians out of Servia, and Belgrade once more received a garrison of Ottoman troops. Mustafa returned in triumph to Constantinople, where, early in the summer of 1691 (1102), Suleymán II. died, and was succeeded on the throne by his brother Almed II.
The most important event which occurred during the brief and disastrous reign of this monarch was the defeat and death at Slankamen (Szlankament) of Köprili-záda Mustafa, who in Angust 1691 advanced from Belgrade to attack the Austrians under Louis of Baden. The unfortunate result of the battle was in great measure owing to the rashness of the vizier, who, in opposition to the advice of the oldest and most experienced of his officers, refused to a wait behind the lines the attack of the enemy. The Ottomans fought with desperate courage; but the day was decided against them by the death of Mustafa, who was shot while cutting his way through the Christian ranks. Almed II. reigned for four years, during which the hapless empire, besides continuing to suffer defeat at the hands of foreign foes, was visited with the curses of pestilence and domestic insurrection.

On the death of Ahmed II. in the year 1695 (1106) Mustafa II., son of Muhanmed IV., was girt with the sword of 'Osman. The new sultan, aware of the pitiful condition to which the empire had sunk, in part, est least, through the negligence and indifference of bis predecessors, resolved to restore the old Ottoman usages, and placed himself at the head of his armies. His first campaign was altogether successful: he recaptured several important fortresses and totally defeated a great Austrian army. During the following winter he worked hard to repair the finances and bring the forces of the empire into a higher state of efficiency; and, when he set out in the spring against the Austrians, fortune continucd to smile upon his banners. He defeated the duke of Saxe, raised the siege of Temesvar, and strengthened the garrisens of thcse fortresses which Turkey still held in Hungary But in the next year, 1697, all was changed : Prince Eugene was at the head of the Austrians, and on the banks of the Theiss, near Zenta, the Turks sustainod an overwhelming defeat, which compelled the sultan to
retreat to Temesvar. Thence he returned to Constantinople, and never again led an army against the enemy. Recourse was once more had to the house of Köpriii, and Amuja-zàda Huseyn, a nephew of old Köprili Muhammed, was promoted to the grand vizierate. Huseyn raised fresh troops; but he saw that what was really needful was peace, and this he succeeded in bringing about. At Carlowitz on 26 th January 1699 a peace was arranged, through the intervention of England and Holland, between Turkey on the one hand and Austria, Venice, Russia, and Poland on the other. The basis of the treaty, agreed to with certain modifications, was that each power should retain the territories in its possession at the time of opening negotiations. This arrangement left Austria in possession of Transylvania and almost all Hungary and Slavonia; Venice remained mistress of its conquests in Dalmatia and the Morea; Poland received Podolia; and Russia, which under Peter the Great was only now becoming conscious of its strength, retained Azoff. which it had wrested from Turkey three years before. Huseyn Pasha took advantage of the restoration of peace to check the disorders which had sprung up in various parts of the empire, and to endeavour to effect much-needed reforms in many departments of the state. But unfortunately his efforts were thwarted by others less disinterested than himself; and, broken-hearted by the calamities of his country, he retired from office three years after the peace of Carlowitz, and very shortly afterwards died. Musțafa II. very soon followed the example of his minister, and abdicated in 1703 (1115) in favour of his brother Ahmed III.

Although the peace of the empire was often broken during his reign, Ahmed 11I. was not of a warlike disposition, and all the representations and entreaties of Charle XII. of Sweden, who after the disaster of Pultowa had taken refuge in Turkey, failed to induce him to re-open hostilities with the czar. In 1710 Nu'mán Pasha, son of Amuja-zada Hnseyn, and the last of the Köprili family, was appointed grand rizier. Though able and tolerant, he was so much addicted to interfering in the business of his subordinates that he became the object of general dislike, and was dismissed from his office after holding it for fourteen months. The menacing preparations of Russia in the south had more infiuence with the Porte than the prayere of the Swedisi king, and in 1711 the new grand viziti, Baltaji Muhammed, marched into Moldavia to meet the forces of Peter the Great, who had formed an entrenched camp near the village of Hush, on the right bank of the Pruth. Here the vizier blockaded him, and after two days' severe fighting compelled him to surrender nith all his army. By the treaty which followed the czar pledged bimself, a mong other things, to restore the fortress of Azof and all its dependencies to the sultan, and to grant the king of Swedcn a free and safe passage to his own country through the Muscovite deminiens. The lenity of Baltaji Mubammed in not destroying the czar and his army when they were within his grasp caused such discontent at Constantinople that he was dismissed from the vizierate, which was conferred on 'Alí Pasha, known as Dámád 'Ali or "All the Son-in-Law, from ine circumstance of his having married a daughter of the sultan. This vizier distinguished himself by winning back from Venice the whole of the Morea in a single campaign (1715). His next venture, a war against Austria, undertaken in the following year, had a very different issue, he himself being slain and his army routed in a great battle at Peterwardein. Next yeas Prince Eugene, the copqueror of Dámád 'Alí, laid siege to Belgrade, which he forced to capitulate after driving off a large army sent by the Turks to its relief. These events led to the peace of Passarowitz in 1718, by which Austria acquired that portion of Hungary which had remained in
the possession of Turkey, as well as extensive territories in Scrvia and Walachia. The grand vizier Ibrahim, another son-in-law of the sultan, who was at the head of affairs from 1718 to 1730 , conurived to secure for the enpire an unusually long respite from internal disorders; but the sultan's love of costly pomp and splendour and the luxurious magnificence of his court rendered him so unpopular that, in consequence of a riot in the autumin of $1730(1143)$, he voluntarily abdicated the throne, and his nepherw Malunúd I. became pádishâh in his stead.
(Е. J. т. с.)

History from 1718.

With the treaty of Passarowitz the Tenetian repullic disappears from the scene of Turkish warfarc. Russia gradually becomes a more formidable enemy than Austria; and the subject Christian races imperceptibly enter on the first stages of national consolidation and revival. After the long and resultless war with Tersia hostilities again broke out with Russia in 1736 Marshal Munnich stormed the lines of Perekop and devastated the Crimea; bit he was unable to maintain bis amm there and retreated with greatly diminished forces. Azof was taken by General Lascy; and in the following year Otchakoff fell into the hands of Münnich, while the Crimea was again invaded and ravaged. Austria now joined Russia, and the Porte had to sustain a war in Servia and Bosnia as well as on the coasts of the Black Sea. The double combat was carried on with very different results. While the Russians won victory after victory, and finally penetrated into the beart of Moldavia, the Anstrians were defeated and driven across the Danube. On their advancing from Belgrade in the summer of 1739 they were defeated with great loss at Krotzka, and compelled to sue for peace. The treaty of Bclgrade, which was signed on 1st September 1739, zestored to the Porte Belgrade and Orsova, with the portions of Servia, Bosnia, and Walachia which it had ceded to Austria at the peace of Passarowitz. Russia, unable to continue the war with a victorious Turkish army ready to fall upon its flank, had to conclude peace on very moderate terms. It received Azoff, but under a stipulation that the fortifications should be razed, and that no Russian vessels of war should be kept either on the Black Sea or on the Sea of Azoff. The peace was the last advantageous one made by the Porte without allies; and the succeeding thirty years were on the whole a period of respite from misfortune.
After this followed the wars with the empress Catherine, before whose genius and resources it seemed as if Turkey must inevitably sink into nothingness. The first contest was provoked by the armed intervention of the enp,ress in Polish affairs and her well-known intrigues with rebellious subjects of the Porte. War was rashly declared by Mustafa III. in October 1768. In 1769 the Russians entererl Moldavis and captured the fortress of Choczin (Chotim); in the following year their armies made good the conquest of Moldavia and Walachia, while a fieet from the Baltic entered the Greek Archipelago and landed troops in the Morea. The Greeks of the Morea rose in insurrection; they were, however, overpowered, and the sinall Russian force withdrew, leaving the Greeks to the vengeance of their conquerors. At sea the Turks suffered a scvere defeat near Chios, and their fleet was subseqnently blockaded and set on fire in the Bay of Tchesme, the principal officers in the Russian navy being Englishmen. Assistauce was, moreover, given by the Russians to Ali Bey, a Mameluke chieftain who was in rebellion against the Porte in Egypt, and to Tahir, a sheikh who had made himself indlependent at Acre. In 1771 the Russians intaded and conqnered the Crimea. Anotria now took alarm, and signed a convention with the Porte preparatory to armed interiention.

But the partition of Poland reunited the three neighbouring Cliristian powers and prevented a general war. An armistice was agreed upon between Russia and the Porte, and negotiations followed. These were broken off in 1573. The Russians crossed the Dannbe, and, though unsuccessful in their attempts upon Silistria and Varna, so completely defeated the Turkish forces in the field that on 21st July $1 i$ iit the Porte conclnded peace at KutchukKainardji under conditions more unfarourable than those which it had rejected in the previous year. The Tartar territory of the Crimea, with Kuban and the adjoining districts, was made into an independent state, Russia retaining Azoff, Kertch, and Kinburn. Moldavia and Walachia were restored, but on the condition that, as occasion might require, the Russian minister at Constan tinople might remonstrate in their favour. Russia, in fact, was given a species of protectorate over these provinces. Permission was given to Russia to erect a church in Constantinople, and the following engagenent was made: "The Porte pronises to protect the Christian religion and its churches ; and it also allows the court of Russia to make upon all occasions representations as well in favour of the new church at Constantinople as on belalf of its ministers, promising to take such representations into consideration." Out of this clause arose the clain of Russia to the riglt of protection over all the Christian suljects of the Porte, though the specific right of intervention was clearly attached only to a single church and its ministers. By other clauses in the treaty the obligations restraining Russia from making fortifications and placing ships of war on the Black Sea were annulled. It received the right of free navigation for its merchant ships on all Turkish waters, and the right of placing consuls at all Turkish ports. These last two conditions were of great historical importance through their effect upon Greece. The consuls appointed were usually Greek traders, and permission to carry the Russian flag was indiscriminately given to Greek vessels. Hence there followed that great development of Greek commerce, and of the Greek merchant nary, which in half a century made the insurgent Greeks more than a match for the Turks at sea

The stipulation that the Crimea and adjoining districts should be made into an independent state was of course not inteaded by Russia to be anything more than a reil for annexation; and in 1783 Catherine united this territory to her dominions. She had now definitely formed the plan of extinguishing Turkish sovereignty in Europe and placing her younger grandson on the throne of a restored Greek kingdon. The boy was named Constantine, bis whole education was Greek and such as to fit him for the throne of Constantinople. Joseph II. of Austria threw himself eageriy into the plan for a partition of the Ottoman enpire, and in 1788 followed Russia into war. While the Russians besieged Otchakoff, Joseph invaded Bosnia; but he was unsuccessful and retired ingloriously into IIungary. Otchakoff was stormed by Suwaroff on 16 th December 1788. In the following year the Turkish armies were overthrown hy Suwaroff in Moldaria and by the Austrian Laudan on the south of the Danube. The fate of the Ottoman empire seemed to tremble in the balance; it was, however, saved by the convulsions into which Joseph's reckless allocracy had thrown his own dominions, and by the triple alliance of England, Prussia, and Holland, now formed by Pitt for the preservation of the balance of power in Europe. Joseph died in 1790; his successor Leopold II. entered into negotiations, and concluded peace at Sistova in August 1791, relinquishing all his conquests except a small district in Croatia. Catherine contiqued the war alone. 1smail was captured by Suwaroff with tearful slaughter, and the Russian armies pushed on south of the Danuhe. Pitt, with
the triple alliance, attempted to impose his mediation on the empress Catherine, and to induce her to restore all her conquests. She refused, and both Prussia and England armed for war ; but public opinion declared so strongly against the minister in England that it was impossible for him to pursue his plan. Catherine nevertheless found it in her interest to terminate the war with the Porte. Poland claimed her immediate attention; and, adjourning to a more convenient season her designs upon Constantinople, she concluded the treaty of Jassy in January 1792, by which she added to her empire Otchakoff, with the seaboard as far as the Dniester. The protectorate of Russia over. Tifisis and Kartalinia was recognized.

Catherine's successor Panl (1796-1801) made it his business to reverse his mother's policy by abandoning the attack on Turkey. Bonaparte's invasion of Egypt and the destruction of the French fleet by Nelson at the battle of othe Nile led the Perte to join the second coalition against France. Bonáparee, invading Syria, was checked and turned back at Acre, where Jezzar Pasha was assisted in his strenuous defence by an English squadron under Sir Sidney Smith. A Turkish army was meanwhile transported from Rhodes to the Egyptian coast. This army was destroyed by Bonaparte on his return to Egypt at the battle of Aboukir on 25th July 1799, after which Bonaparte set sail for France, leaving the Egyptian command to Kléber. Kléber, cut off from all communication with France and threatened by superior Turkish forces, entered into a convention at El Arish for the evacuation of Egypt. This convention, however, was annulled by Lord Keith, the English admiral, and Kléber replied by giving battle to the Turks and defeating them at Heliopolis on 20th March 1800. Egypt was finally wrested from the French by the English expedition under Abercromby, and restored to the sultan. The Ionian Islands, which France had taken from Venice at the time of the treaty of Campo Formio, were conquered by a combined Russian and Turkish force, and were established as a repualic, at first under the joint protectorate of Russia and the Porte, afterwards under the sole protectorate of Russia. The former Venetian ports on the mainland of Epirus and Albania were given up to Turkey. Somewhat later, under pressure from St Petersburg, the sultan undertook not to remove the hospodars, or governors, of Walachia and Moldavia without consulting Russia, and to allow no Turks except merchants and traders to enter those territories.

On the restoration of peace France reassumed its ancient position as the friend and ally of the Porte. The sultan now on the throne was Selím III. (1789-1807). Though the results of the war of the second cealition had been favourable to Turkey, the Ottoman empire was in a most perilous condition. Everywhere the provincial governors were making themselves independent of the sultan's authority; a new fanatical sect, the Wahhabees, had arisen in Arabia and seized upon the holy places; the janissaries were rebellions and morz formidable to their sovereign than to a foreign enemy; and the Christian races were beginning to aspire to independence. It had seemed for a white as if the first to rise against the Porte would be the Greeis, among whom the revolutionary influcnces of 1789 and the songs of the poet Rhegas, put to death by the Turks in 1798, stirred deep feelings of hatred against their oppressors. Circumstances, however, postponed the Greek revolt and accelerated that of the Servians. In the country immediately south of the Danube the sultan's anthority was defied by the janissaries settled about Belgrade and by Passwan Oglu, ruler of Widdin in Bulgaria. The pasha of Servia, hard pressed by these rebels, called upon the rayas to take up arms in defence cf the sultan. They did so, and in 1804 the janissaries
answered by a series of massacres in the Servian villages. The Servians now rose as a nation against the janissaries. Kara George became their chief, and in combination with the pasha of Bosnia, acting under the sultan's orders, exterminated the janissaries or drove them out of the country. Victorious over one oppressor, the Servians refused to submit to another. They carried on the war against the sultan himself, and at the suggestion of Russia sent onvoys to Constantinople demanding that for the future the fortresses of Servia should be garrisoned only by Servian troops.
When the third European coalition against France was in course of formation Russian and French influences were in rivalry at Constantinople. The victories of Napoleon in 1805 gave him the ascendency, and his envoy prevailed upon the sultan to dismiss, without consulting Russia, the hospodars of Walachia and Moldavia, who were considered to be agents of the court of St Petersburg. This was a breach of the engagement made by the sultan in 1802, and it was followed by the entry of Russian troops into the principalities. England, as the ally of Russia, sent a fleet under Admiral Duckworth through the Dardanelles to threaten Constantinople. While the admiral wasted time in negotiations, the French ambassador, General Sebastiani, taught the Turks how to fortify their capital The English admiral found that he could do nothing, and repassed the Dardanelles, suffering some loss on the passage. The war on the Danube was not carried on with much vigour on either side. Alexander was occupied with the struggle against Napoleon on the Vistula; Selim III. was face to face with mutiny in Constantinople, having brought upon himself the bitter hatred of the janissaries by attempting to form them into a body of troops drilled and disciplined after the methods of modern armies. While the military art in Europe had been progressing for centuries, Turkey had made no other changes in its military system than those which belonged to general decay. Its troops were a mere horde, capable indeed of a vigorous assault and of a stubborn defence, but utterly untrained in exercises and mancenvres, and almost ignorant of the meaning of discipline. Selím was a reformer in government and administration as well as in military aflairs. He broke from the traditions of his palace, and began a new epoch in Turkish history; but the influences opposed to him were too strong, and a mutiny of the janissaries in Constantinople deprived him of his crown. He was allowed to live, but as a prisoner, while the puppet of the janissaries, Mustafa IV., was placed on the throne (May 1807).
A few weeks after this event the treaty of Tilsit cnded the war between France and Russia, and provided for the nominal mediation of Napoleon between Russia and the Porte. A truce followed between the armies on the Danube. Among the Turkish generals who had understood the necessity of Selím's reforms, and who were prepared to support him against the janissaries, was Bairaktar, commander at Rustchuk. As soon as the truce gave him freedom of action, Bairaktar marched upon Constantinople. Leading his troops against the palace, he demanded the restoration of Selím. As the palace gates were closed, Bairaktar ordered an assault ; but at the moment when his troops were entering Selim was put to death. Besides Mustafa there was only one member of the house of Osman remaining, his brother Mahmúd, who concealed himself in the furnace of a bath until the palace was in the hands of Bairaktar's saldiers. He was then placed on the throne (July 1808). For a while Bairaktar governed as grand vizier. He was rash enough, however, to dismiss I rart of his own soldiers from Constantinople. The janissariey attacked him in his palace. A tower in which he defended himself was blown up, and after a battle in the streets of

Constantinople between the janissaries and the remainder of Bairaktar's troops, during which the dethroned sultan Mustafa was put to death, the janissaries remained conquerors, and Mahmúd was forced to submit to their demands. The innovations of the late reign were abolished, and for a while Mahmúd seemed content to reign as servant of the reaction.
It is well known that plans for the partition of the Ottoman empire occupied Napoleon and Alezander at Tilsit. Austria, though unwilling to see Russia aggrandized, was prepared in the last resort to combine with the dismembering powars, if all attempts to prevent the execution of the plan by diplomatic means should fail. But after a few years the alliance declined and a war between France and Russia was seen to be inevitable. Meanwhile the conflict on the Danube had been resumed, and the Servians were still in arms. The Russians had advanced into Bulgaria and captured Silistria. England, which had made peace with Turkey in 1809, sought to reconcile the belligerents, in order that the czar might be free to employ his whole force against Napoleon. In May 1812 a treaty was signed at Bucharest, by which Bessarabia was ceded to Russia, the river Pruth becoming the boundary of the two empires. The Porte in this treaty promised to grant an amnesty to the Servians, to leave to them the management of their internal affairs, and to impose upon them only moderate taxes. These promises, however, were neither accepted by the Servians as a sufficient concession, nor were they observed by the Porte. The Servians continued to fight, and ultimately secured their autonomy about 1817 without help from Russia.

Mahmúd II. (1808-1839) was the only sultan of modern times who possessed the qualities of a great ruler. Brought up in the seclusion of the seraglio till the age of twentythree, when he was suddenly placed on the throne, it is surprising that he should have shown the power, the resolution, and the intelligence which marked his government. The dificulties of his reign were enormous. He belonged to an epoch when the Ottoman empire might fairly be considered as in actual dissolution. This he to some extent arrested, and the reforms which he effected, partial and imperfect as they were, have prolonged the existence of the Turkish state to our own day. The first and most obvious internal danger to be met was the insubordination of the provincial pashas. Against these rebellious servants Mahmúd waged a persistent and unvearying war, now employing them against one another, now crushing them by his own armed force. One of the most forPashs midable was Ali Pasha of Janina, who lad made himself anion master of Albania and part of Greece. When Mahmúd in 1820 threw his armies upon this chieftain, the outbreak of hostilities in Epirus was the signal for the insurrection of Greece. While Eypsilanti, grandson of a hospodar of Moldavia who had been put to death by tho Porte, raised the standard of revolt in Moldaria, asserting that Russia had promised the Christians its support, the Greeks of the Morea rose and exterminated the Turkish population among them. Hypsilanti was soon crushed; and the rising in the Morea was answered by massacres of the Greeks in the principal cities of the empire, and by the execution of Gregory, patriarch of Constantinople, the head of the Greek Church. These deeds of violence excited the utmost indignation in Russia. A despatch was sent to Constantinople, calling upon the Porte to restore the churshes which had been destroyed, to guarantee the inviolability of Christian worship in the future, and to discriminate in its punishments between the innocent and the guilty. These demands were presented as an ultimatum by the Russian ambassador, who, not receiving an answer within the time allowed, quitted Cosstantinuğle (27坞 July 1821) The
infuence of Austria and England, however, restrained the emperor Alexander from declaring war, and the Greeks were left to sustain their combat by themselves. As long as Ali Pasha was unsubdued, the only forces which the sultan could employ against the Greeks were irregular bands of volunteers. It was by one of these hordes that the fearful massacres of Chios, in the spring of 1822, were perpetrated. In that same spring, however, the overthrow and death of Ali set free the regular troops. Two armies of considerable strength now moved southwards frons Thessaly, with the object of reducing the country north of the Gulf of Corinth and then uniting to conquer the Morea. The western army, commanded by Omer Brionis, was checked by the Suliotes, and subsequently beaten back by the defenders of Missolonghi. The eastern army, after advancing under the command of Dramali into the Morea, was compelled to retreat. But the passes in its rear had been seized by the Greeks; on all sides the enemy closed in upon it; and it was only through the disorders of the Greeks themselves that Dramali's force escaped annihilation. Of those who survived the encounter most perished by sickness and famine in the neighbourhood of Corinth. Nor was the fortune of the Ottomans better at sea. The destruction of their admiral's vessel with all its crew by the fire-ship of the Greek captain, Kanaris, caused such terror that all further attempts to reduce the islands were abandoned, and the fieet returned to the Dardanelles.

After an interval of ineffective land warfare, the sultan determined to call upon Mehemet Ali, pasha of Egypt, for assistance. Mehemet had riser to power in the disturbed period that followed the expulsion of the French from Egypt. He had a more powerful fleet than that of his sovereign, and an army disciplined after the European system. In calling upon his powerful vassal for help the sultan must have been aware of the dangers which his aggrandizement would involve. Mehemet eagerly responded Mehemo to Mahmúd's call ; and his son Ibráhím, in command of a Ali's 88 . powerful armament, set sail in. the spring of 1824 from eistance Alexandria against Crete. This island was rapidly con- Tourkey quered, and Ibráhím, after failing in some combined operations against Samcs, crossed over to the Morea. Here he marched across the peninsula, carrying all before him. Nauplia alone maintained its defence, while the Egyptian sent out his harrying columns, slaughtering and derastating in every direction. From the Morea Ibráhím was summoned to assist the Turks, who had been for nine months unsuccessfully engaged in a seennd siege of Missoionghi. Tbráhím began his siege operations in the beginning of 1826; but it was not for three months more that Missolonghi. fell. The tide of Ottoman conquest moved on eastwards, and the acropolis of Athens capitulated in the following year. But the defence of Missolonghi had lasted long enough to bring the powers of Europe into the field. On the death of the emperor Alexander at the end of 1825, Canning sent th3 duke of Wellington to St Petersburg to negotiate conditions of joint diplomatic action on the part of England and Russia. A protocol signed at St. Petersburg on 4th April 1826 fixed the conditions on which the mediation of Great Britain was to be tendered to the Porte. Greece was to remain tributary to the sultan, but to be governed by its own elected authorities and to be independent in its commercial relations. The surviving Turkish population was to be removed from Greece; all property belonging to Turks, whether on the continent or the islands, was to be purchased by the Greeks. This protocol was developed into the treaty of London between England, Russia, and France, signed in July 1827, by which the three powers bound themselves to put an end to the confict in the East. In pursuance of this treaty the mediation of the
powers was offered to the Porte, and an armistice demanded. It was contemptuously refused. The united fleets of the powers consequently appeared before Navarino, where Ibrâ. him was assembling his forces for an expedition against Hydra. After a vain attempt at negotiation, they entered the harbour and fought the battle of Navarino, on 20th October 1827, in which the Turco-Egyptian fleet was totally destroyed. Canning had just died; his successors could only speak of Navarino as an "untoward event" and withdraw from further interference, leaving Russia and the Porte face to face. After a proclamation by the sultan calling the Mohammedays to arms, war was declared by Russia in April 1828. The moment was siugularly favourable for Russia, for Maḥmúd had, little more than a year before, exterminated the janissaries. After bringing over soldiers from Asia to make him secure of victory in the event of a conflict, he had called upon the janissaries to contribute a certain number of men to the regiments about to be formed on the European pattern. The janissaries refused and raised the standard of rebellion. Mahmúd opened fire on them with cannon, and the slaughter did not cease until the last of them bad perished. The great difficulty in the way of a military reorganization was thus removed, and the newly-modelled regiments were raised to about 40,000 men. Small as the army was with which he had to meet the Russian invasion in 1828, the campaign of that year was honourable to the Turkish arms. Though Varna fell into the hands of the Russians, Silistria and Shumla were successfully defended, and the Russians, after suffering great losses, were compelled to withdraw to winter quarters on the Danube. In the following year they advanced through Bulgaria, defeated the Turks at Kulevtcha, and, after the surrender of Silistria, crossed the Balkans under the command of Diebitsch. They reached Adrianople, which immediately capitulated. Diebitsch, concealing the real weakness of his force, sent out detachments towards the Euxine and the Egean, while the centre of his army marched on Constantinople. Had the sultan known the insignificant number of his enemy, he might safely have defied him. But the wildest exaggerations were current in the capital; Kars and Erzeroum had fallen into the hands of Paskiewitch, commander of the czar's forces in Asia; and in Constantinople the friends of the slaughtered janissaries threatened revolt. Mahmud listened to the adrocates of peace, and on 14th September hostilities were brought to a close by the treaty of Adrianople. This treaty gave Russia the ports of Anapa and Poti on the eastern coast of the Black Sea; but its most important clauses were those which confirmed and extended the protectorate of the czar over the Danubian principalities. The office of hospodar, hitherto tenable for seven years, was now made an appointment for life, and the sultan undertook to permit no interference on the part of neighbouring pashas with these provinces. No fortified point was to be retained by the Turks on the left bank of the Danube; no MFussulmau was to reside or hold property within the principalities. The Bosphorus and the Dardanelles were declared free and open to the merchant ships of all nations. The Porte further gave its adherence to the treaty of London relating to Greece, and accepted the act entered into by the allied powers for regulating the Greek frontier. An indemnity in money was declared to be owing to Russia; and by leaving the amount to be fixed by subsequent agreement Russia retained in its own hands the most powerful means of enforcing its influence at Constantinople. The suzerainty over Greece, which the powers had at first agreed to leave to the sultan, was by common consent abandoned, and Greece became an independent kingdom.

At the close of eight years of warfare Mahmu's's southernimost provinces were even more completely severed from
the empire.than Servia and the Danubian principalities. It was in rain that he had borne the humiliation of calling upon his vassal, Mehemet Ali, for help, and Mehemet's reward had now to be paid. Crete was offered to him; this, however, was far from satisfying his ambition, and in November 1831 he threw an army under Ibráhím into Palestine and began the conquest of Syria. The sultan now declared Mehemet and his son to bo rebels, and despatched an army against them. The first encounter took place in the valley of the Orontes. The Turks were put to the rout, and retired into Cilicia. Ibráhím following gained a second victory at the pass of Beylan, and, after crossing Mount Taurus, destroyed the last army of the sultan at Konieh, on 21 st December 1832. In this extremity Mahmuid looked for help to the European powers, and Russia at once tendered its aid At the request of the sultan a Russian fleet appeared before Constantinople. The French ambassador thereupon threatened to quit the capital ; and finally, under French mediation, terms of peace were signed with Ibrâhm at Kutaya (April 1833), the sultan making over to his vassal, not only the whole of Syria, but also the province of Adana between Mount Taurus and the Mediterranean.

Scarcely had this treaty been concluded when Russian influence again won the ascendency at Constantinople, and a treaty of alliance between Turkey and Russia was signed at the palace of Unkiar Skelessi, which in fact reduced Turkey to the condition of a vassal state. The form of the treaty was skilfully framed to disguise the relation of dependence which it created and the rigbt of intervention in the internal affairs of the Ottoman empire which it gave to Russia. Each power pledged itself to render assistance to the other not only against the attack of an external enemy but wherever its peace and security might be endangered. Another article declared that, in order to diminish the burdens of the Porte, the crar would not demand the material help to which the treaty entitled him, but that in lieu thereof the Porte undertook, whenever Russia should be at war, to close the Dardanelles to the war-ships of all nations. The control of the Dardanelles was thus transferred from Turkey to Russia, and the entrance to the Black Sea converted into a Russian fortified outpost. In this treaty, brilliant as it appeared, Russia had gone too far. The Western powers declared that they would not recognize it, and the most strenuous and systematic efforts were henceforth made both by France and England to diminish Russian influence in the East. France, anxious to gain in Egypt a counterpoise to England's naval power in the Mediterranean, made itself the patron and ally of Mehemet Ali. England adhered to the cause of the sultan, and on many occasions showed its hostility to Mehemet. Thns the two Western powers, though both in antagonism to Russia, were directly in conflict with one another in their Eastern policy. Mahmúd in the meantime was steadily preparing to renew the war with his rival. He obtained the services of Moltke and other Prussian officers in organizing his army, and, after a successful campaign against the rebellious tribes of Kurdistan, assembled his troops in the spring of 1839 on the upper Euphrates, and marched against Ibráhím. In the operations which followed the advice of the European officers was persistently disregarded by the pasha in command; and on 24 th June the Turkish army was annibilated by Ibráhím at Nisib. To complete the ruin of the empire, the Turkish admiral, Achmet Fewzi, sailed into the port of Alexandria arid landed over his fleet to Mehemet Ali. The sultan did not live to hear of the overthrow of his hopes. He died in the same week in which the battle of Nisib was fought, leaving the throne to his son 'Abd-ulMejíd (1839-1861).

The very suddenness of these disasters contributed ultimately to the preservation of the Ottoman envire, inasmuch as it compelled the powers of Europe to take action. The French and English fleets appeared in the Dardanelles. The czar saw that it was impossible to maintain the treaty of Unkiar Skelessi, and this treaty was tacitly abandoned. Russia now addressed itself to the task of widening the existing differences between France and England. France insisted on far more favourable conditions for Mehemet Ali than England would allort, demanding that Egypt and all Syria should be given to him in hereditary dominion, with no further obligation towards the sultan than the payment of an annual tribute. Russia and the other powers took part with England, and ultiinately, without asking the sanction of France, the four powers signed a treaty pledging themselves to enforce upon Mehemet the terms proposed by England, which practically reduced him to the position of an ordinary pasha in Palestine, while leaving him the herefitary governinent of Egypt. On the publication of this treaty Thiers, the French minister, prepared for war. He was, however, dismissed by Louis Philippe, and his successor, Guizot, accepted the situation. As Mrehemet Ali refused to give up his conquests, an Anglo-Austrian naval squadron was seut to co-operate with a Turkish force in attacking the coast-torns of Syria. Acre was captured, and Ibráhím, assailed by the mountain tribes of the interior, was forced to retire to Egypt. A convention made between Mehemet and Sir Charles Napier, who had appeared at Alezandria with part of the fleet, formed the basis of the ultimate settlement, by which Mehemet, after formal submission to the sultan, was recognized as hereditary governor of Egypt. Russia now united with the other powers in a declaration that the ancient rule of the Ottoman empire, forbidding the passage of the Dardanelles to the war-ships of all nations, except when the Porte should itself be at war, was accepted by Europe at large.
The young sultan entered on his reign nominally as an independent soverciga, but really under the protection of the European powers. His minister, Reshid Pasha, who had gained in an unusual degree the confidence of Western statesmen, understood the necessity of bringing the Turkish system of government more into harmony with the ideas of the civilized world. An edict, known as the Hattisherif of Gulhane, announced the speedy establishment of institutions "which should insure to all subjects of the sultan perfect security for their livos, their honour, and their property, a regular method of collecting the taxes, and an equally regular method of recruiting the army and fixing duration of sorvice." Scarcely had this edict been published when Reshid was driven from power by a palace intrigue. His reforming efforts, like those of Mahmúd, were not wholly ineffective ; yet little was realized in consparison with what was promised and what was needed.. The Turkish Government was soon discredited, and the intervention of Europe required, by conflicts between the Christian and Mohammedan tribes in the Lebanon, resulting in massacres of the former. After the convulsions of 1848 the sultan incurred the enmity of the autecratic courts by refusing to give up Kossuth and other exiles who had taken refuge within his dominions. The suppression of the national Hungarian Government by Russia ia 1849 had heightened in the emperor Nicholas the sense of his own power. He now looked forward to the speedy extinction of Turkey, and in 1853 proposed to the British ambassador, Sir H. Seymour, a plan for the division of "the slck man's" inheritance as soon as he should expire. Disputes between France and Russia relating to the rights of the Latin and Greek Churches in certain sacred places were made the occasion for the essertion of a formal claim on the part of
the czar to a protectorate over all Christians in Turkey belonging to the Greek Church. This claim not being acknowledged by the Porte, a Russian army entered the Danubian principalities. After ineffective negotiations war was declared by the sultan on 4 th October 1853. Hostilities commenced in Walachia, and the Turkish fleet was attacked and destroyed at Sinope. Englaud and France allied themeelves with the Porte, and landed an army at Varna in the spring of the following year. Silistria was successfully defended by the Turks; and, on the occupation of the Danubian 1 rincipalities by Austria, the allies took up the offensive and transferred their forces to the Crimea. The siege of Sebastopol followed, ending in its capture in Scptember 1855. Meanwhile Russian and Turkish forces were opposed in Asia. Kars maintained a gallant defence, but succumbed to famine tiro months aiter the fall of Scbastopol. The peace of Paris followed, in which Russia ceded to Turkey the portion of Bessarabia adjacent to the mouth of the Danube. The Black Sea was neutralized, Russia and the Porte alike engaging to keep no war-ships and to maintain no arsenals there. The exclusive protectorate of Russia over the Danubian principalities was abolished, and the autenomy of these prorinces, as tell as of Servia, placed under the guarantee of all the powers. The Porte published a firman, the Hatti-Humaiun, professing to abolish "every distinction making any class of the subjects of the empire inferior to any other class on account of their religion, language, and race," and establishiag complete equality between Christians and Mahommedans; the powers in return declared the Porte admitted to the advantages of the public law and concert of Europe. The absurd stipulation was added that no right should thereby accrue to the powers to interfere either collectively or separately iu the relations of the sultan with his subjects.

The Crimean War gave to part of the Balkan population twenty years more of national development under the slackened grasp of the Porte; and by extinguishing the friendship of Austria and Russia it rendered the liberation of Italy possible. But each direct proviso of the treaty of Paris seemed made only to be mocked by events. Scarcely a year passed without some disturbance among the Christian subjects of the sultan, in which the interference of the powcrs incariably followed in one form or another. A new series of massacres in the Lebanon in 1860 caused France to land a force in Syria. Walachia and Moldavia formed themselves into a single state under the name of Roumania, to which the house of Hohenzollern soon afterwards gave a sovereign. Bosnia and Montenegro took up arms. Servia got rid of its Turkish garrisons. Crete fought long for its independence, and seemed for a moment likely to be united to Grecce under the auspices of the powers ; but it was ultimately abandoned to its Turkish masters. The overthrow of France in the war of 1870 and the consequent isolation of England Ied Russia to declare the provision of the treaty of Paris which excluded its ships of war and its arsenals from the Black Sea to be no longer in force. To save appearances, the British Government denianded that the matter should be referred to a European conference, where Russia's will was duly ratified.
A ferr years later the horizon of eastern Europe risibly darkened with the coming storm. Russian influences were no doubt at nork ; but the development of national feeling which had so powerfully affected every other part of Europe during the 19th century could not remain without effect among the Christian races of the Balkan peniasula. In 1875 Bosnia and Herzegovirre revolted. In the meantime the government of 'Abd-ul-Aziz (1861. 1876) had become worse an.l worse. The state was bank rupt. Ignatieff, the Russian ambassador, gained completo ascendency in the palace, and frustrated every ottempt ob
be part of the better Turkish statesmen to check the larrent of misrule. His creature, Mal!míd Pasha, maintaned his place in spite of universal contempt, until a conspiracy was formed at Constantinople. which cost the sultan his throve (301t May 1876) and a fow days later bis life. His imberile euccessor, Murâd V., gave place efter a reigu of three months to "Abd-ul-Hamid II. The Bosuian insurrection had already extended to Bulgaria, and tlie slaughter of the Turkish inhalitants in certain villages bad been avenged hy massacres of the most feariul character. Servia and Montenegro took up arms. "The resources of European diplomacy were exhausted in fruitless attempts to gain from the Porte some real eecurities ior better government, and in April 1877 Rissia declared war. The neutrality of Austria had been secured by a secret agreennent permitting that country to occupy Bosuia and Herzagovina, if Russia should extend its influence beyond the Ralkans. The Bulgarian massacres had excited sueh Lorror and indignation in England that Lord Beaconsfield was forced to remain neutral. The ministry sontented itself with stating that England would not permit Egypt to be the acens of hostilities, nor acquiesce in any prolonged occupation of Constantinople by Russian troops. Turkey was thus left without an ally. The Russians entered Bulgaria in June ; and, while Rnstchuk was besieged, their advaneed guard under Gourko hurried across the Balkans. Meanwhile Osman Pasha, coming from WIddin, occupied and fortified Plevna on the Russian line of march. Against his redoubts the Russians, ill commanded, threw themselves in vain, and Gourko was compelied to fall back on the Shipka Pass. But in December the capture of Plevna, in which Roumanian troops cooperated, set free the invading army, and the march on Constantinople was resumed. The Balkans were passed in mid-winter ; Adrianople was oecupied; and the Turkish armies were captured or annibilated. The Russians now pressed forward to the very suburbs of Constantinople, and on 3d March 1878 peace was concluded at San Stefano. In Asia the Russians had captured Kars and were besieging Erzeroum, The treaty of San Stefano ceded to Russia the portion of Bessarabia taken from it in 1856, together with the 1)obrudja, and also Kars, Batoum, and the adjoining territory in Asia. It recognized the independence of Servia, Montenegro, and Roumania, and largely estended the territory of the first two. Bulgaria was constituted an autonomous state, thongh tributary to the Pcrte, and was defined so as to extend to the Agean Sea and to include the greater part of the country between the Balkans and the coast. Crete, Thessaly, and Epirus were to receive the neeessary reforms at the hands of a European compmission. To this treaty Great Britain refused to givo its assent, and vigorous preparations were made for war. The fleet was at the Dardanelles, and Indian troops were brought to Malta. Russia could no longer connt ou the neutrality of Austria. Under these circumstances the court of St Petersburg consented to submit the treaty to a European congress, which, after a secret agreement had been made between Russia and England on the principal moints of difference, assembled at Berlin. The treaty of San Stefano received various modifications, the princilal being a reduction of the territory inclnded in Bulgaria and the division of that state into two parts. Bulgarin north of the Balkans was convtituted an autonnmons principality ; Bulgaria eonth of the Balkans was marde into a province, with the title of Fastern Rnumelia, sulject to the authority of the sultan, but with a Christian governor and an autonomous administration. Anstria receised Pusnia and Herzegorina. The territory ceded to Servia and Montenegro ly the treaty of San Stefano. as well as that ceded to Russia in Asta, was somewhat diminished.

The Porte was advised to make some cesssun of territory to Greece, and the line of frontier sulsequently recomi mended gave to Greece Janina as well as Thessaly. The usual promises of organic reform were made by Turkey. By a sep,sarate convention England undertook the defence of Asiatic Turkey and received (yprus. The organization of Eastern Roumelia aras duly taken in hanil hy a European commission and lirought to a favourablo conelusion, but it mas not until a naval demonstration had been mads by England that the final cession of Dulcigno to the Monte negrins was effectel, and that Thessaly, without Epirus, was given up to Grecce. Alexander of Battenberg became prince of Bulgaria. By a popular movement in 188.5 Bulgaria and Eastern Rounmelia were united into a single state. This revolution oceasioned the utmost displeasure at St Petersburg; and under Russian infuence Prince Alexander was kidnapped and forced to abdicatis The Porte offered no armed resistance to the union.
(c. A. F.)

Literafure. The best work on Ottoman hintory it Von 日animer' Geschickbe deg Oamanischen Reichet (Burla. Pesth. 1834.35), which covers the perlod between 1300 aud 177 . The author avsiled hlroself of the writiogs of the Jurkjsh andslists ss well as of thise of his Europest predecessom: and all later Westers bistorisns of the empire have borrowed directly or ladirertly from his volumas. This valuable work has been iranslated lolo Fraach by Hellert, Hzstoire de t Emplre Ottoman (Paris, 1835-4i, 'thic best English worts Is Creasy's History of the ottoman Tusks (Lnddon, 185i-br): It is complled for the most part from Von Hammer. Primea Csntemis of Moldavia"t History of the Grouth and Decay of the Othman Fimpire (London, 1734) contsins maing interesting partlculars, bot is not slways trust worthy. The best Turkisb a uthoritles for tha nerisd $1300 \cdot 1750$ are-Sail-ud-Din, Tdj-uf-Tenarikh (1300-1520): Pechev, Jarihh, ie." History " (2520.1831); Na"wa, Turthh (1591 1650); Rasuia, forkk (16f17722): and Chelebl-2ada, Iorikh (1722-28), For the later period aes 1840-63) : Flrlay Greecc u nder (ithono Domlnátion (Edloburch 1856): Kanitg, Dnnow Bulgarien (1) Riple der Criechen (Stuttrart 18BA). Fir Trokesch-Osten. Deschichie des Abjalla der Griechen (Stuttgart, 186") ; Finlay. Greft Reiolution (Edinburgh, 1861): Bourchter's Codriagtoo: F. ind Molike, Ruisisch Turlische Feldzug (1828-20) (2d Ad., Berlia, 18i7): R. von Moltku, Brieje uber Zustande an der Turke\{ (1835-39)

 Crimea (6 rols. Lew ed., Edinhmrgh, $18: 5.80$). Eichmann, Reformen des OsmanfBChen Reichas (Berlin, 18se): V. Batir. Wnr in Ehigara (2 rols., London, 1879):
 tory. see A us Netternich's Popieren (V'lenns, 1880-84): Wellington, Derpatches (new
 Bulwer, Colmeriton (2 vols., lnadoa, 1871): Oulzot, Afemolre (Parla, 1858-67): blr F. Ilertslet. British and Foreign. State Fapere (Lnodon, 1819, aad still in progress), and Map of Europe by Treaty (1870): Parliamentary History : and

Sultans of tee Hotse of 'Obman,
The dates are those of the sultan's accession, according to the Moslem and Christian eras.
H. A.D.
'Osmán I.sod of Er-Toghrul 700

Orkhan son of 'Osmán I. 7261326
Muríd L........ son of Orkhan 7611359
Báyezíd I.
Intersegnum
5. Muharamed I.

6 Murád II.
NluhammerliI.
Bàyeziu II.
Selim I.
0. Suleymán I.

Solin II
2. Murád lll.

Muluammed IIJ
4. Ahmed 1.

Mustafa 1.
16. 'Osmán II.

Mustafa I.
17 Nuríd IV....
19. Ibráhim
19. Nuhammed ir
20. Suleymán II. .
. Abmed II
2. Mistafa IT
3. Alimed IIJ.

Mtamind
'Osmán IIJ.
26. Mustafa III.

Ahd-al-Hanivil
Selim III.
III.
.ou nf Murad I. $791 \quad 1389$
son of Bàyezid J. 816 1413
80n of Muhammed I. 8241421
$80 n$ of Murad I1......... .. 855 J451
son of Nuhamued IJ. ... $886 \quad 1481$
son of Bijezid Il. 918 1512

| sov of Selim I. | | 926 | 1520 |
| :---: | :---: | :---: | :---: | :---: |
| son of Sulayuntu | | | |
| 154 | 1566 | | |

son of Solim Il. 982 1574
aon of Murád III. 10031595
son of Muhammel I11. $1012 \quad 1603$
$8 G D$ of Ahmed h. 10271618
(restored)..... 10311622
son of Alimed J. 032 J 623
son of Ahmerl I. 10497640
son of Ibráhim 10581648
eon of Ibrálím 1099 3687
son of Tbráhím •. 1102 1691
$\begin{array}{cccc}\text { son of Muhammed IV. } 1106 & 1695 \\ \text { son of Mluhammed IV. } 1115 & 3703\end{array}$
soll of Mustafa II. 11431730
san of Mustiafa II. 11681754
sall of Abmed ITF....... 11711757
son of Ahmed III. 11871773
son of Mustafa III. 12031789
son of 'Abd-ul-Ilemil I. $1222 \quad 1807$
Mahmúd IT.son of 'Abd-ul-Hamid I. 1223 1S08
31. 'Abd-ul-Mejidson of Mahmid II....... 12551839
32. 'Abrl-n] 'Azizson of Mahmúd IT. 12771861
34. 'Ahd-nl-Ḥami.l J1. son of 'Abd-ul-Mejill. 129312931878

Part II.-Geography and Statistics.

Turkey, or the Ottoman empire (Osmanli Vilaicti), embraces extensive territories in south-eastern Europe, western Asia, and northern Africs, grouped mainly round the eastern waters of the Mediterranean, and slong both sides of the Red Sea, the west coast of the Persian Gulf, and the southern and western shores of the Black Sea. These territories form an aggregate of provinces and 91 tes, some under the dircct control of the oultan, come enjoying a large share of political sutonomy, some practically independent, either administered by foreign powers or rnled by hereditary ₹sssals or tributary princes. The present (1887) extent of the Ottoman empire is about $1,692,150$ square miles, snd its population $42,346,000$.

Europran Turtey.

1 Since the Russo-Turkish Wsr of 1878 (see shove), the extremely irregular frontiers of European Turkey are conterminous with Greece in the south, and in the north with Montenegro, Austria, Servia, and Roumsnia, being sepsrated from the last country partly by the Danube, partly by a conventional line drswn from Silistria on that river to Mangalia on the Black Ses. By the Berlin congress Roumsnia and Servia, hitherto vassal states, were made absolutely independent kingdoms, Roumsnia st the same time receiving the district of Dobrudja between the lower Danube sud the Black Sca, and Servia those of Nish and Leskovatz about the upper Morava river. Montenegro was also recognized as an independent principality, with an increase of territory, which gave it a ses frontier limited southwards hy the river Boyana, and including the Albanian ports of Dulcigno snd Antiveri on the Adriatic. The Greco-Turkish frontier was also shifted north, Greece obtaining most of Thessaly and a strip of Epirus (couth Albania), so thst since 1881 the border line runs from nesr Mount Olympus on the Gulf of Saloniki ($40^{\circ} \mathrm{N}$. lat.) west to the Pindus range, then south. west to the Gulf of Arta on the Ionian Sea. A etill more serious step was taken towards disintegration by the withdrawsl of Bulgaris and Esstern Roumelia from the immediate jurisdiction of the Sublime Porte. The former was constituted s tributary principslity, with representative institutions, and Eastern Roumelia was erected into sn antonomous province, both nuder'the guarantee of the Europesn porsers. But in 1885 the latter province declared for union with Bulgaria, and since then these two territories hsve practically formed one state administered from Sophia, Europe assenting and Turkey consenting (imperial Grman of 6th April 1886) on the retrocession to Turkey of the Moslem districts of Kirjali and the Rhodope. In the year 1878 Austria occupied and assumed the civil sdministrstion of the north-western provinces of Bosnia snd Herzegovina, besides taking military possession of the contiguous strategicsl district of Novi-Bazar. The direct possessions of the sultan have thus been redaced in Europe to a strip of territory stretching continuously 3cross the Balkan Peninsula from the Bosphorus to the Adriatic ' $29^{\circ} 10^{\prime}$ to $19^{\circ} 20^{\prime}$ E. long.), and lying in the east mainly between 40° and 42° and in the west between 39° snd $43^{\circ} \mathrm{N}$. lst. It corresponds roughly to ancient Thrace, Macedonis with Chslcidice, Epirus, and a large part of Illyria, constituting the present administrative divisions of Stambul (Constantinople, including a small strip of the opposite Asiatic coast), Edirneh (Adrianople), Saloniki with Kosovo (Macedonia), Jsnins (parts of Epirus sud Thessaly), Shkodra (Scutari or npper Albania). To these must be added the Turkisl islsnds in the Egean usually reckoned to Europe, that is, Thasos, Ssmothrace, Imbros, and, in the extreme south, Crete or Candis, with estimated (1887) areas and populations as under :-

Provincea.	Ares in Square Miles.	Populstion.
Constantinople	1,100	1,200,000
Adrianoplo	12,800	560,000
Saloniki and Kosov	\$2,000	1,900,000
Janins	14,000	1,440,000
Scutari	13,000	390,000
Candis and other ílands	3,800	230,000
Immediate poseossions	76,700	5,520,000
Bulgaria, tributary princlpality.	24,300	2,003,000
East Roumelia, sutodomons froviace	14,000	975,000
Bosnia, Herzegovina, and Novi-Bazar, occupied by Austria	23,670	1,504,000
Total Europesn. Turkey ajnce 1878	138,570	10,207,000
Dobrudja, ceded to Roumanis.	4,200	150,000
Nish sud Leskovatz, ceded to Servis	4,250	367,000
Duligno, \&c, ceded to Montenegro \ldots.........	2,000 2,000	116,000 100,000 ()
Total Europead Turkey before 1878..	151,020	10,940,000

For detailed accounts of the physical features, climste, fanna, and flora of these regions, the reader is referred to the articles Albania, Bosnia, Bulgaria, Constantinople, Epirus, Herzegovina, Macedonia, and Thrace. Here it will suffice to remark in a general wsy that the territory still directis administered from

Stambnl comprises one of the most fsvonred rcgions of the temperate zone. The extensive igneous snd metsmorphic system of the Great Balkans and Rhodope (Despoto-Dagh), culminsting in the Rilo Dagh (9000 fcet), interspersed in the Pindus range farther west by Permian formstions of unknown sge, snd succeeded in the extreme east (both sides of the Bosphorus) by Lower Devonian sandstones and some mors recent volcsnic rocks, is pierced by the four rich slluvial velleys of the Msritza, Kars-su or "Blackwater," Struma (Strymon), and Vardar. These rivers, flowing in nearly parallel south-casterly courses to the Ægean, collect most of the drainage of Roumelia, as Thrace and Macedonia sre commonly cslled by the Turks. The whole region thus enjoys a somewhst southerly aspect, sheltered from the north by the lofty crests of the Rilo Dagh snd northern Pindus, and in every way admirably suited for the cultivstion of most cereals, ss well as of cotton, tobacco, madder, the mulberry, the vine, snd fruits. Here maize yields snch a bountifnl harvest that, although originslly introduced from America, it hss long been regarded as indigenous, and for the ltalans is simply the Turkish corn ("gran +urco") in a pre-eminent sense. The inhsbitsuts also, Greeks intormingled with Turks in the esst, with Bulgarians in the west, sre intelligent snd industrions, noted for their skill in the manufacture of carpets sud other woven goods, of ssddlery, arms, snd jewellery.

Asiatic Tureey.

The msinstay of the Ottoman dynssty is the Asiatic portion of the empire, where the Mohsmmedan religion is absolutely predominsnt, and where the naturally vigorous and robust Turki race forms in Asia Minor a compact mass of many millions, far outnumbering any other single ethnical element and probsbly eqnalling sll taken collectively. Here 8lso, with the nnimportant exception of the islauds of Ssmos snd Cyprus and the somewhst privileged district of Lebsnon, all the Turkish possessions constitnte vilayets directly controlled by the Porte. They comprise the geographically distinct regions of the Anatolian plateau (Asia Minor), the Armenian and Kurdish highlands, the Nesopotamian lowlands, the hilly snd partly mountainons territory of Syria snd Palestine, and the coatlands of west and north-east Arsbia. The changes caused by the Russo-Turkish War of 1878 were the cession to Persia of the little district of Kotur on the eastern frontier and to Russia of the districts of Kars and Batoum on the north-east frontier, while to England were conceded the military occupation and adminietration of Cyprus. Asiatic Turkey is conterminous on the esstwith Russia and Persia; in the south-west it encloses on the west, north, and north-east the independent part of Arabia. Towards Egypt the frontier is a conventional line drawn from Akabah at the head of the Gulf of Akabah north-westwards to the little port of El Arish on the Mediterranean. Elsowhere Asiatic Turkey enjoys the ad. vantage of a sea frontage, being washed in the north-west and west by the Euxine, Egesn, snd Mediterranesn, in the oouth-west by the hed Sea, sud in the sonth-east by the Persian Gulf.

The above enumerated five natural divisions of Asistic Turkey are divided for administrative purposes into soout twenty vilsyets, which, however, have been and still are snbject to considersble fuctuations. The subjoined grouping, with areas and populstions, is based mainly on dats lately columunicsted confidentislly to the British Govercment by Mr Redhouse His estimates of population have been strikingly confirmed by the official returns that have fo the first time just been msde for certain provinces in Asis Minor and the Armenian highlands. Thus the censns of the Trebizond vila yet, completed in 1886, gave a total of $1,010,000$, which differs only by 7000 from Mr Redhouse's estimste for $1878(1,017,000)$. So also the juet completed (1887) censue for the Erzeronm vilayet gives 583,000 , or 998,000 inclnding the territory ceded to Russia is 1878, which is 45,000 higher than Mr Redhonse's estimste.

Natural Divisiona.	Provinces.	Area in Square Milea.	Population.
Asia Minor	(Bronssa writh Biga sod Ismid	32,000	$2,900,000$ $1,10,000$
	Kastamuni.....	21,000	1,200,000
	Angora	27,000	-860,000
	Konieh	99,000	1,280,000
	Adsas	16,000	470,000
	Sivas with	26,000	1,740,000
	Trebizond ...	12,000	1,010,000
Almenia andKurdista	\{ Erzeroum and Van	40,000	1588.000
	\{ Diarbekr with Aziz	88,000	21,000,000
		100,000	4,750,000
Mesopotamla	\| Basra with El. H Hesa	131,000	1,035,000
Syria andPalestide	(Alcppo .,.........	46,000	1,450,000
	Damasacuå		(1,560,000
	\{ Lehanon $\}$	85,000.	$\left\{\begin{array}{l}450,000\end{array}\right.$
	Jernsalem		(390,000
Arabla	\{ $\left.\begin{array}{\|l\|}\text { Eejaz } \\ \text { Yemen }\end{array}\right\}$................	200,000 (7)	$\left\{\begin{array}{l}720,000 \\ 830,000\end{array}\right.$
	Aremen ${ }^{\text {Archipelago }}$	200,000 1,700	\{830,000
	Samos ...	1,210	41,000
	Cyprus	3,670	235,000,
	Total Aaiatic Turkey....	691,680	24,382.000

Detailed descriptions of Asiatic Turkey mill be found under the hepazate sticles Arabia, Armenia, Asta Minor, Kurdistan, Mesopotamia, Palestine, and Syria. Of these natural divisions Asia Minor or Anatolia is by far the most inportaut for extent, population, and natural resources. It constitutee an elevated snd fertile plateau enclosed by irregular mountain ranges, which in the Taurus and Antitaurus on the south and east rise to from 7000 ta 10,000 feet, culminating in the volcanic Erjish-Dagh, or Argæus, nearly 12,000 feet high. The platean, which has a meau altitude of some 3000 feet, is depressed iu the centre, where the Tuz-gol (Tatta Palus) and several other lacustrine basins have at present no butfow, but which appear to bave formerly drained through the Sakaria (Sangarius) northwards to the Euxine. In the same direction, and in curiously parallel curves, flow the more easterly Kizil-lrmak (Halys) and Yeshil-Irmak (Iris), which carry off most of the surface waters of the plateau. The western rivers-Grsnicus, Xanthus (Scamander), Hermus, Simois, Meander-although renowned in song and bistory, are comparatively insignificant cosststreams, rushing from the escarpment of the plateau down to their fjord-like estuaries in the Ægean. None of the rivers are navigable to any distance from their mouths, end in the absence of good means of communication the very rich resources of the plateau in minerals and agricultural produce hare hitherto been little dereloped. Owing to the different elevations and varied aspects of tho land towards the Euxine, Egean, and Mediterranesn, the climate is extremely diversified, presenting all the transitions from intense summer heat along most of the eeaboard to severe winters on the lofty tabielands of the interior, which are exposed to biting winds from the Russian stoppes. Anatolia has an endless variety of nstural products, from the hardy boxirood of Lazistan (Trebizond vilayet) to the sub-tropical figs and grapes of the western coastlands. On the platean thrives the famous breed of Angora goats, whose soft, silky fleece (molair) forms a staple export.
Of far less economic importance are the Armenian uplands, forning a rugged plateau of limited extent, above which rise many lofty pcaks, culminating in the tower-cresterl Ararat (16,916 feet), the converging point of three empires. The long and terribly severe winters, intolerably hat short summers, aud generally poor soil of Armenia present a marked contrast to the far more temperate climate, rich upland valleys, and densely wooded slopes of the more southern Kurdistan highlands. But these advantages are counterbalanced by the generally inaccessible nature of the country, the want of good highways, and especially the lavless character of its inhahitants, who have undergone little social change since the days of their wild Karduchi forefathers. In the heart of this sovage region lies the magnificent basin of Lake Van, which, like Tuz-gol and the more easterly Urmiya, has no present outlow, but formerly, no doubt, discharged to the Tigris valley.
In the Van district lie the sources of most of the head streams of the Troris (q.v.) and Euphrates (q.v.), which have created tbe vast and fertile alluvial plains of Mesopotamia. This latter region, the seat of the sncient Accadian and Assyrian and the more recent Moslem cultures, forms a continuous plain from the escarpments of the Kurdistan highlands to the Persian Gulf, broken only in the north by the Sinjar Hills, and capable of yielding magnificent crops wherever water is available. But under Osmanli rule the eplendid system of irrigatiou works, dating from the dawn of history, has fallen into decay: the lover Euphrates now overflows its banks and converts much of the region above and below Kurnsh, at the coufluence of the two great arteries, into malarions marshlands. Hence the populous cities and innnmerable rillages fornierly dotted over the Babylouian plains haro been succeeded by the scattered hamlets of the Montefik and other smphibious arab trives.
This lowland region is separated by the more elevated Syrian desert or steppe from the much smalier and less productive provinces of Syria and Palestinc. Here the main physical features are at once simple and yet striking. The narrow, hilly region dis. posed north and south between the Nediterrancan and the desert, and stretching for over 400 miles between Anatolia and the Sinai Peninsula, culminates towards the centre in the parallel Libanus and Antilibanus (10,000 to 11,000 feet), enclosing between them the fertile depression of the Beka' (Coele-Syria). The stupendous ruins of Baalbek, standing at the highest point of this depression in $30^{\circ} \mathrm{N}$. lat., mark the parting line between the northern and contherr. watersheds of the region. Northwards flows the El-'Ași (Orontes), southwards tho Litani (Leontes), both through thie Beka in moderately stoping beils to the Mediterranean. For further particulars, see the articles Lebanoy, Jordans, Palestinfe In the Lebanon the Christian Maronite communities enjoy a measure of self-gorernment under the guarantep of France, while their pagan neighbours and hereditary foes, the Druses, are gradually withdrawing to the hilly 1 Tauran district beyond Jordan.
Turkey's Arabian possessions comprise, besides El-Hosa on the Persian Gulf, the low-lying, hot, and insaluirious Tebama and the south- western highlands (vilayets of Hejaz s nd Yemen) stretcling continuously along the cast side of the Red Sea, and including the
two holy cities of Meces and Medina. These are held by military occupation, probably at a loss to the imperial exchequer, and certainly against the wishes of the inhabitauts. But these drawback are supposed to be more than compensated by the political prestig6 derired from the possessiou of the Holy Land of Islam.

Africas Territories.

Siuce the abandonment of eastern or Egyptian Soudan in 1884, consequent on the revolt of the Mahdi, and the occupstion of Tunis by the French in 1881, Turkey in Africa has been reduced to the two territories of Egypt and Tripolitana with Barca and Fezzan, joiutly occupying the north-east corver of the continent. Of these Tripolitana slone is directly administered, constituting the pashalik or vilayet of Tripoli. Egypt, whose southern frontier Wrss temporarily fixed in January 1887 at the station of Akssho above Wady Halfa, near the second cataract in Lower Nubia (22° N. lat.), has formed a practically iddependent principality under the dynasty of Mehemet Ali since 1841, subject only to an annual tribute of $£ 695,000$ to the Porte. The areas and populations of Turkey in Africa were estimsted as follows in 1887:-

Tripoli, whth Barca and Fezzan, a vilsyetEgypt, tributary principality	Area In Sq. Miles.	Population.
	$\begin{aligned} & 485,000 \\ & 374,000 \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & 6,500,000 \end{aligned}$
Total Turkey In Africa	802,000	7,800,000

The Empire
Turkey is essentially a theocratic absolute monarchy, being sub- Admu; ject in principle to the direct personal control of the sultan, who tratio. is himself at once a temporal autocrat aud the recognized caliph, that is, "successor" of the Prophet, and consequeutly the spiritual head of the Moslem world (see Monammedanism). Eut, although tho attempt made in 1876 to introduce representative institutions proved abortive, this theoreticsl absalutism is yevertheless tempered not only by traditional usage, local privilege, the juridical and spiritual precepts of the Foran and its 'ulema interpreters, and the privy council, but also by the growing force of puhlic opinion and the direct or indirect pressure of the Europeen porers. The "ulemá form a powerful corporstion, whose bead, the sheikhu' 2 Isham, ranks as a state functionary scarcely second to the grend vizier, or prime minister. Owing to their intensely conservative and fanatical spirit, the 'ulemá have always been determined opponents of progress, and are at present one of the greatest obstacles to reform in a political system where the spinitual and temporal functions are inextricably interwoven. Besides these expounders of Koranic doctrine, the sovereign is to some extent bound also by the Mullecka, a legal zode based on the traditional sayings of Mohammed and the recorded decisions of his successors, having the force of precedents.
The grand vizier (sadr-azam), who is nominated by the sultan, presides ex-officio over the privy council (mejliss-i-khass), which, besides the sheikhu 'l-Islam, comprises tho ministers of home snd foreign affairs, war, finance, marine, trade, public works, justice, public instruction, ond warship, with the president of the council of state and the grand master of artillery. For administrativo purposes the immediato possessions of the sulton are divided into vilayets (provinces), which are again subdivided into sanjaks or mutessariks (arrondissements), these iuto kazas (cantons), and the kazas into nahiés (parishes or communes). A vali or governorgeneral, nominated by the sultan, stands at the licad of the vilayet, and ou him âre directly dependent the pashas, affendis, beys, and other administratars of the minor divisions. All these officials unite in their own persons the judicial and executive functions, and all alike are as a rule thoronghly corrupt, venal in the dispeneation of justice, oppressors of the subject, embezzlers of the public revennes, allogether absorbed in anassing woalth during their mostly brief and precarious tenure of office. ${ }^{?}$ Foreigners settled in the country are specially protected from exactions by the so-called "capitulations," in virtue of which they are exempt from the jurisdiction of the local courts and amenabie for trial to tribunals pres 1 See Sungtes, vol. xxii. p. 660 .
\& Major-General F. T. Haig, who travelled through the heart of yemen is the winter of $1586-87$, thms speaka of the adoinistration in that alionct exciusively Maslem provioce: ": The fiscal system of the Turks, if it were really carried into effect, would be by no means bad; but like every other department of the government it is ruined by the utter corruption that prevans in every branch of the administration from top to Zotton. No more elinnuent expounders of the evils and honelessness of their whole system are to be found their own officials " (Proc. R. Geng. Soc., August 1887, M. 487). Mr G. P. Devey also, coosul at Erzeroum, reports that in a part of that provincs the sheep-taz for 1885 was collected three times over: "On the first occasion the real nuniber had been underestimated, ond the collector therefore came again, and, Hoding that such was the case, marle the villagers pay the whole sumof $14,0 n 0$ piastres (9000 had been levied on the previous occasion), instead of the difference, on the pround that they had cheated the Government in not leciaring their whole stock. A third time a collector visited the caza, sod, wheo the villagera conles prodice no receipt that the tax hail been pain (for none hail beengiven), a third time the full surn was takea" (Cons. Rep., July 1887, p. 3).
aided over by their respective consuls. Cases between foreigners of different nationalities are heard in the court of the defendant, and between foreigners and Turkish subjects in the local courts, at which a consular drageman atteuds to see that the trial is conducted according to law.
The trade returns for tho last few years show that the country is slowly recovcring from the disastrous consequences of the RussoTurkish War. For the four years $1882-86$ the exports from and imports to Turkey were valued as under:-

	Exports. 1	Imports.		Exports. 1	Imports.
1882-5	£10,900,000	217,000,000	1584.5	£11,326,000	£18,263,000
1883-4	9,550,000	17,350,000	1855-6	10,690,000	17,702,000

The ahare of the chief foreign states in these exchanges is shown in the subjoined table ${ }^{2}$ for the years $1884-55$ and 1895.86 :-

	Imports from		Expores to	
	15S4-5.	1885.6.	18S4-5.	1ss5-6.
Grest Britain	28,304,000	1 $£ 7,735,000$	¢3,923,000	24,031,000
Frace.	3, $\begin{aligned} & 2,235,000 \\ & 3,800,000\end{aligned}$	$3,5056,000$	4, $1,213,000$	1,000,000
Rossia.	1,204,000	1,536,000	366,000	341,000
Italy	863,000	536,000	839,000	397,000
Greece. ${ }^{\text {United }}$	- ${ }_{275,000}^{395000}$	S15,000 166,000	500,000	437,000 10% 10000
United	558,000	186,000	${ }^{6}$	\cdots
Roumanis	22s,000	565,000	8s,000	96,000
Belgium	254,000	261,000	2,525	8,450

The chief stanles of the export thade are raisins ($£ 1,370,000$ in 1884-85), wheat ($£ 900,000$), cuttom ($£ 700,000$), opium ($£ 500,000$), olive oil ($£ 450,000$), valonia ($£ 450,000$), barley ($£ 332,000$), figs ($£ 200,000$), sesame ($£ 196,000$), maizo ($£ 194,000$), pulse ($£ 185,000$), nuts ($£ 184,000$), mohair ($£ 145,000$), wool ($£ 140,000$), date9 ($£ 15,5000$); and of the import trade cotton and cotton stuffis ($£ 4,350,000$, in 1883-84), cereals and flour ($£ 1,350,000$), sugat ($£ 1,150,000$), draperies, hesiery, \&c. ($£ 735,000)$, woollen stuffs $(£ 650,000)$, coffee ($£ 535,000$), metals ($£ 516,000$), ironmongery ($£ 475,000$), dyes ($£ 450,000$), silk and silk stufis ($£ 400,000$), petrolcum ($£ 375,000$), hides and skins ($£ 255,000$), live stock ($£ 236,000$), chemicals' $(£ 167,000)$, coal ($(£ 135,000)$.
In the next table are given the principal seaports of the empire with their imports, exports, and shipping for 1886 :-

	Exports.	Imports.	Vessels entered.	Tomage.
Alexrndria	£11,710,000	¢0,417,000	1249	1,020,000
Constantinople			9072	5,105,000
Smytns	4,331,000	2,706,000	1645	1,363,000
Saloniki	1,562,000	1,600,000	5440	574,000
1skanderoon and Tripoli	1,022,000	1,670,000	626	351,000
Samsun, with Ordu and Unieh ..	806,000	787,000	473	- 455,000
Trebisond and Kirasun	715,000	1,904,000	6063	478,000
Beyrut, with Akka and Haifa ..	602,000	995,000	4009	618,000
Kavala	457,000	201,000	78	145,000
Crete (six ports)	385,000	638,000	3760	401,000
Dédéagatch	298,000	100,000	\cdots	
Tripoli (Afrlca)	231,000	310,000	501	272,000
Burgas	222,000	281,000	1871	115,000
Gallipoli and Rodorto	212,000	155,000	-1.	
Suez	172,000	709,000	712	1,109,000
Berghazi	121,000	111,000	261	54,000
Jaffis	120,000	210,000	1000	459.000
Jeddah	118,000	?	1040	317,000

Exclnsive of coasting craft, the mercantile fleet of Turkey in 1885 consisted of 14 steamers of 11,000 tons snd 400 sailing vessels of 65,000 tons.

All branches of the foreign trade, together with most of the local traffic and the banking business, are almost exclusively in the hands of Greeks, Armenians, Jews, and foreigners. The Turks and other Mohammedans are engaged nearly altogether in agricnltural and pastoral pursnits. But the land, especially in Anatolia, is gradually passing from its Moslem owners in to the possession of Chistian mortgagees. Scarcely any accurate agricultural returns are avail2hle, except for one or tro districts. In tha Erzeroum vilayet in 1886^{3} the live-stock stood as under, -sheep $1,485,000$, goats 645,000 , oxen 470,000 , buffaloes 48,000 , horses 61,000 , asses 42,000 , mules 5000 ; beehives numbered 80,000 . The chief agricultural prodnce for the same jear was-wheat $16,690,000$ bushcla, barley $13,297,000$ bushels, beans 46,250 cwts., melons $17,000 \mathrm{cwts}$., mulberrics 10,000 crits., other fruits 40,000 crits. In the same year of the 12,000 square miles constituting the Trebizon 1 vilayet 2100 were under cultivation, 1860 uncultirated, 2520 woodland, and 5520 highland pasturage, the annual yield being about $2,300,000 \mathrm{cwta}$ of cereals, $1,000,000$ crts. of nuts, fruits, vegetables, \&C., and 500,000 crtts of fodder;

[^280]whilst of live-stock there were 300,000 sheep and goats, 150,000 horses, 25,000 mules and asses, 60,000 oxen. ${ }^{4}$
Previous to 1880 Turkey was commonly regarded as practically Financen banigrupt. But since then a considerable improrement has been cffected. Trustworthy data sre still wanting; bat a careful estimats gave the gross revenue and expenditire of 1884 at £T16,313,000 and $£ T 16,223,000$ respectively, the expenditure including over £T4,000,000 available for atate creditors. The public debt stood at $£ 106,437,000$ in 1882 . The sultan is reported to draw a sum of from $£ 1,000,000$ to $£ 2,000,000$ snnually from the public revenues for the support of the seraglio or imperial household of over five thonsand persons.

Until 1886 the military service, compulsory on all Moslems over 18 years of age, was kept up by 45,000 annual recruits drawn by ballot; but in November of that year universal conscription of the wholo able-bodied male popnlation was decreed. By this measure the army, hitherto reckoned at about $160,000 \mathrm{men}$, with a war strength of from 450,000 to 500,000 , will be probably raised to a permanent footing of $1,000,000$ effectives nnder the flag and in the reserves. These will continue to be grouped in the three categories of the nizam or regulars in active serrice, the redif or first reserve, and the mustahfiz or second reserve. There is to be a considerable increase of cavalry, all conscripts being allowed to join that branch of the eervice who have the means of providing themselves with miunts and equipment. For military purposes the empire is divided into seven divisions, with beadquarters at Constantinople, Adrianople, Monastir, Erzingian, Baghdad, Damascus, and Sanaa, all except Sanaa (for Yemen) hitherto furnishing an army corps for the nizam and two for the redif.

The nary at the begintiing of 1857 comprised 15 large and Nary. several smaller ironclads (monitors, gunboats, \&ic.), a number of mostly ohd-fashioned steancrs, and 14 torpedo boats, and was manned by 30,000 sailors and 10,000 narines (nominal strength), raised by conscription or voluntary enlistment and serving for 12 jears in the active and reserve classes.

Public instruction is much more midely diffused thronghout the Ednce empire than is commonly supposed. This is due partly to the tion Christian coramunitics, notably the Maronites and others in Syria, the Anatolian and Roumelian Greeks, and the Armenians of the castern provinces and of Constantinople. Education is practically limited amongst the Mohammedans to reading and writing and the study of the Koran. But amongst the Christians, especially the Armenians, the Greeks of Smyrna, and the Syrians of Beyrut, it embraces a considerable range of subjects, such as classical Hellenic, Armenian, and Syriac, as well as modern French, Italian, and English, modern history, geography, and medicine. Large sums are freely contributed for the establishment and support of good schools, and the cause of national education is seldom forgotten in the legacies of patriotic Anstolian Greeks. Even the Turks are bestirring themselves in this respect, and Ereat progress has been made dnring the last twenty years in the Erzeroum vilayet. ${ }^{\circ}$ In 1886 that province contained 1216 schools and 163 madrasas (colleges), with a total ettendance of 25,680 , including 1504 girls. Elsewhere few official statistics are available.
Besides administrative and financial reforms, one of the most pressing needs is improved means of communication. In Trebizond the route from the coast at Unieh through Niksar to Sivas has recently been completed to the limits of the vilayet. But the works on the more important road from Eirasun to Kara-hissar for the silver and lead mines at Lijessy are still suspended, owing to disputes between the contiguous provincial administrationa. Many of the great historic highways are also much out of repair. At the end of 1885 only 1250 miles of railway wera completed in the empire, of which 903 were in Europe and 347 in Asia. The chief lines are those connecting the capital with Adrianople (210 miles), Adrianople with Saremby (152), Saloniki with Uskub (150), Zenica with Brod (118), Uskub with Mitrovitza (75), and Kulleli with Dégéagatch (70) in Europe, and, in Asia, Scutari with Ismid (40), Smyrna with Ala-Shehr (130), and Smyrna with Denizli (170). By imperial decree (August 1887) a contract was granted to an English syndicate for the extension of the Ismid line and the construction of a system of Asiatic railways to extend to Baghdad within the space of ten jears.

The telegraph system is much more developed, comprising (1885) 14,620 miles, with 26,100 miles of wire and 470 atationa. The yearly arerage of letters and packages of all sorts aent through the 710 post-offices scarcely exceeds 2,600,000. Most of the fareign postal service is conducted through the British, Austrian, German. French, and Russian privileged post-offices.

For the ethnography of the Turks, see Tores.
(A. II. K.)

Part III.-Literature.

In all literary matters the Ottoman Turks have ahown themselves a singularly nninventive people, the two great schools, the old and the new, in to which we may divide their literature, being closely
modelled, the one after the classics of Persia, tho other after those of modern Europe, aud more especially of Frauce, The old or Porsian school Hourished from the fonudation of the entpire down to about 1830, and still contiunes to drag on a feeble existeuce, though it is now out of fashion and cultivated hy none of the leadiag men of letters. These belong to the new or European scliool, which sprang up some fifty or sixty years ago, aud which, in spite of the bitter oppusition of the partisaus of the olil Oriental system, has succeeded, partly through its own inhereut superiority and partly through the taleuts and courage of its supporters, in expeliing itg rival from the position of uudisputed authority which it had occupsied for upwards of five hundred years, For the present purpose it will be couvenient to divide the old achool iuto threc periods, which may be termed respectively the pre-classical, the classical, and the post-classical. Of these the first extends froms the early days of the empire to the accession of Suleyuáu I., 1301. 1520 ($700-926$); the secoad from that eveut to the accessiou of Mahmúd I, $1520-1730$ (926.1143) ; and the third from that date to the accession of 'A bil-ul-Aziz, 1730-1851 (1143-1277).
The works of the old echool in all its periods are entirely Persian in tone, seutiment, and form. We find in then tho same leautjes and the eame defects that we observe in the productious of the Iranian authors. The formal elegance and couveutional grace, alike of thought and of expression, so characteristic of persian classical literarure, pervade che works of the beat Ottoman writers, and they are likewise imbued, though in a less degree, with that spirit of mysticism which ruus through so much of the poctry of Irán. But the Ottomans did not stop here: in their romantic poems they chose as subjects tha favourite themes of their Persian masters, such as Leyli and Mejnio, Khusrev and Shírín, Yúsuf and Zuleykhá, and so on ; they congtantly allude to Persian heroes whose stories occur in the Shih-Namr and other storehouses of Iravian legendary lore; and they wrote their poems in Persian metres and in Persian forms. The meanevi, the kasida, aud the ghazel,-all of them, so far at least as the Ottomade are coucerned, Persian, - were the favourite verse-forms uf the old poets. A mesueví is a poem written iu rhymiag couplets, aod is usually uarrative in subject. The kasida and the ghazel are hoth monorliythmic; the first as a rule celelrates the praises of some great mau, while the second discourses of the joys and woes of luve. Why Peraian rather than A rabian or any other literature lecame the mollel of Ottonau writers is explaincd by the early history of the race feee Turks). Some two ceuturiea befora the arrival of the Tarks in Asia Minor the Seljuks, then a mere horde of savages, Lad overrun Persia, where they settled and adopted the civilizatiou of the people they had subdued. Thus Persiau, becaue the laugnage of their court and Government, aud when by and hy they pusherd their conquests into Asia Minor, and fomaded there the Seljuk empire of Rum, they carried with them their Persian culture, aud diffused it asoong the peoples newly brought under their svay. It was the desceudants of those Persianized Seljuks whom the early Otlouans found ruling in Asia Minor un their arrival there. What hatl lisjupeued to the Seljúks two centuries before hajpred 10 the Ottomans now: the less civilized race adopted thu culture of the uore civilized ; and, as the Seljuk empire fell to jieces and the Ottoman cane gradually to occupy its place, the sons of men who had called themselves Seljuks legan theuceforth to look upon themselves as Ottomana. Hence the vast majority of the prople whom we are accustomed to think of as Ottomans ara oo only by adoption, being really the desceudants of Seljnks or Seljukian sulyjecta, who of literary taste. An extraordiuary love of jurecedeut, the result apparently of cunscious want of original power, was sufficient to keep, their writers loyal to their carly guide for centuriea, till at leugth the allegiaoce, though not tha fashion of it, has been changed in our own days, aul Daris has replaced Shiráz as the shrine towards which the Ottoman scholar lurns. While conspicnously lackıng in creative genins, the Ottomaus liave always shown themselves possessed of recentire and assimilative powers to a remarkable degree, the resalt being that the puoblier of their writers both io prose aud verse is euomnons, Of course only a few of the nost probiueut, either throngh the intrinsir jnerit of their work or through the nolluence they have had in guiding or shapiog that of their coutemporaries, cau be soentioned in a brief review like the present. It ought to be premised that the poetry of the old school is greatly superior to the prose.
Ottomau literature may be said to open with a few mystic lines, the work of Sultan Veled, soa of Maulaná Jelál-ud-Dín, the author of the great Peraian poem the Mathnaws. Sultáa Veled flourished during the reign of "Osmáo I., though lie did not reside in the territory under the rule of that prince. Aoother mystic poet of this early time was "Áshik Pasha, who left a loug poem in rhyming couplets, which is called, inspliropriately enough, his Diván. The aocturnal expedition across the Hellesjont ly which Suleyman, the son of Orkhan, won Galipoli and therewith a foothold in Europe for his race, was shared in and celebrated in verse by a Turkisly wolle or cheftain mamed Gháa Fázil. Sheykhí of Keruiyáu, a
conten porary of Muhammad I. and Mrurad II., wrote a lengthy und still esteemed mesnevi ou the ancicut Persian romance of Nibusrev and Shirin; and about the same time laziji-oghlu gave to the world a long versified history of the Prophet, the Muluemmedtya. The writers mentioned above are the loost importaut previous to the capture of Constautinople; but there is little literaiure of rcal merit prior to that event. The unost notable prose work of this period is an old collection of atories, the Mislory of the forty Vezirs, said to lave been compiled Ly a certain Sheyklh-zada and dedicatcd to Murad II. A few years after Constantinople passed into the hauds of the Ottomaus, some ghazels, the work of the coutemporary Tatar prince, Dlir 'Alí Slim, who under the nom de plume of Nevay! wrote much that shows true taleut and poetic feeling, found their way to the Ottoman capital, where they were seen and conied Ly Ahmed Pasla, oue of the viziers of Mulammed II. The poems of this statesman, though possessing little merit of their own, being for the most part mere trauslatious from Nevayi, form oue of the laudmarks io the history of Ottoman literature. They set tho fashion of ghazel-writing; and their appearance was the signal for a more regular cultivation of poetry and a greater attention to literary style and to refiuemeut of language. In Sinán Pasha, another minister of Nuhanmed the Conqueror, Ottoman prose
found itg first exponent of ability; he left a relsgious treatiso found itg first exponent of ability; he left a relggious treatiso entitled Tazarru'at (Supplicatious), which, notwithstanding a too lavish employment of the resources of Persian rhetoric, is as remarkable for its clear aud Jucid style as fo: the veauty of many of the thoughts it contaius. The most noteworthy writers of the Conqueror'e reign are, after Ahmed and Sinán, the two lyric poets Nejátí and Zátí, whose verses show a considcrable improvement ulun those of Alimell Paslia, the romantic poets Jemálf and Hamdi, and the loetesses Zeynet and Mihri. Liko most of his house, H_{G} himmed II. was fond of poetry and patronized neen of letters. H_{t} hinself tried versification, and some of his lines which havo como down to us appear quite equal to the average work of his coutemporaries. Tweuty-oue out of the thirty-four sovereigos who Lave occupied the throne of 'Oszińn have left verses, aml among theso Selim I. stands out, not merely as the greatest ruler, warrior, aod etatesman, but also as the most gifted and most Persian lauguage; the excelleuce of what be has done in Turkish makes us regret that Le did so litile. The most prominent man of letters under Selín I. was the legist Kemál Casha-záds, frequently called Iln-Keuál, who distingrished limself in both prose aisd verse, He left a romantic poero on the loves of Yisuf and Zuleyklá, and a work cntitled Nigaristin, which is modelled both Mesilhí whose matter ou the Gulistán of Sa'dí. His conteuporary, kuown in Europe than any other Turkish joem, deservcs a vassing meution.
With tho accession of Selinu's son, Suleymán J., the classical Classica jeriod hegius. Hithcrto all Ottoman writiug, eveu the most highly perion. finished, hed been somewhat rude and uncouth; but now a marked inim rovement hecomes visible alike in the manaer and the matter, and authors of greater ability begin to make their appearance. Fuzuli, one of the four great pocts of the old scliool, seeuns to have been a uative of Baghilád or its neighhourliood, and prohably because an Ottonan sukject wheu Suleyináu took possession of tho old rapital of the caliphs. Hig language, which is very jeculiar, seems to be a sort of mixture of the Ottoman and Szerbijan dialecta of Turkish, and was most probahly that of the Persiau Turks of those daya. Fuzuli showed far more originality than auy of lis predecessors; fnr, although his work is uaturally Persisn in form and in gencral claracter, it is far from being a were ecluo from Shíráz or Ispralán. He struck out a new line for himself, and was Persian. An his inspiration to no previous writer. Whether Turk or: Persian. Au intense and passionate ardour brealhes in his rerses, and forms one of the most remarkable as well as oue of the most attractive characteristics of lis style; fur, whilo few cren among Turkish poets are more artificial than be. few seem to write witl grester earuestoess and sincerity. His influence ulou his suc cessors has scarcely been as far-reaching as might lave been expected, -a circumstance which is perhaps in some measure owing to the unfamiliar dialect in which he wrote, Besiles his Divan, he left a beantiful mesneví ou the story of Leylí aud Slejoún, as well as some prose works little inferior to his joctry. Bákí nf Constantinople, though far from rivalling lis contemporary Fuzúlí, Wrote much good jortry, including one piece of great excelleuce. au elegy on Suleymán I. The Ottomans liave as a rule heen juarticularly successful with elegies ; this one Ly Bákí has never been sur passed. Rúli, Lámi'i, Nev'i, the janissary Yalıya Beg, the muftı During the and Selim II. all won deserved distinctiou as joess. During the reign of A hmed I. arose the second of the great poets of the old Ottoman school, Nef'i of Erzerúm, who owes his pye-
enumeace to the hrilliance of his kasidas. But Ner'í conld revile as well as praise, aud such was the bitterness of sone of his revile that certain influential persouages who came muder his lash induced Muríd IV. to permit his execution, Nerí, who, lika Fuzúli.

Jurmel a style of his orn, had many to imitate him, of whom Sabri Shákir, a contemporary, was the most successful. Ná'ilí, Jevrí, and Fehim need not detain us; but Nabi, who flourished under Ibríhím and Mulammed IV., calls for a little more attention. "This prolific antlior copied, and so imported into Ottoman literature, a didactic style of ghacel-writing which was then being antroduced in l'ersia ly the poet Sa'ib; but so closely did the lnpil follow in the fontstepis of his master that it is not always casy to know that his lines are intended to be Turkish. A numbler of jocts, of whon Seyyid Vehbi, Rághib Pasha, Raluni of the Crionoa, Kelim, and S:imi are the most notable, took Nabi for their model. Uf these, Simi is remarkable for the art with whicli le constrncten his ghazels. Among the writers of this tine who dill not copy Nábí are Súbit, Risikh, and Talib, cach of whon endeavoured, with no grcat success, to open up a new path for linnself. We now reach the reign of Aḷmed III., durivg which fourishal Nedín, the greatest of all the poets of the old school. Little appears to be known about his lifa further than that he resided at Coustantinople and was alive in the year 1727 (A.H. 1140). Nedinn stands quite alone: he couied no one, and no one has attempted to copy him. There is ia his peetry a joyonsness and sprightiossa which at once distinguish it from the work of any other Turkish anthor. His ghazels, which are written with great elcganoe and finish, con. tain many graceful and original ideas, and the words he makes use of are always chosen with a view to harmony and cadence. His kasidas are almost equal to his glazels; for, while they rival those of Nefi in brilliancy, they surpass then in beanty of diction, ausl are not so artificial and dependent on fantastic and far-fetched conceits. The classical period cames to $8 a$ end with Nedíns ; its brightest time is that which falls betwecu the rise of Nefi and the eleath of Nedim, or, more roughly, that cxtending from the accession of Ahmed I., 1603 (1012) to the deposition of Al!med III., 1730 (1143).
We will now glance at the prose writers of this period. Under tho name of Humdyün Némui 'Imperial Book) 'Al' Chelcbi made a highly esteened translation of the well-known Pessian classic Anorr-i Suhcyll, dedicating it to Suleymán I. Sa*dul-Din, the preceptor of Murád III., wrote a valuable history of the empire from the earliest times to the death of Selim I. This work, thu Tuj-ut-Tevirikh (Crown of Clisooicles), is reckoned, on acconnt of its ornate yet clear style, one of the masterpieces of the old school, and forms the first of an uubroken serics of annals which are written, especially the later amoug them, with great minuteress and detail. Of Sa'd-ud-Din's successors in the office of imperial historiographer the most remarkable for literary power is Na'imá. His work, which extends from 1591 (1000) tu 1659 (1070), contrasts strongly with that of the earlier historian, being written with great directness and lucidity, combined with much vigour and picturesqueness. Evliyá, who dicd during the reign of Muhammed IV., is noted for the record which he has left of his travels in different countries. Abont this time Tash-köpri-záda began and "Atá-ulláh contunued a celebrated biocriaphy of the legists and sheykhs who latl tlourished under the Ottoman monarchs. Hájí lihalifa (see vol. xi. p.377), frequently termed Kátib Chelehi, was one of the nost famous men of letters whon Tarkey has prodnced. He clied in 1658 (1068), having written a great number of learncd works on history, biography, chronolory, geography, and other subjects. Tho l'ersianizing tenfeacy of this school rearhet its highest point in the proluctions of Veysí, who left a Lifc of the Projhet, and of Nergisi. a miscellaneous writer of prose and verse. Such is the intentiona] obscurity in many of the compositions of these two authors that every seutence becomes a puzzle, over which even a scholatly Ottonati must panse hefore lie can be sure lie has fonnd its trice meaning. The first printiog press in Turkey was established lyy an Hungarian whe had assumed the name of Ibrihim, aud is 1728
(1141) aprearel the first book printell iu that country; it was Vain kuli's Turkish translation of Jevheri's Arabic dictionary.

Coming now to the post-classical period, we find among poets wortly of mention Belígh, Nevres, Ilishınet, aud Sunbuli-záda Vehbi, each of whom niote in a style peculiar to himself. Thrée puets of mate-Pertev, Neshet, and Sheykl Ghalib-flowished puider Selim III. Jhe last-mamed is the fom'th grent paet of the olll school. IIusn is 'Ashl: (Beanty sid Love), as his great noem i: called, is an allegorical romauce full of tenderness and inaginative power. Ghailib's style isins original as that of Fuzuli, Neri, or Nedim. Tho most ilistinguished of the prose writers of this period are perhajs Kislnd, the inperial historiographer, 'Asim, who traing lated into 'lurkish two great loxicons, the Arabic Kímuis and tha l'ersiau Burhin-i Kilit, aud Kani, tho only humorous writer of uerit belonging to the old achool.

When we reach the reigu of Malınúd II., the great transition period of Ottoman history, during which the civilization of the West began to strugglo in earnest witlı tlaat of the East, we find the change which was coming over all thiags Turkish affecting literature aloug with the rest, and prepariug the way for the appearance of the new school. IThe chief pocta of the tiansition are Fízil Bey, Wásif, notable for lis not altogether unlappy atterapt to write verses in the spoken language of the capital, Izzet Molle, Pertev I'asha, "Ákif I'asha, aud the poetegses Fituct and Leylá. In the works of all of these, althongh we occasionally discern a linat of the new style, the olil l'ersian nianner is still supreme.

Moro intimate relations with western Europe and a pretty general stuly of the French langunge and literature, tngether with the steady progress of the reforming tendency fairly started under Malnuxd ll., have resulted in the birth of the new or moidern school, whose objects are truth and simplicity. In the political writings of Reshif nuel 'Ákif J'ashas we lave the first ${ }^{\text {collear note of }}$ clange; but the man to whom more thau to any other the new departure owes its anccess is Shinasí Efendi, who entployed it for poctry as well as for prose. The European stylc, on its introduction, encountered the nost violent opposition, but now it alone is used by living anthors of repute. If ony of these docs mite a pamplilet in the old manner, it is mercly as a tour de force, or to prove to some faithful but clagorous jartisan of the Persian style that it is not, as he sulyoses, lack of ability which causes the modern autlios to adopt the simpler ant more natural fashou of the West. The whole tone, sentiment. aud form of Ottoman literature have been revolutionized liy the uew echool : varieties of poetry liitherto unknown have been allopted from Europe; ou oltogether now branch of literature, the drama, las arisen; while the sciences are now treated and scriously studied after the system of the West. Among writers of this school who lave won distinction are Ziyid Pasha, Jevdet Pasha, the statexman autl histoman, Ekrem Bey, the author of a beautiful serics of mascellaneous poens, Zcməenrct, I İámid Bey, who holds the first place among Ottomen dramatists, and Kemál Bey, the learler of the mociera school and out of the most illustrious men of letters whoni his comatry has prolluced. He lias written mith conspicuous success in nlmost evely brancls of literature, -listory, romance, ethics, poetry, and the drama.
For the Turkish language, see j, 661 below.
There is $1 n$ work in exislence which gives a satisfactory accunst of Oltonaa literatare. Vou Hammer-Yurgstall's Geschichte der Usmunischen Dichtkurst (l'esth, 1836) is not always trustworthy and leaves much to be desired in manly ways. Other works on the puetry are La Muse Ottoniane, by Servau de Sugny (Paris, 1853); On the History, System, and 1'arieties of Turhish l'oetry, hy Redhnuse (Lonalun, 1878): Ottoman Poems, ly Gibb (Lomlon, 1882). of transletiens we bave Bás's Disan, by Haramer (Viensa, 1825); the Truvels of Extiyd, by Hamnser (London, 1834); Rose und A nchtiymdl (a poen of Fazli, a mediocre writer of the time of Suleymán I.), Turkish a and German, by Hammes (Pesth); Jes Conseits cie Nubi JFFendi, by Pavet de Courleille (1’aris, 185T): The II istory of the Forty Tezirs, by Gibj (looudon, 1886). An interesting aud valuable sketch of Ottoman puetry is giver by Eemal Bey in a series of articles in the Twkish Literary jounal M(ymui a-i Lihs-z-Ziyi.

TURKEI, an abbreviation for TUREEY-COCE or TURKEyHen as the case may be, a well-known large domestic gallinaceous bird. How it came by this name has long veen a matter of discussion, for $1 t$ is certain that this valuable animal was introduced to Europe from the New World, and in its introduction had nothing to do with Turkey or with Turks, eveu in the old and extended sense in which that term was aprlied to all Mahometans. But it is almost as unquestionable that the name was originilly applied to ine pird which we know as the Goinea Fowl (q.v.), and'there is no doubt that some authors in the $16 t \mathrm{~s}$ and 17 th coniurics curionsly confounded these twe species. As both birds became more cuminon and better known, the distinctiou was gradually perceived, and the name "Turkey." clare to that from the New Worldnossibly because of, its repeated call-note-to be syllabled
turk, turk, turk; whereby it nay be almost said to hare named itsclf (cf. Notes and Queries, sor. 6, iii. 1p. 23. 369). But eren Linnæus could not clear himself of the confision, and unlappily misapplied the name Meleargris, undeniably belonging to the Guinea-Fowl, as the generic term for what we now know as the Turkey, adding thereto as its suecific designation the word gallopavo, taken from the Gallopava of Gesner, who, though not wholly free from error, was less mistaken than some of his contemporaries and eren successors. ${ }^{1}$
${ }^{1}$ The Freach Coq and I'oule d'Inde (whence Lindon) involve no coutradiction, looking to the general idea of what Iudia then was. One of the carliest German names for the bird, Kalekuttisch Hün (wheuce the Scandinavind Falkon), must hare arisev trrough some mistake at present inexplicable; but this does not refer, as is generally supposcil, to Csleutta, Lut to Calicut on the Malabar coast (cf. Notes and Queries, ser. 6, s. p. 185)

The Turkey, so far as we know, was first described by Oriecho in his Sumario de la N゙atural Historia de las Indias ${ }^{1}$ (cap. xxxvi.), said to have beeu published in 1527. He, not unnaturally, includes both Carasows and Turkeys in one category, calling both "Pavos" (Peafowls); bat he carcfully distiaguishes between them, pointing out among other thiags that the latter make a wheel (hacon la rueda) of their tail, though this was not 60 grand or so beantiful as that of the Spanish "Pavo," and he gives a faithful though ehort description of the Turkey, The chief point of interest in hia account is tbat he speaks of the speciea having been already taken from New Spain (Mexico) to the islands and to Castilla del Oro (Darien), where it bred ln a domestic state among the Christians. Much labour has been given by varions naturalists to ascertaia the date of ita iatroduction to Europe, to which we can at present only make su approximate attempt; ${ }^{2}$ but after all that has been writtea it is plain that evideace concurs to show that the bird was established in Europe by 1530 -a very short time to have elapsed since it became known to the Spaniards, which could liardly have been before 1518 , when Mexico was discovered. The possibility that it had been brought to England by Cabot or some of his slaccessora earlier in the century is not to be overlooked, and reasous will presently be assigned for supposing that one of the breeds of Eaglish Turkeys nay have had a northenn origin; ${ }^{3}$ hut the oftca queted distich first given in Baker's Chronicle (p. 298), asserting that Turkeys came into Eagland in the same year-and that year by reputation 1524-as carps, pickerels, aud other commoditica, is whelly untrustworthy, for we know that both these fishes lived in the country long before, if iadeed they were not indigenous to it. The earliest documentary evidence of ita existence in England is a "constitution" eet forth by Crammer in 1541, which Hearno first printed (Lelaud'a Collcctanca, ed. 2, vi. p. 38). This names "Turkeycocke" as one of "the greater fowlea" of which an ecclesiastic was to have "on one in a dishe," and ita associstion with the Crane and Swan precludes the likelihood of any confusion with the Guinea-Fowl. Bloreover the comparatively low price of the two Turkeys and four Turkey-chicks served at a feast of the serjeants-at-law in 1555 (Dugdale, Origines, p. 135) points to their baving hecome by thst time abundant, and indecd by 1573 Tusser beara witaess to the part they bad already begua to play in "Christmaa husbandlie fare." In 1555 both ecxes were characteristically figured by Belon (Oyseaux, p. 249), as was the cock by Geaner in the same year, and these are the earliest representations of the bird known to exist.
There is no need to dcscribe here a-bird so familiar sad in these days so widely distributed. As a dcuizen of our poultry-yards (see Poultry, vol. xix. p. 640) there are at least two distiact breeds, though crosscs between them are much commoner than purely-bred examples of either. That known as the Norfolk breed is the tsller of the two, and is eaid to be the more hardy. lis plunuage ia almost entircly black, with very little lustre, but the feathers of the tail and some of those of the back have a brownish tip. The chicks also are black, with occasionally white patches oa the head. The other brecd, callad the Cambridgeshire, is much more variegated ia colour, and some parta of the plumage have a hright metallic gloss, while the chicka are generally mottled with browniah grey. White, pied, and buff Turkeys are also often scen, and if care be taken they are commonly found to "brecd true." Occasionally Turkeys, the cocks especially, occur with a top-bnot of feathers, and one of them was figured by Albin in 1738. It has been auggested with some appearance of probability that the Norfolk breed may be desceaded from the northern form, Meleagris gallopavo or amcricana, while tho Cambridgeshire breed may spring from the southern form, the M. mexicana of Gould (Proc. Zool. Sociely, 1856 , p. 61), which indced it very wuch resembles, especi-
${ }^{1}$ Purchas (Pilgrimes, iii. p. 995) in 1625 qnoted both from thia and from the amme suthor's IIystoria General, said to have been published a few years later. Oviedo's earlier work is only known to the present writer by the repriat of 1852.

2 The bibliography of the Turkey is so large that there is here no room to name the various works that might be citcd. Recent research has failed to add anything of importance to what has becn said on this point by Buffon (Oiscaux, ii pp. 132-162), Peanant (Arctic Zoology, 1p. 291-300), -an admirable summary, -and Broderip (Zoological Recreations, pp. 120-137) -not that all their statements can be wholly accepted. Earrington'a essay (Miscellanies, pp. 127-151), to prove that the bird nas known before the discevery oi Americs and was trausported thither, is an ingenious plece of special y, leading which his friend Pennant did him the real hindoess of ignoring.
${ }^{3}$ In 1872 Josselin (Nelo Eaglaid's Raritics, p. 9) speaks of the settlers hringing up "great store of the wild kiod" of Turkeys, "which remain about their houses as tame as ours in England." The bird was evidently plentiful down to the very seabosrd of Massachusetts, and it is oot likely to have been domesticated by the Indian tribea there, as, according to Hernandez, it acema to have been by the Mexicans. It was probably easy to take alive, and, as we know, capahle of enduring the royage to England.
ally in having its tail-coverts and quills ripped with white or light ochreous, - poiats that recent North-American ornithologists rely upon as cliatinctive of this form. If this smpposition be true, there would be reason to beljeve in the double introduction of the bird iato England at least, as already hinted, but positive information is almost wholly wanting. The northern form of wild Turkey, whose habits have been described in mach detail by all the chicf writers on North-American birds, is now extinct in the settled parts of Canada and the eastern States of the Union, where it was once so numerous; and in Mexico the southern form, which would seem to have been never abundant siace the conquest, has been for many years rare. Further to the south, ou the bordera of Guatemala and British Houduras, there exists a perfectly distinct species, M. ocellata. whoso plumage almost vies with that of a Peacock in splendour. while the bare ckia which covers the head is of a deep blue studded with orange caruaclea (Proc. Zool. Socicty, 1861, pl. xl.).

The genus Meleagris is considered to enter into the Family Phasianidæ, in which it forrss a Subfamily Meleagrinx, peculiar to North and Central America. The fessil remains of three species, have been described by Prof. Marsh-one from the Miocene of Colorado, and two, one much taller and the other smaller than the existing species, from the Post-Pliocene of New Jersey. Both the last had proportionally long and slender legs.
(A. N.)

TURKS. The use of the name "Turks" has never been limited in a clear and definite way from the time of the Byzantine authors to the present day. To the former, as also to the Arabs, it has a collective sense like Scythians or Huns; ${ }^{5}$ at the present day we are wont to restrict the name to the Osmanli Turks, though they themselves refuse to be called Turks, having, as they hold, ceased to be such in becoming imbued with Arabo-Persian culture. On the other band, when we speak of Uiguró and Patars, we mean tribes who style themselves Turks and really are such. It is only by the aid of historical and linguistical cvidence that we can determine the true limits of the Turkish name.

The national Turkish traditions, preserved by the Origin Persian historians Rashid ed-Din and Jowaini from Uigurian books which are now lost, point to the region watered by the river Selenga and its affluents, the Orkhon and the Tugila, as the primitive seat of the Turkish peeple. Pashid ed-Din combines this tradition with that of the Mohammedan descendants of Oghuz, who, in accordance with Moslem traditions, derive the whole Turkish stock from Japhet, the son of Noah, or more accurately from Turk, the son of the former (Yafiz-oglan), and pretend that he pitched his tents in the vicinity of Lake Issyk-kul (in Semiryetchensk). But, though Turkish tribes did Ethoo wander so far to the west, and even farther, in remotelogica antiquity, it seems pretty certain that the Uigurian tradi- affines. tion has preserved the memory of the true origin of the race, that Turks and Mongols were originally different stems of a single people, and that these two members of the Ural-Alitaic (q.v.) family were more closely related to each other than to any other member of the same family (FinnoUgrians, Samoyedes, Tungus-Manchus). The evidence for this rests, not on the ethnological system of Rashid ed-Din, though it affords a secondary argument, but on the indubitable affinity of the Mongolian and Turkish languages and the similarity of the ethnological characters of the two races. Here, of course, we do not argue from the Osmanlis, who have lost all their original race-characters and have become "Caucasians" of the best type, but rather, for instance, from the Kirghiz, who are considered as the typical Turks of the present day, and are described by Ujfalvy as being midray betreen tho Mongol and the Caucasian. We must now turn our attention to the wanderings of the Torks and their subsequent fate, - a rather difficult task,

[^281]owing to the want of accurate information. The enly truly historical recerds are to be feund in the Chincse chironicles and encyclepædias, ${ }^{1}$ where, however, the Turkish preper names appear in such distorted forms as to bo unrecegnizable; yet, till the 6th century of our era, no other accounts are agailable.
It is generally admitted that the first. Turkish people mentioned by the Chincse aro the Hieng-nu, who, wandering to the west, occupied the country south of the Altai Mountains and expelled (about 177 B.c.) the former occupants of those regions, the Yue-chi, ${ }^{2}$ Kan-goi, and Usun ($($-ssun), 一tribes of. unknown nationality, but possibly also Turks. ${ }^{9}$ The Hiong-nu were identified by Deguignes with the Huns, this denemination being used in a political or collective sense, and including, besides the Huns preper, the Ephthalites or White Huns, Avars, Bulgars, Magyars, Khazars, and Petchenegs, who are styled by several scholars Hunnic or Scythian peoples, -a term of no scientific value whatever, as the main body of these peoples censisted really of Mongol-Turks or Finne-Ugrians. As, however, separate articles have been devoted to most of these ethnical names, we alstain from further details, as alse from discussion of the question of the Turkish erigin of the Magyars and the Khazars, though that of the fermer seems to us as improbable as that of. the lattcr is certain. ${ }^{4}$ Be this as it may, the Hiong-nu are, so to speak, proteTurks, and the histery of the Turks proper begins with the Tu-kiu, the Chinese equivalent of the word Turk. Originally a division of the Hiong-nu, almost extirpated by wars, but miraculously saved from complete destruction, the Tr-kiu settled seuth of the Kin-Shan (Altai ?) Mountains, and were miners and iron-smelters in the service of the Juen-Juen " ("les Tartares Geou-gen" of Deguignes). About 552 A.D., hewever, they conquered their fermer masters and founded 2 mighty empire under princes who took the title of Tli khan. In these Tu-kiu Deguignes recogaized the Turks whe entered into friendly relations with Byzantium, and to whom Justin II. sent two ambassaders, -Zemarchus (568) and Valentinus (575). The narratives of these ambassaders are preserved in the fragments of Menander Protecter; and (comparing the variations of the corrupt text with the record of Tabari) from him we learn that at the first date the reigning prince was Sinjibulns (Arabic Sinjibu). ${ }^{6}$ From the Greek and the Arabo-Persian accounts it seems that Sinjibu put an end to the empire of

[^282]the Ephthalites or Haitals in these regions. He shared the conquered country with Khosrau I., the Oxus becoming the frontier between Irān and Turān. The memory of the empire of Sinjibu and of its political strength has been preserved by the Arabic authors Ibn Khordandbeh and Mas'udi, who inform us that the Turkish tribe of the Karluks, scttled in the provinces of Ferghāna and Shāsh (Tashkend), were of eld the mightiest of all the Turks, and that their sovereign, the khakan of khakans, was obeyed by all the neighbonring princes. To them they reckon the mythical Afrāsiāb and the historical Shāwa. ${ }^{7}$ It is.uncertain at what epoch the empire of the Karluks cane to an end; but the Chinese assert that about 650 they reduced the inhabitants of the Ili and Jaxartes territory, thoagb they wero unable to protect them afterwards against tho inroads of the Arabs under Kotaiba b. Moslim (706-714). The latter defeated the armies ecat to their aid under Kurbogha Noyon, a sister's son of the Chinese emperor. ${ }^{\text {Q }}$ It is also doubtful if the so-called Afrassiāb kings or Ilckkhans, whe reigned in the 10 th century at Käshgar and Balāsāghun and conqucred. (999) the dominiens of the Samanids in Transoxiana, belonged to the Karluks, as is supposed by Grigorieff and Lerch. or to the Uigurs, as others think.

The namo Uigurs is very common during the Mongolian period, and Rashid ed-Din aud others use it (by an ana chronism) in speaking of remote antiquity, though it is wholly unknown to the Arabic geographers, and, as Vambéry has shown, to the Uigurs themselves,-nay, even inpossible in the old Turkish language, in which the form would be Utkur. The name Ugur, Ogur, or Oger of Byzantine authors is really different; but Grigorieff has recognized the name in the corrupt Arabic form of Tagazgaz, which must be read Teguz-Ugur, ${ }^{9}$ the "Nine Ugnrs," to distinguish them from another division of the same tribe, the On-Ugur or "Ten Ugurs." In the time of Ibn Khordadbeh and Mas'udi these Turks had gained the snpremacy amongst their brethren, and had their residence at Kushän, which has been identified with the Kiao-chang of tie Chinese. According to their accounts, the Kiao-chang form the southern division of the Hui-khe (Hoei-ke of Deguignes), and were settled before the Christian era south and east of the Tian-Shan up to the Pamir plateau and the Kuen:Lun. The Arabic authers make them adherents of Manichreism; but, as the origimal Turkish Shamanism has developed into a dualistic system, this statement may rest on a partial misapprehension. It seems, $h o w e v e r$, certain that Buddhism reachcd these Turks on its way towards China, for we know that this religion spread in the $2 d$ century b.c. throughout the adjacent kingdom of Bactria, and was still flourishing when Hwen-T"sang visited (7th century) those regions. Thus we can understand why the old Ural-Altaic religion bears a Sånskrit namo. The northern division of the Hui-khe, which remained unknowis to the Arabs, wandered from the Selenga region to tuc sources of the. Yenisei, ranquished the Tu-kin (745): anc founded an empire from the Selenga to Lake Balkasti. till they were overthrown (841) by the Ha-kas (idealitied with the Kirghiz). These northern Uigurs are called by the Chinese Kao-che, Chi-le, Di-li, and Te-le. The histery of the southern branch is unknown, for the chronoiogicai data of Rashid ed-Din and Abn-1-Gbazi are contradictory and useless, though their statements that the prince bore the title of Idi-kut and submitted te the Mongols have full historical weight. That the Uigurs rose during the

7 Cp. Mas'udi, ed. Paris, i. 288 ; Nöldeke, ut $8 u p .$, 耳. 20e, $n_{0} 1$.

- The title Noyon, if the present writer's conjacture on the text of Tahari, ii. 1195, is right, proves that Karbogha was a Mongolian prines.
- Before this Reinaud had conjectured that the Tagazgaz were tlio same as the Uicurs. but failed to correct the Arabic comption.

Mongolian epoch to a certain supremacy by higher culture is attested by Rashid ed-Din and Jowaini, who often mention Uigurian books.

The Petchenegs (Gr. Пarछıvaкаи, Пат ξ เvaкıтаь; Magyar Besenyö; Lat. Bisseni) were of old, as Constantine Porphyrogenitus tells us, settled about the lower Ural and Volga, but were driven thence $(894-899)$ by the Ghuzz (Ouzoi). A part of them returned afterwards to their ancient abode, but the great majority wandered westward and settled on both sides of the Dnieper, driving the Hungarians before them to the Carpathians. Here they annoyed the neighbouring peoples by their raids, and engaged readily in the Russian expeditions against the Greck empire, till the policy of the Byzantine court incorporated large numbers of them with its own armies, sometimes with fatal result, as was experienced by Romanus Diogenes, when these auxiliaries passed to the camp of his antagonist Alp Arslan. At the period of the first crusade the Christian armies met with them on their march through Servia and Bulgaria; but the Petchenegs are not mentioned after the 13 th century. The learning of Orientalists has discovered faint traces of the language once spoken by them in the Turkish dialect of the Bosnians. ${ }^{1}$

Comans or Cumani (Russ. Polowtze, Magyar Palocz and Kun) is a term chiefly used by Europeans for the Turkish tribes that occupied Moldavia and the adjacent regions of south Russia. The origin of the name is uncertain; but it seems to be Turkish, though it rarely occurs in Oriental records. The most probable conjecture regarding the people denoted by it is that they were a mixture of Ghuzz and Petchenegs. Oriental authors know much more of their neighbours to the east, the Kipchaks, a very common mame of Turkish clans down to the present day. Sometimes both names are combined: Rubruquis speaks of the Coman Kipchaks. Anna Comnena informs us that the Comans spoke the same dialect as the Petchenegs, a dialect well known to European scholars from the so-called Codex Cumanicus. ${ }^{2}$ On the arrival of the Mongols in these regions, the Kipchaks suffered great lardships, and large numbers of them were sold as slaves throughout the Mohammedan world. From them sprang the Bahrite Mameluke sultans of Egypt (1250-1380). The Comans sought refuge amongst the Hungarians and became Christians; but their arrival, causing internal dissensions in Hungary, greatly favoured the adrance of the Mongolian arms. The remnants of the Comans, Kipchaks, and other Turkish tribes coutinued to dwell in southern Russia under Mongolian rule (see Mongols), whilst others became merged with the Hungarians.

The Ghuzz dwelt originally in the far East amongst the Toguz-Ugur, but migrated in the reign of the caliph AlMahd (755-785) to Transoxiana, where they adhered to the cause of the famous Al-Mokannae, not from religious predilection, but to satisfy their love of war and plunder. In the same manner they afterwards served every warlike prince in their neighbourhood, and entered like other Turks into the service of the caliphs. The main body of the life-guard of the 'Abbãsids consisted of Turks, and seme individuals rose very soon to high commands. Entrusted with the administration of distant provinces, they founded independent princely houses, such as those of the Tulunids and Ikhshids in Egypt (rol. vii. p. 750) and the Ghazntids (see Ghazni). In the meantime fresh bands of the Ghuzz poured from the east and the vorth into Turkestan, the region becoming overstocked with a nomadic population. Some of them sought and found an outlet to the west by occupying the territory of the Petchenegs and joining the Turkish population of southern Russia; but

[^283]the great majority, seeing the ruined state of the empire of the caliphs, crossed the Oxus and overran the northeru and eastern provinces of Persia. How these loose desultory bands were guided to subsequent victories, and moulded with the peoples amongst whom they settled into regular political bodies, bas been already narrated undeı SeljuEs (q.v.).

Meanshile they underwent a great change in their outward appearance, habits, \&c., as Rashid ed-Din relates, owing to the influence of the air and the water, and, we may add, to frequent intermarriage with the inhabitants of the countries invaded by them. After somo generations the change was great enough to strike their Iranian neighbours, who called them Turkmans (Turcomans), ${ }^{3}$ a term implying resemblance to Turks. It is therefore quite natural that the modern Osinanlis should have become Caucasians; for, if Rashid ed-Din in the 13 th century noticed the difference between a Turkman and a genuine Turk, the six centuries which have elapsed since amply suffice to have obliterated all original Ural-Altaic characteristics. The old name Ghuzz, originally, as it seems, the Turkish Oghuz (an eponymous hero of whom Turkish chronicles tell many fables) was wholly superseded by the new name Turkman and by other political names.

During the Seljukian period there arose in Transoxiana the empire of the Khārizm shahs, founded by Mohammed b. Anushtegin, upon whom the government of Kharizm (Khiva), -which down to 995 had belonged to princes of Iranian descent-was conferred (1097) by the Seljuk prince Barkiyārok. His son Atsiz became independent (1138), but his empire seemed destined to early ruin by the arrival of the Kara-Chitai, who defeated the Seljuk prince Sinjar (1141) and became for a time supreme masters of Turkestan. Nevertheless the Kharizmian dynasty held its place as a tributary sovereignty, and developed great power under the princes Takash and Mohammed his son. The former defeated and killed (1194) the last Seljuk prince of 'Irak, and the latter extended his dominion from the Caspian to the Indus and from the Jaxartes to the coast of "Omān. His cunning antagonist, the 'Abbāsid caliph An-Nāsir, invoked the aid of Jenghiz Khān, who scarcely required this invitation to attack Mohammed. The sack of Bokhära was followed in the same year (1220) by that of the other principal cities of Transoxiana and by the persecution of the unhappy prince, who died in a forgotten island of the Caspian. His son Jelal-ed-Din was driven towards India, but by a change of fortune ascended once more the throne of his fathers, till the new Mongol khān, Ogdai, sent fresh armies against him and forced him to seek refuge in the Kurdish Mountains, where he was murdered (1231). The fate of the Turks of Transoxiana was shared by their brethron in Asia and Europe, and new Mongol-Turkish empires arose, of which an outline has been given under Mongols. As the Mongol rule grew weaker, there arose in Persia and on the frontiers of Asia Minor the Turkman dynasties of the Ak Koyun-lu, the Kara Koyun-lu, the Zu'l-kadria, and the Ramazān Oglu, whose history is closely connected either with that of the rise of the Ottoman power (see below) or with the history of Persia (see rol. xviii. p. 632 sq.).

At the present day the Turkish people occupy a very extensive area, the centre of which lies in Khiva, Boklara, and Khokand, and which stretches from the lower Lena in Siberia to the Dannbe and from the Crimea to Kermann aud India. Politically they be-
${ }^{3}$ The term "Turkman" occurs in Arabic chrouicles of the Seljukian period, and even in Mokaddasi, p. 274. Rashid ed-Din therefore exaggerates in stating that it only came into use in his lifetime. Bnt Vamber'y's statement that it was applied of old to the descendants of Oghuz is contradicted by the genuine Persian text of Rashide ed-Din and the unanimous testimony of history. His objections against the popular etsmelog meutioned above are, however, not quite unfounded.

Jong to Russia, Turkey, Persia, China, end Afghauistan. In religion the grest majority are Mohammadans; a few tribes in Russia are baptized Christians; and some others adhere to the originsl Shemanism, which bas also influenced the religions conceptions of the Christian and Mohammedsn Turks. The principal Turkish peoples are the following. (I.) By a popular distinction the Turks of Siberia and Russia, with some colqnies in Turkey, are styled Tatars (see Tartars), though the Yakuta of northern Siberis are not usually iucluded in this term. The Yakuts, who are perhaps a mixture of Turkish and Tungus tribes, deviating from the ordinary course of Turkish wsnderings, are settled ahout the lower Lena, and number probsbly 200,000 (Rittig, 80,000; Lansdell, 210,000). ${ }^{1}$. They are nominslly Christians. (II.) On the Kirghiz (Kara-Kirghiz and Kazāks) and Kara-Kalpaks see Kirghiz ; but note that the Kipchaks, named there as a separate tribe, really form a subdivision of the Kazāk-Kirghiz, and are perbaps akin to the Kitai-Kipchaks, who are reckoned to the Uzbegs. (III.) Uzbeg is a political, not an ethnological denomination, originating from Uzbeg Khān of the Golden Horde (1312-1340). It was used to distinguish the followers of Shaibāri Khān (16th contury) from his antagonists, and became finally the name of the ruling Turks in the khenstes as opposed to the Sarts, Tajiks, and such Turke as entered those regions at a later date and are known to be Kirghiz, Kara-Kalpaks, or Taranjis. The Uzbegs ere therefore a mixed race of different Turkish tribes. According to Kostenko, ${ }^{2}$ they number 201,972 in the Russisn provinces of Sir-Daria, Ferghāna, Zerafshan, and Amu-Daria, andVambéry conjectures that there are 1,000,000 more in Bokhare, 700,000 in Khivs, and 200,000 under Afghan supremacy, giving a total number of about $2,000,000$. They are agriculturists or inhabit the cities; a few are semi-nomads. (IV.) The eastern Turks on the eouthern elopes of the Tian-Shan Mountsins at Kasbgar, Ustturfan, Ak-su, Sairam, Kutchs, Yarkand, Khotan, \&c., are the remnants of the ancient Uigurs; and of the same origin are the Taranjis (=agriculturists), gettled in the Ili valley and elsewhere. The nomber of the latter is given as about 50,000 ; that of the former may bo estimated from the statements of Forsyth ${ }^{3}$ and Kuropatkin ${ }^{4}$ at about $1,000,000$ for the whole district, the great majority being Turks and the rest Mohammedan Chinese (Sungans). (V.) The Turcomans (properly Turkmans) inhabit the steppe east of the Caspian and south of the Oxus from Astrabad to the Paropamisus. The term is sometimes takeu to include their brethreu in Persia and Asia Minor, who will be treated separately. The following ore the principal tribes:-(1) the Tchaudors and Imrailis, in the northwestern part of the Ust-Urt to the Gulf of Karaboghaz; (2) the Yomuts, extending from Khiva across the Ust-Urt to the Caspian, sud along the sea-board to Persia; (3) the Göklen, on Persian territory, between the upper Gorgen and Atrek; (4) the Tekkes, the most numerous tribe at the present day, divided into the Akhal Tekkes and the Merp Tekkes, 60 named after the centres where their greatest numbers are found; (5) the Sakars, on the left bank of the Oxus, to the east of Tcharjui, considered by Vambéry as a division of the Tekkes; (6) the Sariks, at Penjdeh and Yul-utan on the nortb-western elopes of the Paropamisus; (7) the Salors, ono of the oldest Turkman tribes, who suffered grestly from the Tokkes, till they finally migrated (1857) to Zurahàd in Persia, and left their former districts to the Tekkes and Sariks; (8) the Ersaris, on the Orus about Khoja Salih; and (9) the Ali-elis, ahout Andkhui. Their total number, inclusive of some Turkmans who do not belong to any of these tribes, and are scattered throughout the provinces of Syr-Daria, Amu-Daris, Zerafshan, and Astrakhen (about 16,000), is estimated by Vambéry at about $1,000,000$, and by Grodekoff at 1,170,000. The Turkmans are, with few exceptions, nomads, and were formerly the terror of their neighbours, who feared them as the "man-stealing Turks"; but since Merv bas been ennexed to Russia (1884) they bave been compelled to abaudon their predatory habits. ${ }^{\circ}$ (VI.) The Turkish nomads scattered throughout Persia are partly the descendants of the Ghuzz tribes that invaded the cotuntry at the Seljukian period; others hare migrated thither in the following centuries. They are known by the name of Ilat or Iliyāt (meaning tribes or neoples) and consist of several trihes, having each its own chieftain, the Ilkhāni, appointed by the shah. An accurate list of tho names of these tribes does not exist; but the most powerful and most numerous are the following. (1) The Kajars, who dwelt in Transcaucasia down to the time of Abbas the Great, by whom one division of them was compelled to settle at the south-east corner of the Caspian near Astrabad. To this division belongs the present dynasty of Persia. (2) The Afshars or Aushars, a very numerous tribo, in the province of Adarbaijăn (Azerbijon). A division is slso settled in the mountainous regions of the Antitaurus; its members are nominally subjects of the Ottoman empire h_{t} really independent. (3) The Shekakis and Shah-sewen. The 1 Cp. E. Petri, "Neueres uber die Jokuten," In Peterm. Mieth., 1887, vol.
xxxiii. p. 102 sq. xxxiii. p. 102 sq. 3 Turkestens
3 Report of G Mission to Yarkant.

4 Koshgaria, translated by W. E. Cowan, Calcutta, 1852.
The Merv. Nasis, London, The Turcomuns, trauslated by R. Michell ; O' Donoran, Yambery, Sh, London, 1882 ; and the jouruals of travellers in these regions, Vambéry, Schuyler, Lessar, sc.
latter is not a tribal, but a political name, meaning those who lora the ehah, i.e., partisans of the Șafari dynasty (1499-1736) and the Shīite faith. (4) Therkers Koyun-ln, near the town of Khon, the remnants of the once powerful tribe named sbove. Besides these, many other names are recorded of tribes wandering in the Trans csucasian regions and in the provinces of Adarbaijen and Mazenderan, but many of them are very uncertsin. All these Turks are comprehended nnder the general denomination of Adarbaijāni Turks; they are nomade or seni-nomads and speak a peculiar Turkish dlalect, the Turk Azeri or Adarbsijāni Turkish. Some specimens of it hsve been published by Chodzko, Bergé, Melgunoff, and Barbier de Meynard. Iu the southern provinces of Persis are settled the (5) Kashksis, (6) Abul-werdis, (7) Kara-Gözlüs, (8) Bahsr-lu, and (9) Inan-lu. To the first named are reckoned by some the Khalaches, ${ }^{\text {ban }}$ old Turkish tribe which was already settled near Herst before the Se?jukian period and has given rise to some Indian dynasties. Vambery thinks that the total number of Iraniau Turks msy emount to about two millions, or, if wo sdd the Csncasian Turks under Russian supremacy, three millions. ${ }^{7}$ (VII). The Osmanlis, under which term ate comprehended sll the Turkish subjects of the sultan of Turkey, consist chiefly of the following elements. (1) Turkmanian tribes and Turks of every description, who poured into Asia Minor after the defeat of Romanus Diogenes (1071); to these we may also reckon the Ottomans proper, though they did not enter the country till after the downfall of the Kharizmian empire. The Mongolian invasion drove the obscure ancestors of this the most illustrions Turkisb dynssty to Asia Minor, whence they gradually epread to the province of Khodawendikyār (Bithynis). (2) Tatara scattered amongst the rest of the population, but forming a large colony in the Dobrudja. In part they occupied their present settlements before the conquest of Constontinople; but others have immigrated into Asia Minor during the last two centuries from the Crimea and Caucasus, since the Russian conquests of those regious. They have fared very badly under Turkish rule, as is attested by Captain Wilson. That tribes of Turkish origin were settied in Europe long before the rise of the Ottoman power is known from the Byzantine authors, who mention a colony of them (about 30,000) as esrly as the 10th century in the Vardsr valley in Macedonia. ${ }^{9}$ (3) The so-called Kizil-bashis or "Red Heads," a nickname of the Sbitic Turkish immigrants from Persia, who are found chiefly in the plains from Kara-hissar along Tokat and Amasia to Angora. During the wars with Persia the Turkish sultans forced them to settle here. They are agriculturists and highly praised by several travellers for their honesty and laborious bsbits. (4) Turkmenian tribes-Yuruks and Götchebes (words meaning "nomads" and characteristic of their most distinctive quality), -who occupy the mountains in summer and descend into the plsins in winter, though some are settled iu the plains of Cilicia near Tsrsus and Adaua, the rest being semi-nomsds. Reclus estimates the total number of Turks in Europe at 1,500,000 and 35,000 Tatars. For Asia Minor statistics are wanting; but P. de Tchihatchef, the chief authority for matters relating to this peninsula, thinks that $6,000,000$ is a fair estimate for the total population, including Greeks, Armenians, Kurds, \&c., but excluding the islands. It appear's therefore necessary to reduce the already moderate number of Osmanlis given by Yambéry $(10,000,000)$ to about $6,000,000$.

Language.

The Turkish, or, as some prefor to say, the Turco-Tatar language, Dialedy is a member of the Ural-Altaic family (see UraL-Altalc) and cal raf comprehends many dialects, which differ considerably in their ties. vocabulary and in a less degree also in their grammar. The study of these dialects has made sreat advances during the 19 th century. Abel Rémasat in. 1820 Enew only of four, viz, the Uigurian, Jagatai, Tatar, and Osmanli. Béresine in 1848 distinguished wine. teeu, grouned round three types, viz., (1) Jagatai dislects (Uigur, Coman, Jagatsi, Uzbegian, Turknasni, Kazani literary lsnguage); (2) Tatar dialects (Kirgbizian, Bashkiri, Nogai, Kumi, Karatchai, Kara Kalpaki, Meshtcheryaki, and Siberiau) ; (3) Turki dialects (Derbendi, Adarbaijāni, Krimmi, Anadoli, and Rumili). Böhtlingk (1851) added the Yakuti, and Shaw (1877) the Eestern Turki. Radloff (1882) subdivided tho one Siberisn dialect of Béresino into more than 3 dozen different dialects. On phonetic principles the last-name? proposes the following classification, which seems, however, not quite satisfactory: (1) Oriental dialects (Altsi, Baraba, Lebed, Tuba, Abakan, Kitarik, Soyon, Karagass dialects, and Uigur) ; (2) Occidental (Kirghizi, Irtish, Bashkir, and Volga dialcets, with numerous subdivisions) ; (5) Central-Asiatic (Taranji, Jagatai, \&c.) ; and (4) southern (Turkmani, Adarbaijāni, Caucasian, Anadoli, Krimmi, and Osmanli). It would be premature to criticise this systera till the author publisbes the second part of his grammar, which will treat of the real etymological phenomens of the north Turkish dialects. ${ }^{6}$ Cp. tho Tabakot i. Nâsiri, by Major Raverty, p. 553 sq., where the name is incorrectly writtea Khalj.

Cp. Lady Sheil, Glimpses of Life and Manners in Persin (London, 185é), and various articles by'Von Seillitz in the Bussischo Rivue, \&c
${ }^{8}$ Ca, Lejean. "Ethnograplie Uer Europaischen Turkel," in Peterm. Ergince. Heff 4 ($1 \mathrm{~S} \dot{0} 1 \mathrm{l})$, 1. 33.

On the phenetical characteristics of each of these dialects ample information is given in his Phonetik der norrdichen Turk. Sprachen. These crent dialectical variaties are aasily accounted for by the want of a commen Turkish litarary languase nnderstood everywhere. The soost developed and refined Turkish tongue, that of the Osmanlis, which is rery rich in literary nonuments, has admitted too many Arabic and Parsian words, grammatical formo, and even whola sentences, and has been too much spoiled by the precepts of Persian rhatoric, to produce a popular literature. With tha exception of some talee and novels, this literature has remained an exotic production, unintelligible even to the poople who are snppused to apeak the sams language (see TUreEEY, p. 656 above). The Jagatai and Uzbegian dialects would have answared the purpose better, and preseat tha best typo of a (lypothetical) general Turkish languaso, of which the most prominent fastures masy ba here given.

The Arabic alphabet is in general nse, thongh come tribes in Rnssia make use of Russian and others in Asia Minor of Armenian and Greek characters. But the oldest Turkish alphabet, the Uigurian, is a direct transformation of the Syriac, and has foarteea charactars. When and by whom it was invantad is uncertain; the Arabic author of the Finrist does not mention it, and the Uigurian MISS. which $\pi \theta$ possess date for the most pert from the 15th cantory. It is commonly supposed to lee the rork of Nestorian missionaries, who may have preached the Gospel amongst the Turks as early as the 6 th or 7 th century. In the aga of Sinjibn the Turks aeem to have used the Sogdian characters in their political intercourse with Byzantium; but as a rule they remsincd illiterate till their convarsion to Islam. As the Semitic languages are charactarized by the threa-radical system and the constancy of the congonsats, all Ural-Altaic languages ara dominated by the law of vowel harmony snd agglutivation. We bave therefore in Turkish a double range of vowels, commenly eight in number, of which $a, i, 0, u$ denuta the hard or guttural and a, k, b, t the soft or palatal vewels, the remels in every separate word beiag of the same range. The i only is in most dialects indifferent. The lam of agglatination is derived from tho same principle, but has regard, not only to the vorsels, bnt also to the censonants and the syllables; it is an abose of the term if it is taken to mean that in Tarkish no real etymology exists, but only an agglutination of themes and roots.

As regards the etymology wo observe the absence of gender, of a coparate form for the dual, and of the nominativa in the neuns. There are commonly five oblique cases-genitive, dative, accusative, commorative, and ablative-though Bolitlingk has shown that in the Yalat dialect, which distinguishes ten cases, the genitive is wanting. The adjective, naless used as substantive, is uninflected both as attribute and as predicare; the comparativs is formed by tho suffix -rak (-rck), and takee the compared nean in the ablative; the superlative has no apecific form, thongh a peculiar intensive is formed by prefixing to the edjective (though in writing always as two words) a syllable beginning with the same consonant, and onding in a labial p or m : for instance, kap kera, "intensely black"; kip kizil, "intensaly red." The decimal syatem has prevailed over an original septimal eybtam. The article does not exist. The relative pronoun has bean borrowed from the Persian in many dialects ; it is absent in the original Tarkiah. The theme of the verb is seen in the imperative, from which are derived rarious narticiples and gerunds, asad either separately or combined with pronominal suffixes. Thase combinations onpply the forme of the simple tensas and moods, though different dialecta use different forms of participle and gernud for this purposs. Compond tenses and moods are expressed by meens of anxiliary verbs. The theme of the imperative may, by the addition of a simple consonant, vowel, or eyllable, be modified into a negative, passive, reflexive, raciprocal, impossible, causative, or doubly cansative form, which are con. jogated in the same manner as the erigiaal form. The causative forms again admit of a passive negative, sce, so that in fact the number of possible rerbal forms derived from a single theme bas been calcnlated by Shaw at 29,000 . There are ne prepositions, only postpositions.
In ayntax the order of the Fords and clauses of a period is almost the incarse of what seams natural to us, the snbject and its predicate being placed st the ond, while all hypothetical, causal, prohibitive, -in chert all subordinate-clauses come first. In the simple style of illiterate peasants, and in popnlar romances and tales, this method presents no inconveaience as regards easy understanding, but in the artificial, often excessively logg periods of an Osmanli etylist, is presents serious difficulties to a European reader. Bibliography.-(a) General works on the history and ethography of tha Turks: Deguignes, Histoire des Huns; Vambéry, Das Türkenvolk (Leipsic,
 TFostotschns tie Kitaiske Turketan; Noumann, Dis Vodker des südlichen Russland (felpsic, 1847). Fe may edd the historians of the Mongols-D'Obsson, Howorth, and others-the nomerons journale of travellers emongst Turkieh peoples, and several articles in the Fussische Rovue, Journal of the Royal Asiatic
${ }^{1}$ For details about the spread of Christianity amongst the Turks, eee Yula, Cathay and the Fiay thither, i. 90-100.

Soc., \&c. A full blbllograpl.y of wooks ralsilng to Cer tral Asla may be found in V. J. Mejoff, Recusil du Turkestan (St Potershurt, 1878-85), and a useful cscorpt at the end of vol. II. of Lansdoll'e Russian
have already been cited in the conrse of Ehis article.
(b) For the etody of Turkim dielects the snbjoined boake mey be used. (1) Osmnnli : the grammars and dictionaries of Redliouse, MBllour, Zenker, Barbier de Meynard, \&c. (2) UiguT: tha works of Klaproth; Abol Remusat Recherches sar les Iangues Tartases (Paris, 1820); and Vgmbery, Uigurischs Sprachmonuments und das Kuda:kus Billk (lnnsbrack, 1870). (3) Jagatai: tha dictionsry of Pavet de Courteille, and Vambéry, Jagataische Sprachstudicn (Leipsic, 1867). (4) Eastern Turki: Shav'o gremmar and voce bulary (Jour. Roy. As. Soc. of Bengal, 1977). (5) Tatar d lalects: the gramrars of Kasimbeg. Zenker (Leipsic, 1848), 1977). (5) Tatar dialects: the grammars of Kasimbeg. Zenker (Leipsic, 1848), Mminski (Kazan, 1869), and Radlof (Lelpsic, 18ss); Dictionary of Trojanski (K2zan, 833)ibly Radof, Proben der Volkstitcratur der füzitschen Stämms Süd-Sibiriens (St Petersharg, 1ST²). And (6) 2"akuti: Bultlingtr, Dio Sprachs dor Jakulen (St Petersburg, 1s51). (M. T. H.)

TURJIERIC, the tuberons root of Curcuma longa, L. an herbaceous perennial plant belonging to the natural order Zirgiberacex. It is a native of southern Asia, being cultivated on a large scale both on the maiuland and in the islands of the Indian Ocean. Turincric bas been used from a remote period both as a condiment and as a dye stuff, and to a more limited extent as a medicine. In Europe it is employed chiefly as a dye, also as an ingredient in curry powder and as a chemical test for alkalies. The root is prepared by cleaning it and drying it in an oven. There are several varieties (Madras, Bengal, Gopalpur, Java, China, and Cochin turmeric), differing chiefly in size and colour and to a slight degree in flavour. Some of these consist exclusively of the ovate central tubers, technically known as "bulbs," and others of the somewhat cylindrical láteral tubers, which are distinguished in trade as "fingers." Poth are hard and tongh, but break with a short resinous or waxy fracture, which varies in tint from an orange brown to a deep reddish brown.

Turmerio has a characteristio odour and an aromatic taste. The aroms it owes to a complex essential oil, which consisto principally of en alcohal called turmerol (formula $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}$), which differs from carvol in being unable to combine with hydrogen sulphide; the other constituents of the oil have not been datermined. The colonr is due to curcumin, $\mathbf{C}_{14} \mathbf{H}_{14} \mathrm{O}_{4}$ of which the drag containg about 0.3 per cant. It possesses the properties of an acid, forming red-brewn salts with alkalies and boing precipitated from alkaline solations by acids. When pure it forms yellow crystals hering a ranille odour and exhibitiag a fine blue colour in reflected light. It is soluble in alcohol, in chloroform, and in alkaline colutions, but anly sparingly in water. Paper tinced with a tincture of turmario exhibits on the addition of an alkali a reddish brown tint, which becomes violat on drying. This peculiarity was pointed ont by Vogel in 1815, and eince that date turmeric hos been otilized as a chemical test for detecting alkalinity. In India the drug is considered to possess cordial and stomachic properties : a decoction made with milk and oweetened is used as a remedy for colde. Externally it is employed in skin diseases and in the form of a cooling lotion for rclieving the pain of conjunctivitis; the fumes of the burning tubers diracted into the nostrils relieve congestion in cases of coryza. The cultivation of turmeric is carried on most successfully in light rich soil in well-watered districts. The plant is easily propagated by offsets. An acre yields abont 2000 Ib . Turmeric is baid to grow in large quantitiee on the slopes of hills bordering the plaine of the Beni in Bolivia and also in Panama. Several species of Curesma and of ellied genera yield yellowish aromatic roots. In Sierra Ieone a kind 0^{7} turmeric is obtained from a species of Canra.

TURNER, Charles (1773-1857), an English engraver, was born at Woodstock in 1773. He entered the schools of the Royal Academy in 1795 ; and, engraving in stipple in-the manner of Bartolozzi, he was employed by Alderman Boydell. .His finest plates, however, are in mezzotint, a method in which he engraved J. M. W. Turner's Wreck and twenty-four subjects of his Liber Studiorum, Reynolds's Marlborough Family, and many of Raeburn's best portraits, including those of Sir Walter Scott, Lord Nowton, Dr Familton Profe. Dugadd Stewart and John Robison, and Dr Adam. He also worked after Lawrence, Shoe, and Owen. He was an admirable ongraver, large, broad, and masterly in touch; and he reproduced with great fidelity the characteristics of the various painters whose works he translated into black and white. In 1828 he was elected an associate engraver of the Royal Academy. He died in London on Ist August 1857.

TURNER, Josepe Mallord William (1775-1851), one of the greatest painters of the English school, was born In London on 23d April 1775. His father, William Turner, a native of Devonshire, kept a barber's shop at 26 Maiden Lane, in the parish of St Paul's, Covent Garden; he was "a cheerful, talkative little man, with small blue ojes, a parrot nose, projecting chin, and a fresh complexion indicative of bealth." Of the painter's mother, Mary Marshall or Turner, little is known; she is said to have been a persou of ungoveruable temper and towards the end of her life became insane. Apparently the home in which Turner spent his childhood was not a happy one, and this may account for much that was unsociable and eccentric in bis character. The earliest known drawing by Turner, a view of Margate Church, dates from his ninth year. It was also about this time that he was sent to his first school at New Brentford. Of educaison, as the term is generally understood, he received but little. His father taught him to read, and this and a few months at New Brentford and afterwards at Margate were all the schooling he ever had; he never mastered his native tongue, nor was he able in after lifo to learn any foreign language. Notwithstanding this lack of scholarship, one of his strongest characteristics was a taste for associating his works with personages and places of legendary and historical interest, and certain stories of antiquity seem to have taken root in his mind very strongly. By the time Turner had completed his thirteenth year his school days were over and his choice of an artist's career settled. In 1788-89 he was receiving lessons from Palice, "a floral drawing master," from T. Malton, a perspective draughtsman, and from Hardwick, an architect. Ho also attended Paul Saudby's drawing school in St Martin's Lane. Part of his time was emplojed in making drawings at home, which he exhibited for salo in his father's shop window, two or three shilliugs being the usual price. He coloured prints for eugravers, washed in backgrounds for architects, went out sketching with Girtin, and made drawings in the evenings for Dr Munro "for half a crown and his supper." When pitied in after life for the miscellaneous character of his early work, his reply was "Well! and what could be better practice?" In 1789 Turner became a student of the Royal Academy. He also worked for a short time in the house of Sir Joshua Reynolds, with the idea, apparently, of becoming a portrait painter; but, the death of Reynolds occurring shortly afterwards, this intention was abandoned. Jn 1790 Turner's name appears for the first time in the catalogue of the Royal Academy, the titlo of his solitary contribution being "View of the Archbishop's Palace, Lambeth." About 1792 he received a commission from Walker, the engraver, to make drawings for his Copper-Plate Magazine, and this topographical work took him to many interesting places. Tho natural vigour of his constitution enabled him to cover much of the ground on foot. Ho could walk from 20 to 25 miles a day with ease, his baggage at the end of a stick, making notes and memoranda as he went. He rose early, worked hard all day, wasted no time over his simple meals, and his homely way of living made lim easily contented with such rude accommodation as he chanced to find on the road. A year or two after he accepted a similar commission to make drawings for the Pocket Magazine, and before his twentieth year he had travelied over many parts of England and Wales. None of these magazine drawings are remarkable for originality of treatment or for artistic feeling.

Up to this time Turner had worked in the back room above his father's slop. His love of secretiveness and solitude had already begun to show itself. An architect who often employed him to put in backgrounds to his drawings says, "ho would never suffer me to see him draw, but concealed all that he did in bis bed-room."

On another occasion, a visitor entering unannounced, Turner instantly corered up his drawings, and, in reply to the intimation, "I've come to see the drawings for -_," the answer was, "You shau't se0 'em, and mind that next time you come through the shop, and not up the back way." Probably the increase in the number of his engagements induced Turner about this time to set up a studio for himself in Hand Court, not far from his father's shop, and there ho continued to work till he was elected an associate of the Royal Academy (1799).

Until 1792 Turner's practice had becn almost exclusively confined to water colours, and his early works show how much he was indebted to some of his contemporaries. There are few of any note whose style ho did not copy or adopt. His first exhibited oil juicture appeared in the Academy in 1793. In 1791-95 Canterbury Cathedra:. Malvern Abbey, Tintern Abbey, Lincoln and Peterborough Cathedrals, Shrewsbury, and King's College Chapcl, Cambridge, were among the subjects exhibited, and during the next four years ho contributed no less than thirty-nino works to the Academy. In the catalogue of 1798 he first began to add poetic quotatious to the titles of his pictures; one of the very first of these-a passage from Milton s Paradise Lost-is in some respects curiously prophetic of one of the future characteristics of his art.
> " Yo mists and exhalations that uow riso From hill or steaming lake, dusky or grey Till the sun paints your fleecy skirts with gold, In honour of the world's great author rise.'

This and several other quotatious in the following jears show that Turner's mind was now occupied with something more than the merely topographical element of landscape, Milton's Puradise Lost and Thomson's Seasons being laid under frequent contribution for descriptions of sunrise, sunset, twilight, or thunderstorm. Turner's first visit to Yorkshire took place in 1797. It seems to have braced his powers and possibly helped to change the student into the painter. Until then his work had shown very little of the artist in the higher sense of the term: he was little more thau a painstaking and tolerably accurato topographer, but ereu under these conditions he had begun to attract the notice of his brother artists and of the critics. England was, at the time, at a low point both in literature and art. Among the artists De Loutherbourg and Morland were almost the only men of nute left. Hogarth, Wilson, Gainsborough, and Reynolds luad passed away. Beechey, Bourgeois, Garvey, Farington-names well-nigh forgotten now-were the Academicians who painted landscape. The only formidable rivals Turner bad to contend with wero De Loutherbourg and Girtin, and after the death of the latter in 1802 he was left undisputed master of the field.

It is not therefore surprising that the exhibition of his works in 1798 was followed by his election to the associateship of the Royal Academy. That he should have attained to this position before completing his twentyfourth jear says much for the wisdom and discernment of that body, which further showed its recognition of his talent by electing him an Academician four years later. Turner owed much to the Academy. Mr Ruskin saya, "It taught him nothing." Possibly it had little to teach that he had not already been able to learn for himself; at all events it was quick to see his genius aud to confer its honours, and Turner, naturally generous and grateful, never forgot this. He enjoyed the dignity of Acadennician for nearly half a century, and during nearly the whole of that period he took an aclive share in the direction of the Academy's affairs. His sueeches are descrihcd as "confused, tedious, obscure, and extremely difficult to follow"; but at council meetings he was ever anxious to allay anger end bitter controversy. His oviaions on art were always
listened to with respect ; out on matters of business it was often difficult to know what he meant. His friend Chantrey used to eay, "He has great thoughts, if only be could express them." When appointed professor of perspective to the Royal Academy in 1808, this painful lack of expression stood greatly in the way of his usefulners: he was often at a loss for words to express his ideas, and when he had recourse to his notes he found difficulty in reading them. Mr Ruskin says, "The zealous care with which Turner endeavoured to do his duty is proved by a series of large drawings, exquisitely tinted, and often completely coloured, all by his own hand, of the most difficult perspective subjects, illustrating not only directions of line, but effects of light, with a care and completion which would put the work of any ordinary teacher to utter shame." In teaching he would neither waste time nor spare it. "If a student would take a hint, Turner was delighted and would go on with him giving bint after hint; if he could not follow, he left him. Explanations are wasted time; a man who can see understands a touch; a. man who cannot misunderstands an oration." With his clection to the associateship of the Academy in 1799, Turner's early struggles may be considered to have ended. He had emancipated himself from hack work, had given op making topographical drawings of castles and abbeys for the engravers-drawings in which mere local fidelity was the principal object-and bad taken to composing as he drew. Local facts had become of secondary importance compared with effects of light and colour. He had reached manhood, and with it he abandoned topographical fidelity and began to paint his dreams, the visionary facultythe true foundation of his art-asserting itself, nature being used to supply suggestions and materials.

His pictures of 1797-99 had shown that he was a painter of no ordinary power, one having much of the poet in him, and able to give expression to the mystery, beauty, and incxhaustible fulness of nature. His work at this period is described by Mr Ruskin as "stcrn in manner, reserved, quiet, grave in colour, forceful in hand."

Turner's visit to Yorkshire in 1797 was followed a year or two later by a second, and it was on this occasion that he made the acquaintance, which afterwards ripened into a long and staunch friendship, of Fawkes of Farnley Hall. From 1803 till 1820 Turncr was a frequent visitor at Farnley. The large number of his drawings still preserved there-English, Swiss, German, and Italian, the studies of rooms, outhouses, porches, gatcways, of birds shot while he was there, and of old places in the neighbour-hood-prove the frequency of his visits and his affection for the place and for its hospitable master. A caricature, made by Fawkes, and "thought by old friends to be very like," shows Turner as "a little Jewish-nosed man, in an ill-cut brown tail-coat, striped waistcoat, and enormous frilled shirt, with feet and hands notably small, sketching on a small piece of paper, held down almost level with his waist." It is evident from all the accounts given that Turner's personal appearance was not of a kind to command much attention or respect. This may have pained his sensitive nature, and led him to seek refuge in the solitude of his painting room. Had he been inclined he had abundantopportunity for social and fricndly intercourse with his fellow-men, but he gradually came to live more and more in a state of mental isolation, keeping himself to hinself, entirely absorbed in his art. "This man must be loved for his works, for his person is not striking nor his conversation brilliant," is the testimony of Dayes, the watcr-colour painter (and Girtin's master), in 1804. Turner could never make up his mind to visit Farnley again after his old friend's death, and his voicề would falter when he spoke of the shores of the Wharfe.

Turner visited Scotland in 1800, and in 1801 or 1802 L made his first tour on the Continent. In the following year, of the seven pictures he exhibited six were of foreign subjects, among them Bonneville, the Festival upon the Opening of the Vintage of Matcon, and the well-knowe Calais Pier in the National Gallery. The last-named picture, although heavily painted and somewhat opaque in colour, is magnificently composed and full of energy A better idea of its masterly composition can be formed from Mr Seymour Haden's vigorous etching than from the picture itself, which is now greatly darkened by time.

In 1802, the jear in which Turner became a Royal Academician, he took his old father, who still carried on the barber business in Maiden Lane, to live with him. The powder tax, imposed in 1795, drove out wigs and spoiled the old man's trade. "It is precisely," says Mr Hamerton, "when the painter wins the full honours of the Academy-honours which give a recognized and envied position in London society-that he takes his father home; a meaner nature wonld have tried to keep the old man at a safe distance." Turner's relations with his father were of the most dutiful and filial kind to the last. ${ }^{1}$

In 1804 Turner made a second tour on the Continent, and in the following year painted the Shipwreck and Fishing Boats in a Squall (in the Ellesmere collection), seemingly in direct rivalry of Vandervelde, in 1806 the Goddess of Discord in the Garden of the Hesperides (in rivalry of Poussin), and in 1807 the Sun rising through Vapour (in rivalry of Clande). ${ }^{2}$ The last two are notable worke, especially the Sun. In after years it was one of the works he left to the nation, on the special condition of its being lung beside the Claudes in the National Gallery. In this same jear (1807) Turner commenced his most serious rivalry. Possibly it arose out of a desire to break down Claude worship, the then prevailing fashion, and to show the public that there was a living artist not un worthy of taking rank beside him. That the Liber Studiorum was suggested by the Liber. Veritatis of Claude, and was intended as a direct challenge to that master, is beyond doubt. There is, however, a certain degree of unfairness to Claude in the way in which the challenge was given. Claude made drawings in brown of his pictures as they left the easel, not for publication, but merely to serve as private memoranda. Turner's Liber drawings had no such purpose, but wre intended as a direct appeal to the public to judge between the two artists. The first of the Liber drawings were made in the autumn of 1806, the others at intervals till about 1815. They are of the same size as the plates and carefully finished in sepia. About fifty of them are now to be seen in the Turner rooms of the National Gallery. The issue of the Liber began in .1807 and continued at irregular intervals till 1819, when it stopped at the fourtcenth number. Turner had resolved to manage the publishing business himself, but in this he

[^284]was not very successful. He soon quarrelled with his engraver, F. C. Lewis, on the ground that he had raised his charges from five guineas a plate to eight. He then employed Charles Turner, who agreed to do fifty plates at the latter sum, but, after finishing twenty, he too wished to raise his price, and, as a matter of course, this led to another quarrel. Reynolds, Dunkarton, Lupton, Say, Dawe, and other engravers were afterwards employedTurner himself etching and mezzotinting some of the plates. Each part of the Liber contained five plates, the oubjects, divided into "historical," "pastoral," "marine," Sc., embracing the whole range of landscape art. Seventyone plates in all were published (including one as a gift of the artist to his subscribers); ten other plates-more or less completed-intended for the fifteenth and sixteenth numbers were never published, the work being stopped for want of eucouragement. Absence of method and business babits may account for this. Turner is said to have got up the numbers in his own house with the help of a female servant. The plates, which cost the subscribers only five shillings apiece, were so little esteemed that in the early quarter of the 19th century they were sometimes used for lighting fires. So much has fashion, or public taste, changed since then that a fine proof of a single plate has sold for $£ 210$. The merit of the plates is unequal ; some-for example, Solway Moss, Inverary Pier, Hind Head Hill, Ben Arthur, Rizpah, Junctiou of the Severn and Wye, and Peat Bog-are of great beauty, while a few are comparatively tame and uninteresting. Among the unpublished plates Stonehenge at Daybreak and Sheep Washing, Windzor Castle take a high place. The Liber shows strong traces of the influence of Cozens and Girtin, and, as a matter of cousse, of Claude. In most of the designs the predominant feeling is serious; in not a few, gloomy, or even tragic. A good deal has been written about Turner's intention, and the "lessons" of the Liber Studiorum. Probably his only intention in the beginning was to show what he could do, to display his art, to rival Claude, perhaps to educate public taste, and at the same time make money. If lessons were intended they might havo been better conveyed by words. "Silent elways with a bitter silence, disdaining to tell his meaning,"-such is Mr Ruskin's explanation; but surely Turner had little reason for either silence or contempt because the public failed to see in landscape art the means of teaching it great moral lessons. The seventy plates of the Liber contain an almost complete epitome of Turner's art. Already in this work aro seen strong indications of one of his most remarkable characteristics-a knowledge of the principles of structure in natural objects: mountains and rocks are drawn, not with topographical accuracy, but with what appears like an intuitive fetling for geological formation; and trees have also the same expression of life and growth in the drawing of stems and branches. This instinctive feeling in Turuer for the principles of organic structure is treated of at considerable length in the fourth volume of Modern Painters, and Turner is there contrasted with Claude, Poussin, and some of the Dutch masters, greatly to their disadvantage.

After 1797 Turner was little concerned with mere topographical facts : his pictures might be like the places represented or not; much depended on the mental impression produced by the scene. He preferred to deal with the spirit, rather than with the local details of places. A curious example of the reasonableness accompanying his exercise of the imaginative faculty is to be found in his creations of creatures he had never seen, as, for example, the dragon ${ }^{1}$ in the Garden of the Hesperides and the python

[^285]in the Apollo, exhibited in 1811. Both these monsters are imagined with such vividness and reality, and the sense of power and movement is so completely expressed, that the spectator never once thinks of them as otherwise than representations of actual facts in natural history. It needs but a little comparison to discover how far Turner surpassed all his contemporaries, as well as all who preceded him, in these respects. The imaginative faculty he possessed was of the highest order, and it was further aided by a memory of the most retentive and unerring kind. A good illustration of this may be seen at Farnley Hall in a drawing of a Man-of-XVar taking in Stores. Some one, who had never seeu a first-rate, expressed a wish to know what it looked like. Turner took a blank sheet of paper one morning after breakfast, outlined the ship, and finished the drawing in three hours, Fawkes sitting beside him from the first stroke to the last. The size of this drawing is about 16 in . by 11 in . Mr Ruskin thus describes it :
"The hull of s first-rate occupies nearly one half of the picturs to the right, her hows toward the spectator, seen in sharp perspective from stem to stern, with all her port-holes, funs, anchors, and lower rigging elaborately detailed, two other ships of the line in the middle distance drawn with equal precision, a noble breezy sea, full of delicate drawing in its waves, a store ship beneath the hull of the larger vessel and several other boats, and a complicated cloudy sky, ali drawn from memory, down to the smallest rope, in a drawiug-room of a mansion in the middle of Yorkshire."

About the year 1811 Turner paid his first risit to Devonshire, the county to which his family belonged, and a curious glimpse of his simple manner of life is given by Redding, who accompanied him on some of his excursions. On one occasion they spent a night together in a small road-side inn, Turner having a great desire to see the country around at sunrise.
"Turner was content with bread and cheese and beer, tolerably good, for dinner and supper in one. In the little sanded room we conversed by the light of an attenuated candle and some sid from the moon until nearly midnight, when Turner laid his head upon the table and was soon fast asleep. Three or four hours rest was thus obtained, and we went out as soon ss the sun was up to explore the eurrounding neighbourhood. It was in that early morning Turner made a sketch of the picture Crossing the Brook." In another excursion to Borough Island, "the moruing was squally and the sea rolled boisterously into the Sound. Off Stakes Point it became stormy ; our Dutch hoat rode bravely over the furrows. Two of the party were ill. Turner was all the while quiet, watching the troubled scene. Bolt Head, to seaward, against which the waves broke with fury, seemed to absorb his entire notice, and he scarcely spoke a eyllable. While the fish were getting ready Turner mounted nearly to the highest point of the island rock, and seemed writing rather than drawing. The wind was almost too violent for either purpose."

This and similar incidents show how careless of comfort Turner was, and how devoted to his art. The tumult and discomfort by which he was surrounded could not distract his powers of observation; and some thirty years later there is still evidence of the same kind. In the catalogue of the exhibition of 1842 one of his pictures bears the following title, "Snow-Storm: steam-boat off a harbour's mouth making signals in shailow water, and going by the lead. The author was in that storm the night the 'Ariel' left Harwich."

From 1813 till 1826, in addition to his Harley Street residence, Turner had a country house at Twickenham. He kept a boat on the river, also a pony and gig, in which he used to drive about the neighbouring country on sketching expeditions. The pony, for which Turner had a great love, appears in his well-known Frosty Morning in the National Gallery. He appears to have had e great affec-
fish-eater, to show his sea descent (and this in the year 1800, when hardly a single fossil saurian skeleton existed within 'Tumer's reach), renders the whole conception one ol the mast curious exertions of the imaginative intellect with which I am acquainted in the arts" (Ruskin. Mord. Painters, vol. r. p. 313).
tion for animals, and one instance of his tenderness of beart is given by one who often joined him in the amusement of fishing, of which Turner was very fond. "I was often with him when fishing at Petworth, and also on the banks of the Thames. His success as an angler was great, although with the worst tackle in the world. Every fish he caught he showed to me, and appealed to me to decide whether the size justified him to keep it for the table or to return it to the river; his hesitation was often almost touching, and he always gave the prisoner at the bar the benefit of the doubt."

In 1813 Tumer commenced the series of dramings, forty in number, for Cooke's Southern Coast. This work was not completed till 1826. The price he at first received for these drawings was $£ 7,10$ s. each, afterwards raised to $£ 13,2 \mathrm{~s} .6 \mathrm{~d}$.

Crossing the Brook appeared in the Academy of 1815. It nay be regarded as a typical example of Turner's art at this period, and marks the transition from his earlier style to that of his maturity. It represents a piece of Devonshire scenery, a view on the river Tamar. On the left is a group of tall pine-trees, beautifully designed and drawn with great skill and knowledge of structure, in the foreground a couple of children, with a dog carrying a bundle in its mouth across the brook, and beyond, a vast expanse of richly-wooded country, with glimpses of a winding river, an old bridge, a mill, and other buildings, and, in the far distance, the sea. Both in design and execution this work is founded upon Claude. Some critics consider it one of Turner's greatest works; but this is open to question. ${ }^{1}$ It can hardly be called a work in full colour: it is limited to greys and quiet greens for the earth and pale blues for the sky. It is a sober but very admirable picture, full of diffused daylight, and in the painting of its distance better than any master who had preceded him. The fascination of the remote, afterwards 30 distinctive an element in Turner's pictures, shows itself here. Perhaps nothing tests the powers or tries the skill of the landscape-painter more severely than the representation of distant effects. They come and go so rapidly, are often in a high key of light and colour, and so full of mystery and delicacy, that anything approaching to real imitation is impossible. Only the most retentive memory and the most sensitive and tender feeling will avail. These quatities Turner possessed to a remarkable degree, and his powers matured there was an ever-increasing tendency in his art to desert the foreground, where things were detiaite and clear, in order to dream in the infinite suggestiveness and space of distances. Dido Building Carthage also belongs to this period. It hangs beside the Claudes in the National Gallery. It pertains to the old erroneous school of historical painting. Towering masses of Claudesque architecture piled up on cither side, portiooes, vestibules, and stone pines, with the sun in a yellow sky, represent the Carthage of Turner's imagination. With all its faults it is still the finest work of the class he ever painted. Carthage and its fate had a strange fascination for him. It is said that he regarded it as a moral example to England in its agricultural decline, its increase of luxury, and its blindness to the insatiable ambition of a powerful rival. He returned again to this theme in 1817, when he exhibited his Decline of the Carthaginian Empire: Hostages Leaving Carthage for Rome,-a picture which Mr Ruskin describes as "little more than an accumulation of academy student's outlines coloured brown."

In 1818 Turner was in Scotland making drawings for

[^286]the Provincial Antiquities for which Sir Walter Scots supplied the letterpress, and in 1819 he visited Italy for the first time. One of the results of this visit was a great change in his style, and from this time his works became remarkable for their colour. Hitherto he had painted in browns, greys, and blues, using red and yellow sparingly. He had gradually been advancing from the sober grey colouring of Vandervelde and Ruysdael to the mellow and richer tones of Claude. His works now begin to show a heightened scale of colour, gradually increasing in richness and splendour and reaching its culminating point in such works as the Ulysses, Childe Harold's Pilgrimage, the Golden Bough, and the Fighting Teméraire. All these works belong to the middle peried of Turner's art (182939), when his powers were entirely developed and entirely unabated. Much of his most beantiful work at this period is to be found in his water-colour dramings: those executed for Whitaker's Mistory of Richmondshive (1819-21), for Cooke's Southern Coast (1814-26), for The Rivers of Englund (1824), for England and Trales (1829-38), Provinciul Antiquities (1826), Rogers's Ituly (1830), Scott's Works (1834), and The Rivers of France (1833-35) are in many instances of the greatest beauty. Of the Richmondshire drawings Mr Ruskin says, "The foliage is rich and marvellous in composition, the rock and hill drawing insuperable, the skies exquisite in complex form."

But perhaps one of the greatest services Turner rendered to the art of England was the education of a whole school of engravers. His best qualitics as a teacher came from the union of strength and delicacy in his work; subtle and delicate tonality was almost a new element for the engraver to deal with, but with Turner's teaching and careful supervision his engravers by degrees mastered it more or less successfully, and something like a new development of the art of engraving was the result. No better proof cau be found of the immense advance made than by comparing the work of the landscape engravers of the pre-Turnerian period with the work of Miller, Goodall, Willmore, Cooke, Wallis, Lupton, C. Turner, Brandard, Cousen, and others who worked under his guidance. The art of steel engraving reached its highest development in Englaud at this time. Rogers's Italy (1830) and his Poems (1834) contain perhaps the most beautiful and delicate of the many engravings executed after Turner's drawings. They are vignettes, ${ }^{2}$ a form of art which Turner understood better than any artist ever did before,-perhaps, we might add, since. The Alps at Daybreak, Columbus Discovering Land, and Datur Horct Quieti may be given as examples of the finest.

In 1828 Turner paid a secoud visit to Italy, this time of considerable duration, on the way visitiug Nimes, Avisnon, Marseilles, Geuoa, Sperzia, and Siena, and in the following year he exhibited the Ulysses Deriding Polyphemus, now in tho National Gallery. It marks the beginning of the central and best period of Turner's power. This work is so well known that description is hardly needed. The galley of Ulysses occupies the centre of the picture; the oars are being thrust out and the sailors flocking up the masts to unfurl sail, while Ulysses wares the blazing olive tree in defiance of the giant, whose huge form is seen high on the cliffs above; and the shadowy horses of Phcebus are traced in the slanting rays of the rising sun. The impression this picture leares is one of great power and splendour. The painting throughout is magnificent, especially in the sky. Leslie speaks of it as "a poem of
${ }^{2}$ "Of all the artists who ever lived I think it is Turner who treated the vignette most exquisitely, and, if it wore necessary to find some particular reason for this, I should say that it may have been because there was nothing harsh or rigid in his gevius, that forms and colours nelted into each otber tenderly in his dream worid, and that his sense of gradation wre the most delicate ever possessed by man" (Hamertan).
mátchless splendour and beauty." From this period onward till about 1840 Turner's life was one of unceasing activity. Nothing is more astonishing than his prodigious fertility; he rose early, worked from morning till night, entirely absorbed in his art, and gradually became more and more solitary and isolated. Between $\cdot 1829$ and 1839 he sent fifty-five pictures to the Royal Academy, painted many others on private commission, māde over four hundred dramings for engravers, besides thousands of studies and sketches from nature. His industry accounts for the immense quantity of work he left behind him. There is not the slightest evidence to show that it arose from a desire to make money, which he never cared for in comparison with his art. He has been accused, perbaps not without some cause, of avarice and meanness in his business dealings, and many stories are told to his discredit. But in private he often did generous things, although owing to his reserved disposition his virtues were known only to a few. His faults on the other hand-thanks to the malice, or jealousy, of one or two individuals-were freely talked about and, as a matter of course, greatly exaggerated. "Keep it, and send your children to school and to church," were the words with which he declined repayment of a considerable loan to a poor drawing-master's widow. On another occasion, when interrupted in his mork, he roughly chid and dismissed the applicant, a poor moman; but she had hardly left his door before he followed her and slipped a $£ 5$ note into her hand. His tenants in Harley Street were in arrears for years, but he would never allotr his lawyer to distrain; and if further proof of his generosity were needed his great scheme for bettering the condition of the unfortunate in his own profession should suffice. On one occasion he is known to have taken down a picture of his own from the walls of the Academy to make room for that of an unknown artist.
The first of Turner's Venetian pictures (Bridge of Sighs, Ducal Palace and Custom House, Venice, Canaletti Painting) appeared in the Academy in 1833. Compared with the sober, prosaic work of Canaletti, Turner's pictures of Venice appear like poetic dreams. Splendour of colour and carelessiess of form generally characterize them. Venice appeared to him " a city of rose and white, rising out of an emerald sea against a sky of sapphirc blue." Many of these Venetian pictures belong to his later manner, and some of thefn, the Sun of Venice Going to Sea (1843), Approach to Venice (1844), and Venice, Evening, Going to the Ball (1845), to his latest. As Turner grew older his love of brilliant colour and light became more and more a characteristic. In trying to ohtain these qualities he gradually fell into an unsound method of work, treating oil as if it had been water-colour, using both indiscriminately on the same canvas, utterly regardless of the result. Many of his finest pictures are already in a ruined state, mere wrecks of what they once were.
The Fighting Tėméraire Tugged to her Last Berth to be Broken up (see vol. xxi. p. 441, fig. 43) was exhibited in the Academy of 1839. By many it is considered one of his finest works. Turner had all his life been half a sailor at heart : he loved the sea, and shipping, and sailors and their ways; many of his best pictures are sea pieces; and the old ships of Collingwood and Nelson were dear to him. Hence the pathetic feeling be throws around the fighting Téméraire. The old three-decker, looking ghostly and wan in the evening light, is slowly towed along by a black, fiery little steam tug,-a contrast suggesting the passing away of the old order of things and the advent of the new; and behiad the sun sets red in a thick bank of smoke or mist. The Slave Ship, another important sea picture, was exhibited in the following year, and in 1842 Peace: Burial ot Sea, commemorative of Wilkie.

Turner had now reached his sixty-serenth year, but no very marked traces of declining power are to be seen in his work. Many of the water-colour drawings belongisg to this period are of great beauty, and, although a year or two later his other powers begarf to fail, his faculty for colour remained unimparred alnust to the end. He paid his last visit to the Continent in 1843, wandering abous from one place to another, and avoiding his own countrymen, an old and solitary man. . At his house in Queen Anne Street they were often ignorant of his whereabouts for months, as he sellom took the trouble to write to any one. Two years later (1845) his health gave way and with it both mind and sight began to fail. The works of his declining period exercised the wit of the critics. Turner felt these attacks keenly., He was naturally kindhearted and acutely sensitive to censure. "A man may be weak in his age," he once remarked, "but you should not tell him so."

After 1845 all the pictures shown by Turner belong to the period of decay,-mere ghosts and shadots of what once had been. In 1850 he exhribted for the last time. He had given up. attending the meetings of the Academicians; none of his friends lad seen him for months; and evca his old housekeeper had no idea of his whereabouts. Turner's mind had evidently given way for some tilue, and with that love of secrecy which in later years had glown into a passion he had gone away to hide himself in a corner of London. He had settled as a lodger in a suall house in Chelsea, overlooking the river, kept by his old Margate landlady, Mrs Booth. To the children in the neighbourhood he was known as "Admiral Bootl.," His short, sailor-like figure may account for the idea that he was an impoverished old naval officer. He had been ill for some weeks, and when his Queen Aune Street housekeeper at last discovered his hiding-place she found him sinking, and on the following day, the 19th Deceniber 1851, he died. He was buried in St Paul's cathedral, in deference to a wish te had himself expressed.

Fo left the large fortune he had amassed (about $£ 140,000$) to found a charity for the "maiutenance and support of male decayed artists, being born in England, and of English parents only, and of lawful issue." His pictures he hequeathed to the nation, on condition that they were to be exhibited in rooms of their owu, and that these rooms were to he called "Turner's Gallery." The will and its codicils were so confused that after years of litigation, during which a large part of the money was wasted in legal expenses, it was found impossible to decido what Tumer really manted. A compromise was effected in which the wishes of everybody, sare those of the testator, were consulted, his next-of-kin, whom he dil not mean to get a single farthing, inheriting the lonk of his property. The nation got all the pictures and drawings, and the Royal Academy £20,000.

It is unnecessary here to do more than allude to the charerg Which have heen brought against Turner's moral character. Like most men of note he had his enemies and detractors, and it is to be regretted that so many of the steries they aet in circulation shonld have been repeated by one of his biograpleers, who candidly admits having 'spared none of lris faults," and excuses himself for so doing by "what he hopes" is his "undeviating love of truth." The immense quantity of work accomplished by Turner during his lifetime, work full of the utmost delicacy and refinement, proves the singularly fine condition of his nervous system, and is perhafs the best answer that can be given to the charge of being excessively addicted to senanal gratification. In his declining years he possibly had recourse to stimulants to help his failing powers, but it by no means follows that he went habitually to excess in their nse. Ho never lost an opportunity of doing a kindness, and under a rough and cold exterior there was more gool and worth hidden than the world imagined. "During the ten years I knew him," says Mr Ruskin, "years in which ho was suffering most from the evilopeaking of the world, I never heard him say ore depreciating word of any living man or man's work; I never saw him look an onkiud or blamefnl look; I never knew him let pass, without sorrowfu] remonstrance, or endeavour at mitigation, a blameful word spoken by another. Of no man but TurDer, whom I have ever known, could I say this." Twice during his earlier days there are circumstances leading to the belief that he had thoughts of
marriage, but on both occasions it ended in dissppointment, and his home after his father died was cheerless and solitary, without rolace or comfort of any kind.
If Turner had died early his repatation as an artist would havo l.een very different from what it ultimately became. He wonld hot bave been recognized as a colourist. It was only after the year 1820 that colour began to assert itself strongly in his work. He painted for many a year in greys and greens and browns, went steadily through " the subdued golden chord," and painted yellow mists and suns rising through vapour ; but as time went on that was no longer enough, sud he tried to paint-the sun in his strength end the full glories of sunshine. The means at the painter's disposal are, howerer, limited, and Turner, in his efforts after brilliancy, hegan to indulge in reckless experiments in colour. He could not cndure even the slightest restraints which technical limitations impose, but went on trying to paint the unpaintable. As a watercolour painter Torner stands pre-eminent; he is unquestionably the greatest master in that branch of art that ever lived. If his work is compared with that of Barrett, or Varley, or Cozeus, or Sandby, or any of the earlier masters, so great is Turner'a superiority that the art in his hands seems to bo lifted altogether into a higher region.

In 1843 a champion, in the person of Mr Ruskin, arose to defend Turner against the unjust and ignorant attecks of the press, and what at first was intended as a "short pamphlet, reprobating the manner aud style of these critics," grew into the five volumes known as AFodern Painters. The writer employs all his eloquence a ad his great critical faculty to prove how immeasurably euperior Turner was to all who had ever gone before, hardly restricting his sapremacy to landscape art, and placing him amoug the "seven supreme colonrists of the Forld." Two lives of Turner have been written, one by Mr Thornbury, the other by Mr Hamerton. The work of the latter deserves the highest commendation; it gives a clear and consistent history of the great artist, and is characterized by refined thought and critical insight. An excellent little book by Mr W. C. Monkhouse should also be noticed.
(G. RE.)

TURNHOUT, a town of Belgium, in the province of intwerp, 25 miles east-north-east from Antwerp and 6 from the Dutch frontier, stands in the middle of a wide lain. It is a prosperous manufacturing and commercial centre, the chief industries being the weaving of cottons and linens (especially ticking), lace-making, paper-making, brick-making, dyeing, bleaching ; there is also an establishment for the rearing of leeches. The population of the commune in 1876 was 15,743 .

TURNING. Sce Lathe.
TURNIP. See Agriculture, vol. i. pp. 365-368, and Horticulture, vol. xiu. p. 288.
turnip-Fly, Tornip-Flea, or Earth Flea-Beetle, the name applied to several species of Haltica which infest turnip fie!ds and do considerable damage to crops. The genus belongs to the family Chrysomelidx, and includes about 100 species. The turnip-fly mest usually" met with, Haltica nenorum, is scareely 2 mm . in length and of a shining black colour, with two ochreous yellow longitudinal bands runuing along each wing-case; the bands are slightly sinuous and bend inwards at the hinder end. Of the elevenjointed antenre the first three segments are yellow and the remainder black. The coxx are black, the rest
 $\underset{\substack{\text { Turnip fly (IIIaltica } \\ \text { nemorum). }}}{\text { Y. }}$ of the legs having a yellowish hue. The coxe and tibize are stout and formed for leaping, especially in the posterior pair of legs. The remarkable power of jumping las given rise to the name turnip-flea. The females are slightly longer and decidedly stouter than the males.
Another species, H. concinna, has a greenish yellow or brassy appearance, and the tibie of the two posterior legs are armed with a thorn-like hook. A third species, H. consobrina, is of a dark bluo colour above, whilst another species, H. obscurella, often very abundant, is of a lighter btue colour, and iarger than those-mentioned above.
The life-history of Hallicu nomorum may be takeo as an example of that of the genus. The beetles begin pairing during April, and continue all through the summer. The female lays but few egrs, usually one a day. The egga are depositod on the under surface of \& itaf, close under one of the projectirg reius; they possess a pro-
tective colouring. The development withon the egg asts ten days, at the end of which a small larva creeps out, and at once eats its way through the lower epidermis of the leaf into the mesophyll and there forms long winding burrows. The larra or maggot is of a yellowish colour and somewhat cylindrical in form. It has three pairs of legs antcriorly and a pair of pro-legs at its hinder ead. The most anterior and the most posterior segment bear a black spot. The month is provided trith a pair of mandibles, by means of which the larva eats its way through the sol't tissue of the leaf. This larval condition lasts about six days; the maggot then leaves the leaf and bnries itself somo one or two inches beneath the surface of the earth; here it turns into a chrysalis. From this the fullgrown beetle emerges after an interval of fourteen days, and it is in this stage of its life-bistory that it proves most destructive to the turnip crop. Seversl broods may be produced each season; the beetle lives through the winter sheltered under fallen leaves, pieces of mood, clods of earth, \&c., until the warmoth of spring awakens it, when it boon begins to lay eggs.

Since the chief damage to the crop is due to the perfect bectle devouring the foung leaves of the turnip plant, ono of the most important methods of dealing with the pest is to ensure a strong and healthy growth of the plant, by means of manuring, watering, \&c. Another preventative is the removal of such weeds as the ohepherd's purse and charlock, which harbour the insect in great numbers, and the removal of any stubble in which it might pass the winter. When a crop is badiy attacked dressings of soot and gas-lime mixed with sulphur and lime, or of soot or lime alone, prove efficacions, but these must be applied whilst the dew is on the leaves or the "fly" will escape.
TURNSTONE, the name long given ${ }^{1}$ to a shore-bird, from its habit of turning over with its bill such stones as it can to seek its food in the small crustaceans or other animals lurking beneath them. It is the Tringa interpres ${ }^{2}$ of Linnæus and Strepsilas interpres of most later writers, and is remarkable as being perhaps the most cosmopolitan of birds; for, though properly belonging to the northern hemisphere, there is searcely a sea-coast in the world on which it may not occur: it has been obtained from Spitzbergen to the Strait of Magellan and from Point Barrow to the Cape of Good Hope and New Zealandexamples from the southern hemisphere being, however, almost invariably in a state of plumage that shows, if not immaturity, yet an ineptitude for reproduction. It also, though much less commonly, resorts to the margins of inland rivers and lakes; but it is very rarely seen except in the neighbourhood of water, and salt water for preference.
The Turnstone is about as big as an ordinary Snipe ; but, compared with most of its allics of the group Limicola, to which it belongs, its form is somowhat heavy, and its legs are short. Still it is brisk in its movements, and its variegated plumage makes it a pleasing bird. Seen in front, its white face, striped with black, and broad black gorget attract attention as it sits, often motionless, on the rocks; while in flight the white of the lower part of the back and white band across the mings are no less conspicuous even at a distance. A nearer view will reveal the rich chestnut of the mantle and upper wing-coverts, and the combination oi colours thus exbibited auggests the term "tortoise-shell" often applied to it-the quill-feathers being mostly of a dark brown and its lower parts pure white. The deeper tiots are, however, peculiar to the nuptial plumsge, or are only to be faintly traced at other times, so that in wiuter the adults-and the young always-have a much plainer appearance, ashy-grey and white bcing almost the ooly lines observable. From the fact that Turnstones may be met with at almost any season in various parte of the world, ${ }^{8}$ and especially on islands as the Cansries, Azores, and many of those in the British seas, it has been inferred that these birds may breed in such places. In some cases this may prove to be true, bnt in most evidence to that effect is wanting. In America the breediog-range of this apecies has not been defined. In Europe there is good reason to euppose that it

[^287]includes Shetland; but it is on the north-western coast of the continent, from Jntland to the extreme north of Norway, that the greatest number are reared. The nest, contrary to the hahits of most Livicolm, is generally placed under a ledge of rock which abelters the bird from observation, ${ }^{1}$ and therein sre laid four egge, of a light olive-green, closely blotched with brown, and hardly to be mistaken for those of any other bird. A second species of Turnstone is sdmitted by some authors and denied by othera. This is the S. melarocephalus of the Pecific cosst of North Americs, which is said to be on the sverage larger than S. interpres, snd it never exhibits sny of the chestnut colouring.

Though the genus Strepsilas seems to be rightly placed among the Charadridx (cf. Plover), it occupies a somewhat abnormal position among them, and in the form of its pointed beak and its rariegated coloration has hardly any very near relative.
(A. N.)

TURPENTINE consists of the oleo-resins which exude from certain trees, especially from some conifers and from the terebinth tree, Pistacia Terebinthus, L. It was to the product of the lattcr, now known as Chian turpentine, that
 of Theophrastus) and its resin ($\dot{\rho} \eta$ riv $\eta \tau \in \rho \mu i v \theta(v \eta)$ were well known and highly prized from the carliest times. The tree is a native of the islands and shores of the Mediterranean, passing eastward into Central Asia; but the resinous exudation found in commerce is collected in the island of Scio. Chian turpentine is a tenacious semi-fluid transparent body, yellow to dull brown in colour, with an agreeable resinous odour and little taste. On exposure to the air it becomes dry, hard, and brittle. In their general characters, turpentines are soft solids or semi-fluid bodies, consisting of a mixture of one or more resins with essential oils, which, although differing in physical properties, have a composition corresponding to the formula $\mathrm{C}_{10} \mathrm{H}_{10^{\circ}}$.They adso contain minute quantities of oxygenated oils. Formerly they had considerable reputation in medicine, and they still continue to be employed in plasters and ointments; but their great use is in the arts, for which they are separated by distillation into rosin or colophony (see Rosin, vol. xx. p. 852) and oil or spirit of turpentine.

Crude or common lurpentine is the commercisl neme which embraces the oleo-resiu yielded by several coniferons trees, both Enropesp and American. The principal Europesn product, bometimes distinguished as Bordeaus turpentine, is obtained from the sea pine, Pinus maritima, in the Lendes department of France. Crude turpentine is further yielded by the Scotch fir, P. sylvestris, throughout northern Europe, and by the Corsican pine, P. Laricio, in Austria and Corsica. In the United States the turpentineyielding pines are the swamp pine, P. palustris, and the loblolly, P. Teda, both inhabiting North and South Carolina, Georgia, and Alabama: Venice turpentine is yielded by the larch tree, Larix curopea, from which it is collected principally in Tyrol. Strasburg turpentine is obtained from the bark of the silver fir; but it is collected only in small quantities. Less known turpentines are obtained from the mountain pine, P. Pumilio, the stone pine, P. Cembra, the Aleppo pine, P. halepensis, \&c. The so-called Canada balsam, from Abies balsamcia (see Balsam, vol. iii. p. 293), is also a true turpentine.

Oil of turpentine as a commercial product is nbtained from all or any of these oleo-resins, but on a large scale only from crude or common turpentine. The essential oil is rectified by redistillstion with water and alkaline carbonates, and the water which the oil carries over with it is removed by a further distilletion over calcium chloride. Oil of tufnentine is a colonrless liqnid of oily consistence, with a strong characteristic odoar and a hot disagree. able taste. Its boiling point ranges from 152° to $172^{\circ} \mathrm{C}$. st ordinsry temperature ; its sp. gr. is between 0.856 and 0.870 ; and in optical properties it rotates the plane of polarized light both to right and left in rarying degrees according to its sources. It is soluble in slcohol, ether, benzol, other essential oils, and the fixed oils, snd itself is a solvent of resins snd caoutchouc. On exposure to the air it dries to s solid resin, and when oxidized in the presence of water gives off perozide of hydrogen-a resction utilized in the preps ration of a disinfectant called "sanitas." Oil of turpentine is largely used in the preparation of vernishes, and as a mediura by paint rs in their "flat" colours.

[^288]TURPIN, archbishop of Rheıms and the supposititious author of Historia Raroli Magni et Rotholandi, is probably to be identified with Tilpin, who was archbishop of Rheims towards the end of the 8th century. This Tilpin is alluded to by Hincmar (845-882), his third successor in the see. According to Flodoard (ob. 969), Charles Martel drove Ragobert, bishop of Rheims, from his office, putting in his place a warrior-clerk, Milo. The same writer represents Milo as discharging a mission among the Vascones or Basques, the very people to whom authentic history hes ascribed the great Carolingian disaster at Roncesvalles. It is possible that we owe the warlike legends that have accumulated round the name of Turpin to some confusion of his identity with that of his martial predecessor. Flodoard says that Tilpin was originally a monk of St Denis; and we know from Hincindr that, after his appointment to Rheims, he occupied himself in securing the restoration of the metropolitan rights and landed property of his church, whose revenue and prestige had been impaired under Milo's rule. He was, according to the latter authority, elected in the days of Pippin, the son of Charles Martel, i.e., betreen 752 and 768 . He died, if we may trust the evidence of a diploma alluded to by Mabillon, in 791. Hincmar, who composed his epitaph, makes hira bishop for forty years and more, from which it is evident that he was elected somewhere about 754. Flodoard, howerer, states that he died in the forty-serenth year of his bishopric. Tilpin was present at the synod of Pome in 769 ; and Pope Hadrian, at the request of Charlemagne, sent him a pallium and confirmed the rights of his church (Gallia Christiana, ix. 28-30). According to Flodoard, he substituted monks for canons in the monastery of St Remigius; and 17th-century tradition ascribed to him an ancient pontificale, still extant in Marlot's days (17th century).

Tho sbove is a summary of sll that authentic history and trast. worthy tradition tesch about the anthor to whom the common voice of the Middle Ages escribed the Historia Caroli Magni. A short scconnt of the work bes been given elsewhere (Roland, Leoend of). But, populer es this production was during the Middle Ages, it was rather the crystalization of earlier Roland legende than the source of later ones. Potthast has enumerated about fifty codices rithout by sny mesns, according to M. Gaston Paris, exlaustisg the list. The latter writer has made the Historia Karoli the subject of a special study ($D e$ Pseudo. Turpino, Paris, 1865), which may bo recommended as a model of brilliant though cantious scholerehip. The great popularity of the pseudo-Tarpin seens to dste from the latter half of the 12th century; end M. Paris enumerstes at least five French translations belonging to the 13 th, and one into Latin-Ferse of about the same ege. Mr Ward (Cat. of Romances, 549) has recently expressed e doubt es to whether tho Turpin chronicle wbs completed at Vienne.

TURQUOISE, a blue or bluish green mineral, ralued, when;cut and polished, as an ornamental stone. The finest variety occurs in Persia, whence it originally reached western Europe by way of Turkey, and thns came to be called by the Venetians, who imported it, turchesa, and by the French turquoise. It is chemically a hydrated phosphate of aluminium, associated with a variable proportion of hydrated phosphate of copper, to which it owes much of its colour. The green tints of certain varieties appear to be due to admixture with salts of iron. A fine blue Persiah turqnoise, analysed by Prof. A. H. Churcl, yielded-alumina $40 \cdot 19$, phosphorus pentoxide $32 \cdot 86$, water $19 \cdot 34$, cupric oxide $5 \cdot 27$, ferrous exide $2 \cdot 21$, and manyranous oxide 0.36 . The most ralued tint of the turquoise is a delicate blue, inclining slightly to green; in mauy speci mens the green becomes more pronounced with age. Although the turquoise is practically opaque, sections may be ground so thin as to admit of examination by transmitted light. Its microscoplc structure was first studied by Prof. Fischer of Freiburg (Baden), afterwerds by H. Bücking of Strasburg, and recently by Clarke and Diller.

Thin sections are almost colourless. Between crossed Nicols they showe either a fibrous texture or a finely-granular aggregate of doubly-refracting particles without definite crystalline outlines. The mineral has never been found crystallized, but occurs as veins, nodules, stalactitic masses, and incrustations. Large pieces are exceedingly rare. The specific gravity of turquoise is about 2.75 , and its herdness below 6 ; it takes a fair polish and exhibits a feeble lustre. It is usually cut en cabochon or with a low convex surface, and in the East is frequently engraved with Persian and Arabic Enscriptions, generally passages from the Koran, the incised characters being in many cases gilt. Such objects are worn as amulets. The turquoise bas always been associated with curious superstitions, the most common being the notion that it changes colour with variations in the state of its owner's health, or even in sympathy with his affections.
Persia is the chief centre of the turquoise trade, where the same mines have beon worked for at least eight centuries. The finest atones are found near Nishápúr in Khorásan (see Persid, vol. zviiu. p. 822). Taveruier, writing in the 17 th century, atates that the best turquoise, reserved for the sole use of the shah, was obtained from the mine which he describes as the Vieille Roche, while inferior stones were got from the Nouvelle Roche. These terms still aurvive, ell turquoise of fine colour being said in trade to be from the "old rock," and that which is pale, or changes tint on exposure, is from the "now rock". According to a recent raport by Cansul Benjamin at Teheran the best turquoise is found at Abu Riáh, and all the Khorásan miles are farmed by a few prominent officials, who pay to the shah an annual rent of about £6500. Dr Tietze has lately described apecimens of the matrix of the mineral brought to Fienna from Persis by General Schindler. These show that the turquoise occurs, nat in clay-slate, as is often stated, but in a parphyritic trachyte or trachytic breccia, and in loose fragroents in the neigh. bouriug alluvium, The mineral is slso faund in Kerman in bouthern Persia, but the stons is of pale coloar, tending to fade, and the mines which yield it are now nearly ahandaned. In 1849 Major C. Blacdonald found turquoise in Wady Maghara and Wady Sidreh, near Sinal (q.v.), where, according to Mr H. Baverman, it lines the open joints of a ferruginous sandstone, and is also embedded in small ochreous nodules in the rock itself. The redder the rock the finer the colour of the associated turquoise. As the colour is liable to fade, the Arabian turquoise has not a good name among jewellers, and the workings were abandoned by Discdonald in 1865. In Wady Maghara there are relice of extensive mining operations, presumably for turquoise, of so early a date that the rock was wrought by fint iroplements. The early inhabitants of Mexico made much nse of this mineral far inlaying obsidian ornaments, and for mosaic work with iron-pyrites. It was probably one of the atones known es chalchihuill. In 1858 Prof. W. P. Blake called attention to the occurtonce of turquoise at Cerillos, sbont 22 miles southwest of Santa Fé, in New Mexico, where mining operations for this mineral were carried on two centurios ago. The turquoise varies in colour from oky-blue to apple-green, snd is found as nodules and small veins in a felspathic rock of microgranitic texture, probably of eruptive origin. The mines of Cerillos are no longer worked. A similar green mineral is found at Turquoiso Mountain in Cochise connty and at Mineral Park, Mohave county, Arizona. It also occurs to s emall bxtent in sonthern Nevada, where it is found es blue grains disseminated through a sandstone. In Europe, the turquoise is found at Oolsnitz in Saxony and near Jordansuinihl in Silusia, occurring at the latter locality in clay-Blate. Under the nsmes of callais and callaina Pliny described a green mineral which, if not our turquaise, aeems to have been very closely related to it. A bright groen mineral, wrought into boads, and found with stone hatchets in sncient graves at Men-er Hroeck (Rock of the Fairy) in Mrittany, was described in 1864 by M1. Demour, who, eeeking to \dentify it with Pliny's callais, revived this name. Dansafterwerds brought the word into harmany with our mineralogical nomenclature is writing it callainite. The mineral in question is a hyäated ,hosphate of alnminium, apparently identical with Breithauptie variscite. By many mineralogists the true torquoise is called calaite (aee Vol. xvi p. 405).
Turquoise is commonly imitated by ensmels, but of late some ingenious counterfeits have been made with the same chemical composition as the natural stone. To increase the deception, pieces of ochreous matter are inserted at the back of the artificial turquoise, to initato the netural matrix. In order to distinguieh between the genuine stone and its imitations, Pohl recommends that a splinter ohould be strongly heated in a platinum capoule, when the true turquaise is reduced to a brownish bleck powder or a friable mase with s decrepirating sound; the false turquoise does not desrepitete, but either fuses to a glass or is reduced to a frit.

For recent suiormation on the turguolee. see "Dos Vorkommen dal Turkiso bel Nischapar in Persion," by Dr E. Tietze, in Verhandl. d. . . . h. geolog. Reichsant stalt, No. 6, 1884, p. 93 . "Mikroekopiache Datereuchung dee Turkls," by \mathbf{H} Bucking, in Zeitach. \%. Krystallog., vol. 11, 1878 , p. 163 ; "Elne einfache und
 W. Ciarke and J. 8. Duller, in Amoric. Journ. Science, Sept. 1888, p. 211; "Ro. vision of Minerel Phoophate日, No. 1v., Calsite," by A. H. Cluurch, in Chem

TURRETIN, or Turretini. Three theologians of this name figure in the history of Genevan theology.

1. Benort Turpetin (1588-1631), the son of Francesco Turretini, a native of Lucca, who settled in Geneva in 1579, was born in that town on 9th November 1588. He was ordained a pastor in Geneva in 1612, and became professor of theology in 1618. In 1620 he represented the Genevan Church at the national synod of Alais, when the decrees of the synod of Dort were introduced inte France; and in 1621 he was sent on a successful missiou to the states general of Holland, and to the autherities of the Hanseatic towns, with reference to the defence of Cenera against the threatened attacks of the duke of Savoy. He published in 1618-20 a defence of the Genevan translation of the Bible. Benoit Turretin died at Genera on 4th March 1631.
2. François Turretin (1623-87), son of the preceding, was born at Gcneva oa 17th October 1623. After studying theology in Geneva, Hollandi: and France, be became a pastor in Genera in 1647. after'a brief pastorate at Leyden, he again returned to Geneva as professor of theology in 1653. He was one of the most influential supporters of the Formula Consensus Helvetica, drawn up chielly by Heidegger, in 1675, and of the particular type of Calvinistic theology which that symbol embodied. His Institutio Theologise Elenctice (3 vols. 4to, Geneva, 1680-83) has passed through frequent editions, the last reprint having been made in Edinburgh in 1847. F. Turretin died at Genera on 28th September 1687. He was also the author of volumes entitled De Satisfactione Christi Disputationes (Ceneva, 1666) and De Necessaria Secessionte Nostra ab Ecclesia Romana (Geneva, 1387).
3. Jear Alphonse Turretin (1671-1737), sou of the preceding, was born at Geneva on. 13th August 1671. He was educated at Geneva and in Holland, and after travelling in England and in France was received into the "Vénérable Compagnie des Pasteurs" of Geneva in 1693. In 1697 he became professor of church history. During the next forty years of his life he enjoyed great influence in Geneva as the adrocate of a more liberal theology than bad prevailed under the preceding generation, and it was largely through his instrumentality that the use of the Formula Consensus Helvetica as a symbol was discontinued in 1725. He also wrote and laboured for the promotion of union between the Reformed and Lutheran Churches, his most important work in this connexion being Nubes Testium pro Afoderato et Pacifico de Rebus Theologicis Judicio, et Instituenda inter Protestantes Concordia (Geneva, 1719). Besides this he wrote Cogitationes et Dissertationes Theologica, on the principles of natural and revealed religion (Geneva, 1737); and commentaries on Thessalonians and Romans were published posthumously. He died at Geneva on 1st Mav 1737.
tURTLE. See Tortoise.
TUSCANY (Ital. Toscana), one of the sixteen compartimenti of the kingdom of Italy, contains eight previncesArezzo, Florence, Grosseto, Leghorn, Lucca, Massa-Carrara, Pisa, and Siena-and has an area of 9287 square miles with \& population of $2,208,869 \mathrm{in} 1881$. In 1859, im. mediately before it united with the kingdom of 'Sardinia, the grand-duchy of Tuscany, exclusive of Massa-Carrara, which then belonged to Modena, but including the islands of Gorgona, Elba, Pianosa, Formica, Montecristo, Giglia, and Gianutre, as well as the duchy of Lucea (united to it
in 1847), had an area of 8625 square miles and a population of 1,806,940. See Italy, vol. xiii. pp. 489-490.

Etruria (q.v.) was finally annexed to Roma in 351 b.c. (sea Rome), and constituted the seventh of the eleven regious into which Italy was, for administrative purposes, divided by Augustus. Under Constautive it was united into one province mith Umbria, an arrangement which subsisted until at least 400 , as the Notitia epeaks of a "consularis Tuscie et Umbrix." In Ammianius Marccininus there is implied a distinction between "Tuscia suburbicaria" and "Tuscia annonaria," the latter being that portion which lies to the north of the Arno. After the fall of the Western empire Tuscia, with other provinces of Italy, came successively under the aray of Herulians, Ostrogoths, sud Greek and Lombard dukes. Under the last-named, "Tuscia Langobardorum," comprising the districts of Viterbo, Corneto, and Bolsena, reas distinguished from "Tuscia Regni," which lay more to the north. Under Charlemague the name of Tuscia or Toscana became restricted to the latter onl5. Oue of the earliest of the Frankish marquises was Boniface, either first or second of that name, who about 823 fought with success against the Saracens in Africa. Adalbert 1., who succeeded him, in 878 espoused the cause of Carloman as against his brother Louis 1II. of France, and suffored excommunication and imprisonment in consequence. Adalbert II. (the Rich), who married the ambitious Bertha, daughter of Lothair, king of Lorraine, took a prominent part in the politics of his day. A subsequent marquis, Hugo (the Great), became also duke of Spoleto in 989. The male line of marquises ended with Boniface II. (or III.), who was murdered in 1052. His widow, Beatrice, in 1055 married Godfrey, duke of Lorraine, and governed the conntry till her death in 1076 , when she was succeeded by Matilda (q.v.), her only child by her first husband. Matilda died in 1114 without issue, hequeathing all her extcnsive posscssions to the church. The consequent struggle between the popes, who claimed the inheritance, and the emperors, who maintained that tho countess had ro right to dispose of imperial fiefs, enabled the principal cities of Tuscany gradually to assert their independence and govern themselvea under consuls and elders of their own selection. The most important of these Tuscan republics or sell.goveracd communes were Florence, Pisa, Siena, Arczzo, Pistoia, and Lucca. Some account of the manner in which they were all gradually absorbed by Florence will be found under Florevice and Mlenici. The title of grand-duke of Tuscany was conferred on Cosmo de' Medici by Pius V. in 1567, and the emperor (Maximilian 11.), after withholding his consent for some years, nutimately confirmed it to Cosmo's successor in 1576. In 1735, in view of the childlessucss of Giovan Gastone, the last of the Medici, the succession of Francis, duke of Lorraine, afterwards emperor Francis I., was arranged for by treaty. In 1765 he was succeeded as grand-duke by his second son Leopold (seo Leopoln II.), who, on becoming enperor in 1790, handed Tuscany over to his second son Ferdinand, third grand-duke of the zaine. The duchy was occupied by the French in 1799, ceded to Louis, prince of Parma, by the consention of Madrid in 1801, and annesed to the French empire in 1803. Ferdinand, however, was reinstated in 1814, and on his death iu 1824 was succeeded by his son Leopold, second grand-duke of the name, who was deposed by the constituent assenibly on 16 th August 1860 . See Italy.

TUSCULUM, an ancient Latin city, situated in a commanding position on one of the eastern ridges of the Alban Hills, near the site of the modern Frascata (q.v.). It has a very beautiful and extensive view of the Campagna, with Rome lying fifteen miles ${ }^{1}$ distant to the north-west, on the west the sea near Ostia, and the long range of the Sabine Hills on the north-east. According to tradition, the city was founded by Telegonus, the son of Ulysses and Circe; hence Horace (Epod., i. 30) speaks of it as "Circæa mœnia" and Ovid (Fast., iii, 91) as "L'elegoni mœnia" (sce also Prop., iii. 30, 4, and Sil. Ital., xii. 535). The legendary descent of one of the chief Tusculan families, the gens Mamilia, from Ulysses through Telegonus is commemorated on some denarii struck by the Mamilian gens in the later years of the Roman republic; these have on the reverse a figure of Ulysses recognized by his dog Argo. Then Tarquinius Superbus was expelled from Rome his cause was espoused by the chief of Tusculum, Octavius. Manilius, who took a leading part in the formation of the Latin League, composed of the thirty principal cities of Latium, banded together against Rorae. Mamilius commanded the Latin army at the battle of Lake Regillus, a

[^289]piece of water which then lay immediately below the Colles Tusculani, but is now dried up. At this battle (497 8.c.) Mamilius was killed, and the predominance of Rome among the Latin cities was practically established. From that time Tusculum became an ally of Rome. and on that account frequently incurred the hostility of the other Latin cities. In 378 в.c., after an expression of complete submission to Rome, the people of Tusculum received the Roman franchise, and thenceforth the city continued to hold the rank of a municipium. Several of the chief Roman families were of Tusculan origin, e.g., the gentes Mamilia, Fulvia, Fonteia, Juventia, and Porcia; to the last-named the celebrated Catos belonged. During the imperial period little is recorded about Tusculum ; but soon after the transference of the seat of empire to Constantinople it became a very important stronghold, and for some centuries its counts occupied a leading position in Rome and were specially infuential in the selection of the popes. During the 12 th century there were constant struggles between Rome and Tusculum, and towards the close of the century the Romans, supported by the German emperor, gained the upper hand, and the walls of Tusculum, together with the greater part of the city, were destroyed.

Extensive remains still exist of the massive malls, which surronnded the city, and of its arx-a separata citadel-which stood ou an abrupt rock, approached only on one side, that towards the city, with which it was connected by long walls. "The walls are built of large blocks of the native "lapis Albanus" or peperino, some of them as much as 5 feet long by 3 feet thick. They probably belong to the early republican period; restorations in concrete faced witli "opus reticulatum" of the 1st century B.c. can ba traced in many places.

During the latter gears of the republic and under tha empire Tusculum was a farourite site for the country villas of weslthy Romans. That of Lucullus was very large and magaificent ; other handsome houses were built thera by Julius Casar, L. Crassus, Q. Metellus, Marcus Brutus, and others. A palace was erected by Tiberius near Tuscuium on the way to Rome, close to the Yia Latinz.
Tha most interesting associations of the city are those connected with Cicero, whose farourite residence and retreat for study and literary work was at Tusculum. It was here that he composed his celebrated Tusculan Disputations and other philosophical morks. Much has bcen writteu ou the position of his villa, but its true site still remains donbtful. Its grounds are known to have adjoined the more splendid villas of Lucullus and the consul Gabinius (see Cic., De Fin., iii. 2, and Pro Dom., 24). The most probable site is that now marked by the Villa Rufinclla to the west of Tusculum, where the hill is divided into two ridges. The scholiast on Horace, Epod., i. 30, states that Cicero's rilla was "ad latera superiora," the plural probably being used in allusion to the double ridge. The other theory, which places the site at Grotta Ferrata, some distance farther to the west, has little evidence to support it. Although Cicero (Pro Sestio, 43) speaks of his orn house as being insignificant in size compared to that of his neighbour Gabinius, jet wa gather from other notices in various parts of his works that it was a building of no mean size and pretension. It comprised two gymnasia (Div., i. 5), with covered porticus for exercisa and philosophical discussion (Tusc. Disp., ii. B). One of thesa, which stood on higher ground, was called "the Lyceum," and contained a library (Div, ii. 3); the other, on a lower site, shaded by rows of trees, was called "the Academy." The main building contained a covered porticus or cloister, with apsidal recesses (exedra) containing seats (sca Ad Fam., vii. 23). It also bad bath-rooros (Ad Fan., xiv. 20), and contained a number of works of art, both pictures and statues in bronzo and marble (Ep. ad Alt, i $1,8,9,10$). The central strium appears to have been small, as Cicero speaks of it as an atriolum (Ad Quint. Fr., iii. 1). The cost of this and the other house which he built at Pompeii led to his being burdened with debt (E_{p}. ad All., ii. 1). Nothing now exists which can be asserted to be part of Cicero's villa with auy degree of certainty. The so-called "scuola di Cicerone," near the line of tha ancient Wall of Tusculam, is the substructure of some building formed in the usual Roman way by a series of raulted chambers, and is clearly later in date than the time of Cicero. Other remains of houses exist in and ncar the city, Lut nothing is known as to their history or ownership.

Ruins of two theatres still exist. One of then, which is not earlier than the beginning of the 1st century, between the city and the arr, is fairly perfect, and still possesses most of its ancient seats, divided in to four cunci by three flights of steps. Only traces remain
of the other theatre, which abutted against the long malls that defended the road from the city to the arx. Remains of an amphitheatre of no great size can be traced, dating probably from the 3d century. There is also a large piscina, near the first-mentioned theatre. In the vicinity of Tusculum a number of interesting tombs have been discovered at various times; some, as for example that of the Furii, contained valuable inscriptions of the 4 th and 3 d senturies B.C.

The city was supplied with water by the Aqua Crabra, and near it were the springs which fad two of the Roman aqueducts- the iAqua Tepula and Aqua Virge (Front., De Aq., 8).
For further information the reader is referred to Compagni, Memorie Storiche Hell Antico Tuscuio: Canina, Descr. dell Antico Tusculo; Gell, Topogr. of Rome land.its Vicinity ; and Nibby, Dintorni di Roma, vol, iii.

TUSSER, Thomas (c. 1527-1580), poet, was the son of William Tusser by Isabella, daughter of Thomas Smith of Rivenhall, Essex, where he was born about 1527. Notwithstanding strong reluctance on his part he was sent in his early years to a music school, and became chorister in the collegiate chapel of the castle of Wallingford. He was afterwards admitted into the choir of St Paul's, and went thence to Eton, where he was under the tuition of Nicholas Udall. In 1543 ho was elected to King's College, Cambridge, and soon afterwards exchanged to Trinity Hall. On leaving the university he was for about ten years at court; probably in some musical capacity. He then settled as a farmer in Suffolk, near the river Stour, an omployment which he seems to have regarded as combining the chief essentials of human felicity. Subsequently he lived successively at Ipswich, West Dereham, Norwich, and London. There he died in April 1580, and was buried in the church of St.Mildred in the Poultry. His monument was destroyed in the fire, but the quaint epitaph is preserved in Stor's Survey of London. A marble tablet, on which the epitaph is inscribed, has been erected to him in the church of Manningtree, Essex.
Tusser's peems on husbandry have the charm of simplicity and directness, and their practical sarss were arparently relished, for in his lifetime they went through a number of editions. They are A Hundreth Good Pointes of Husbandrie, 1557, 1561, 1562, 1564, and 1570; A Diulogue Wyuyngcand Thryuynge, 1562; A Hzandrethe Good Pointes of Husbandrie lately married unto a Hundrethe Good Pointes of Hiswijry, 1570 ; Five Hundreth Pointes of Good Husbandrie united to as many of Good Wiferie, $1573,1576,1577,1585$, 1586, 1590, 1593, reprinted with memeir by William Mavor, 1812, by Auber, 1873, and by the Englislı Dialect Society, 1879. His metrical autobiography, priuted in the Appendix to Five Hundreth Pointes, 1573 , was republished in 1846 along with his will, which would seem to refute the sarcasms which became current, that he had not been successful in practising his own maxims. One of these references is contained in a volume of epigrams by H. P., The More the Merrier, 1608. Ono of the epigrams entitled Ad Tusserum, begins thus:-
" Tusser, they tell me, when thou wert alive,
Thou, teaching thrift, thyselfe could'st never thrive."
Possibly Tusser obtained the reputation of being.poor from his practice of thrift ; but in any case, if his will represents his worldly condition at the time of his death, he was not in poverty in his later years.

TVER, a government of central Russia, on the upper Volga, bounded by Pskoff and Novgorod on the W. and N., Yarostarl and Vladimir on the E., and Moscow and Smoleusk on the S . ; it has au area of 25,225 square miles. Lying on the southern slope of the Valdai plateau, and intersected by deep ralleys, it has the aspect of a hilly region, but is in reality a plateau ranging from 800 to 1000 feet in height. Its highest parts are in the northwest, where the Volga, Western Dwina, and Mista rise in narshes and lakes. The plateau is chiefly built up of Carboniferous limestones, Lower and Upper, underlain by Devonian and Silurian deposits, which appear only in the denudations of the lower valleys. The whole is covered by a thick sheet of boulder-clay (the bottom-moraine of the Scandinavo-Russian ice-sheet) and subsequent lacustrine deposits. A number of asar (see vol. x. p. 368) occur ou the slopes of the plateau. Ochre, brick, and pottery clays, as also limestone for building, are obtained, and there are
chalybeate springs. The soil, which is clayey for the most part, is not fertile as a rule.
Nearly the whole of Tver is watered by the upper Yolga (350) miles) and its tributaries, several of which (Vazuza, Dubua, Sestra, Tvertsa, and the tributaries of the Mologa) are navigable. The Vyshnevototsk system of canals connects the Velga (navigable some 60 miles from its source) with the Baltic, and the Tikhin syatem connects the Mologa with Lake Ladoga. The Msta, which flows into Lake Ilmeñ, and its tributary the Tsna, water Tver in the north-west, and the Western Dwina rises in Ostashkof: This netwerk of rivers highly favours navigation : as many as 3000 toats yearly pass through the Vyshnevototsk system, and corn, linseed, apirits, flax, hemp, timber, metals, and manufactured ware to the annual value of $1,500,000$ are shipped from, or brought to, the river ports of the government. Lakes, ponds, and marshes are numerous in the west and north-west, Lake Seliger-the soures of the Volga-and Lake Mstiue being the most important. The forests-coniferous in the north and decidueus in the south-rare rapidly disappearing, but still cover 890,000 acres. The climato is continental; the average yearly temperature at TVer ($41^{\circ} \cdot 5$ Fahr.) is the same as that of Orel and Tanboff (January 11°, July 67°). The population ($1,646,683$ in 1883 , as against $1,567,300$ in 1872) is unequally distributed, and in the districts of Kalyazin and Kasl in attains a density not much less than that of the more highly faveured black-earth provinces of south east Russia (16 and 17 pir square mile). Apart frem sone 100,000 Karelians and a few Poles and foreigners, the people are all Great Russians. Some traces of Finnish Ves and of Lithuanians are found in the north-east and aouth. The official returns give the number of Raskolniks as 25,000 . Only 157,110 are urban ; but agriculture is not the chief occupation. While barley and oats are exported, rye is imperted. The crops for 1883-1885 averaged 2,889,400 quarters of corn and 4,078,400 bushels of potatoes. Cattle-rearing does not prosper, and tbe in crease shown by the returns for 1883 (351,630 horses, 583,670 cattle, and 373,780 sheep) as against those of 1872 is simply due to better registration. Cheese-making has recently been introduced on the co-eperative principle (2168 cwts . of cheddar exported to Britaiu in 1881). The fisheries in the lakes and rivers are productive. The peasants are principally engaged in various manufactures. The total production of the larger manufactures in 1883 was valued at $£_{£ 2,237,250 \text { (tanneries } £ 244,460 \text {, cottous } £ 803,270 \text {, distilleries }}$ $£ 320,010$, flour-mills $£ 263,5000$, and that of the petty trades carried on in combination with agriculture (preparation of pitch, tar, and turpentine, beat-building, construction of cars, sledges, wheels, boxes, tubes, and wooden ressels, and cabinet-making) was estimate. 1 in 1884 at $£ 3,000,000$, giving occupation to 101,400 persons. Certain branclies of the leather industry aro important, Kimry and Ostash. koff sending to the market $£ 650,000$ worth of boots annually. Tle small workshops of Tyer and the surrounding district work some 4500 ewts. of iren into nails every year, and the Ostashk off smiths use some 7000 cwts . of iren annually in the manufacture of hatchet 3 , scythes, sickles, and different agricultural implements. Weavin $\%$, lace-making, leather embroidcry, stocking-making, felting, aud tiie like are also inpertant petty trades, several of these being organiz.d on co-operative principles by the zemstzos. The railway from St Petersburg to Moscow crosses Tper, and sends off two branches to Rzheff and to Rybinsk, all three lines being amiong the busiest in Russia: The river traffic alse is considerable. The chief centres of trade, besides the city of Tver, are Byezhetsk, Rzheff, Kashin, Ostashkoff, Torshok, Krasnyi Kholm, and Vesiegonsk during its fair. The provincial assembly of Tver is one of the nest prominent in Russia for its efforts in the cause of education and sanitury improvement. Iu 1883 there were 997 primary schools with 47,680 scholars (8500 girls), 17 gymnasia and progymnasia (1697 beys und 1263 girls), and tro normal schools for teachers. The government is divided into twelve distriets, the chief towns of which, with their pepulations in 1884, are-TVER (see below), Byezhetsk (5890), Kalyazin (5200), Kashin (5730), Kortcheva (2275), Ostashlkof (9900), Rzheff (26, 480), Staritsa (2700), Torshok (12,910), Vesiegonsk (3870), Vyshuiy V Vototchok (11,590), and Zubtsoff (3160).
TVER, capital of the above government, lies 102 miles by rail to the north-west of Moscow, on both banks of the Volga (here crossed by a floating bridge) at its junction with the Tvertsa. The low right bank is protected from inundations by a dam. As a whole the town is but poorly built. The oldest church dates from 1564, and the cathedraI from 1689. An imperial palace, the ccurts, and the postoffice rauk among its best buildings. A public garden occupies the site of the former fortress. The population was 39,100 in 1884. The manufactures, chiefly of cotton, employ 5900 workmen (5710 at the cotton mills), and a number of nail-making workshops employ some 800 men, while more tilin 1000 women are engaged in the domestic
manufactory of hosiery forrexport to Moscow and St Petersburg. The traffic of the town is considerable, Tver being an intermediaté place for the trade of both capitals with the provinces of the upper. Volga.

Tver dates its origin from 1180, when a fort was erected at the mouth of the Tvertsa to protect the Suzdal principality againat Novgorod. In the 13th century it became the capital of an independent principality, and remained so natil the end of the 15 tb century. Dilkhail Yaroslavovitch, princaof Tver, was killed fighting ngainst the Tatars, as also was Alexander Mikhailovitch, who boldly fought for the independence of Tver against Moscow. It long renuaioed an open question whether Moscow or Tver would ultinately gain the supremacy in Great Russia, and it was only with the help of the Tatars that the princes of the former eventually succeeded in breaking down the independence of Trer. In 1486, when the city was almost entirely burued dowa by tho Muscovites, the son of [van III. became prince of Trver; the final annexation to Moscow followed four years later. In 1570 Tver had to endure, for some reason now difficult to understand, the vengeance of Ivan the Terrible, who ordered the massacre of 90,000 inhabitants of the priacipality. In 1609-12 it was pluadered both by the followers of the second false Demetrius and by the Poles.

TWEED, a river in the south of Scotland, has its rise iu the south-west coruer of Peeblesshire, not far from the Devil's Beef Tub in Dumfriesshire. The stream flowing from Tweed's Well, about 1500 feet above sea-level, is generally regarded as its source, although the honour is also claimcd for other streams issuing from a higher elevation. For the first 36 miles of its course it intersects the county of Peebles-frequently on this account called Tweeddale-in a north-easterly virection, passing between verdant hills separated by valleys watered by its numerous affluents. Having passed several picturesque keeps and castles, it reaches the town of Peebles, shortly before which it receives the Lyne Water from the north and the Manor Water from the south. The valley now widens; the scenery becomes softer and richer; and the river, bending in a more easterly direction, passes Innerleithen, where it receives the Leithen from the north and the Quair from the south. It then crosses Selkirkshire in a south-easterly direction, and, having received the Ettrick from the south on the borders of Roxburghshire, flows northward past Abbotsford, forming for about 2 miles the boundary between the counties of Selkirk and Roxburgh. After receiving the Gala, the Tweed crosses the north-western corner of Roxburghshire past Melrose and its abbey, and, after heing joined by the Leader from the north, winds past Dryburgh abbey round the south-western corner of Berwickshire. The remainder of its course is in a northeasterly direction through Roxburghshire past Kelso, where it receives the Teviot from the south, and then between the counties of Berwick and Northumberland, past Coldstream and Norham castle to the town of Berwick, where it reaches the North Sea. It receives the Eden Water from the north at Edenmouth, the Leet Water from the north at Coldstream, and the Till from Northumberland between Coldstream and Norham castle. The last 2 miles of its course before reaching Berwick are in England. Though the latter part of its course is through a comparatively level country, the scenery along the river is full of charm, owing to the picturesque variety of its finely wooded banks. The associations connected with the keeps and castles of the Tweed have supplied materials for several of Sir Walter Scott's poems and romances; and its varied beauties have been sung by Hogg, Leyden, Thomson, and many others. The bed of the river is pebbly and sandy, and, notwithstanding discolorations from manufactures, the stream, from its clear and sparkling appearance, is still well entitled to the name of the "silver Tweed." The total area drained by it is about 1870 square miles, and its total length is 97 miles. Next to the Tay it is the largest river in Scotland. The Tweed has, however, no estuary, and its traffic is chiefly confined to Berwick. But for a short dis-
tance up the river some navigation is carried on by barges. The river is one of the best in Scotland for trout and salmor fishing.

See Sir Thomas Dick Lander'a Scollish Rivers and Prof.'TVitç"' River Tweed, 1884.

TWEEDS. See Woollen and Worsted Manufactores.

TWELVE TABLES. See Roman Law, vol. xx. v. 679 sq., and Rome, vol. xx. p. 737.

TWENTY-FOUR PARGANAS, the metropolitan district of the lieutenant-governorship of Bengal, India, takes its name from the territory originally ceded to the East India Company, which contained twenty-four pargánas or sub-districts. The district lies between $21^{\circ} 55^{\prime} 20^{\prime \prime}$ and 22° $57^{\prime} 32^{\prime \prime}$ N. lat. and $88^{\circ} 6^{\prime} 45^{\prime \prime}$ and $88^{\circ} 20^{\prime} 51^{\prime \prime}$ E. long. It has an area of 2124 square miles, and is bounded on tho rorth by Nadiý, on the north-east by Jessore, on the south and south-east hy the Sundarbans, and on the west by the river Hugli (Hooghly). The country consists for the most part of a vast allurial plain within the delta of the Ganges, and is everywhere watered by numerous rivers, all branches of the Hugli. In the northern portion the soil is very rich, but the southern or seaboard part consists of the network of swamps and inland channels known as the Sundarbans. The Húgli and six other streams are navigable by the largest boats throughout the year. The district is well supplied with canals, the most important being Tolly's Nala (10 miles long), which connects the Húglif with the Bidyádhári. The Twenty-Four Pargánàs was once famous for its sport, but owing to the extension of cultivation game is now scarce. Tigers are seldom met with; leopards are more numerous; there are several varieties of deer. The district has many roads, and is traversed by the Eastern Bengal Railway and the Calcutta and South-Eastern State Ravilway.

In 1881 the population of the district, exclusive of Calcitta, numbered $1,869,859$ (males 975,430 , fomales 894,429), embracing 1,153,040 Hiadus, 701,306 Mohammedans, and 13,976 Christiaus. The ten following municipalities had each a-populatiou of upwards of 10,000-Sonth Suburban, 51,658; Agarpara, 30,317; Baraogar, 29,982; Naihati, 21,533; Nawabganj, 17,702; Basurhat, 14,843; South Durn Dum, 14,108; Baduria, 12,981; Rajpore, 10,576 ; and Barasat, 10,533 . The administrative headquarters of the district are at Alipur, a southern suburb of Calcutte. Rice forms the staple crop of the district; other crops are pulses, oil seeds, sugar-cane, tobacco, \&c. Its principal exports are rice, sugar, pin leaf, fish, pottery, \&c. ; the imports comprise pulses of all kinds, oil-seeds, spices, turmeric, chillies, cloth, cotton, \&c. The objects of the rural manufactures are sugar, cotton curtains, brass and iron work, horn sticks, and cotton ard tasar silk cloth. The gross revenue of the district in 1885-S6 amounted to $. £ 338,595$, of which the land-tax contributed $£ 155,181$. The district was ceded to the East India Compauy by treaty by the nawáb vázien of Bengal in 1757. Since then several changes have heeu made in its boundaries, the latest in 1863.

TWICKENHAM, a town of Middlesex, England, is situated on the north bank of the Thames and on the London and South-Western Railway, $11 \frac{1}{4}$ miles south-west of London by rail. It is a straggling and irregular town, but has many fine suburban villas, and the district is noted for its sylvan beauty. Opposite the town there is an eyot in the river about 8 acres in extent, called Eel Pie Island, much resorted to by boating parties. The parish church of St Mary was rebuilt in red brick in very plain style after the fall of the old one in 1713, but the picturesque western tower of the I4th century still remains. It contains many interesting monuments, including one to Pope! who was buried in the nave. The principal public build ings are the town-hall and assembly rooms (built in 1876, and containing the free library established in 1882), the economic museum, the royal naval female school for the daughters of naval and marine officers, the Montpellier lecture hall, the metropolitan and City of London police orplatage, the almshouses of the London Carpenters ${ }^{3}$ Com =
pany, and a brancl of the national refuge for the homeless and destitute. The population of the urban sanitary district (aren 2415 acres) in 1871 was 10,533 , and in 1881 it was 12,479 .
Twirkenham at Domestlay was included in Isleworth. Anciently it was calleal Twittenhan or Twicaunham. The manor was given iu 941 by King Edmund to the monks of Christ Charch, Canterbury, from whom it hall been previonsly taken, lut it was again alicinatecl, for it was restored to the same noonks by Elled in 948 . In the reign of Henry YIII. it came into the possession of the erovin, mind by Charles I. was assigned to Hemrietta Maria as jart of her jointurc. - It was sold during the Protectorate, Lut after the Restoration the quecn mother resumed possession of it. In 1670 it was settlecl for life on Catlocriue of liraganza, quiten of Charles II. It still remains in possession of the crown, lunt since the dentlo of Catherino las been let on leases. In the neighbourlinol arc many residences of literary or historical interest. I'ope's villa, where he lived from 1717 till his dleath in 1744, has been rvinoval. Among old mansions of interest still remaining are strawherry 1fill, the resilence of Horace Walpole, now much alterect ; Marble Hill, buit by Gcorge III. for the countess of Sulfolk, aul subsequently residell in ly the maryuis of Wellesley; Orlemins Honse, built in the reign of Cuneen Anne by Jolnstone, ocenpicd for some tine by the iluke of Orlenns, and from 1879 to 1383 as a club honse ; York House, ssiil' to liave been the residence of Janes II. when duke of York, bestowed hy Charles 11. on Loril Clarenton when lic mnarricd the duke of York's danghter, and in modern times resilesl in ly the Comto de Paris; and Twickenlaan Honse, formerly the resilence of Sir Jolm Hawkins, author of thic I Iistory of MILsic, and tho nnecting place of the "Literary Club." of the olit manor house of Twickenhan, to which Catherino of Arafon is said to have retired after hees divorre from Henly VIlI., :tnd which was sulbsequently the resilenice of Catherine of liragan\%a, uneon of Charles 11., thic only renains are a ruin called the Aragon tower. Twickenham Park ITouse, for some time the residence of Lort Chancellor Bacon, las becn demolished.
TWILIGHT. The light of what is called the "sky" depends upon the scattering or reflexion of direct sunlight in the earth's atmosphere, mainly if not entirely due to those fine dust particles which (as we have recently learned) form the necessary nuclei for condensation of aqueous vapour. Were it not for these particles the sky would appear by day as it does in a clear winter night, and the stars would be alway's visible. Alpine climbers and aeronauts, when they have left the grosser strata of the atmosphere below then, find this state of things approxinated to; and even at the sea-level the blue of the sky is darker when the air contains but few motes. After the sun has set, its rays continue for a time to pass through parts of the atmosphere above the spectator's horizon, and the scattered light from these is called twilight. It is, of course, inost brilliant in the quarter where the sun has set. Before sunrise we have essentially the same phenomenon, but it goes by the name of "dawn." The brilliancy of either dejends upon several conditions, of which the chief is, of conrse, the degree by which the sun has sunk below the horizon. But the amount of dust in the air affects the phenomenon in two antagonistic ways: it diminishes the amount of sunlight which reaches the upper air after passing close to the earth and it increases the fraction of this light which is scattered to form twilight. Hence no general law can be laid down as to the duration of twilight; ; but it is usual to state (roughly) that it lasts until the sum is about 18° under the horizon. If we make this assumption, it is a simple matter of calculation to solve questions as to the duration of twilight at a given place at a given time of year, the maximum duration of twilight at a given place, \&c. In the older works on astronomy such questions were common enough, but they have now little beyond antiquarian interest. The more complex phenomena of twilight, such as the "after-glow," de., probably depend upon the precipitation of moisture on the dnst particles as the air becomes gradually colder. This will of course alter the amount of scattering ; but it may also lead (by reflexion from strata of such particles) to an increase in the amount of light to be scattered.

tycho minhe. See Brahe.

TYLDESLEY with Shakeliley, a town of Lancashire, England, is situated on a considerable eminencc, 11 miles west-north-west of Manclester and 199 north-west of London (by the London and Nortl-Western Railway). The church of St Gcorge, a handsonte building in the Early Pointed style, erected in 1827, has lately undergone restoration. Public baths were built in 1876 . A public cemetery was formed in 1878. The tuwn is the growth of the 19th century and depends unon its cotton-mills and the large collieries in the neighbourhood. It is governed by a local board of health of sixtecn members. The population of the urban sanitary district (area 2490 acres) in 1871 was 6408 and in 1881 it was 9954.
At Domesday Tyllesley formoll part of the manor of Warrington. One of its proprictors, Sir Thomas Tyhlesley, was a distinguisished Royalist. His son Edward in 1672 solit the manor to Raljh Asticy, and from the Astleys it passed in 1728 to Thomas Joluson of Bolton. In 1823 it becane the property of Cieorge Orucrod, anthor of the History of Cheshire.

TYLER, Jонn (1790-1869), tenth president of the United States, was accustomed with pride, but with the support of conjecture rather than evidence, to claim re: lationship with Wat Tyler of the reign of Riclard II. The earliest of his American ancestors was Henry Tyler, a reputed native of Shropshire, England, who in 1652 settled at Middle Plantation, Va., on the outskirts of what is now the city of Williamsburg. Joln Tyler was the son of Judge John Tyler, some time governor of Virginia, and was born at Greenway in that State, 29th March 1790. In 1802 he entered the grammar school of William and Mary, where, though fond of fun and frolic and cultivating an inherited taste for the violin, he mado good progress in his studies, "After graduating in 1806 he entered on the study of law, and in 1809 was called to the bar, where his progress from the first was rapid. He becane a member of the State legislature in December 1811. In 1813 he raised a company in defence of Richmond, in command of which he subsequently served with the fifty-second regiment at Williamsburg and Providence Forge. In December 1816 he was elected to the house of representatives at Washington, where he displayed much readiness and skill in debate as an uncompromising advocate of popular rights. In 1825 he was elected governor of Virginia by a large majority, and the following year was re-elected unanimously. .- In 1827 Ihe was: chosen a senator. He opposed Clay on the tariff question in 1832, delivering a speech against 'the 'protective dulies which lasted three days; but, he jvoted for Clay's Cornpromise Bill of 1833. He was the only senator who voted against the Force Bill on 20th February of this year, a singularity of conduct which somewhat damaged his reputation in Virginia. Although opposed to the establishinent of the United States Bank, he supported the resolutions in 1835 censuring President Jackson for the removal of the deposits, on the ground that the procedure was unconstitutional. In consequence of a vote of the Virginia legislature instructing him to vote for the expurgation of these resolutions from the senate journal he resigned, 21 st February 1836. His action led the Whigs to bring him forward as a candidate for the vice-presidency, but he only received forty-seven votes. For some time after this he ceased to take an active part in politics; removing in the end of the year from Gloucester to Williamsburg, where he had better opportunities for legal practice, he devoted his chicf attention to his professional duties. At the Whig convention which met at Harrishurg, Pennsylvania, 4 th December 1839, he was nominated again for the vice-presidency on the Harrison ticket, and elected in November 1840. On the death of Harrison, soon after his inauguration in 1841, Tyler succeeded him. His elp-
vatiou to the presidency was thus accidental in a double sense, for he had been nominated for the vice-presidency to reconcile the extreme faction. His policy in office (sse United STates) was opposed to the party who nominated him and was on Democratic lines. In 1845 he was succeeded by Polk, and he spent the remainder of his life in retirement from active duties. He was nominated in 1861 for the lower house of the permanent congress, but died at Richmond on the 18th of the following January.
See L. G. Tyler, Lijc and Tines of the Tylcrs, 2 vols,, 1884 .
TYNDALE, Wilumam (c. 1484-1536), translator of the New Testament and Pentateuch (see Englise Brble, wol. riii. pp. 384, 385), was born in Gloucestershire, possibly in the parish of Slimbridge, about the year 1484. Of his early educatiou nothing is known; abont his twentieth year he went to Oxford, where tradition has it that he was entered of Magdalen Hall. He afterwards resided at Cambridge. Ordained to the priesthood, probably towards the close of 1521 , he entered the household of Sir Johu Walsh, Little Sollbury, Gloucestersi:ire, in the capacity of chaplain and domestic tutor. Here he spent two years, and in the course of lis private studies began to contemplate seriously the work of translating the Nevr Testament into English. His sympathy with the "new learning," which the had not concealed in conversation with the higher clergy of the neighbourhood at Sir John's table, led to his being summoned before the chancellor of Worcester as a suspected beretic ; and "with the goodwill of his master" he left for London in the summer of 1523 . There he preached a little at St Dunstan-in-the-West, and worked at his translation, living for some months in the house of Humplrey Monnouth, an alderman; but finding pullication impossible in England he sailed for Hamburg in \$ay 1524. After visiting Luther at Wittenberg, he settled in Cologne, where he mado some progress with .a quarto edition of his Nevv Testament, when the interference of the authorities of the town compelled his fight to Worms. The octavo edition (see vol. viii. p. 384) was here completed in 1526 . Where Tyudale resided in the interval batween 1526 and 1530 - the year of publication of his translation of the Pentatench-is not known; his Parable of the Wicked Mammon (1527), Obedience of a Christian Man (1528), and Practice of Prelates (1530), all bear to ha e been printed at "Marlborowe in the land of Hesse" or "Marborch." From 1530 onwards he appears to have lived chiefly in Antwerp, but of his life there hardly anything is recorded, except that as a marked man he was continually the subject of plots and intrigues, and that at last he was arrested and thrown into prison in the castle of Vilvorde, some six miles from Brissels, in 1535. Haring been found guilty of heresy, he was put to death by straugling, and his body afterwards burnt at the stake on October 6, 1536.
The Π^{F} orks of Tyndale were first published along mith those of Frith (q, v.) and Barnes, "three worthy Martyre and principal Tcachers of the Church of Englaud," by Johu Daye, in 1573 (folio). His Doctrinal Treatises and Introduclions to Different Portions of the Holy Scripturc were publislied by the Parker Society in 1848 . For biography, see Demaus, Williain Tyndale (London, 1871); also the Introlluction to Mounbert's critical reprint of Tyndale's Pentateuch (New York, 1884), where a full bibliography is given. There seenis no reason to donbt that the translation of Joshua, Judges, Samuel, Kings, and Chronicles in Mattlev's Bible is substantially the work of Tyndale.
TYNE, a river in the north-east of England, is formed of two branches, the North Tyne, rising in the Cheviots on the borders of Roxburgh, and the South Tywe, rising at Tynehead Fell, at the south-eastern extremity of Cumberkand. The North Tyne flows south-eastwards by Bellingbau, a short distance below which it receives the Rede from the north, and 2 miles above Hexham it is joined by the South Tyne, which before the junction flows north-
ward to Haltwhistle, and then eastward, receiving the Allen from the right a short distance above Haydon Bridge. The united streams then have a course of abou: 30 miles eastwards to the sea at Tynemouth. For a considerable part of its course the Tyne flows through a pleasant and richly cultivated country, but in its lower reaches the presence of coal pits has almost completely robbed the scenery of its natural charms, and the former sylvan retreats of noonks and abbots are now occupied by blast furnaces and shipbuilding yarde, and similar scenes of busy industry, which line both banks of the river from Newcasile to the sea. The river is navigable to Blaydon for small craft, and to Newcastle. 8 miles from its nouth, for large vessels.
Tbe coal trade of the Tyne is the most important in Engianh, and for its general shipping trade the river janks next in inportance to tne Thanes and the Mersey. The principal ports are Newcastle and North and South Shields, but below Newcastle the river is everywhere studded with piers and jetties. A bout a seventh of the whole tonage of vessels built in England is built ou the Tyne, the most important works being those of Jarrow. For boat-racing the Tyne vies in celebrity with the Thames.
TYNEMOUTH, a municipal and parliamentary borough of England, in Northumberland, includes the townships of Chirton, Cullercoates, North Shields, Preston, and Tynemouth. This last, the principal watering-place on this part of the coast, is picturesquely situated on a promontory on the north side of the Tyne at its mouth. It is connected with Newcastle, 8 miles to the west-south-west, by a branch of the North-Eastern Railway; its distance from London is $273 \frac{1}{2}$ miles by rail. The town has rapidly increased within recent years, and contains many well-built streets, squares, and villas. On the point of the promontory there is a small battery called the Spanish battery, and near it a monument has been erected to Lord Collingwood. Within the grounds to which the gateway of the old castle gives entrance are the ruins of the ancient priory of St Mary and St Oswin-the principal remains being those of the church. A pier, half a mile long, serves as a breakwater to the harbour. Among the principal public buildings are the assembly rooms and the aquarium (1872). The municipal buildings of the borough of Tynemouth are situated in North Shields, where are also the custom house, a master mariners' home, à seamen's institute, and a sailors' home founded by the late duke of Northumberland. Shipbuilding is carried on, and there are rope and sail works. The fish trade is of considerable importance and employs several steam and sailing boats. The population of the municipal and parliamentary borough of Tynemouth (incorporated in 1849; area 4303 acres), divided invo the three wards of North Shields, Percy, and Tynemouth, was 38,941 in 1871, and 44,118 in 1881.

Tynemoutlı was a fortress of the Sarons, and mas aucicntly known as Penlal Crag, "the head of the rampart on the rock." From remains fonnd in 1783 it is supposed to have been a Roman station. The first chureh was built of wood by Edwin, king of Northumbria, about 625, and was rebuilt in stono by his successor Oswald in 634. The hody of Oswiu, king of Deira, was brought hither for burial in 651, and on this accourut Tynemouth came to be in great repute as a place of burial both for rojal and ecclesiastical persons. The monastery was repeatedily plundered and burnt by the Danes, especially during the 9th centary. After its destruction by Healfdeane in 876 it was rebuilt by Tostig, earl of Northumberland, who endowed it with considerable revenue; but, baviog been granted in 1074 to the monks of Jarrow, it became a cell of Duraam. Malcolm III., king of the Scots, and his son Edward, who were slain in battle at Alnwick on 13th November 1093, were both interred in the monastery. In 1095 Earl Morrbray, haring entered into a conspiracy against William Rufus, conrerted the monastery into a castle, which he strongly fortified. By William Rufus the priory was conferred on St Albans abbev, Hertfordshire. It was surrendered to Henry TlII. on 12th January 1539 , and the eite and remains were granted by Edward YI. in 1550 to the earl of Warwick, afterward. duke of Northumberland. In 1644 the castle was taken by the Scots under tie earl of Leven. The town enjoyed various immunities at a very early period, which wero
aftermards the subject of some dispute. Edward I. restored to it several fiee customs of which it had been deprived. Afterwards it received a contirmation of its various former charters by Edward !I and Richard II.

TYPE-FOUNDING. See'Typography.

type-vriting. See Writing Machines.

TYPHON, or Typhoeve, son, according to Hesiod (Theog., 820 sq .), of the Earth and Tartarus, is described as a grisly monster with a bundred dragons' heads who was conquered and cast into Tartarus by Zeus. According to I!iad ii. 282, he lies in the land of the Arimi (Cilicia). Other legends place his prison under Etna or in other volcanic regions and make him the cause of eruptions. The myth, therefore, as we lave it, rests on a personification of volcanic forces. He is the father of dangerous winds (typhoons), and by later writers is identified with the Egyptian Set (see vol. vii. p. 717).
TYPHUS, TYPHOID, AND RELAPSING FEVERS. These are conveniently considered together, as they constitute the important class of continued fevers, having certain characters in common, although each is clearly distinguishable from the others. The following is a general account of the more salient features of each.

Typhos Fever.

Typhus ${ }^{1}$ is a continued fever of highly contagious nature, lasting for about fourteen days and characterized mainly by great prostration of strength, severe nervous symptoms, and a peculiar eruption on the skin. It has received numerous other names, such as spotted, pestilential, putrid, jail, hospital fever, \&c. It appears to have been known for many centuries as a destructive malady, frequently appearing in epidemic form, in all countries in Europe, under the conditions to be afterwards referred to. The best accounts of the disease are those given by English writers, who narrato its ravages in towns and describe many "black assizes," in which it was communicated by prisoncrs brought into court to the judges, jurymen, court-officials, \&c., with fatal effect, producing oftentimes a widespread consternation. Typhus fever would seem to have been observed in almost all parts of the world; but, although not unknown in warm countries, it has most frequently prevailed in temperate or cold climates.

The causes concerned in its production include both the

Predis.

 predisposing and the exciting. Of the former the most powerful of all are those influences which lower the health of a community, especially overcrowding and poverty. Hence this fever is most frequently found to affect the poor of large cities and towns, or to appear where large numbers of persons are living crowded together in unfavourable hygienic conditions, as has often been seen in prisons, workhouses, \&c. Armies in the field are also liable to ouffer from this disease; for instance, during the Crimean War it caused an enormous mortality among the French troops. Some high authorities, including Dr Murchison, have held that such conditions as these referred to are capable of generating typhus fever by themselves, and the apparent occasional de novo origin of this disease has doubtless the support of many striking facts which would appear to favour this view (seo Pathology, vol. xviii. p. 803). In the light, however, of recent researches into the relation of specific disease germs to the production of fevers and other infectious maladies, there is increasing difficulty in maintaining this position; and the direction of opinion is decidedly towards the view that, however much insanitary conditions and overcrowding act as causes prediaposing to the reception of the disease, the introduction into the system of a living organism or germ is necessary to the manifestation of the phenomena of the fcver. Nevertheless no specific organism has yet been clearly identified[^290]in the case of typhus fever. This disease is now much lesz frequently encountered in medical practice than formerly. -a fact which must mainly be ascribed to the greak attention which in recent times has been directed to improvement in the sanitation of towns, especially to the opening up of crowded localities so as to allow the frew circulation through them of fresh air. In most large cities, however, limited epidemic outbursts of the distasa occur from time to time, under the conditions of overcrowding and poverty, although the increased facilities possessed by local authorities for recognizing such nut breaks, and for the prompt isolation or removal of infected persons to hospitals, operate in general effectually ta prevent any extensive spread of the fever. All ages are liable to typhus, but the young suffer less severely than the old. The disease appears to be communicated by the exhalations given off from the bodies of those suffering from the fever, and those most closely in contact with the sick are most apt to suffer. This is shown by the frequency with which nurses and physicians take typhus from cases under their care. As in all infectious maladies, there is often observed in typhus a marked jroclivity to suffer in the case of individuals, and in such instances very slight exposure to the contagion may conrey the disease. Typhus is highly contagious throughout its wholo course and eves in the early period of convalescence. The contagion, hosiever, is rendered less active by the access of fresh air; hencs this fever rarely spreads in well-aired rooms or houses where cases of the disease are under treatmel.u. As a rula one attack of typhus confers immunity from risk of others, but numerous exceptions have been recorded.

The course of typhus fever is characterized by certaiz. well-marked stages. (1) The stage of incubation, or thi period elapsing between the reception of the fever poisor. into the system and the manifestation of the special ovidence of the disease, is believed to vary from a week to ten days. During this time, beyond feelings of languor, no particular symptoms are exhibited. (2) The invasios of the fever is in general well marked and severe, in the form of a distinct rigor, or of feelings of chilliness lasting for hours, and a sense of illness and prostration, together with headache of a distressing character and sleeplessness. Feverish symptoms coon appear and the temperature of the body rises to a considerable height ($103^{\circ}-105^{\circ}$ Fahr.) at which it continues with but little daily variation until about the period of the crisis. It is, however, of impoitance to observe certain points connected with the teraperature during the progress of this fever. Thus abous the seventh day the acme of the fever heat has beer reached, and a slight subsidence (1° or less) of the tem-

Temperature chart of typhus fever.
perature takes place in favourable cases, and no furthor subsequent rise beyond this lowered level occurs. When it is otherwise, the case often proves a severe one. Again, when the fever has adranced towards the end of the second week, slight falls of temperature are often observed, prior to the extensive descent which marks the attainment of the crisis. The pulse in typhus fever is rapid (100-120.
or more) and at first full, but later on feeble." Its condiLion as indicating the strength of the heart's action is watched with anxiety. The tongue, at first coated with a white fur, soon becomes brown and dry, while sordes (dried mucus, ©c.) accumulato upon the teeth ; the appetite is gone and intense thirst prevails. The bowels are as a rule fonstipated, and the urine is diminished in amount and high-coloured The physician on examination may make ont distince enlargenent of the spleen. (3) The third stage is characterized by the appearance of the eruption which senerally shows jitself about the fourth or fifth day or later, and consists of dark red (mulberry coloured) spots or blotches varying in size from mere points to three or four lines in diameter, very slightly elevated above the skin, at first disappearing on pressure, but tending to become both darker in hue and more permanent. They appear chiety on the abdomen, sides, back, and limbs, and occasionally on the face. Besides this, the characterustic typhus rash, there is usually observed a general faint mottling all over the surface. The typhus rash is rarely absent and is a very important diagnostic of the disease. In the more severe and fatal forms of the fever, the rash has all through a very dark colour, and slight subcutaneous hemorrhages (petechix) are to be seen in abundance. After the appearance of the eruption the patient's condition weems to be easier, so far as regards the headache and discomfort which marked the outset of the symptoms; lut this is also to be ascribed to the tendency to pass into the typhous stupor which supervenes about this time, and becomes more marked throughout the course of the second week. The patient now lies on his back, with a dull dusky countenance, an apathetic or stupid expression, and contracted pupils. All the febrile symptoms already mentioned are fully developed, and delirium, usually of a low muttering kind, but sometimes wild and maniacal (delirium ferox) is present both by night and day. The peculiar condition to which the term "coma vigil" is applied, in which the patient, though quite unconscious, lies with eyes widely open, is regardod, especially if persisting for any length of lime, as an unfavourable omen. Throughout the second week of the attack the symptoms continue unabated; but there is in addition great prostration of strength, the pulse becoming very feeble, the brcathing shallow and rapid, and often accompanied with bronchial sounds. (4) A rrisis or favourable change takes place about the end of the second or beginning of the third week (on an average the 14 th day), and is marked by a more or less abrupt fall of the temperature (vide chart) and of the pulse, t.ogether with slight perspiration, a discharge of loaded nrine, the return of moisture to the tongue, and by a clange in the patient's look, which clears up and shows signs of returning intelligence. Althrough the senso of weakness is extreme, convalescence is in general steady and comparatively rapid.
Tyrhus fever may, however, prove fatal during any stage of its pregress and in the early convalescence, either from sudden failure of the heart's action-a condition which is specially apt to arisefrom the supervention of some neryous symptems, such as meningitis or of deepening ceina, or from some other complicatien, such as bronchitis. - Further, a fatal result sometimes takes place hefore the crisis from shecr exlaustion, particularly in the casc of those whose physieal or nervous energies have been lowered by hard work, inadequate nourishment and sleep, or intemperance, in all which conditions typhus fever is apt to assume an unusually serions form.
Occasionally troubleseme sequele remain belind fer a greater or iess length of tiine as the effects of the fever. Among these may he mentionell mental wenkiness or irritability, occasionally some form of paralysis, an inflamed condition of the lymphatic ressels of one leg whe swilted leg of fever), prolonged weakness and ili heas'th, \&cc. Cradual improvement, liowever, may, be confidently onticipated and even ultimate recosery.
The mertality from tyithins forer is estimated by Nurchison and ethers as averaging about is por cent. of'the sases, Litt it raries
much according to the severity of type (particularly in epidemics), the previous health and habita of the individual, and very specially the age,-the proportion of deatho being in striking relation to the adrance of life. Thus, while in children under fifteen the death-rate is only 5 per cent., in persons over fifty it ia about 46 per cent.
The treatment of typhus fever includes the prophylactic measures of attention to the sanitation of the more densely populated portiens of towns. The opening up of cross streets intersecting those Which are close-huilt and narror, whereby fresh air is freely admitted, has done much to benish typhus fever from districts Where previously it was endemic. Further, the enforcement of the law regulating the number of persons accommodated in common longing-houses, and the application of the powers now vested in local authorities for dealing with cases of evercrowding everywhere, and for isolation and treatment of the infected, have had a like salutary effect. Where typhus has broken out in a crowded district the prompt removal of the patients to a fever hospital and the therough disinfection and cleansing of the infected houses are to be recommended. Where, on the other hand, a single case of accidentally caught typhus occurs in a member of a family inhabiting a well-aired house, the chance of it being communicated to others in the dwelling is but small; neverthcless every precaution in the way of isolation and disinfection should be taken.
The treatment of a typhus patient is conducted upen the same general principles as have heen illustrated in other fevers (see Scarlet Fever, Smallpox). Complete isolation should be maintained throughout the illness, and the services of a day and a night nurse procured, who should keep a strict wateh and preserve a record of the temperature and other observations, the times of feeding and the form of nourishment administered, as well as every other fact noticed, for the physician's information. Due attention should be given to the rentilation and cleansing of the sick chanber. The main element in the treatment of this fever is good nursing, and especially the regular administration of nutriment, of which the best form is milk, although light plain soup may also he given. The food should be administered at atated intervals, not, as a rule, oftener than once in one and a half or two heurs, and it will frequently be necessary to rouse the patient from his stupor for this purpose. Sometimes it is impossible to administer food by the mouth, in which case recourse must be had to nutrient enemata. Alcoholic stimulants are not often required, except in the case of elderly and weakly persons tho have become greatly exhausted by the attack and are threatening to collapse. The hest indication for their use is that furnished by the condition of the circulation : when the pulse shows unsteadiness and undue rapidity, and the first sound of the heart is but indistinctly heard by the stethoscope, the prempt administration of stimulants (of which the best form is pure spirit) will often succeed in averting danger. Shonld their use appear to increase the restlessncss or delirium they should be discontinued and the diffusible (ammoniscal or ethereal) forms tried instead.

Many other symptoms demand special treatment. The healaclie, which persists for days at the commencemeut and is with many a very distressing symptom, may be nitigated by remeving the hair and applying cold to the heal. The slecplessness, with or without delirium, may bo combsted by quictness, by a moderately darkeued room (although a distiuction between day and night should bo made as regards the amount of admitted light), and by soothing and gentle dealing on the part of the nurse. Opiate and sedative medicines in any form, although recommended by many high autherities, must io given with great caution, as their use is often attended with danger in this fever, where coma is apt to supervenc. When resorted to, prohably the safest form is a combination of the bromide of potassium or anımonium with a guarded amomt of chloral. The writer has seen alarming effects follow the administration of opium. Occasionally the deep stuper calls for remedies to rouse the patieut, and these nay be employed in the form of mustard or cantharides to the surface (calves of legs, nape of neck, over region of heart, \&c.), of the cold affusion, or of cnernata containing turpentine. The beight of the temperature may bo a serions synptom, and antipyretic remedics appear to have but a slight influ. ence over it as compared to that which they possess in ty phoid fever, aeute rheumatism, \&c. The cold bath treatment, which has bech recommended, cannot be carried ont without serious risk to life in the necessary movement of the patient. It is a well-recognized rule that persons suffering from typhis fever ought not to be movel up in bed for any purpose after the first few days. Cold sjonging of the hands and foet and exposed parts, or cold to the leasd, may often considerably lower the temperature. Flyoughout the whole progress of a case the condition of the bladder requires specia? attention, owiug to the patient's cirowsiness, and the legular use of the catheter becomes, as a rule, nccessary with the advance of the symptoms.
The complications and result of this fever fall to bo dealt with acenrding to the methods of treatment applicalle to their character an! cxtent.

Typhold or Enteric Fever.

Typhoid or enteric fever (évrepov, the intestine) is a continued fever characterized mainly by its insidious onset, by a peculiar course of the temperature, by marked abdominal symptoms occurring in connexion with a specific Iesion of the bowels, by an eruption upon the skin, by its uncertain duration, and by a liability to relapses.

This fever has received various names, sush as gastric fever, abdominal typhus, infantile remittent fever, slow fever. nervous fever, \&c. Dr Murchison, in reference to its supposed origin in putridity, uses the term "pythogenic fever," but this designation has not been generally adopted. Up till a comparatively recent period typhoid was not distinguished from typhus fever. For, although it had been noticed that the course of the disease and its morbid anatomy were different from those of ordinary cases of typhus, ithnas believed that they merely represented a variety of that inalady The distinction between the two diseases appears to have been first accurately made in 1836 by Messrs Gerhard and Pennock of Philadelphia, and still more fully demonstrated by Dr A. P. Stewart of Clasgow (afterwards of London). Subsequently all doubt upon the subject was removed by tho careful clinical and pathological observations made by Sir William Jenner at the London fever hospital (1849-51). A clear distinction has been established between the two fevers, not only as regards their phenomena or morbid features, but equally as regards their origin. While typhus fever is a disease of overcrowding and poverty, typhoid may occur where such conditions are entirely excluded; and the connexion of this malady with specific emanations given off from decomposing organic or fæculent matters, or with contamination of food or water by the products of the disease, is now alinost universally admitted. Alike in sporadic cases and in extensive epidemic outbreaks the existenee of insanitary conditions in house drainage, water supply, \&c., can in the majority of instanees be made out. The question whether such conditions alone will suffice to beget this fever-or, in other words, its de novo origin-has, as in the case of typhus, been much discussed, and an affirmatire opinion expressed by some bigh authorities. But the same remark must again be made as to the difficulties in the way of maintaining such a position in view of the evideuce of the part played by microbes in infective processes.
canses of That all insanitary conditions in respect of drainage of
bouses and localities furnish the most ready means for the introduction of the contagion of typhoid there is a general agreement, as there is equally that the m-边certain means of preventing its appearance or spread are those which provide a thoroughly trustworthy and secure drainage, a safe method of disposal of sewage, and a pure and abundant water supply. Typhoid fever is much less directly communicable from the sick to the healthy than typhus. The infective agent appears to reside in the discharges from the bowels, in which, particularly when exposed and undergoing decomposition, the contagium seems to multiply and to acquire increased potency. Thus in sewers, drains, \&rc., in association with putrefying matter, it may increase indefinitely, and by the emanations given off from such decomposing material accidentally escaping into houses, or by the contamination of drinking water in places where wells or cisterns are exposed to fecal or semage pollution, the contagion is conveyad. Of the precise nature of the contagious prisciple we bave as yet 110 fnll information, ${ }^{1}$ but there appears to be strong reason for believing that a specific microbe or organism plays a part in the propagation of the disease. Still it is obvions that for its successful

[^291]implantation in and effect upon the system a peculiar condition of preparedness or receptivity to the morbific agent must be presupposed to exist in the individual, regarding which also our knowledge is of the vaguest. Thera is abundant evidence that one of the vehicles for the conveyance of the contagion is food, especially milk, which may readily become contaminated with the products of the disease where an outbreak of the fever has occurred in a dairy.

Typhoid fever is most common among the young, the majority of the cases occurring between the ages of fiftecn and twenty-five (Murchison). But children of any age may suffer, as may alse, theugh more ravely, persons at or beyond middled life. It is of as frequent occurrence among the well-to-do ss among the poor. The greater number of cases appear to occur in autumn. In all counties this fever seems liable to prevail; and, while some of its features may be medified by climate and lecality, its main characters and its results are essentially the same everywhere.
The more inportant phenomena of typhoid fever will be better understood by a brief reference to the principal pathelogical changes which take place during the disease. These relate for the most part to the intestines, in which the morbid precesses are lighly characteristic, both as to their nature and their locality. The changes (to be presently specified) are evidently the result of the action of the contagium on the system, and they begin to show themselves from the very commencement of the fever, passing through various stages during its continnance. The portion of the bowels iu whicls they occur most ahundantly is the lower part of the small intestine (ileum), where the "solitary glands" and "Peyer's patches" on the mucous surface of the canal become affected by diseased action of a definite and progressive character, which stands in distinct relatien to the eymptoms exhibited by the patient in the course of the fever. (1) These glands, which in health are comparatively indistinct become in the commencment of the fever eularged and prominent by infiltration due to inflammatory action in their substance, and consequent cell proliferation. This change usually affects a large extent of the ileum, but is more marked in the lower portion near the ilco-cæcal value (see Anatomy). It is generally held that this is the coudition of the parts during the first eight or ten days of the fever. (2) These enlarged glands next underge a process of sloughing, the inflammatory products being cast off either in fragments or en wasse. This usually takes place in the second week of the fever. (3) Ulcers are thus formed varying in size according to the gland masses which have sloughed away. They may be few or many in number, and they exbibit certain characteristic appearances. Thus they are frequently, but not always, oblong in shape, with their long axis in that of the bowel, and they have somewhat thin and ragged edges. They may extend through the thickness of the intestine to the periteneal coat and in their progress erode bloed-vessels or perferste the bowel. This stage of ulceration exists from the sceond week ouwards during the remaining period of the fever, and even into the stage of convalescence. (4) In most instances these ulcers lucal by cicatrization, leaving, however, no contraction of the calibre of the bowel. This stage of liealing evidently occupies a considerable time, since the process dees not advance at an equal rate in the case of all the ulcere, some of which have been later in forming than others. Even when convalescence has been apparently completed, somo uuliealed ulcers may yet remain and prove, particularly in connexion with errors in diet, a cause of relapse of some of the symptoms, and even of still more serions or fatal consequences. The mesenteric glands external to, but in functional relation with, the intestine, become enlarged during the progress of the fever, but usmally subside after recovery.

Besides these changes, which are well recomnized, others mere or less important are often present. Among these way be mentioned one which the present writer has repeatedly observed in the severe and protracted forma of this fever, namely, marked atrophy, thinning, and softness of the coats of the intestines, even after the ulcers have healed,-s condition which may not improbably be the cause of that long-continued impairment of the function of the howels so often complained of by persens who have passed through an attack of typhoid fever. Other changes common to most fevers are also to be observed, such as softening of the muscular tissues generally, and particularly of the heart, and evidences of complica. tions affecting chest or other organs, which net unfrequently ariae. The swelled leg of fever sometimes follows typheid, as does also periosteal inflammation.

The symptoms characterizing the onset of typhoid fever are very much less marked than those of most other ferers, and the disease in the majority of instances sets in somerrhat insidionsly. Indeed, it is no uncommon thing for patients with this fever to go about for a conslderable time after its action has begun. The most marked of the early symptems are headache, lassitude, and discomfort, together with sleeplessness and feverishness, particularly at night; this last symptom is that by which the disease is most readily delected. in its early stages. The peculiar cou'sc of the temperature
is also one of the most important diagnostic evidences of this fever. Dring the first week it has a morning range of moderate febrile rise, bot in the evening there is a marked ascent, with a fall again towards morning, each morning and evening, however, showing respectively a higher point than that of the provious day, unti abont the eighth day, when in an arerage case the highest paint is attained. This varies according to the severity of the attack;

Temperature chart of typhoid fever.
but it is no unusual thing to register 104° or 105° Fahr. in the even. ing and 103° or 104° in the morming. During the second week the daily range of temperature is comparatively small, a slight morning remission being all that is observed. In the third week the same condition continnes more or less; but frequently a slight tendency to lowering may be discerned, particularly in the morning temperature, and the febrile action gradually dies down as a rule between the twenty-first and twenty-eighth days, althongh it is liable to recur in the form of a relapse. Althongh the patient may, during the earlier days of the fever, be able to move about, he fecls languid and uneasy ; and usually before the first week is over he has to take to bed, and soon the effects of the attack become more apparent. H_{θ} is restless, hot, and uncomfortable, particularly as the day ad vances, and his cheeks show a red fosh, cspecially in the evening of after taking food. , The aspect, however, is different from the oppressed stupid look which is present in typhus, and more resembles the appearance of hectic. The pulse in an ordinary case, althongh more rapid than normal, is not accelerated to an extent corresponding to the height of the temperature, and is, at least in the earlier stages of the fever, darely above 100°. In severe and protracted cases, whero there is ovidence of extensive intestinal ulceration, the pulse becomes rapid and weak, with a dicrotic charactur indicative of cardiac fcebleness. The tongro has at first s thin whitish fur and is red at the tip and edges. It tends, however, to become dry, brown or glazed looking, and fissured transversely, while sordes may be present about the lips and teeth. There is much thirst and in some cases romiting. Splenic and hepatic enlargement may be made out. From an early period in the disease abdominal symptoms show themselres with greater or leas distinctress and are frequently of highly diagnostic significance. The abdomen is somewhat distended or tumid, and pain accompanying somo gurglinc sounds may be elicited on light pressure about the lower part of the right side close to the groin, - the region corresponding to that portion of the intestine in which the morbid changes already referred to are prog'essing. Diarrhcea is a frequent but by no meads constant symptom. When present it may be slight in amount, or, on the other hand, extremely profuse, and it corresponds as a rula to the severity of the intestinal ulceration. The discharges are highly characteristic, baing of light yellow colour resembling pea soup in appearance. Should intestinal hemorrhage occur, as is not unfrequently the case during some stage of the ferer, they may be dark brown, or composed entirely of blood. The urine is scanty and high-coloured. About the beginning, or during the course of the second week of the fever, an eruption frequently makes its appearance on the skin. It cousists of isolated spots, oval or round in shape, of a pale pink or rose colour, and of about one to ono and s half lines in diameter. They are seen chiefly upon the abdomen, chest, and back, and they come out in crops, which continue for four or five days and then fade array. At first they are slightly elevated, and disappear on pressure. In some cases they are very fow in number, and then presence is made out with difficulty; but in others they are nuraerous and sometimes show themselves upan the limbs as well as upon the body. They do not appear to have any relation to the severity of the attack, and in a very consider. able proportion of cases (particularly in children) they are entircly sbsent. Besides this cruption there are not unfrequently numerous very faint bluish patclics or blotches about half an inch in diameter, chiefly upon the body and thighs. When present the rose-coluured spots contiuse to come out in crops till nearly the end of the fever, and they may reappear ohould a relapse subsequently occur. These various symptoms persist throughout the third week, usually, however, increasing in intensity. The patient becomes prostrate, and emaciated; the tongue is dry and brown, the pulse quickeneal and feeble, and the abdominal symptoms more coarked; while nervous disturbance is exhibited in delirium, in
tremors and jerkings of the muscles (subsultus tendinum), in drowsiness, and occasionally in "coms vigil." In serero cases the ezhaustion reaches an extremo degree, although oven in euch instances the condition is not to be regarded as hopeless. In favourable cases a change for the better may be anticipsted between the twenty-first and twenty-eighth daye, more usually the latter. It does not, how. ever, take place as in typhus by a well-marked crisis, but rather by what is termed a "lysis" or gradual subsidence of the febrile symptoms, especially naticeable in the daily decline of both morning and ovening temperature, the lessening of diarrhoea, and improvement in pulse, tongue, \&c. Convalescence proceeds slowly and is apt to be interrupted by relapses (due not unfrequently to errors in diet), which are semctimes as severe and prolongad as the original attack, and are attended with equal or cren greater riske. Should such relapses repeat themse!ves, the case may be protracted fer tro or three months, but this is comparatively rare.

Death in typhoid fever usually takes place from one or other of the following causes. (1) Exhanation, in the secont or third weeks, or later. The attending symptoms are increasing emaciation, weak ness of the pulse, and cadaveric aspect. Sonetimes sinking is sudden, partaking of some of the charactera of a collapse. (2) Hamorrhage from the intestines. The evidebce of this is exhibited, not only in the evacuations, but in the sudden fall of temperature and rise in pulse-rate, together with great pallor, faintness, and rapid sinking. Sometimes hæmorrhage; to \& dangerous and even fatal extent, takes place from the nose. (3) Perforation of an intestinal ulcer. This gives $1 i s e$, as a rule, to sudden and intenso abdominal pain, together with vomiting and sigus of collapse, viz., a rapid fickering pulse, cold clammy skin, and the marked fall of temperature. Symptoms of peritonitis (see Peritonitas) quickly supervene and add to the patient's distress. Death usually takes place within 24 bours. Occasionally peritonitis, apart from perforation, is the cause of death. (4) Occasionally, but rarely, hyperpyrexia (excessive fever). (5) Complications, such as pulmonary or cerebral inflamma. tion, bedsores, \&c.

Certain sequelæ are sometimes observed, the most important being the swalled leg, periostitis affecting long bones, geceral illlocalth, and anemia, with digestive difficulties, often lasting for a long time, and sometimes issuing in phthisis. Occasionally, after sovere cases, mental weakness is noticed, but it is usually of comparatively ehort duration.

The nortality in typhoid fever varies with the character of the Moroutbreak, the general health and surrouudings of the individuals tality. attacked, and other conditions. At one time it was regarded as, on an average, about the samo as that of typhus; but under modern methods of treatment the chances of recovery are much greater, and the death-rate may be stated as about 12 per ceat. or perhaps some. what less.

The treatment embraces those proplylactic measures which sim Treat at preventing the escape of sewer gases into drelling-houses by ment careful attention to the drainage and plumber-work, and also secure an abundant supply of pure water for domestic use (see Hrgiene, Severaoe, and Ventilation). When an outbreak of the fever occurs in a family, all such matters should be specially inquired inte, and the sources of milk supply carefully scrutinized. The discluarges from the bowels of the typhoid patient should be at once disinfected with carholic acid or other similar agent, and the grestest care taker as to their disposal, with the vien of obviating any risk of contamination of drinking-water, \&c. The general managenent is conducted upon the same principles ae $a^{\circ} \theta$ observed in the case of typhus, except that in typhoid fever very special care is necessary in regard to diet. Milk, the great valne of which as a fever food was first clearly set forth by Prof. Gairdner, is of eminent service in typhoid, but it must bo administered with due regard to time and to the digestive powers of the patient. When given too frequently or in too great quantity it may; by its imperfect digestion, prove a source of irritation to the bewcls. Even when given with every care it may fail to agree, as is proved by the presence of mdigested curd in the evacuations. In such a case its admixture with lime water or with poptonizing agents may render its digestion less dificult, but sometimes its use most for a time be suspended. It is, however, rare that milk cannot be borne when carcfully edministered. Barley water or simple soups, such as chicken broth, bcef-tea, \&c., aro ocossionally usefnl either as substitutes for or adjuvants to milk. All through the fever the patient should be fed at regular periods-not, as a rulc, oftener than once in one and a half or two lours-although in the iotervals water or other fever drink may be given from time to time. In convalescence the diet should still be largely milk andosoft matters, auch as custards, light nuddings, meat jellics, boiled bread and milk, \&c., but other solid foods, with the exception of fish, should be for a long time avoided In changing the diet it is of importance to note its effect upon the temperature, which may sometimes be considerably disturbed from this cause, even after the apparent subsidence of all febile action. Stimulants, although unnecessary in a largo proportion of cases, are occasionally called for when there is great exhaustion, ard in prolonged attacks. Thcir effect, lowever, should ba care-
fully watched. They are usually best administered in the form of pure spirit.
The more prominent symptoms which mark the course of typhoid fever frequently call for special treatment. Thus, when the fever continues long, with little break in its course, the employment of remedies to coutrol its action (antipyretics) may often be resorted to with benefit. Such drugs as quinine, salicin, salicylic acid, and salicylate of soda, kairin, antipyrin, antifebrin, \&c. (in ten to thirty grain deses of one or other), may frequently break in upen the centinnity of the fever, and by markedly lowering the temperature relieve for a time the bedy from a source of raste, and aid in tranquillizing the excited nerveus system. The times for their administration are cither one or two hours before the usual maximnn temperature or during the period of remission. These remedies may, however, fail, or by inducing sickncss or great prostration and lepression of the circulation require to be discoutinned. For a similar purgose the cold bath is recommended by many bigh authorities and is regularly employed is Germany. The method recommendel by Liebermeister is this: "When the temperature rises above 104^{8} Fahr., the patient should be placed in a bath of about 94°, which is gradually cooled down by the addition of coll water to 68° Fahr., and remain imunersed for twenty or thirty minutes, the liubs being all the while gently rubhed. He sheuld then he put back into bed." Another method is that of Dr Rrand of Stettin: "When the patient's temperature attains 102° Fahr., he should be placed in a tepid bath of 70° and allowed to romain till a sense of coldness or shivering is preduced, which usually occurs in 'from five to twenty minutes." By such means no doubt Whe tempersture can often be reduced 2° or 3° Fabr., but it is very apt to rise again and the bath must then be repeated. It is claimed by the adrocates of this method of treatment that it has been successful in diminishing greatly the mertality of typhoid fever, but they held at the same titne that its success in large neeasure depends upon its employment from an early stage in the disease. British physicians are much divided upon the point, many high authorities agrecing in its marked ntility, while others no less eminent regard it as fraught with danger from the frequent morement of the patient from bed, the shock to the system, and the risk of hæmorrhage, pnoumenia, or other complications, and as a plan of treatment difficult of being carried out in ordinary practice. Although employed in some fever hospitals and with apparent success, it has not yet commended itself for general adoption. Other methods of applying cold, while probably less effectual than the bath, are much more available, as, for example, the tepid or cold pack, the frequent spongiug of portions of the body with cold water, or the application of icchags to the head. The present writer has resorted to these metheds in many cases of typhoid fever, with the effect of markedly lowering a high temperature. When diarrhcea is oxcessive it may be restrained by such remedies as chalk, bismuth, Dover's powder, sc. Hemorringe is dealt with by preparatione of ergot, or by acetate of lead, gallic acid, or other styptios. In the event of perforation of the bewel opium is the only means available to lessen the distress attending that fatal occurrence.
In the convalescent stage, and oven after apparently complete recovery, the utmost care should be observed by the patient as to liet, all hard and indigestible substances being dangerons from their tendency to irritate or reopen unhealed ulcers, and bring on a relapse of the fever or cause a sudden perforation. Lastly, the general health demands careful attention for a length of time, alluded to.

Relafsing Fever.

This is a contunued fever occasionally appearing as an epidemic in communities suffering from scarcity or famine. It is characterized mainly by its sudden in rasion, with violent febrile symptoms, which continue for about a week and end in a crisis, but are followed, after another week, by a return of the fever.
This disease has receirea many other names, the best known of which are famine fever, short fever, synocha, bilious relapsing fever, recurrent typhus, and spirillum ferer. As in the cass of typhoid, relapsing fcyer was long believed to be simply a form of typhus. The distinction betreen theru appears to have been first clearly established in 1826 , in connexion with an epidenic in Ireland. Outbreaks of relapsing fever have occurred in all parts of the world at times and in places where famine has arisen; but the disease has been most closely observed and studied in epidemics in Great Britain and Ireland, Germany, Poland, Russia, America, and India. It has frequently been found to prevail along with an epridemic of typhus fever.

Relapsing fever is highly contagious, and appears, ike typhus, to be readily communicated by the exhalations from the body. With respect to the nature of the contagion, certain important and inter: esting observations have been made. In 1873 Obermeier discovered in the blood of persons suffering from relapsing fever minuto organisms in the form of spiral filaments of the genus Spirochate (see vol. xxi. p. 399, fig. 1, n), measuring in length ro\% to ${ }^{1}{ }^{1}$ inch and in breadth $\frac{1000}{}$ to botoo inch, and possessed of rotatory or twisting mevements. This erganism has receired the name of Spirillun obcrmeieri. It appears to be present in abundance during the height of the febrile symptoms, and is not seen during the interval until the relapse is impending, when it is again present as before. This observation has been confirmed by numcrous investigators, and it has been found that inoculation with the blood containing these Spirilla produced the symptoms of relapsing ferer in both men and anionals. Comparatively little is as yet kuorn of the life-history of these organisms, and the question whether they are to be regarded as the prime sonrce of the disease or as mere accompaniments affords ground for difference of opinion (see Pate ology, val. xviii. p. 403); nevertheless their discovery and the conditions of their presence already mentioned. are noteryorthy facts in refereuce not only to the pathology of this fever but also to tha general doctrine of infectiveness in discase-processes. The most constautly recognized factor in the origin and spread of relapsing fever is destitution; but this cannot be regarded as more than a predisposing cause farouring the reception and propagation of the norbific agent, since in many lands widespread and destructive famines have prevailed without any outbreak of this fever. Instances, too, bave been recorded where epidemics were distinctly associated with overcrowding rather than with privatiou. Relapsing fever is most commonly met with in the young. One attack dees not appear to protect from others, but rather, according to some authorities, engenders liability.
The extreme contagiousness of relapsing fever has occasionally Its eco been shown by ite syrcading widely when introduced into a district, tagiou even among those who had not become predisposed by destitution ness, or other depressing conditions. The contagion, like that of typhus, appears to to most active in the immediate vicinity of the patient and to be greatly lessened by the access of fresh air. It is capable of being conveyed by clothing. The incubation of the disease is with one week. The symptoms of the fever then show themselves with great abruptness and violence by a rigor, accompanied with pains in the limbs and severe headache. The febrile phenomena
are very marked, and the temperature quickly rises to a high point

Temperature chart of relapsing fever.
($105^{\circ}-107^{\circ}$ Fahr.), at which it continues with little variation, while the pulse is rapid ($100-140$), full, and strong. There is intense thirst, a dry brown tongue, bilious vomiting, tenderness over the liver and spleen, and occasionally jaundice. Sometimes a peculiar bronzy appearanee of the skin is noticed, but there is no characteristic rash as in typhus. There is much prostration of strength. After the continuance of these symptems for a period of from fire to seven days, the ternperature suddenly falls to the normal point or below it, the pulse becomes correspondingly slow, and a profuse perspiration occurs, while the severe headache disappears and the appetite returns. Ezcept for a sense of weakness, the patient feels a condition of great detility, work, but in some cases there remains a condition of great debility, accompanied with rbeumatic pains in the limbs. This state of freedom from fever continues for about a abruptness and severity than in the first attack, and the whele abruptness and severity than in the first attack, and the whole symptoms are of the same character, but they do not, ss a rule, continue so leng, and they terminate in a crisis in three or four third, after which convalescence proceeds satisfactorily. Second, third, and even fourth relapses, however, may occur in exceptiona'
cases.

The mertality in relapsing fever is comparatively small, about per cent. being the average death-rate in epidemics (Murchison). The fatal cases occur mostly from the complications cemmon to continat ferers. The treatment is essentially the same as that
for typhus fever (see above).
(J. O. A.)

TYPOGRAPHY

Part I.-Historical.

TIVPOGRIAPHY (writing by types) is the art of printing (cast-metal) movable types on paper, vellum, \&c. t is quite distinct, not only from writing, but from xylography or wood-engraving, i.e., the art of cutting figures, etters, or words on blocks of wood and taking impressions from such blocks, by means of ink or any other fluid coloured substance, on paper or vellum.
Possibly the earliest attempt to describe the art of typagraphy is that in the Donatus issued by Peter Schoeffer, perhaps before 1456, the colophon of which says that it was finished "Arte neva imprimendi seu caracterizandi [from character $=$ letter] . . . absque calami exaratione." Fust and Schooffer in the Mainz psalter of 1457 said that it was formed by an "adinventio artificiosa imprimendi ac caracterizandi absque calami ulla exaratione." The colophon of the Catholicon of 1460 is more precise, and says that the book was printed " "on calani, stili, zut pennex suffragio, sed mira natronarum formaruraque coucordia, proporcione, ac modulo." Io 462 Albrecht Pfister had "gedrucket" the Four Histories. In the Liber Sextus Decretalium, published in 1465, Fnst and Schoeffer say that it was completed "non atramento ["atramento communi," in the Justinianus of 1468 and 1472], plumali canna neque ærea, oed artificiosa quadam adinventione imprimendi seu caracterizasti," opbrase which they slightly varied in Cicero's officia, issued in. the eame year: "non atramento, plumali canoa neque ærea, sed arte quadan perpulcra." The edition of St. Jerome's Epistlics of 1470 is said to have been completed by an "ars impressoria," the Decrectum Gratiani of 1472 by an "ars quædam ingeniosa imprimandi," the Dyalogus of 1478 by an "ars magistra." We ind further-"ars sancta " or "dirina," "מova ars scribendi," "मovum pascribendi genus prope divisum," " gcnlpteria archety porum ars,"," "ars mirifica formandi," "ars excusoria," "nura imprimendi ratio," "ars pressurx," "chalcotyns ars," "chalcographia" (14i2 and tater), "chalcographia excusoria impressoriaque," "libratia impressio," "empryntynge" (Caxten, 1482), "prenterei " (Schoeffer, 1492), "truckery" (1505), "impression des livres" (1498), and "prenten."
The early printers called themselves, or were called by others, "librorum prothocaragmatici" (Gramm. Rhythm., 1463), "impres6ores librorum," "exsculptor librorum" (Jenson, 1471), "chalcographrus" (1473; Hain, 13036), "masmister artis impressorie,", "hoeckprinter"; and during the 16 th century we find them still frequently called "chalcotypus" and "chalcographns."
The types were at first designated more Ly negative than positive expressions. In 1468 they were called "caragma," later on "caraxter" or "charscter," "archetipe note" (1473, ; Hain, 13036), "scalptoria archetyporum ars," "chalcotypa ars," "formæ," "artificiosissimæ imprimenderum librorunn forme." We soon hear slso of the process and material by which they were produced. The Grammatica of 1468 , published by Schoeffer, says that it was "cast" (sum fusus libellus). In 1471 "xenex formulx" are spoken of ; and Bernardus Cenninus and his son eay that they had printed the Virgil "ex pressis ante calibe caracteribus et deinde fusis literis " (with letters first cut into steel and then cast). In 1473 Friedrich Creusner at Nuremberg says that he had "cut" (sculpsit) the werk of Diogenes (Haiu, 6192). Johan Zciner of Ulnt says in 1474 that he had perfected a book, not with the pen, but with letters of metal Tstagneis caracteribus.). In 1474 Joh. Pl. de Lignamine speaks of "metallicx forme." In 1476 Husner of Strasburg represents the Nider as being printed with "letters cut of metal (littcris sculptis grtificiali certe conatu ex ære)." Nicolas Jenson printed in 1480 "qith lettera "cut and cast" (sculptis ac conflatis).
The word typographus does not seem to occur before 1438, when i was nsed in the preface of P. Stephanus Dulcinius Scalx to the Astronomicon of Manilius, printed in that yeer at Milan by Antonius 'arotu8; ; in 1498 Erasmus uses it in a letter (dated 13th Feb.) to Shristianus, a Liibeck merchant; ${ }^{2}$ and in 1517 Jehan Schoeffer applies the word to himself in the colophon of the Æneas Sylvius published by him. But of the use of the word typographia no parlier instance is known then 1520, in which year Gerardus Noviomagus (=Geldenhaurius) in his Lucubratizncula de Batavorum Znssela (pref. to Nicol. Buscoducensis, dated 1520) says: "'inventa Germanorum :. . bombarda ridelicet, typographia, pyxis chartaque nautica;" end Johan Schott, a printor of Strasburg, in the Greogr. Piolem. published by him, describes his, grandfather, Johan Mentelin, as "primus typographixe inventor." Gerardus, it may bo added, borrowed the whole passage from Pet. Montanu.s (hi. 1 Adag., published a. 1504), who has chalcographia instead of typo-
graphia. Meerman indeed" speaks of a use of the reord typographia (or at least of typographus) earlier than 1520 , and refers to the preface of Bernardiuns Veronensis in the edition of Tibullus, Catullus, and Propertius published at Venice in 1493 by Symon Bevilaqua, "al least," Mcernisn adds, "ss it (the preface) is read in the Annal. Typogr. of Maittaire, i. $560,2 \mathrm{~d}$ ed.". But an page 560 Maittairo quotes the first two lines of Bernardinus'e preface (till dicii) and then adds: "Grecis characteribus destitutus, typegraphus necesse habnit hiatus in commentario hic illic relinquere," which is eridently Maittaire's own remark, not that of Bernardinus. The present writer at least has been unuble to find auch a passage in the Tibullus.

Although the art of writing and that of block-pronting both differ widely from printing with movable metal types, yet this last process seems to have been such a gradual transition from block-printing, and block-printing in its turn to have been such a natural outcome of the many trials that were probably made to produce books in some more expeditious manner than could be done with handwriting, that a cursory glance at these two processes will not seem out of place, all the less as a discussion on the origin and progress of typography could hardly be understood without knowing the state of the literary development at the time that printing appeared.

The art of printing, i.e., of impressing (by means of First certain forms and colours) figures, pictures, letters, words, attemp lines, whole pages, \&c., on other objects, as also the art of at print engraving, which is inseparably connected with printing, ing existed long before the 15 th century. Not to go back to remoter essays, there is reason to suppose that mediæval kings and princes (among others William the Conqueror) had their monograms cut on blocks of wood or metal in order to impress them on their charters. Such impressions from stamps are found instead of seals on charters of the 15 th century. Manuscripts of the 12 th century show initials which, on account of their uniformity, are believed to have been impressed by means of stamps or dies. ${ }^{4}$ But the idea of multiplying representations from one engraved plate or block or other form was unknown to the ancients, whereas it is predominant in what we call the art of blockprinting, and especially in that of typography, in which the same types can be used again and again.

Block-printing and printing with mavable types seem to have East been practised in China and Japan long before they were known in Asiatie Eurpe. It is said that in the year 175 the text of the Chinese printind classics was cut upon tablets, which were erected outside the university, and that impressions were teken of tlam, sone of which are said to be still in existence. Priuting from rooden blocks can be traced as far back as the 6th century, when the foupder of the Suy dynasty is said to hava had the remains of the classical books engraved on wood, though it was not mutil the 10th century tlat printed books became common. In Japaz the carliest exanplc of block-printing dates from the period $764-750$, when the enyress Shiyan-taku, in pursuance of a vow, had a million small wrooden toy pagodas made for distribution among the Buddhist temples and nionasteries, each of which was to contain a dhâraní ont of the Buddhist Scriptures entitled "Vimala nirhhasa Sítra," printed on a slip of paper about 18 inches in length and 2 in width, which was rolled up and deposited in the body of the pagoda under the spire. In a journal of the period, under the year 987 , the expression "printed" book" (seri.hon) is found applied to a copy of the Buddhiat canon brought back from Chine by a Buddhist priest. This, of course, must have been a Chinese edition; but the use of the term implies that printed books were already known in Japan. Il is said that the Chinese printed with movable types (of clay) from the middle of the 11 th century. The anthorities of the British Nuseum exhibit as the earliest instance of Corean books printed with movable types a work printed in 1337. To the Corcans is attributed the invention of copper types in the beginning of the 15 th century; and an inspection of books bearing dates of that

[^292]period seems to show that they ased such types, even if they did not invent them.

From such evidence as we have it would seem that Europe is not indebted to the Chinese or Japanese for the art of block-printiug, nor for that of printing with movable types.

In Europe, as late as the second half of the 14 th century, every book (including school and prayer books), and every problic and private document, proclamation, bull, letter, \&c., was written by band; all figures and pictures, even playing-cards and images of saints, were drawn with the pen or painted with a brush. In the 13 th century there already existcd a kind of book trade. The organization of universities as well as that of large ecclesiastical establishments was at that time incomplete, especially in Italy, France, and Germany, without a staff of scribes and transcribcrs (scriptores), illuminators, lenders, sellers, and custodiane of books (stationarii librorum, librarii), and pergamenarii, i.e., persons who prepared and sold the vellum or parchment required for books and documents. The books supplied were for the most part legal, theological, and educational, and are calculated to have amounted to above one bundred different works. As no book or document was approved unless it had some ornamented and illuminated initials or capital letters, there was no mant of illuminators. The workmen scribes and transcribers were, perhaps without exception, caligraphers, and the illuminators for the most part artists. Beautifully written and richly illuminated manuscripts on vellum became objects of luxury which were eagerly bought and treasured up by princes and people of distinction. Burgundy of the 15 th century, with its rich literature, its wealthy towns, its love for art, and its school of painting, was in this respect the centre of Europe, and the libraries of its dukes at Brussels, Bruges, Antwerp, Ghent, dc., contained more than three thousand beautifully illuminated MSS.

In speaking of the writing of the manuscripts of the 15 th and two preceding centuries, it is essential to distinguish, in each country, between at least four different classes of writing, and two of these must be again subdivided each into two classes. All these different kinds of writing were, in the first instance, taken as models for cutting sucin portions of text as were intended to illustrate and explain the figures in block-books, and afterwards as models for the types used iu the printing of books and documents.
(1) The book hand, that is the ordinary writing of legal, theological, and devocional books, was used by the official transcribers of the universities and churches. These men had received a more or less learned education, and consequently wrote or transcribed baoks with a certain pretence of understanding them and of being able to write with greater rapidity than the ordinary caligrapher. Hence their writing may be called (a) the current or cursive boolt hand, of which a good many illustrations may be found in Wilh. Schnm, Exempla Codicurr, Amplon. Erfurtensium. Quite distinct from this current writing, and much clearer and moro distinct, is (b) the upright or set book hand, which was employed by some writers who worked for universities and churches, and also by a goad many who may be presnmed to have worked in lavge cities and commercial towns for echools and the people in general without nniversity connexion. (2) In the chureh hani (Gothic or black letter) were praduced transcripte of the Bible, missals, psalters, and other works intended for usein churches and private places of worship. This writing we may again subdivide into two classes,-(a) the orna. mental or caligraphic writing, fonnd exclnsively in books intended for use in chmrches or for the private ase of wealthy and distinguished persons, and (b) the ordinary uepright or set church hand, employed for less ornamental and less expensive books. (3) The letter hand may be said to be intermediate between the set literary book hand and the set literary chureh hand, and to differ but little from either. It was employed in all public documents of the nature of a letter. (4) The court or chaster hand was used for charters, title-deeds, papal bulls, \&c.
${ }^{1}$ See Ern. Satow, "On the Early Hist. of Printing in Japan," in Trans. A siat. Soc. of Japan, x. 48 sq.; and Stan. Julien, "Documents our l'Art d'Imprimer," \&c., in Journ. Asiat., 4 we ser., ix. 505.

Uypold Läber (Lauber), a teacher and transcriber at Hagenau in Germany, is kuown to have carried on a busy trade in manuscripts just about the time of the invention of printing. His prospectuses, in handwriting of about the middle of the 15 th century, 2nnounce that whatever books people wish to have, large or small, "geistlich oder weltlich, hübsch gemolt," are all to be found at Dypold Laubor's the scribe. Ho had in stock Gesta Romanomum, mit des Viguren gemolt; poetical warks (Parcixal, Tristan, Freidank) ; romances of chivalry (Der Witfarn Ritter; Vón eime Getruwen Ritter der sin cigen Hertze gab umb ciner schönen Frowen willen; Der Ritter unter dem Zubcr) ; Biblieal and legendary works (A Rimed Bible; A Psalter, Latin und German; Episteln und Evangelien durch das Jor; Vita Christy; Das gantze Passional, winterteil und summerteil; devotional books (Bellial ; Der Selen Trost ; Der Rosenkrantz ; Dic zehn Gebot mit Glosen; Small Bette-Buieher) ; and books for the people (Gute bewehrte Artznien-Bücher; Gemolte Loss-Bücher, i.e., fortnne-telling books; Schachtzabel gemolt). The lower edncational books consisted for the most part of the Abecedaria, containing the alphabet, the Lord's prayer, the creed, and one or two prayers; the Donatus, a short Latin grammar oxtracted from the work of Elits Donatus, a Roman grammarian of the ath centary, and distinctly mentioned in a school ordinance of Bantzen of 1418 ; the Doctrincil, a Latin grammar in leonine verse, compiled by Alexander Gallus (or De Villa Dei), a minorite of Brittany of the 13 th century; the Summula Logica of Petrus Hispanus (afterwards Pope John XXI.), used in the teaching of logic and dialectics; and Dionysins Cato's Disticha de Moribus, and its supplement called Facetus, with the Floretus of St Bernard, used in the teaching of morals. As helps to the clergy in their attempts to educate the lower classes, and as a means of assisting and promoting private devotion, there were picture books accompanied with an easy explanatory text, for the most part representations of the mystic relation between the old and New Testaments (typology). Among these books the Biblia Pauperum ${ }^{2}$ stands first. It represents pictorially the life and passion of Christ, and there exist MSS. of it as early $2 s$ the 13 th contury, in some cases beantifully illuminated. ${ }^{3}$ A richly illuminated MS. of it, execnted in the Netherlands c. 1400 , is in then British Museum (press-mark, King's, 5), and also fragments of one of the 14 th century (press-mark, 31,303). A remodelling and development of this work is the Spceulum Humana Soliationis, a work is rliyme of the 14th century, which in forty-five chapters represents the Bible history interworen with Mariolatry and legend. Of this work the Paris national library and arsenal hbrary cach possesses a MS. composed in 1324, whereas the British Jluseum bas nine MSS. (six being illuminatcd) of the 14 th and 15 th centurics, written in the Netherlands, Germany, France, and England, one (press-mark, 16,578) bearing the distinct date 1379 and another (press-mark, Egerton, 878) that of 1436. A work of a similar nature is the Apocalypsis, ofwhich at least two recensions with illustrations maje be pointed out. One gives the text as we know it, with or without commentary, for which of. Brit. Mus., 17,333 (French), 18,633 (French, but written in England), Reg. 2 D. xiii., and 22,49s (French), -all four early 14 th century. Another is more a short history or biography of St. John, but the illustrations follow those of the former work very closely; cf. Brit. Mns., 19,896 (15th century, German). It is this last recension which agrees with the blockbook to he mentioned hereafter. Other devotional works aro the Ars Moriendi, the Antichrist, and other works which will be found mentioned among the block-books.

Block-Printing or Xylography.

When all this writing, transcribing, illuminating, \&c, had reached their period of greatest devclopment, the art of printing from wooden blocks (block-printing, xylography) on silk, cloth, de., vellum, and paper made its appearance in Europe. It seems to have been practised, so far as we have evidence, on cloth, dec, and vellum as early as the 12 th century, ${ }^{4}$ and on paper as far back as the second half of the l4th century, while it was largely employed in the early part of the 15 th in the production of (1) separate leaves (called briefs, from breve, scriptum), containing either a picture (print, prent, shortened from the Fr. emprint, empreinte, and already used by Chaucer, C. T., 6186, sixtext, D. 604, printe, prente, preente, and in other early English documents ; also called in colloquial German Helge, Helglein, or Halge) or a piece of text, or both together;

[^293]and of (2) whole block-books, sometimes consisting of half picture and half text, or wholly of text, or altogether of picture. ${ }^{2}$ It is, however, certain that pbout 1400 xylograplyy was known all over Germany, Flanders, and Holland.
In thesa blocks, as in wood-engraving now, the lines to be printed were in relief. Tbe block, after the picture or the text had been engraved upon it ${ }_{\mathrm{s}}$. was first thoronghly wetted with a thin, watery, pale brown material, much resembling distemper; then a sheet of damp paper was laid upon it, and the back of the paper was carefully rubbed with some kind of dabber or burnigher, usually called a frolton, till an impression from the ridges of the carved block had been transferred to the paper. In this fashion a sbeet could only be printed ou one side (anopisthographic); and in some copics of block-books we find the sides on which there is no printing pasted tngether so as to give the work the appcarance of an ordinary book. There aro only a few hlock-books which do not posesss this characteristic, as the Legend of St Servalius-in the royal library of Brussels, Das Zeilglocklein in the Eamberg library (of. Falkenstein, p. 49), Das geistlich und vecltlich Rom at Althorp and Gotha (cf. Falkenstein, p. 46) ; but these belong to the end of the 15 th century, and therefore to a later period than the ordinary block-booke. Consequently, if a man wanted to set up as a printer of briefo or books, he needed no apparatus but a set of wood-blocks and a rubber.
Formerly it was the general opinion that playing-cards had been the first products of xylography; but the carliest that have been preserved to us are done by hand, while the printed ones date from the 15 th c. ntury, therefore from a period in which woodeuts were alrcady used for other purposes. It is believed that some of the wood engravings and bloch-books were printed in monasteries. In a necrology of the Franciscan monastery at Nördlingen, which comes down to the heginning of the 15 th century, this entry occure: "VII. ld. Augusti, obiit Frater h. Luger, laycus, ontimns incisor lignorum "; and on some of the engravings we find the arms of certaiu monastcries, which may, however, merely mean that they were printed for, not in, those monasteries. The registers of Ulm mentiun several wood-engravers (formschneider), - in 1398 a certain Ulrich; in 1441 lleinrich Peter von Erolzbeim, Joerg, and anotber Heinrich; in 1442 Ulrich and Lienhart; in 1447 Clans (Nicola9), Stoffel (Christopher), and Johan』; in 1455 Wilhelm; in 1461 Meister Ulrici, \&c. In a register of taxcs of Nördlingen we find from 1528 to 1452 a certain Wilhelm Eegeler mentioued as brieftrucker; in 1453 his widow is called alt brieftruicherin; sad in 1461 his brother Wilhelna is reqistered for the ameme craft. At Mainz there was a printer, Henne Cruse, in 1440. At Nuremberg we find in 1449 Hans, a formschncider, while his son Junghans exercised the same industry from 1472 te 1490 . Hans von Pfedersheim printed at Frankfort in 1459, and Peter Schott at Strasburg in 1464. A certain George Glockendon exercised the same trade at Nuremberg ['ll 1474, when lie dien, being oucceeded by a son and afterwards hy a grandson. In Flanders a Jande Printere was eatablished at Autwerp in 1417; and printers and wood engravers (houte bildsnyters) worked there in 1442 (Privileges of the Corporalion of $S t$ Luke at Antwerp). At Brnges printers and becldemakers (makers, engravers of images) were enumerated in 1454 among the members of the fraternity of St Jolin the Evangelist. The printers of playing rards seen to hare constituted a separate class. These entries show that about the middlo of the 15th century thero were men who exercised the art of wood-engraving and printing as a trade or craft. It seems also certain that wealthy persons and religious institutions were wont to possess sets of blocks, and, when occasion arose, they printed a set of sheets for presentation to a friend, or in the case of monasteries for sale to the passing pilgrim. A printer of briefs or block-books had no nced to serve an apprenticeship; any neathanled man could print for himself. We learn from tho inventory of the possessious of Jean de Hinsberg, bishop of Liége (1419-1455), anil his sister, a nun in the convent of Bethany, near Mechlin, that thry possessed "unum instrumentum ad imprimendas scripturss et ymagines," and "novem printe lignes ad imprimendas ymagiacs cum quatuordecim aliis dapideis printis." These entries would seem to indicate that people purchased engraved blocks of wood or of stone from the woodcutter rather than books from a printer.
The earliest dated woodcut that we know of is the St Christopher of 1423, preserved in the library of Lord Spencer at Althorn. The fary engraving, which is preserved at Brussels and epparently ears the date meccexviii., is now declared to be of 1468 , the date . aving been falsified. The next date after that of the St Christopher is 1437 , found on a woodent prescrved in the imperial library at Vienna. It was discovered in 1779 in the moustery of St Blaise in the Black Forest, and represents the martyrdom of St Scbastian, with fourteen lines of text. The date, however, is said by others to refer to a concession of iudulgences. A woodent, preserved in the library at Vienna, which represents St Nicolas do Tolentino, has the dato 1440 , but written in by hand; as the saint was canonized
I We have also evidence that sometlmes the picture or flgures were printed from hooks, space tenng reseryed for the text, to bo added afterwards by hand we Bernard. Irigin. 1. 1(S)
in that jear, it-may refer to that erent. Another in the Wefgel collection representing the bearing of the cross, St Dorothea and St Alezis, has the date 1443, also written in by hand, thougb the woodcut is considered to belong to that period. These are the only known wood-engravings with dates anterior to the second half of the'15th ceptury. But there exist a good many woodcuta which, from the style of the engraving, are presumed to be of an earlier date, and to have been printed partly in the fourteenth and partly in the frst half of the 15th century. -J. D. Passavant ${ }^{2}$ enumerstes twenty-seven, ell of German ongin snd preserved in various libraries in Germany, while in the Collectio Weigeliana (vol. i.) no fewer than 154 are recorded, sonse of which are to be ascribed to the Netherlands. We know of the existence of at least five ongravings Which may be ascribed to the Netherlands:-(1) representing the Virgin Mary, with Dutch inscriptions, in the museum at Berlin, (2) representing the Virgia Mary spoken of above, in the library at Brussels; (3) representing St Anthony and St Sebastian, in the Weigel collection; (4) a St Hubert and St Enstatius, in the royal library at Brussels; (5) representing the Child Jesus, in the library at Berln (6) the Mass of St Gregory, with indulgence, in the Wergel collection ($f f$. i. 195).
Of block-books of probable German origin the following are known:-
(1) The Apocalypsis, or Ḧistorza S. Johannis Evangcliste cjusque Visiones Apocalypticz (Germ. 'Das Buch ader haymichea Offenbarungen Sanct Johans). Of this work eix or eeven editions are said to exist, each containing forty-eight (tbe 2d and 3d edition fifty) illuetrations, on as many anopisthographac leaves, which seem to havo been divided into three quires of eight sheets each. The first edition alone is without signatures.
(3) Ars Mreriendi. Of this work some authors think that there are early German editions, among others that snoken of belows as the 2d Dutch edition. CertainIy German is the edition of Hans Sporer of Nuremberg, 1473, in the public library at Zwickan, of another by Ludwig zu Ulm, in the Paris national library, and of that described in Collcctio Weigel. (ii. 16), where also other, but opistlographic, editions are described.
(3) Ars Memorandi; thirty lesres, folio, printed on one side, fifteen leaves being letter-press and fifteen plates.
(4) Salve Regina, bears the nume of its engraver, Lienhart czu Regenspurck. It is composed of sixteen leaves; troo leaves (signsture a) are manting in the only copy known of it, which was in the Weigel collection (ii. 103).
(5) Vita Christi; thirty-two leaves, am. 8vo. Two copies in the Paris library (Sothoby, ii. 143).
(6) The Ten Commandments for Unlearned People (Die z-hn Botl fiur die ungelernte Leut). Ten leaves are preserved in the library at Heidelberg bound up with a manuscript (No. 438). ${ }^{3}$
(7) The Passion of Our Lord; sixteen leaves, in the Weigel collection (Sotheby, ii. 141).
(8) The Antichrist (Der Enndchrist); twenty-six leates, amall follo (Sotheby, ii. 38; Weigel, ii. 111). Copies, Lord Spencer and coll. Weig.
(9) The Fiftecn Signs of the Last Judgment; twelve engravings, usually bound up with the engravings of The Antichrist (Sotheby, ii. 42). Copy, Lord Spencer. There is also an edition published at Nuremberg in 1472 by Junghannss Prifimaler.
(10) Synbolum Apostolccum; small quarto, seven leaves printed on one side caly, end containing twelve woodents with German inscriptions. Tbe only copy of it known is preserved in the library of Monich (Sotheby, ii. 148).
(11) The Legend of Si Meinrad; forty-eight leaves. The only copy known is preserved in the Munich library (Sotheby, ii. 150).
(12) The Acht Schalkheilen, of which eight leaves were in the Weigel collection (i. 112 ; Sotheby, ii. 154).
(13) The Fable of the Sick Lion; twelve leaves, preserved in the library at Heidelberg (No. 438; see Sotheby, ii 159, pl. Ixszvi).
(14) Defensarium Inviolate Virginitatis b. Maris V Vrginis; sixteen leaves fol. The onique copy is in the British Museum. On the first leaf are the initials of the printer F[riedrich] W[altheren] and the date 1470 (Sotheby, ii. p. 63).
(15) The same work, twenty-seven lcaves, large folio, with the imprint "Johannes eysenhiut impressor Anno ab incarnacōis dafice M^{C} quadringentesimo septuagesimo $\mathrm{j}^{\circ " \text { " (cf. Sotheby, ii. 72). Copy }}$ in the British Museum.
(16) The Dance of Death (Dance Macabre; Dcr Doteri Dankz) twenty-seven leaves (Sotheby, ii. 156).
(17) Die Kunst Ciromantia of Dr Johan Hartlieb (Sotheby, ii. 842
(18) Der Beichespiegel or Confessionale; eight engravings (Sotheby, ii. 145). Copy in the royal library at The Hague.
(19) The Apostles' Creed; zeven leaves, folio. Copy at Wolfenbuittel
(20) The Credo, in German ; twelve leaves, quarto. Copy in the royal library at Munich.
2. Le Peintre-Graveur, 1. 27 ss. ${ }^{2}$ See Joh. Geffeken, Der Biddercatechtomus des 15 Jahrh., Lelpsic, 1855, quarto: Sotheby. fi. 180 .

Propugnacula, seu Turris Sapientix ; one sbeet, plano, Brit. Mus. (Sotheby, ii. 164).
Block-books of Netherlandish origin are:-
(i) Biblia Pauperum; ferty leaves (each bearing a signature; a to $v, a \cdot$ to $\cdot v$.). As many as seren editions have been distinguished by Sotheby (i. 43 ; see also Holtrop, Monum. Typo, p. 3).
(2) Ars Moriendi ; ${ }^{1}$ twenty-fonr leaves, small folio, thirteen containing text, eleven plates (see Sotheby, i. 69 ; Heltrop, p. 8).
(3) Canticum Canticorum, Historia seu Providentia B. Iirginis Mariz ex Cantico Canticorum ; sisteen leaves, in fol. (Sotheby, i. 77 ; Heltrep, 1. 6).
(4) Liber Regum, seu Historia Davidis; twenty leaves, folio (Sotheby, i. 120b). Some consider this to be a German work.
(5) Exercitium super Pater Nostcr, by Heuricus de Pomerio ; ten leaves, sma!l folio (Sotheby, ii. 137; Holtröp, p. 10). ${ }^{2}$
(6) Temptationcs Demonis Temptantis Hominem de Septem Peceatis Mortalibus; a single large felio leaf priated ou one side. Two cepies, one io British Mnseum, the other in the library at Wolfenbinttel.
(7) Vita Christi, or the Life and Passion of Christ; thirty-six cuts, originally printed in a press on six anopisthographic leaves, 8ve. In the library at Erlangen (see Campbell, Annales, 746).
(8) Historia Sancta Crucis; a fragment of oue leaf (with sigaature g), preserved in the Weigel collection (ii. 32), which seems to be a proef-sheet ouly.
(9) Alphabet io figures (Holtrop, p. 11 ; Sotheby, i. 122). ${ }^{3}$
(10) Pomerium Spirituale, by Hearichs de Pomerio or Heary Bogaert; twelve leaves, having twelve woodcuts accompauied by MS. test, in the library at Brussels (Heltrop, Mon. Typ., p. 9). It bears the date 1440 in two places; but seme contend that this refers to the date when the boek was written, ${ }^{4}$ not when the engravings were printed.
Besides the works of Sotheby, Heltrop, and Weigel already quoted, consult W. M. Conway, The Woodeutters of the Netherlands in the 15th Contury, Cambridge, 1884; Heineken, Idee Geinérale, Leinsic, 1771 ; J. Ph. Berjean, Facsimiles of the Biblia Pauperum, Cantieum Canticorum, Speculum, London, 1859-1861; and Id., Catal. Mlustré des Livres Xylogr., London, 1865.

Early Printing at Mainz.

When we, for the moment, leave out of sight the question as to when, where, and by whom the art of printing with movable metal types was invented, and tako our stand on well-authenticated dates in such printed documents as have been preserved to us, we find that the first printed date, 1454 , occurs in two different editions of the same letters of indulgence issued in that year by Pepe Nicholas V. in behalf of the kingdem of Cyprus.
These two editions are distinguished respectively as the 31 -line and the 30 -line indulgence. The former, of which three different issues with the printed date mecceliiii., and a fonrth with the printed date meccelv., are known to exist, claims priority ${ }^{6}$ from a chronological point of view over the latter, of which one issue with the printed date mecceliiiii, and two issues with the printed date meccclquinto, are known to exist, becauso one of the sold copies that has been preserved was issued at Erfurt on 15th November 1454, whereas oi the 30 -line indnlgence the earliest sold cepy that has as yet come down to us was issued at Cologne on 27 th Fehruary 1455 , though it distinctly has the printed date mececliiii., but altered with the pen to mecceliiiij. In the 31 -line indulgence ocenr (1) a large church type usnally regarded as identical with that of the 36 -line Bible, and used for the rubrics of the abselutions, for the word with which the decnment commences, and for the Christian name of the pepe's legate ; (2) a smaller text or brief type, which was afterwards very clasely imitated, if not actnally userl, at Eltville, in priating the 1472 edition of the Vocabularius ex quo and an edition of the Summa de Articulis Fidei of Themas Aquinas; (8) a large initial V and twe large initials M, which differ from each other. In the 30 -line indulgence occur (1) a large ohnrch type, which is used as in the 31 -line indulgence, and is usually reganded as identical with that of the 42 -line Bible; (2) a smaller text or brief type, of which as yet no further trace has heen found ; (3) a large initial U_{3}, and two large initials $\mathrm{M}_{\text {, }}$, which differ from each other, the first being identical with the initial M of the secend absolution of a 33 -line indulgence printed by Peter Scheeffer iu 1489 for "Raymundus Peyraudi, archidiaconus Alnisicnsis in

1 Heineken enumerntes six editions, of which one has inscriptions in German. See also an article by Guichard, in Bull. du Bibliophile, Paris, 1841.
See also an article by Guichard, io Butl. du Bibliophile, Parig, 1841.
2 See also W. M. Conway, Notes on the Exercitium super Pafer Noster, 1887.
2 See also W. M. Conway, Notes on the Exercitium stiper Pater Noster, 1857.
3 There is one copy in the British Museum and another in the library at Basel,
this last baving the date 1464 engraved on the letter A, whicb is mutilated in the this last baving the date 1464 engraved on the letter A, which is mutilated in the
former. A similar alpbabet preserved at Dresden seems to be a copy made io Dermany.

4 Mr W. M. Conway is of a different opinion; aee Notes or Exercilium. Dumortier testifies to having acea another copy unaccompanicd by MS. ("Notes sar 1'lmprimerie," in Bull. Acrd. Roy. de Belg., vol. viil., 1841).
No inferences can be drazn from thls priarity, so it merely reats on the
date of a sold cony that has coms to this.
ecclesia Xanton," who issucd it at the order of Pope Innocent VIII., "pre tuicione orthedexe fidei contra Turchos." These twe different editions are usually legarded as having beeu printed ari Maiaz ; aud, so long as there is no evidence to the contrary, we may assume that such was really the fact. But we must at the same time conclude that ahent November 1454 there were at least two rival printers at work therc, - (1) the priater of the 31-line indulgence, whese name has not yet transpired, but whe may have been Johan Gutenberg, perhaps subsidized by Johan Fnst ; (2) the priuter of then 30-line indulgence, whe was no doubt Yeter (Schoeffer) de Gerase heym, on accoant of the connexion of this indnlgence with that of 1489 , which was nnquestionably printed by him. Latterly four writtee copies of the same indulgence have beex found, which respectively bear the dates,-Frankfort, 10 th April 1454 (in the pass. session of Herr Lais, Wiesbaden); Frankfort, 11th April 1454 (Frankfert archives) ; 11th July 1454 (place unknown; Darmstadt archives); Lübeck, 6th October 1454. As thcir dates precede by a ferw weeks only the earliest known printed date (15th November 1454), they mark, perhaps, the exact time when printing made its appearance at Mainz in an already advanced state of perfection.
In following up the basis afferded by the above indnlgences 䛌 Karly may give a shert chronological view of the early printing at Mainz, tJresmin so far as it is at present known, referring for minute details to J. H. hooks nis Hessols, Gutenberg: Was he the Inventor of Printing: 1882, p, Mainn, 150 sq .

Types I (arge church type) and 2 (smaller brief type), used by an noEnewa printer, 1454 .
(i.) 31-liae indulgence; three different issues (A, B, C), witb the printed year mecceliiii, and oae issue (D) with the priyted yearmeccelr. Al printed oo vellum. or issues A to light. Three unsold conies of to light. Three unsold copies of wick, (2) Wolreabittel, and (3) Wick, (2) Wolreabittel, and (3) eight sold copiea are known toexist eight sold copiea are known toexist
in various libraries, with dates from Nov. $15 \$ 454$ to Apr. 30 1455. Also four unuscd copies have been disfour unuscd copies have been dis covered, of issue D ten sold copies
with dates from Mar. 71455 to Apr. with dates from Mar. 71455 to Apr.
$\$ 01455 \mathrm{sod}$ four uansed copies aro known.
Type 1, cortianed; for type 2 aeo hclow.
(ii.) Manung widder dic Durke. An almanac for Jan. 1455, in 4 to, leaves, 20 and 21 uneven lines. The only copy knewn was dis. covered at Allgsung, and ia nom in the Munich library.
(iii.) Conjunctiones et Oppositiones Solis ct Lurx. 1 calendar for 1457, a broadside sheet, printed on one aide. The upper half of the oaly copy Enown was discovered at library.
(iv.) Der Cisianus (nat Cialanus) Eu Dutsche. A broadside sheet, printed or one side, 36 lines, besides separatencere. The Tross copy, mentioned in suppl. to lanus"), was bought in 1870 for the Cambridge noiversity library.
(v.) and (vi.) Doratus. Two different editious of 14 (?) leaveseach, 27 lines (B. Mus., C. 18.0 1, Nos. 2and 5).
(vii.) Donatus of 30 lines, 12 (\%) leaves; a fragment of the sth () in the Mainz library.
(viii.) 36 -line Bible. 2 vols. \{ol., 882 leaves, with 2 columas of 30 licea each on a pare. Some bibliographers call this the Pilster Bible, assuming that Paster printed it. The Paris library possesses a paper copy, and also a aeparate copy of the last leaf, which bearz the MS. date 1461. Other eopies exist in

Lord Spencer's librery, in the Brik Mins., at Jena, Leipsic, Antiverp. \&c. ${ }^{6}$

- Trpes 3 (large church type) and (smalier brief type), used by Pete
(i.) 30-line iudulgence; one issue (A) with the printed year mecceliiii. and twe jssues (B, C) with the printed year meccelquioto. Al orinted on vellum. Of issce a only one copy has been discovered now is Lord Spencer'a library. It was seld at Cologne on Fel . 27 1455, the printed date mecceliait having becus sltered with the poliz to mecceliiiij. Of issue B two sold copies, with dates Apr. 11 and 29 1455, are ic the Berlin libiary and the Brit. Jlus. Of issue \mathbb{C} two sold copies, with datea Feb 22 and A pr. 24 1455, are $3 t$ Henover Culemazn) and Walfenbittel. Ar unsold copy is at Hagover (Culemann).
TYpe 3, continued (till about 1457);
of type 4 no furtber trice is found.
(ii.) Donatus of 24,25 , or 26 linees, 26 (7) leaves; one leaf (the sth or 9 th ?) in the Mainz library.
(iii.) Donatus of 32 lines, 14 (?) learls, the 10 th (?) in the Mainz lihrary.
(iv.) Donatus of 33 lincs, twe leavers in the Paris library.
(r.) Donatus of 35 lines, folio; príated, according to the colophon, "Fer Metrum de Gernasheym, in . 42 ine Bible pla capilibus Bible) Dinted bifor Mus B1456, 1456, as the binder or the paper copy in the Paris library states
 on that day. 2 vole. fol., 641 leavew of 2 colmmna of 42 lices eacb, ercept that in seme copies the oaly, while the loth page has \& columns of 41 lines esch, thougb. the difference in the number of lines makes no difference in the space which they occapy. 7
(vii.) 42 -line Cantica ad Matutinas The first and only leat known in in the Paris library. It is printent on vellum, and corresponds it every respect to the 42 -line Bible haviog double colunms, 42 lides. \&c.

The above fonr types and the hooks priated with them (besiders a few others printed by Albreclit Pfister at Bamberg) are tho only ones that stand in closo connexion with the question regarding the introduction, or the possible invention, of printing at Mainz. It hats beca pointed ont shove that one of the initial M's of the 30-line indulgence of 1454 occurs again in an indn]gence of 1489 , printer by Schoeffer; heuce types 3 and 4 and the books printed with there must be ascribed to this printer, in spite of the fact that the capital P found in the indnlgence does not seem to occur again in the $\mathbf{4 2}$ liee Bible. No further trace of the brief type 4 has Jet been found and perhaps Schoeffer melted it down for his other types. As Schoeffer, in the colophon of the Donatus (v.) which bears hive 6 See Hessels, Gutenberg, p. 160 ; and Bernard, Origine, ij. S1.
7 For other coples, see Bernard, Origine, I. 164, 17\%192; and Hessels, Gwen
berg, 1.0 .
wame aloue, says that it was printed "cum suis capitalibus," and the the capitals gradually disappear after 1459 and the type of the 12-line Bible is no longer found after 1456, wa must presume that the 68 ven incunabula mentioned abova were printed by Peter Schoeffer alona before he eatered (in 145\%) into partnership with Johan Fust. ${ }^{1}$

Phere is no such certainty as regards types 1 and 2 and the books printed with them. If the $31-l i n e$ indulgence may be assumed to have been printed at Mainz, its printer was in all probability Johan Gutenberg, though it would seem from a lawsuit of 1455 (see p. 690 below) between him and Fust that in that year. Gutenberg had not yet printed anything, and in 1454 (1455) Fust evidently called him to account for not having produced anything. Certain circumstances point to Albtecht Pfister as the printer of the eight incuna: bula in the left-hand column. First, he undoubtedly priuted with type 1 in that city as early as 1461 , for on 14 th February of that year be issued iu that typa an edition of Boner's Edelstein (88 leaves, fol., with mood eugravings), and printed with tha same type at least eight other works, ${ }^{2}$ ons of which was issued in 1462 , the meven others without a date. Secondly, most of the copies of the 36-line Biblo were at one time or another preserved in tho libraries of Bavaria, and a great number of fragments have been discovered in monasteries in that conntry, even in a register of the abbey of St Michael a Bamberg of the jear 1460. Thirdly, a transfer of type from Gutenberg to Pfister is contrary to all enelogy in the niancy of printing, when every printer started with a typa of his awn making. But, as there is no direct evidence as to who really possessed types 1 and 2 before 1460 , we have not felt jostified in assigning the 31-lins indulgence and the other sēven incunabula including the $36-\mathrm{line}$ Bible) to Pfister.

It is alleged that, in consequeuce of the lawsuit between Gatenberg end Fust, the former was deprived of all tools, \&c., which he had made, or is supposed to have made, with the money which the latter had advanced to him, and that afterwards a certain Dr Homery or Humery, a syndic of Mainz, lent him fresh money to enable him to establish another printing office. This allegation is made on the etrength of a letter of obligation (of 26 th February 1468), giveu by Dr Homery to Adolph, the archbishop of Mainz, by which-he acknowledges to hava receired from the aaid arch*ishop "several forms, letters, instruments, implements, and other things belooging to the work of printing, which Johan Gutenberg hiad left after his death, and which had belonged and atill did belong to him (Dr Homery)." It is presumed that with these types, which we may cell the Mainz type No. 5 , Gutenberg printed (i.) Joannes de Balbis, Catholicon, 1460,373 leares, folio, 2 columas of 56 lines each, copies of which exist in the Cambridge university Jibrary, thres in the British Museum, two in the Paris library, in Kord Spencer's library, in the Wolfenbüttel and Mainz libraries, Re: (ii) Matthæus de Cracovia, Tractatus Rationis, 22 leaves, 1to, 30 lines, three copies of which are in the British. Museum, one at Althorp, one in tha Cambridge library, two in the Paris library, *ce ; (iii. and iv.) Thomas Aquiuas, Summa de Articulis Fidei, twn editions in 4 to, the first of 13 leaves and 34 lines, -tro copies of which are in the British Museum, one in Lord Spencer's, the Camhridge library, \&c.-and the second of 12 leaves and 36 lines, -copies in the British Mussum and the Paris library ; and (v.) indalgence of 1461 of 15 lines.

On 18th January 1465 Adolph IT., archbishop of Mainz, appointed "Johan Gudenberg, on account of his grateful and willing service, his servant and courtier (dhiencr und hoffgesind) for life, promising to supply him with clothing and each year 20 'malter' of corn and 2 'fuder' of wine." It has always been inferred from this that Gutenberg had quitted Mainz and gone to Eltville (Elfeld) to reside at the archbishop's court, and that, his dignity as courtier preventiug him from printing himself, he passed the Catholicon types ou to Henry Bechtermuncze at Eltvilie. But recent researches have shown that Guteuberg remained at Mainz till his death in 1463 . We certainly find in 1467 the Catholicon type with come additions (already found in the indulgence of 1461) at Eltvills near Msinz, in the hands of Henry and Jicholas Bechtermunczs and Wigandus Spyes de Orthenberg, who finished on 4th November of that year (vi.) Voccbularius ex quo (a Latin-German vocabuiary) in sto, 166 leaves, 35 lines, the ouly known copy of which is iu the Paris library, and (vii.) Vocabulartus ex quo, second edition, with colophon dated 5 th June 1469, 4 to, 165 leaves, 35 lines, copies of which exist in Lord Speucer's library, at Blenheim, and in the Paris library. Now it is asked how ths Bechtermuuczes could pave been using.the Catholicon type in 1467, if Fe assume that it was this type to which Homery refers in his letter of obligation as being in his possession. Some, therefore, conclude that the Catholicon and tle four other works in the same type were printed at Mainz by Heury Bechtermuncze, who may afterwards have transfored his printing ollice to Eltrille. In that case it is difficult to seo what typo Homery could refer to, unless it were trpe 2 , a close smitation of which, if wot the actual type, was used by Nicholas

1 See for ictails. Heaselo, Gutenberg, p. 160 sq .
: See Hessets, Gutenbery, p. 101 sq.

Bechtermuncze at Eltvilie in prioting (12th March 1472) a third edition of the Vocabularius ex quo, 166 leaves, 35 lines, copies of which are preserved in the Paris and Hamburg libraries, and an evtition of Thomas Aquinas, Sumna de Articulis Fidei, 12 leaves, 35 lines (Munich library).
It is necessary to poiut out that for nearly saventy years eight books-(1) Prognositication or Calendar; (2) Hermaun de Saldis, Speculum Sacerdotum ; (3) Tractatus de Celebratione Missarum ; (4) a work in German treating of the necessity of councils; (5) Dialogus inter Hugonem Cathonem et Oliveriuns super Libertate Ecclesiastica; (6) Sifridus de Arena, Determinatio Duarum Quæstionum; (7) ld., Resporsio ad Qualuor Guesstiones; (8) Klagspiegel, or Newo grieutscht Rechtbuch-have been ascribed to Gutenberg on the streugth (a) of the date 1460, which was said to be found in the Prognostication in the Darnastadt library, and (b) of a so-called rubrication allered to be in a copy of ths Tractatus de Celebratione Missarum, in which "Johannes dictus a bono monte" and Johsunes Numeister are rejresented as offering this work on 19th Juns 1463 to the Carthusians at Mainz. But the date in the Prognostication has been falsified fuem 1482 into 1460 , and the rubrication in the Tractatus is a forgery. ${ }^{8}$ The eight books ars now considered to have been printed by Erhard Rouwich.

When we set aside the above worka, there is no further difficulty as regards the history of Mlainz printing. Fust and Schoeffer Forked together from 1457 to 1466 , starting in August 1457 with an editiou of the Psalterium, printed in large missal types, mhich, as far as we know, is the first printed book which bears a data, besides the place where it was printed and tha name of the printers. It Was reprinted with the same types in 1459 (the second printed book with date, place, and pams of printer), in 1490 , and in 1502 (the last work of Schaeffer, who had manufactured its types). In 1459 Fust and Schoeffer also published Gul Durantus, hationale Divinorum Officiorum, with the small type (usually called Durandus type) with which they continued to print long afterwards. In 1460 they published the Constitutiones of Pope Clement V., the text printed in a type (Clement type) abont a third larger than the Durandus. This type was, however, in existence in 1459, as the colophon of tha Durandus is printed with it.*

Spread of Typogrophy.

Having explained the early printing of Mainz, iu ao far aa it Spreal bears apon the controversy (see below) as to where and by mhom of typi tha art of printing was invented, we can follow its spread to other graphy countries. After Mainz it was first established in 1460 at Strasburg, whers the first printers were,-1. Johann Mentelin, who completed a Latin Bible in that year, according to a rubrication in a copy at Freiburg in the Breisgau; 2. Adolph Rusch de Inguilen, who is presumed to be the printer of the undated books with a singularly. ahaped $\mathrm{R} ;{ }^{5}{ }^{c}$ c. 1464; 3. Henricus Eggestein, 1471; 4. George Husner ; 5. Martin Flach, \&c. In 1461 at Bamberg, where the first printar was Albrecht Pfister, who in that year published Boner's Edelstein, though it is atill doubtful whether ha did not print earlier (aee sbove); 2. Joh. Sensenschmidt, c. 1480. 1465 at Subiacn; first and only printers Conrad Sweynheym and Arnold Pannarts, who completed in that year an edition of Cicero, De Oratore, and Lactantins, and removed to Rome in 1467. 1466 at Cologne, the printers being-1. Urich Zell, who published in that year Chrysostom, Super Psalmo Quinquagesimo Liber Primus, though it is presumed that ha printed in 1463 ; 2. Arnold Ther Hoeruen, 1470; 3. Johannes Koelhoff of Liibeck, 1470 , who printed the Cologne Chronicle in 1499; 4. Nicolaus Götz 1474; 5. Goiswinus Gops, 1475; 6. Petrus de Olpe, 1476 (not 1470); 7. Conradus Winter of Homburg, 1476 ; 8. Joh. Guldenschaaf, 1477; 9. Henricus Quentel, 1479, \&c. ${ }^{6} 1467$ at Eltville; first printers Nicolas and Henry Bechtermuncza and Wygandus Spyes de Orthenberg, who completed in that year a Vocabularius exquo. 1467 at Rome ; first printers Conrad Sweynheym and Arnold Pannarts from Subiaco, who published an edition of Cicero's Epistolas ad Familiares, and Ulrich Hahn or Udalricus Gallus, who issued on 31st Decenber 1467 Turrecremata's Medilations. 1468 at Augshurg; first printer Günther Zainer or Zayner. Same year at Basel; first printer Berthold Rot of Hanau. Sama year at Marienthal; Brothers of the Common Life. 1469 at Venice ; printers,-1. Johannes of Spires ; 2. his brother Tindelinus of Spires ; 3. Christopher Valdarfer ; 4. Nicolas Jenson, \& \& . Tha further spread of typography is indicated by ths following data:-1470 at Nuremberg (Johan Senseuschmidt, Friedr. Creusner, Anton Koberger, \&c.), Berona or Beromiunster in Switzerland (Helyas Helya alias Ds Llouffen), Foligno (Emilianus de Orfinisand Johamnes Numeister), Trevi (Johamn Reynard), Savigliano

3. Sea Heasels, Gutenberg, pp. 107-114.

5 See further Bernard, Orinine de IImprimerie, 1.216 sq .
5 M. Fhilsppe, Origine de Ilmprimerie i Poris, p. 219, mentlans two bonks printed in this type, Which contain manuscript notea to the effect that they were purchased in $H 64$ and 1467, an thet Ingullen ahould be placed before Eggestein.
Johan Veldener, who is said to have printed at Cologne, was pever entab liahec there, but at Louvain (1478-77), Utrecht (1478-S1), sad Culenborg ov Kuileaburg (1 tis.84); see Holtrop, Mon. Typ , pp. 42, 47, 109
(Hans Glim), Paris (first printers the three partncrs Ulrich Gering, Michael Fribuiger, Martin Krantz); 1471 at Spires, Bologna, Ferrara, Florence, Milan, Naples, Pavia, Treviso, Savigliano(?); 1472 at Esslingen, Cremona, Mantua, Padua, Brescia, Parma, Monreale (Mondovi), Fivizzano, Verona, Lesi (?), St Ursino (?); 1473 at Lauingen, Ulm (perhaps as early as 1469), Merseburg, Alost, Utrecht, Ljons, Messina, Buda; 1474 at Louvain, Genoa, Como, Savona, Turin, Vicenza, Valencia (?); 1475 at Libeck, Breslau, Blaubeuren, Burgdorf, Trent, Cracom (?), Modena, Reggio (in Calabria), Cagli, Caselle or Casale, Pieve (Piove) di Sacco, Perugia, Piacenza, Saragossa ; 1476 at Rostock, Bruges, Brussels, Aagers, Toulouse, Polliano (Pogliano); 1477 at Reichenstein, Deventer, Gouda, Delft, Westminster, Lucca, Ascoli, Palermo, Seville; 1478 at Oxford, St Maartensdyk, Colle, Schussenried (in Würtemberg), Eichstädt, Geneva, Vienne, Trogen (?), Chablis, Cosenza, Prague, Barcelone; 1479 at Erfurt, Würzburg, Nimeguen, Zwolle, Poitiers, Toscolano, Pinerolo, Novi, Lerida, Segorbe; 1480 at London, St Albans (or in 1479), Oudenarde, Hasselt, Reggio (in Modena), Salamanca, Toledo, Nonantola, Friuli (?), Caen; 1481 at Passau, Leipsic, Magdeburg, Treves, Urach, Casale di San Yaso, Saluzzo, Albi, Rougement (?); 1482 at Reutlingen, Memmingen, Metz, Pisa, Aquila, Antwerp, Promentonr, Zamora, Odense; 1483 at Leyden, Kuilenburg (Culenborg), Ghent, Chartres, Chalons-smr-Marne (?), Troyes, Gerona, Stockholm; 1484 at Bois-le-Duc, Siena, Udine, Soucino, Winterberg, Klosterncuburg, Rennes, Londéac; 1485 at Heidelberg, Ratisbon, Pescia, Vercelli, Tréguier or Lantreguet, Salins, Burgos, Palma, Xeres; 1486 at Münster, Stuttgart, Chiavasco, Voghera, Casal Maggiore, Abboville, Brünn, Schleswig; 1487 at Ingolstadt, Gaeta, Rouen, Murcia; 1488 at Stendal, Viterbo, Gradịsca, Besançon, Constantinople ; 1489 at Hagenau, San Cucufat (near Barcelona), Coria, Pamplona, Tolosa, Lisbod; 1490 at Orleans, Grenoble, Dôle; 1491 at Hamburg, Nozzano, Gounilliéres, Angouleme, Dijon, Lantenac; l492'st Zinna, Valladolid, Leiria; 1493 at Liineburg, Cagliari, Freiburg (in Breisgan), Urbino, Acqui ; 1494 at Oppenheim, Monterey, Braga; 1495 at Freisingen, Freiberg, ; candiano, Forli, Limoges, Schoonhoren (monastery Den Hem), Wadstena, Cettinje ; 1496 at Offenburg, Provins, Granada; 1497 it Alunich, Barco, Carmagnola, Avignon; 1498 at Tiibingen, Perigueux, Schiedam, Tarragona; 1499 at Montserrat, Madrid; 1500 at Olmütz, Pforzheim, Sursée, Perpignan, Valenciennes, Jaen. Printing vas introduced into Scotland in 1505 by the establishment of Andrew Millar at Edinburgh, ${ }^{1}$ and into leland, at Dublin, in 1551. nos for non-European countries and towns, printing was established in Mexico in 1544, at Goa about 1550, at Tranquebar in 1569, Terceira in the Azores 1583, Lima 1585, Manila and Macso (China) 1500, in Hayti in the beginning of the 17 th century, at Puebla in 1612, Cambridge (Mass.) 1638, Batavia 1668, Tiflis 1701, Germantown 1735, Ceylon 1737, Halifax (Nova Scotia) 1766, Madras 1772, Calcutta 1778, Buenos Ayres 1789, Bombay 1792, in Egypt (at Alexandria, Cairo, and Gizeh) in 1798, at Sydney 1802, Cape Town 1806, Montevideo 1807, Sarenta 1808, Valparaiso 1810, Astrakhan 1815, in Sumatra and at Hobart Town and Santiago (in Cbili) in 1818, in Persia (at Teheran) in 1820, and at Chios about 1821. ${ }^{2}$

Castoms

 chief towns of Germany, Italy, Switzerland, France, the Netherlands, Spain, England, not a single printer carried away with him a set of types or a set of punches or moulds from the master who had taught him, but, in setting up his printing office, each man cast a set of types for his own use, always imitating as closely as possible the handwriting of some particular manuscript which he or his patron desired to publish. When we compare Schoeffer's 30 -line indulgence of 1454 with a manuscript copy of the eame indulgence dated 10th April 1454 , now in the lands of a private collector at Wiesbaden, we see that the types used in printing that document were specially cast for the purpose after the model of the handwriting employed for the written copies. We know also that the types of the 36.line and 42-line Bibles and those of the psalter of 1457 are the closest possible imitations of the ormamental church handwriting customary at the time of their production. Also, when we compare the 31 -line indulgence of 1454 with the German blockbook called the Enndtchrist, and both in their turn with the German MSS. of that period (especially the manuscript portions in the printed copies of the indulgences), we see that the cutter of the text type of the indulgence, as well as the engraver of the blockbook, formed his characters according to some German handwriting (book hand) of the period. This imitation extended, not only to the shape of the letters, but likewise to all those combinations of letters (dquble p, donble f, donble s, st, $t i, t u, r \in, ~ c u, c t, s i, d \epsilon, c o$, $c i, t e, c e, o r, v e, p o, f a, h e, b c, \& c$.) and contractions (for pro, -um, -em, - en, the-, uer, -bus, -bis, scd, am, tur, qui, quæ, quod, secundum, icc.) which vere then, and had been for many centuries, iu use by ocribes. In most, if not all cases, the MSS. which the printers 12 See Rob. Dickson, Introd, of Art of Print. into Scoll., Aberdfen, 1885 .On the introduction of printing in varions towns, consult Henry Cotton,
A Typog. Gazet., 8vo, Oxford, 1831 and (second series, $8 v 0$, Oxford) $1866 ;(\mathrm{P}$. Deschamps) Dict. de Géogr. à l^{\prime} Usape du Libraire, 8vo, Paris, $1870 ;$ R. C. Hswkins, Titles of the First Books from the Earliest Presscs Established in Di.fe.*ni Cities in Europe, 4to, New York, 1884.
imitated were indigenous to the place where they settled. Thus the first printers of Subiaco, though they were Germans and had most probably learned the art of casting types and printing at Mainz, clearly cut their types after the madel of some Italian MS. which was free from any Gothic influence, but written in a pure Caroline minuscle hand, differing but slightly from the Caroline minuscles which the same printers adopted two years afterwards at Rome. The first Paris printers started in 1470 with a type cast in the most exact manner, on the model of the Caroline minuscle handwriting then in vogue at Paris. Jolm de Westphalia, who introduced printing into Belgium, used from the beginning a type which he calls Venetian. Where therefore there is a great similarity, but no absolute identity, between the types of two printers (e.g., Schoeffer and Ulr. Zell), it should be attributed to the similarity of the bandwritings which the printers followed rather than to any attempt on their part to imitate each other's types. To this universal system (clearly discernible in the first twenty-five years of printing) of each printer setting up business with a new type cast by himself, there are, according to the conjectures of a good many bibliographers, only two exceptions. One is Albrecht Pfister (see ahove) ; the other is the Bechtermunczes of Eltville (see above).
Another most important feature in the earliest books is that the printers imitated, not only the handwriting, with all its contractions, combined letters, \&ic., but all the other peculiarities of the MSS, they copied. There is in the first place the unevenness of the lines, which very often serves as a guide to the approsimate dato of a book, especislly when we deal with the works of the same printer, since each commenced with uneven lines, and gradually made them less uneven, and finally even. This unevemness was unavoidable in manuscripts as well as in hlock-books; but in the earliest printed books it is regarded as evidence of the inability of the printers to space ont their lines. If this theory be correct, this inability was perhaps owing to the types being perforated and connected with each other by a thread, or to some other cause which has not yet been clearly ascertained. But it is not impos. sible that the uneveuness was simply part and narcel of the system of imitating M1SS., and that only gradually (about 1473 or 1474 , but in some cases later) printers began to see that even lines looked better than uneven. This seems clear when we observe that the imitation of MSS. was carried 60 far that sometimes things which deviated from the work of the scribe, but had accidentally been printed in, were afterwards erased and altered in conformity with the MIS. The Paris library, for instance, possesses two copies of the Liber Epistolarum of Gasparinus Pergamensis (printed at Paris in 1470) in both of which the initial G of the first line and the initial M of the fourth line were printed in, and, whilst they have been allowed to remain in one of the copies, in the other they were regarded as a fault and replaced by a rubricated L and M.

In the secoad placo the initials of books or the chapters of book: in MSS., and again in block-books and the earliest products of printing, were always, or at least in most cases (they are printed in the indulgences of 1454), omitted by the scribe and the printer, and afterwards filled in by the rubricator. As the latter artists were sometimes illiterate and very often filled up the gap by a wrong initial, we find in a good many MSS. as well as early printed books small letters written either in the margin or in the blank left for the initial, to guide tle rubricator. In most cases where these letters (which are now called initial directors) were written in the margin, they were placed as much as possible on the edges of the pages in order that they might be cut away by the binder as unsightly; but in a rast number of incunabula they have remainerl till the present day. ${ }^{3}$ After a few years these initial directors were in a good many books printed in (in lower-case type) with the text. In all cases, whether written or printed, they were meant to be covered by the illuminated initial ; but, as a matter of fact, the latter very sfldom covers the initial director so completely as to make it invisible, and in a good many cases the iutended illamination was never carried into effect.

With respect to the hyphens, which were used in the 1454 indulgences and the 36 -line and 42 -line Bibles, always outside tho printed margin, some of the earliest printers did not employ them at the moment that they started their presses, and in the case of comu printers the non-use or use of hyphens, and their position outside or inside the printed margin, serve as a guide to the dating of their products. After about 1472 they becorae more uniform in their shape and more generally used.

The use of signatures is confined in MSS. mostly to mark the quires, and in hlock-books to mark each sheet or page ; they do not occur in printed books before 14 年 (at least in no earlier book with a date), when they appear in Joh. Nider's Praceptorium Diving Lcgis, published by Johan Koelhoff at Cologne.
Catchwords (custodes) were used for the first time about 1469 by Johannes of Spires, at Venice, in the first edition of Tacitus.

3 The university library of Basel possesses a collection of the farlient I'aris nonks still bound in their original binding, in which these initial diroctorn are an close to the back that they can cuis be seen by streteling the tuaks wide opea.

Pagination or rather foliation was first used by Arn. Ther Hoernen, at Cologne in 1471, in Adrianus's Liber de Rencdiis Fortuitoruni Casuum, having each leaf (not page) nambered by figures placed in the end of the line on the middle of each right-hand page.

The practice among early printers of imitating and reproducing MSS. Was not abandoned till many years after the first printed book (1451) made its appearance; and, looking at the books printed, say from 1454 to 1477 , from our present standpoint of daily improvement and alteration, tho printing of that period may be said to have been almost wholly stagnsent, without any improvement or modification. If some printers (for instsnee, Sweynheyrn and Pannarts at Subiaco and Rome, sad Nicolss Jenson at Venice) produced handsomer books than others, this is to be attributed to the beauty of the MSS. imitated and the paper used rather than to any superior skill. Generally speaking, therefore, wo shall not be very far wrong in saying that the workmanship of Ketelaer and De Leempt's first book, published st Utrecht c. 1 ± 73, and that of Caston's first book issued at Westminster in 1477, exhibit the rery same stage of the art of printing as the 1454 indulgences. If therefore sny evidence were found that Ketelser snd De Leempt and Caxton had really printed their first books in 1454 , there would be nothing in the workmanship of these books to prevent ins from placing them in that year. And conversely, if the indulgences of 1454 had been issued without a date or without any names to indieate their approximate date, their workmsnship would invariably indnce biblographers to sscribe them to circa I470, if not somewhat lster. Eren after 1477 the alterations in the mode of printing books proceeded very slowly and alnost imperceptibly. It csme to he 110 longer a universal system for printers to begin business by casting a type for themselves, but soune received their types from one of their colleagues. And, though there were atill many varieties of types, one sort began to make its appearance in two or thrce different plsees. The combinations of letters were the first to disappear; but the contractions remsin in a good many books even of the 15 th century.

- Some theories have been basod on, and others have been considered to be upset by, the supposition that the early printers always required as much type as printers of the present day, or at any rste so mueh as would enable them to set up, not only a wholo quire of 4 or 5 sheets ($=8$ or 10 leaves $=16$ or 20 pages), but even two quires ($=40$ pagos), Consequently ealculations have been msde that, for instsnce, $\mathbf{7}$ the pi uter of the $42-l i n e$ Bible required a fonnt of at least 120,000 characters. ${ }^{2}$ But, though the Spcculum Humanse Salvationis scems to have been printed by whale sheets (2 pages), there are numberless proofs that many early books were printed page by page, even when in small 4to. For instance, in some books it has been obserred that portions of the types with which the text of the first, seeond, or third psges of a quire had been printed were used to "lock up" the types employed for the later pages of the same quire, as is evident from the blank impressions of such portions being found on these later pages. Again, in some books two, three, or four blank leaves are found at the end, ehowing a misealculation of the printer. Noreover, the numerous itinerant printers of the 15 th century, who established a press for a short time wherever they went, prove that the furniture of the earliest printing offices must have been of no great extent.

The Invention Controversy.

Now that we lave traced the art of printing from the moment (1454) that it mado its appearance in a perfect state at Mainz, and have followed its spread to all the chief places of Europe till 1500, we must take notice of the contreversy which has been carried on for nearly four hundred years as to when, where, and by whom the art was invented. For this purpose re will gather up into a chronological sequence (a) a few of the most important expressions used by the earliest printers in their colophons, (b) whatever documentary evidence there may be on the subject, and (c) some accounts of the earliest authors on the subject. (The letters A, B, \&c., are for the sake of convenient reference.)

The earliest testimony (A) to which we may refer is the notarial instrument, dated 6 th November 1455, of the lawsuit hetween Fust and Gutenberg, whereby the former sought to recover 2026 guilders from the latter in repayment of 1600 guilders (800 advaneed in 1450 or 1449 and another 800 in 1452), with the interest thereon. Fust speaks here ${ }^{2}$ of "the work" (line 24), and of "our common work" (line 60); Gutenberg speaks of "tools" in preparation, "workmen's wages, house-rent, vellum, paper, ink, \&e." (lines 3740), of "such work" (41), and of "the work of the hooks" (42);

[^294]whereas the judges speak of "the work to the profit of both " (49), and "their common use" (60). (B) In the earliest" book published with a date (the Mainz psalter, issued 14th Aurust 1457 by Fust aud Peter Schoeffer) it is said that it was perfected at Mainz by an "adinventio artificiosa imprimendi ae caracterizandi absque calami ulla exaratione" (repeated and raried latcr ; see p. 681 above). (C) In 1460 the Catmolicon was published at Mainz, without the name of the printer; but the colophon, after stating that the book wa่s printed at Mainz, which town God's merey had deigned to prefer above other nations of the earth, adds (D) that the bock was printed and completed "non calami, stili, sut penne suffragio, sce mirs patronarum formarumque concordia, proporeione, et modulo." This work is considered to heve heen printed by Gutenberg, and the mention of God's merey is regarded as an allusion to the inrention of printing. The plarase is, bowever, also found in the Liber Sextus Decrelalium, in the Summa of Thomas Aquinas, and in the Clementina, published respectively on 17 th December 1465 , 6 th March, and Sth October 146 , by Fust and Schoeffer. (E) On 17th January 1465 Adolph II., archbishop of Mlainz, hy a publie decree, appointed Gutenberg as his servant in reward for "his eerviees," but he does not speak of him as the inventor of printing nor even ss a printer. (F) In the Grammalica Rhythmica, published in 1466 hy Fust and Schoeffer, the third line of the colophon runs: "Hine Nazsreni sonet oda per ora Johannls," whieh was formerly regarded as an allusion to Johann Fust or Johann Gutenberg, but which more probably refers to Joluann Brunnen or Fons, the author of the grammar. (G) On 26 th February 1468 Dr Homery wrote to the archbishop of Mainz the letter qusted above, from which it may be inferred that Gu+enberg lisd been a printer, though not a word is said as to his being the inventor of printing. (H) In 1468 Sehoeffer reprinted Fons's Grammatica, and in the colophon it is said: "At Moguntina sum fusus in urbe libellus meque (the book) domus genuit unde caragma venit." (I) Schoeffer published on 24th Msy 1468 the first edition of Justiniani Impor. Institutionum Juris Libri VI., cum Glossa. To this were added hy way of colophon some verses commencing: "Seena tabernaculi, \&c.," in which it is said that (the ornament of the chureh) Jesus "hos dedit eximios sculpendi in srte magistros. . Qnos genuit amhos urbs Moguntina Johannes, librorum insignes prothocaragmatieos," which is regarded as an allusion to Johann Gutenberg and Johaun Fust as first printers. (K) In the same year (1468) Johannes Andreas, bishop o! Aleria, says, in the dedieation of his edition of St Jeromes Epistles, published in that year (13th Deeemher) at Rome, to Pope Paul II., that "Germany is to be honoured for ever as having been the inventress of the greatest utilities. Cardinal Cusa wished that the saered art of printing, which then (under Cardinal Cusa, who died 11th August 1464) seemed to hare arisen in Germany, were brought to Rome." (L) In 1470 Guil. Fichet, in an octsstichon inserted in the Paris edition of 1470 of the Lellers of Gasparinus of Bergamo, exhorts Paris to take up the almost divine art of writing (printing) which Gcrmany is aequainted with. In the same year Erhard Windsberg writes to the ssme effect in an epigram inserted in tho Epistola Phalaridis published at Paris about 1470. (II) In 1471 Lindov. Carbo speaks, in the dedication of the Lelters of Pliny to Borso, duke of Modena, of the Germans hsving invented printing. Nieolaus Gupalatinus speaks (Venice, 1471) of a German being the inventor of printing, and Nicolans Perottus of the ar2 which had lately come from Germany. (N) On 21st May 1471 Nicolas Jenson published an edition of Quintilian, edited and revised by Ognibene de Lonigo (Omnibouus Leonicenns), who in the preface speaks of its printer as "libravire srtis mirabilis inventor, non ut scribantur calamo libri, sed veluti genma imprimantur, ac prope sigillo, primus omnium ingeniose denonstravit." (0) About 1472 the first three printers of l'aris published Gasparinus Perga. mensis's Orthographis: Libcr, to which is prefised (in the copy of the university of Basel) a letter, dated 1st January, from Guil. laume Fichet. prior of the Sorbonnc, to Robert Gaguin, in which lie says that "it is rumoured in Germany that not far from the eity of Dainz a certaiu Johann Gutenberg (Johannes, cui cognomen Bonemontano) first of all invented the art of printing (impressoriam srtem), by reeans of which hooks are made with letters of metal, not with a reed (as the ancients did), nor with the pen (as is donc at present)." (P) On 14th July 1474 Joh. Philippus de Lignamine publisbed at Rome Chronica Summorum Pontificum Imperal mumque, in which we find, between two enties, relating one to i4th July 1459 and the other to 1 st October 1459 , an undated paragraph io which it is said that Jacobus with the smrmane of Gutenberg of Strasburg and a certaiu other ono named Fustus, "iraprimendarum litterarum is membranis cum metallieis formis periti, trecentas eartas quisque eorum per diem facere ingeteseunt apud Moguntiam Germanie civitatem. "The same is said of Mentelin, and (nnder 1464) of Conrad Sweynbeym, Arwold Pannarts, and Udalricus Gallus. (Q) On 23 d May 1476 Peter Schoeffor issued the third edition of tho Iustitutiones of Justinian, with the same iraprint as in the edition

3 The earliest is perhaps the Donatus issued by Peter Schoeffer, possibly before 1456 , the colophon of which says that it was finished: "Arto novs imprimendi aeu caracterizandi . . . ebsque calanií caaratione."
of 1468 (see testimeny I), but with the addition that Mainz is the "impressoriæ artis invenirix elimatrixque prima." (R) In 1478 an edition of the Fosciculas Temportm was issued at Cologne, in which it is stated undes the year 1457 that the printers of books were multiplied on earth, deriving the origin of their art from Mainz. The carlier editions merely stated that the printers of books were multiplied on earth. (S) In 1483 Matthias Palmerius of Piss published at Veuice the Chron. Ehseb., in which under the year 1457 it is stated that students owe a great dobt to Germany, where Johannes Guttenberg zum Jungen, knight of Mainz, invented the art of printing in 1440. (T) In the same 5 ar Jac. Phil. Foresta of Bergamo published Supplementum Chronicorum, in which he says under the year 1458 that the art of printing books was first discovered in Germany, according to some by Guthimberg of Strasburg, according to othérs by Faust (see P), according to others by Nicolas Jenson (see N). (V) On 6th March 1492 Peter Scheeffer pullished the Nicdersachsische Chre itik of Comrad Betho, saying in the coloplion that it was "geprent . . . in ... Mentz, die eyn anefangk is der prentery." (X) At the end of 1494 two Heidel lierg professors, Adam Wernher and Joh. Herbst, composed some Latin verses in honour of Johannes Gensfleisch (a family name by which Gutenberg was knvenn, and which was turned into the Latin Ansicarus), whom they called "primus librorum impressor" and "impressorie artis inventor primus." (Y) In 1499 Jacobus Wimpheling (born at Schlettstadt 1450 , died 1528) published (at Mainz, by P. Friedberg) an Oratio ial Menoriam Marsilii ab Inghen (d. 1396), in which lie, on leaf 22 a , praises Joannes Ansicarus in verse on account of his invention at Mainz. (Z) These verses are preceded by an cpitaph on Johann Gensfleisch, "artis impressoriæ inventor" and "repertor," written in Latin by Adam Gelthus, a relative of Gutenberg. (AA) In the same year Polydore Vergil (De Inventoribus Rerun, Venice, 1499, lih. ii. cap. 7) aays that a certain Peter [Schoeffer ?], a Gemnan, iuvented in 1442 the art of printing at Mainz in Germany, as he had heard from the latter's countryman; this statement was repeated in a Venice edition of 1503 . In lster editions "Peter" was altered to "Joh. Gutenberg." (BB) In the same year Koelhoff, printer at Cologne, published Cronica van der hilliger. Stat van Cocllcn, in which on fol. 312b it is said: (1) The s1tt of printing was found first of all in Germany at Miva about the year 1440 ; (2) from that time till 1450 the art and what belonged to it were investigrated ; (3) and in 1450, when it was a golden year (jubilee), they began to print, and the first book that they printed was the Bible in Latin, in a large letter, resembling that with which at present missals are printed. (4) Alithough the art was found at Mainz in the manuer in which it is generally empleyed now, jet the first prefiguration was found in Holland from out the Donatuses which were printed there before that time, and from and out of them was taken the becrinning of the aforesaid art, and it was found much nore mastenty and exact (subtilis) than that other manner was, and las become more and more artistic. (5) Omnibonns wrote in a prefsce to Quintilian, and in some other hooks too, that a Walloon from France, named Nicol. Jenson (see N), discovered this art ; but that is untrue, for there are those still alive who testify that beoks were printed at Venice before Nicol. Jenson came there, and began to cnt and make letters. (6) Bnt the first inventor of printing was a citizen of Mainz, named Junker Johan Gudenburch. (7) From Manz the art was introduced first of all into Cologne, then into Strasburg, and 8 fterwards into Venice. (8) The origin and progress citto irt mere told to the writer verbally bj Ulrich Zell of Hanau, still printer at Cologne (anno 1499), through whom the said art came to Cologne. (CC) In 1501 Jacob Wimpheling (see Y), who stated in his Oratio Querulose contra Invasores Sacerdotum, Flrminum, \&ce., published at Delft c. 1495 , that chalcography hatl heen invented at Mainz, published a work (Gcrmaria, Straslurg, Joh. Prüss, 1501) in which he says (on p. 43) that the invention was cade at Strasburg by Johann Gutenberg of Strasburg, and that it *as perfected at Mainz (DD) In 1503 Johann Schocffer (the son of Peter Schoeffer and the grandson of Joliann Fust) puhlished an edition of Hermes Trismegistus, in which he represents himself as pae of the most distinguished citizens of Mninz, descendeal from the most fortunate race who invented the art of pinting. (EE) In 1504 Ivo Wittig, who was a relative of Gutenberg, and a canon and the keeper of the soal of the St Victor cathedral uear Mainz (of which Gutenberg had been' lay member), erected in the house "Zun (iutenlerg" a memorial stone and ar epitaph to Jolı. Gutenberg of Dainz, "qui prinus omnium litteras are imprimendas invenit." (FF) In 1505, in the German trauslation of Livy published by Johann Schoefler (see KK), the ledication to the emperer Maximilian, which was prolually written by Ivo Wittig (see EE), speaks of Joham Giittenbergk as inventor of printing (1450) and Johann Faust and Peter Schoeffer as inprovers of the art. This work was reprinted six times ($1514,1523,1533,1551,1$ 153) with the same dedicatiod; but in 1509 the Brovirrium Mfogantinum says that it was printed at the expense sad trouble of Johann
1 These verses were nol published at the time, but in the 19th centnry by F. J. Mone, Que'lenswmpl. तer I.whesgesth, jii. 163, from the contemporary as of Cslam Wermier, preserven in the archis es of Carlsruhe.

Schocffer, whose grandiather (i.e., Jolıanu Fust) was the first inventor and anther of the art of plinting (see DD). (GG) In 1505 Jacob Wimpheling, in his Epithomi Germanoram (Straslurg, 1505), asserts (on leaf xxxviii b. and xxxix s.) that in 1440 Johann Guten. berg of Strasburg iuveuted there the srt of printing. And in 1507, in his Catal. Episcoporunt Argent. (Strasburg, 1507), he says that the art was invented, though in an imperfect manner, by a certaiu Strasburger, who afterwards went to Mainz and joined others working and trying the same art, where it was, under the guidance of Johann Gensfleisch, 1 yelfected in the house "boni montis" (Gutenberg). This he repeated in 1515. (HH) Abont 1506 Johsunes Trithenius wrote his Chronicon of Spanhein, published at Frank. fort in 1601, in which he gays (p. 366) that the art of printing Looks was discovered afresh at Mainz ly Johan Guterherg, who, after having spent all his prowerty in accomplishing the new invention, perfected it ly the advice and ossistance of Johann Fust. The first propagatel of the new art was, after the inventor, Peter Schoeffer. (II) In 1575 Johann Schoeffer pullished Joh. Trithenius's Comp-endium sive Coeviarinear Historiæe Fyancorum, and said in the colophon that the book was published at Mainz, the first inrentress of the art of pinting, by Johann Schoeffer, grandson of the late Johann Fust, the first autlor of the said art, who finally from his own genius commenced to excogitate and to investigate the art in 1450 , and in 1452 perfected it and eonmenced printing, assistel hy many necessary inventions of Peter Schoeffer von Gernsheim, his aervant and adopted son. Jolann Fust and Peter Schoeffer kept this art secret, binding all their selvants and domestics by oath never to reveal it ; but in 1462 it was spread by the same domestics into divers conncries. (KK) On 9th December 1518 the emperor Maximilian accorded to Johann Schoeffer the privilege of printing livy (1518-1519), and says in it that "he has learned and been sdvised on the faith of worthy testimonies that the ingenions iuvention of chalcography was effected by the printer's grandfather." (LL) In 1519 Joh. Thurmayer Aventinus (1474-1534) wrote that " in 1450 Joannes Faustus, a German, a citizen of Mainz, invented a new kind of writing, called chalcography, and completed it in two years; it was kept secret by him and Peter Schoeffer, his son-in-law, but divulged in Germany ten years afterwards by Faust's servant, Johannes Guttenherger, a Strasthurger." (MM) In a pedigree of Lourens Janszoon Coster of Haarlem and his descendants, drawn up not later than 1520 , it is asserted that in 1446 "he brought the first print into the world." This document, of which the date 1446 seems to have been altercd into I440, is preserved in the Haarlem town library. (NN) In 1520 Johan Schott, a printer at Strasburg and grandson of Johsn Meatelin, the fisst printer of that town, published an edition of Ptolemy, at the end of which he printed the arms of his grandfather with the following legend: "Insigne Schottorum Familiæ ab Friderico Rom. Imp. III. Joan. Mentelio primo Typographiz Inventori ac suis noncessum : Anno Christi 1466." Apart from the assertion that Mentelin was the inventor of printing, we may remark tliat the emperor Frederick III. raised Mentelin to the rank of a nobleman in 1466 and granted him new arms. (OO) About 1533 the Neapolitan Mariangele Accorso, who had resided at the court of Charles V., wrote on an edition of Donatus (in the possession of Aldus Manutius, jun.) that "Joh. Faust of Mainz first discovered the art of printing with metal types, which afterwards be made of lead; bis son Peter Schoeffer adder afterwards much to polish the said art. This Donatics and Confessionalia were printed first of all in 1450. Faust lerived the ouggestion from a Donatus printed before in Holland from an engraved block." This paragraph is found on p. 411 of the Biblioth. Apost. Vaticania of Angelo Roccha (Rome, 1591). Some consider its latter part to have been derived from the Cologne Chronicle (BB), and it seenis probable that it was a mixture of some of the ebove testimonies. (CP) In 1536 Johan Schott (see NN) published Historicn Hradt-Buch7ein (Strasbnrg, 1536), in which (on leaf b^{1} and b^{2}) he says that "Hans Mentlii, of Strasburg iuvented the art, which, throngh infidelity, was brought to Mainz." On the strength of this and other statements (CC, GG, NN) the liceutenary of the Straslurg invention was celebrated there in 1640. (QQ) In 1541 Joh. Arnold (Bergel or) Bergellanus, who had settled as press-reader at Maiuz two years previously, 1ullished his Encomium C'halcograpliz (Mainz, Fr. Beliem, 1541, 4to), in which the lawsuit betwcen Fust and Gutenherg (A) is slluder to for the first time. Bergel had real Tritheim's Looks (HH), in which the invention is ascribed to Johann Gutenberg with twowcoadjutors, Johann Faust al.d Peter Scl.oerfer, which he (Bergel) had heard confirmel in cons crsations with Mainz citizens; he had also seen come old tools prepaled lor the work b_{j} the oligiuaters which wore still in eaistence. Gntenberg in, vented it in 1450. (RR) About 1561 J 311 Van Zuren (hons at Haanlem in 1517) and Dirk Volkerts Coornhert (horn at An.sterdsm in 1522) established a printing office at Haarlem. Of the former it is alleged that he had compiled a work on, the invel.tion of puinting, which is presumed to have been lost during the siege of Haarlem in 1573. It was nat publicly spoken of till 1623 , when Peter Sciivelius published his Laurccranz voor Iaurens Coster. Scivelius had only found the
title, preface, and introduction, in which Fan Zuren contended that the first foundations of the art were laid at Haarlem, and that it afterwards accompanied a foreigner to Mainz. In this introduction he does not mention the name of the inventor, nor a date, but points in indefinite terms to the bouse of the inventor as still existing. (SS) In the same Jear (1561) Van Zuren and Coornhert published an edition of the Opfcia Ciceronis, in which the latter, in a de. dication to the magistracy of Haarlem, refers to the rumour that the art of printing books was invented first of all at Haarlem, and was brought to Mainz by an unfaithful servant and much improved there. He adds that very old and dignified persons had often told him, not only the family of the inventor, but also his name and surname, and had explained the first crude way of printing, and pointed out to him tbe house of the first printer. (TT) In 1566 Luigi Guicciar. dini, a Florentine nobleman who had visited the Netherlands and had resided many Jears at Antwerp, finished a description of the Netherlands (publisbed in 1567), in which, alluding to Haarlem, lie speaks of the inventiou there according to the assertions of the inhabitants, the evidence of some autbors, and other remembrances; the inventor died before the perfection of his art; his servant went to Mainz, where he perfected the art, and hence the report that it was invented there. (VV) About 1568 (it is calculated) Hadrianns Junius wrote his Batavia, published at Loyden in 1588, with tro prefaces, dated, the one from Leyden, 6th January 1575, the other from Delft ad annuem salutis 1575 . On p. 253 he says that the opinion that the forms of the letters whereby books are printed were first discovered at Mainz is very inveterate, but old and eminent inhabitants of Haarlem had assured him that they had heard from their ancestors that there lived at Haarlem, more than 128 years before, in a decent house then existing, near the marketplace, opposite the royal palace, Lourens (son of) Jan, surnamed Coster, who, while walking in the wood near Haarlem, began to shape beechen bark first into figures of letters, by which, reversely impressed one by one on paper, he composed one or two lines to serve as an example for the children of his son-in-law. When this succeeded, he began to contemplate greater things, and first of all invented, assisted by his son-in-law Thomas (son of Peter, a more gluey and substantial kind of ink (as the ordinary ink was found to blot), with which he printed whole tablets with pictures, with the letters added. Jnnius bad seen books of this kiod printed by Coster (the beginnings of his labours) on the rectos of the leaves only, not on both sides; the book was written (in Dutch) by an anonymons anthor, and entitled Speculum Nostrs Salutis, in which care was taken that the blank versos could be pasted together, so that the blank pages should not present any unsightliness. Afterwards (Coster) changed the beechen characters into leaden, end the latter again into tin ones. Very ancient wine-pota cast of the remains of these types were still to be seen in the house of Lourens, which was afterwards inhabited by his great-grandson Gerard (son of) Thomas, who had died an old man a few years before. When the new merchandise attracted purchasers everywhere, workmen were edded to (Lourens's) household, among whom was a certain John (whether, as was suspected, Faust, or another of the same name, Junius did not inquire), wbo was bound to the work of printing by oath. But, when lie thought he knesw the art of joining the letters and of casting the types, \&c., he stole away, when every. body had gone to church, the whole apparatus of the types and the tools prepared by his master, and hastened to Amsterdam, thence to Cologne, until he arrived at Mainz, where he could remain in eafety, and, having opened a work-office, issued within the space of one year, about 1442, the Docirimale of Alexander Gallus and the Tracts of Petrus Hispanus, printed with the same types which Lourens had used at Haarlem. Juning recollects that Nicolaus Gale, his tutor, a man of firm memory and renerable old age, had told bim that as a boy he had often heard a certain bookbinder Cornclis (a man of more than eirchty years of age, who had been an onder-workman in the same office) narrating the story of the invention (as he had heard it from his master), tho polishing and increase of the crude ert, se., and cursing those nights which he had passed, during some months, with tbe culprit in one bed. The burgomaster Quirinus Talesius admitted to Junius that he had formerly heard nearly the same from the mouth of the same bookbinder. (XX) In 1623 Scriverius in his Laurecranz (see RR) placed the date of the Haarlem invention os far back as 1428 , and mentioned as its inventor Lourens Janszoon, sheriff of Haarlem. Ho asserts that the art of printing appeared, "not in the manner as it is used now, with letters cast of lead and tin, but a book was cut leaf for leaf on wooden blocks," and the Haarlem inventor was robbed in 1440 by Johan Gutenberg. Scriverius based the dato 1429 npon a Hebrew Chronicle compiled by Joscph ben Meir (born 1496 , d. c. 1575), and published in 1554 at Sabianctta by Cornelius Adelkind, where, under the year of the Jewish cra 5188 ($=1428$), the author mentions a book (without giving the title) printed at Venice and seen by him. Scriverius, bcing convinced that this could only refer to a bork printed at Haarlem, applied the entry ts a xylographic Biblua Paupcrum, of which he gave a description, tegether with several other block-books and carly printed books.
(XV) In 1639 Boxhora pushed the date of the Hasslem inveution back to $14 \Omega 0$, referring, as his authority, to the same Chronicle of Rabbi Joseph. Since that time the date of the Haalem invention has been variously placed between 1420 and 1430 .

Later testimonies are mere repetitions of earlier statements. ${ }^{1}$ We need not say much about the story of Antonio Cambruzzi, who asserted that Pamfilo Castaldi invented printing at Feltre, in Italy, in I456, and that Fausto Comesburgo, who lived in his house in order to learn the Italian language, learned the art from him and brought it to Mainz; this story, however, has found so much credence that in 1868 a statue was erected at Feltro in honour of Castaldi. Nor need we speak of Kuttenberg in Bohemia, where John Gutenberg is asserted to bave been born and to have found the art of printing. We may also pass over Johann Fust, later on called Faust (testimonies P, T, DD, FF, II, KK, LL, OO), as we know from the Mainz lawsuit of 1455 (A) that he had simply assisted Gutenberg with loans of money. We may also pass over Johann Mentelin of Strasburg (testimonies NN, PP), only remarking here that he had already printed a Bible in 1460 , and that he is mentioned in Strasburg registers as a chrysographer or gold-writer from 1447 to 1450 ; but of his whereabouts between 1450 and 1460 there is no record. That he had gone, or had been called, after 1450 by Gutenberg to Mainz has been asserted but not proved, and there is no reason why he should not be one of the two Johannes alluded to as the prothocaragmatici of Mainz in the Justinian of 1468 (testimony I.). That Nicolas Jenson came to be regarded in certain circles and for a time as the inventor of printing is owing to testimony N being misunderstood. There remaitr, therefore, to be considered the testimonies which bear on the rival claims of Haarlem and Mainz. The controversy between Germany and Holland was publicly started as early as 1499 by the Cologne Chronicle (testimony BB), that between the two towns mentioned not publicly before 1561 (testimony RR); while no rival inventor to Gutenberg was mentioned publicly and in print earlier than 1588 (testimony VV).
Let us first consider the claims of Germany and Mainz as centred Claims of in tbe person of Benne (= Hans or Johann) Gensfleisch, called Guten. Gutenberg or Gudenberg, the latter name derived from his motber, berg. whose maiden name was Elsa Wyrich, who lived in the "Hof zum Gutenberg " at Mainz. Ho is supposed to have been borm at that town about 1400. He is first mentioned in a Mainz document, dated 16 th Jannary 1430. In e document of 28 th March 1430 he is spoken of as being "not in Mainz." Documents from 14th March 1434 to 18th September 1444 prove him to have been at Strasburg during that time, and documents dated respectively 17 th October 1448, 6th November 1455, 21 st Jnne 1457, 10th April 1461, show that he was in or near Mainz on those days. By a decree of 17 th January 1465 the archbishop of that town rewarded him for "his services," and in the bond of Dr Homery, dated 26 th February 1468 , he is spoken of as dead. There are, moreover, six forged documents (including some relics of an ancient press bearing the date 1441) respectively dated 24 th March 1424, 1437, 3d July 1453, 20th July 1459, 19th June 1463, and an entry in an anniversarium which has been applied to Gutenberg, but does not conccrn him (see Hessels, Gutcnberg).
In former years, when printing was believed to have been invented in 1440, the records of the Strasburg larsuit of 1439 , between Gutenberg and sume Strasburg artisans about ccrtain indestrial undertakings (as the art of polishisg stones, the manufacture of looking-glasses), were considered to prove the invention of printing at Strasburg, not, however, by Mentelin, as lad been thought by some (testimonies NN, PP), but by Gutenberg. The records camo to light about 1740 , just when Sclioepflin, the principal discoverer, had been commissioned to acarch for documents of this kind. Doubts may bo suggested as to their genuineness, but they have all perished, partly during the revolution of 1793 and partly during the siego of Straslurg in 1870. However, nobody would nor assert that printing was invented in 1439 or at Strasburg; and those who still believe that Gutenberg was the inventor of printing refer to them only as showing that he was a mechanic as early as 1439 , and that lie understood the art of pressing. ${ }^{2}$

1 Over a hundred of thern have been collected by Ger. Meerman, Origines
Typagr, li. p. 58 s. .
2 Eee Hessels, Guterberg, pp. 23, 155, \&c.

The first document that connects Gutenberg mith the art of printing is the potarial instrument of 645 November 1455 (testimony A). But it says mothing of an invention or a new mode of printing. And yet the occasion was such as to make it almost imperative on Gutenberg to mention it, for he bad spent 1600 guilders of Fust's money, apparently without printing anything, ${ }^{1}$ and was on the point of being robled by the latter and having taken away from him all that he had made and done to give effect to his idea or invention. In the noxt testimony (B), i.e., the earliest Mainz books with printed dates (145% to 1467), there is evidence that the new art of printing is not only not zept secret but fully appreciated et Mainz, and its importance fully realized and advertised ; but, thongh they speak of a "nova are imprimendi" and an "adinventio mprimendi" these is not a syllable as to a Mainz invention or inventor. In testimonies C and D (the Cathalicon of 1460) there is agaín not one word about an invention or an inventor, or about Mainz. Fet Gutenberg is supposed to have printed the Ca,holican; and it is incredible that he, who had been wronged and robbed by his tro rivals (Fust and Schoeffer), should agree with them in axplaining and proclaiming the nerv art, but nerer with one mord assert his claim to the honour and profit of the invention;if he had made any, and should even omit his name, whereas he sav his two fivals never neglect to print their names in full on every book which they published. Those who believe that Gutenberg was the inventor of printing suggest that be kept silent, as otherrise his creditors would havs seized his copies and his printing office. But this explanation cemet bo sccepted; for the verbose colophon at the end of a gigantic folio book like the Catholicon, published at a time whon fhero were perhapg not more than three printing offices in the world, was calculated to draw attention to its printer and his residence, not to couceal him. Testimouy F (1466) is no longer regarded as having any reference to Gutenberg or the inven. tion of printing. H (1468) was formerly thought to mean: "I, the book, am cast (i.c., its typea are cast) in the Mainz city, and the house whence the type came ($=$ where the type was invented) produced me." But of lato jears it has been shown that the author of the book, Johann Fons, was Peter Schocffer's press-corrector. And, as he no doubt resided in Schoeffer's horse, the two lines evidently mean: "I am a littlo book cast in Mainz, snd I was born (=written) in the same lonse whence the type comes ${ }^{2}$ ($=$ where I am printed)." Testimony I (also of 1468) speaks of two Johannes (Gutenberg and Fust) as the "prothocaragmatici librorum quos gemuit urbs Moguntina." But this certainly means, not that the first printers of books were born at M ainz, but that the two Johannes were the chief printers of books (born) produced at Mainz.

When wo now place together the clear documentary testimonies (A to I) of the first fourteen years of printing (1454 to 1463) st Mainz, we see that they all come from Mainz itself. Everybody connected with the art speaks of it in tho most public and unreserved manner ; its importance is co fully realized and advartised during that period as it is in the present dsy ; the German mation is even congratulated on possessing it; there is never any secreey about it ; once (about 1456) it is even called a new art. But, in the midst of all this publicity, the art which Jlainzand Germony possess is never said to have been invented at Mainz. The supposed Mainz inventor (Gutenberg) even speaks himself on two occasions (in the lawsuit of 1455 and in the Catholicon of 1460), but never says that he had made an inrention. Tho archbishop, too, speaks pablicly of Gutenberg in 1465 (testimony E), and rewards him for services, but does not spoak of him as the inventor of printirs, nor even as a printer. Nor does Dr Homery, in his letter to the archbishop (testimony G), in which le refers to. Gutenberg's printing apparatus, call him the inventor of priating.
In 1463 re enter on a new phase in the history of the invention. Even if we reject testimony I as being merely local, testimony K (1468) speaks of the art of printing ss having arisen in Germeny. This testimony, however, does not come from Germany, nor from Mainz, but from Italy, and is supposed to owe its inspiration to the two German printers who had established a printing office at Subiaco po 1465 , and in 1467 at Rome, and who most likely Icarned their craft at Mainz. But, $3 s$ the two printers are mentioned in the testimony, and as it docs not speak of Gutenberg, nor of Mainz, it is far more likely that it was merely dorived from the colophons of Fust and Schoeffer, or from something that Cardinal Cusa had heard during his embassics In Germany. To the Mainz colophons Tre must also ascribe (a) the two testimonies of $1470(\mathrm{~L})$ and (b) the three of 1471 (M), all five of which come from France and Italy. At last, in 1472, we find in testimony O the invention of printing ascribed to Gutenberg of Mainz, but it is mentioned as a rumour, and comes from France. Guil. Fichet of Paris, who gires it, is supposed to have heard the rumour from the three Gurman printers
${ }^{1}$ Io lina 42 Gutenberg distinctly declares that "ha hoped that he was under no obligation to Fust to devate the frst 800 guilders to tha work of the books; and, as Fust, by advancing the Becood 800 goilders io 1452, had become Gutea berg's partocr, it seems clear that the fotmer claimed in 1454, when tha trial is calculated to hava cormmeaced, his mocey sed interest because Guteoberg mad as yot act printed anything.

Venit is tiof dreseat aot the perfect tease.
who commenced printing at Paris in 1470 But, as two of them had resided, immediatsly before they eame to Paris, in the university of Basel, and are supposed to have learued their art there, the rumour is ascribed to "Bertolf von Hanauwe," who appeara in the lawsuit of 1455 as Gutenberg's servant, and who was printing at Basel in 1463. Perhaps it came rather from informatiou which Fichet obtained from the St Victor cathedral, near Msinz, as he speaks of the art having been inveuted not far from that town. Testimony P (1474) again comes from Italy, from Rome, and was perlaps derived from one of the Gepman pinters settled there st that time. It merely speaks of Gutenberg, Fust, and Meutelin as printers, but says not a word which even tonches upor the invention of the art. In testimony $Q(1476)$ Te have definite mention of Mainz as the inventress of the art ; it is giren as an addition to the Mainz colophor of 1468 (see I). In $14 \% 8$ Mainz is again mationed in a Colognc restimony (R), which gives evidence of researeh, as it is sn amplification of an earlier one in which Mainz was not mentioned. Germany, Gutenberg, and Mainz are agsin mentioned in tho Venctian testimony, $S(1433)$, which gives for the first time 1440 as the date of the inrention. In the same year we hare two earlier testimonies (P and N) worked into one (T), +o the effect that printing was iuvented either by Gntenberg or by Fust or by fenson. Testimony V (1492), which states that printing commenced at Mainz, is practically equivalent to Q. In 1494 and 1499 Tre have threo German testimonies ($\mathrm{X}, \mathrm{X}, \mathbf{Z}$) as to Gutenberg being the inventor of printing ; these, howerer, come, not from Mainz, but from Heidelberg. \angle is given by a relatire of Guteuberg, Adam Gelthus ; and, as the latter resided at Heidelberg, it is clear that he was the real source of the other two Heidelberg testimonies (X and I^{Y}). Two years later, when Wimpheling, the author of testimony Y , bad left Heidelberg, he ascribed (CC) the invention of printing to Strasburg, thongh stating that Gutenberg was the inventor. Testimony AA is recorded sbove to show the great confusion that reigued in people"s minds about the inrentiou. We must add to these testimonies those of 1504 (EE) and 1505 (FF), which are owing to Ivo Wittig, a relative of Gutenberg, and a canon and the keeper of the seals of the St Victor cathedrsl, near Mainz, of rbich Gutenberg had been a lay member accordiug to ite liber fraternitatis. Thus in the period from 1468 to 1505 we have (1) several vague statements made in Italy and France as to the art of printing being known or practised or invented in Germany, statements which arose from the books and colophons published at Mainz; (2) one item of rumour in 1472 that Gutenberg invented it near that town; (3) two Mainz statements, of 1476 and 1492, and one Cologne statement, of 1478 , that it: was invented at Mainz; (1) three German statements, of 1492,1494 , and 1499 , that Gutenberg had invented it ; and (5) two Mainz statements, of 1501 and 1505 , to the $8 a m e$ effect. It is to be particularly notieed that the statements $(2,4,5)$ which speak distinctly of Gutenberg being the inventor can be clearly traced to Gutenberg himself and two of his relatives.

Seeing then how slender the basis is for the tradition that Contre printing was invented by Gutenberg at Mainz, and that eren this diction sleader basis was not laid till fourteen years after the art bad Gutenbeen fully established and proclaimed in that city, we cannot be berg's surprised to find the tradition promptly contradicted. This contradiction was made in 1489 (testimeny BB) in a Chronticle pulblished at Cologne. To facilitate the understanding of this testimony it is divided ahove into eight seetions. The first (taken from Hartmann Schedel's Chronicle, 1493), second, sixth, seventh, eud eighth are no doubt due to the compiler of the Chronicle, and must not be connected with the third, fourth, and fifth, which, according to the compiler, aro due to Ulrich Zell, a printer st Cologne, who had probably settled there about 1463, and had most likely learned hia art at Mainz, es he called himself "clericus Moguntinus." As Zell's testimony leares to Gutenberg nothing but the' honour of haring perfected the srt, various sttempts have been made to explain away this account. As long ss no typographically printed Donatus had been found that could be fitted into Zeil's account, it ras argued that he meant Donatuses printed from mooden blocks; and this argument is brought forward even at the present time. But a practical priater like Zell must have been able to express himself to that effect if he had really mesnt to say 80 ; and, as block-printing was not less practised in Germany than in Holland, re could hardly assume that things printed in Holland mould have inspired the German inventor rather than the same things printed in Germany. That testimony $C O$ speaks of a Donatus printed from wooden blocks may be ascribed to the notion arising at that time (c. 1533) that bloek-printing had given rise to typography. It has also been asserted that Holland in the Chronirle means Flanders; but the Chronicle ia usually very correct in geographical matters. It has also been suggested that Zell most likely learned his art in Fust and Schoeffer's office and invented the passage to injure the reputstion of Gutenberg, who had been their enemy. Finally it has been said that Zell did not suggest or write the passage at all ; but it is hard to see how this can be maintained in face of the com. piler's own statement to that effeat. 'iherefore, all these sugges.
tions failing to weaken Zell's testimony, we must see how far it can be brought into hamnony with other cireamstances and the testimonies MM, RR, SS, TT, VV, XX, II, which claim the honour of the invention for Haurlen in Holland. Testimonies RR and SS do not mention the same of the inventor. Bnt the former is a mere introduction destine 1 for a complete book that was lost during the siege of Haarlem in 1573 before it was printed; we are, therefore, not entitled to say that Von Zuren did not know the name. SS may lave omitted the name, because the publication of Van Zuren's rork was in contempla, ion at the time that it was written. That Guicciardini (testimony TT) in 1566 did not mention the name of the reputed Haarlem inventor cannot be considered as an in. dication that it was not known or had not yet been "invented" when lie wrote, as his accounts of the cities of the northern Netherlands are all very meagre and were for the most part derived from correspondence. In Junits's account (VV), however, we find every particular that could be desired. He begins by referring to the difficulty of vindicating the honour of the invention for Haarlem on account of the deep-rooted and general opinion that it took place st Mainz. Ho then mentions that Lourens (son of Jan) surnamed Coster resided at Haarlem "more than 128 years ago" and gives us to understand that in the year indicated hy that phrase he invented the art of printing. As Junius's book was not published till after his death, in 1588, and the two prefaces in it are dated 1575 (he died 16th June 1575), the numbor 128 is supposed to go back from the date when he actually wrote hid account, which he is calculated to have done about 1568. Thus me get the year 1440 as the supposed date of the Haarlem invention, though, if we based our calculation upon the date of the preface, the year 1446 or 1447 would have to be assumed. But, as Junius adds that Coster's types were stolen by one of his servants, who fled with them to Mainz, and establishing there a printing office printed within a year's time, in 1442 , two books, he must, if this latter date is correct, have meant 1440. By testimonies XX and YY we ses that in the 17th century the date of the Haarlem invention was first put back as far as 1428 , then to 1423 ; and since then it has usually been regarded as 1423 , especially after it was discovered that the Haarlem wood where Coster is said to lave cut his wooden letters was destroyed during a siege in 1426 .

The researnhes as regards the reputed Haarlem inventor have Bitherto not been made in a manner adequate for scientific purposes. It would appear that by the pushing back of the date of the iuven. tion, in spite of Junius, to 1420-1428, two inhabitants of Haarlen have been mixed up by the Dutch authors on the subject. (1) Lourens Janszoon, who never bore the surnams Coster, and whose existence seems to be anthenticated by documents from 1404 to 1439, was sheriff, and a wine merchant and innkeeper, and is supposed to have died in 1439. About 1870, however, researches brought to light that there had been (2) a Lourens Janszoon Coster at Haarlem, duly authenticated by genuine official documents as a chandler and innkeeper, from 1436 to 1483 , who went a way from Haarleñ in the latter year. The name of this man and some genealorical particulars known of him fit into the story of Junins, though there are certain particulars in Junius's account which camot yet be properly explained.

Junius bases his aecount of the Ilaarlem invention on three books, a Dutch celition of the Spcculum Humane Salvationis, the Doctrinalc, and the Tracts of Petrus Hispanus (Pope John XXI.). The first work, ho said, was printed by Coster himself as a first specimen of his art, and it would seem from his words that he considered the work to be printed vith wooden types. The two Dutch edjtio is of the S_{z} culum, however, are printed, like the tro Latin edi icins e^{+}the samo work, witli ninvable metal tyle, thougl in ons of the Latin editions there are tweaty leaves the text of which is printed apparently from wooden blocks. The Doctrinale and the Tracts of Hispanus were printed, Junius sâys, at Mainz by Coster'e workman with the types which he had stolen from Coster. Of the Hispanus Tracts no cdition has yet come to light that wonld answer to Junius's description. But of the Doctrinale we have four editions, all printed in the same type (i.) as the four clitions of the Spechlum. With these same types are printed no less than six editions of the short Latin grammar of 左lius Donatus; and editions of this school-book printed in Holland were, according to Zell in the Cologne Chroniclc, the models for the priating at Mainz, which sonmenced about 1450. As there are no other cditions of Donatus printed. in Holland that conld be placed before the year 1450, the jlaims of Haarlem and Holland are based on them; and wo will, therefore, briefly descrilue the types and books which must be connected with the Speculc, Doctriralic, and Donatuses just mentioned. In one of the editions of the Specrlum in Dutch occur two leaves printed in a different type (ii.) from the rest of the work. This iype is in its tum so very much like another type with which a work of Laur. Valla (Facetiæ Morales) is printed that we link it (iii.) on to the two just mentioned. Then again type iii. is, in some of its capitals, identical with a type (iv.) used for a work of Ludowinus de Roma, Singularia Juris, at the cnd of which, on the last leaf, commences another work, printed in a different type (v.).

Type vi. is adentical with type v., except in its capital Γ, which is larger. We have also works printed in two different types (vii., viii.) which both show such a great family likeness to each other and to types i. to vi. that it would not be advisablo to separatu them without evidence that they do not belong to the same olfice, With these eight types, which we cannat at present separate, fortysoven different hooks were printed, so far ns we know at present. In type i.:-four editions (two in Latin, ${ }^{2}$ two in Duteh) of the Spcculum Humanze Salvalionis, a wark which consists of woulcuts with explanatory text underneath; a Dutch version of The Seven Peritential Psalms; one Donatus of 27 lines; two editions of Donatus of 28 lines; a Liturgical Book in 16 mo ; thice editions of Lonatus of 30 lines; ono Donatus, in French, of 29 and 30 lines on a page; four editions of Doctrinale of 32 lines; one Catonis Disticha of 21 lines. In type ii.:-two leaves only (49 and 60) of one of the Dutch editions of the Sprcullam. In type iii.-Laurentius Valla, Facetis Moralcs, \&c. In type iv.:-four editions of Donatus of 24 lines; Lnd. (I'ontsnus) do Koma, Singularia Juris ; Lud. (Pontauus) de Roma (?), Treatise on Canonical Law (?). In type v.:-Pins II., Tractatus ct Epitcephia (puinted at the end of the Singularia Juris) ; Guil. de Saliceto, De Salute Corporis; one Donatus of 26 lines; five editions of Donatus of 27 lines; ono Doctrinale of 26 lines; one Doctrinale of 28 limes; one Doctrinale of 29 lines; owe Doctrinale of 32 lines; Catonis Disticha; Cuil. de Saliceto, De Szlutc Gorporis, together with Turrecremata, De Salute Anima; Pius II., Tractales de Amore, \&c.; Pindar of Thebes, Iliados Homerices Epitome, cum Prefatione Pii II.; another edition of the same rork. In type vi.:-one Donatus of 26 lines; one Donatus of 27 lines. In type vii.:-one Donatus of 27 lines. In type viii.: -an Abecclarium of two leaves and a Donatus of 31 lines. ${ }^{2}$

Type v. must have been in existence before 13th September 1474, as there is evidence that a copy of the Salicclo, printed in that type, was hought for the monastery of St James at Lille by its abhot Conrad du Moulin, who filled that office from the end of 1471 to 13 th September 1474. As a work in this type (the Tracts and Epilaphs of Pius II.) is printed at the end of the Singularia Juris in type $\mathrm{i} \nabla$. , we may assume that this type existed a considerable time before type v. As the books printed in types iv. and v. show greater progress in style and work manship than the books printed in types i . to iii ., we must assign the latter to an earlier period than the former. There is indeed positive evidence that type i must have existed a considerable time before the end of 1473 , as fragments of a Donalus printed in that type were used by a bookbinder at Haarlem to strengthen the binding of an account-hook of the cathedral church in that town for the year 1474. From these facts alonewe may safely assume that none of the forty-seven books can bo dated after 1474, or, if any, only a few in types ∇. and vii On the other hand, four of the works in type v. cannot be dated before 1458 , as they bear the name of Pius III., who was not elected pope till that year. When we consider that thera are twenty different editions of tha Donatus printed in these types, and placa an interval of about eighteen months between the successive editions, we get a period of some.thirty years from about 1445 to 1474 for the issue of the twenty cditions. That we reach the year 1445 by such a calculation is purely accidental ; but there is evidence that in 1446 and 1451 printed ${ }^{3}$ Doctrinalia wers bought at Bruges and Valenciennes ly Jean Le Robert, the abbot of Cambray, according to two entries in his diary, preserved in the archives at Lille. And, as we know positively that there was no printing done at Mainz before 1454 , nor anywhere olse so early, we can only apply these entries to the Doctrinalice printed in Holland in the same types as
 dir on if the -iairem vivention), and six editions of the Donatus, which we may fit into Zell's account. That the editions of the Spceztum, of the Donctus, and of the Doctrinalc in type i. may be dated as early as $1445-1454$ is clear when we compare them mith the earliest products of Mainz printing for which the Donatuses, according to the Cologne Chrunicle, served as models. For instance, no difference in workmanship can be detected between the Donatuscs printed in Holland and the three editions of Donatus in the 36-line, Bible type and the four editions of the same in the 42 -line Bibls type, all seren presumably printed at Mainz and before 1456. Nor is the workmanslip of the Spccula (in type i.) or of the Facclis Mroreles (in type iii.) different from or later than that of the Mainz Catholicon of 1400.

It has been pointed out above that the first products or the art of printing were not meant to be anything but faithfri imitations of manuseript Looks, and that no material deviations from the general plan hecome observable till about 1473-1'477. Nowhere is the plan of the MS. period more strictly adluered to than in the
${ }^{1}$ Twenty lenves of ona of tha Latin editions ara aypareatly printed from wooden blocks, the text $8 s$ well as the engravings.
${ }^{2}$ For a detailed list of these broks, and farther particulars regarding thern, aee J. H. Hessels, Haarlem, the Birthplace of Printing, Loodon, 1887, p. 25 87. ${ }^{3}$ The abbot aucaks of Doctrinalia "getto " or "jettez en molle," and the pbrase is, as Bernard (Origiue, i. 97 sq.) shows by eight examples from 147, the year
whed printing is first officinily spoken of in France-to 1593 , sad dowa to the present dsy, applied to typographically-printed books only.
forty-seven books of which we are speaking. They are all without signatures, mithout initial directors, without hyphens, without catchwords, that is to say, without any of those characteristics which we see gradually, one after the other, come into almost general use from 1473 (if not earlier) to 1480. The four editions of the Speculum are all entirely printed anopisthographically, the woolcuts at the top of the pages as well as the explanatory text (in type i.) underneath, which wonld hardly be the case if the books had been printed after 1471, when the printing of woodents, together with text in movable types, had already been known for cleven years. Their types have nothing in commonewith any of those used in the Netherlands after 1473, but remind us in every respect of the earlier period of the Dutch block-books and MSS. They are all, so far as we know, without any colophon (except such a word as explicit), which twould, for a collection of forty-seven books, be incompatible with a period after 1471, but not with the carlier period of the block-books and MSS. Mereover, out of the forty-seven books no less than thirty-five are printed on vellum, which is incompatible with a period after 1471, when printing on paper had become universal, but not with the earlier period of the MISS.
There is, therefore, no reason whatever to discredit Zell's statement in the Cologne Chronicle of 1499, that the Donatuses printed in Holland were the models, the "begimning" of the art of printing, at Blainz, nor that of Hadrianus Junius in his Batavia, that printing was invented at Haarlem by Lourens Janszoon Coster. The tro statements were made independently of each other. That of Zell must be regarded as a direct contradiction of the vague rumours and statements ahout an invention of printing at Mainz in Germany by Gutenberg, which gradnally crept into print in and. after 1468 in Italy and France, and which found their way into Germany about 1476, after Mainz and Germany had given the greatest publicity to the existence of the art in their midst for more than twenty-two years, but had been silont about an invention and an inventor. And, though Zell accords to Mainz the honour of having improved the art and having made it more artistic, he denies it the honour of having invented or began it, and this latter honour was never claimed by that town before 1476. Junius's account is the embodiment of a local tradition at Haarlem, the first arritten traces of which we have in a pedigree (testimony MM) of the farnily of the reputed Haarlem inventor, which must have existed at least as early as 1520. His account has been indirectly -onfirmed by the finding of several fragments at Haarlem, all belonging to the groups of books mentioned sbove, but still more by the discorery of eoveral fragments of the Donatuses printed in the Speculum type, all used as binder's waste by Cornelis, the bookbinder, the very man whom Junius alleges to have been the servant of Coster. As the case stands at present, therefore, we have no choice but to say that the invention of printing with movable metal types took place at Haarlem about the year 1445 by Lourens Janszoon Coster.

Early Types and their Fabriccition.

We must now take notice of two theories or traditions which have been current for a long time as to some intervening stage between the art of block-printing and the urt of printing with movable cast types. ${ }^{1}$ One theory or tradition would have it that the inventor of printing, after the idea of single, individual, movable types had arisen in his mind, practised his new invention for some considerable time with wooden types, and that he came only gradually to the idea of movable types cast of metal.
Wooden
types.

Rocche asserted in 1591 that he had seen at V"cnice types perforated and jo1oed one to the other by a thread, but he does not aay whether they were of wood or of metal. ${ }^{4}$ In 1710 Panlus Pater asserted that he had seen wooden types made of the trumk of a box-tree, and perforated in the centre to enable them to be joined together by a thread, originating from the office of Fust at Mainz. ${ }^{5}$ Bodman, as late as 1781, saw the same types in a worm-eaten condition at Mainz; and Fischer atated in 1802 that these relics were used as a sort of token of honour to be bestorped on worthy apprentices on the occasion of theil finishing their term.

Besides those who believed. in these wooden types from the fact that the letters (especially in the Speculum) vary among themselves in a manner which would not be the case had they been cast from a matrix in a mould, there were authors and practical printers who attenpted to cut themselves or to have cut for them some such wooden types as were alleged to have been used by the early printers. Some of them came to the conclusion that such a process' would be quite practicable; others found by experiment that it would, in the case of small types, be wholly impossible. Up to the present time no book or document has come to light which can be asserted to have been prInted with anch single, novable, woonen types. But nearly all the experiments to which we have alluded Fere made with the idea that the inventor of printing, or the earliest printers, started, or had to start, with as large a supply of type as a modern printer. This idea is erroneous, as,it is hardly any longer denied that, for a good many years after the first appearance of the art, printers printed their books (large or small) not by quires (quaternions or quinternions) but page by page. ${ }^{6}$ Therefore, all considerations of the experimenters as to the impracticability of such wooden types, on account of the trouble and length of tinue required for the cutting of thousands of types, fall to the ground in face of the fact that the earliest printers required ouly a verysmall quantity of type, in spite of the peculiar forms (combined letters, letters with contraetions, \&c.) which vere then in vogue.

The other theory would have it that between block- Sodpto printing and printing with moveble cast types there was fun an intermediato stage of printing with "sculpto-fusi " types, types that is, types of which the shanks had been cast in a.quadrilateral mould, and the "faces," i.e., the characters or letters, engraved by hand afterwards. This theory was suggested by some who could not believe in wooden types and yet wished to account for the marked irregularities in the types of the earliest printed books.

Gerardus Meerman, the chief champion of this theory, based it; not only on the words of Celtes (Amores, iii. 3), who in 1502 described Mainz as the city "quæ prima scnlpsit eolidos wre characteres," but on the frequent recurrence of the ward sculpius in the colophons of the early printers (for Jenson and Husner of Strasburg, see p. 681 ahove). Sensenschmid in 1475 said that the Codex Justinianus was "cnt" (insculptus), and that he had "cut" (sculpsit) the work of Lombardus, In Psalterium. Meerman also explained the account of the invention of printing by Trithemius ${ }^{7}$ as nean. ing that, after the rejection of the first wooden types, the inventors discovered a method of casting the bodies only of all the letters of the Latin alphabet from what they called matrices, on which thoy cut the face of each letter; and from the same kind of matrices a method was in time discovered of casting the complete letters of suffleient hardness for the pressure they had to bear, which letters they were before-that is, when the bodies only were cast-obliged to cut. ${ }^{8}$ In this way Meerman explained that the Speculum was printed in sculpto-fnsi types, although in the one page of which he gives a facsimile there are nearly 1700 separate types, of which 250 alone are e's. Schoepflin claimed the same invention for Strasburg, and believed that all the earliest books printed there mere produced by this means. .Both Meerman and Schoepflin ggreed that engraved metal types (litera in are sculpta) were in use for many years after the invention of the punch and matrix, mentioning among others so printed the Mainz psalter, the Catholicon of 1460, the Eggestein Bible of 1403, and oven the Praccptorium of Nider, printed at Strasburg in 1476. But the great dificulty connected with the process of first casting the shanks and afterwards engraving the faces of the types has become apparent to those who have made experiments ; and it seems more probable that the terms sculpcre, exsculpcre, insculpere are only a figurative allusion to the first process towards producing the types, namely, the cutting of the punch, which is artistically more important to the fabrication of types than the mechanical casting, -all the more as Sclioeffer in 1468 rakes his Grammatica Vetus Rhythmica say, "I anl cast at

4 De Bibliotheca Vaticana, Rome, 1301, p. 412.
 5 De Germanize Miraculo, Leipsic, 1710 p. 10.

6 See, for instance, W Blades, Life of Caxton, I. 89.
7 Annales Hirsaugienses, ii. 421 : "Post hæe iuventis auccesserunt subtiliora; inveneruntque modum fundendi formas omaium Latini alphabeti literarum, quas ipsi matrices nominabant, ex quibus rursum æneos sive \bar{s}^{+}anneos characteres fundebat, ad omnem pressuram sufficientes, quos prius manibus sculpebant.'

Mainz," an expression which conld hardyr be anything but a figura. tive allusion to the casting of the types.

Granting that all the earlicr works of typography preserved to us are impressions of cast-metal types, there are still differences of opinion, especially among practical printers, as to the probable methols employed to cast them. It is considered unlikely that the inventor of printing passed all at once to the perfect lypography of the punch, the matrix, and the mould. Bernard ${ }^{1}$ considered that the types of the Speculum were cast in sand, as that art was certainly known to the silversmiths and trinket-makers of the 15 th century; and he accounts for the varieties observable in the shapes of various letters on the ground that several models would probably be made of each letter, and that the types, when cast by this imperfect mode, would require some touching up or finishing by hand. He exhibits a specimen of a word cast for him by this process which not only proves the possibility of casting types in this manner but also shows the same kind of irregularities as those observable in the types of tha Speculum.
But here again it is argucl that in types cast by this or any other primitire methol there would be an abscnce of uniformity in what founders term "height to paper." Some types would stand higher than others, and the low ones, unless raised, would miss the ink and not appear in the impression. The comparative rarity of faults of this kind in the Speculum leads oue to suppose that, if a process of aand-casting had been adopted, the difficulty of uneven heights hal been surmounted either by locking up the forme face domnwards, or by perforating the types either at the time of casting or afterwards, and holding them in their places by means of a thread or wire. To this cause Ottlcy attributed the numerous misprints in the Speculem, to correct which would have involved the unthread. ing of every line in which ans error occurred. And, as a still more striking proof that the lines were put into the forme one by one, in a piece, he shows a curious printer's blunder at the end of one page, where the whole of the last reference-line is put in upside down, thus:-

Soe buas bespot slapende enve nict buctende.

A "turn" of this magnitnde could hardly have occurred if the letterg had been set in thic forme type by type.

Another suggesterl mode is that of casting in clay moulds, by a method very similar to that used in the sand process, and resulting in similar peculiarities and variations in the types.

Ottley, who was the chief exponent of this theory, suggested that the types were made by fouring melted lean or other soft metal into moulds of carth or plaster, after the ordinary manner usenl from time imuemorial in casting statues of bronze and other articles of metal. But the mould this formed could hardly avail for a second casting, as it would be scarecly possible to extract the type after casting withnut breaking the clay, and, even if that could be done, the shrinking of the metal in cooling would be apt to warp the mould beyoni the possibility of further use. Ottlcy thereforc suggests that the constant renewal of the moulds could be effected by using old types cast ont of them, after bein! touclied up by the graver, as models, - a process which he thinks will account for the varieties observable iu the siffercht letters, but which would really cause such a Eradual deterioration and attenuation in the type, as the work of casting progressed, that in the end it would leave the face of the letter unrecognizable as that with which it becan. It would therefore be more reasonable to suppose that one set of modela would be used for the preparation of all the moulda necessary for the casting of a sufficient number of types to compose a page, and for the periodical renewal of the moulta all through the work, and that the variationa in tho tgpes would be due, not to the gradual pariug of the faces of the models, but to the different skill and cractncss with which the successive moulds would be taken. It is evident that the sand and elay methods of casting types above olesuribed must be slow. The time occupied after the first engraving of the models in forming, drying, and clearing tho moulds, in casting, eatracting, toucling up, and possibly perforating the types required for one page, wnuld exceed the time required by a practised xylographer for the cutting of a page of text upon a block. But he that has gone throngh the trouble of casting separate movable types lias a clear gain over the wroodblock printer in haring a fount of movable types, which, even if tbe metal in which they were cast were only sof lead or pewter, might be used again and again in the production of any other page of text, while the wrod-block can onlw prolluce the one page which
it contams. Noreover, only one hand could labour on the xylo: fraphic block ; but many liands could be employed in the moulding and casting of types, however rude they might be. Bernard states that the artist who produced for him the few sand-cast types shown in liis work assured hin that a workman could easily produce a thousanul such letters a day. He also states that, though cach letter required souaring after casting, there was no necd to touch 11p the faces.

There remains yeu anotncr suggestion as to the method in which the types of the rude school may have been produced. This may be described as a system of what the founders of sixty years ago called polytype, which is a cast or facsimile copy of an engraved block, matter in type, de.
Lambinet, ${ }^{2}$ who is responsihle for the suggestiou, based upon a nem translation of Trithemius's narrative, explains that this process really means an early adoption of stereotype. He thinks that the first printers may have discovered a way of moulding a jage of some work-3n Abceedarium-in cooling motal, so as to get a matrix. plate impression of the whole page. Upon this matrix they would pour a liquid metal, and by the aid of a roller or cylimer press the fused matter evenly, so as to make it peuetrate into all the hollows and comers of the letters. This tablet of tin or lead, being easily lifted amil detachod from the matrix, would then apyear as a surface of metal in which the letters of the alphabet stood out reversed and in relief. These lettera could casily be detached and reudered mobile by a knife or other sharp instrument, and the operation conld be repeated a hundred times a day. The metal faceas so produced would be fixed on wooden shauks, type high, and the fount wnuld then be complete. Larabinet's hypothesis was endorscd by Firmin. Didot, the renowned type-founder and printer of Lambinet's day. But it is impossible to sujpose that the Mainz psalter of 1457, which these writers point to as a specimen of this mode of execution, is the impression, not of type at all, but of a collection of "casts" mounted on wood.

Whatever value there may be in the above theories with Shape regard to the movable types of the first printer, certain it earliest
is that the sliape and manufacture of the types used ${ }^{\text {type- }}$
as early as $c .1470$ do not seem to have differed materially from those of the present types.

This in evident (1) from the shape of the old types which were discovered in 1878 in the bed of the river Saône, near Lyons, opposite the site of one of the 15 th-century printing houses of that city, and which there is reason to believe belonged once to one of those presscs, and were usel by the early priuters of Ljons; (2) from a page in Joll. Niler's Lepra Moralis, printed by Conrad Homburch at Colome in 1476, which shows the accilental impres. sion of a type, pulle.l up from its place in the course of printing by the ink-ball, and laid at longth upon the face of the forme, tlus leaving its exact profile indentel upon the page ; (3) fooln an entirelys similar Mage (fol. $4^{\text {b }}$) in Liller de Lruedibus ac Fostis Gloriosæ Virginis, Colognc, c. 146s. From the sinall circle appeating in the two last-mentioned tyjues, it is jresumel that the letters were pie:end laterally by a circular hole, which did not penetrato the wholu thickness of the letter, aml servel, like the mick of nodern types, to enable the conpositor to tell by touch which way to set the Jetter in his stick. The fact that in these two cases the letter was pulled up from the forme scems to show that the line conld not have been threaded.
Vinc. Fineschi, Nolisic Storiche somm la Strmperia di Ripoli (Florence, 1781, 1. 49), gives an extract from the cost-book of the Ripoli press, about 1480, by which it appears that steel, lrass, copper, tin, lead, and iron wire were all uscd in the manufacture of types at that period. ${ }^{3}$

The history and nomenclature of the carliest types are practically a coutinutation of the history and nomenclature of the characters figured in the earliest block-books, woodengravingrs, and MLS. For instance, Gothic type was first seen about the year 1445 ; but it should not be formotten that the Gothic writing, of which that type was an imitation, was already known and used about the second hall of the 12th century. Again, the pure Roman type, which appeared about 1464 , is nothing but an initation of what in palæography is called the Caroline minuscule, a handwriting which was already fully deyeloped towards the end of the Sth century. Consequently, rletails as to the history and derelopment of the various types properly belong to the study of Pal.eography (q.v.).

[^295]The broad outlines of the history of the earliest types are as follows：－
Gothic type，of the angular or pointed kind，was first used by the Haarleni 1rinter of the Specalum，Denalus，\＆c．（see specimen No．1， taken from the British Museum copy of the Speculum Humana Saluationis，mixed Latin edition），presnmably c．1445．An entirely similar but larger type（No．2，taken from the British Museum copy of Lurlovicus［ $\mathrm{Pontanus]} \mathrm{de} \mathrm{Roma}, \mathrm{Singularia)} \mathrm{was} \mathrm{nsed}$, by tho same pruter，c． $1465-1470$ ．Gothic type appeared in Germany as a church typo in 1454，in the 31－line indulgence，pre－ sumably 1 rinted by Johan Gutenberg at Mainz（No．3，from the Gottingen copy），and in the 30 －line indulsence（No．4，taken from the British Museum copy），printed hy Peter Schoeffer at Mainz． Type No． 3 was also used aboot the same time for the 36 －line Bible and type No． 4 for the 42 －line Bible．Two much larger Gothic types appeared in the psalter of 1457，published by Fust and Sohocfer（see Bernard，Omigine，ph，nii）．In Italy Gotbic type appears in 1468 （No．5，take from the British Musenm copy of Cicero，De Oratore published at Rome by Uhr．Hebn，15th December $1 \& 65$ ，in mall Roman type，with imprint in Gothic），bnt in a more ronnded form；it is practically the orlinary Italiau writing infu－ encel by the Gothic．In France Gothic began to be used in 1173 ； in England it appears first in Caxton＇s type s．bat the year $1480 .{ }^{1}$ It was employed exteusively in a great many of the earliest presses all over Europe，and continued to be uscd largely at all times， especially for Bibles，lav books，royal proclamations，\＆c．，and oven to this day it is the national character of Germany．It is now usually called lettre de forme，black letter or English in English－ speaking countries，lellrs Fhamand in Holland，and frachir in Germany．

Canturd
が心1an
2oman． Mainz in the 31－liue（No 0）aud 30－lino（No 7）indulgence．It is also called lettre do somme，some think from the Summa of Thomas Aquinas，printed in the type of the Eible of $1+62$ by Fnst and Schoeffer．Varieties of this kind of type mere，like the Gothic， much used by the earliest printere，εs ，for instance，the priuter of the 1460 Catholicon，i．c．，by Mentelin of Strasburg，c．1460，and by Urich Zell at Cologne，c．1466，\＆c．In England it appeared in the first three books printed $(1478,1479)$ at Oxford（No．8，taken from the British Dlusenm copy of Jerome＇s Expositio in Simbolum Apostolorime，wrougly dated 1468 for 1478）．
Roman type，the Caroline minuscnle of palæograply，was first used in Germany about 1464，at Strasburg，by the printer whose fonnt of type is known by，a peculiarly shaped R ，and who on that acconut is usually called＂the R priuter＂（No． Q ，taken from the British Museum copy of Durandus，Rationale，of which the Basel library possesses a cony which was bought im 1464）．${ }^{3}$ In Italy it eppears in 1465 at Snbiaco（see Bernard，pl．xii，No．19），at Rome in 1467 （sp．cit．，pl．xii．，No．20），hut in all its purity at．Venice in 1469，nsed by Johaunes of Spires（op，cit．，pl．xiii．，No．23），and at Paris in 1470 （op，cit．，pl．xiii．，No．25）．In England it was not ＇ssed bcfore 1518，when Richard Pynson printed Pace＇s Oratio in Pace Nupcrrima（see fresimile in Reed＇s Type Fornedries，p．92）．
Burgundian type，or gros batarde or scerclary，was first used about 1470－72 by Colard Mansion at Bruges（No．10，taken from the Sritish Musoum copy of La Contronersie de Noblesse，c．1471－72）． With a somewhat similar tyne（No．11，taken from the British Suscum copy of the Recuybll）William Carton is presumed to have rinted，likerise at Brages，a set of five books，of which the Recayell of the History of Troye，a trenslation of a work by Racul la Fevre， is the best knewn and was probably printed c． $1471 \mathrm{~s}^{s}$ To this same class belong the first type（No．12，from the British Musenm copy of the Dictes）used in Eugland by William Caxton for the printing of Dictes and Sayings of the Philosophers（18th November 1477）， and that used by the printer of St Albans（No．18，taken from the Cembridge university library copy of Aug．Dactus，Elegancic）．It
 Zut prithe matio
No．1．－Spcculum type，с． 1445 （\％

Nie．2．－Pontauus type，c． $14 \% 0$（ $)$ ． autoy fig at aüac excefith criminiby

Nos． 4 and 7．－Mainz 30 －line indulgence， 1454.

3Finitr ct co Trosenteut THbri．
 No．5．－Cicerg，De Oratore，1468．No．10．－Controversie de Noblesse，c． 1471.72

Duis ent gui

 medins te dif dat affectumNo．8．－Jerome＇s Expositio（1408）， 14 亿8．
 generescoug anby

No．11．－Recuyclb of the Eist．of Troye，

Remifimus de dinibo．Núcd antonomafice

 of Suth forick （Thes ferex

Ne．12．－Dictes and Sayinge， 1477

Tas en imitation of the mannscript hand 「「aus EnBumo plebie：
of the Enctish and Burgundian seribes

 about $153 \pm$ entirely superseded by tho No．18．－Ang．Doctus，Ele－ English black letter．To this class of goncic， 1479.
type belong also the later lettre de civilite（c．1570），the script（lettre coulée，lettre de finance，Dutch geschreven sehrifi），set court，base secre－ tary，and running sccretcry types．
On the types before 1500，consult also the facsimilea in Holtropss Mon．Typ． des Poys－Bas，The Eague， $1808 ;$ R．C．Hawkins，First Books and Printers of the Fiftersth Century，New York， 1884 ；William Blades，The Life of Caxton，London， 1861－03；Bernard，Origine de Z＇Imprimerie，Paris，1853，vol．i．，piates iii．－xiii．： Placidna Braun，Notitio de Iibris ab Artis Typogr．Inventione usqiue ad Annem． 1479 Inprcssis，Augsburg，1788；H．Noel Munphreys，Hist，of the Art of Print－ inf，\％ol．，London，1867．The types after 1500 can vest be learned from the catalogues of type－foundera，smong which those of Messry Enschede of Haarlem occupy a foremost place．Of others me may mention－lndice dei Caratteri neila Slampa Vaticana，4to，Rome， 1023 ；Epreuves des Caracteres anti se trouvent ches Claude Lameste，4to，Poris，1742；Epreuves des Cor．de la Fonderie de Claude Mozet，Svo，Nantes，1754；Les Car．de l＇Imprimerie par Fouruior te Jeune， 8 vo Foris，1704：Proef vans Icteren，Blommen，\＆ic．，van Ploos tan Amstel，8vo，Amater－ dann，1767：Horcuse de Car．de Jacqucs Francois Rosart，8vo，Brassels， 1771. Schrifien ．．bey J．I．Prentzler，4to，Fraulifortoon－Main， 17 ， 4 ；Eprevives des Car．de ta Fond．de J．I．Joannis，8vo，Paris， 1776 ；Epreuves des Car．de la Fond ds J．I．de Boubers， $8 v o$ ，Brussels， 1777 ；Procve ran Ietleren velke gegooten moorden doon．Lis de London， 1709 ；and Manzale Typogrophico，by G．Bodoni，4to，Pauza， 181 \＆

Subsequent to 1500：

Though the Cologne Chronicle of 1499 denies to Mainz the honour of the invention of the art of printing，it was right in asserting that，after it had been brought there from Holland，it became much more masterly and exact． and more and more artistic．During the first half century of printing a good many printers distinguished themselves by the beauty，excellence，and literary value of their pro－ ductions．We may meution as such ：－Johan Fust：and Peter Schoeffer at Mainz；Johan Mentelin and Heinrich Eggestein at Strasburg ；Ulrich Zell at Cologne；Sweyn－ heym and Pannarts at Subiaco and at Rome；Nicolas Jenson at Venice；Anton Koberger at Nuremberg；Kete－ laer and De Lecmpt at Utrecht；Johan Veldener at Louvain，Utrecht，aud Kuilenburg；Gerard Leeu at Gouda； Johan of Westphalia at Louvain；and William Caxton （q．e．）at Westminster．

Very soon the demand for books increased，and with it cane a reduction in their prices．This caused a dccline in the execution of printing，which begins to be appreciable about 1480 in some localities，and may be said to have become general towards the end of the 15 th century．At all times，however，we find some printers raise their art to a great height by the beauty of their types and the literary excellence of their productions．Among the later printers we may mention the Aldi of Venice（ 1490 to 1597 ；see

Mavotius, vol. xp. p. 512) ; G. B. Bodoni of Parma (1768 1813 ; see vol. iii. p. 849) ; John Amerbach at Basel (14931516) ; John Froben at Basel (1496-1527; see vol. ix. p. 791) ; John Baskervillo at Birmingham (1750-1775; see vel. iii. p. 421) ; the house of Wechel, first at Paris (c. 1530-1572), afterwards at Frankfort; Christopher Plantin at Antwerp ($1554-1589$), but rentinued long after under the firm Officina Plantiniana (see vol. xix. p. 176); the Elzevirs, first at Leyden, aftermards at Amsterdam (15801680 ; see rol. viii. p. 156) ; Antaine Verard at Paris (1485-1513) ; Josse Bade at Paris (1495-1535 ; see Badius, vol. iii. p. 228) ; and tho E'stiennes at Paris (1502-1598; see Stephens, vol. xxii. p. 534).

History of Mrodern Types.

The Italic type ${ }^{1}$ is sail to be an imitation of the handwriting of Petrarch, and was introduced by Aldus Manntius of Tenice for the purpose of printing his projected small editions of the classics. Tha cutting of it was entrusted to Franceseo da Bologna, an artist Who is presumed to be identical with the painter Franceseo Trancia or Raibolini. The fount is a "lower case" only, the capitals being foman in form. It contains a large number of tied letters, to mitate handmiling, but is quite free from contractions and ligatures. It was first used in the Virgil of 1500 . Atdua produced six different sizes between 1501 and 1558 . It was comnterfeited almost immediately in Italy, at Lyons, and elsewhere. Originally it was callcd Venetian or Aldine, but subsequently Italic type, except in Germany and Holland, whers it is called "cursive." The Italians alsq aulopted the Latin name "characteres cursivi seu cancellarii." In England it was first used by Wynkyn de Worde in Wakefiold's Oratio in 1524. The character was at first intended and used for the eutire text of classical works. When it became more general, it was emplojed to distinguish partions of a book not proparly belouging to the work, such as introductions, prefaces, mdexes, notes, the text itself being in Romau. Later it was used in the text for quotations, and finally served the double part of emphasizing certaiu words in some works, and in others, chiefly sranslations of the Bible, of marking words not rightly forming a ${ }^{2}$ art of the text.

Greek type (minuseulcs) first occurs in Cicero, De Officits printed et Mainz in 1465 by Fust and Schoeffer. The fount naed is rude and imperfect, many of the letters being ordinary Latin. In the same year Sweynheym and Pannarts used a good Greek letter for some of the quotations in their cdition of Lactantius (see, for instance, leaves 11a, 19a, 36a, 139, 140) ; hat the supply was evidently short at first, as some of the larger quotations in the first part of the book were left blank to be filled in by hand. Tho first book wholly printed in Greek minnscules was the Grammar of Lascaris, by Paravisinus, at Milan in 147e, in types stated to have been cut and cast by Demetrins of Crete. The fount contains breathings, accents, and scme ligatures. The headings to the chapters are wholly in capitals: The Antiologia Greca of Lascaris was printed at Florence in 1494 wholly in Greek capitals (litleræ majusculx), and it is stated in the preface that they wore designed after the genuine modcls of antiquity to be found in the inscriptions on medals, marbles, \&c. But as late as 1493 Greck type was not common, for in that year tho Venice printer Symon Bevilaqua issned Tibullus, Cutullus, and Propertius with hlanks left in the commentary for the Gricek quotations. In England Greek letters appeared for the first time in 1519 in T. de Worde's edition of Whitenton's Grammatica, where a few words are introduced cut in wood. Cast types wero used at Cambridge in Galen's De Temperamoutis, translated by Linacra, and printed by Siherch in 1521, who styles himself the first Greek printer in Englaud; but tho quotations in the Galen are very sparse, and. Siberch is not known to have printed auy entire hook in Greek. The first priuter who possessed Greek types in any quantity was Reginald Wolfe, who helil a royal patent as printer in Greek, Latin, and Mebrew, and printed in 1543 two Honilics of Carysostora, edited by Sir Joln Cheke, the first Greek lecturer at Cambridge. In Edinburgh, in 1563, and as late as 1579, the space for Greek words was left hlauk in printing, to be filled in by hand. In 1632 Carnbridgo applied to Oxford for the loan of a Greek fount to print a Greek Testament, and the same university made an offer in 1700 for the purchase of a fount of the king's Greek at Paris, but withdrew on the Frencl! Academy insisting as a conditiou that every work printed should bear the imprint "characteribus Grecis e typograplico regio Parisiensi." It should not be forgotten that the large number of ligatures in the Greck of that day made the production of a fount a serious business. The Oxford Augustin Greek comprised no fewer than 354 matricea, the
${ }^{1}$ These paragraphs on the various types are for the most part tasen from
great primer 456, and even olle fount showed 776 different sorts. The Dutch founders effected a gradual reduction of the Greek typographical ligatures. Eariy in tho 19 tb century a new fashion of Greek, for which Porson was spousor and furnished the drawings, was introduced, and has remaincd the prevailing form to this day.
The first Hebrew typea aro generally supposed to have appearcu in 1475 in Petrus Niger'a Traclatus cuiutra Perfidos Judaus (leaf 10), printed by Conrad Fyuer at Esslingen. De Rossi etates that a Hobrew work in four folio volumes entitled Arba Turim of Rabbi Jacoo ben Asher, was printed in 1175 at Piere di Sacco in Austrian Italy, while in the aame year, a fow montha earlier, Salomon Jarchi'\& Comment. on the Pentateuch appeared at Regrio in ltaly, printed in the Rabbinical character. Numerous other Hebrew worke followed before 1488, in which year the first entire Hebrew Bible was printed, with points, at Soncino, by a family of German Jewa. The tirst English book iu which any quantity of Hebrem type was used was Dr Khys's Cambro-Brytannica C'yinrocave Linguab Instituliones, printed by Thomas Orvin in 1592, though already in 1524 Greek characters, hut cut in wood, were used by W. de Worde in Wakeficld's Oratio. But the Helrew fomet made nse of in Walton's Polvgloll in 1657 twas probably tho first important fount cut and cast in England, though there were as yet no matrices there for Rabbinical Hebrew. In the begin ning of the 18 th century Amsterdam was the centre of the lest Hebrew printing in Europe.

The first book printed in Arabic types is said to be a Diumale Græcorum Arabum, printed at Fano in Italy in 1514. ${ }^{2}$ T'iso yeara later P. P. Porrus's Polyglott Fsaller, comprising the Arabic version, was printed at Genoa; and two years later a Eoran in Arabic is said to have been printed at Tenice. In 1505 an Arabic Vocabulary at Granada had the words printed in Gothic letters with the Arahic points placed over them; and in other presses where there were no Arabic types the language was expressed in Hebrew letters or cut in Tood. De Gnignes and others mention a fount of Arabic used by Gromors in Paris in 1539-40 to print Postel's Grammar. In England some Arabio words were introduced in Wakefield's Oratio of 1524 , bet apparcntly cut in wood. In Minshcu's Ductor in Linguas, 1617, the Arabic words are printed in Italic characters. Land's gift of Oriental MSS. to Oxford in 1635, and tho appointment of an Arabic lecturer, frere the first real incentives to tho cultivation of the language by English scholars. Prerious to thia it is stated that the Raphelengius Arabic press at Leyden had been purchased by the English Orientalist, William Bedwell; but, if it mas brought to England, it doca not appear to have been immodiately maxle use of. The Arabic words in Thomas Greare's Oratio de Lingue Arabicx Utilitate, printed at Oxford in 1639, were mritten in by hand.

Syriac tyre, probably cut in wood, first appeared in Postel's Syris Linguarum XVIJ. Alphảcta, printed in Paris in 1538; but the characters are so rude in form and execution as to be acarcely legible. In $155 \bar{p}$, hovever, Postel assisted in cutting the punches for the Syriac Peshito New Testament, printed at Tienna in 4to, the first portion of the Scriptures, and apparently the first book, printed in that language. In 1569-72 Plantin at Antwerp included the Syriac New Tcstament in his Polygloul, and reissued it in a separate form in 1571. In England Syriac was usually expressed in the earlier works in Hebrem charactera. But in 1652, when the prospectus and preliminary specimen of Walton's Polygloll were issued, we find Syriac type in use.
Of the Armenian character the press of tho Vatican posscssed a Arme good fount in 1591, when Angelo Roccha showed a specimen in ian. his Bibliotheca Apostolica Iraiicana. A psslter is said to lare been printed at Rome in 1565 , aud Rowe Dores mentions doubtfully a litnrgy printed at Cracow in 1549. Armenian printing was practised in Paris in 1633 ; but the Armenian bishons, on applying to France for assistance in printing an Armenian Bible in 1662, were refused, and went to Rome, where, as early as 1636 , the preas of the Propaganda had published a specimen of its Armenian matrices. The patriarch, after fifteen montha' residence in Rome, removed to Amsterdam, where lee established an Armenian press, and printed the Bible in 1666, which was followed in 1668 by a separate edition of the New Testament. In 1669 the press was set np at Jarseilles, Where it continued for a timc, and was ultimately remored to Constantinople. In England the first Armenian type was that presented hy Dr Fell to Oxford in 1667. The alphabet given in the prolegomena of Walton's Pulyglutl was cut in wood.
Of Ethiopic the earliest type appeared in Potken's Psaller and Song of Solomon, printed at Rome in 1513. The work was reprinted at Cologne in 1518 in Potken's Polygloth Psalter. In 1548 the New Testament was printed at Romo by some Alyssinian priests. The press of the Propaganda jssucd a specimen of ita fount in 1631, and again in Kircher'a Prodramus C'ontus in 1836. Erpenins at Leyden had en Ethiopic fount, which in 1626 was acquired by the Elzevirs. Usher attempted to procure the fount for England; but, his attempt failing, punchea were cut and matrices propared by the London founders for tha London Polygloll, which showed the Psalms, Canticles, and New Testament in the Ethiopic version.

Of Coptic the press of the Prepaganda possessed a fount, and a specimen was issued in 1636, in which year also Kircher's Prodromus Coptus appeared from the same press. In England David Wilkins's edition of the New Testament was printed in 1716 from Coptic types cast with matrices which Dr Fell had presented to Oxford in 1667. The alphabets shown in the introduction and prolegomena to the London Polygloll of 1655 and 1657 were cut in woor.

Of Samaritan the press of the Propaganda had a fount in 1636, and the Paris Polyglott, completed in 1645, contained the eutire Pentateuch in type the punches and matrices of whicl had been specially prepared under Le Jay's direction. The fount used for the London Polyglott in 1657 is admitted to have been an English production, and was probably cut under the supervision of U'sher.

With Slavonic type a psalter was printed at Cracow as early as 1491, and reprinted in Iontenegro in 1495. The only Slavonic fount in England was that given by Dr Fell to Oxford, and this, Mores states, was replaced in 1695 by a fount of the more modern Russian character, purchased probably at Amsterdam. The Oratio Dominica of 1700 gives a specimen of this fount, but renders the Hieronymian rersion in copper-plate. Modern Slavonic, better known as Russian, is said to liare appeared first in portions of the Old Testament printed at Prague in 1517-19. Ten years later there was Russian type in Venice. A Russian press was estahlished at Stockholm in 1625, and in 1696 there were matrices in Amsterdan, from which came the types used in Ludolph's Granmatica Iussica, printed at Oxford in that year, and whence also, it is said, the types were procured which furnished the first St Petersburg press, established in 1711 by Peter the Great. Mores notes that in 1778 there was uo Russian type in England, but that Cottrell was at that time engaged in preparing a fount. It does not appear that this project was carried ont, and the earliest Russian in England was cut by Dr Fry from alphabets in the Vocabularia, collected and published for the empress of Russia in 1786-89. This fount appeared in the Pantograph:a in 1799.

Etruscan

A fount of the Etruscan character cut by William Caslon about 1733 for Swinton of Oxford was apparently the first produced. Fournier in 1766 showed an alphahet engraved in metal or wood. In 1771 the Propaganda published a specimen of their fount, and Bodoni of Parma in 1806 exhibited a third in his Oratio Dominica.

Ranic types were frst used at Stockholm in a Runic and Swedis Alphabctarium, printed in 1611. The fount, which was cast at the expense of the king, was afterwards acquired by the univereity. About the same time Runic type was used at Upsala and at Copenhagen. Voskens of Amsterdam had matrices about the end of that century, and it was from Holland that Francis Junius is supposed to have procured the matrices which in 1677 he presented to Oxford. This fount appears in the Oratio Dominica of 1700, and in Hickes's Thesturus, 1703-5, and it remained the only one in England.
matrices of Gothic type were presented to Oxford by Francis Juniusin 1677, and a fount of them was used for the Oratio Dominica of 1700 and in Hickes's Thesaurus. A different fount was used for Chamberlayne's Oratio Dominica, printed at Amsterdam in 1715. Caslon cut a fount which appeared in his first specimen in 1734. This and the Oxford fount were the only two in England in 1820.

Seandi-

oavian.

Founts of Icelandic, Swedish, and Danish were included in Junius's gift to Oxford in 1677, and were, perhaps, specially prepared in Holland. The first-named is shown in the Oratio Dominica of 1700 and in Hickes's Thesaurus. Printing had been practised in Iceland since 1531, when a Brcviary was printed at Hoolum, in types rudely cut, it is alleged, in wood. In 1574, however, metal types were provided, and several works produced. After a period of decline, printing was revived in 1773, and in 1810 Sir George M'Kenzie reported that the Hoolum press possessed eight founts of type, of which two were Roman, and the remainder of the common Icelandic character, which, like the Danish and Swedish, bears a close resemblance to the German.

For the Anglo-Saxen language the first type was cut by John Day in 1567, under the direction of Archbishop Parker, and appeared in Alfric's Paschal Homily in that year and in the Alfrcdi Res Gester of Asser Menevensis in 1574. Angle-Saxon typo was used by Browne in 1617, in Ninsbeu's Ductor in Linguas; and Haviland, who printed the second edition of that work in 1626 , had in 1623 made use of the character in Lisle's edition of Ellfric's Homily.

The first fount of Irish character was that presented by Queen Elizabeth to O'Kearney in 1571, and used to print the Catechism which appeared in that year in Dublin, from the press of Franckton. But the fount is only partially Irish, many of the letters being ordinary Roman or ltalic. It was used in several works during the early years of the 17 th century, and as late as 1652 in Godfrey Daniel's Christian Doctrine, printed in Dublin. The Irish seminaries abroad were better supplied with Iriah type. 1 new typo was cut by Moxon, and appeared in 1681 in Boyle's New Testament, printed by Robert Everingham.

The earliest epecimen of music type occurs in Higden's Polychronicon, printed by D_{θ} Worde at Westmingter in 1495. The square notes apnear to bave been formed of ordinarv quadrats. and
the staff-linee of metal rules imperfectly joincel. In Caxton's culition of the same work in 1482 the space liad lieen Icit to bu filted up by hanc. The plain chant in tho Mainz psalter of 1490 , printed in two colours, was problably cut in wood. Hans Froschauer of Augsburg printed music from wooden blocks in 14\%3, and the notes in Eurtius's Opusculum Musiccs, printed at Bologna in 1487, appear to have been produced in the same manner ; while at Lyons the missal printed by Matthias Hus in 1485 had the staff only printed, the notes being intended to be filled in by hand. About 1500 a musical press was established at Venice by Ottavio Petrucci, at which were produced a series of mass-books with lozenge-shapell notes, each being cast complete with a staff-line. In 1513 he removed to Fossombrone, and obtained a patent from Leo X. for his invention of types for the sole printing of figurative song (cantus figuratus). Before 1550 several European presses followed Yetrucci's example, and music type was used, among other places, at Augsburg in 1506 and 1511, Parma in 1526, Lyons in 1532, and Nuremberg in 1549. In 1525 Pierre Hautin cut pronclics of lezenge-shaped musie at Paris. Round notes were user at Avignon in 1532. In England, after its first use, music-printing did not become geners till 1550, when Grafton printed Marbecke's Book of Common Prayer, "noted" in movablo type, the four staff. lines being printed in red and the notes in black. There are only four different serts of notes used,-three square and one lozenge. About 1660 the detached notes hitherto employed legan to give place to tlie " new tyed note," by which the heads of sets of quaver's conld be joined. Kut at the close of the 17 th century music-printing from type be. came less common, on account of the introduction of stamping and engraving plates for the purpose.
Printing for the blind (compare vol. iii. p. 826) was first intro- Printing Aluced in 1784 by Valentin Haiiy, the founder of the esylum for for the blind children in Paris. Ho malo use of a large script character, blind from which impressions were taken on a prepared paper, the impressions heing so dceply sunk as to leave their marks in strong relief and legible to the touch. Haity's pupils not only read in this way, hut executed their own typograplyy, and in 1786 printed an account of their institution and labours as a specimen of their press. Tbe first school for the blind in England was opened in Liverpool in 1791, but printing in raised characters was not successfully accomplished till 1827, when Gall of the Ediuburgh asylum printed the Gospel of St John from angular types. Alston, the treasurer of the Glasgove asylum, introduced the ordinary Roman capitals in relief, and this system was subsefuently improved upon by the addition of the lower-case letters by Dr Fry, the type-founder, whose specimen gained the prize of the Edinburgh Society of Arts in 1837. Several rival systems have competed in England for adoption, of which the most important are those of Lucas, Frere, Moon, Braille, Carton, and Alston; the last-named, as perfected by Dr Fry, seems likely to become the recognized mothod of printing for the blind in all European countries.

As regards initials in the earliest printed hooks, see above, p. 686. Initia The trouble and cost involved in the use of the initial director early suggested the use of mood-cut initials, and Erhard Ratdolt of Venice, about 1475, is gencrally supposed to have been the first printer to introduce the literos florentcs, called also lettres lourneurcs, or typi tornatissimi, which eventually superseded the hand-painted initials. Caxton introduced one or two kinds in 1484. Among the earliest to be used are the so-called Lombardic initials or capitals. The more elaborate initials, such as those used in the Mainz indulgences and psalter, by Aldus at Venice, by Johann Schoeffer at Mainz in 1518, by Tory and the Estiennes at Paris, by Froben at Basel, and by the other great printers of their day, were known as lutres grises. Besides these, the ordinary "two-line lciters" or large plain capitals came into use; and these were generally cast, whilst the ornamental letters were for the most part engraved on wood or metal.

Type ornaments and flowers began, like the initials, with the Ornailluminators, and were afterwards cut on wood or metal. The first ments printed ornament or vignette is suppesed to be the scutum or arms and of Fust and Schoeffer in their edition of the Bible of 1462. There flowery is no vignette in the Subiaco Lactantius of 1465 (as stated by MIr Reed, Leller Foundries, p. 82). In Holtrop's Monum. Typpgr. des Pays-Bas may be seen borders used by some of the earliest printers of Holland ($1475-1490$) which would fot look bad even in the present time. Caxton in 1490 used ornamental pieces to form the border for his Fiflecn O^{\prime} s. At the same time the Paris printers engraved still more elaborate border pieces. At Yenice entire frames were engraved in one piece, while Aldus as early as 1495 used tasteful head-pieces cut in artistic harmony with his lettres grises. Early in the 16th century we observe detached ornaments and flourishes which have evidently been cast from a matrix.
Literature. - Besides the works of Berjeau, Bernard, Blades, Hswkins, Hesaels, Holtrop, Noel Humphreys, Koehler, Jules Philippe, T. B. Reed, Sothe hy, Weigel, \&c., already mentioned, consult also Bigmore and Wyoan, A Bibliography of Printing, London, 1880 ; Geo. Wolfg. Panzer, Annales Typog., Nuremoerg, 1793, \&c. : Lud. Fain, Repertorium Bibliog., Stuttgart, 1826-38; Holtron, M. F Arorum Sec. XVo Impressorum in Bibl. Regia Hagana, The Hague, 1851 1874; Rob. Sinker, A Cat. of the XV. Contury Printed Books in the Liorary of

Trinily Gollege, Cambridge, Cambridge, 18i6; W. Th. Lowndes, Bibliographer's Iranual, ed. by Henr. G. Bohn, Loudon, 1858, sc. ; J. C. Branet, Manuel du Zibraire, Paris, 1800 (four carlier editions); Th. F. Dibdin, Bioliotheca Spenceriana, Stadt-Bibtiothek zu Koln; Schoeplin, Vindicis Typog., 1760; Meerman, Origines Typoo. The Hague, 1665 - Dupont, Hist. de l'Impt., Paris, is69; Firmin-Didot Typog. 1 ta Tupog, Paris 1ses. E Duvercer Hist de T'Trvention de l'Impr Paris, 1840 . P Ramhinet Orinine de lilmpr Paris, 1810 ; Ch. Ruelems, Liocnde de St Servais Brussels isi3 8 wo. J. P' A Modden, Iettres d'ren Biblio Legende de so praphe, Paris, . A. Ae ries, Es, 11 . The Hague, 18.9: Jos. Arues, London, 1 ose of Prining in America, Blaany, Londors, 1977 ; W. Skeen, Early Typography, Colombo, 1872 ; 8am. Palner, General Eisf. of Prinl., London, lis2; W. Ionng Ottley, Inquiry concerming che Inv. of Print., London, 1568 ; Henry Bradshaw, A Classified Irdex of the 15th Century Books in the Collection of the late M. J. de Meyer, London, 1570: Id., Hist, of the Founts of Type and Woodcut Derices used by Printers in Holland in the Fifleenth Century, London, 18il; Id., The Printer of the Historia S Atbani, Cambridge, 1868; A. Fon der Linde, Ilaarlem Legend, London, 1870 d., Gutenberg, Stuttgart, 1851; Id., Gesch. der Erfind. der Buchdruckerkunst Berlin, I8S6; Schaah, Gesch, der Erfind. der Buchdruckerk., Mainz, 1830; K Folkenstein, Gesch. der Buchdmuckcrk., Leipsic, 1856 ; Lorck, Handb. der Gesch der Buchdrucliceki, Leıpsic, 1883; K. Foulmsnn, Illustr. Gesch. det Buchdruck erk., Vieana, 15892 ; M. Denis, Wiens Buchdruckergesch. bis 1560, Vieana, 1782 ; C. 1. Hildeburn, A Century of Printing-The Issues of tie Press in Pennsylrania, 20:-1894, Phdadelplia, 1855^{*}; and J. Garcia Icazbalceta, Bibliog. Mcxiocna det Siglo Xirl., Mexico, 1887. The titles of other warks on the invention, progress, and process of printing, \&c., may ba learned from the lists of books on auch aubjects in the works alresdy quoted.
(J. II. H.)

Part II.-Practical.

Printing has been defined to be the act, art, or practice of innpressing letters, characters, or figures on paper, cloth, or other material, the definition being lased on the etymology (Old Fr. empreindre, from Lat. imprimere). Technically the same definition might be applied to such arts as those of calico and oilcloth printing, and even of moulding, embossing, coining, and stamping; but in point of fact these aro vever understood when the word "printing" is employed. There is also printing without pressure, euch as photographic priuting. The use of a pigment or ink must be regarded as an indispensable element. . The application of the term is therefore confined to the use of pressure and a pigment for literary ond pictorial purposes. As thus defined, printing iucludes three entirely different processes-not inaptly called the polygraphic arts-riz., chalcography or copperplate printing (compare Exgravwo, rol. viii. p. 439 sq.), Lithogeafhy (q.v.) or chemical stoneprinting, and typography or letterpress printing. The lest-named is that to which the present articlo is confined.

The difference between the three methods lics essentially in the nature or conformation of the surface that is inked, and mhich afterwards gires a reproduction or image in reverse on the material to be impressed. In copperplate printing the whole of a flat surface is inked, and a portion of the ink sinks into an incision or trnch, in which it still remains after the surface is cleansed: Wheu pressure is brought to bear, this ink is transferred to the paper, gining an impression of a line. In lithographic printing the fiat eurface is protected except at certain places, where it is slightly coated with the ink, which practically leaves the stone quite level, but also marks a live when pressure is brought to bear. In typography the priuting surface is in relief. It akone receives ink, the remainder being protected by its lower level. Any kiud of printing done from a relief surface belongs to letterpress printing, such as a woodcut, a casting in metal, india-rubber, celluloid, xylonite, \&c. (or "stereotype"), or a depositiou by electricity (or "electrotype"), The typographic method requires a surface that is more dificult to form than either of the other tro. In lithography the surface may be obtained by merely writing or drawing en the stone; iu copperplate printing the line may be immediately inclsed into.or. scratched on the plate; but for letterpress printing the surface between the lines in relief has to be cut away. Hence the tediousness of wood-engraring, in which all the surface of the tlock has to be removed except those parts that are to be printed from and which form the black lines in the impressiou; and the conformation of a type surface is similar.

Typography, however, has many compensating adrontages. Impressions are taken with nuch greater facility. The inking oppliance glides over the relief lines to be printed from, whercas it rould cling to the entire surface of the etone or the metà ; hence much greater pressure wquld be required in these cases. The unprintable part of the stone in lithography has to be damped, so as to repel the ink; the same portion has to be inked and then cleaned off in copperplate printing; but in letterpress printing the ink only that has to be trausferred to the paper needs to be applied to the type. When the design has been drawn on the stone or scratched into the copper, the result does not admit of any further application beyond that at first contemplated: But in letterpress printing the surface moy he of a composito character. It mas be formed of single pieres represeuting the sevoral letters, and these, when once formed, may be emplosed in endless combinations. Only by such means are cheap newspapers and books possible. Before the inrentiou of typography (as in the East to the present day), the dif-
ferent pages of a book were minted from wooden blocks, cut after the manner of a wood-engraving. Blocks of this kind are of no use for printing after their first purpose has been fulfilled. They must necessarily be made very slowly aud with much labour. In forming a page of a book, on the other hand, by the typographic method there need (excluding necessary wear end tear) ouly be the cost of "composing" the types aud of "distributing" them into their proper receptacles, from which they may be re-taken many times to form other compositions.

Types: thcir Material Characteristics.

Exclusive of such printing surfaces as wood-blocks and casts, the letter's, marks, and signs with which letterpress priuting is executed are called types, a proportioned quantity of each of the letters of the alphabet in any one body or face forming a fount. A bookwork fount contains single letters, diphthongs, ligatures (such as ff, fl), accented letteri, figures, fractions, points, referenco marks,
 aud signs (as \& \& 5). It also includes quadrats, - pieces of metal of various widths, which do not print, but are used to compensate for the shortness of occasional lines, as at the close of a paragraphand epaces, which separate words and letters. There are thus abont 226 separate characters in every ordinary English book-work fount. The table-used by type-founders to regulate tho number of each of the several sorts in a fount is called a bill of lype. The sorts are supplied by English type-founders in certain definite proportions, depending upon the uumber of lower-case m's. A bill of $3000 \mathrm{~m} \mathrm{~m}^{\prime} \mathrm{s}$ usually contains the following:-

Lower-case.			Figures, \&c.			Capitals.			Small Caps.		
m	...	3,000		...	4,500	A		708	A	...	0
	...	9,000	;	...	800	B		450	B	...	270
b		2,000	:		600	C		500	c		350
c	...	4,000	.	..	3,000	D	.	550	D	...	350
d	...	5,000		...	1,000	E	...	750	E	...	450
-		14,000	?		300	F		450	F	...	300
f	...	3,000	$!$..	200	G		450	G		270
	\cdots	2,000			800	H		450	H	...	300
h	-..	6,000	(.	400	I		900	I	...	450
	...	9,000	[200	J	..	300	J	...	200
j	...	500			250	K		300	5	...	200
k	...	800	+	..	100	L		550	L	...	300
	...	5,000		..	100	M	.	650	M	...	300
	...	8,000	§	...	100	N	...	550	N	...	350
	...	8,000	I		100	0	..	550	G	...	350
	...	2,400	U		70	P	...	500	P	...	270
	...	600				Q	...	200	Q	...	129
	...	7,000	1	\ldots	700	R	...	500	8	...	330
s		8,000	2	...	600	S	...	600	8	...	850
t		10,000	3	\cdots	600	T	...	800	T	...	420
u	...	4,500	-	\ldots	500	U	\ldots	350	-	...	240
v.	...	1,500	5	...	500	Y	...	350	v	...	200
	...	2,500	6	...	500	W	...	550	v	...	270
	...	500	7	...	500	X	...	200	x	\ldots	120
	...	2,500	8	..	500	Y	\cdots	350	Y	...	200
	...	300	9	..	500	Z	..	150	z	...	120
8	...	300	0	..	700	戌	..	100	E	...	60
	...	400	\pm	...	200	©	...	100	${ }^{*}$...	60
	...	500									
A	...	300	é	...	200	,	...	150		EPACE	
fll		200	a		200		...	150		ick 20	,000
	...	300	a		100	\%	..	150		ddle	8,000
		200		...	100				Th	in 8	8,000
		100					\ldots	50			3,000 3,000
	...	500		1 otber	r 100	3	...	50		qds.	, 0000
		150		cents			\ldots			$\underbrace{\text { qds. }}$ ea.	$6 ; 000$ 20
		100		(C) ${ }^{\text {c }}$,	1t, 50	${ }^{8}$...	50			25
		100		eack		$\frac{8}{6}$..	50			35
		100		...	30	8	...	50			

Large quads, one-tenth of fount. Italic, ove-tenth of Roman.
Such a fount rould weigh about 750 ib if of pica size, 480 th if long primer, 400 it if bourgeois, 330 tb brevier, 280 it miniou, 220 tb nonpareil. The numbers of the respective letters are based on the requirements of the English language; ${ }^{1}$ other languages of course require different proportions. In Latin and French, for instance, q and u rould be deficient, h in excess, and w needless. The number of the respective letters may be, and eometimes is, appor. tioned by weight ; for example, in one of the "schemes" of founts There is a tradition in ane of the oldest English foundries that this seale originated in a laborious calculstion of tha comparativa number of different letters nsed in setting up a lengthy debate iu the Houss of Commons, it being aupposed then that the purest English was spokes there. The acala ia, bowerer, frequently found defective in practice. It is a curious fact, for instance, that the matter of Gharles. Dickens's works will empty the vowel boxes long before thosa of the consonants, and that Lord Macaulay"s stateller style will run pith like persietency on consonsats.

- nzed by type-foumders a fount of $125^{\circ} \mathrm{lb}$ Roman mith, as ita complement, 10 Ht Italic, includes 8 oz . of $\mathrm{E}, \mathrm{M}, \mathrm{C} ; 9 \mathrm{Oz}$. of $\mathrm{T} ; 8$ to of θ; 5 Ib each of $\mathrm{a}, \mathrm{h}, \mathrm{n}, \mathrm{o}, \mathrm{t} ;$ and so on, dowu to 3 oz , of z . To estimate the quantity of type required for a page, tho number of square inches it contains is measured and diviled by 4 , the quotient being the approximate weight of the matter in pounds. In small founts, however, 50 por cent. is acded, and in large ones 30 to 40 per cent., to allow for the letters generally left in the cases, not being required in the joh, and for sorts, \&c. These figures, although useful, are only approximative, the pronortion of the seversl ingredients of type-meta! used by different founders for the various sizes of type greatly varyin 5 the calculation.
Each of tho parts of a typo has a technical name. In the annexed diagram (hg. 1) of the capital letter M the darkest spaco a, a, a, a, is called the foce ; and only that part of the type touches the paper in printing. The face is divided into the stom, marked 1 , which comprises the whole ontline of the type M; the serifs, or the horizontal lines marked 2, which completo the outline of the letter; the beard, consisting of the bevel or sloping part marked b, b, and tho shoulder or flat portiou below δ. The shank is the entire body of the letter, d, the front part (that shown) bcing known as the bolly and the corresponding part behind as the back. The spaces at h and h are the counters, which regulate the distances apart of the stems in a line of type. The hollow groove extendiug scross the shank at c, ε is the nick, which enables the workman to recognize the direction of the type and to distincuish different founts of the same hody. The absence of this simple expedient rould retard the nperation of composing types by fully one-half. The earlicst type-founders did not kuow the use of the nick. In some letters, such as j and f, a part of
 the face overhangs the shank; this is called the kern. The groove g divides the bottom of the type into two parts called the feet. An impression from that part ol a type on which it stands vould bo as Types must be perfectly rectanguler, the minutest deviation rendering them useless. Any roughness st the sides is called burr, and any injury to their faces a batter. Smoothucss, sharpnees of sngle, and perfection of finish are slso prime requirements. A liue of types, when viewed along the back, presente the appearanco ef a solid har of metal.
Types which have the face cast in the middle of the ohsnk, as a, $\mathrm{c}, \mathrm{e}, \mathrm{m}, \& \mathrm{cc}_{\mathrm{c}}$, and thus leave an open space above them corresponding to that below, csused by the heard, are known as short letters. Those whose stem extends to the top of the shank, as b, d, f, \&cc., are called asecnding letters. Those that have a stom extending over the shoulder, as g, r, \&c., are called descending letters. Those that are both ssceuding and descending, and exterd over the whole of the shank, as Q and j, are long lettcrs. Sinall letters and figures cast upon the upper part of the shank, as 1^{a}, sre called superiors; those very low down on the shank sre inforiors, as II_{3}. Types that are wery heavy and massivo in appearance are called fat-faccd; those that are fine and delicate, lean-ficed. A type whose faco is not in proportion to the dopth of the shank (e.g., a small pica cast on a pica body) is a bastard type.

ypect.

jens of rineipal mies.

Types are of various sizes, ranging from those used in printing pocket Bibles to those for largo placards. The variation is confined to tine superficial dimensions of thoir ends, or bodies, as they are called. Each body has a distinctive name. The following are specimens of the princip3l bodies of ordinary types, and show the relation of the various bodies one to snother-

Printing h
 Csnon-17算 lines to the foot.

Printing has b

Double great primer- 25 g lines to the foot.

Printing has been

Double English-32 lines to the foot.

Printing has been defined to be

Printing has been defined to be the ac English-04 linee to the foat.

Printing has been defined to be the act, art, or Pica-71\% lines to the foot.

Printing has been defined to be the act, art, or prac Small pies- 83 lines to the foot.

Printing has been defined to be the act, art, or practice of Long primer-s 0 lines to the foot.
Printing has been defined to be the act, art, or practice of i Bourgeois-1023 lines to the foot.
Printing has been defined to be the act, art, or practice of impress Brevier-112 lines to the foot.

Priming has been defined to be the act, art, or practice of impressing Minicn- 122 lines to tho foot.

Printing has been defined to be the act, art, or practice of impressing lett Emerald- 133 lines to the foot.

Printing has lueen defned to be the act, srt, or practice of impresaing letters, Nonpareil- 143 lines to the foot.
Printing has been defined to he the act, art, or practice of impressing letters, charact Ruby-100 lines to the foot.

Printing has been defned to be the act, art, or proctice of impressing lottere, characters, or of Pearl- 178 liues to the foot.
 Diamond- 207 lines to the foot.

Gem-222 lines to the foot.
 Brilliant-280 lines to the foot.

It is a confusing and inconrenient anomaly that the types made Size w by different English founders vary in size, slthough they bear the tspess same name. The above figures refer to the types of Messrs Miller and Richard, the royal type-founders for Scotland; but cther cminent makers supply, for instauce, long mrimer which is 898 , 90 or 92 lines to the foot. This has been remedied in America by an agreement on the part of the founders to adopt one stendard pica, to divide that pica into a certain number of equal parts, and to cast all their types as multiples of one of these parts. They divide the pica into twelve poirts, and the point is the unit upon Which the system is basod. There is aloo another practicsl adrantage in this mnlliple system : cach type bears a simple proportion to the athers, and therefore can be used in exset combination. Thus pearl is 5 , nonpareil 6 , minion 7 , brevior 8 , bourgeois 9 , long primer 10, emall pica 11, and pica 12 points. In Germany, France, and other countries of tho Continent a uniform system of points bas been sdopted, Eased on a scale of 133 "Ciceros" (corpus 12) to 60 contimetres. The types which most nearly correspond to those already mentioned aro:-

The number of lines given to the foot in the ahove specimeus of bodies is the theoretic and practically the only approximative standard. Tho height of types varies slightly with different founders, the mean being $\frac{29}{3} \frac{\mathrm{in}}{}$. The old Scotch height is about To in. higher. Types lower than the ordinary dimension are said to be low to paper, aud if surrouaded by higher types will not give a perfect impression. Spaces and quadrats were formerly only threefourths of an inch in height ; but, since electrotyping has become so common, thoy aro almost invariably cut high, i.e, up to the shoulder of the tJpe. Six lines of pica and twalve lines of nonpareil each cover an inch in depth. It is, however, not possible to know the size of a type is a pinted page by placing a rule measure upon it, as many books are not set solid: the lines are not close together, but lesded out with pieces of lead, to make them cover a larger space. A communication of great importance contributed to a newspaper may be set up in the ssmo type as the leading srticlo 7 but if not leaded it will appesr to the yon-technical reader to be in a smaller character.
The width of pages or columns, in the technical langugge of tha printing officc, is expressed according to the uumber of "ems,"

Clat i, of a pica m, the square of the depth of pica. As the lattor is whe-sixzh of an inch, the em is the same width, and a jage of twruty-Sour ems wile is equal to one 4 inches wide. The columns of this Eucycloperlirs are 19 ems wide.
A.ccriling to the purpose for which they are used, trpes are divilu' into two classes-book type, inclading Roman and Italie, anl jub type, including a multitude of fanciful forms of letters, chielly foumded on the ehapre of the Roman and ltalie letters, and intended to be more prominent, delicate, elegaut, \&c. It is inpossible to enumerate all the varieties of the latter elass, as additions are being constantly made and onee popular styles always going out of fashion. The leading varieties are the antiques, which aro Roman letters with strokes of nearly uniform thickness, as \mathbf{M}; sanserifs or grotesques, which have no serifs, as Al ; blacks, as ft ; and scripts, which rejresent the modern cursive or Italian handwriting, as Al. Black letter is now only a jobbing tspe in English. speaking countries, although, as stated in the historical section of this article, it was the first character used in printing. It is still used in Germany, with certain modifications, as the principal textletter for books and nemspapers. A comparison of the numerous reprodactions that have been issued of Caxton's works with any modern line of black letter will show how greatly the form and style bare been altered mithin a period of four centuries. The present style of Roman type dates only from about the first quarter of the 18th century. Previously the approved shape was as follows:-

Printing has been defined to be the act, art, or

The use of this type was revired by Whittingham of the Chiswick Press about 1843, and it has since bocome a favourite form, under the name of olll style: Some of the punches cut by the first notable English type-fomder, William Caslon (1692-1766), have been preserved and types are being constantly cast from them. Nearly all fonnders nom produee modernized old style. For the recent revival of old style printiag, see]. 710 below.

Large letters, such as are employed for large bills and posters, are made of mood, chiefly rock maple, eycamore, pine, and lime. These are cut up, planed to the required size, and then engraved, gencralls by special machinery, this being a business qnite distinct from that of letter-foundiug. The larger letters are designated as two line, threa line, fonr line, \&. , -meaning twice, thrice, or four times the depth of face of piea or great primer, \&c.

Type metal is an alloy, of which lead is the principal ingredient; bnt, owing to its softness, antimony and tin are added (sce vol. ii. 1. 129 and rol. xiv. p. 378). A patent type metal (Besley's) was inventel in 1855 in which the mixture consisted of lead, regulus of antinors, tin, nickel, copuer, and bismutl. Nearly all type is now made with some of these metals superadded. Ductility, hardness, and tonghness are the prine requisites of a type inetal.

I'be earliest printers made their own types, and the books printed from them can now be distingnished with almost as much certainty as handwriting can be identified. The modern printer bas recourse to the type-founder. The first step in the making of type is cutting the letter on the end of a piece of fue steel, forming the punch (see fig. 2), rhich is afterwards hardened. This is an operation requiring great care and nicety (thero beirg comparatively few that the various sor'ts in a fount may be ex. actly aniform in width, height, and general propertions to eacls
 otlie1. A separate Fro. 2.-Punch. Fio. 3.-Drive. Fio. 4.-Matrix.
punch is required for punch is required for cach character in every fount of type, and the making of them is the mest expensire brancli of type-fonnding. During the process of its manufacture the punch is frequenfly tested or measured by delicate gaures to insure its accuracy. When finished it is held orer a light, the flame of which blaekens the letter, and thus enables an inppression, called a smoke proof, to be stamped on paper. When the letter is perfect, it is driven into a picce of polished copper, called the drive or strike (fg. 3). This passes to tho justifier, who makes the width and depth of tho faces nniform throughout the fount. They mnst then be made to line exactly mith each other. When completed, the strike becomes the matrix (fig. 4), wherein the face of the type is made. This method of makinf a matrix has until now been in almost miversal use in Great Britain. It is, however, a very slow and costls process, In America the great majority of matrices are made otherwise. If the design of the fount to be produced is original, it is often cut by hand or by an engraving-machine on the piece of metal which is to ferm the matrix. If, on the other hand, an existing fount las to be copied, the matiex is made by electro-deposition.

A perfectly goon trpe is selected, and iuserted in a mould specially nuade, called a fusible mould (fig. 5). Sufticient metal of a more
fusible nature than the type is cast round it, and forms a sliape similar to tlat of the ordinary matrix. This fusible cast is then placed in a box pro. teeted by glass a nd gutta. percha, in order that the copper deposit may be kept square and to the proper dimensions. This arrangement also limits the deposition to the face. The box is inmersed in the copper electrotyping solution, in which it may be left until the deposit of metal has increased to

Fio. 5.-Mould. a thickness at which it
may be backed up witl copper, or it is left until it reaches the full thickness, which is about $\frac{8}{8}$ of an inch. It is then fitted iu line, eet, position, and height. The minutest imperfection or blemish is reproduced by the deposition, and the type cast from such a matrix is a perfect counterpart of the original. A school of type-engravere has recently sprung up in the United States, cutting exclusively on metal and producing ornamentation and finish which the punch-cutters cannot rival. It is expected that in the course of time the electrotype matrix mill nearly supersede that mode in the old-fashioned Way with the punch. In the ordinary method the mould in which the body of the type is fornied is rade of hardened steel m two parts; one part is fastened to the machine and is station. ary, while the other is morable so that it may be adjusted for the proper wadth of the letters, as one is wider than another. The combined matrix and mould are then adjusted to the trpe-casting maehine, which manufactures types of the rate of from 25 to about 120 per minute, according to the body. The metal is kept fluid by a little furnace anderneath and is injected into the mould by a pump, the spont of which is in front of the metal pot. The mould is movahle, and at every revolution of the wheel it comes up to the spout, receires a charge of metal, and fies back with a fully formed type in its ${ }^{\text {bosom }}$; when the upper half of the mould is lifted, a type is ejected. The spring in front holds the copper matrix in close proximity t, the mould. The letter 3 , for instance, stamped in the matrix is directly opposite the aperture in the monld which meets the spout of the pump. When a due propertion of a's are cast, another matrix with b stamped on it takes its place, and so on throughout the whole fount. The types, however, are not finished when they leare the macline. There will be found attaclied to each a wedge-shaped j ct (fig. 6), oonewhat similar to that on a bullet cast iu a liand-monld. These are picked off by boys at the rate of from 2000 to 6000 per hour. A bnir Which still adheres to the shoulder of the type is taken off by the rubbers, who rub the sides on circular stones or on files. The types afterwards go to the sotters, who arrange them in long lines ready for the dresser, and be slips them into a long stick, turns thens on their face, and, after duly fastening thein, cuts with a plane a groove in the bottom, which forms the feet. (These processes are now frequently performed by a macline, which produces types that do not requite rubbing or dressing.) The types are then dressed and the pieker takes them in liand, in order to lick out each defective letter with the aid of a magnifying glass. They are finally made up into parcels of a conrenient size, called type-fourders' pages, weighing about S th each.

Subjoined is a description of a machine for performing autonie. tically the various operations of easting and finishing type which was invented about twenty years ago by Messrs J. R. Johnson and J. S. Atkinson. In this apraratus the metal is fused, injected into the mould, the cast letter turned out, rubbed or planed, first on one side and then on the other, the feet cut out and smeptherl, the dressed sides planed alternately, and the finished letter set up on a stick ready for nse by the printer. The casting machine and the dressing machine are in reality distinct, though mounted on a com mon frame. The whole is driven by a steam-engine or other prime mover. The casting machine consists of a furnece covered br a shallom pot holding the fused metal. In this is a pump, and the monld is placed opposite its mozzle. The mould being adjusted and the matrix in its place, the molien metal is injected and then eolidifies, forming a perfect type, but with jet attached. This letter is then thrust out, and the mould closes egain for another jet of molten metal. All this ls effected by one revolution of the axle of the machine. The letters pass through a channel one by one into the dressing machine. Cn arriving there they have each of their sides planed in succession by being held sgainst eutters. When one side is made true with respect to the set of the letter on
ita face, it is passed over a second cutter, which planes tha second aida absolutaly parallel to tha first. After this the typa is carriad in a line at right angles to its former course past a saries of aimilar cutters, which plana ont the foot, furthar smooth its surface, and plane each of tha two dressad sides in succession; this complates the dressing or finishing of the typea, which, continuing on their course, pasa upon a composing atick and are ready for the printer. The line of typea presents the appearauce of a solid bar of metal, so true, flat, and equare are the surfaces of the several separate latters. This machine has been considerably immovad by Mr P. M. Shanks. The naw machine is of simpler construction and its parta ara more compact. It does not produce better type, nor work quicker, -the speed in all type machines baing regulated by the tima required to cool the volume of metal, which, when on the machine, is assisted hy having water percolating throngh the heated parts of the mould. The working of the new machine is more readily grasped by tha manipulator, and thera is considerable raduction in ita cost.

Type-Setting or Composing.

We may now dascribe the manipulation of the types in the printing office, and for the aake of concisenass reference must ba made ouly to the oparations connected with ordinary book-work. These differ in details from the methods in uso in the other two departments of the printing business,-news-work and job-work.
「ype.
The types, received from the foundry in the packages called pages, are placed in ahellow traya called cases. These contain compartments or boxes, each of which is appropriated to some particular sort or character. The cases when in use stand on frames or sloping dasks. The case at the top is the upper case, and that below the lower case. Tha

 appropriated principally to the capital and small capital letters; the latter has fifty-thre ous eizes, appropri.
ated

to tha lower-case sorta. The diffarenca in the size of the bozes corresponds to the differenca of quantity of lettars in a fount, as alreaciy stated,-the lower-case a for instance having the largeat box. The localization of the letters, \&c., is a subject on which opinions differ, the object being to briug the letters most frequently required nearest to the hand of the compositor as he standa-at work. As a man picks out from the boxes aeldom lesa then 1500 letters per hour and distributes or replaces on the averaga about 5000 per hour, it is necessary that tha most economical allocation of the boxes ahould be adopted. The system of allocating the various types is called tha lay of the case; fig. 7 illustrates the plan used in the principal English book offices; but there are many deviations.
The types, When taken from the cases are arranged in lines or "composed" in an instrument called a composing stick, mado of iron, brass, or gun metal. The clids in the middle is movalle 60 as to accomrodato varying lengtha of lines. In the composing room the frames are arranged in rorse, supporting the cases. The compositor fizes the "copy," or document which ha is to repeat in type, in a convenient place before his eye, and on some part of the case that ia seldom used. In his left hand he holds the compoaing etick, and with the thumb and firat inger of the right hend lifts the latters from the boxes, and arrangea them in the compoaing etick, every letter, point, or aign baing picked out separately. In this operation he is much asaistad by the use of a setting-rule, a thin brass or ateel plate which, being ramoved as successiva lines ara completed, keeps the type in place. When so many words and parts of worda as will nearly fill the line havo been consposed, it is made the axact length required by inserting or diminishiug the space between the aeveral words. Thia is called justifying the lina and is effected by means of the spaces already mentioned. If the work is not "bolid"-that is, if the lines are not closa togatherthe strips of metal called leads are used. They vary in thickness, but almays form aliquot parta of pica body. A good compositor must possess intelligence and a reasonable amount of general knowledge : he must be ablo to read hia copy with readiness, and to understand its meaning, in order to punctuate it proparly. He stould be abla to spell correctly, as some copy is almost undecipherable in regard to separate lettera, while other copy is incorrectiy spelt. When the composing stick is filled, the type is lifted on to a galley, a shallow tray of wood or matal, two or threa sides of Which are flanged, for the purpose of supporting tha type, when the
galley is slightly inclined. Stickful after atickful of typa is placed on the galley until it is full. The matter is then fastened up, a proof taken at the proof presa, and the work of the reader or corrector of the press-described below-beging. The proof, marked with the necessary corrections, is given back to the compositor, in order that he may make the required alterations in the type.
The type, being duly correctad, is made up into pagea of tha 1mpor required length (unless the author has desired to see proof in ing slip). It is theh imposed, that ia, tlee pages are arranged in such a mauner that, when printed and the eleet folded, they will fall in due numerical sequence. The impression from any arrangement of pagea will ba the reverse of that in which they are laid down. If an ordinary four-paga newspaper supplement be opened and epread out with the first page uppermost, it will be found that on this sida the ordar of pages is 4,1 ; when turned the pagas are 2 , 3. Tha type pages must be ranged in the reverse way, as 1,$4 ; 3,2$. Thus the fourth page is placed alongside the first, becausa both must be priuted together on the outsido; the third page is to the left, and the second to the right, bacause in books the odd page-the verso-is always to the right. For a aquarto a sheat of papar is folded twice, that is once acrosa its breadth and then once in a perpandicular direction down the tiddle. It contains four leaves, and if these are printed on both sidea eight pages. The two sides of a sheat aro called the outer and inner formes respectivaly. A thect of octavo is folded three times, making 8 leaves or 16 pages. The aiza of a book depands, not only upon the number of timea the ahaet has been folded, and described accordingly as 4 to, $8 \mathrm{ro}, 12 \mathrm{mo}$, \& co, but upon the size of the sheets. The dimensiona of the papers commonly used in book-printing are:-imparial, 22×30 inches; super royal, $20 \frac{1}{3} \times 27 \frac{1}{2}$; royal, 20×25; medrum, 19×24; demy, $17 \frac{1}{2} \times 22 \frac{2}{3}$; double crown, 20×30; douhle foolscap, 17×27; post, 15羕 $\times 19$. Hence to eay that a book is a quarto merely gives no precisa indication of its dimensions, as a quarto of one size of paner may be smaller than an octavo of another ; it ia also necessary to know the size of the aheats of which it is composed.
When a printed book is opened, it will be found that at the foot sigus: of cartain pagea thera is usnally a letter and at the foot of another tures a letter and a figura, as B, B2; further on another letter and another letter and figure. On going through the book it will be aeen that the lettere are in regular alphabatical order, and occur at regular intervals of eight, twelve, aixteen, \&c., pegee. These designate the saveral eheats of which the book is composed and are called signatures, so that a shat may be designated B, and the pages of which it conaiats are thereby sufficiently indicated. (Occasionally, as in the present work, numbers ara used instead of letters.) These signatures assist the binder in folding, as they occupy a certain specified place in each sheet; hence to ascertain if the sheat has been folded properly it is only neceasary to examina the position of the signature. The binder also is thus assisted in gathering or collating together the sheets of a rolume in proper order. Sigua. tura A ia omitted, becauso it mould be on the title or first page, and would be both unnacessary and ansightly. By old custom J, V, and W are discarded, I and J, U and V being originally ysed indiecriminately by printcre, while W was written UU or VV. When the alphabet is exhausted, a new ons is commenced, diatinguished by a figure precedent, as $2 \mathrm{~B}, 2 \mathrm{C}$, \& c

The pagas of typas are arranged in proper order on a flat table, Forma corered with stone or metal, called the imposing stone, and are then ready to bo made into a forme, that ia, in auch a state that they can bo accurely fastened up end moved about. The forma is en closed in an iron frama or chase, subdivided by a crosa bar. The portions of the type are separated by furniture, which may ba of metal or wood or both. It is of the same height as tha chase, but lower than the type, and therefore doas not print, but forms the margin of the printed pages. At the sides of the two gactione of the formea ara piecea of furnitura of a tapering ehape, called sidestieks, and at tha top and bottom corresponding piecea, called footsticks. Small wedges, celled quoins, are inserted and driven forward by 2 mallet and a shooting-stick, , that they gradually exert increasing preesure upon the type. Other mechanical maana for locking up are also occasionally adopted. When sufficiently locked up, the whole is quite as firm and portable, however many thousande of piaces of metal it may consiat of, as if it were a aingle plate. In this rapid sketch we purposely omit mention of eevaral operations whish, though important and indispensable, are ouly of interest to the workman.
For many years endeavours have been mads to conatract machinea for typa-setting which shonld ooviate hand labour. Picking out tha typea separately from their bozes and arranging tham singly in the composing stick is an irksome end monotonoue operation, and one which it might be thought comparatively eagy to perform by antomatic machinery. But of the many differat composing machines that have been invented lass than half a dozen have stood the test of practical experienca. Thase have been confined to special classea of work, and it ie open to doubt whether the nimble fingers of a good compositor, aided by the braina which no machinery can suoply, de not favourably sompare on the
groand of economy with sny possible mechanical arrangement: On the other hand, employers sad makers of machines allege that owing to the opposition of the men machine type-setting has not had fair play. However that msy be, it is undeniable that a composing machins is still rars in printing offices, and where omployed it is only as sa suxiliary to the ordinary lsbour of the men. It deserves to be mentioned that nesrly the whole of the Times, with the single exception of the advertisements, has for yesrs past been set ap by machinery, and thst mors than 10,000 pages of the present sdition of ths Encyclopedia Britannica havs also been so aet up. We hsve not apace to describe with any minuteness the construction of composing machiaes. In the Fraser machine (fig. 8), one of the simpleat of its clses, which has been mads use of to the extent already mentioned in the present work, the typea are contained in a asries of grooved traje A, in the apper part of the machine, the traye having previously been filled by complementary appsratus called the disiributor. In these traya the types sre kept in position, -and pressed towards the frout part of esch tray, by alips of metal attached by cords to the borwheels B; each of these contains a spring of sufficient atreagth to press the ling of
 ypes ateadily forward against the separators C, which are formed with an inverted shoulder, under which the front typo in esch lins passes. The keys are connected by levera to the sepsrators, and ths depression of any koy causss the corresponding aepar. ator to descend, carrying with it the froat type of ths line into the grooved face-plate, down-which it slides into the composing atick G. Immedistely the finger is lifted from the key the spiral spring D raises the separstor to its origiaal position, and the nsyt typs in the lins takes the place of the ons just released, and so in succession as fast es the keys can be pressed. Uader the keys ruas a rod conaected by a crank motion with the pusher G, which, with every depression of a kgy, pushes forward the lins of type in the composing stick, thus making room for the next letter. The matter is thus aet in one continuous line, ready to be divided into lines of the required length either by the operator at the mechine or by another haud working in conjuaction. The speed of the mschine varies from 6000 to 12,000 . types per hour, but is regulated solely by the skill of the operstor, as the machins will work as fest ss the keys can be pressed. The composing machines now employed at the Times office sre an improved form of 8 n apparatus invented by Charles Easfeabein, and introduced there in 1872. The operstor sits in front of four rows of keys one sbove ths other, sornething like the manuals of 8π organ, but only sbout 3 feet wide. Esch of the keys corresponds to a type or character. The types are kept in tin tubes placed vertically st the tbp of the machiae. The depression of a key works a series of levers, and an iron finger pushes the undermost type from its tubs, wheu it falls into a groove formed in a couducting plate, narrowing at the bottom to its aper. Inmediately below is a receptacls, and by the sction of a treadle the type is iushed along a channel. Other letters follow, the matter being thus act up in a long line, on a groove of the width of an sm quad, and running from left to right. The type when it first comes into th: groore is in an upright position, but in passing along it becomes twisted, ao that the letters stand at an sagls of sbout 45° when they reaid the point at which they are justified. This groove communcates at its dexter extremity with the justifying galley,-a simnls apparatus, something of the nsturs of a composing atick and galiey combined. Then the type is divided into portions or lines of the required length and justified in thag galley, which is ardjustable to the width of the required length: As the long line approaches him, ths justifier with a small bodkis erceleratea a portion large enough in his judgment to fill the wilth of his colienn. When this is done he presses his foot on the treadlo under him, and thereby causes the lins to bs pushed into the ga"cy. Tlie line is jnatified by apaces and quads, and enough typo is then taken for another line. The speed depencis on the operator, and varies frem 6000 to 13,000 types per hour, the average joing about $8-i=2$, with two operators, - a justifier and a compositor bciog also recessary These machines are worked in the Tines offics at fino rste of a columan of solid miaion an hour. The machine occupes a floor apacs of only about 4 fest wide by 2 deep.
Another machine at present in use is that of Mr P.obert Hattersley of Manchester. It probably furnished the general scheme of others in nes. Ons of the most ingenious machines of the kind is thet of Mr Alexander Mackio of Warrington, ita general princip'e being
the acoption to setting up types of the Jacquard card of the power loorn, which wesves automstically the most intricate patteras of cloth. The spparatus cossists of three parts, - two used for preparing the "card" or ribbon, whioh directs the third in the operetion of type composing. The perforstor ia like a small cottage pianoforte. When the kegs ars struck they produce a perforation, and the ribbon is msde to move sside a little, 60 thst a new surface may be presented for puncturing. Ths composer is a circular iron table, 4 leet in diameter, having round its periphery a number of boxes divided iato sections, esch of which holds one kind of type. On a slightly lower plane is a wheel carrying littls brass tables, hinged at one end. When ths machine is in motion, the types are pushed out on to the tabls, which passes with its freight round its courss until it comes to the point of delivery, when the types are awspt off. The rising of the table, and the drawing out of the types, are guided by the perforated paper. Hence the machine sets types without a haman compositor. When oncs the ribbon is perforated, it may be used over again for aubsequent editions of the sams work, which may be in a different sizs of type. These machines ars only in use in the office of the inventor.
As has been slready described under Reporting (rol. xx. p. 406), the parlismentary reports of aoms newspapers are set up entirely without copy,-by tis ear, not by ths cye. It hss been found that by the aid of the machino the mstter can bs set up half as fast again as it could be written out: ths average apeed of the composing msching is 230 lines per hour when the copy ia dictated to the operator, whereas the most akilful workman aetting at ease in the usus? way csa do but 50 lines per hour.
For msny years it was a favourite idea with inveators, especislly Loge those who were not practical printers, that grest economy might bs type" gained in composition by the use of word-charscters or "logotypes," instesd of singls lettera. The constant repetition of msay words seemed to suggest that they might be cast in ons piece. Combins. tions suitsbls for sffires and auffixes, as ad-, ac-, in-, -ing, -ment, \&c., it was also suggested, should bs used instesd of the single component letters. Ths auggestion has, howsver, nót been csrried out, at least to any considerable sxtent. Ths chief prectical objection to it is that it involves the use of cases with an inconveniently large num. ber of boxes. The more the variety of chsracters is multiplied the mors "ftravel" of ths compositor'a hsad over the cases is necessary for picking them up, sad by ao much is the apeed of his work retarded. Logotypes, too, ars mors liabls to accident; when one letter is damaged theocombination is raudered useless.

Ths correction of the typs is a subject thist should be understood Correct by all who have to do with printing, ss msny mistakes srs mads ing tyre on the part of authors which a little technicsl koowledge would prevent. In the courss of retting any copy or MS. Which may be given him the compositor unavoidsbly picks up some wrong letters, or mistakes the words in the copy before him, or fails to follow the atyls prescribed for the work. Thess als called printcr's crrors. When the compositor hes finished his task, © first proof of tho matter is taken. This proof is read through and compsred with the copy by the proof reader or corrector of the press sud an assistant, ths copy-holder or reading boy. The proof is then sent back to the compositor sud the lstter is required to correct all the inaccurscics indicsted therein-in fact, to attend to all the directions given by the reader-and this has to be done at his own cost if he is working on piecs-that is, psid by results according to work done -or by tha cmployer if he is working "on establishment wages" or psid by tims. Another proof called a revise is now taken; this is carefully compared with ths previous proof. If the corrections havs not sll been msde, ths revise is msrked accordingly, and sent back to the composstor, who is required to remedy the imperfections. When ths proof is deemed sccurate, or "clean," it is sent, gcnerslly along with the copy, to the author, -being now termed 8n author's proof. Finally, in the printing office the mstter is carefully re-read and compared with the last suthor's proof by the press reader, who signs it and on his responsibility the typs is priated off.
The operstion of distributing the types is the converes of that of composing: it is de-composing the forme and returning the soveral letters to their proper boxes in the case. It is done, as already mentioned, Fith rernarkable rapidity. The forme is first washed ovar mith an alkaline or other detcrgent to remove the ink from its aurface, and then laid down on the imposing surfacs, unlocked, and damped; this acsists the cohesion of the type, after the chase, furniture, side sticks, \&c., aro removed. The compositor then takes in his left haud, supported by a cetting rule, a porlion of type in linis, and wi.h tuo right hand takes a mord or so between the fioger and thumb, lettimg each letter drop separatoly into its proper box. There is hardly any operation which so atrikes a spectator as distribnting, for a competeat distributor litcrally shorrcrs the types into their recoptacles. The types are held upside down, that is, with the nicks uppermost; hencs the letters of each word are read from left to iught like ordinary mstter when printed, but the words are of comrse dealt with th the inverse order.

Diatributing machintz of many differeat kinds have been iavented.

They may be divided into two classes, - those worked entirely hy keys or notes, like the pianoforte, and those in which the distributing is to a certain extent done automatically. For the former class only the type in ordinary use in printing offices is required. For the latter the type requires to be specially prepared, each character hsving a distinctive nick or nicks upon it, which correspond with the panticular channel of the machine it is intended to occupy, and by which it is guided to its special compartment. Kastenbein has produced a distributor which may. be described as a composing machine reversed. The matter to be decomposed is placed at the top in its appropriate tray or fixed galley, the sides of which are adjustable to fit any measure, the back being so constructed that it may be advanced to keep the matter always up to the front. As the matter is pressed towards the front, the first letter of it is brought in contact with a steel pusher, behind it being an aperture communicating with the channel of the guide plate. The matter is read by the operator; and he tonches the key corresponding to the letter that comes first. Thus the types are conveyed one by one to the guide plate or conductor. It has grooves furnished with little gates or switches, like the points of a railway, and these direct the types into their proper channels. The tubes into which the types are deposited are placed at the foot of each groove. Thus every time a key is depressed the switches move, the pusher sends the type to be distributed out of the line, it falls through the aperture, and, passing down the channels in the guide plate, reaches the proper tube. The speed is to a certain extent dependent upon the skill of the operator, but averages between 3500 and 4000 per hour. A good compositor can by hand alone distribute as many letters as this. But for the purposes of the composing machine, hand distributed bypes rould have to be set mp again, as the composing machine is supplied not from ordinary cases but from tubes of type. In the Fraser distrihuting machine (fig. 9) the
 page of matter to be distriouted is placed on the upper part of the machine at H, whence by suitable apparatus it is moved line by line towards the separator I in front. The matter is there read by the operator, and as each letter comes in contact with the separator the corresponding key is pressed and the type is conveyed to the guide plate, where a series of switches guide it to its proper compartmentin the tray of the composing machine.

stereotyming, Electrotyping, \&c.

1才vau-
Eageo of

strea-

sreing.

The method of raproducing and multiplying letter-press printing surfaces by taking casts of them, or stereotypes, has greatly conduced to the progress of typography, - much more so, indeed, than might berealized by those who are unacquainted with the practical details of the art. Stereotypiug ($\sigma \tau \in \rho \in \delta$ s, fixed or solid; tútos, type or forme) is the method of taking casts from a fixed or movable forme; thus, printing from stereotypes is distinguished from typography; in wlich impressions are taken from movable types. It does not supersede type-founding, but supplements it, for a page of reading matter requires first of all to be set up letter by letter, and then the casts or plates are taken, each of which may be priuted from with nearly as much perfection as from the original forme. Hence a printing surface may be reproduced to an almost infinite extent, and the means of production of impressions on the press or machine are increased in proportion to the number of casts taken. It ensures an accurate cony of an original text, whereas in reproduction by resetting the movable types there is a liahility to devia tion. When only a cast is worked from, any accident may be repaired by taking another cast, and the cost is slight compared with that of composing over again. A smaller quantity of type may be msed in an office where this process is used; a portion of a work may be set up, a cast taken, and the types returned to the cases. The plates are more easily stored than movable formes, and are not liable to the danger, as ui lize latter, of types falling out. Ahove all, tho monld may be hent to any curve required, and a circular cast obtained, which may be fastened round the cylinder of a machine (see infro in regard to rotary printing).

The process of stereotyping, divested of merely technical details, is as follows. From a formo of matter, which may be wholly or in part composed of movable types, a matrix or mould is taken The original is in rilievo; the mould consequently is in intaglio. From this the stereo plate is cast, and it of course is again in rilievo. This in turn may likewise become an original, and casts may be taken from a plate, or other casts from the same mould. The first books were printed from solid wooden blocks, each of which formed a page. Then came the era of typography, in which these pages
were composed, mosaic-like, of morable types. Now has sncceeded the period of stereotyning, in which pages formed of single block: —but of metal, not of wood-are used. The two essential parts are. therefore, the making of the matrix and of the cast, which is composed of an alloy something like that for type metal. The mould may he of plaster of Paris or papier-mâche; the latter being the simplest material, and that almost universally used, need alone he here referred to. The following account of the process, when carried ont on the smallest possible scale, is sufficient perhaps to show the general principles of the art. The papier-mâché for the mould, called fong, is made by uniting several sheets of paper with a pasto made of wheaten flour, starch, and alun, to which wliting is added. These ingredients are often varied; the general object in using them is to ohtain a paste which will stand a high temperatnre without burning. A sheet of brown paper is laid down on a smooth surfase and pasted over ; blotting paper is laid on that and pressed down, then pasted over, and a sheet of tissue paper added, which is also pasted, and enother sheet of tissue paper placed on the top. This is well emoothed and pressed to give the incorporated material greater firmness and cohesion. Next, to prepare the forme for being moulded, it is surrounded with metal "clumps" of the beight of the type, placed close to the matter, and then oiled to prevent the flong sticking to it. The latter is then thoroughly damped, to render it quite plastic. The forme being on a level surface, the fiong is laid upon it, and on that a piece of linen. The surface is next well heaten all oper with a long-handled brush, till the flong einks into all the declivities of the forme and receives a deep impression of it. This is a process requiring experience and practice. The linen being removed, a piese of very stout paper is laid on the top, and also beaten domn, so as to strengthen the flong, and the moulding is finished. The nest point is to dry the monld.

In the most rudimentary method a combined dirying and casting press is used. It consists of a flat iron surface, with a lid attached to one and by hinges. Over the surface is a cross-head fitted with a serew; pressure may be exerted on anything placed between, the arrangenient being like that of a screw letter-copying press. The cross-head can be moved to one side when it is necessary for the lid to be lifted up. Underneath the press is a series of gas. jets, by means of which the hed plate is heated. The press stands on supports, but is attached to them only by an axle, and it can be readily changed from the horizontal to the rertical position. The lid of the box is raised and the forme with the flong upon it placed on the centre of the iron eurface. After loeing covered with a blanket, the lid is screwed down upon the whole, and, the gas being lighted, the forme and mould are heated for a few minutes, after which the lid is raised, the steam evaporates, and the flong, which has nor become the matrix, is thoroughly dry. In large stereotyping foundries, after the flong has been well beaten upon the forme, until the impression of the types is plainly seen on the back, it is baked and dried (the forme still underneath) on a long thick iron slab, callod a hot chamber, hecause it is heated from mithin by steam. The matrix is then removed from the forme, and any superfluous margin cut away or trimmed; after this the matrix is dusted with powdered French chalk and is ready for being cast from. ${ }^{1}$ A method has lately come in to use for obriating the necessity of keeping the matrix on the type while it is being hardened by drying by beat, wherehy the type is injured. The matrix is dried separately, being removed when moist from the forme, as soon as the irapression is obtained. It is then placed on a bed of sand heated by gas. The forme is never heated, and there is a great saving of time, because the dryiug can be done in two minutes. The matrix is laid on the bed of the casting bor face upwards, with ganges around it to determine the height or thickness of the cast. The lid is put down and screwed tightly, and the position of the press altered from the horizontal to the upright. The metal is then poured in and the press restored to its former position. The matrix is carefully raised and the plate exposed. It has only to be "trimmed," the superfluous metal cut away, aud the back planed, to be ready for isount ing on a block of wood to make it type high.

In stereotyping for the Walter and similar presses the proces is as follows. The forme is laid on the table of the moulding machine and the flong placed on it and thoroughly beaten in 1,3, hand or passed through a moulding machine, which performs tl. same operation. The forme is next placed on a heating surfacd and when nearly dried the matrix is removed from it and agais dried. It is then placed in the casting box, which is curved to t1 circumference of the cylinder of the press. The box, being on. swivel, is get upright. The metal is now poured in from g ladle and the plate cast. It is allowed to stand a minute and ther taken out, still hot, and placed upon a "finishing saddle" of the same circular form as the back of the plate, and secored by clamps. and screws. An angular-shaped knife or chisel, fixed in a carti age, is moved by a handle in a semicircular direction across the surface of the plate, in order to remove superfuons portions o' metal and to form a bevel whereby the plate can be sulscquently, cess poitgoned until actually required.
elamped on the machine. If nocessary ths piato may be smoothed at the back by a groclally contrived planing machine. The plate Is now ready for being placed on the printing raachine. Each singlo operation can be performed with the utmost possible despatch. If tha organization is oufficieatly porfect, tho time for making a rlate, from the moment when the formocomes down from the machiae-ruem to that wherefa the porfect plate jo set on the machine, ueed ouly bs about eight minutee.

In aewspaper establishments whero stereotyping is thas adopted the pages are not. all made up ailuultaucously : sonie are kept open till the last for the latest telegrams. The moment a pace is cons. pleted and locked up ia its chase it is bent down to the foundry, and as many cests takea as there are priuting machines to be set going. Ore pars follows another with rapidity, the first being placed in position on the machine, whilo the later ones aro in the foundry. Whea all tho plates are finished and fisel in their places, eix, eirht, or toa machincs may be simultaneously printing at the rate of nearly 12,000 per hour eacb. Tho enormous increase in the circulation of the great: daily aesepapere would havo been impossible but for the extramlinary facilities for rapid prodaction provided by etercotypiag. This process is also of special ntility to the newapepar printer in the case of telegrams arriviag lato. Ia machines which printed from the type, late telegrams could only be inserted by a "stop-press"; that is, the priuting was inter. rupted while the alteration was leing madlo. But, when the papier-infich casts of the pages have been taken, the type itself is tiberated aud seat back to the counposiug room, so that, if later news arrives whilo the unachiucs are runuing, the foreman printer altere the pago, a fresh cast of it is takcn, aud a inachiae started without interrupting the prorlnction for a moment. The London crening papers havo usually five editious, and for evers edition fresh casts ace marlo of on:o or more of tho pages.
Quite reccutly the sulistanco callell coliuloid hes been introdúced instearl of tho metal referred to previously. A mould ia mado of yellow oxido of lead and glycerin formed into a semi-fluid pasto, which is applied to the surface of the type. Tho matris is piaced on a potwerful press and a heated shect of colluloid ahout is of en inch thick is lall on it. When pressure is applied, a perfect facsimile is obtained, and it is ready to bo priated from when mounted in the usual way. Whereas a good electrotypo from a wood block a verares oix hours in its proluction, a cast iu celluloid can be got in less than an hour. Theso blocks are rery tough and many thousards moro of impressions can be printed from them than from stercotypes without their showing simas of wear. For small stamps india-rubber is used as a stereotyping material, and afterwards ruleanized. Theso stamps, being flexible, luist on rough surfaces which wonld not take an impression from ordinary etereotypes. With a fexible ourface, too, much less pressura is required.

Machinee have been invented to do away with tho use of types sltogother. The principle is to punch tho charactere successively on some onbstance which will act like the flong and become a trehes. mould from which stereo plates may be cast. In an appsratus receatly introduced tha floag is a prepared niece of millboard, which is placed in front of tho steel puuches. Tho latter are driven into the flong with lightaing speed snd great accuracy. By turning a handlo all the Romar punchea are changed to Italic; by onother a eet of sanserif or other founts comes into play. For setting time-tables and logarithms the apparatus is said to save ninety per cent. over the ordinary system of hand-setting. The obstacle to the more general uso of it is the diffenlty of correcting errors. In another machine the punches are drivan into a block of teak mood. They are cast to thicknesses which are the miltiple of a "point"; hence by a simple calculation they may be opaced out to the exact namber of points chosen for the iength of the liae, and every line leaves the machiue justifed. Tho block when complete is removed and a stereotype taken, which can be printed as in the ordinary method of typograpliyy.
Frr the reproduction of wood engravings electrotyping has zearly supereeded stereatyping, as it prodnces mucla better copies. For obtaining platos of type matter it is also better than otereo. typing, as many thousands of impressions may be takon without reducing the ehariness of an eloctro, while ordinary stereotype would be almost worn out by priuting a mucle emaller number. This arises from the superior hardness and toughness of copper, of which tho surface of the electro is formed. Electrotyping, however, is costliar and slower.
The forme to be electrotyped is ulaced upon a lovel plate, and earrounded with type-high clumps or metal furniture, and then floated with plasier of Paris, which provents tho mould of was (to be sfterwards mado) from penetrating too far into the interstices of tha spaces. The forme is moxt brushed with finely jowdered blecklead or plumbago. Tho monlding composition is mado of moltecl max, with the aldition of a little blackiead. This is poured into a shallow metal ruoulding tray, to whirh two pieces of atout wiro are soldered, in order that it mas be afterwarda suspended in the deprositing trongh. After the composition is coolen and set its anface is brushed with blacklead, and it is theu resdy for moulding.

The moulding press may be sompling like a letter-copyag press or, in a largo establishmeut, may corsist of a powerful hydraulio or other press capable of excreisiag a pressure of mauy lons. The forme is placed exactly zinder the cantre of the platen, with the moulding trey coutsiniag the wax, slightly warm, ups it AI impression is then taken, and the mould afterwards seperated from the formo. The monld has uext to go through tha proceas of building, that is, heated wax ia dropjed upon sach portimps as shoald be mors deaply sunk in the fyished electrotypa flate, namely, ti:s flaces where "wlites" are 10 sppear in the print. Tho mould fiaving been finished, has to be blackleaded, plumhago being a couductor of electricity, while war is a uoy-conotuctor. The material is well brushed in, filling all the iateratices of the forme; aed the entire surfaco of the mould must be properly covered, to ensure a perfect deposit of the copper. To facilitate this operation, a blackleading machine is used in largo estallishments. Tho formo is placed upou a cartiago formed of transverse bars ono 28 mornd backwards and forwaris by a handle and rounce to bring it undia tho blacklead brush. After the monld is blackleaced, the back of the moulding pan is coated mith max, to prevent the copler from being deposited upon it. The mould is now quickly immersed in one of the compartmente of the battery. The process of depositing a copper colution upon the blackleaded surface of the mould 23 continued until a solid plate is formed, which, thongh it is scarcely thickar than a finger nail, being about $\frac{1}{2}$ inch, forma, when properly backed, the best and most cuduring ourface for lefterprese printing that has beeu discovered.

Tho moulding tray containing tho mould is hung on tho brass rod of tho depositing trough facing a plate of coppler, and tho connezion of the battery marle: that is, the mould is attached to ene polo of tho battery and the plato of copryer to the other. The copper, so to speak, is decomposed on tho oan hand and recemposed on tho other: in other words, the current of electricity being complete, and tho mould sulmerged in the sulphate of copper solution, tho deposition of coppler on the mould at onec commences. Here it remains until tho deposit is suffcient, the time usually occupied being from 8 to 12 lours, according to the state of tho solution aud the strength of the batteries. Tho dyamo-clectro machine, which is now employed in large houses, rery materially reduces this period; otherwise Smee's battorics aro generally used. When the deposit, or, as it is called, the shell, formed on tho was mould is of proper thirkness, it is discngaged from the wax, -the mould being placed with its back on an inelined board, and boiling water poured over the shell, which melts the surface of the wax, execpt a thin coating, tho removal of which is effected by placing tho mould and shell on a steam heating table. Thus the wax mould is destroyed, and it is not possible to obtain more than one shell from a mould, whereas the stercotypa process enables almost any number of casts to ho taken from the same matix. The shc!l, being too thin and fiamile to be priated from, is next backed, or flled ry with metal of a somernat softer kind than sterco metal. The ohell, after being further cleaned, is lowered on to tho tep of a ressel of molten type metsl ; and, when the solder previously used to unito the copper and the metal has fused, the latter is poured orer it in a molten state until it is covered. The plate is rashed, dried, and polished, the back ronghly planed to a surface parallel to the front, the edces squared, and all imperfections mado good: Tho thickness of a plate is usually a pica or th inch. It is mounted as an ordinary stereotype plate. Within tho last fer years the pro. cess las been greatly facilitated by tho employment of specially contrived apparatus, aud illustrations can be produced in threa hours from the time tho mould is made. Curved electros are produced, as well es curved stereos, for uso in rotary printing. Facing with nickel by the electroplating process is now largely adopted for hardening stereotypes and electrotynes and readering them more durable. This process also proveats the deterioratiou of such plates by the action of the acids or other chemical reagents oftea preseat in printing inks, such as cyazide of potassium in red iuk and nitric acid in some blue iuks.

Polytyping is a mothod invented in Franco about the end of the 18th century, but notv seldom practised in the United Kingdom. The apparatus somewhat resembles a nile-driver. It lias two npright suides about six feet high, and a pulley at the top, which elerates by means of a rope a heavy plate, on which the matrix is placed in an inverted position. At the foot of the machine there is a suls. stantis] iron bed, unon which the operator places some molten metal. Ho then pulls the ropo until the matrix, with ito weight attached, is elevated to the top of the machine, when it is suddenly allowed to fall. Tho result is simils to that made on a medal by means of a die, -a perfect reproduction of the matrix in relief, which is mounted on a metal stand to type height. The results are cxcelient, as the plastic metal is forced into the finest lines of the matrix. Duplicates of a block can bo thus prodnced more rapidly than by the ordiaary stereotype process; and snother ad. vantage is that the intaglio parts are much deeper, - a point of some importance in priating. The matrix may bo mado from tha black by the electrotyping process

Substitutes for Wood-Engraving.

Formerly the only available method of ohtaining illustrations which could be printed on the letter-press in conjunction with type was that of wood-engraving. At the present time a number of comparatively new processes are in operation, in which the engraring is done almost antomatically by the adoption of chemical processes and the well-known principles of photography. Engrarings of this kind are called in the trade process blocks, or sometimes zincotypes, owing to the metal of which they are formed. There is space here for only the barest possible account of the processes.

In the first method, which is sometimes called typo-etching, the drawing is made with ordinary lithographic ink on stone, or on paper and transferred to stone. It is then re-transferred to a plato of polished zinc by the ordinary lithographio process. Zine is employed on account of its cheapness and its ready solubility in the acids used for etching. It has properties similar to those of the lithographic stone in taking up the ink and the water. The transfer is made to adhere to the plate by being passed through a lithographic press; the paper is then stripped off; ind the whole of the ink is left on the plate, which is inked up es a litho stone with a view to render the lines as solid and strong as possible to resist the acid. The covering of the lines is strengthened by dusting powdered asphalt or some other suitable material over the plate, which is warmed just sufficiently to incorporate the asphelt with the ink. The plate is next placed in a bath of acid (its baok and other parts, where the acid is not required to act, being protected by varnish), in order that the unprotected parts, or those which are to form the whites of the finished picture, may be dissolved away. In order to prevent the acid eating not only straight down into the plate hut on the sides of the furrows it forms, and thus undermining them, an ingenious device has been adopted. As soon as the etching has proceeded to a very slight depth, tho plate is removed from the bath, washed, and heated. The ink and other protective medium are thus melted and run down the sides of the little furrows formed by the acids and thereby protect them from further action. Inking and dusting with resivous material are repeated, and etching resumed, until the depressions of the hlock have been brought to the proper depth. The etching is carried on in tronghs to which a rocking motion is given, so that the acid flows to and fro in waves over the surface, and littlo bubbles of gas, \&c., are carried atway. Where large epaces of white occur, the metal is cleared away by a drill ; after the block has been mounted type high, it is ready for the rrinter.

This process is only available for the production of "line blocks," i. ε, those in which the original drawing is done in lines or dots, as for an ordinary woodcut. The highest achievement of process blocks has becn the production of tone blocks, which may be made direct from oil-paintings, water-oolours, photograpls, drawings in chalk, wash, pencil, \&c., or indeed from anything from which-a photographic negative can be taken. The exact nature of the processes is a trade secret, but the rationale is given in Mr Truman Wood's Modern Mcthods of Mlustrating Books (London, 1887), to which we are indebted for the following detalls. The prohlem is to translate, as it wers, the light and ehade of the negative into solid outlines of black and white. The shades mnst be lines of various breadths or of various distances apart, or spots. or grain of various dogrees of fineness or closeness. In a aurfaceblock any part that touches the paper prints, and any part that does not touch the paper does not leave any mark at all. The photographic irnage is continnous: there are no outlines in it, the picture being formed of graduated tints or shades, ranging from the white of the paper up to tho darkest colcur that the process employed can give. To make a block for letter-press printing the graduated tints of the photograph have to be broken up into stipple or grain, and it must be a stipple closest in the shadows, gradually becoming moro open throngh the lange of the intermediate tones, and vanishing altogether in the hirhest lights. To describe the ingenious methods adopted to secure this end would involve an account of several plotographic operations which would be out of place here. In one process, perfectod by Meisenhach of Munich in 1882, grained negatives are produced by placing a transparent screen, on which a staitable grain is imprinted, in contact with the negative or the positive to be copied, and then photographing the two together. The negative is transferred to a plate of suitable material, which is graved or etched in the usual manner, to form a typographic block. Another derice is to print from the original negative upon a piece of silk, the threads of which break up the picture into a regular grain. The positive on the silk is then photographed and a printing block made. Theso blocks require from their very low relief delicate and careful printing, but are made to give excellent results.

A process of typographic etching has been invented by Messrs Dawson, in which the design is drawn with an etching needle on a brass plate covered with a wax etching ground, In the same manner as for an ordinary etching. The metal is therefore bared at the lines, which are separated by ridges and spaces of wax. These spaces are
strengthened by the addition of melted wax, which runs up to the edges of the lines, but does not run over on to them as might he expected, filling them up The supply is continued until the spaces between the lines, representing the whites of the finished print, have been raised to a height sufficient to give the necessary relief, when an electrotype is taken. This electrotypo forms the printing surface.

Shanks's process is a device for producing pictures simply by the use of nechanism, and is an application of the eidegraph. The plate to be drawn upon is moved under the drawing implement, which is a rapidly revolving cutter, and the plate on its carrier is mounted on the end of a series of levers in the same way as the slide rest of a lathe, so as to have motion in two directions, one at right angles to the other, and consequently by a combination of the two to have motion in any direction in the game plane. If a plate of a suitable substance, such as hardened plaster of Paris, be mounted on the carrier, and the bracing point at the other end of the lever be moved over the lines of a drawing, the cutter will plough a little furrow, which will follow these lines. When the plate is finished, a stereotype is taken from it and forms the printing surface. The lines of the casts are remarkably strong owing to tho conformation of the furrow of the mould, and they can be ppinted on fast rotary machines. The weather charts given in some newspapers are produced by this process. A block with the recurring outlines being made, platee are moulded from it, 50 that the details slone have to be separately cut upon future plates. Mr Shauks's method is remarkably simplo and expeditious, and the resulte aro ecoromical and trustworthy.

Press - Work and Presss.

The characteristic of printing, as already pointed out, is that the pigment-the ink-with which the printing surface of the type is coated is transferred to the paper or other material by pressure. The manner in which this pressure is exerted gives rise to two classes of machinery, -those in which the platen and the cylinder respectively are employed. After the paper is placed on the type, in the one case a flat plate of iron moves parallel to the forme and comes in contact mith it, cansing the impression on the paper, while in the other case a cylinder revolves over the surface, which travels in gearing with the cylinder.

Space does not permit of any sketch, however slight, of the origin and progress of type-printing machinery. We can only refer to what may be regarded as representative appliances in presont uss. In America all kinds of apparatus for printing are called "presses", in England, however, an appliance of a more automatic character than the hand-press is usually called "a machine." As the hand-press is now alnost ohsolete, this distiaction will probahly be abandoned, and the shorter and more expressive word "press" be applied to all. Venturing to adopt this suggestion, wo may say that of platen presses there are the hand-press, the treade platen press, and the steam or other powerdriven press.

Fig. 10 is a view of the Albion press. It is wholly of iron end steel Although this press is nearly superseded, it is desirsLle to point out its component parts, as they indicate tho genera! principles on which all typographic machinery is based. The flat plane on which the type is laid is called the bed of the press; the other flat plano which moves vertically and presses the paper on the type is the platen. These are the two essential parts of the press. 'The platen is perfectly smooth and level on its under surface, in order to give the whole of the type forme an equable pressure. It is mounted in a 6 trong iron frame, with a cross. piece or head. The platen is propelled by a piston, which moves up and down. The power is gained by bringing an inclincd bar of steel perpendicular to the direct line of pressure, and in doing 60 the piston is forced down. This stoel bar is the chill, shaped like an elbow. At one end is a har or handle which, on being pulled towards the operator, straightens the chill or brings it into the vertical position. At the sides are guide-plates fixed into the frame, to proserve the parallelism of the platen, for the slightest vibration or lateral movement would prevent a clear sharp impression being taken. There are appropriate applianccs, such as a helical apring, fixed on the head of the press, whereby the platen raises itself when the pressure is not required. In order to brine the forme readily unier the platen, and to withdraw it so that it may be inked and the sheet to he printed placed in position, the table is mounted on a carriage, that runs on two rails by turning a handle connected with two endless bends. The paper is ixed to certain marks on the tympan, a lind of metal frame hinged on to the carriage, when it is in a sloping position. This cusures the paper being printed in the exact place required The tympau, over which calico or parchment is strctched, is double, and contains within it a pad of paper or a piece of blanket, to moderate the force of the impression of the platen. To it is hinged another metal frame, the frisket, which is covered with paper, ent to correspond with the shape of the type forme on the press. The ink is applied with a cylinder or roller, which revolves in an iron frame, sud is
sorered about an inch thick with a compesition of glue and treacle pr of glycerin or other substance. The ink is spread out with a palette knife or similar applisnee on a table adjeining the press, and by repeatedly revolving the reller over it, it becomes eoated with an extremely thin film of ink. The reller is then moved over the surface of the forme en the press, until sufficient ink has been transferred to it. This is called rolling, and is a very impertant part of press-work, for if inefficiently perfermed there will be

Fio. 10.-Albiun press.
colded down on the trmpan, whieh is in gnides. The frisket is forme with the risht hand, while with the left fold down on the and the press carriage brought under the platen. The bar is pulled by the right hand, the bandle turned the reverse way with the left hend, the carriage brought out again, the tympan raised, the frisket opened, and the printed sheet removed, the tympan beiug ready to receire another white sheet. The frisket serves, among other things, to keep the edges and parts of the sheet not required to be printed from being discoloured by contaet with the ink or the sides of the forme, and to aid in steadying the sheet when the tympan is depressed and in the removal of the sheet when it is raised. Such is a bare cutline of the method of printing at a hand-press, - one necessarily imperfeet from a technical point of view, but sufficient to indicate the essentials of the operation.

Another press which has been much used is the Columbian, -a name given to it by its inventor, Clymer, an American. The power is gained by an iugenions combination of lerers. Two of these are connected by a rod mith the bar handle, which is in itself a lever. 3 The platen is attached to the head by a strong iron bolt, the descent heing made steady and regular by fertical guides. It is counterbalanced by a powerful lever or beam, having an adjustable weight shaped like an eagle, which raises it automatically. In the bar handle is a serem stop by means of which the length of the lever rod can be adjusted and its pressure, or the pull, perrectly regnlated
Nine distinet processes hare thus to bo gone through in order to print one side of a sheet of paper at a hand-press:-(1) inking the roller, (2) inking the forme, (3) laying the sheet on the tympan, (4) folding down the tympan, (5) running in the forme under the platen, (6) taking the impression by depressing the platen, and then immediately afterwards allowing it to raise itself by means of the counterpoise or spring, (7) running out the forme, (8) lifting the tympan and frisket, and (9) removing the sheet. The object of auccessive improvers of the printing press las been to render the npparatus more automatic, or to substitute for it a "maehine" that will reduce these nine operations to the minimum. In modern machines this has been effected to the extent of renderieg necessary only three of them-(1) laying on or "fceding" the sheets, (2) rpplying the motive porer, (3) taking off or delivering the sheets; and rotary machines both feed and deliver themselves automatieally. Nearly all eylinder machines hare a delivery apparatus, and quite recently an appliance for the antomatic feeding to them of single sheets of paper has been invented.

With respect to the platen press we lotice first that which is capable of being driven by a rotating shaft or wheel. It should be observed that the adoption of the rotatory prineiple was essential to the acceleration of speed. This was recognized by the projeetor of the machine ${ }^{1}$ press, William Nicholson, and by Frederick Koenig, who first brought the invention into use and construeted a practical

[^296]press. The essential arrangements of every machine are four, their respective objeets being (1) to feed in the paper, (2) to ink the forme, (3) to print the sheet, snd (4) to deliver or take it off.

The treadle platen press is the simplest of machine presses eapable of being worked by a wheel. When other motive power is not arailable it is driren by a treadle, like that of a lathe. The type forme is usually secured by clamps on an almost vertical bed (fig. i1), and tho platen recks backwards and forwerds, being thus brought in contact with the type on the ked. Just betore the impression is taken, the two surfaces are mo mentarily parallel. The inking is effeeted by small eomposition rollers, ad justed in a roller earrier swinging on a pivot. The rollers receire ink from a "fountain" or duct of ink at the top of the machine, below which is an arrangement, such es a revolving disk, for dis tributing the ink. The constant motion of the
 rollers and of the rerolving ink disk is equivalent to the manual movements of the operator who "rolls" at the hand-press. The rollers are carried by self-acting appliances over the face of the forme, and return to the iak table to be repleuished with ink, after which the impression takes place. The slaeet to be printed is placed in proper position on the platen, which is corered with paper or parchment, and is secured there during the more. ment of the platen by movable fingers ealled grippcrs. The platen on adrancing brings the paper in contact with the type forme; after the printing it returns to its original position, when the sheet is removed and another sheet adjusted ready for being printed. The treadle platen press is only adapted for work on paper of small size, up to half sheet demy, but within this limit it is greatly superior to the hand-press. If sufficiently strong and well built, it gives a far more powerful impression, and it occupies about a sixth of the space. Its great merit, however, is its superior speed. The hand-press, when worked ky two men, one rolling the types and one pulling the handle of the press, produces only about 250 impressions per hour. The treadle press is morked by a boy, who has only to depress the treadle with his foot, aud lay on and take off the sheets with his hands, and he ean work at the rate of more than $\mathbf{1 0 0 0}$ per hour. The treadle press is also superior to the hand-press in the uniformity of its resnlts, since the automatic inking ensures a greater regularity in the colour of the impressions than with the old hand-inking process.

The ordinary or "double" platen press nas, in principle, very Double similar to the hand-press. It was about 13 feet long. The platen, platen in the centre, was massive, as the machine printed sheets as large press. as double demy, and it had a perpendicular motion, being guided in grooves and worked by a connecting rod fixed to a cross beam and crank, which aequired its motion from the main shaft. In other respects the machine differed from the hand-press in having two type beds or coffins and two inking tables arranged at the ends of the carriage, which travelled backwards and forwards, being worked by a drum underneath. The paper to be printed was laid to marks on the frisket, and this was hinged on the tympan, which in turn was fastened to the end of the coffin by hinges or joints. The frisket -and tympan were opened by minning up bars at suitable positions. After a newly printed sheet was removed, another was placed on the frisket, which as the carriage moved ran domn the bars and closed on the shect, which tien. received its impression. This arrangement was dangerous to the bovs who had to lay on the sheets.

Formerly it was thought that the rery finest printing could not be done by a cylinder impressing a forme in the progress of its reciprocating motion, for that was liable to slur or blur the impression. Hence platen presses were employed for the best mork. Of reeent years engineers have brought the eylinder press to such perfection that there is net the slightest danger, under the superintendence of a capable man, of any slur. Working quite as well as the platen press, the cylinder press is enormously quicker and more productive; it requires less driving porser; and much better inking is obtained, which is all-important for fine woodeut printing. Accordingly, for ever the best illustrated book-work, the platen power-press is now almest catirely superseded by the cylinder.

Cylinder mschines are of two kinds, -(1) presses in which the type is on a flat plane and (2) those in which the type, or more eorrectly the impressing surface, is cylindrical. The first are called cylinder presses, the second - a development of the first - the rotary web presses.

- The simplest kind of mechanical press is ealled the singie.
cylinder or one-sided machine, which has been recantly hronght to the highest state of perfection by. Mr Ssmuel Bremper. It is generally used for commercial and fine book-worts on ono side of the paper. There are different varueties of cylinder maohincs, distinguished by trade-marks or the names of their makers; but the general principles, apart from details, ere practically identical. There is a strong east-iron frame, with bearing to carry the cylinder, which runs across the machine transverselj, pearly in the centro. The cylinder revolves by gearing connected with a main shaft, which also works the other moving parts. This shaft is turned by a wheel for hand

The table
for
upon the tympan and folding it down on the forme are superseded by the presentation of the paper to the grippers; and the taking-off of this sheet after rasing the tympsn is superseded by removing it when released by the grippers and laying it on the sdjacent table,both ummeasurably easier operaticns snd done much more rapidly. Indeed both laving-on and taking-off may be done sutomatically, as is explained belor. The result is that, while two men are reanired to print a skeet of book-work on one side of the paper at the speed of 250 an hour st the bsnd-press, ms chines of this class worked by one operstor printabout 1200 per hour Eveu per

Fio. 12.-Extra-colour Bremner machine, with sheet-fyers.
cut up into double crorm sheets, the pro-
carrying the type is slso provided with a flst inkiug bosrd of wood or iron, used for distributing the ink. It travels backwards and sorwards, that is, with a reciprocating motion. At one end of the machine is the fecding-boerd, on which the pile of paper to be printed is placed. The lsyer-on places each ohcet against metal marLes, consisting of rectangular pieces of steel or brass mounted on a har undernesth, which rises and falls according as the sheet is being luid to and taken sway from them. When placed against.these marks, ensuring corzect "lay," the sheet is seized by grippers or light metal clatre fixed on a bar inside the cylinder. These clutch the sheet and carry it forward round the cylinder, which in its revolution brings it forcibly in contact with the type forme moring forward underneath, when the impression is effected. Immediately after the grippers release their hold, snd the sheets are removed singly by an attendant called a taker-off, or by a mechanical automatic arrsngement called a flyer, and deposited on the taking-off board. At the end of the machine farthest from the lasiag-on bosrd is fixed a trough, which contains the ink; it-is fitted with the duct roller of cast-iron, which revolves by means of a band or ratehetwheel and pawl. A flat bar or knife with a thin edga is set up egainst the metal roller lengthways by adjusting screers, which regulate the passege of the ink, and permit a thin film to pess the knife. A composition roler, called a vibrator, is axed nuderneath, which takes off the ink that has already been deposited on the duet roller snd leaves a ridge or strip of it on the inking slab. As the carriage returns, this strip of ink is distributed on the inking table by rollers placed diagonally across the machine. The disgonal position gives them a waving motion; hence they are called wavers. The inking of the forme is done by another set of rollere called inkers, placed near the impression cylinder. The inking rollers receive their ink from what is distribnted on the tahle sad coat the type while it is passing underneath them.
Thus the nine operstions of the hand-press requisite to print one impression are greatly reduced. The bed carrsing the type to and fro from the point of umpression moves mechsuically, superseding the running in and out of the carriage by the rounce and handle of the hand-press. The inking table, although independent, forms part of the type table, and some of the rollers distribute and others ink, this agan being done mechanically and without a second operator. Ihe piaten and the tympan, as well as the levers by
 Hinder, which rotates by gearing, the pressua being applied suring the motion ef the table atse!f. Tha laytnaraz of the sheet
ductiveness of the machine to the press.would be, per hour, atout
8000 to 250 . 8000 to 250.
As already mentioned, a self-acting feeding apparatus bss becn iuvented for supplying single sheets to cylinder machines. The pile of paper is laid on a feeding board or table, betreen gauges A pncumatic tube takes up. one slied at a time; it is then run down tapes to a point at which india-rubber fingers bring it to the side lay of the machine, and it is priated with perfect sccaracy of register. Once started, the machine works automatically, and the services of both layer-on and taker-off are dispensed rith.
We may now describe that class of machines by which the paper is printed on both sides, of perfected, during one passage through the machine. The Applegath and Cowper or crdinary machine has tro impression cylinders, having a continuous rotary motion towserds each other. The frame is necessarily long, usually shout 15 feet, and the width of the machine sbout 5 feet, these dimensiony depending upor the size of the sheet to be printed. The table or carriage is donble, containing tro beds for ths two formes of type, to impress the tro sides of the paner, and two distributing tables for the ink. At cach end is a complete roller apparatus, consisting of duct, duct roller, vibrator, snd wsvers. Close to the largo cylinders on each side are the inking rollers. Ths table has a reciprocating motion, as in a single-cylinder machine. The distinctive feature is the ingenious manner in which the sheets arg printed first on one side sud then on the other. This is effected by carrying them over cylinders snd diums by-mesns of tapes. The pile of sheets etands on a ligh table placed at ons end. The sheet is fed into the apparatus and led round an entry drum; thence it is carried ronnd the large right-hand impressing cylinder, and undernesth this, on the table, which is moring at the ssmo speed as the cylinder, is the inner forme propedy inked. The paper thus receives an impression on one bide. It is next lef ap to the right-hand drnm, which it passes over, the printed side of the sheet being then downwards. Continuing, it is brought under the second or left-hand 'r rum and on to the left-hand impression cylinder, which it passes with the printed side still downwarde, or next to the cylinder, exposing the other side to the type of the outer forme on the table underneath. The drums have thas reversed the position of the paper: the side which was outside trhen pessing the first forme is inside when passing the second forme, Which accordingly prints the sheet on the opposite or blank side. The sheet is finally run out by the tapes and delivered in the sprace between the large cylinders, seized by a taking-off boy, and deposited
on a table or taking-off hoard. Tlis press is known as the dropbar perfocing muchine, owiug to a peculiarity of the arrangeraent by which the papor is eonreyed into the tapes. In front of the feeding table is a rod or bar of steel, along which ore fitted several matal disks or lousses about half an inch thieker than the bar itself. These can ba shifter, by means of small screws, to any position

and a small drum on to the inner formo cylinder, as already stated. coher timas of machines are distinguished as the web, having a web or a series of broad tapes which lie on the laying-on board and are fastened to a small drum undernosth it. The drum lias a aeries of amall cogs, and when it is forced forward it moves the web or tapes in the samo direction. Tho shect, haviug been laid to a back mark on tho tapes, is propelled between two rovolving rollers and thus taleu into the machine.

There are several distinet types of perfecting presses in use, but wo can only natice one or two. In the Anglo-
French mochine, which was in
vented in Eugland but it proved in France, grippers aro used instead of tapes and
blankats. Tho paper ncxt passes on to the printing cylinders $T, T^{\prime \prime}$, on which the printing surface- aot composed of movablo types but of stereo plates-is fixed, and to the impression cylinders r, l^{\prime}. The printing cylinders contain each the plate in curvilinear ihapo, constituting the forme for ono side of the paper. Tho wob s led between tho prioting and the impression cylinders, as shown by the dotted line. After being printed on one side by T, it travels ronad I and receives an impression on the other side from 7 , thans being "perfected." It then passes on to the cutting cylinders K, K, one of which has a serrated knife, which enters the paper, aud on the application of tension divides the web, cansiog the pecnliar saw-like etlgc scen in copies of journals printed on rotary machines. Tho paper is next carried in over tapes to tho point where the complate severance takes place. Soon alter they encounter a pendilons frame, which delivers them in two piles on to the tables x, x, whence they are removed. There is an ink supply trongh a, which is connected with the distribnting rollers by a revolving metal roller b. The distributing rollers of metal are marked f, g, h, i, and tho rollers which ink the forms, made of the ordinary composition, are markel λ, λ.

The averago rate of speed of tho Walter press is 12,000 per hour, the sleests being printed on both sides. In this apparatus everything is automatic: thero is self-fecding aud aelf-lelivery, tho web of paper at ono end being transformed into properly priated single sheets at the other. The machine requires only ono man to superintend its general working, including the replacing of the web when printed and the romoval of the successive piles of eheets. In respect of speed, if the perfecting machine is to tho hand-press as 32 to 1 , the rotary will be to the hand-press as 96 to I. The Walter press, requiring a space of ouly about II fcet by 5 , is pot more remarkable for its speed and economy than for its simplicity of coustruction and its compactuess. And tho samo remark applies to soveral other machines, snch as the Victory, the Hoe, and the Prestonian, which have since come iuto use. Their gencral appcarance is that of a collection of small cylinders or rollers, through Which the paper scems to fly at railway speed, issuing forth in two descending torrents of shects accurately cut into lengths. Without such machinery tho prodigious issnes of some of the morning jonrnals would not be possible. One daily paper averages a circulation of more than a quarter of a million. This enormous aumber of sheets are printed in about four hours, owing to the type matter being stereotyped and placed on several presses.

Printing

re ang from webs of paper instead of single shects will probably o. adopted io the flure for all newspapers and even books of large circulation. Haod-feeding is limited by the ability of the operator to lay the sbects on tho feeding-board with the necessary accuracy. One chicf obstacle to the wore general adoption of rotary printing is the expense of stercotyping tho type formes. Althongh a machine bas boen constructed in which movablo types can bo placed ronnd the periphery of an impressing cylinder, it cannot compete with tho Walter and other presses using stereo plates. The problezn of printing directly from flat formes of ordinary types, as wen as from stereotypes, with paper supplied in the roll, is one that may be commended to engiaeers. The saving in etereotyping in many cases would be very considerable; but, oven where this is not an object, the readiness and caso with which this type could be manipulated would ensuro for such an apparatus admission into offices where the large rotarics of the present day are inadmissible. It would also cuable illnstrated journals to be priated from the web. The pictures introdnced into some of onr daily jonrnals are very rude when compared with those in periodicals printed on flatbed machines. This is owing partly to the distortion that arises when the cast from a flat block is accommodated to a curved sarface, partly to the fact that stereotyping does not give the fino and delicate reproduction that electrotyping supplies, and partly to the imperfect inking pawers of the machines. Quite recently a plan has been patented whereloy curved electrotypes of pictnres can be fastencd to blank or depressed portions of an ordinary curved stereo plate; but the mothod is not always practicable. With a flat-bed machine tho formo to be printed from might be of a compositc kind,-partly movable types, partly stereotype, and partly electrotype. One difficulty of constructing a web printing machine With a flat bed is that of turning the sheet so that it may be printed almost simultaneonsly on botli sides. It wonld have to be reversed by the continued rotary movement of the cylinder. This, however, is quite within tho limits of practicability, and experiments are now being made to devise a machine with this feature.

For about thrce centuries after the invention of printing the formes were inked by leather balls. When machino presses were introduced, their earliest inventor tried to use cylinders covered witn leather ; but tho plan was most uasatisfaciory, until a oubsewas cast iato cylinders having an inner "stock" of metal or Food. For about half a century this composition was nsed exclusivcly for Loth hand and machine presses. Sinco then glycerin has'been introduced for roller making. Haasard's recipe, in use whea the 8 th edition of the present work was issued, was-glue 4 parta,
treacls 12 parts, Paris white 1 part. But a much better composition is मow formed of glue 10 parts, sugar 10 parts, and glycerin 12 parts. The glycerin has tho property of always keeping the roller moist and soft, while the tendency of glue and treacle is to dry and harden. A glycerin roller lasts much longer than ove of glne and treacle.

Printing ink has pecnliar quslities. It is required to change from Qualities a perfectly hard and dry substance after bed to the type to that of of priata perfectly hard and dry substance after being transferred to the ing ink. paper. 'I'his change of condition mnst be nader control, and when air is exclnded the ink should keep in good order any length of time. During its application to the type its solidification should be as slow as possible, and noaccompanicd by the emission of any nopleasant or deleterious odour. It onght not to affect the rollers, and, having been applied to the paper, its action should be confined to a very alight ponetration, just snfficient to prevent its detachment without injuring tho shurface of the paper. It mnst dry into a hard, inodorous, and unalterablo solid. Tho ingredients of ink are burnt linseed or other oil, resin, and occasionally coap, with varions colouring matters; that for black iak is usually lamp black, Ink is removed from types and blocks by detergents, such as potash and pearl ash; beazine is also well adapted for the purn as potash

Colour Printing.

The apparatus previously described is iotended for monocinome Printing printing, whaterer be the shade of the ink. When two colonrs or in two more have to be printed in one composition, there mnst be a coloars, separate type forme or separate engraving, and a separate printing, for each. Nany attempts bave been made to print several colours simnltancously by dividing the trough or nauipulating the roliers. All these bave been more or less unsuccessful, with the exception of is press invented by $\mathbf{M}(\mathrm{F}$ W. Conisbee, which prints from type formes in two colonrs. In construction it is somewhat similar to the ordinary single-cylinder machine, but is provided with two sets of inking apparatus, inclnding ductor, wavers, and inkcrs, each of which acts totally independent of the rest. The cyinder is placed in the centre of the machine and makes two continuons revolntions, giving an impression for each colour. There are two ty; formes, each containing only the lines to bo worked in one of the colours. These are in two beds adjoining one another, and, the circnmierence of the cylinder being equal to the length of one bed, one colonr is printed by the first revolation and the other hy the second. The sheet is thus printed twice withont leing released from the grippers, whereby perfect register is ensurad. The speed is slow, averaging 300 to 400 completo impressions par honr.
The method by which the beautiful coloured supplements issued Chromo occasionally with illustrated ncwspapers are printed may be slightly typoreferred to. A copy of the artist's painting is first of all made, on graphy. a scale regulated by the size of the reproduction. This being supplied to the engraver, an outline or key block is made and proofs pulled. It is now necessary to determine the tones of colour to be ased, - a process demanding great experience. The key hlock will, if printed first, afford a guide for the registration of the subscquent printings ; sometimes, however, that is reserved for a later. stage. The colonrs on which the sabsequent printings are donc must be of a transparent nature. The blocks are sometimes prodnced by tite typographic etching process, which gives a softress, delicacy, and variety muattainable by the graver. The blending of the colours is the most delicate task the printer has to noder. take. A large picture is often printed in teu or more workings, some of them in their turn intensifying and bringing previous colonr workiags into stronger relief, others giving shape and form tu the picture. Almost to the end of the process, horever, the picture will want vitality ; its outlines will be hard and bare, or vague and undefined, according to the eequence of the colours. Another working may give grey" tones where wanted, and may increase the depth and transparency of varions parts. A deep flesh working may have a marked effect on the development ; and near the closo of the series, if the entire colonring is found to be too warm, it may be corrected by over-printing very nearly the whole subject. Chromo-typography has undonbtedly made great strides dining the past twenty years, its best results being shown in the colonred prints for ilnstrated journals. For the production of pictures for commercial and artistic purposes cbromo-lithography is geaerally resorted to on acconnt of its relstive economy. In lithography for typographic purposes the line has to be cut and the space on both sides reasored so as to leave the line alone to be
charged with the ink, or the white space has to le etched awav witl an acid. The printing of isolated points too is easily effected from a stone, whereas most minute labonr is necessary to engrave them. Eypographic etching bas here, however, been of great assistance. The differences of printing surfaco caused by the colours are met and overcome by the lithographic stone with great facility, eveu when the spaces are largest and most uneren; it is quite the contrary in regard to typography, wherein the work has to be charged with ink to a greater extent secording to its size, aud the quantity
of ink requisite varies with the fineness of the strokes and of their distance apart. Owing to this we see in most letter-press polychromatic !irints a deficiency of transpareney, of half-tints, of depth of ground, aud of general harmony. Even if it were possible to mako chromo-typograplyy as easy as chromo-lithography, there would atill be tha obstacle of its very much greater cost, owing to the expense of the engraving and of the casts from the key block. In chromo-lithography the designer can repeat the designs for the different stones by a process that costs almost nothing. Also in the brocess of multiplying the blocks the deviation in the register of the successive eolours is practically unavoidable. In lithography the surface to be printed is nearly level; hence the eheet is not shifted and twisted or stretched in places, as it is in typography, owing to the alternate closeness and abseuco of contact betweeu the sheets and tho raised and depressed surface of the block. Whatever success the letter-press method has attained of late is owing to tho invention of electrotyping and proeess blocks, and to the improvement of machinery. For to priat these pictures enormous strength and riridity, and tho inost perfect arrangements for securing register, are absolutely essential.

Recent Changcs.

We will now give a cursory glance at the changes that have been effected duriag the last twenty-five years in the processes and the products of the art of printiog. That these have been of a most drastie kind may ba gathered from a comparison of the applianees figured and lescribed in the 8th or the previous editions of the Encyclopsedia Britannica with those referred to above. Tho hand.press has been almost completely superseded by the machino press. Cylindrieal impression las displaced platen impression, and the finest book-work and woodent work are done on a eylinder press. In book-work, indeed, other significant changes have taken place. Whereas formerly it mas deemed essential that the paper should be damped before printing, io order to get a delicate and perfect impression, some of the finest books and periodicals are now printed on dry paper, highly calendered, oven the illustrated journals and somo of the evening papers boing so worked. Then, it was thought necessary for the safety of the type to interpose a thick soft blanket between it and the pressing surface, whether cylinder or platen; now, it is found oquslly safe, and far more conducive to a good impression, to make the packing as thin and hard as possible. Then, fine moodcuts were "brought up" by tho use of many "overlays" and "underlaya" to corrcct juequalities in the surface of the bloekg and empliasizo somo of the parts; now, although the art of "making ready" has heen brought to great perfection, the fewer and thinner the oterlays employed the better. And it may not be irrelerant to point out that the printing of wood. cuts has improred in the same degree as the engraving of them.

Perhaps, however, the most remarkable ebange is that made in newspaper printing. The highest achievemeat mentioned in the artiele "Printiag" in tho Sth edition of tris wolk was the six. cylinder Hoe machine. The makers of that ayparatus subsequeatly contrived machines of eight and ten cyliuders. But they have now been wholly superseded by the rotary presses on the Walter principle. The hand feeding-in of single sheets is entirely dons away with, and all newspapers of considerable circulation are printed from long reels of paper, uncut, as originally made at the paper-mill. The maximum number of copies which a machine of this class would print with ten feeding attendants and four taking away attendents would be 8000 an hour. For folding the 8000 printed copies five folding machines and at least two attendants would be required to keep paco with the printing machines. Thus nincteen men were requrred to print and rold 8000 copies per hour with the best nachines as late as 1870. With a rotary machine doing the same or a larger quantity of work only two men aco required. The cost for printing and folding 1000 copies by the Hoe machine was estimated at 1s. Ad., whilo with the rotary it is only abnut $2 d$. Hence the saving of wages to a newspaper issuing 200,000 copies a day on 313 working days would be nearly $£ 3700$ in a year. This, in eonnexion with improvements in papor, or rather the discovery of cheaper materials, bringing the price of "news" down to about 2 d . per Ib -one quarter of its pries a very few years ago-accounts for much of tho enterprise of modern journalism. For somo time after the aholition of the paper duty there mas a loss on the eirculation of a large-sized penuy jourual ; now there is a considerabla gain. Lataly rotary presses for small jobbing work have been eonstructed; and hefora long the rotary prineipla will probably be rendered available for illustrated periodicals ancu tire book-work, printed from webs or reels of paper instead of singla sheets. Great improvements hava also been made in type-founding, and the Roman and Italic founte now used by English printers are equal to those of any country in tha world. It is sometimes said that English éditions de luxe are not equal to those of the French, and that this is owing to the inferiority of the founders. This is, however, not quita true: some of the best Freach books ara printed from English types or from types cut in the English manner. It is also tha ashion to compare modern printed books with those of the Elzevirs
and Baskervillo. Iet as a matter of fact their best faces have been reproduced with perfeet suceess by modern fouaders. From is mechancal point of view the impression given by the best machine presses to-day is undoubtedly superior to that of the hand-presses of the 17 th and 18 th centuries. If modern books suffer in any respeet on comparison with those of former times, which ara 80 highly prized by Libliophiles, it is owing to their want of general artistic cnscmble, and not to auy deficiency in mechanical execution. The artistic taste of Euglish printers has, however, beec greatly raised during the last fow years, and a very interesting movement is going on which must produce important results iu the future. In 1850 Mr Andrew W. Tuer of London organized the Printers' Specimen Exchange, a seheme inteaded to promote the technical education of the working printer. Each contributor to the exchange furnishes periodically o eertain fixed number of typographical specimens, all alike, which are collated into sets, and again distributed to the members, each of whom gets a solume, cousisting of ona copy of the work of each of his follow-contributors. By this plan they become acquainted with tho progress made by their brethren, and good tasto and good work are fostered and mutually encouraged. The eighth quarto volume, issued io 1887 , contains nearly 400 finc specimens of typography by as many differeut liands. It forms also the best criteriou of the character of the jolbbing work done at the present day, not only in England but abroad, for the scheme is of an internatioual eharacter. The resulte of tho revivel in artistie printing during the last decado are espocially noticeable in: jobbing work. Much of this improvement is due to the superior material with which the printer is furnished, and especially to the great variety of oraamental types which hare been introduced. The specimen books of the principal type-founders aro splendit volumes, eontaining several thousand different faees. The best work of German printers is noteworthy for its studied neatness and attractiveness, tasteful and harmonious arrangement of colour and tiut, a characteristic aud conscientious attention to details of finish, exact register, and beaty of impression. American work excels in nriginality of design, brilliancy of colour, and perfect finish. English priuters are closely following the best points of each of these schools of typography. There is a distinct leaning at present to the German style, but with little slavish imitation. The distinctaess of English typography is maintained, while tho beautiful German combination borders, produced with such profusion of late, are judieiously utilized, often in conjunction with American type. In the arrangement of colours English nrinters prefer the quiet harmonious tints of the Germans to the bold striking contrasts of the Awericans.
The vast extent of the operations of the printing fraternity at the preseat day is in remarkable contrast to those of the 15 f century, wheu the making of books was, an art like the sculpture of ctatues or the desiguing of buildings. Now, printing is a manu. facture in which large capital and the greatest division of labour aro essential. The old printers wero almost eatirely iudependent of other craftsmen. From the casting of the type to the mixing of the ink they did nearly everything for themselves. Gradually tho dilferent denartments of the art were constituted separate sod recognized trades. The type-founder was probably the first to secedo flom the concern; then printers delegated to others tho maining of presses; afterwards the ink and the rollers found separate and distinct manufacturers ; and there arose a class of persons who, though belonging to other trades, made pinting appliances a epecialty, such os priuters' gmiths, printers joiucrs, and priuters engineers. Subdivision again has tukea place in regard to tho operations which chiefly appertain to printing. The same rian was formerly able to set up and print ofl the types, to fold tho sheets perhaps, aded even to make them up into books. The operative printer has now becomo either a pressman or a compositop. If he is of the first denomination, he may be elassed according 35 he works at press or maehine. If he is a machinist, he may supera intend or be a "minder," or he may bo a :aycr-on or a taker-olf of the sheets. If he is a miuder, he nay understand only book maehines or only mews machimes; he may know all ahout plateus and littio about cylinders ; or of eylinders he may know only one kind. Entirely novel machines create a new class of artisans. There ara mear perfeetly competent to manago a Whalter press who are ignorant how to work two-colour or fine book-work machines. In the compositor'a departnent division of tabour is carried out to a still minuter depreo. An old-fashioned printer would set upinclitferently a placard, a title-paga, or a book. At the present day we have jobbing hauls, book hands, and news hands, the word "hand" sugresting thu factory-like nature of tha busitiess. There are jobbing bands who confine themselves to posters, and know little about general work aven in this department. Book hands comprise those who set up the titles and thoso who set up the body of the work. Of these latter again, while one man composes, ancthet, the "naker-up," arranges the pages. Even the art of fitting ul the furnitura of "dressing the ehasa" is miven to the "quein-drawer overscer." News hanis ineludo adrertisement hands and trenerail hands. Some mea work by day, sthers altogether by night; somo co generul
book-work composition ; others set up head-liues; others make up the galleys; others "prove" thera.

Old Style Printing.

(Within the last few years there has been an interesting revival of the old style of book printing. It owes its origin to Mr Whittingham of the Chistrick Fress, who in 1843 was desirous of printing in appropriate type a work of fiction tho diction of which was supposed to be that of the reign of Chazles II. As the original "old faee" matriees of the first Caslon had been preserved, a fount was cast from them, and on getting a proof with grood ink, on good paper, from a modern press the impression was fonnd to be far superior to specimens printed from the original fount. Since ther the demand for old-faced characters has steadily increased, and all founders norr supply imitations of the old types. Comparing the old face and the modern characters, the latter are more regular in size, lining, setting, and colour, -nsing these words in the teehnical sense of the founder; they hare finer strokes and serifs, and produce in the page a more regular and sparkling general effeet, At the same time it may be coneeded that legibility has beea to a certain extent sacrificed to beanty and general effect. Ahout 1882 an emineut French printer made a number of experiments to ascertain what it is that constitutes legibility in type, and found that people read with less fatigue according as the letters-(a) are rounder, (b) are mora equal in thickness, (c) have shorter upstrokes, (d) are dissimilar to each other, and (c) are well proportioned to their own body. Drawings of letters from old books arere visible and legible at a distance at whieh modern letters could not be distinguished. The revival has also brought ahout tho re-introduetion of antique head-pieces and tail-pieecs, vignettes, and initial letters, which have been reproduced from old books by photography and typoctehing. For this kiud of printing whito paper has given placo to toned, of a stravy tint, which is often more agreeable to the eyes than the execssirely blcached paper which was hitherto the fashion. Also hand-made instead of maehine-made paper has to a large extent come into vogue. Its characteristic is the "deckle edge", which distinguishes it from the elean-cut edge of machino papers, and is highly prized by some bibliophiles. When extreme verisimilitude is required, this kind of printing is done on the blank leaves of real old books, some of which have been ruthlessly destroyed for this modern eraze. On the whole, however, the revival of old style printing has been beneficial: it has encouraged printers to stuly the more aristic attributes of the productions of the great printers of the past, and has cducated the public taste by presenting them with examples of the best kind of book-making.

Priuting Establistiment.

Depart. A large book-printing establishment contains many distinet.dements of partments, some of which have not been previously referred to and : print-rgestab-times ishment. cach furnished with a desk, a couple of sfools, and a shelf for books of reference, and having for its occupants the reader and his reading-boy. There is also the warelionse, where all the printed and umprinted sheets (or "white paper" as it is called, whatever its colour) are stored. Adjacent to this are folding, cutting, hot and eold pressing, drying, and otlier branches, each employing separate classes of artisans. Another department is the machineroom, where, arranged in long rows with an wenue between, aro the varions printing machiues. The men in this part of the estalslishment wear cotton restments, covering all their otker apparel, and caps, invariably made of paper, something like clerical birettas. The machine overseer has his box and keeps an account of the produce of, eaeh machine. Under him are the persons whose business it is to cut out overlays for the cut or illustrated formes. These men are in their way artists, for to them is attributablo much of the beauty and perfection of working of each hlock that goes through their hands. They havo by them three or four prints or "pulls" of the block, and their tools consist of seissors, paste, a sharp krife or two, and perliaps a razor. like blade set in a rooten handle. Their work is to deepen the shadows, raise the lights, lower the edges, and perform a hundred other offices for a block. Standing sentry over each maehine is the machine minder; under hin are the takers-off and layers-on. The engine-roon and boiler-house are close hy, and himher up may be the hand-press-room, -provided these appliances are used. Here are the pressmen and their apprentires. There is the storekeeper's department, fitted up with shelves, saiks, and drawers, for the orderly storage of type and materials. Tue plate-safe or plate-room is the repository of tic stereo and electro plates, each plate being kept wrapped up in paper, with a distinetive index number marked thereon. There are also rooms for easting rollers, stereotyping rooms, drying rooms for paper, hydraulic press ing rooms, sinks for washing formes, and lifts for conveying them
from one departanent to another. There will possibly he sevela 3 composing-rooms, such as the 'stab, where all the men arv paid on established weekly wages, the piece room, where they are paid by results, and the apprentices' room. There may be rooms where particular jobs are doue, especially if reekly periodicale are turned out, and the names of these designate the rooms. At the end of each room is the overseer. It is also a common practice for a number of men to form themselves into a kind of husiness partnership ealled a compantonship or 'ship. All the transsetions of the compositor may be with his own clicker, - the workman who is seleeted to keep the accounts of the partmership? From him the compositor receives his portion of eopy and the neeessary directions, and to him he gives the matter when it is composed, L L the end of the week he "writes his bill," delivers it to tho clicker. and from the latter receives at pay time the rages he has earned. The clicker gets the matter proved or "pulled" by the proofpuller, who usually does nothing else but pull proofs. Ho wilk then send the proof with the copy to the overseer, and the overseer sends it to the reading department to be comected. The proof, when corrected, is retumed through the overseer (rho retains the copy) to the eliekcr, and he gives it to the compositor who set it up: When tho type is corrected a revise is pulled, which goes. througta the same hands to the overseer again; and then it is de spatched to tho anthor, editor, or publisher. In a well-ordered. composing-room striet silence is enjoined upon the rorkmen. Among the industrial pursuits there is none more monotouous and more exacting, none demanding more latience, sustained industry, and power of endurance than the compositor's aft. In a large nemspaper office the quantity of types picked up in a few lours is marvellons. No better illustration of this could be given than the fact that several recent issues of the Times have consisted of three sheets or twenty-four pages, each page comprising six columns. In one of these issues $\delta 4 \frac{5}{5}$ of the 144 columns were filled with adrertisements, 2559 in number, $6 e t$ in extremely small type; the remaining $50 \frac{1}{3}$ columns contained articles, reviews, letters, leports, and paragraplis. The total length of the column aggregate wass 254 fcet (62 more than the leight of the London Monument). If the matter comprised io the paper, instead of boing broken up into columas, had been get in one continuous line it would have reached ono mile 950 yards." The number of separato types used in printing. this issue was calculated at over two millions, and the quantity of printed anatter was reckoned to be equivalent to that contained in tro actavo volumes of $4 S 0$ pages each. The literary and mechanical 6taff of a first-rato London daily nerrspaper, exeluding casual row porters and unattached witer's on various subjects; agesregates about 300 persous.
Biblingraphy, -On the practice of the art and its anxiliary proceases, ace SonthWard, Dictionary of Typography (3d ed., London, 1875 , Svo; with the Literart Almanadk by William Blarks), sod Practical Printing: a Findbook of the Ars of Tupography (3 d eli., London, 1857,2 vols., 8 vo). This last is the fullest work on the subject in the Eaglish language, embracing camposition, press work,
stereotyniag, and electlotyping, and the warehouse department of a printing
 short iatrochuction by Sonthivand, glving a sketeh of the origin and progress of the different ty pographical proeesses aud appliances from the lieginning. Sce also F. J. F. Wilson, Tyjographic Printing Alachines ond Machine Printing (sd ed., Loador, 1883 , Svo): Lisi of Tech nical Terms relating to Printing Mfochancry (London, 1882, 8vo); Noble, Mach ine Printing (London, 1833, 8vo) and Principlee and Practice of Colour Frinting (London, 1881, 8 vo); 8 ar 4 Wilson, Stereotrping and Electrotyping (London, 1880, 8vo). This last contains a history of atereotypiog aud electrotyping by Soutliward. The hest works io French areLefevre, Guide Pratique du Compositcur ct del' 'mpriment (Paris, 1855.i2, 8vo, two parta; ineludes machine work, stereoty pin \quad, and electroiypiog); Claye, Jfanued de l° Apprenti Compositerur (3d ed., İmo, Paris, 16s3); and Monet, Les Dfach inca et Appareils Typoograyhiques, suiti des Procides d'Impression (Paris, 1S7a, 8vo). The best Germio work, nad one which froin its completeness aupersedes ail others, is Waldow's Illustrierte Encyllopödie der graphischer Künste (Leipsic, 1SS4, lar. 8vo), containing 2798 srevicles and 5 S1 illnstratious, with a list of Gerwaa booka oo typograply, \&e.
Pcriodicals. - No trade or interest in the world has, perlinps, $6 n$ many repreacgtatives io the press as priating. The jourvals which record its progreas and describe its products are norivalled in their excellent meelanical attrior the most luxurious description. Their literary character is usnally worthy of their mechanical excellence and they and sneculations excellence, and they enmprise na immense colleetion of facts and apcculatioos oft the subjecta jnvolved. They also attract a class of writers Who in time beeome specialists and do the most valuabla work in histerica ovestigation. The Printers Registcr (monthly), begut in 1863, the oldest of the Esplish printing trade jouraals, coataios several raiuahle contrilutions by Mr William Blades, the biographer of Caxtyn, 6 eh as "Numismata. Typo. graphiea," "Bibliothees Typographica," "Books and their Enemies," "The Inveotor of the Steam Printing Press," and "Early Type Specimen Dooks." The Paper and Printing Trades Journal (quarterly), begun in 1872, is printe ${ }^{3}$ in old style fashion, and reproluces in tone as twell as in manner some of the hest examples of the French and Italian sehools io lead and tail pieceas rignettes, snd omamental initials. In Franca appear L'Imprimerie (semimonthly) and the Bulletin del'Inprimerie; in Germany, Archiv fir BuchdruckerNunst (monthly) and Journal fir Buchdruckerhunst: io Italy L'Arte della Stampa. The United States bas the Inland I'cinter (Chicago) and tho Americans Lookmaker (New York). The fullest list of such journals, past and present, fe Louis Mohr's Die periodische Fuchpresse der Typographie (Strashurg, 1879). There is also an extended list, nith historical annotationa, in Bigmore and
Wyman's Bibliogrophy of Printing.

Lour at the worth end of a peninsula, which till the time of Alexander's siege was an island. The mole which he coustructed to reach the island city has been widened by doposits of sand, so that the ancient island is now connected with the maialand by a tongue of land a quarter of ε mile broad. The greatest length of tho former island, from north to south, is about $\frac{5}{8}$ of a mile and its aree about 142 acres, a small surfacie for so important a town. The researches of Renan seem to have completely refuted the once popular ides that a great part of the original island has disappeared by natural conrulsions, though he believes that tho remains of a line of submerged wall at the south cnd indicate that ajout 15 acres more were once reclaimed from the sea and have been again lost. Confined to this uarrow site-on which, noreover, place was found for the great temple of Melkarth with its courts and for all the uccessities of a vast trade, for docks and warehouses, and for the great purple factories which in the Roman time were the chief source of wealth aud made the town an uupleasant place of residence (Strabo, svi. 2, 23 ; Pliny, v. 70)-Tyre was very closely built ; Strabo tells us that the many-storied houses wero lofticr than those of Rome. Iu the Roman period the population overflowed its bounds aud occupied a strip of the opposite mainland, including the ancient Palxtyrus. Pliny gives to the wholo city, contineutal and insular, a compass of 19 Roman miles; but this account must be received with caution. In Strabo's time the island was still the city, and Palatyrus on the mainland wes 30 stadia off, while modern research indicateb an extensive lins of suburbs rather than one mainland city that can be definitely identified with Palætyrus. The ancient history of Tyre has been dealt with in the article Paenicia; the topography is still obscure owing to the paucity of Phcenician remains. The present harbour is certainly the Sidonian port, though it is uot so large as it once was; the other ancient liarbour (the Exyl,tian port) has disappeared, and is supposed ly Renan to have lain on the other side of the island, and to be now absorbed in the isthnus. The most important ruins are those of the cathedral, with its magnificent monolith columns of rosecoloured granite, now prostratc. The present!' building is assigned by De Yogut to the second half of the 1 Ith century, but the columns must be older and may have belonged to the 4th-century church of Paulinus (Luseb, H. E., 玉. 4). The water supply of ancient Tyre came from the powerful springs of lias al- Ain on the mainland, one hour south of the city, where there are still remarkable reservoirs, in connexion with which curious revivals of Adonis worship have been observed by Vciney and other travellers. Tyre was still an important city and almost imp regnable fortress under the Arab empire. From 1124 to 1291 it was a stronghold of tho crusaders, and Saladin limself besieged it in vain. After the fall of Acre the Christians deserted the place, which was then destroyed by the Moslems. Tho present town has arisen since the Metâvila occupied the district in 1766.

TYROL, a province of Austria, with the title of "county," lies between $10^{\circ} 10^{\prime}$ and $13^{\circ} \mathrm{E}$. long. and $45^{\circ} 40^{\prime}$ and 47° $45^{\prime} \mathrm{N}$. lat., and is conterminous on tho north-west with the Austrian province of Vorarlberg, on the north with Bararia, on the east with Salzburg and Carinthia, on the south-east and south-west with Italy, and on the west with Switzerland. The last-named country forms in the lower Engadine an angle penetrating decply into Tyrol. Tho country is entirely mountainous, being traversed by the main chain of the Alps It may bo roughly divided into the valley systems of the Lech and the Inn to the north of the chain and of the Etsch or Adige (Vintschaau) and the upper Drave (Puster valley) to the south (see AIPs). Its area is 10,316 square miles; its population in 1880 wes 805,176 ,
inclusive of military, showing an increase of nearly 4 per cent. since 1869. Of these 432,062 spoke German, 300,975 Italian or some Romance dialect, and the remainder sọme form of Slaronic; 565,468 persons were able to read and write, 56,728 to read only, leaving about $22 \frac{2}{3}$ per cent. of the total population, ineluding children, wholly illiterate. Education is strictly compulsory; but the schools axe for the most part closed during the summer inonths, when all available hands are required in the field* and on the mountain pastures. Agriculture and forestry occupy about two-thirds of the entire population. Every householder owns a piece of cultivable land in the ralley, whild his goats, sheep, or cattle are driven with those of his neighbours to the mountain pastures (Alpen, Almen) which belong to tho commune. Each commune has a president chosen by an elected committee of housuholdcrs. The man selected cannot decline, but is bound to serve his term of office. The tenure of próperty is for the most part of the nature of absolate ownership. In 1880 100,393 persons of both seses were returned as proprietors, 10,283 as tenants. The chief products are milk, butter, and chcese. Of grain-crops maize, which is largely grown in the Inn velley and Vistschgau, holds the first place. Wheat is grown in the lower valleys, barley and ryo in the higher, the latter in favourable spots to a height of over 5000 feet. Potatoes aro found above 6000 feet. In the Etsch valley, or district about Meran and Botzen, red and white wine of excellent quality is produced (in $188 \pm$ about $6,500,000$ gallons). Of late years the cultivation of fruit has much developed, especially in south Tyrol. Silk is also produced (in 18851263 tons of cocoons). Glame is still plentiful in the remoter valleys. In every district there are a certain number of licensed hunters, the principal game being red deer, chamois, hares, blackcock, ptarmigan, \&ec. Mining occupies about one-fifth of the population. At Hall near Innsbruck are important salt works, and at Brixlegg in the same valley copper and lead are smelted. Iron is worked at Fulpmes iu the Stubai valley and at Prad in tho Yintschgau. Zinc is found at the head of the Passerr valley. In the Niddle Ages gold and silver wero found in sufficient quantities to make it worth while to extract them. About 4340 square miles of the country are covered with forest, chiefly pine, fir, and larch, which, horever, is felled in a recklessly wasteful way. The capital of tho county is Inssarece (o.v.).
The general average of comfort in Tyrol is high, and the cost of living is very moderate. 'The peasant and his family aro clothed in etuffe spun and woven at homo, from the wool and flax produced I their own neighbourhoorl. Tho people are for tho most part somowhat reserved in manoer, but courteous and hospitable. Tho sarage fights which used to be a favourite pastinio among the rounger mon are now almost, or quite, a thigg of the past. In amo valleye there is a good deal of musical talent; and companies of Tyrolese aivgers, particularly from the Ziller rallos, travel about all over Germany. The zither is a favourite instrument, especially in the southern valleys; in the northern the guitar is more fre. quent The religion is almost exclusively Fomao Catholic; but in Innsbruck there are some hcodreds of Protestants. The priests belong chiefly to the peasant class, and receive their education at Brixon and tho university of Innsbruck. This contains about 600 otudents in the various faculties and possessen a library of some 60,600 volumes. There is a diet. or landiag, with its seat at lunsbruck, consisting of thirty-four representatives of the peasants, thirteen of the citizens, four of tho prelates, ten of the nehles, three of the chambers of commerco at Ionsbruck, Botzen, and Roveredo, and ooe of the university of lunshruck. To the imperial reichsrath Tyrol sends eighteen members. Tyrol is garrisocied by troops Tecruited exclusively in Tyrol and Vorariberg, and Dever, cxcept in time of war, employed outside these prorincee. Besides this there are the landwehr end the landsturm or militia.

History. -The coustry corresponding to mndern Tyrol first ap. pears ia history when the Khetians were subdued by Drusus and Tiberius. This nation, by some held to have been cognste with the Etruscans, occupied tha valleya from the source of tho Rhine to that of the Drave. To the north of them were the Vindelici, and to the east the Norici ; the former were apparently soperascus.
from then by the ridges north of the Inn, the latter by the watershed between the Etsch and the Drave. Pliny (N_{0}. H_{0}, iii. 24) gives the names of all the tribes. After their subjection by Rome These races became Romanized and shared the fortunes of the empire. Their position on and about the roads by which the central Alps are most easily crossed laid them especially open to inroads, and liefore the end of the $3 d$ centnry the Alemanui bad traversed the country. In the course of the next three centuries this people settied in the north western valleys. But the peopling of the greater part of the province by Teutons was effected by the Baiuvarii, who were by the ycar 600 established throughont nearly the entire remainder of German Tyrol, some of the Ronanized Rhætians probably leing left, mixed with a fevr Alemanvic stragglers, iu the upper Vintscligau, while the Lomhards pressed up from the southward and took possession of the district around Trent. The Alemanni and Baiuvarii, governed immediately by their own dukes, owned a kind of allegriance to the kinga of the Franks, and nltimately became in the time of Pippin and Charles incorporated in the Frankish monarchy. The country was then divided for administrative purposes into counties (comilatus, Grafschaflen), under counts, whose rank, at first merely officirl, in course of time became, with their office, liereditary. The most powerful among them appear to have been those of the Vintschgau, where a fertile soil and a climate less rigorous than that of the northern valleya allowed more development of wealth. In the 12th century the counts of Tirol. begin to be conspicuous. This was a small district near Mleran, taking its name from the ancient castle of Tirol, known in the later Roman time as Teriolis. These, in the course of the next century, acquired the lordship over nearly all the territory now contained iu the province of Tyrol south of the main chain of the Alps, besides the adracacy (Schirmvoglei) of the wealthy sees of Brixen and Trent. Meantime the valley of the Ina and those adjoining it had come under the dominion of the counts of Andechs, a Bavarian family, who were also titular counts of Meran. 'i'he last of these died without issno in 1248. His wife's aister, Adelaide, married to Meinbard, count of Görz, was left in sole possession of nearly the whole of the province. Their son Meinhard Il. (1257-1295) was connected with some of the most powerful housea in Germany; and, heing a man of great ability and equal unscrupulousness, he succeeded in acquiring the few ontlying portions. of territory and castles still belonging to the smaller nobles, and thus consolidated 'Iysol within the limits by which it has ever since been bounded. Carinthia and Styria also formed part of hla domains ; but their connexian with Tyrol has never been-other than a personal one. Meinhard 11. was succeedel in turn by his sons Otho and Heary. The latter (1310-1335), a weak and extravagant prince, seema to lave done much towards organizing the government of the country. His elder daughter Miargaret, known in Tyrolese history and legend. as Dic Manultasche, "the Pocket-mouth," the leiricss of his teritories, took as her second husband (in 1342) Louis of Brandenburg. Their son Meinhard 111., who succeeded to the county on his father's death in 1361, died in 1363. Margaret thereupon made orer all her possessions to the lonse of Hapsbnrg, and since that time Tyrol bas formed part of the hereditary dominions of the archdukes of Austria (see A ©strin). The fidelity of the Tyrolese to their connta has for many centuries been proverbial. The Brenser has more than once offered them a secure line of retreat and the mountains a rampart of defence. Maximilian I. (1 193-1519) had nn especial affection for Tyrol. He conferred on the province its present title of Die gofürstecto Graf. schaft; be profted on more than one occasion by the refuge it afforded ; he apent mutch of his time within it ; and at his death he directed that a sumptuous monument to limself shonld be erected in the Franciscans' church at lnusbruck. Tyrol has more than once been the scene of sharp fighting. In 1499 the men of Granbundeu or the Grisons (see SWirzerlavp) invaded the country and defeated the Tyrolese in the neighbourhood of Mals. In 1703 Max Emmanuel, elector of Bavaria, penetrated the upper 1nn valley, but was driven back. During the wars of the French Revolution French and Austrian armies net more than orice within the limita of the province. By the treaty of Pressburg, 1805, the province was transferred to Bavaria. On the renewal of war between Bonaparte and Austria in 1809 the people rose and expelled the Bavarians, and afterwards, under the leadership of Andrew Hofer, an ans, and afterwards, snder the leace of the Passcir valley, repeatedly defeated the Freneh, Bavarian, and Saxon forces. Innsbruck was more than once taken and retaken; and on 12 th August Hofer, after defeating Marshal Lcfebrre, vas installed in the capital as commandant. Sut the illsncessa of the Austrian arms elserliere prevented any support from being sent, and by the treaty of Schön bramn in October the Tyrolese were agaiu giten up to their nevv rulers. Hofer, being captured throngh treachery, was shot at Mantua, 20 th February 1810. On the fall of Bonaparte, Tyrol reverted to the honse of Hapsburg. See A. Jimer, Die Jerfissung Tirols, Innsbruck, 1881-S5: Egger, Die Tiroler und loravherger, luusbruek, 1sis-9; Steub, Drei Sommur in Tirol, Stuttgart, $18: 1$ (eal ed.)
(A. J. B.)

TYRONE, an inland county of Ireland, in the province
of Ulster, is bounded N. and W. by Donegal, N.E. by Londonderry, E. by Lough Neagh and Armagh, and S. by Monaghan and Fermanagh. Jts greatest length from north to sonth is 46 miles and from east to west 60. The total area in 1881 was 806,658 acres or about 1260 square miles. The surface is for the most part billy, rising into mountains towards the north and south, but eastrvards towards Lough Neagh it declines into a level plain. Running along the north-eastern boundary with Londonderry are the ridges of the Sperrin Mountains (Sawell 2236 feet and Meenard 2064 feet). Farther south there are a range of lower hills and Mullaghearn, to the north of Omagh (1890 feet). South of Clogher a range of hills (1265 feet) forms the boundary between Tyrone and Monaghan. On each side of the Mourne river near Omagh rise the two picturesque hills Bessy Bell and Mary Gray. The Foyle forms a small portion of the western boundary of the county, and receives the Mourne, which flows northward by Omagh and Newtown Stewart. The principal tributaries of the Mourne are the Derg, from Lough Derg, and the Owenkillew, flowing westward from Fir Mountain. The Blackwater, which is navigable by boats to Moy, rises near FiveMile Town, and forms part of the south-eastern boundary of the county with Monaghån and Armagh. With the exception of Lough Neagh, bounding the county on the east, the lakes are small, also few in number. Lough Fea is picturesquely situated in the north-west, and there are several small lakes near Newtown Stewart. The Ulster Canal runs along the southern boundary of the county from Lough Neagh to Caledon. The substratum of the northern mountains is mica slate interspersed with primary limestone. Yellow sandstone appears in the north-west, in the centre towards Omagh, and in the south-west, where it plunges into Fermanagh. The greater portion of the central area of the county is occupied by Old Red Sandstone. The Tyrone coal-field (6 miles long by I to 2 broad) extends between Lough Neagh and Dungannon, all the measures being represented. The coal-field is much broken by faults and has been worked chiefly near the surface, and generally in an unskilful manner; the principal pits are near Dungannon and at Coal Island. The coal is bitumincus. There are also indications of copper, iron, and leod.
Agriculture.-The hilly portions of the county are unsuitable for tillage ; but in the lower districts the soil is remarkably fertile, and agriculture is generally practised after improved methods, the county in this respect being in advance of most parts of Ireland. Tho excellent pasturage of the hilly districts afforda sustenance to a large number of young cattle. The total number of holdinga in 1855 was 27,958 , of which 16,469 or nearly two-thirds were each betweei 5 and 30 acres in extent (8365 between 5 and 15 and 8104 between 15 and 30). Only 43 were above 500 acres; 642 were between 100 and 500 acres, 2373 hetween 50 and 100, 3937 between 30 and 50,2573 hetween 1 and 5 , and 1921 did not exceed 1 acre. There were 237,528 acres under crops, including meadow and clover (255,281 acres in 1876), 318,550 acres under grass, 1765 fallow, 9378 woods, 72,071 bog and marsh, 109,539 barren mountaiu land, and 30,112 water, roads, fences, \&c. The area under corn crops decreased between 1876 and 1885 from 115, 738 acrea to 105, 343 ,oats from 114,223 acres to 104,040 , and wheat from 1166 to 1013. The areas nnder the other corn crops are very small and fluctuate considerably. The area uuder green crops between 1876 and 1885 diecreased from 64,971 to 59,387 acres, -potatoes from 44,001 to $40,6+9$, turnipa from 17,157 to 15,581 , mangel wurzel from 750 to 487 , and other green crops from 3063 to 2670 . Flax (23,901 acres in 1876) covered 16,364 acres in 1885 !. The area under meadow and clover in 1876 was 50,671 , and in 188556,434 , but there has been no increase since 1878. The number of horses decreased between 1876 and 1885 from 25,088 to 23,185 , of mules from 71 to 49 , of asses from $112 \pm$ to 921 , of cattle from 176,841 to 168,072 , of sheep from 45,274 to 44,434 , and of pigs from 49,012 to 39,530 . On the other hand, the number of goats increased from 7950 to 8984, and of poultry from 674,826 to 737,859 .
According to the latest landowner's Return (1876), the county was divided among 2787 proprietors owning 775,285 acres at a total annual ralue of $£ \pm 26,224$, the average value per acre heing nearl

11s. Ofthe proprietors 1070 owned less than 1 acre each, the total distributed amongst them being 272 acres. The estimated extent of waste land was 4000 acres. The following possessed over 10,000 acres each-duke of Abercorn 47,615 acres, earl of Castlestuart 32,615, earl of Caledon 29,236, commissioners of church temporalities 28,002 , Sir John M. Stewart 27,906, Arthur W. Cole Hamilton 16,683 , representatives of Sir William Mr'Mahon 16,326, Sir William Verner 16,043, earl of Belnore 14,359, Thomas Arthur Hope 13,996, Lord Dorchicster 12,608, Michael Smith 10,968, Lonisa Elizaheth De Bille 10,455, and Thomas R. Browne 10, 125 .

Conmunication.-Besides Lough Neagh and the Ulster Canal, Tyrono has the river Foyle, which is navigable for small craft to a point opposite St Johnstone, and thence by artificial cutting to Strabanc, and the Blackwater, which is navigable for boats to Moy. The Great Northern Railway intersects the county by Dungennon, Pomeroy, Omagh, Newtown Stewart, and Strabane.
Manufactures.-The manufacture of linens and coarso woollens (including blankets) is carried on. Brown earthenwarc, chemicals, whisky, soap, and candles are also made. There are a fem brewerics and distilleries, and several flour and meal mills. But for the lack of enterprise the coal and iron might aid in the development of a considcrable manufacturing industry.

Administration and Popllation.-The county comprises 8 haronies, 46 parishes, and 2164 tomalands. Formerly it returned two members to parliament, the borough of Dungamon also returning ono ; but in 1885 Dnngannon was disfranchised and the county arranged in fonr divisions-east, mid, north, and south - each returning one member. It is in the north-western circuit, and assizes are held at Omagh and quarter-sessions at Clogher, Dungannon, Omagh, and Strabane. There are fourteen petty sessions districts within the county and portions of four otleers. The.county is in the Belfast military district.

From 312,956 in 1841 the population had decreased by 1861 to 238,500 , by 1871 to 215,766 , and by 1881 to 197,719 (96,466 males and 101,253 females). In 1881 there were 109, 793 Roman Catholics (119,937 in 1871), 44, 256 Protestant Episcopalians (49,201 in 1871), 38,564 Presbyterians (42,156 in 1871), 3597 Methodists (3115 in 1871), and 1509 of other denominations (1357 in 1871). The number of persons in the county who could read and write in 1881 was 98,764 , who could read only 38,783 , the remainder $(60,172)$ being wholly illiterate. Twenty-two persons could speak Irish only and 9796 lrish and English. For the sepen years ending 1885 the average number of emigrants annually was 3085 . The nopulation of the principal towns in 1881 was-Strabane 4196, Omagh (the county town) 4138, Dungannon 4084, and Cookstown 3870.

History and Antiquities. - Auciently Tyrone was included in the portion of Ulstcr made "sword-land" hy the Scots. It became a principality of one of the sons of Niall of the Nine Hostages, and from his name-Eogain-was called Tir Eogain, gradually altered to Tyrone. From Eogain were descended the O'Neals or O'Neills and their numerous septs. The family had thcir chief seat at Dunrannon until the reign of Elizaboth, when it was burned by Hugh O'Neill to prevent it falling into the hands of Lord Mountjoy. The earldom of Tyrone had been conferred on Con Bacagh O' Neill hy Henry VIlI., but he was driven into the Pale by one of his sons Shan, who with the general consent of the people wirs then proclaimed chief. From this time he maintained a contest with English anthority, but his last remaining forces were completely defeated near the river Foyle in May 1567. During the insurrection of 1641 Charlemont Fort aud Dungannon were captured by Sir Phelim O'Neill, and in 1645 the Parliamentary forces under General Munro were signally defeated by Oweu Roe O'Ncill at Benburb. At the Revolution the county was for a long time in the possession of the forces of James II. Dungannon was the scene of the famous volunteer convention in 1782. Raths are scattered over every district of the county. There is a large cromiech near Newtown Stewart, another at Tarmlaght near Coagh, and another a mile above Castlederg. At Kilmeillie near Dungannon are two circles of stones. The mionastic remains are of comparatively little interest. There are still some ruins of the ancient castle of the O'Neills, near Benburb, and among other ruined old castles mention may be made of those of Newtern Stewart, Dungannon, Strabane, and Ballygawley.

TYliTNUS, Greek elegiac poet, lived at Sparta about the middle of the 7 th century B.C. . According to the legend current in later times, be wás a native of the Attic deme of Anhidnæ, and was invited to Sparta, on the suggestion of the Delphic oracle, to assist the Spartans in the Second Messenian War. It is difficult, if not impossible, to determine the element of truth in this story. Herodatus at least either did not know, or disbelieved, the tradition, which meets us first in Plato (Laws, i. 629A), to the effect that, although Tyrtæus was by birth an Athenian. he had the Spartan citizenship conferred upon
him (see Herod., ix. 35). From Plato down to Pausanias we can trace the gradual growth and expansion of the legend. Ephorus is the first to call Tyrtaus a lame poet; by later generations he is represented as a lame schoolmaster. Basing his inference on the gromed that Tyrtæus speaks of bimself as a citizen of Sparta ($F r .2 \mathrm{v} .3$), Strabo (viii. 4, 10) was inclined to reject tho story of his Athenian origin, regarding the elegics in question as spurious. On the whole, perhaps, the conjecture of Busolt (Gr. Gesch., P. 166) comes nearest to the truth: the entire legend may well have been concocted during the 5 ih century in connexion with the expedition sent to the assistance of Sparta in lier struggle with the revolted Melots at Ithome. It is possible, as Busolt suggests, tlat Tyrtrus was in reality a native of Aphidna in Laconia. "However this may be, it is certain from the fragments of his poems that he flourished during the Second Messenian War (eirc. 650 B.c.) - a period of remarkable musical and poetical activity at Sparta (sce Terpander) - that he not only wrote poetry but took part in the actual service of the field, and that he endeavoured to compose the internal dissensions of Suarta by inspiring the citizens with a patriotic love for their fatherland and its institutions.

We possess in all about twelve fragments of Tyrtaus's poetry, varying in length from one to forty-four lines. They are preserved by Strabo, Lycurgus, Stobæus, and others. We may divide them into two varieties, according to the metre and dialect in which they are composed. The first class consists of elegies in the Ionic dialect, written partly in praise of the Spartan constitution and King Theopompus (Eivopia), partly to stimulate the Spartan soldiers to deeds of heroism in the field ${ }^{\text {' }}$ ' $\pi о$ 伊каь -the title is, however, later than Tyrtaus). "The interest of the fragments preserved from the Evivopia is mainly historical: they form our only trustworthy authority for the events of the First Messenian War (Fr. 5, 6, 7). The 'Yтоө̂̀кає possess considerable poetic merit, in spite of the occasional monotony of their versification. Addressed to a nation of warriors, they laint in vivid colours the beauty of bravery and the shame of cowardice; there are also lines in them which reveal the soldier as well as the poct, e.g., $F^{F r}, 10,31-32$. One striking fature is the genuinely Greek feeling for plastic beauty, showing itself in the beautiful picture of the youthful form lying dead upon the battle-field (Fr. 10, 27-30, and 12, 23-34; see also Symonds's Greet Poets, i. p. 74). The popularity of these elegies in the Spartan army was such that, according to Atheneus (xiv. 630 F), it became the custom for the soldiers to sing them round the camp fires at night, the polemarch rewarding the best singer with a picce of flesh. Of the second class of Tyrtæus's poems, marching songs, written in the anapæstic measure and the Dorian dialect, the remains are too scanty to allow of our pronouncing a judg. ment on their poetic merit.
See Bergk, Focta: Lyrici Grreci, Vol. ii. 1p. 8-22, Leipsic, 1882.
 English rerse by Campbell.

TYTLER. The surname of thre Scottish_writers, principally on historical subjects.

1. Alexander Fraser Tytler (1747-1813), Lord Woodhonselee, Scottish judge, was the eldest son of William Tytler (see below), and was born at Erlinburgh on 15th October 1747: After passing through the High School, he was sent in 1763 to a school at Kensington taughet by Dr Elphinston, the translator of Martial's Epigrams. Ile returned to Edinburgh in 1735 , skilled in Latin verification, and with a comrietent linowledge of Italian, and a taste for drawing and natural history Se was called to the bar in 1770. His first work, a supplement to the Dictionary ${ }^{\circ}$ Derisions, undertaken on the suggestion u^{f}

Lord Kames, was published in 7778, and a continuation appeared in 1796. In 1780 Tytler was appointed conjoint professor of universal listory in the university of Edinburgh, becoming sole proiessor in 1786. In 1782 he published Outlines of his course of lectures, afterwards extended and.republished under the title of Elements of Gicheral fistory. The Elements has passed through many editions, and has been translated into several European languages as well as into Hindustani. The lectures themselves were published in IS34 in Murray's Family Lilrary. In 1790 Tytler was appointed judge-advocate of Scotland, and while holding this office he wrote a Treatise on the Lavo of Courts-Martial. In 1801 he was raised to the bench, taking his seat (1802) in the court of session as Lord Woodhouselee. He died at Edinburgh on 5th January 1813.

Besides the works already mentioned, he was the author of soveral papers in the Wirror, the Lounger, and the Trensactions of the Rowal Society of Edinburgh; he also wrote Life and IVrilings of Dr Joluns Gregory; Essay on the Principles of Tianslation, 1700; a dissertation on Final Causes, prefixed to his edition of Derlam's PhysicoTheology, 1799; a political pamphlet extitled Ircland profiting by Example, 1799 ; an Essay on Laura and Petrarch ; and The Lifo and Writings of Henry Home, Lord Ǩancs, 1807.
2. Patrick Fraser Tytler (1591-1849), as the son of Lord Woodhouselee and grandson of William Tytler, may be said to have inherited a taste for literary and historical pursuits. He was born at Edimburgh on 30th August 1791, and was educated chiefly at the High School and university, being called to the bar in 1813. His earliest literary effort appears to have been a chapter or tro contributed to Alison's Travels in France (1815) ; and his first independent essays were papers in Blackwool's Magazine. Inheriting the family talent for music, and with a facility in throwing off humorous little poems and songs, he made several contributions to Thomson's SelectMelodies of Scotland, 1821. In 1819 he published the Life of James Crichton of Cluny, commonly called the Admirable Crickton, a second edition appearing in 1823. This was followed by a Memoir of Sir Thonas Craig of Riccarton, 1823; an Essay on the Revival of Greek Literature in Italy, and a Life of John Wickliff, published anonymously, in 1826. The History of Scolland was undertaken at the suggestion of Sir Walter Scott, and occupied Tytler for nearly twenty years, in the course of which he remored to London for convenience of research. The first volume appeared in 1828, and the ninth and last in 1843. The original investigations on which the work was founded gave it an authority which no previous history of Scotland possessed, and the clear and graphic style made it interesting and popular. The last fer years of his life were spent in physical prostration and mental depression, and he died at Great Malvern on 24th December 1849.

During the progress of his History a large amount of other work camo from his pen, as tho following list shows:-Lires of Scoltish Worthies, for Mfurray's Family Library, 3 rols., 1831.33; Historical Tiew of the Progress of Discovery in America, 1832, and Life of Sir Waller Rabsigh, 1833, for the Edinburgh Cabinct Library; Lifc of Henry VIII., 1837 ; England under the Reigns of Edward VI. and Mary, from original letters, 2 vols., 1839 ; articie "Scotland" in the seventh edition of the Encyclopsdia. Eritannica (afterwards published separately as a school history) ; Notes on The Darmzey Sewel, 1843; on the Portrails of Mary Qucen of Scots, 1845 (privately printed) ; and Memoirs of the War carricd on in Scoltand and Ireland, 1689-91, by General Mrachay, edited in conjunction with Hog and Urquhart, and presented to the Bannatyne and Maitland Cluhs in 1833.
3. Willian Tytler (1711-1792), of Woodhouselee, writer on historical and antiquarian subjects, was the son of Alexander Tytler, writer in Edinburgh, and was born in that city on 12 th October 1711. He was educated at the High School and the university, and, having adopted his father's profession, was in 1744 admitted into the society of Writers to the Signet. While successfully practising as a lawyer, he found time to devote attention to historical
investigation. In 1759 he published an Inquiry, Ifistorical and Critical, into the Evidence against Mary Queen of Scots, and an Examination of the IHistories of Dr Hohertson and Mtr IIume with respect to that Evidence. Tlhis work, which warmly defended the character of the queen, mot with great success. Four editions, the later ones considerably eularged, were published in the author's lifctime; and it was translated into French. In 1783 be publishol the Poetical Rencrins of Jumes the First, King of Scotland, to which he added a dissertation on the life and writings of the royal author. He wrote an cssay on "Scottish Music," which was appended to Arnot's IIistory of Edinburyh. His "Dissertation on the Marriage of Queen Nary to the Earl of Totliwell." and "Observations on the Vision, a. Poem," appeared in the Transactions of the Sorizty of Antiquaries of srollend (1791-92). A paper in the Lo unger, on "Defects of Modern Female Education," and an Account of Fashionalle Amusements in Edinburgh in the Screnteenth Century complete the list of his works. He died at Edinburgh on 12 th September 1792.

TYUMEN, a district town of West Siberia, in the government of Tobolsk, is situated at a point where the chief highway from Tussia across the Urals touches the first navigable river (the Tura) of Siberia. A railway passing through Ekaterinburg and the principal ironworks on the eastern slopes of the middle Urals connects Tyumeñ with Perm, the terminus of steamboat trafie on the Kama and Volga. The Tura being a tributary of the Tobol, which joins the Irtish, a tributary of the Ob , Tyumeñ has regular stearn communication with Omsk and Semipalatinsk by the Irtish (steamors penetrating as far as Lake Zaisan in Inzungaria); with Tomsk, Barmaut, and Biysk, in the Altai, by the Ob and the Tom; with Irbit--the seat of the great Siberian fair-by the Tura and the Nitsa; and by the Tobol, the Irtish, and the Ob with the Arctic Ocean and the fisheries of the lower Ob. Tyumeñ stands also at the western extremity of the Siberian highway which goes via Omsk, Tomsk, and Krasnoyarsk to Irkutsk. In summer the Tura sometines falls so low that steamers have to stop 90 miles off, passengers and goods being taken thence to Tyumeñ in lighter rcssels. The tomn is well built, and stands on both banks of the Tura, which is here spanned by a bridge. The portion on the low left bank is inhahited by the poorest class and is often inundated; the best houses are on the high right bank. Thestrccts are unpaved, but the houses (pincipally wooden) are for the most part inclosed by gardens. The people, who are famed throughout Siberi? for their good looks, have always been renowned for their industrial skill. Woollen cloth, linen, belts, and especially boots and glores, are manufacturcd to a large amount (70,000 pairs of boots and 300,000 pairs of gloves annually). Tyumeñ carpets, although made in the simplest way and with the plainest tools, have a wide renown in Russia and Siberia, and recently have appeared in the markets of western Europe as of Oriental origin. All kinds of metal wares are made in small workshops. Sheepskins and various kinds of cloth are extensirely manufactured, and the leather prepared at the tanneries (100 in number) is extensively sold all orer Siberia, the Kirghiz steppe, and Bobbara. An establishment has recently been opened for the construction of barges, and a paper-mill, the first in Siberia, was opened in 15S6. The trade of Tyumeñ is exceeded only by that of Irkutsk and of Tomsk. In addition to its primary schools Tyumcñ has a "real" school. Tho population, which is of a fluctuating character in summer, is differently estimated at $13,000,14,500$, and 18,000 .

TZARSkoye selo. See Tsarskoye Selo.
TZETZES, Joannes, a voluminous Byzantine mater̄ ol the 12 th century. See Greece, vol. xi. p. 145 sq .

Uholds the trenty-first place in our alphabet. The corresponding place in the Greek alphabets was occupied $\mathrm{by}^{\mathrm{Y}} \mathrm{Y}$ (with some slight wariations of form). The form in the Italian alphabets was generally V. These three are only modifications of one original ; but they are independent symbols wiť us, though Y does not represent auy sound otherwise unrepresented. It will bo nost con. venient to describe the three forms once for all.

With T we reach the end of the original Phoenician alphabet. The remaining symbols-no fewer than six with us, four in the completed Latin alphabet-are accretions, either modifications of old symbols for greater exactuess or old symbols themselses which had fallen out of their proper place and were added again. The first new symbol was needed to represent the important rowel sound u. We hase already seen that the Grecks cmployed the Phœenician syinbols for the breaths which they did not want as symbols for the vowels which they did want. Thus we should have expected that the Phoenician vau mould havo been used for u. Sut vau was already enployed for v, which was a living sound in early Greek; the form used was F (the su.called digamma), the origin of our F . What then was the origin of the symbol for u ? In the earliest Greek we find the two forms Y and V, e.g., in inscriptions of Thera. Now the Moabite form of rau is Y, which resembles the Y more than F. It is difficult to see why the presumably oldest Phoenician fornı should appear, not in tho sixth place of the Greek alphabet, hut at the end, whero it must have been an arbitrary addition; and, although the Y form could be derived from F (middle steps are found), it is not easy to get F from Y. We may suppose that the two symbols, F and Y, were obtained by the Greeks from independent Phœenician alphabets, the first being kept by those Greeks who required a symbol for v, and did not at first need any special sign to distinguish u (which in the earliest Greek times'knom'n to us had the value of German ii) from 0; while the others took the form Y to express the modified u, and probably never really adopted the F; except as a numeral ; it does not appear eren in the very old Abu Simbel inscription written by the Ionian mercenaries of Psammitichus. It is noteriorthy that in that inscription doth the forms Y and V appear, whereas in those of Thera and Melos we hare sometimes the one sometimes the other, but not both in the same inscription, and a study of the writing leads to the conclusion that the Y was felt to be the true (i.e., the older) form, but that V was used more frequently for the sake of simplicity.

At Rome the siugle form V denoted both the vorvel u and also the consonantal w. Fretained its place as sixth in the alphabet, but with the value of f, which was unknown to the Greeks; a peculiar form, C , in which the middle stroke has gone to the bottom, scems to have been affected by its neighbour E; this is found in Etruscan, Umbrian, and Samnite inscriptions; it has, however, the value of w; while a curious symbol 8 appears at the cod of the Etruscan alphabet, and is also used in the Eugubine tables, with the value of f; the origin of this is uncertain. It may be a rounded form of the second symbol in the digraph FB. (i.e., FH) by which the sound F is indicated in a very old inscription (see Rhein. Mus., xlii. 317) ; if this is so, the Latin alphabet has the first member of the digraph, the Etruscan has the serond. Next, the symbol Y was added (together with Z) in the lst century p.c. to represent more exactly, in borrowed words, the sound of Greek upsilon.

Lastly, the form U was differentiated from V. It is the uncial form, and so belongs to the general transition from the pointed to the rounded character which conduced to greater convenience of writing. Examples of it may be seen in the article on Paleugraphy; see the specimen of Latin uncial of the 5 th or 6 th century (vol. xviii. p. 153), and the half-uncial of the Lindisfarno Gospels, about 700 A.D. (ibid.,]. 159). It was clearly a matter of conrenience to have separate symbols to represent sounds so distinct as u and v; but the application of the two symbols seems to have been due to chance rather than design. The form V remained in use at the beginning of words, whereas u, which was the uncial and cursive form, naturally was used rather in the middle; by degrees the initial form was appropriated to consonants,-perhaps, as Dr Taylor suggests (Alphabet, ii. 189), because the consonant is commoner at the beginning of words, or for some other reason, while the medial form was conuected with rowels.

The sound which U denotes is produced by "rounding" the lips to the furthest extent cousistent with a clear vowel-sound, and by raising the back of the tongue higher than for any other rounded sound. It has two rarieties (like all other vowels) according as the position of the tongue is more or less tense, producing therehy a narrower or a wider aperture for the voice to pass through; whence the sounds are technically called "narrors" and "wide" respectively. The narrow sound is lheard in English only when the rowel is long, as in "book," "rule," but in northern English (Scotch) "book" may be heard short. The wide sound is heard in "full," "good." The digraph 00 is commonly used for the u sound, and attests the fact that the original sound of \bar{o} has frequently pessed into \bar{u}, as in "good," "food," \&c., written "gode," "fode" in Middl English ; sometimes, however, the co kas come by analogy into words where \bar{z} is the original sound, as in "room," M.E, "roum," O.E. "rūn." Original ū has connmonly passed into the au sound, spelt in English on or our, as in "how," "house," "mouse," "bower," for O.E. "hū," "hūs," "mûs," "būr." According to Mr A. J. Ellis, words derived from the French lad in Chaucer's time the sound of French u; and Sir Joln Cheke's statement "cum duke, tuke, lute, rebake, $\delta \geq к$, тwк, $\lambda u t, ~ \rho є \beta u \kappa$ dicimus, Gracum v sonaremus," seems stronge for the same practice in the 16 th century. In the 17 th century the modern pronunciation of u as ir in "muse," "duke," "mute," "pure" had come in. Hence also we may explain the substitution of u for y in some genuine English words, as "busy" (orig. bysig). At the same time begins the corruption of u to the (sa-called) \check{r} sound in "but," "sluut," $d \cdot \mathrm{c}$.; this is not a u sound at all, but the neutral vowel as lieard indifferently in "but," "sun," "son," "blood"; it is often confounded by writers with the true 26 heard in "pull" and in the northera pronunciation of "but," "sliut." For the history of the German "modified" u (spelt $"$, but originally ue) see under I.

UBEDA, a town of Spain, head of an administrative sublivision in the province of Jaen, stands on a gentle slope about 5 miles from the right bank of the Guadal. quivir, and about 22 miles to the cast of the Menjibar station on the railway from Madrid to Cordova. Unde the Moorish rule it was a place of considerable consequence, its population being said to have at one time numbered 70,000 . Some portions of the old walls, with towers and gates, still remain, but none of the public buildings are of sereat gge, the oldest charch, that of San.

Salsador, dating from $1510-56$. The population within the municipal boundaries in 1877 was 18,149

UDATPUR [Oodeypore], or Mewár, a native state in Rajputana, India, with an area of 12,670 square miles. It extends from $23^{\circ} 49^{\prime}$ to $25^{\circ} 58^{\prime} \mathrm{N}$. lat., and from $73^{\circ} 7^{\prime}$ to $75^{\circ} 52^{\prime}$ E. long., and is bounded on the N. by the British territory of Ajmere; on the E. by the native states of Bundi, Gwalior, Tonk, and Partt́bgarh; on the S. by Banswára, Dungarpur, and Mahi Kantha; and on the WV. by the Araralli Mountains, separating it from Marwar and Sirohi. The greater part of the country is level plain. A section of the Aravalli Mountains extends over the sonthwestern and southern portions, and is rich in minezals, but the mines have been long closed. The general inclination of the country is from south-west to north-east, the Banas and its numerous feeders flowing from the base of the Aravalli range. There are many lakes and tanks in the state, the finest of which is the Dhebar or Jaisamand, with an area of nearly 21 square miles; it is considered to be the largest sheet of artificial water in the world. There are only two metal roads in the state; the Nimach State Railway passes through the north-eastern part

In 1881 the population, exclusive of 51,076 Bhils, was $1,443,144$ (males 772,685 , fenaies 670,459); Hind is numbered $1,321,521$, Mohammedans 43,322 , Jains $\overline{78}, 171$, and Christians 130. The only torn with over 10,000 inha litants is Udaipur, the canital $(38,214)$. This city is picturesquely situated ou a lake 2000 fect above sealevel, and faces wooded liills. It contains the royal palace, whicl is a noble pile of granite and marble, built on the crest of a rocky ridge overlooking the lake, city, and valley. There are no manufactures of any importance in the state, and the crops as a rule only snffice for local wants. The principal iuports are salt, piece goods, groceries, metals, medicines, sngrar, ivory, and tobacco ; and the exports erg mostly confined to turmeric, gir, cotton, indigo, til, onium, and cattle. The total income of Udaipur in 1885-86 was $\pm 259,624$. The state was taken under the protection of the British Fovernment in 1817, and it pays an annnal tribute of $£ 20,000$. The fannily of the raja of Udaipur ranks highest in dignity among the Rajput cliefs of india.

UDAL (Danish odel) is a kind of right still existing in Orkney and Shetland, and supposed to be a relic of the old allodial mode of landholding existing antecedently to the growth of feudalism in Scotland. The udal tenant holds without charter by uninterrupted possession on payment to the crown, the kirk, or a grantee from the crowa of a tribute called scat (Danish skiat), or without such payment, the latter right being more strictly the udal right. Udal lands descend to all the children equally. They are convertible into feus at the option of the udallers.

UDALL, Nicholas (b. $1505-\mathrm{d} .1556^{1}$), author of the carliest extant regular English comedy. Udall was a typical man of the Renaissance in England, a schoolmaster by profession, a classical scholar, a translator of Terence anci Erasmus, and a writer of pageants and iuterludes. He was ligh in favour at court, wrote terses for the city pageant exhibited at Anne Boleyn's coronation in 1533, and was honoured by Mary in 1554 as one that had "heretofore showed and mindeth hereafter to show his diligence in setting forth of dialogues and interludes before is for our regal disport and recreation." The severity of Lis discipline at Eton, where he was headmaster, has been immortalized by the quaint lines of one of his pupils, Thomas Tusser. The exact history of the production of his comedy Ralphr Royster Doyster is not known. A printed cony wanting the title-page came to light in 1818, and we know that it was licensed to be printed in 1566. It is a distinct advance in construction on the Merry Interludes of John Heywood, but it is not a comedy in the strict English sense, being, like the interludes, essentially farcical

[^297]in motive, character, and meldent. Although an initation of the Latin comedy, it is far from being a servile initation, aud abounds in fresh fun and cleverness. It has been twice reprinted, -by the Shakespeare Society (with a memoir by Mr Cooper) and in Arber's Reprints.

UDINE, a tomn of Italy, in the province of Udine, in a wide plain near the foot of the Carnic Alps, ou the Roja, 84 miles by rail nortl1-east from Venice and 40 miles north-west from Trieste. It is enclosed by an imposing wall of considerable antiquity, some 4 or 5 miles in circumference, and fortified with towers. In the centre, on an eminence, stands the old castle, at one time the residence of the patriarchs of Aquileia, and now used as a prison. Grouped around this is the old part of the town, with narrow crooked streets, some of which are lined with arcades. The cathedral, which is a Romanesque building with fine pillars, and an hexagonal tower bearing 14 th-century sculptures, contains some interesting examples of native art (by Giovanni Martini da Udine and others). The clurch of S. Maria della Purita has frescos by Tiepolo. On the principal square stands the town-hall, built in 1457 in the Venetian-Gothic style, and skilfully restored since a fire in 1876 ; opposite is a clock tower resembling that of the Piazza di San Marco at Venice. The archiepiscopal palace and Musco Civico, as well as the municipal buildings, have some valuable paintings. Several of the palaces of the nobility lave striking architectural features, and the town is adorned by many beautifnl public walks. The leading industry of Udine is silk-spinning, but it also possesses manufactures of linen, cotton, hats, and paper, tanneries, and sugar refineries, and has a considerable trade." The population in 1881 was $23,254$.
Uline is the Vcrioum of Pliny: it was then a muncipinm, but quite an inconsiderable place compared with Forum Julii (Cividale) 11 miles to the cast, or Aquileia 22 miles to south -sonth-east. In the Middle Ages it became a flourishing and populons city; in 1238 the patriarch Berthold mado it the capital of Friuli (q.v.), and in 1420 it became Venetian.

UEBERWEG, Friedrich (1826-1871), best known by his History of Philosophy, was born on the 22d January 1826 at Leichlingen, in Rhenish Prussia, where his father was Lutheran pastor. His mother, left carly a widow, devoted her scanty means to the education of her only son. Ueberweg passed throngh the gymnasium at Elberfeld, and studied at the universities of Göttingen and Berlin. In 1852 he qualified himself at Bonn as privatdocent in plilosophy. His System of Lorfic, published in 1857 (English translation 1871), and his essay On the Authenticity and the Order of the Platonic Mritings, crowned by the Imperial Acadeny of Vienna (published 1861), contributed to draw attention to him as at once a scholar and a thinker. In 1862 be was called to Königsberg as extra! ordinary professor, and in 1867 he was advanced to the ordinary grade: He married in 1863, and on the 9th June 1871 he died prematurely.
The chief work of his later years was his compendions History of Philosophy, which is mumatehed for fulness of information combined with conciseness, accuracy, and impaitiality of treatment. The first part appearel in 1862. An Englisl translation, in twe volumes, was published in 1872 , and las gone throngh sereral rlitions. Ueberweg translated, in 1869, Perkcley's Principles of Humar Krovileclge, with notes, for Kirchmann's Philosophische Bibliothek. In philosophy Ueberwer was strongly opposed to the subjectivistic tendency of the Kantian system, maintaining in particular the objectirity of space and time, wbich involverl him in a somewhat violent controversy with sereral opponents. His own mode of thonght he preferred to describe as an ideal renlism, which refused to reduce. Ieality to thought, but asserted a parallelisin between the forms of existence and the forms of knowledge. Beneke anil Schleiermacher seem to liavo exercised most influence upon the development of lis thonght. A short momoir, by his friend F. A. Lange (unthor of the History of Afatcrialism), gives some account of what may be called personal opinions in philosophy and theology, which did not find expression in Ueberweg's publishec writings.

UFA, a government of south-eastern Russia, on the western slope of the Urals, has Vyatka and Perm on the N., Orenburg on the E. and S., Samara and Kazañ on the W., aod comprises an area of 47,112 square miles. In virtue alike of its physical characters and of its population, Which belongs chiefly to the Ural-Altaic stock, it forms an intermediate link between Europe and Asia, and it was only recently separated from the governwent of Orenburg, which is now limited to the eastern slopes of the Urals. Several craggy and densely wooded ridges, running from south-west to north-east parallel to the main chain of the southern Urals, occupy its eastern part. They aro separated by broad and long longitudinal ralleys, and riso to altitudes of from 2500 to 3500 feet above the sea; their lighest peaks-Iremrel (5040 feet), Nurgush, Urenga, and Taganai (3950 feet) -are above the limits of tree-vegetation, but in no case reach those of perpetual snow. The high longitudinal valleys of the Urals are the seat of an important mining industry. Southward Ufa extends over the slopes of the Obshchiy Syrt plateau, the angular space hetween the latter and the Urals being occupied by elevated plains (from 1000 to 1500 feet), deeply grooved by the river valleys and sometimes described as the "Ufa plateau." It slopes gently towards the depression of the Kama; and its undulating surface, especially its broad valleys (500 to 600 feet abovo the sea), corered as they are with a fertile soil, rire being rapidly colonized by Russiau settlers. Towards the Kama the fertility of the soil increases, and the blackearth regions of Meazelinsk and Birsk may be described as granaries for that part of Russia.
The geological structure or Ufa is very varted. The main ridge of the Urals consists of gneisses and various crystalline slates resting upon granites andsyenites ; next comes a broad strip of limestones and saudstumes, the fossil fauna of which is intermediate in its lowest parts between the Upper Silurian and the Lower Devodian. These form the highest ridges of Ufa. Farther west the Devonian deposits are followed by Lower and Upper Carbonifereus and "Artinsk schists," which, together with Yermian de. posits, cover western Ulia. Quatcrnary deposits are extensively developed in all tho valleys, most of which were occupied by lakes during the Lacustrine period. Ufa has not tho mineral resources of Perm; only traces of gold have been found in its valleys, and silver ores aro absent; but its wealth in iren (Devoniais) and copper (Permian) seems likcly to lave great mining importance in the future. The district of Ztatoust is celebrated for its granite, epidote, nephrite, and a variety of decorative stones and minerals. Conl is spread over a wide area, but only in layers too thin to make workiag remnnerative. Fire-elay, kaolin, and sandstone for making grindstones are obtained to some extent; naphtha, sulphor, and saltpetre have been observed in several places.
Ufa belongs almost entirely to the drainage area of the Byctaya, a. great tributary of the Kama, which rises in Orenburg, fows south aud west till it pierces a moustain chain at Bugutchan, and then runs nerth and north-west, watering the high plains and receiving a number of important tributaries, among which the Sim, the Tanyp, and the Ufa are also navigable. The banks of the Bychaya are thickly peopled, and it is an important channel for trade ; but it sometimes reaches so low an elbb in summer that steamers cannot proceed beyoud Birsk. The Kama flows for 120 miles along the western border of the government. Marshes lie aleng its course, so that its banks aro but thinly inhabited. Forests cover nearly half the area, but the plains on the left of the Byetaya are comparatively thinly wooded. The climate of Ufa is very continental. The average temperature at Ufa is $37^{\circ} \mathrm{F}$., and the winter is extremely cold (January $5^{\circ} \cdot 5 \mathrm{~F}$., July $63^{\circ} \mathrm{F}$.); at the Ztatoust observatory (1340 feet) the average temperature is oaly $32^{\circ} \cdot 2$ (January 2°; July $61^{\circ} 8$). Even in the hilly tracts of Ztatoust the annual rainfall is ouly 19 inches. The rivers are frozen 158 days at Ufa, and 202 about Ztatoust.
The population of Ufa is now rapidly increasing ($1,793,260$ in 1882, as egainst $1,291,020$ in 1865). Only one-third of the whole is Russian, the remainder leing chielly Bashkirs (50 per cent., including Mescheriaks and Tepters), Tartars (8.4 per cent.), Teheremisses, Tchuvashes, Mordvinians, and Yotiaks. In the sonth the Basbkirs, Tartars, and other Ural-Altaians constitute two-thirds of the population. Among the Russians two distinct elements mnst be distinguished,-some 100,000 peasants, who formerly were miaing serfs, and now support themselves chiefly by work in or for thio mines, and nearly 620,000 agriculturists, for the most part more recent immigrants. The latter carry on agriculture on an extensive
scale, and export large quantities of coru. The Bashkirs are chiefly eattle-breeders, but of late they have been driven more ond more to tillage, owing to the appropiation by speculators of their extensive pasture-lands. Bec-keeping is largely carried on, and bunting is still an important sonrce of iucome to the Bashikirs. In the north-cast the trado in timber and the manufacture of various wooden wares are largely engaged in ly the peasantry. The mining industry is advancing, notwithstanding many obstacles (see rol. xxi. p. 85); the iron-works of Ztatoust esjecially have a wide reputation. Flour-nills, distilleries, and tamneries come next in importance. The exporis of corn, linseed, timber, wooden wares, metals, tallorr, hides, and cattle are considerable, and trade is active, especially at the fairs of Menzelinsk, Ufa, and Zratoust.
There are six administrative districts, the chief towns of which (with populations in 1884) are-Ufa (25,660), Belebci (4200), Birsk (8000), Menzelinsk (6100), Sterlitamak (8940), and Ztatoust (18,990). The loading places Teletny and Berozovka on the Kama, and several iron and copper works (Satkinsk, Vurezan, Katav-Iranovsk, about 6000 inhabitauts each) onght also to be mentioved.

UFA, capital of the above government, is situated at the confluence of the Ufa with the Byetaya, on high crags intersected by ravines, which are covered with gardens and orchards. The better part of the town containo a few stone buildings counected with the administration, two cathedrals, and a few churcbes; the remainder is a scattered aggregation of small wooden houses. There are two classical gymnasiums for boys and girls, a theological seminary, and several lower schools. The town has a few good hospitals. The manufactures are insignificant in Ufa itself, but there are several iron and copper works of importance within the district. Owing to the fertility of the neighbouring regions, and the position of the town at the junction of two important rivers, the Ufa merchants carry on a brisk export trade. The population has rapidly increased of late, reaching 25,660 in 1884.
Ufa was founded in 1574, when a fort was built on the Byefaya, three other forts being erected about the same tume at Busk; Menzelinsk, and Berezovka, to connect Ufa with the Russtan settlements on the Kaina. The wooden kreml of Ufa, protected by wooden towers and an outer carthen wall, had to sustan the attacks of the revolted Bashkirs and Russian serfs in 1662 and at later dates; and in 1773 Tchika, one of the chiefs of the Pugatchel! revolt, lesieged it for funr months.

UGANDA, a country of eastern Central Africa, to the north-west of the Victoria Nyanza. It has an area of about 34,000 square miles, extending from $1^{\circ} \mathrm{N}$. lat. to the Kitangule river, and from 31° E. long. to the Nile. The country bordering the lake and to the north-west is mountainous, the mountains being arranged in low parallel chains. The hills, covered with splendid timber and abundant underwood, rise to a height of 400 fect above their valleys, through which sluggish streams fiow to the lake. Farther north the country becomes a plain, and the eastern portion of Uganda, between Rubaga and the Nilc, consists of undulating country, varied by deep narrow valleys. The geological formation of the country is volcanic or metamorphic; two or three feet of rich black alluvial soil form the upper strata, covering a bed of red sandy clay, often 30 feet thick. In some places porcclain earth is found, as well as large masses of mica. Ironstone is present in considerable quantities, but as yet no other metals have been discovered. The climate is mild, and the temperature rcmarkably uniform throughout the year ; the thermometric range is from 50° to $90^{\circ} \mathrm{F}$. ; but the mean annual variation is only 20°. The anaual rainfall is 50 inches, the greatest amount of rain occurring in March, April, May, and September, October, and November, when rain falls nearly every day, thunderstorms being freguent.
The population of Uganda is about five millions. The men are tall and well-built, and liave good fea tures and dark chocolate-coloured skin, with woolly hair. The women in their jouth are goodlooking. The country is divided into three provinecs-Uldu in the south, Singo in the west, and Changwe in the cast, to which must be added abnut 400° islands in the lake. The gevernment of the country is feudal, the king being nomimally supreme. Succession to the throne is hereditary, but, the successor is usually a minor
chosen by three hereditary chiefs, who with the young king's mother carry on the government until he is of age. The reigning family in Uganda is descended from tho Wiahuma tribe; the late king Altesa professed to tracé back his descent to lintu (or Ham), the founder of tho dynasty. The country is ruled hy the king, thrce hereditary chiefs, and a conncil of minor chiefs, -two hereditary chiefs and a cortain proportion of the others being continually in residence at Rubaga, the capital of the country. The laws are strict, and the administration of justice is conducted in an orderly manner. There is no real taxation, but the people are compelled to render feutlal service to all their superiors. The Waganda nay be divided into fonr classes, the lowest class being the slave population, consisting of prisoners taken in war and their desceudants; next come the "bachopi" or peasants, who form the mass of the population; the third class are the "batongoli," or chicfs, who are recruited from the hachopi, but whose honours are not hereditary; they receive their rank for distinguished brarery in tho field or for services rendered to the state, and they are the governros of the villages. The highest class is that of the "bakungn," a superior grade of chiefs, all belonging to the "luchiko" or state council, and being governors of large districts of land. The three great hereditary cbiefs belong to this class, and they are supreme governors of the three great districts into which Uganda is divided. The Waganda are sery warlike; all adult inales are compelled to serve in the army when required, and the military orgauization, baring its licad. quarters at the eapital, ramifies throughout the wholo land. Gaz.e is very plentiful: elephants, buffaloes, zebras, Hhinocereses, wild boars, twelve species of antelopes, lions, leoprards, jackals, foxes, hyænas, hares, chimpanzees, and several species of moakeys inhabit the forest. Snakes are numerous; hippopotami, crocodiles, and otters abound in the lake and in the Nile, as also many water-rats. The principal hirds are parrots, gninea-fowl, owls, vultures, adjutants, goatsuckers, kites, eagles, ducks, geese, storks, cranes, herons, gulls, scarlet flamingos, darters, the sacred and glossy ibis, and brilliantly colonred honey-birds. The princinal insects are mosquitos, fleas, locnsts, whitc and driver ants, and butterflies of many species. The domestic animals are cows, goats, and a few sheep and dogs. The Waganda live chiefly upon a regetable diet, the banana forming the staple food; it gross every where, and requircs little or no cultiration. The sweet patato is the chief regetable cnltivated, but coffee, sugar-cane; cassava, maize, sesame, millet, tullabone, several snecies of leans, and two or three kinds of pumpkins are grown to a small extent. The principal fruits are the mpafu and a species of amomum. Strangers have introduced wheat, rice, guavas, papars, pomegranates, tomatoes, onions, and radislies. Wine is made from the banana tree, and is a staplo drink. Butter and cheese are also made. A good deal of manufacture is carricd on, for the people are ingenious and clerer workmen, and their work is tasteful, neat, and exact. Two kinds of pottery, a coarse and a fine variety, are manufactured in considerable quantities. The basket work is extremely good, and the metal work far superior to any seen among tho neighbouring trilies. The manufacture of bark-cloths, in which most of the people are clothed, is very extensively carried on, and their wood-work and boat-buihling are of very superior quality. Tanning, dyeing, and bead-work enviloy numbers of the people. There is not rery much home trado in Uganda; it ia-limited to the barter of mative namfactures. Several times a ycar caravans arrive from Zanzibar, bringing calico, guns, powder, fles, knires, \&c. The standard value of any article is reckoned hy 100 cowries or an arm's length of calico and heads; hoes, salt, and fish aje also cmployed as mediums of excha-ge. The anguage snoken in Uganda belongs to the great Bantu fanaly, and is rery rich in words. It has ten classes of nouns, the noun being the most important part of speech. Grammatical inflexions are formed by prefixes; the inflexions of verbs, adjectives, and pronouns vary according to the class of the governing noln. Adjectives agree with the substantive in number and case, and alwnys follow the noun. There are personal, possessive, relative, demonstrative, and interrogative pronouns, and several forms of verbs. The Waganda are rely good aritlemeticians. The root of all multiples is ten; tallies aro used as aids to the memory. The people are very musical; their voices are clear and melodious, and of considerable range. They have a great rariety of tunes, orchestral, dance, and rocal music having distinct charasteristics. Their musical instruments consist of harmonicons, rattles, drums, houns, whistles, flutes, and harps. The Waganda have no images or ontward symbols of their gods : and they think that the world is ruled by spirits or demons, to whom katonga, the great creator, has deputed his power. They worship Mrnkasa, the god of the lake; Naduala, the god of small-pox; Chiwuka and Nenda, the gods of war; and several of the former monarchs of Uganda, who are believed to bo demi-gods. A thunder spirit is also invoked. The gods of war are supposed to inhabit certain trees, and offerings are made to them before entering the war-path; like offerings are also made to the god of the lake before commencing a voyage upon its waters. The Waganda are courteous, cleanly, given to hospitality, but drunken, and to a certain extent indolent. Their standard of
morality, even judged by that of the surrounding tribes, is not high. Human life is little respected; they are untruthful and indecent. Unless moved by passion, they are not cruel; passionate, they are not revengcful. Chilluen are well treated, as are the aged mea. On account of the extensive prevalence of polygamy, women occupy a somewhat low social grade.

Uganda was first risited by Speke and Grant in 1860, and the country has since been visited by numerous Europeaus, chiefly missionaries. "The Clurch Missionary Society and the Koman Catholica have mission stations in the country. In 1886 some forty of their converts were burnt at the stake, and in the same year Bishop Hannington was murdered on the borders of the country by the orders of liing Mwanga.
See Speke's Journal, Grant's tralk across Africa, Stamey's Through the Dar': Contimens, and Wilson and Eelkin's C'gonda and the Eqyplian Soudan. Also, " monograph "On the Waganda Tribe, by R. W. Fe.kin, in Pioc. Roy. Soc. Ed., vol. रill, and an Outline Grammar of the Luganda Language, by C. T. Wilson.

UCLITCH, a district town of Fussia, in the government of Yaroslavl, is situaled on the upper Volga, principally on its right bank, 67 miles to the west of the capital of the province. Its historical remains are mostly assóciated with the prince Dmitri (see vol. xxi. p,93). The mooden house he occupied, a church of St Demetrius "on the Blood" erected at the spot where he was killed, and a kiosk on the site of the convent where his mother was forcibly consecrated a non,-all commemorate this chapter in the history of the rule of the boiars at Moscow at the beginaing of the 17th century. An old caihedral, erected in the 13 th century but subscquently restored, and containing the gravo of Prince Roman, recalls a still earlier period of municipal independence. Ugliteh has now become a commercial and industrial city with 11,930 inhabitants (1883), and has an important trade, being one of the chief loading places on the upper Volga. Its industries comprise the sewing of sacks for corn and flour (about one million every year) and the knitting of woollen socks; and it has a paper-mill. distilleries, copper works, and linen factories. Corn, paper, sansages with which the name of Uglitch has long beer associated, candles, d.c., are shipped at the town.

Uglitch is one of the oldest towns of Russia; its local annals go as far as back as the $9 t h$ century. Until the 14 th century it maintained its independence as a separate principality, whieh extended over eastern Tver, and elected its own rrinces. In 1329 the sons of Princo Roman the Saint renounced their independence in faronr of Noscow, and fifty years later the Uglitclı princes finally sold their rights to the great prince of Moscow. The Tartars plundered the town during their invasions of 1237,1293 , and 1408 , as also dav the Lithuanians at a later date.

UGOLINO. See Gherardesca and Pisa.
 UGRIANS. See Finland, vol. ix. p. 219.

UHLAND, Johavin Ludwig (17S7-1862), German poei, was born at Tübingen, on April 26, 1787. He studied at the university of his native place, taking jurisprudenco as his special subject, but also devoting much time to litarature. Having graduated as a doctor of laws in 1810 , $\}$ went for some inonths to Paris; and from 1812 to $151+$ ho worked at his profession in Stuttgart, in the bureau of tle minister of justice. He had begun his career as a poet in 1807 and $1 S 0 S$ by contributing ballads and lyrics to Seckendorf's Musenalmanrich; and in 1812 and 1813 he wrote poems for the Poetischer Almanach and for the Deutscher Dichterucald. In 1815 he collected his poens in a volnme entitled Gedichte, whiclı almost immediately secured a wide circle of readers, and gives him his prace in Gcrman literature. To every new edition he added some Iresh poens; and the sixtieth edition, published in $\mathbf{1 8 7 5}$, included a number of pieces found among his papers. He wroto two dramatic works-Ermst, Ilerzog von Schouden and Ludwig der Baier-the former published in 1817, the latter in 1819. These, however, are unimportant in comparison with his Gedichte. In some respects Uhland monst be classed with the writers of the romantic school, for, like them, be found in tlio Middle Ages the subjects which appealed most strongly to his imagination. But his style has a precision, suppleness, and grace which sharply dis-
tinguish his most characteristic writings from those of the ronantic poets. Ifis best lyries have the charm which belongs to the unaffected expression of delicate sentiment; and in almost all his ballads he displays a remarkable power of giving pieturesque form to his conceptions of claracter. He was a man of pime and noble impulse, and it was in presenting scenes which awaken love, or admiration, or pity that he did the fullest justice to his powers. Uhland's poetic sympathy with some characteristics of the age of chivalry did not prevent him from sharing the best aspirations of his own time. He wrote manly poems in defence of freedons, and in the states assembly of Wuirtemberg he played a discinguished part as one of the most vigerous and consistent of the liberal members. In 1829 he was nade a professor, at T'ibingen university, of German literature and the German language, but he resigned this appointment in 1833, when it was found to be incompatible with his political duties. In 1848 he became a member of the Frankfort parliament, in which he sat as one of the inost respected inembers of the liberal party.

Uhland was not only a poct and politician; he wass also an ardent student of the bistory of literature. In 1812 he published an interesting essay on Dus alffranzösische Epos; and ten years afterwards this was followod by an admirable work on Walther ron der Vogelweide. He was also the author of an elaborate study of Der Mylhus von IJôr nach nordisclen Quellen (1836), and he formed a valuable collection of Alte hoch- und niederdeutsche Tolkslieder; which appeared in 1844-45. He died on Norember 13, 1862. After his death his prose works were reprinted, with some additions, under tho gemeral title Uhland's Schriften zur Geschichte der Dichtung und Sure (1S65-73), and an edition of bis pooms and dramas, in three volumes. was issned in 1863.

See Liebert, Ludwig Ulland, cine Shizzc (1863); Mayer, Lutwoig Uhlaud, scine Frounde unul Zcitgonossen (1867); and Lutwig Whlund's Lebon, aus dessen Nachlass zund aus cigencr Eyfahnung zusantnengcsccll won sciner Wituc (1874).

UJIIJI, a town in eastern Central Africa, of considerablo importance, also known by the name of Ravele, is situated on the eastern shores of Lake Tanganyika, in $4^{\circ} 55^{\prime} \mathrm{S}$. lat. and $30^{\circ} 5^{\prime} \mathrm{E}$. long. It is the chief town on that lake, and is the centre of a brisk trade in ivory. Formerly it was a great slave-market. The town is of a stragerling character, Arab houses of sun-dried bricks being mingled with native huts. The population, which fluctuates considerably, is very mixed, being composed of Arabs and the rcpresentatives of numerous Central African tribes. Ujiji has been visited by various European travellers, who have made it their headquarters, and it was here that Stanley found Livingstone, on October 28, 1871. Opinions vary as to the salnbrity of its climate, but the balance of testimony appears to prove that during the greater part of the year it is very unbealthy.

UJJAIN, or Oosern, a town in the natios state of Gwalior, central India, situated on the right bank of the Sipra, in $23^{\circ} 11^{\prime} 10^{\prime \prime} \mathrm{N}$. lat. and $75^{\circ} 51^{\prime} 45^{\prime \prime} \mathrm{E}$. long., 1698 feet above sea-level. In ancient times Ujjain was the great and famous capital of Malwa, one of the scren sacred cities of the Hindus, and the spot which marked the first meridian of Hindu geographers. Though much decayed, it is still a large and populous city, with considerable sominerce. The modern city is surrounded on all sides by an almost uninterrupted belt of groves and gardens. In 1881 the population of the town numbered $32,932$. Its trade consists chiefly in the export of opium and the import of European goods, especially cotton fabrics.

UKRAINE ("frontier"), the name formerly given to a district of European Russia, now comprising the governments of Kharkoff. Kiesp: Pedolia, and Poltava (q.v.).

Ul.CER. Sce Straers, rol. zxii. p. 6 S 3.
ULFILAS (311-381), the apostle of Christianity to the Gothic race, and, through his translation of the Scriptures into Gothic, the father of Teutonic literature, was born among the Goths of the trans-Danubian provinces in the year $311 .{ }^{1}$ There is a tradition that his ancestors were Christian captives from Sadagolthina in Cappad,cia, who had been carricd off to the lands bejond the Danube in the Gothic raid of 267 ; but the evidence on which this rests is inadequatc. An authoritative record of the cutlines of his life has only been discovered within the last fifty years, in a writing of Auxentius, his pupil and companion.

At an early age Ulfilas was sent, cither as an envoy or as a hostage for his tribe, to Constantinople, probably on the occasion of the treaty arranged in 332. During the preceding century Christianity lad been planted sporadically among the Cioths beyond the Danubc. through the agency is part of Christian captives, many of whom helonged to the order of clergy, and in part of merchants and traders. Ulfilas may thercfore have been a convert to Christianity when ho reached Constautinople. But it was here probably that he came into contact with the Arian doctrines which gave the form to lis later teaching, and here that he acquired that command over the Greek and Latin tongues which equipped him for his labours as a translator. For some time before 341 be worked as a "Jector" or reader of the Scripturcs, probably among his own countrymen in Constantinople, or among those attached as foederali to the imperial armies in Asia Minor. From this work be was called to return as missionary bishop to his own country, being ordained by Eusebius of Nicomedia and "the lishops who were with him" in 341. This ordination of Ulfilas as missionary bishop by the chicfs of the semi-Arian party is at once an indication of their determination to extend their influence by active missionary enterprise and evidence that Ulfilas was now, if he had not been before, a declared adherent of the Arian or semi-Arian party. He was now thirty years of age, and his work as "bishop among the Goths" corered the remaining forty years of his life. For seven of these years he wrought among the Visigoths beyond the Danube, till the success which attended his labours, and the growing numbers of his flock, drew down the persccution of the still pagan chicf of the tribe. This "sacrilegus judex" bas been identified with Athanaric, a later persecutor, probably without sufficient ground. Tho persecution was so severe that, to save his flock from extinction or dispersion, Ulfilas decided to withdraw both himself and his people from its range. With the consent of the emperor Constantius, he led them across the Danube, "a great body of the faithful," and settled in Mosia at the foot of the range of Hromus, and near the site of the modern Timera (34S). Here they developed into a peace-loving pastoral people.

The life of Ulfilas during the following thirty-three years is marked only by one recorded inciucnt, his visit to Constantiople in 360, to atteud the council convened by the Arian or Homoian party: His work and influence were not, bowever, confined to his own immediate flock, but radiated by means of his writings (homilies and treatises), and through the dieciples he despatched as missionaries, among all the tribes of the Gothic stock beyond the Danube. By this time probably he had made some progress with his version of the Scriptures, and copies of parts of it would begin to circulate. Thus the church beyond the Danube, which had not been extinguished on Ulfilas's withdrawal, began to grow once more in numbers (and importance, and once more lind tn undergo the fires of persecution. Catholic missionaries had not been wanting in the meanwhile, and in the indiscriminate persecntion by
${ }^{1}$ Krafft gives 313 as the late, Waitz 318.

Athanaric betrreen 370 and 375 Catholics and Arians stood and fell side by side. The religious quarrel either accentuated, or was accentuated by, political differences, sand the rival chiefs, Athanaric and Frithigern, appeared as champions of Paganism and Christianity respectively. Then followed the negotiations with the emperor Valens, the geueral adhesion of the Visigoths under Frithigern to Arian Christianity, the crossing of the Danube by himself and a host of his followers, and the troubles which culminated in the battle of Adrianople and the death of Talens (378). The part played by Ulfilas in these troubluus times cannot be ascertained with certainty. It may have been he whe, as a "presbyter Christiani ritus" conducted negotiations with Valens before the battle of Adrianople; but that he headed a previous embassy asking for leare for the Tisigoths to settle on Roman soil, and that he then, for political motives, professed himself a convert to the Arian creed, favoured by the emperor, and drew with him the whole body of his countrymen, - these and other similar stories of the orthodox church historians appear to be without foundation. The death of Valens, followed by the succession and the early conversion to Catholicism of Theodosius, dealt a fatal blow to the Arian party within the empire. Ulfilas lived long enough to see what the end must be. Hardships as teell as years must lave comhined to make him an old man, when in 381 ho was sent for to Constantinople. The emperor had summoned him, for what purpose cannot be clearly ascertained. A split seems to have taken place among the Arians at Constantinople. Party riots were too familiar there, and a fierce dispute orer a theological dogma, however abstruse, placed the peace of the city, if not the security of the palace, in jeopardy. Ulfilas was summoned to meet the invovators, and either by argument or by influence to induce them to surrender the opinion which caused the dispute. His pupil Auxentius describes how, "in the name of God," he set out upon his way, hoping to prevent the teaching of these new heretics from reaching "the claurches of Christ by Christ committed to his charge." No sooner had he reached Constantinople than he fell sick, "having pondered much about the conncil ${ }_{2}^{3 "}$ and before he had put his hand to the task which had brought him he died, probably in January 381. A few days later there died, also in Coustantinople, his old enemy and persechtor, Athanaric.

The Arianisu of Ulfilas was a fact of pregnant consequence for his pcople, and indirectly for the empire. It had been his lifelong faith, as we learn from the opening words of lis own testament"Ego Ulfilas semper sic credidi." 1f, as seems probable from the circuustances of his ordination, he was a Seni-Arian aud a follower of Eusebius in 341, at a later period of his life he departed from this position, and vigoreusly opposel the teaching of his former leader. He appears to lave joived the Homojan party, which took sbape and acquired influence before the couscil of Constantinople in 360 , where be adhered-with the rest of tho council to the creed of Arinninum, with the adjendun that in future the terms $\dot{\delta} \pi \delta \sigma \tau \sigma \sigma, s$ and oucia should be excluded from Cliristological definitions. Thus we learn from Auxentius that he condemued Homoonsians and Homoiousians alike, adopting for himself the Honoian formula, "filium similem esse patri suo." This Arian form of Christiauity mas imparted by Ulfilas and his disciples to most of the tribes of the Gothic stock, and persisted among them, in spite of the persecution, hatred, and political disasters it involved, for two centuries.

The other legacy bequeathed by Ulfilas was of less questionable value. His version of the Scriptures (see Gothio Language, vol. x. p. 852) is his greatest monnment as a way-breaker and a scholar. By it he became the first to raise a barbarian tongue to the dignity of a literary language ; and the skill, knowledge, and adaptive ability it displays make it the crowning testimony of his powers as well as of his devotion to his work.

The personal qualities of the man may bo inferred from his pupil's description of him as " of most upright conversation, truly a confessor of Christ, a teacher of piety, and a preacher of truth,-a man whom I am not competent to praise according to his merit, yet altogether keep silent I dare not."
Literature,-Waltz, Das Leben des Uifitas, 1840; Kraff, Kirchengeschichte der

 Language" under Gorts.
(C. A. S.)

ULM, an ancient and important commercial town in Würtemberg, and an imperial fortress of the first class, is situated on the left bank of the Danube, in a fertile plain at the foot of the Swabian Alps, 45 miles to the south-east of Stuttgart and 63 miles to the north-west of Munich. The town, quaintly built with narrow and confined streets, still preserves the dignified and old-fashioned appearanco of an ancient imperial town, and contains many medixval buildings, both of historic and of artistic interest. Among these, besides numerous handsome private liousea, are tho town-house, of the 16th century, in the Transition stylc from late Gothic to Renaissance; the Kornhaus and market-bnildings; the Ehingerhaus or Neubronnerhaus, now containing the industrial museum; the "new building," erected in 1603 on the site of a palace of Charlemagne ; and the commandery of the Teutonic order, built in 1712-18 on the site of a habitation of the order dating from the 13 th century. By far the most important and conspicuous building in Ulm, horever, is the magnificent early Cothic cathedral, next to the cathedral of Cologne the largest church in Germany, and capable of containing 30,000 peoplo. Begun in 1377 , and carried on at iutervals till the 16 th century, the building was long left unfinished; but in 1844 the work of restoration and completion $\begin{gathered}\text { was } \\ \text { undertaken, and has steadily progressed ever }\end{gathered}$ since. Ulur cathedral has double aisles and a pentagonal apsidal choir, but no transepts. Its length (outside measurement) is 464 feet, its breadth 159 feet; the nave is 136 feet high and $47 \frac{1}{2}$ wide; the aisles, which are co:cred with rich net-vaulting, are 68 feet in height. The massive and richly decorated square tower in the centre of the west façade, for centuries terminated by a temporary spire, is now being completed according to the original plans, by the addition of an octagonal story and a tall open spire, which is to be carried up to the height of 534 feet. The towers of the choir have also been rebuilt in the course of the present restoration; they are 282 feet high. The interior, which is unusually well lighted, produces an impression of much dignity from the great height of the nave, the absence of obtrusive decoration, and the massive manner in which the walls and piers are treated. It contains some fine stained glass, the largest organ iu Germany (1856), and a number of interesting old paintings and carvings by Syrlin, Engelberger, and other masters of the Swabian school. The cathedral belongs to the Protestant Church. Trinity Church dates from 1617-21; and there are also a Roman Catholic church and a modern synagogue in the town. The Danube, joined by the Iller just above the town and by the Blau just Lelow, becomes navigable at this point, so that Ulm occupies the important commercial position of a terminal river-port. The trade, especially in wood and grain, has an upward tendency; and the Ulm market for leather and cloth is also rising in importance. Ulm is famous for its regetables (especially asparagus), barley, beer, lipe-bowls, and sweet cakes (Ulmer Zückerbrot): Bleaching, brewing, and brassfounding are carried on, as well as a large miscellany of manufactures, including hats, metal goods, agricultural implements, tobacco and cigars, cement, paper, and chem.icals. The population in 1886 was 33,611 .

The various routes which converge at Ulm hape made it at all tunes a strategic point of great importance, and it has long been a fortress of tho first rank. In 1844-59 the German Confederation carefully fortified it with walls, ramparts, and ditches, and in 1876 the new German empire added a very comprchensive outer girdle of detached forts, culminating in the powelful citadel of Wilhelmsburg. The defensive works enibrace alse the Bavarian town on Neu-Ulm (7823 inhabitants), on the opposite bank of the Danube: united with the older city by two stone bridges. J'Ulm is thus the basis of operations for the German army behind the Black Forest,
and can easily shelter a force of $100,000 \mathrm{men}$; its pace grarisou is 5600 .

Ulm is mentioned as early as the year 854. It subsequently became a free imperial city, and the leadiag town iu Swabia. Io the 15 th century it attained the summit of its prosperity, and ruled over a district of maay square miles, with a population, rura and urban, of sbout 60,000. Towards the end of the Middle Ages it frequently appears at the head of various Swabian leagues. In 1530 it adopted the Augshurg Confession. In 1803 it passed to Bavaria, and is 1810 to Würtemberg. In 1805 General Mack, with 33,000 Austrians, capitulated to Napoleon at Ulm. Ulm is remarkable in the history of German literature as the spot where the "meistersz̈nger" lingered longest, preserving, without text and without notes, the traditional lore of their craft. In 1830 there were twelve " meistersänger" alive at Ulm; but in 1839 the four survivors formally made over their insignia and guild property to a modern singing society, and closed the record of "Meistergesang" in Germany. The last formal meeting of the Nureuberg "meister" took place in 1770.

ULPIANUS, Domitios, Roman jurst, was of Tyrian ancestry, but the time and place of his birth are unknown. He made his first appearance in public life as assessor in the auditorium of Papinian and member of the council of Septimius Severus; under Caracalla he was master of the requests. Elagabalus deprived him of his functions and banished him from Rome, but on the accession of Alexander (222) be was at once recalled and reinstated, and finally became the emperor's chief adviser and prefectus pretorio. His curtailment of the privileges granted to the pretorian guard by Elagabalus provoked their enmity, and several times he only narrowly escaped their vengeance ; ultimately, in 228 , he was murdered in the palnce, in the course of a riot between the soldiers and the mob.

- Ulpian's period of literary activity exteuded from about 211 to 222 A.D. His works includo Ad Sabinum, a commentary on the jus civile in over fifty books; Ad Edictum, a commentary on the Edict, in eighty-three books; collections of Opinions, Responses, and Disputations; books of Rules and Institutions; treatises on the functions of the different magistrates,-one of them, the Dc Officio Proconsulis Libri X., beiag a comprehensive exposition of the criminal law; monographs on various statntes, on testamentary trusts, and a variety of other works. His writings altogether have supplied to Justinian's Digest about a third of its conteuts, and his commentary on the Edict slone about a fifth. As $a:$ author he is characterized by doctrinal exposition of a high asder, judiciousuess of criticism, and lucidity of arrangement, style, and language. Domitii Ulpiani Fragmenta, consisting of twenty-nine titles, were first edited by Tilius (Paris, 1549). There are modern editions by Hugo (Berlin, 1834) aud Böcking (Bonn, 1836), the latter containing fragments of the first book of the Institutiones discovered by Endlicher at Vieuna in 1835.

UlRICI, Hermann (1806-1884), one of the most active philosophical writers in Germany since Hegel's death, was born at Pförten, Prussia, on March 23, 1806. Educated for the law, he gave up his profession upon the death of his father in 1829, and after four years of further study, devoted to literature, philosophy, and science, qualified as a university lecturer. In 1834 he was called to a professorship at Halle, where he remained till his death on the 11th January 1884. His first works were in the domain of literary criticism. His treatise On Shakespeare's. Dramatic Art (1839) has been translated into English. In 1841 he published a work Ueber Princip u. Methode der Hegelschen Philosophie, in which he subjected Hegel's system to a severe criticism. The critical attack was continued in the Grundprincip der Philosophie (1845-6), which at the same time expounds his own speculative position; to this must be added as complementary his System der Logik (1852). His later works, dealing with perennial problems of philosophy, have found a more extended circle of readers. Such are Glauben und Wissen (1858), Gott und die Natur (1862, 3d ed. 1875), Gott und der Mensch (2 vols., 1866-73, 2d ed. 1874). From 1847 onward Ulrici was associated with the younger Fichte in the editorship of the Zeitschrift für Philosophie. His philosophical staudpoint may be characterized as a reaction from the pantheistic tendency of Hegel's idealistic rationalism
towards a more prononncelly tleeistic position. The Hegolian identity of beiver and thought is also abandoned and the truth of realisn acknowledreet, an attempt being made to exlibit idcalisun and realism as respectively incomplete but mutually complementary systems. Ulrici's later works, while expressing the same views, are largely occupied in proving tho existence of God and tho sool from the basis of scieutific conceptions, and in opposition to the materialistic current of thouglit then popular in Germany.

ULSTER. See Ireland.

ULTRAMLARINE, a magnificent blue pigment, which occurs in nature as a proximate component of Lapis LazULI (q.u.). Lapis lazuli has long been known as a precious stone, and highly valued as such, and as early at least as the 11 th century the art of extracting a blue pigment from it was practised. From the beginning of the 16 th century this pigment began to be imported into Europe from "over the sea," as azurmun altramarinum. To extract it, the stone, after having been powdered coarsely, is heated to redness and thrown into cold water to facilitate its conversion into a very fine powder, which is next treated with dilute acetic acid to remove the carbonate of lime which is present in almost all specimens. The insoluble blue residue is mixed up into a "dough" with a composition of resin, pitch, and linseed oil, and this dough is then kneaded under water, which is renewed as long as it runs off with a blue colour. The blue liquor, when allowed to stand, deposits a fine precipitate, which is collected, washed, dried, and sold as ultramarine. As the yield amounts to only 2 to 3 per cent. of the mineral used, it is not surprising to learn that the pigment used to be weighed up with gold. It was valued chiefly on account of its brilliancy of tone and its inertness in opposition to sunlight, oil, and slaked lime (in fresco-painting).

Lapis lazuli has the composition of a double silicate of line and soda combined with sulphates and sulphides of the metals named. Of the many analyses made (compare Lapis Lazuli) we quote the following, carried out by Schultz in Rammelsloerg's laboratory:combined sulphur (oot SO_{3}), $3 \cdot 16$; combined sulphuric acid, SO_{3} $5 \cdot 67$; silica, $43 \cdot 26$; alumina, $20 \cdot 22$; oxido of iron, calculated as $\mathrm{Fe}_{2} \mathrm{O}_{3}, 4 \cdot 20$; lime, 14.73 ; soda, $8 \% 76$.
In 1814 Tassaer observed the spontaneous formation of a blue compound, very similar to ultramarine, if not identical with it, in a soda-furnace at St Gobain, which caused the "Société pour l'Eucouragement d'Industrie" to offer a prize for the artificial production of the precious colour. The problem was solved almost aimultaneously by Guimet and by Chistian Gmelin, then professor of chem. istry in Tiibingen ; but while Guimct kept his process a sccret (it has indeed never become known) Gmelin. published his, aud thus became the originator of an iutustry which flourishes to this day chicfly in Germany. There are very few ultramarine works in other countries, and none, as far as we know, in Great Britain. The raw materials used in the manufacture are-(I) iron-frce kaolin, or some otherkind of pure clay, which should contain its silica aod alunins as nearly as possible in the proportion of $2 \mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ demanded ly the formula assigned to ideal kaoliu (a deficit of silica, how. ever, il sppears can be made up for by additiou of the calculated weight of finely divided silica); (2) anhydrous sulphate of soda; (3) anhydrous carbonate of soda; (4) sulphur (in the stato of powder) ; and (5) powdered charcoal or relatively ash-freo coal, or colophooy in limps. The numerons modes of manufacture may be viewed as modifications or combinations of three processes.
(1) In the Nrurcmberg process the sodd is used as snlphate, or partly as sucl and partly as carbouate. The lollowing recipe gives an idea of the proportions iu which tho materials are used :-kaolin (ealculated as anhydrous matter) 100 parts; calcined sulphate of soda 83 to 100 (or 41 of sulphate and 41 of earbonate) ; charceal 17 powdered sulphur 13. These ingredients are mixed most intin mately; they are then rammed tight iuto fire-clay erucibles and kept at a uearly white heat for 7 to 10 hours, access of air being prevented as far as possible. The product obtained is a greyish or bellowish green mass, which is soaked in and washed with water the porons residue is ground very fine in mills, again washed, dried. and sainain ground io the dry state and passed through sieves. The product at this stage has a green colour, and is sometimes sold as "green ultratnarine," althoughl it has not a ligh standing smongst green pigments. For its conversion ints blue ultramaribe it is heated with sulphur in the presence of air to a relatively low temperature. Of the varius spparatus used for this important stage of the manufacture, the essiest to describe is a large muffle, lieated from the outside. On its floor the greed ultramarino is spread out to a depth of $2 \frac{1}{2}$ to 3 iaches, and heated (with closed doors) to a
temperature at which sulphur powder when thrown in catches fire spontaneously. This temperature being maintained, a shovelful of sulphur is thrown in and allowed to burn off while the mass is being constantly agitated with iron rakers. Another dose of sulphur is then added, and so on until a eample taken out is found to have come up to the highest attainable brilliancy and depth of blue. The product is then lixiviated with water, which removes a deal of sulnhate of sodi formed in the process; it is then ground np very fine, and finally subjected to elutriation to produce a graduated series of ultramarines of diflerent derrees of fineness. In some works the process of sulphuration is divided into two or more periods, after each of which tho product is washed, dried, and ground hefore being returned to the unuffe to produce a higher degree of homogeneity.
(2) In the carbonate of soda process the soda is used solely, or at least principally, in the carbonato form. The following is one of many recipes:-kaolin (calculated as anhydrous matter) 100 ; carbonate of soda 100 ; charcosl 12 ; sulphur 60 . The mixture is heated in a reverberatory furnace to form in the lirst instance a white mass, which is so porous that it readily passes, by oxidation, into green and partly oven into blue ultramariue. Green ultramarine, saleable as such, cannot be prodnced in this manner. The half-blue product is finisherl by sulphuration pretty much as explained above for the Nuremberg process. Well-mate soda-ash ultramarine has a richer colour than the Nuremberg variety.
(3) Silict ultramarine is soda-ash ultramarine in whose preparation a quantity of finely divicled silica, equal to 5 to 10 per cent. of the weight of the kaolin, has been added. It is distinguislied by a reddish tinge, which is the more fully developerl the greater tbe pronortion of added silica. It is more highly proof against the action of alum solution than non-siliceons nltramarine is.

Since 1873 the Nuremberg works have been producing four varieties of magnificently violet ultramarine. Tlso modo of manufacture has not transpired. At the Paris Exhibition in 1867 a mag. nificent block of ultramarine exhibited by the Kaiserslautern works attracted attention. In its manufacture the roasting (blueing) process is said to have been continued for three weeks.

Artificial, like natural, nltramarine has a magnificently blue colour, which is not affected by light nor by contact with oil or lime as used in painting. Hydrochloric acid at once bleaches it with liberation of sulphuretted hydromen gas and milk of sulphur. The natural pignient is proof against dilute acetic acid aud solution of alum ; the artificial pigment is even alum-proof only in a bigher or lower relative sense. Hence there is room for progress in one' directoon at least. The composition of the pigment is quite sintilar to that of lapis lazuli ; but the constitution of both is still a chenical engma. It is remarkable that even a sinall addition of zincwhite (oxide of zinc) to the redlish rarieties especially causes a considerable diminution in the intensity of the colour, while dilu* tion with artificial precipitated sulphate of lime ("annalin") or sulphate of baryta ("blanc fix") acts pretty much as one would expect. Ultramarine being very cheaps (it sells at 7 d. to 10 d . per lb), it is largely nsed for wall painting, the printing of paper hangings and calico, \&c., and also as a correctite for the yellowish tinge often present in things meant to bo white, such as linen, paper, \&c. Large quantities are used in the manufacture of paper, and especially for producing that kind of pale blue writing paper which is so popular in Great Britain. Only the very finest ultramarine can be used for paper tinçing, hecause the least admixture of coarse particles becomes visiblo in the paper as dark spots or stains.
ulugh beg, Mirza Mohamned bex Shay Rok (1394-1449), astronomer, grandson of Tmus (q.v.), sucseeded his father as prince of Samarkand in 1447, after having for years taken part in the government, and was murdered in 1449 by bis eldest son. He occupied himself with astronomical pursuits, and erected an observatory at Samarkand, from which were issued tables of the sun, moon, and planets, with an interesting introduction, which throws much light on the trigonometry and astronomical methods then in use (Prolégomènes des Tables Astronomiques d'Ouloug Beg, ed. by Sédillot, Paris, 1847, and translated by the same, 1853). The serious errors which he fonnd itx the Arabian star catalogues (which were simply copied from Ptolemy, adding the effect of precession to the longitudes) induced him to redetermine the positions of 992 fixed stars, to which he added 27 stars from Al Safis catalogue, which were too far south to be observed at Samarkand. This catalogue, the first original one since Ptolemy, was edited by Th. Hyde at Oxford in 1665 (Tabule Longitudinis et Latitudinis Stellarum Fixamem ex Observatione Ulugbeight, and in 1843 by Baily in vol. xiii. of the Menoirs of the Royal Astronomical Society.

ULVERS'TON, a narket-town in the north-west of Lancashire, England, is picturesquely situated near MLorecambe Bay, on the borders of the Lake district, 9 miles northeast of Barrow-in-Furncss, and 256 north-west of London. The town bears small evidence of its great antiquity. The principal streets branch from the market-place, and the houses built of stone are generally rough-cast and whitened. A rivulet flows turough the town. The church of St Mary, fornded in 1111, retains the south door of the original building in the Transition style, but the greater portion of the structare is Perpendicular, of the time of Henry VIII. It consists of chancel, nave, aisles, south porch, and embattled western tower, and contains an altar-tomb with recumbent figure of Walter sandys of Conishead, dated 1588. After the destruction of Furness Abbey, Ulverston succeeded Dalton as the most important town in Furness, but the rapid rise of Barrow within recent years has relegated it to quite a secondary place. Formerly it had a considerable trade in linens, checks, and ginghams, but this has greatly fallen off. It possesses, however, large iron and steel works (North Jonsdale Iron and Steel Company), a large chemical work, an extensive paper manufactory, a bolt manufactory, breweries, tanyards, and wooden hoop manufactories. The population of the urban sanitary district (area 3120 acres) in 1871 was 7607 , and in 1881 it was 10,008 .
Early in the 12th centary the lordship of Ulverston came into the possession of Stephen, earl of Eoulogne, afterriarls king of England, by whons it was presented to the mouks of Furness Abbey as part of the endowment. In 1196 the ville of Ulverston was granted by the abhat of Furness to William de Lancaster, first baron of Kendal. In 1280 it obtained the charter of a market. The town becamo escheated to the abbot of Furness as cbief lord in 1342, but this escheatment was suspended by Edward Il. in farour of John de Coupiand, who captured David II. of Scotland at the battle of Durham. After his death it reverted to the abbey. It is now in the possession of the family of Buccleuch.

ULWAR, an alternative form of ALWAR (q.v.).
ULISSES. See Odysseus.
UMAN, a district town of Russia, in the south of the government of Kieff, is now a small industrial and trading town, with 15,400 inhabitants, many of whom are Jews, who carry on an active trade in the export of corn, spirits, \&c. It has a remarkable park (290 acres), planted in 1796 by the orders of Count Potocki, in connexion with which a gardening school is maintained.

Umaǹ was founded towards the beginning of the 17th century 8s a fort against the raids of the Tartars. The Cossacks of the Ukraino, who kept it, revolted against their Polish rulers about 1665 , and had to sustain a fierce siege. In 1674 it was plundered and most of its inhabitants murdered by the Ukraimans and Turks, during the wars for the betmanship. In 1712 its last inhabitants were transferred by Peter I. to the left bank of the Dnieper. But by the end of the 18 th century, when it again became the property of the Potockis, it was repeopled and hecame one of the busiest trading towns of Little Russia. In 1768, when the Cossacks revolted anew against their Polish serf proprietors, they took Umaĩ and murdered most of its inhabitants.

UMBALLA, an alternative form of AMBÁLí (q.v.).
 UMEER. See Pigments.

UMBRELLA now means a portảble protector from rain, while the name parasol is given to the generally smaller, lighter, and more fanciful article carried by ladies as a sun-shade. But primarily the umbrella (ombrella, Ital. dim. from Lat. umbra, shade) was a sun-shade alone,-its original home having been in hot brilliant climates. In Eastern countries from the earliest times the umbrella was one of the insignia of royalty and power. On the sculptured remains of ancient Nineveh and Egypt there are representations of kings and sometimes of lesser potentates going in procession with an umbrella carried over their heads; and throughout Asia the nmbrella had, and still has, something of the same significance. The Mahratta princes of India had among their titles "lord of
the umbrella." In 1855 the king of Burmah in addressing the governor-general of Iodia termed himself "the monarch who reigns over the great umbrella-wearing chiefs of the Eastern countries." The baldachios erected over ecclesiastical chairs, altars, and portals, and the canopies of thrones and pulpits, \&c., are in their origin closely related to umbrellas, and bave the same symbolic significance. In each of the basilican churches of Rome there still hangs a large umbrella.
Among the Greeks and Romans the umbrella ($\sigma \kappa \kappa$ ás, oxiádiciov, umbraculum, umbella) was used by ladies, while the carrying of it by men was regarded as a sign of effemioacy. Probably in these sonthern climes it never went out of nse, and we find from allusions by Montaigne that in his day its employment as a sun-shade was quite common in Italy. The umbrella was not unknown in England in the 17th centrry, and was already used as a rain protector. Michael Drayton, writing about the beginning of the 17 th century, says, speaking of doves:-

> "And, like umbrolas, with their feathers
> Shield jon in all sorts of weathers."

Althongh it was the practice to keep an umbrella in the coffee-houses early in the 18 th century, its use cannot have been very familiar, for in 1752 Colonel Wolfe, writing from Paris, mentions the carrying of them there as a defence against both rain and sun, and wonders that they are not introduced into England. The traveller Jonas Hanway, who died in 1786, is credited with having been the first Englishman who habitually carried an umbrella. That praotice he began thirty years before his death; at first he was singular; and his habit was derided, but bo lived to see his example commonly followed.
The ombrelle as at first used, based on its Fastern prototype, was a heavy ungainly article which did not hold well together, and no little ingenuity has been exercised to bring it into the olegant, compact, end etrong form which is now quite connmon. The early umbrella had a long landle, with ribs of whalebone or cane, very rarely of metal, and etretchers of cane. The jointing of the riba snd etretchers to the stick and to each other was very rough and imperfect. The covering material consisted of oiled silk or cotton, hesry in snbstance, and lisble to stick together in the folds. Ginghem soou ceme to be eubstituted for the oiled cloth, and in 1848 William Sangster patented the use of alpaca as an umbrells covering material. One of the most notable inventions for combining lighinness, strength, and elasticity iu the ribs of umbrellas was the "Paragon" rib pateuted by Samuel Fox in 1852. It is formed of a thin strip of steel rollad into a U or trough eection, a form which gives great strength for the weight of metal. The use of such ribs, combined with the notehed rings and runners which give s separate hinge and joint to each rib and stretcher, and with the thin but tough covering materials now in use, has principally contributed to the strength, lightness, and elegance which ordinary nmbrellas now present. Unibrella eilk ia principally mado at Lyons and Crefeld ; but much of it is so losded in lyeing that it cuits readily at the folds. Textures of puro eilk or of eilk and alpaca mixed have hetter wear-resisting propertiea.
 early Greeks applied the name ' $\mathrm{O}_{\mu} \beta$ 倪к' to all central and northern Italy. Herodotus (iv, 49) speaks of it somewhat vaguely, as if it extended up to the Alps. The Umbrians probably extended across central Ttaly from sea to sea down as far as Latium. Pliny (iii. 13, 19) tells us that the Umbri were considered the most ancient artion of Italy (antiquissima gens Italim), by which he probably means, of the Italian stock. The Greek writers included under the name of Umbria the district known in later times as Picenum. Pseudo-Scylax makes Umbria march with Samnium, and describes Ancona as a city of Uabria. The Umbrians seem to have found the Siculi and Liburni in occupation of the land into which they advanced, the former Lolding the parts lying towards the interior, the latter, people the district along the Adriatic. The Urmbrians were one of the chief peoples of that branch of the IndoEuropean family who bad entered Italy from the north
and driven out and absorbed the older inhabitants. They were more closely connected with the Samnites and Oscans than with the Latin stock, as is shown by their language. Their possession of the fertile regions of upper Italy exposec. them to the constant assaults of fresb bodies of invaders, pressing on over the Alps, and perhaps likewise from the seaboard. Their force was extended over a wide area, and thus too weak to withstaod the attacks from varions sides to which they were exposed. Thus their extensive territory was gradually reduced by the successive encroachnents of other peoples. First came the Etruscans, who according to Herodotus (i. 94) were Lydians, who established themselves in the land of the Umbrians. From which side of Italy they made their invasion, whether from the mouth of the Po or from the western coast of what later became Etruria, or whether from both, we have no means of determining. That the Umbrians did not yield without a struggle we cannot doubt. It was only after three bumdred of their towns had been captured by the Etruscans that they succumbed. Nevertheless they still retained considerable influence in upper Italy, which, according to Strabo (v. 216), continued down to the time of the Roman conquest. For he says that there was a large Umbrian element in the Roman colocies in the region of the Po, as also some Etruscan. For, according to him, the Umbrians and Etruscans lived in a continual rivalry for the preeminence, so that if the one people made an expedition northwards, the other determined not to be outdone. So when the Etruscans had marched against the barbarians who dwelt near the Po , and had soon again been expelled owing to their effeminacy, the Umbrians in turn marched against the conquerors of the Etruscans. In consequence of this alternating struggle for these regions they planted many colonies, some Etriscan, others Umbrian. Most of the colonies were Umbrian because the Umbrians lay closer to the disputed territory. Thus, even though they lost the sorereignty, the Umbrian race probably continued to form a considerable portion of the population of a wide extent of country. At all events, at the time of the Gaulisi inroad the Etruscans seem to be in possession of the mouth of the Po. At this tine, therefore, Umbria as a state consisted of the region bounded on the W. by the Tiber, on the S. by the Sabines, on the E. by Picenum and the Adriatic, while on the N. it extended close up to the sonthern or Spinetic month of the Po. Scylax dcscribes the Etruscans as extending from the Tyrrhenian Sea to the Adriatic, and represents them as in possession of the ancient Greek town of Spina. How much farther soutl the Etrnscan sway had once reached wo cannot determine, but that they had once held this region, as far as Ravenua at least, is rendered probable by the tradition that Ravenna had been founded by a colony of Thessalians who, not brooking the insulting treatment which they received from the Etruscans, gladly admitted some Unbrians, who thus became the possessors of the city. When the great Gaulisb inroad took place at the beginning of the 4th century b.c. Etruscans and Umbrians alike suffered severely. Some of the Celtic tribes crossed the Po and formed permanent settlements. The Ananes settled in the Apennines, the Boii between the former and the Adriatic; next came the Lingones; and finally the Senones occupied the seaboard of the Adriatic as far as the Rubicon. This region in Roman times was known as the Ager Gallicus (Polybins, ii. 16). But it was not only in the north and west that the Uinbrians had been driven back. The early Greeks had included under the name of Unbria the dis. trict along the Adriatic, afterwards known as Picenum. This consisted of a fertile region, extending from beyond Ancona to the river Matrino. It is not improbable that the Picentes issued from 'the Sabine region. Tradition alleged
that the Picentes, led by the woodpecher (picus) of Mars, marched forth to occupy what is now the March of Ancona. But it was probably only after a long struggle that this conquest was effected, for from another tradition we learn that the Sabines, after carrying on war against the Umbrians for a long time, at length vowed a sacred spring, and dedicated all the produce of the year to the gods. Then at length they became victorious (Strabo, v. 250). Thus, by the advance of the Gauls from the north and the Picentes from the south, the Umbrians were shut off from the seaboard, and confined to the district known as Umbria面 historical times. (When Rome began the consolidating of Italy, Umbria consisted of the region bounded by the Ager Gallicus on the N., by Etruria (the Tiler) on the W., by Picenum on the E, and by the Sabines on the S. The Umbrians kept a desperate bold of this district, which lies between the two arms of the Apennines. This position indicates of itself that they had beon driven before stronger foes. ${ }^{4}$ Henceforward they play but an insignificant part in Italian history. This is explained by the plysical formation of their country.- It is an extremely mountainous region, with a few small plains botween, which were noted for their fertility. Hence arose a number of small but thriving communities, none of which had the capacity of developing into a leading state such as Rome became for the Latins. I Their want of seaports likewise excluded them from trade, the mouths of all the rivers which flowed from their country being in the hands of their enemies.
Of the Umbrians' palitical and monicipal organization little is known. In addition to the city (tota) they $6 e \mathrm{em}$ to have had a larger territorial division in the tribus (trifu, aca.) as we gather from Livy (xaxi. 2, per Umbriam quam tribum Sapiuiam vocant; f. xxxiii. 37) and from the Eugubine Tables (trifor Tarsinates, vi. B. 54). From the fertility of their land thair commuitios were very prosperous. The olve and viue flourished in their valleys; they grew spelt abundently; and the boars of Umbria were famous. Ancient authors daseribe the Umbrians as leading effeminate lives, and as closely resembling their Etruscan enemios in their habits (Theopompus, fragm. 142; Pseudo-Scymnus, 366-8). It is almost certain that sach raeo influenced and modified the other to a large extent. Momn:sen has pointed out that the names of many towns in Etruria are Umbrian, a fact which ahows how persistent even after conquest was their infuence in that ragion. On the other hand, we have conclusive proof of strong Etruscan influences in Umbria. For instance, they undoubtedly borrowed their alphabet aod the art of writing from the Etruscans. Their writing runs from right to left. The alphahet consists of nineteen letters. It has no separate symbols for O, G, Q; the aspirates ϕ and χ are wanting; on the othar hand, it possesses forms for Z and V , and has likewisa the Etruscan $f(8)$. It also has a symbol d peenliar to tteelf for expressing the sound of palatal k when followed by either ε or i. It is also very probable that they borrowed the art of coining money from Etruria. Two towns are known to have issued coins, which consist entirely of bronze, and belong almost entirely to the series of $æ s$ grave. The most important is that of Tuder (Todi), which must have been a place of some note. It was e strong fortress on the left bsonk of the Tiber on the confines of Etruria. Iguvium (Gubbio), which struck coins after the standard of Tuder, was a strong place likewise on the western or Etruscan side of the Apennines. The fact that it is only in towns on the sido next Etruria that a coingge is found indicates that it was from the Etruscans they borrowed the art. The Umbrians counted thair day from noon to noon. But whether they borrowed this tikewisa from the Etruscans we do not know (Pliny, ii. 77). In their measuring of land they cmployed the vorsus, a masure common to them and the Oscans (Frontinus, De Limit., p: 30), $3 \frac{1}{5}$ of which went to the Roman jugerum. When the Romans undertook the conquest of lialy, the most feeble resistance of all was offered to them by the Umbrians. In the great atruggle between the Samnite confederacy and Rome Umbria played an insignificant part. It is probable that all through the Second Samnite War their sympathies were altogether oul the side of their Samnite klofmen, and that some assistance was afforded by individual communities. It is not unlikely therefors that it was with a view to keep the Umbrians in check that the Romans planted a colony at. Nequianm on the Nar, whose inhabitants were known as Nartes Interamnates, and who are included with the Etruscans, Iapydes, and Tadinates in the list of persons who were forbidden to be proent at the sacred rites of Tguvium. At length in 308 r.c. the Ombrians made a vigorous effort to aid the Samuites, which, had
ic takeu place earlior iu the war, ninght have had the most inuport ant iafluence on the rssue of the atrugele. As it was, it eamo too late; the Etruseans had alraady latd dowa their arms. The Umbrians, who threstened to march on Rome, ware intercepted by Rullianus with the Ronan army from Samnium on the upper Tiber, a atep whieh the Samnites now broken conld not pravent; and this was sufficient to disperse the Umbrian levies. When the Third Samnite War broke out, the Umbrians took no active part in its oparations; but how their aympathies lay is evident from their affording a ready lassage to the Samnite army under Gellius Egnatius on its march to Etruria, 296 b. o. When the battle of Sentioum (295) finally crushed the Sannites and Etruscans, Umbria remained in the hands of the Romans. Henceforward tha process of Latinuing went on steadily, for hy the 1st century B.c. we find them employing the Latin alyhabet iu copias of the aycient saeardotal litual of Iguvinm (see Eugubine Tanles). I We know that the Oscan language only finally expired in the 1st century of our era, and there is no rcason for belleving that the Umhrian had disappeared much earlier. When the Romans conquered the Senones, 280 R. 0 ., the Ager Gallicus was restored to Umbria, and hoth together formed under the empire the eixth region of Italy.

Strabo (7.227) regards Ravenna as the boundary of Umbria The Via Flaminia passed up through it from Ocriculum to Ariminum, along which lay the important towns of Narnia (Narni) Carsule (Carsigliano), Mevania (Bevagna), Forum Flammii, Nuceria, and Fornm Sempronii. To the 6 ast lay Interamna (Terni), the probable birthplace of Tacitns, Spoletium (Spoleto), and the most important town of Camermum on the side of the Apennmes towards Picenum. On the aide towards Etruria lay Tuder (Todi), Iguvium, whieh occupied a very advantageous position close to the main pass through the Apennines, Ameria (Amelia), and Hispellum (Spello) ; on the Clitumnus (Clitunno) was Assisium (Assssi), the birthplace of Propertius, whilst far to the north lay Sarsina, the birthplace of Plautns. For the position of the country iu the time ef Augustus, zes vol. xiii. Plate V.
See Breal, Les Tables Eupubines, $1875^{\text {; }}$; Bucheler, Umbrica, 1883 ; Kirchhoff, Jriech Alphabet, 4th ed., 1民87; Head, Historra Numorym, 1s87. (W R1.);

UMMERAPOORA, another iorm of Amarapuria (q.v.).
UNAO, a British distrnct in the Lucknow division of Oudb, India, under the jurisdiction of the lieutenantgovernor of the North-Western Provinces. The area of the district is 1768 square miles, and it is bounded on the N. by Hardol, E by Lucknow, S. by Rai Bareli, and W. by the Ganges. Unao is very flat, and has no features of particular interest. Rich and fertile tracts, studded with groves, alternate with stretches of waste land and plains of barren usar, the whole being intersected with small streams, the water from which is extensively used for irrigation. The Ganges is the only navigable river in the district. The temperature varies from about 75° to 103° in the hot weather, and from 46° to 79° in the cold season. The average annual rainfall is about 34 nnches.
In 1881 the population was 899,068 (males 461,167 , females 437,902); of these 830,342 were Hindus, 68,677 Mohammedans, and 49 Christians. Unao, the capital and administrative headquarters, 9 miles north-east of Cawnpore, had 9509 inhabitauts. The cultivated area of Unao amounted in 1885-86 to 598,131 acres, and 289,356 acres were returned as cultivable. Tho principal crops are lice, wheat, and other food grains, cotton, sugar-cane, and indigo. The cultivatiou is mainly dependent ou irrigation. Tho principal exports are grain of all kinds, gúr, gli, tobacco, and a little indigo and saltpetre; and the chief imports are piece goods, salt, iron, cotson, spices, \&c. © The gross revenus of the district in 1885-86 amounted to $£ 183,083$, the land yielding $£ 144,914$. During the mutiny of 1857-58 Unao was the sceae of aeveral severe engagaments letween General Haveloek's little army and the rebels. On the death of Rajij Jasa Sinh, one of the leading rehels, and the capture of his two sons, the whole family estates were confiscated, and the villagee either restored to their former owners or given to other landholders for their loyalty.

UNDULATORY THEORY.

Theory.

UNGVAR, chief town of the county Ung, in the northeast of Hungary, stands on the river Ung. It is the seat of the bishop of Munkács, and has a fine Greek cathedral, an episcopal seminary, a lyceum, a gymnasium, and also a teachers' college, a county hall, and an interesting ancient castle. The town and district produce good wine in large quantity, and abound in mineral springs. There is a good trade in timber and china clay. The population in 1886 was $13,460$.

UNICORN, an anintatmene horn. . The name is applicable and has sometimes been applied to the rhinoceros, which is, for example, the Sumatran unicorn of Marco Polo. But the figure usually associated with the name is the well-known heraldic one of an animal with the form of a horse or ass, save that a long straight horn with spiral tristings, like the tusk of the narwhal, projects from its forehead. The belief in the existence of a one-horned animal of this kind goes back to Aristotle (Part. An., iii. p. 663), who names as one-horned "the oryx and the Indian ass." Later descriptions of the Indian unicorn, e.g., that of Ælian (Nat. An., xvi. 20), are plainly influenced to some extent by accounts of the rhinoceros, but the authurity of Aristotle determined the general form ascribed to the animal. The twisted horn, of which Elian already speaks, seems to have been got by referring to Aristotle's unicorn actual specimens taken from the narwhal ; see Yule's Marco Polo, ii. 273. The ancient and mediæval lore of the subject may be seen in Bochart, Hierozoicon, iii. 26. The familiar legend that the unicorn could be taken only by the aid of a virgin obtained currency through the Physiologus (see vol. xix. p. 7). The English Bible, following the Septuagint (μ оуóкepws), renders the Hebrow rēm (0งา) by "unicorn." But two horns are ascribed to the reem in Dent. xxxiii. 17, and the Hebrew word reappears in Arabic as the nane of the larger antelopes, probably the Antilope leucoryx, mbile in Assyrian the rimu appears to be the wild ox. . There are recent fossil remains in the Lebanon both of Bos primigenius and Bison * urus, though both hare been long extinct in Palestine.

UNITARIANISM. The term Unitarianism in its widest sense includes certain lines of the great religious and theological movement or revolution of the Reformation in the 16 th century, when this is regarded as the commencement of the process of the humanization of theology and ethics on the basis of the autonomy of the human mind. In another sense the term stands for a set of theological opinions, more or less variable, and yet in their general drift connected, somo of them as old as Cbristianity, and one section of which only is indicated by the term when used as aynonymous with Antitrinitarianism. But there is another mearing of the term, a still narrower one, and to Unitarianism in this sense this article must be confined. Wo must limit ourselres to a brief account of Unitarianism as it appears in ecclesiastical organizations in separation from the orthodox churches. This treatment of the subject ${ }^{\prime}$ is of course incomplete, and would be misleading were the incompleteness not expressly announced. For a markod feature of the late listory of the Unitarian churches is the growing tendency they exhibit of working out to their logical results some of the wider principles of the Reformation to which they ultimately owe their origin, rather than the design of formulating and propagating systems of theology. To not a few modern Unitariain leaders the bond which connects them with a specifically Unitarian organization is the spirit and tendency of the larger movement for which it happens to provido freer play than the orthodox churches, while they repudiate the im. putation of belonging to a dogmatic sect. Modera Unitarians have also, both in Europe and America, emphatically and successfully resisted the inclination of some of their number to lay down, though in the most general terms, a creed of Unitarianism. Indeed, in opposing this inclination, it birght sometimes seem as if the only essential article of Umtarianism were the maintenance of free inquiry ln religion',-an impression, however, which a careful study of the history of Unitarian thought would remove. In the same way such a study would show that Unitarian churches are in agreement on many points of doctrine with aarly and recent theologians of all churches and sects.

This brief sketch of Unitarianism, as it has appeared in organized religious societies, takes us"into but a few countries, and covers but a limited space of time. Poland, Transylvania, England, and America aro the only countries in which Unitarian congregations have oxisted in any numbers or for any length of time. Elsewhere, either tho law of the land has rendered their existence impossible, or they have been unnecessary in consequence of the substantial adoption by the existing churches of their principles and doctrines. The former was the caso in Italy, Switzerland, Germany, and England in the 16 th and 17 th centuries, the latter to a certain extent in Eugland in the 18th century, still more in Germany in the 18th and 19th centuries, and in Holland in the present century as also to a large extent in France in the Reformed Church.
Poland (1565-1658). -The Unitarians, under the names of Ariaus, Samosatenians, Pinczowians, were formed into a separato church in 1565 by their exclusion as Antitrinitarians from the syneds of the Trinitarian Protestants. Yory early in the progrcss of the Refornan tion in Poland individuals had arrived at heterodox orinions on baptism and the Trinity, very much under the influence of the heterodox Italian refugees in Switzerland, some of whom visited Poland (Lelio Sozzini, 1551 and 1558 ; Pail Alciati, 1561 ; G. V. Gentile, 1561 ; Biandrata, 1555). Gnnesiua and Gregory Panli were the first to openly preach Antitrinitarian doctrine. After their separation from the orthodox, the Polish Unitarians developed divergent views as to the nature of Christ, as to the lawinlness of paying divine worship to Him, as to the subjects of baptism (infants or adults), and as to the relation of Cluristians to the state. On the first point some were Arians and others Hamanitarians, while those who claimed divine worship for Christ were called Adorantes and those of the opposite view Nonadorantes. An epoch in the listory of the party was made by the arrival of Fanste Sozzini at Cracow in 1579 (see Socinus). He sncceeded in converting the great majority of the churches to his views and in silencing the disscntients. Henceforth the Polish Unitarians adopted the Socinian practice of paying worship to Christ, the Socinian view of the necessity of baptism and of the Christian's duty towards the state. Thpy rapidly became a numerons and powerful' body in Poland, distinguished hy the rank of their adherents, the ability and learning of their scholars, the excellence of their schools, and the superiority and wide circulation of their theological literature. Racerv, thie theological centre of the Socinians, with its school and printing presses, ohtained a world-wide fame. It was there that the Racovian Catcchism mas published (1605 in the Polish language, 1608 in German, and 1609 in Latin). But before the death of Fausto Sozzini (1604) the situation of the Unitariaus became moto difficult, and in 1611 the Jesuits obtaincd their first open triumph over them. In the rapid course of the Cathelic reaction, which was not resisted by the orthodox Protestants as long as ture Socinian heretics only suffered, the church and school at Lublin, the most important place next to Racow, were first put down (1627) and Racow, with its church, school, and printing-press suffered the same fate in 1638 . The final blow to the whole body follewéd in 1658, when all adherents of "the Arian and "nabaptist sect" were cornmanded to quit the kingdom within two jears. A few renounced their faith, hut the large majority fled into.Transylvania, Prussia, Silesia, Holland, and England.

Transylvania (1568-1887).-Next to Polana Transylvania was tho most important seat of Unitarianism. It was there the name was first nsed by the sect as itsown desigaation, and it is there only that the sect has had a coutinnous existence dewn to our own time It is generally considered that the Italian refugee Biandrata was the founder of Transylvamian Unitarianism, but the present representatives of the body claim for il a nobler and domestic origu. Biandrata attended John Sirismund as a physician in 1563, and under his influenco Unitarianism mado rapid progress. In 1568 its professors, favoured by the king and many magnates, after senarating from the orthodox clurch, constituted themselves a distinct body nuder the distinguished man Francis David, who is now regarded as the apostle of true Transylvaniau Unitarianisu. Their priucipal centro was Klausenlurg (Kolozsvin), where they had a large church, a college, and a printing-press. But the stwo conflict between a more rarlical and a more conscrvative tendemoy which appeared amongst the Unitarians of Poland greatly distarbel the churches of Transylvania, particularly with regarl to the worship of Christ. On the side of the Adorantcs was Biandrata, and on that of the Nonadorantes David. The party of David succumbed to force and frand, and he himself died in prison a martyr to nis convictions. Gradually the Socinian view prevailed, thougt in 1618 an old order to worship, Christ reqnire I rciuforcement in the latter half of the 18 th centary the moro logical view of norid entirely disappeared. Uraler tha Austrian dynasty the Uniffriam
were often exposed to great trials, until Joseph II. secured to them their rights and privileges. An official confession of faith of the year 1787 remains, with some modifications, essentially Socinisn. But of late Jears the Traogylvamien Unitarians bave been in close relation with their co-religionists in England and America, some of the ministers having heen educated at Manchester New College, and in consequence their theology is becoming essentially modern. The number of members wes 32,000 in 1789, in 1847 40,000, distributed io $10 \pm$ parishes with 120 pastors. Their present numher is 53,539 in 106 parishes. Their chief centres are Kolozsvár, Thorda, and Keresztur, where they have excellent schools.

England (1773-1887). -For two and a half centuries previoas to the rise of organized Unitarianism in England, opinions commonly called by this name found numerous individual adrocates and sonie martyrs. John Bidle (1615-62) published catechisms of Unitariau doctrine, translated Socinien works, and pnblicly discussed and preached an Eaglish form of Socinianism. But the severity of the lav against Antitrinitarians, woupled with the gradual growth of free opinion in the Established Church and amongst the Presbyterian congregations, made the formation of eeparate Unitarian churches impossible, and, as was felt, less necessary for another hundred years. The adoption of a completely Humanitariau view of Christ's person by a few solitary individnals (Lardner 1730, Priestley 1767 , Lindsey 1773), assisted by the a wakened earnestmess of the time, led to their formation. Lindsey resigoed a valnable living in Yorkshire, and gathered the first professedly Unitarian church in London. Other clergymeo followed his example, and amongst the Presbyterians several ministers, like Joseph Priestley, exchanged their Arian for Humanitarian viewe. This process weot on with deep permeneat effects in sorne of the Dissenting seademies, In the year 1791 was formed the Unitarian Book Society for the distribution of literature, and several provincial nssociations originated about tle same time. In 1806 the Unitarien Fund Society was established, with the object of promoting Uhitarian Christianity by direct mission work. In 1818 arose another society for protecting the civil rights of Unitarians. These varions societies were consolidated in 1825 under the name of the British and Foreign Unitarian Association, which has now its headquarters in the building formerly used as Lindser's chapel and residence in Essex Street, London. Early in this century nearly the whole of the old Presbyterian congregatious, which, unlike those of the Baptists and Independents, had undogmatic trust-deeds, passed through the stages of Arminianism and various forms of Arianism into Socinianism in its peculiar English and mainly Priestleian form. The penal laws against Antitrinitarianism, which had long heen obsolete, were repealed in 1813, and in 1844 the right of Uniterians to the chapela which they held in succession from their Freshyterian forefathere was legally secured to them by the Disaenters' Chapels Act without altering their undogmatic trust-deeds. Though these congregations, popularly known as Unitarian, on principle declined to restrict the progress of thought by imposing on either their ministers or members any dogmatic statements of belief, the generality of them adopted with some modificstions the theological system of Priestley, which was a combination of Lockeंs philosophy with the crudest rationalistic superneturalisn. With the rise of a more spiritual philosophy in Germany, which bore fruit in England and A merica hefore the close of the second decade of tho century, the theology of Engligh Unitarianismanderwent a radical change, very much in the first instance under the influence of Dr Chamining's writings. Without at all sacrificiog its critical and rational bent, a decper emotional and spiritual element was introduced into it, which gradually, at the cost of some years of internal conflict, dispossessed the purely external and snpernaturalistic Socinian and Priestleian legacy. Eaglish Unitarian theology was thereby brought into closo sympathy with modern scientific theology in Gernany and elsewhere. This great and baving transformation was mainly due directly to Jamee Martinean, J. J. Tayler, and J. H. Thom, aided by the mritings of Chenning and then of Theodore Parker. One consequence of the grester subatantial agreemeat of the present theology of the larger number of the Unitarien churches with the scientific theology of the century is that not a few representatives of these clurches disclaim the name Unitarian as one tending to perpetuate divisions which have really no right to continned existence. The main reason for continued separation from the larger liberal churches, whether Established or Dissenting, earnestly urged by many Unitarians of this class, is the use in those churches of theological formularies which moderu theology regards as of historic interest only. The nomber of congrega. tions in Eagland and Walea generally described as Unitarion is Ghout 300 , ncarly half of which date from between 1662 and 1750 , and nearly all of which have nodogmatic trust-deeds. Their coustitution is purely congregational. For the education of their ministers they havo \$lanchester New College, London (strictly undenominational), the Unitarian Home Missionary Board, Manchester, and Carinartleu College, sujported and managed by the Presbyterian Board in London, but practically Independent and Unitarian. The nrgans of the body are The Inquirer, The Christian Life, The Uni.
tarian Herald (weeklies), and The Christian Reformer (monthly). In Scotland there are 7 Unitarian cungregations and 2 Universalist, the latter being, as in America, Unitarian in doctride. In Ireland the number is about 40, being nearly all Presbyterian in conetitution. They ere much stronger in the north than in the sonth of Ireland. In the porth Autitrinitarian views began to apread abont 1750; but the first coogregation at Dublin traces its Unitarianism back to Thomes Emlyn, who was imprisoned for his Arian opinions in 1702 at the instigation of orthodox Dissenters.

Uwited States (1815-1887). -In the United States Unitarianism had no organized existence provious to 1815, and as in England at the present time the name has always covered great differences of opinion within a common outliue of belief or common drift of religions thought Historical American Unitariauism represeuts "the liberal wiog of the Congregetional body." Of the existing 370 churches 120 or more were originally the parish churches founded hy the Puritan Congregationalists, which, like the Presbyterian congregations in Eagland, passed gradually from Calvinism through Arninianism to Unitarianism, of which Harvard College became the spiritaal centre. In 1812 there was but one church in America prolessedly Unitarian (that of King's Chapel, Boston), thoogh the ministers of Boston generally held Unitarian vierra. In 1815 Belsham's account of the "State of the Unitarian Churches in America" (in his Life of Lindsey, London, 1812) led to a controversy, the issue of which was the distinct avowal of Unitarian priaciples on the part of the liberal clergy of New England. Dr Channing came forward as the prophet and champion of American Unitarisnism, thoogh the older he grew the more emphatically he repudiated aectarianism in every form. The Congregational body wes thereby split into two sections, one of which styled themselves Unitarian Congregationalists. In 1825 the American Uuitarian Association was formed, mainly for the diffusion of Unitariar literatnre and the support of poor congregations At that time the Unitarian churches numbered about 122. Twenty years later they were eome 280, while now they are about 370 . The theological colleges of the body are the Divinity School of Harvard University; which is, like Manchester New College, undenominatioual, and the Theological School of Mealville. As in Englend so in America the theology of Unitarians has passed through marked cbanges, which have been atteuded by conflicts more or lese acute. From 1815 to about 1836 a Biblical, semi-rationalistic semi-snpernaturalistic theology prevailed, in the heart of which Clanniug's elevated ethical ideas wore fermenting ond slowly preparing a new birth. From 1836 forces such aa liblical criticism, Carlyle and Emerson's "transcendentalism," and Theodore Parker's "absolnte religion" opened the era of modern thcology, hringing American Unitarianism inte living touch witl the pliliosophy and theology of Germeny. An effort in 1865 to bring the right and left wings of the body into a closer coufedration mith a more pronounced profession of Claristianity led to the formstion of a Free Religious Association on the broad basis of the Iove of truth and goodness. In the Westero States the same controversy as to the basis of religious association liss been ragiog for more than ten yeare. In May 1886 a resolution was passed by the Westero Uuiterian Conference by a majonty of noore than three-fourths adoptiug a parely ethical and non-theological hasis. This led to a split in the body, and the formation of a new Western Association on a distinctly Christian platform. The left wing of American Unitarians show grcater sympathy with recent scientific speculation and less fear of pantheistic theories than is the case with English Unitarians. The of gans of the hody are The Unitarian Revicw (Bostou), The Christian Register (Bostou), and The Unitarian (Chicago).
Literature.-Oo Unitarlanism in general, nee Fock, Der Soctnianismus, Kiel, 1847; Wallace, Antifrinllarian Bhagraphy, London, 1850; Untarianism erhzbeted in its Actual Condition, edited by J R. Beard, London, 1816. On Soclnianism and Unltarlanism In Poland and Transyivanla: the above wolks; the historlcsl sketch of Thomas Rees In hls translation of the Racorian Catechism, London, 1818; J. J. Tayler In Theolovical Review, Jan. 1869; Report of an Opficial Visit 10 Transylrania, ly Alexaider Gordon, Lonion, 1979. On Unitarionlsm lo Figland. Wallace'a and Beard's works; J. J. Tuyler, A Retrospect of the Reitgious Lito of Fnglaid, London. 1845, 3d ed., 1876; James Diatineav. The Three Siages of URifarian Theology, Lonton, 1869; Bonet \$laviy, Early Sources of Engrish lnitcrian Christianuy, English trans, London. 1884; Uwitarıaw Christianety. Ten L civres on tho Potitios Aspeds of Unitarian Thought asd Doctrine, with rrufaco by Rev J. Martinasu, D.D., London, 18SL Oa Unitarteaism in Amerca : tock; Bearl ; J. H. Allen, Our Liberal Movement in Theology, 2 a ed., Boston, 1883; The lear-Boot of tho Unitarian Congregational Churches for 1887, Bostor, 1886; Count Goblet d'Alviella, The Confemporary Etolution of Religiows Thought in Englard, America, and Jndia, English traos., 1885. (J. F. S.)

Unit.as fratrum. See Moratian Brethren.

UNITED BRETHREN IN CHRIST, a body of Pro: testant Christians in the United States of America, which in 1886 included 4332 organized churches (4078 in 1857), 185,103 menbers (143,881 in 1877), 1378 itineraut ministers, 890 local preachers, 3169 Sunday schools, with 28,547 teachers and 179,729 scholars. The total value of church property held by the denouination was $\$ 3,345,004$: the sum raiscd for salaries, church bulding expenses, col-
leges, missions, and the like made a total of $\$ 842,700$. The organization of the church is Episcopal (six bishops, two of them missionary), but its polity combines features of the Methodist. Congregational, and Presbyterian systems. The creed may be described as Arminian. The members are prohibited from joining secret societies, and from using alcohol or engaging in its manufacture or sale. In connexion with the denomination are a theological institution (39 students), ten colleges, aud nine academies or seminaries of a highra grade, with 62 professors, 64 other teachers, and 2486 stadents. There are 49 annual conferences, 46 of them in t!e United States. Two missions in the Sherbro country in West Africa have 6 American missionaries, 9 churches, and 2031 nembers; in Germany there are 10 German'missionaries, with 20 churches and 615 members.

The denomination originated in the labours of P . W. Otterbein (1726-1813), a native of Germany, who came as a missionary to Lancaster, Pa., in 1752, and settled at Baltimore in 1774 . He became associated with Martin Boelnn, a Mennonite preacher, and also co-operated with tho Methodist preachers when they came to Peonsylvania, The first annual conference was beld iu 1800.

UNITED KINGDOM, The, of Great Britain and Ireland is the official title, adopted in 1801, now applied to England, Scotland, and Ireland (see Great Britain). The total area is returned as $77,657,065$ acres, or 121,339

Countles.	$\left\{\begin{array}{c} \text { Population } \\ \text { In 18SI. } \end{array}\right.$	$\begin{aligned} & 31 . P . s^{14} \\ & 1885 . \end{aligned}$	Conutles,	Popolation to 1881.	M.P.s 1885.
Enocand.			Be: wlok..................	35,892 17	1
Bediord	149,473	3	Bate.......................	17,651 38,865	1
Berks	218,363	5	Clackmonn	25,630	1
Bocklaghas	176,323	3	Dumbarton.	75,333	1
Cambrillac.	185,594	4	numfties	76,740	2
Chester.	64,037	13	Ellnburgh	899,164	6
Carnwal	330,686	-	Elsin.......	43,783	2
Cumberlan	250.647	6	Flfe.	171,931	4
Derby.	461,914	9	Forfar.	266,860	4
Devon.	603,505	1.	Iradiugto	88,502	1
Dorset.	191.028	1	Inverncss.	90,454	2
Durham	867,259	$1{ }^{1}$	Kincardino	34,464	1
Essex.	576.434	11	Klurose.	6,097	-
Gloucester	872,433	11	Khkendlurgl	42,127	1
Tants	593,470	12	Lanark......	904, 412	13
Hereford	121.062	8	Linllthgow	43,510	1
Hertora	203,063	4	N'alru...	10,455	-
Hunting do	5n, 591	2	Ortsnes and Shetland.	61,749	1
Kent.	97\%,706	19	Pecbles.	12,822	1
Lancaster	3,454,441	57	Perth1.	129,007	3
Lelcester	321,258	6	Renfrow	263,374	4
Lincoln.	409,!19	11	Rosa and Cromarty .	78,547	1
Miadlesex	2,920,435	47	Roxburgh	53,442	2
Monmouth	21T, 267	4	Selk lik	25,564	-
Norfolk.	444,749	10	stitling	112,443	8
Northamptut	272,555	7	Sutheriant	23,370	1
Northumberland	4:34,086	8	Wigtown...	38,611	1
N゙ottIngham.............	391,815	7			
Oxford...	179,559	4		3,735,573	70
Ratland.	21,434	1	【reband.		
Shropshir	248,014	5	Iremand.		
Somarset	469,109	10	Antrim.	421,948	8
Stafford	981,013	17	Armagh	163,177	3
Sutfolk.	9566,893	8	Carlow	46,568	1
Surref	1,436,899	82	Cavan.	123,470	2
Sussex	490,505	3	Clara.	141,457	2
Warwick.	737,839	14	Cork.	435,607	9
Westmorela	64,191	2	Donegal	206,035	4
Wilts..	258,965	6	Down..	272,107	5
Worcester .a......	280,283	,	Dablln	418,910	6
	2,886,1764	52	Fermana	84,879	2
	24,613,926	460	Kerty	201,033	4
			K!1dare.	75,804	2
			Kilkenny	99,551	3
Anglesey.................	51,416	1	KIng'a	72.852	3
Brecon...	57,746	1	Leitrim.	90,372	2
Cardigan.....vo..........	70,270	1	Limerick.	180,632	3
Carmarthen............	124,864	8	Londonderry	164,391	8
Canarvon.	119,842	3	Longlord.	61,009	2
Denblgh.	111,740	3	Louth.	77,684	2
Flint..............e.e.e.....	80,587	2	Mayo.	245,212	4
Glamorgen.i..........0.	511,433	10	Mesth.	8.,469	2
Merioneth.	52,038	1	Monaghan	102,743	2
Montgomer	65,718	2	Queen'a..	73,124	2
' Pambroke	91,88\%	2	Roscomm	132,490	2
Radror.....................	23,528]	Sllgo..	111,578	2
			Tlpperar	190,612	4
	1,380,513	30	Tyrona..	19\%,713	4
England and Wales...SOOTLAND.	25,974,439	490	Westroeath	119.768 71,798	8
			Wexford................	193,854	2
			Wleklow	70,386	2
Aberdeen..................	267,990 76,468	4		8,174,836	101
Ayr.	217,819				
Banfl	62,736	1	Units Knoogox......	34,884,848,	651

square miles,- England and Wialez cubraciug 37.370.04] acres (whereof Wales $\cdot 4,721,633$), Scotland 19,467,077. and Ireland 20,819,947. Tho accompanying table gives the population of the counties according to the census of 1881, and their parliamentary representation as determined by the Redistribution Act of 1885. In the cnumeration of the Scottish merabers of parliament, groups of burghs are included in the counties containing the burghs whence they are respectively named, while it is to be observed that Kinross county is united with Clacknannan, Nairn with Elgin, and Selkirk with Peebles. The addition of the nine nuiversity representatives (England, 5; Scotland, 2; Ireland, 2) brings the total membership of the House of Commons to 670.

For the Islands in the British Seas the figures are as follows:-Isle of Man--141,263 acres, 1opulation 53,558: Channel Islands-48,322 acres, population 87,702.

UNITED PRESBYTERLAN CHUlCH, Tne, in point of numbers the third of the Presbyterian organizations of Scotland, was formod in 1847 by the nnion of tho United Secession and Relief Churches (see below). The doctrinal standards are those of the other Presbyterian churches of Scotland, aud the forinula employed at the ordination of ministers is similar to that of the Established and Free Churches; but adherence to the doctrinal standards is professed in view of the Declaratory Act of 1879 , according to which signatories "are not required to approve of anything in the standards of the church which teaches or is supposed to toach compulsory or persecuting and intolerant principles in religion," and are allowed freedom of opinion on all points which, in the judgment of the church, do not enter into the substance of the faith. The denomination in 1887 consisted of 32 presbyteries and 564 congregations (518 in 1847), with a total membership of 182,063 (175,066 in $1878 ; 178,195$ in 1883), thus representing about 14 per cent. of the population of Scotland. The number of baptisms in 1886 was 9894 ; there were 887 Sunday schools, with 11,994 teachers and 97,535 scholars, besides 788 advanced Bible classes, with 30,535 scholars. The total income of the church in 1886 was $£ 373,545$ (average for ten years from 1877 to $1886, £ 375,660$) ; of this total $£ 237,300$ was ordinary congregational income, and $£ 136,245$ nissionary and benevolent income. The average stipend paid to each minister was £259, 16 s . 10 d . There is a divinity hall in Edinburgh with 4 professors and (session 1887-88) 114 students. The term of study is three years. The United Presbyterian Church has missions in Jamaica (a syuod with four presbyteries), Trinidad, Kaffraria, Old Calabar, India, Clina, Japan, and Spain. The mission staff consists of 60 ordained Europeans, 22 ordained natives, 8 medical missionaries, 3 Luropean evangelists, and 19 female missionaries. Under these are 502 native evangelists, teachers, and other helpers. In 1886 the membership of the native congregations was 13,214 (10,215 in 1881). In Jamaica there is a theological institution. At the end of 1875 the denomination had 620 congregations, with 190,242 members, but in June 1876 98 of its congregations in England, with 20,207 members, were incorporated with the English Presbyterian Church.

History. - (1) United Sccession Church.-The general causes which led to the first great secession from the Church of Scotland as by law established in 1688 havo already been briefly indicaied under Presbyteriantsm (see vol. xix. p. 685 ; compare also Scotland, Church of, vol. sxi. p. 536 zq.). Its inmediate occasion rose out of an Act of Assembly of 1732 which abolished the last remnant of popular election by enacting that, in cases where patrons might naglect or decline to exercise their right of presentation, the minister was to be chosen, not by the congregation, but cnly by the eldere and Protestant
heritors. The Actitself had been passed by the Assembly, although the presbytcries to which it had been previously submitted as an overture had disapproved of it by a large majority; and in accordance with a previous Act (1730), which had taken away even the right of complaint, the protests of the dissentient majority were refused. In the following October Ebenezer Erskine (q.v.), minister of Stirling, who happened to be moderator of the synod of Perth and Stirling, preached a synod sermon, in the course of which he took occasion to refer to the Act in question as in his opinion unscriptural and unconstitutional. ${ }^{2}$ Some of his expressions were objected to by members of synod because "tending to disquiet the peace of the church and impugning several Acts of Assembly and proceedings of church judicatories," and after long and keen debate it was resolved that be should be censured for them. This judgment, on appeais was affirmed by the Assembly in May 1733, whereupon Erskine protested to the effect thaí he beld himself still at liberty to teach the same truths and to testify against the same or similar evils on every proper occasion. This protest, in which he was joined by William Wilson, Alexander Moncrieff, and James Fisher, ministers at Perth, Abernethy, and Kinclaven respectively, was regarded by the Assembly as contumacious, and the commission of Assembly was ordered to procure its retractation or to proceed to higher censures. In November accurdingly the protesting ministers were severed from their charges, their churches declared vacant, and all ministers of the church prohibited from employing them in any ministerial function. They replied by protesting that they still adhered to the principles of the church, though now obliged to "make a secession from the prevailing party in ecclesiastical courts," maintaining their continued right to discharge all the duties of the ministerial and pastoral office "according to the word of God, the Confession of Faith, and the constitution of the church," and appealing to the "first free, faithful, and reforming General Assembly of the Church of Scotland." In December 1733 they formally constituted themselves into a presbytery, but for some time their meetings were devoted almost entirely to prayer and religious conference. In 1734 they published their first "testimony," with a statement of the grounds of their secession, which made propinent reference to the doctrinal laxity of prerious General Assemblies. In 1736 they proceeded to exercise "judicial oowers", as a church court, published a "judicial testimony," and began to "organize churches in various parts of the country- Having been joined by four other ministers, including the , well-known Ralph Erskine, they appointed Mr^{2} Wilson professor of divinity. For these acts proceeding's were, again instituted against them in the Assembly, with the result that, having disowned the authority" of tliat hody in an "act of declinature," they were in 1740 all deposed and ordered to be ejected from their churches. Meanwhile the menbers of the "Associate Presbytery "and its adherents steadily increased, until in 1745 there were forty-five congregations nnder its jurisdicrion, and it was reconstituted into an "Associate Synod." A violent controversy arose the same year respecting the religious clause of the cath taken by burgesses in Ediuburgh, Glasgow, and Perth ("I profess and allow with my beart the true religion presently professed within this realm and authorized by the laws thereof"), and resulted in April 1747 in al"breach," when two bodies were formed, each claiming to be the "Associate Synod"; those who condemned the swearing of the burgess oath as sinful came to be popularly known as "Antiburghers," while the other party, who contended that abstinence from

[^298]it should not he made a term of comnunion, were desig nated "Burghers." The Antiburghers not only refused to hold further friendly conference with the others, but ultimately went во far as to pass sentences of deposition and the greater excommunication on the Erskines and other ministers who held the opposing view.

The Associate (Antiburgher) Synod held its first meeting in Edinburgh in the house of Adam Gib (q.v.) on April 10, 1747. It grew with considerable rapidity, and in 1788 had ninety-four settled charges in Great Britain and nineteen in Ireland, besides a presbytery in America. .For purposes of organization it was formed in that year into four provincial synods, and took the name of "The General Associate Synod." The "new light" controversies as to the province of the civil magistrate in matters of religion led to the publication of a revised testimony in the "voluntary". "sense in 1804, and in consequence M'Crie, the historian of Knox, with three other brethren, withdrew to form the Constitutional Associate Presbytery.

The Associate (Burgher) Synod held its first meeting at Stirling on June 16, 1747. The number of congregations under its charge rapidly increased, and within thirty years there were presbyteries in connexion with it in Ireland and North America, as well as throughout Scotland. In 1782 the American presbyteries took the designation of the Associate Reformed Church in America. About the Jear 1795 the "voluntary" controversy respecting the power of the civil magistrate in matters of religion arose within this synod also, and a large majority was found to have adopted "new light" views. This led in 1799 to the secession of the "Associate Presbytery," which in 1805 took the designation of the Associate Synod or Original Burgher Synod. ${ }^{2}$

In 1820 the General Associate or Antiburgher Synod (to the number of 129 congregations ${ }^{3}$) united with the 154 congregations of the Associate ir Burgher Synod. The body thus constituted, "The United Secession Church," had increased by 1847 to 400 congregations, the whole of which united in that year with the Relief Synod to form the United Presbyterian Church.
(2) Relief Church.-The Presbytery of Relief was constituted in 1761 by three ministers of the Church of Scotland, one of whom was Thomas Gillespie (q.v.), who had been deposed by the Assembly in 1752 for refusing to take part in the intrusion of unacceptable ministers. The number of congregations under its charge increased with considerable rapidity, and a Relief Synod iwas formed in 1773, which in 1847 had under its jurisdiction 136 congregations; of these 118 united with the United Secession Church in that year. The Relief Church issued no distinctive "testimonies," and a certain breadth of view was shown in the formal declaration of their terms of communion, first made in 1773, which allowed occasional communion with those of the Episcopal and Independent persuasion who are "visible saints." A Relief theological hall was instituted in 1824.

See M'Kerrow, History of the United Secession Churah, 1841 ; Struthers, History of the Relief Church, 1843 ; Mackelvie, Annals and Statistics of the United Presbyterian Church, 1873. ${ }^{4}$

UNITED PROVINCES. Sce Hollañd.

[^299]
［Copyright isyo by R．S．I＇cale．］

UNITED STATES．

PART I．－HIS゙MORL゙ ANH COIUN゙17．ATION．

I．DISCOV゙ERY AND SETTLEMENT UF AMEMICA．
THE date on which America was first discovered by Europeans is a matter of ancertainty．The legends respecting the early voyages thither are numerous，but the most ancient of them are doubtless fictions．No account of the discoveries， previons to the time of Columbus，can be relied upon， except of those made by the Icelanders，who，about the year 1000 ，attempted to colonize the country，but with－ out any permanent success．It was not until the coming of Columbus，in 1492，that any benefit ras derived by the old world from the discovery of the great continent of America．

The success of Columbus aroused the spirit of enter－ prise，and other voyages were made，notably those of the Cabots in 1497－98，Ponce de I．eon in 1512，and Ver－ razzano in 1523，under the auspices of the English， Spanish and French gorermments，respectivels．The Spaniards gave the name of＂Florida＂to North Amer－ ica，while the French called it＂Canada or New France，＂ and each of these two nations laid claim to the entire countrs．

2．But the English had not forgotten that the Cabots， with English ships，had first reached the mainland of North America，and from this fact they laid claim to the northern part of that continent．Many unsuccess－ ful attempts were made by Englishmen to found colo－ nies．The first of these was Sir Humphrey Gilbert，who inade tro efforts，one in 1575 ，and the other in 1583 ， without success，and lost his life in a storm while re－ turning home．Sir Walter Kaleigh，Gilbert＇s half－ lirother，obtained a patent from Queen Elizabeth，and in I584 sent out two ships，commanded by Amidas and Barlow，to fix upon a place for a settlement．They ex－ ，lored the coast of what is now North Carolina．Struch with the beauty and fertility of the conntry，they gave a most flattering account of it on their return home， and Raleigh named it Virginin．in honor of the＂virgin queen＂Elizabeth．In the spring of 1585 he sent out a colony which settled on Roanoke Island，but it was starved out in the same year．Again，in 1587，Raleigh sent out another calons，under White，to the same place， but it entirely disappeared，and no trace of it could be found when White came back three jears later．In 1602．Gosnola，with trenty culonists，took a short and direct route，and came upon the coast of Massachnsetts． He wintered upon an island in the vicinity and then went back，taking the colonists，who refused to stay any longer，with him． rism－3．In 1606 ，James I granted a charter to two com－ and panies formed in England．This charter gave them the whole continent of North America，from the thirty－ fonrth to the forty－fifth parallel of latitude．The one called the Plymouth Company was to take the northern half，and the other，the loondon Company，the southern half，and their nearest settlements must be a hundred miles apart．Moreover，each colony was to be governed by a resident council appointed by the king，with power to choose one of their own number for president．

4．The earliest attempts at colonization ander the pany，but the expeditions which they sent out in 1606 ， 1607 and 1608 ，were unsuccessful，and it was left for the London Company to found the first permanent English settlement in the new world．In 1606 this company sent out about a hundred men，mostly adventurers，in
a tleet of three vessels commanded by Christopher New－ port．1’xing driven by a storm into Chesupeake Bay， he found there a fine river which be mamed the James river，after the king，and chousing a low peninsula，he there planted the colony of Jamestown on \ay $13,1607$. But very $800 n$ the colonists hecame dissatisfied．Dis－ sentions arose，and Wingfield，president of the council， was deposed．They suffered from starvation，and had it not been for the indefatigable exertions of（aptain John Smith the settlement would have entirely broken up．The colonists experienced many vicissitudes，but after a few years thes became prosperous and the permanent settlement of Virginia was established． In the meantime，the policy of the London Company toward the settlers became more liberal，and a representative government was granted them in 1619, which was the beginning in America of govern－ ment by the people．In 1619 a Dutch vessel brought in some negroes purchased by the planters，and thus slavery was introduced into the English colo－ nies．

5．The first settlers of Massachusetts were a band of Plrmoutt Puritans，or Separatists，as they were called，because colony． they liad separated from the Church of England．Being driven from England，they sought refuge in Holland； but wishing to find a home in the new world for them－ selves and their children，they returned to England again，and from thence a band of 102 set sail in the Mayflower，and landed at Plymonth，in America，De－ cember 21，1620．The little colons survived the rig－ ors of a northern winter，the burden of poverty， and the lack of food，and became permanently estab－ lished．

6．In 162s，John Endicott，with a company，made a Massacha settlement at salem；other towns，also，sprang up setts Bay aronnd it，and these were all united under a clarter colong． obtained from Charles I ，with the aame of the Massa－ chasetts Bay colony．These tro colonies，Plymouth and Jassachnsetts Bay，nere for many years independ－ ent of one another；but were at last united in bige， under the name of Massachusetts．

7．In 162t，the London Company surrendered its charter to the king．A districh was granted to Lord Baltimore in 163シ，and deceived the name of Maryland．Marsland． All the country between the English settlements of Vir－ ginia and the Spanish posts in Florida was granted by Charles Il，in 1663 and 1665 ，to a compans of English noblemen，Lords Proprietors，and was called Carolina．Carollna This territory comprised the present states of Nurth Carolina，South Carolina，Georgia，Alabama and part of Florida．In 1729 North and Sonth Carolina were organ－ ized，and in 1732 Georgia was colonized hy James Oglethorpe．Thus，out of the territory originally Georgia granted to the London Compans，five colonies had been formed．
s．To the territory granted to the Plymouth Com－Theother may，the name New England had been given by Cap－New tain John Smith in 1614．The founding of the Plym－colonies． outh and Massachusetts Bay colonies has already been mentioned．The greater number of the people who came from England in the great Puritan migra－ tion，settled in the latter colony．At the same time many found it expedient to seek other parts of New England．Not only did new－comers thus try new places，but the older settlements began to send out com－ panies．In 1623 New Hampshire was first colonized under a grant to Captain John Mason and Sir Ferdi－

Couneeti- nand Gorges. Connectient and Rhode Island also becut and Rhode tsland, came colonies, and were afterward chartered by the crown in $166{ }^{\circ}$ and 1663 . Thus. out of that part of the country originally granted to the Plymouth Company, were formed the colonies of Massachusects, Connecticut, New Ilanpshire and Rhode Island. Inane was considered a part of Massachusetts and was not counted as a separate colony among those that finally combined to form the original thirteen states. The territory now occupied bs Vermont was clamed in part by New Fork, in part by New Hampshire, and it did not become a sejarate state until after the revolutionary war.

Ashas been said, the charter granted to the london and Plymouth companies provided that their nearest settlements should be one hundred miles apart, thus leaving a strip of territory between the two main grants which was really neutral ground, and was never appropriated by either company. The spaniards had confined their explorations to the south and made settlements there, but thes claimed the whole contiment north of them. The French had established themselves in the north, and held Canada and part of the northern, states; they claimed everything south of them and called the whole New France. The Euglish settlements were midway between the French and Spanish, and the English claimed everything from New England and Carolina westward to the Pacific, maming it all Virginia. Thus, so far, North America was divided between the three European powers, England, France and Spain.
the sise of the Dutch one wite

End of the Dutch
power.
10. But a fourth power had appeared. In 1609, the Dutch East India Company sent Henry Hudson, an Englishman in their employ, in the ship named the "Half Moon," to make discoveries in America. He reached the continent and explored the coast as far south as Virginia, then turning to the north he entered the mouth of the river which bears his name, and sailed up the stream as far as the present city of Albany. Having completed his discovery he returned home. Upon the strength of Hudson's explorations, Holland laid claim to all the land along the great river, and called the whole territory New Netherlands. In I6.21, the Dutch West India Company was formed, and immediately received large grants of land on hoth sides of the Hudson, extending from the Connecticut river on the north to the Delaware river on the south. Previous to this, however, a Dutch settlement had been founded in 1614, on Manhattan lisland, the present site of New York City, which was afterwards called New Amsterdam.
The Dutch now began to establish settlements and trading posts in their pussessions, which included that neutral territory lying between the original grants to the London and Plymouth companies, In 1638 , Delaware was colonized by the Swedes, who founded a settlement on Delaware Bay, which was called New sweden. But disputes about a territory arose between the Swedish and Dutch colonists, which led to a war between them, ending in the final surrender of New Sweden to the New Netherlands in 1655 .
11. But New Netherlands was soon destined to change
bands. The introduction of a foreign element between hands. The introduction of a foreign element between nies had always been recognized as a source of trouble and danger, aud in fact the Dutch settlers, occupsing territory claimed by the English on both sides of them, were continually involved in disputes with their neighbors, especially with those of Connecticut. War having axisen between England and Holland, the English king, Charies II, determined to seize the Dutch possessions in North America; so in $166 \pm$ he granted the whote of their territory to his brother, the Duke of York. In the same year the duke sent out three vessels uuder the command of Colonel Nichols, who, upon arriving in the harbor of New Amsterdam, demanded a surrender of the territory to his English majesty. Governor Stugvesant, being unprepared for defense, complied with the demand, and the whole country passed into the hands
of the English. In honor of the duke, the name New Amsterdam was changed to New York, and the whole territory received the same name.
12. After the Duke of Iork had gained possession of the Dutclu territory, be in turn sold the southern part of it to two English noblemen, Lord Berkely and Sir George Carteret. This tract, in compliment to Sir George, who had been governor of the island of Jersey, was called New Jersey. A liberal constitution was New formed by the proprietors, and Philip Carteret ap-Jersey pointed governor. The Dutch had several small trading stations in this territory at an earlier date, and the Quakers, having buught the rights of Lord Berkely, came soon afterwards. In 1676 a division was made, the Quakers taking West Jersey and Carteret retaining East Jersey, which became Puritan. In 170: the colony was given up by the proprietors to Queen Anne, in order that a royal governor might be appointed, and the two provinces were then made into one.
13. The tervitory comprised within the limits of the Pennsy state of Pennsylvania was granted, in 1681, by Charles vania. II, to William Penm, son of Admiral Penn, in payment of an old debt due from the crown to the Penn family. In $165:$, the present state of Delaware, then known as Delawa the "Tervitories", was added to his domain, and regarded as a part of Pennsylvania, but in 1703 it became a separate colony, Thus, the formation of the original The thirteen colonies has been described. The London origina Company's territory fumished five, viz: Virginia, colonie I]aryland, North Carolina, South Carolina and Georgin. The Plymouth Company's grant, comprising New England, gave four, viz: Massachusetts, Connecticut, Rhode lsland and New Hampshire. The neutral territory included between the original grants to the two companies furnished fonn, viz: New York, New Jersey, Pennsylvania and Delaware.
14. It is in vain tolook for well balanced constitutions The cor in the earlier periods of colonial history. England tutions herself can scarcely boast of having a fixed constitution the cole previous to the revolution in the year 1688 , a period subsequent to the settlement of the colonies. The legal and constitutional history of the colonies, therefore, affords but lithle instruction. As has been shown, in less than eighty jears from the first permanent English settlement in North America, the (wo original patents granted to the Plymouth and London companies were divided and subdivided into ten distinct and unconnected provinces, and in fifty years more three new colonies were added to the southern extreme of the previous establishments. To each of these, after various changes, there was ultimately granted a form of government resembling, in its most essential paris, as far as local circumstances would permit, that which was established in the parent state. Without entering into details, it may be observed, in general, that agreeably to the spirit of the British constitution, ample provision was made for the liberty of the colonists. The colonial forms of government were, in the main, unhampered by the rojal prerogatives. In some of the provinces the inlabitants chose their own governors and all other public officers, and their legislators were under little or no outside control. In others, the crown delegated most of its powers to particnlar persons, who were also invested with the property of the soil. To those colonies which were most immediately dependent upon the king were granted the same rights and privileges as their fellow subjects in the mother country.
15. During the period of colonization, three forms of Forma' government were observable-proprietary, charter and govera. royal. The proprietors of land grants offered liberal ment. governmental privileges to those who were willing to settle on their lands, and thus several of the colonies became proprietary. These were Maryland, Carolina, Georgia, New York, New Hampshire, Pennsylvania (also including Delaware) and New Jersey. Some of the proprietors, becoming tired of their grants, surrendered them to the crown, and the colonies, established in such territory, became royal provinces, over which the king appointed governors with the power of abso-
lute verc on legislation. The colonies thus coming under the royal authority were, North Carolina, South Carolina, Georgia, New York, New Hanpshire and New Jersey. Virginia became a rojal province about 1620. Three colonies, only, remained proprietary down to the Revolution; these were Peunsylvania, belaware (now a separate colony) and New Jersey. The colonies organized under a charter government were Massachusetts, Connecticut and Rhode lsland. These charters were granted lig rojal authority, and gave the colonists the right of choosing their own officers, and making and enforcing their oirn laws as they thought hest. Upon tbe accession of Fames II to the throne, he held that all the colonial lands in New England belonged to the crown. Accordingly, he sent over Sir Edmund Andros, who was to revoke all the charters, and assume the governorship of the province of New England and New York. The charter of Massachusetts was annulled in 16St, but Connecticut and Rhode lsland retained theirs in spite of the royal authority. In 1693 a new charter was granted to Massachusetts, but under its conditions she partly became a royal province.
16. For the first century and a half after the settlement of the colonies, England, in the main, exercised a wise and liberal polics toward them. She allowed them to govern themselres by such laws as their local legislatures thought necessary, and left their trado open to every individual in her dominions. She alsogare them iull permission to pursue their respective interests in such a manner as they thought proper, and reserved little for herself but the benefit of their trade, and that of a political union under the same head. This indul. gence had a very marked effect upon the growth and prosperity of the colonies. They inereased in realth, numbers and resources with a rapidity never before equalled in ancient or modern histors. They extended their settlements $1,500 \mathrm{miles}$ along the sea coast, and 300 miles to the westward. In the short space of 150 years their numbers increased to three millions, and their commerce to sueh a degree as to be more than a third of that of Great Britain, although much restricted by the navigation laws imposed upon them by the mother country. The rapid increase in the population of the colonies was principally oring to internal causes, though somerthat accelerated by the inllux of strangers previous to 1630 : Jet, after that time, immigration formed but a small feature in peopling the country. The hardships of colonial life, which came to be better understood, and the constant struggles between the people and the home government respeeting rights and privileges, served as a check to the adrent of newcomers. Hence, the population of the colonies arose mainly from natural increase. In consequence of the equality of fortune and simplicity of manners which prevailed among them, their inhabitants multiplied far bejond the proportion of old nations, corrupted and weakened by the rices of wealth, ahove all, of vanity, than which. perhaps, there is no greater enemy to the increase of the human species.
17. In the settlement of a new country. many hard. ships and privations must of necessity be endured, and the American colonists experienced their shate of them, more especially those of New England. In that section the elimate was more rigorous than in the other parts of the country, and the cultivation of the soil more difficult. The habitations outside of the regular settlements were often far apart, so that intercommunication was infrequent. The dwellings of the settlers were of the ruder sort, being composed of logs, and so imperfectls constructed that they afforded a poor protection against the cold of a New England winter. While the colonists were poor there was necessarily great plainness of living among them. Luxuries were unknown to them, but there was an abundance of the coarser kinds of food. Pork and beans, boiled corn meal and milk, or pork and peas, formed the staple articles of diet, Bread was commonly made of "rye and Indian," and seldom of flour. Tea and coffee were not yet introduced,
but home-made beer and cider were largely used. Iieing principally of l'uritan stock, there were but few secular amusements among them. Dancing, and the theater, or anything approaching it, were forbidden; musical instruments were rare, and no one was allowed to own a set of dice or a pack of cards. In their desire to promote virtue, the Puritans, no doubt, were too austere in their mote of living, yet the standard of morality among them was certainly very high. In the southern colonies life was more ensy, as a general thing. A large proportion of the settlers there were men of good fanily, attracted to the new world by a desire to make mones and to enjoy personal freedom. Many of them secured patents for plantations of their own, instead of attempting to improve the lands in common, and brought out laborers to work them at their private expense. The soil was very productive, and the growth of tobacco, rice and indigo formed a great source of wealth, so that luxury abounded in that part of the country to a mueh greater extent than in any other. The existence of slavery among them eaused a great real of ignorance and idleness, as the wisest of them almitted; but there gren up an aristocratic class, among whom there were many men of high character and energy. The settlers in the region which now forms the middle states principally followed the oceupation of farming, the soil and climate heing well adapted for the growth of cereals.

> The religion of the colonists Was chietly Protes- The
tant. A majority of them, especially in the north, were relighons
of that class of men who, in England, were called dis- condition senters. In New England they were largely Congregational. All the other leading denominations also had their representatives in different parts of the country. In the royal colonies there was a strong tendency towards the Church of England. which became the prevailing religion among them. In Virginia it was estal,lished by lat. In fact, nearly every colony at the outset attempted to establish some form of religious belief on a governmental foundation, and on account of this. as is well known, persecutions at the first arose. But Religious genepal, men सere left at liberty to worship God according to the dictates of their own conscience.
19. The English colonists were, from their first set-Thespirl tlement in America, deyoted to liberty, according to of liburty. English ideas and English principles. After a long struggle between the king and his parliament, eulminat ing in the English revolution, the following fundament al principles were settled: "That it was the undoubted Pighs of
right of English subjects, being freenen or freeholders, Fnylish o give theirns arem freeholders, subjecta. the House of Copery only by their own consent. That the House of Commons exereised the sole right of granting the money of the people of England, Lecause that house alone represented then. That taxes were the free gifts of the people to their rulers. That the authority of sorereigns was to be exercised only for the good of their subjects. That it was the right of the people to meet together, and peaceably to consider their grievances, to petition for a redress of them, and finally, when intolerable grievances were unredressed, to seek relief, on the failure of petitions and remonstrances, by forcible means." Upon these fundanental principles, thus established, the colonists tonk their stand, and ali encroachments on their rights were met with a more determined spirit of opposition than would have been possible, had they emigrated from the mother country in the preceding century, when the doctrines of the divine right of kings and passive obedience to their will were generally accepted.
20. There were many causes farorable to liberty Causes among the colonists. Their removal to so great a dis- fovorable tance from the parent goremment greatly weakened their attachment to their sovereign, and with each suoceeding generation that affection became still less marked, and at length was almost patirely lost. Their religion also fostered a love of liberty. They were chiefly Protestants, and all Protestantism is founded on a strong claim to natural liberts and the right of private judg.
ment. The state of society in the colonies was favorable to a spirit of liberty and independence. Their inhabitants, nnaccustomed to the distinctions of rank which characterized European nations, were imbued with the idea that all men are by nature equal. All their impressions were calculated to inspire them with a belief that democratic forms of government were by far the best. With rank and titles they had notbing in commun; kings, nobles and bishops were unknown to them. They could not easily be persuaded that their grants of land or their civil rights were the gifts of princes. Many of them had never heard of Magna Charta, and those who knew the circumstances of the remarkable period of English history when that great charter was obtained, did not rest their claims to liberty and property on the transactions of that important day. They looked to the Parent of the universe as the source of all their rights. Their political creed was short but sound. They believed that God made all mankind originally equal; that He endowed them with the rights of life, property and as much liberty as was consistent with the rights of others; that all government was a political institution between men naturally equal, not for the aggrandizement of one or a few, but for the general happiness of the whole community. Impressed with sentiments of this nature, they grew up, from the earliest infancy, with that conficlence which is well calculated to inspire a love for freedom and a prepossession in favor of independence.

11.-THE CONTEST BETWEEN ENGLAND AND FRANCE.

Frauce in America.
21. While the English were establishing their colonies along the Atlantic coast, and gradually working their way into the interior, the French were penetrating the continent by the way of the St. Lawrence, taking adyantage of the discoveries made by Cartier, Champlain and others. The two great pioneers of French occupation were the fur trader and the missionary. It was about the time of the settlement of llassachusetts Bay that the Jesuit Fathers, who had already been laboring for many years among the Algonquins and Hurons of Canada and New York, began to push their explorations westward with renewed zeal and enterprise, accompanying, and often leading, the Canadian fur traders on their long journeys. Among the soldiers, also, who came to New France, as the Frencli possessions in America were called, were men who were intent upon enlarging their king's domains. Several of the Jesuits were martyred. Allouez made known the copper mines of Lake Superior. Dablon and Narquette founded Sault Ste. Iarie, the first white settlement in the nortbwestern States. Harquette, accompanied by the trader Joliet, first reached the upper waters of the Mississippi in 5673.
22. One of the greatest of French explorers was Robert de la Salle, who came out to Canada to seek his fortune. A tract of hand was granted him a few miles beyond Montreal but he was bent uponnew discoveries. He secured the aid of some rich men and of Count Frontenac, governor of Camada, and having built some vessels, be explored the upper lakes, made his way to the Illinois river, and erected a fort on the present site of Peorin. At last he made the great journey which he had for some time been planning. He set out from Fort Miami, on Lake Michigan, with a party of Frenchmen and Indians. He dragged his canoes from stream to stream until, after innumerable hardships and dangers, from which he never flinched, he launched them upon the waters of the Mississippi and floated down its corrent. He explored the great river to its mouth, and, in 1682, took possession of the vast territory drained by it and its tributaries, in the mame of Louis XIV, king of France, and named it Louisiana after him. He then retraced his course and bastened back to France. The king fitted out an expedition for La Salle, that he might establish a colony at the mouth of the Mississippi. The naval commander, Beaujen, handed LaSalle, and his company at. Matagorda bay, in Texas, which La Salle
supposed at first was the mouth of the Mississippi. Then Beaujeu sailed back and left the colonists to their fate. They built a fort, and La Salle set out to find the Mississippi, but ntterly failed. Dividing his men, he left one party in possession of the fort, and with the other endeavored to force his way to Canada, there to obtain relief. He never reached the end of his journey. After suffering terrible hardships, he was treacherously murdered (1687) by some of his own party when on his way. France sent out another expedition under Iberville, who (1702) founded Mobile. In 1718 the city of New Orleans was founded by the French Mississippi Company.
23. The French planted military posts at intervals French along the great river, and settlements rose up about milita them. The French colonies and outposts also extended posts. from New Brunswick and Nova Scotia, up the valley of the St. Lawrence, and through the region of the great lakes. Thus the English settlements became ericlosed ly a cordon of military posts, and at that time it seemed as though the whole continent was destined to become French rather than English. The Frencb also had an advantage from the fact that they had secured the good will of most of the Indian tribes, through their own prudent policy and the influence of their missionaries. The English settlers looked upon their French neighbors with jealousy and alarm, for they interfered with the extension of their settlements, especially in the north. In the southern colonies the inconvenience of the French occupancy was comparatively but litlle felt. Their social characteristics and the nature of their industry were not favorable to western migration, so, as there was nothing to tempt them away from their plantations into the wild interior they kept close to the seacoast. But in the north it was different. There the constant increase of commerce was followed by the increased wealth of the towns, and consequently the lands about them became more valualile. The great bulk of the emigrants tho came over landed at the northern ports since trade was more active in the northern colonies. Many of these, being unable to purchase homes near the great centers of trade and the many flourishing settlements, or being impelled by a spirit of enterprise, went in search of new lands farther from the coast. Thus the northward and westward growth of New England and the English conquest of New Netherlands brought the two great rivals face to face.
24. The great struggle between France and England King ${ }^{1}$ began in 1690. King James II had been detbroned liam's (1688), and William of Orange placed upon the English throne. The French king, louis XIV, espoused the cause of James, and a war followed, known as King William's War, in which the colonies became involved. Both the French and English colonists made use of Indian allies, and the warfare was marked by the most barbarous excesses. The Indians of Maine and New Hanpshire were incited by French traders to attack the English towns. In 1689 Dover was burned. Casco was attacked, but the timely arrival of reinforcements from Massachusetts saved it. All the settlements further east were broken up. In 1690 the war hecame more earnest. Three war parties of French and Indians were sent out by Connt Frontenac from Montreal, Three Rivers and Quebec. The first surrounded the settlement of Schenectady in the night, and put it to the sword. The second destroyed Śalmon Falls, New Hampshire, and then, in conjunction with the third party, captured Casco
The Englisb colonies became aroused and determined to punish the invaders. An expedition, fitted out under the united efforts of Massachusetts, Plymouth, Connecticut and New York, was sent out under Titz-John Winthrop, against Montreal. An attack made on the town was repuised by Frontenac. In the meantime, Sir William Phipps, with a fleet, sent out from Massachusetts, plandered Port Royal and other French settlements. Then, sailing up the St. Lawrence, he attempted to surprise Quebec. But Frontenac, having defeated the attack on Montreal, reacbed Quebec before
him, and the enterprise failed. The war continued antil 1697, when a treaty of peace was made between France and England. Both parties had suffered severely, and neither had gained any real advantage.
25. The truce between the two great rivals lasted about fire years, when war again broke out betreen them (1702). At once the French and English in America fell to fighting, and the war that followed is called Queen Anne's War. During the five sears of peace the French had continued to make settlements in the west. They never lost sight of the great idea which inflamed their ambition, which was to establish a great Frenct-American empire. Thes had founded Detroit, Mobile and numerous rillages on the Mississippi. In the east they had recovered all the places taken from them by the English in the 1ast war, inangurated new missions, and increased their influence over the Indians. At this time Spain was in alliance with France, and the English settlers found themselves opposed not only by the French in the north and west, but by the Spaniards of Florida in the south. The English colonists directed their first operations against the Spaniards. St. Augustine was captured (1702), but had to be abandoned. Three years later the Christian Iudian settlements of middle Florida were destroyed by the English, and the missions entirely broken up.

warat 26. New England suffered greatly in this war. There

 was an atrocious massacre at Deerfield in 1704. Haverhilh. which had not fulls recovered from the inassacre of 1697 , was plundered and burned a second time, and mans of the colonists killed (1700), and the whole of that part of the country was harassed by barbarous foes. Receiving but little help from England the colonists for several years mere unable to undertake any important expeditions. An attack on Charleston. s. C. (1100 , by the Freuch and Spaniards, was repulsed. Port Rogal was again taken from the French (1110), and with it the most of Acadia, which now beame known as Nova Scotia.In 1711 an Fnglish fleet arrived in Poston to cooperate with the colonists in an attempt to conquer Canada, but all operations in that guarter proved a failure. In 1713 a treaty of peace was signed at Utrecht, by which the English acquired Newfoundland and Acadia. The eastern Indians were also induced to make peace about this time.
27. Many years of peace now followed, during which the colonies increased rapidly in population and adranced in material prosperity. The French still pursued their scheme of building up a great empire in the west. They controlled the valuable fur trade of the whole 11 ississippi valles. After their expulsion from Acadia, they had crossed to the island of Cape Breton, and erected the strong fortress of Louishurg. At Niagara they had a fort commanding the commonication between Lakes Erie and Ontario. Natchez was founded in 1i16. In 1710 New Orleans was luilt, and soon became the capital of Louisiana. The French missionaries also continued their conquests in the wilderness of the Mississippi. After sereral years of peace, France again declared war against England (17-H), and immediately began hostilities against the settlements. The campaign which followed is known as King George's War, because it occurred in the reign of George II.

2s. The colonists determined to carrs on the war by their own means without waiting the uncertain aid from England. An expedition was planned against Louisburg which was successful, and that strong fortress fell into the hands of the Americans (1745). This achievement of untrained soldiers was receired with enthusiasm by the colonies, and with astonishment in Europe. The treaty of Aix-la-Chapelle (1748) put an end to the war; and, greatly to the disgust of New England, Lonisburg was restored to the French in exchange for Madras, in Hindustan, which France had taken from England.
29. The colonists had but a short time to reap the benefits of peace, after the treaty already referred to, when the sound of approaching war filled the land
with anxiety and gloom, After an interval of about eight jears, Great Britain formally declared war against France. The causes leading to this war, which was called the French and Indian War, were the alleged encroachments of the French, on the frontiers of the colonies in America belonging to England. The French determined to connect their northern and sonthern possessions by a line of posts extending along the frontiers of the Euglish possessions, from Lake Ontario to the Ohio, and down the Ohio and Mississippi to New Orleans. Cp to the middle of the last century the English had not attempted to explore or settle the regions lying beyond the Blue Ridge and Alleghany mountains, but in 1749 a company of traders from Jondon and Virginia. called the Ohio Compans, obtained a grant from the The Ohro crown of 600,000 acres of land on the east bank of the Compans Ohio river, in mbat is now West Virginia and Pennsylvania. In the jears immediately following they made surreys and established a fer settlements. One of the surveyors was George Wasbington.
30. The French, regarding these operations of the Ohio Company as an encroachment upon their territory, strengthened the fort at Niagara, built another at Presque Isle (1753), now Erie, established posts at La Beuf and Venango (now Waterford and Franklin, in the oil region of northwestern I'ennsylvania), seized the English traders, and confiscated their goods. When rumors came of what the French had done, Governor Dinwiddie of Tirginia sent Washington, then not jet twenty-tro jears of age, to look into the matter, and expostulate with the French regarding their encroachments. After an arduous and perilous winter journey, Washington brought back such a report of the determination and activity of the French, that the Virginia Assembly at once took measures to build a fort (1754) at the junction of the Monongahela and Alleghany rivers; but while the fort was being erected the French suddenly appeared, drove the English away, and finished for themselves the fort which, they called Fort Du Quespe.
31. In the meantime, a body of 400 men had been raised in Tirginia and North Carolina, and sent out under Washington into the disputed territory. Meeting at Grand Meadows a French force which had been Washing. sent out to intercept him, he attacked and defeated skirmish. it (1754). Learning of the approach of a greatly superior force of the enemy, he erected Fort Necessity. Here he was attacked by the French, and compeljed to surrender, but on honorable terms. During this time, both the rival governments of France and England were making preparations for the coming struggle, though there was no formal declaration of war until 175 h.
32. In 1.55 General Braddock, with a force of Braddock's English and American troops, marched against Fort defeat. In Quesne, but was defeated with great slaughter. and but for the skill displaged by Washington the whole arms wonld have been annihilated. Braddock himself was mortally wounded, and died shortly afterwards. After his death, General Shirley took command, and made an attempt to reduce Fort Niagara, but accomplished nothing. General William Johnson was appointed to attack Crown Point. He deleated the French General Dieskau in the battle of Lahe George Sept. 5.1755$)$, but was unable to reach Crown Point. In the same year all the French inhabitants of Acadia were banished.
33. 1n May, 1756, war was formally declared hy Great Britain, and by France in the following month. Lord Loudoun was appointed commander-in-chief of all the forces in America, bnt, owing to necessary delay, General Abercrombie preceded him and took the conmand. The Marquis of Montcalna became the French commander. Abercrombie awaited the arrival of Loudoun before attempting anything. Both oflicers proved inefficient, and by their delays allowed the French not only time to strengthen their posts, but also to attack those of the English.
34. In August, 1756, Montcalm captured Fort Ontario Campaigns with a large number of military stores, guns, prisoners and 1757.

Washing. ton's mis. slon.

The Couguest of Canada

The Treat

 of Paris.Pontiac's War.
and vessels. In June, 1757, Lord Loudoun organized an expedition against Louisburg, but ahandoned the attempt on learning that the garrison at that place had been strongly reinforced by a French fleet. In the meantime, Iontcalm, collecting his forces at Ticonderoga, marched against Fort William Henry, and compelled it to surrender. After the surrender, many of the garrison were massacred by the French Indian allies. Thus, after four years' hostilities, the incompetency of the British commanders still gave the French the advantage. But a change in the British home policy changed the aspect of the war. The celebrated William Pitt was called to the ministry, and immediately began to act with vigor. Abler officers were appointed to command, and expeditions organized against different points. Louisburg was captured July 27, 1758. Fort Du (luesne also was taken, and its named changed to Fort Pitt. General Abercromhie's attack on Ticonderoga (July, 175s), met with a bloody repulse, but Fort Frontenac was taken, with a large quantity of stores and goods.
35. Pitt now determined to dispossess the French of the whole of their American territory. His armies were directed at the same time against three of their strongest posts, Quebec, Ticonderoga and Montreal. General Amherst captured Ticonderoga Juls, 1759. Fort Niagara surrendered to Sir William Johnson July 25,1759 . But the most important feature of the campaign was the taking of the almost impregnable fortress of Quebec by the gallant Wolfe, who lost his life in the action. Soon after, Montreal surrendered to Amherst. In this campaign the French were driven from all the important posts in Canada, and their porrer in America was broken forever. The war was virtually at an end, though peace was not restored until the signing of the treaty of Paris, February, 1763. By this agreement, to which Spain and Portugal were also parties, France surrendered ererything east of the Mississippi, except Nerr Orleans, to England. New Orleans and that part of Louisiana beyond the Mississippi were ceded to Spain by the French. In exchange for IIarana, which had been captured by the British, Spain sielded Florida to England. In 1800 Spain restored Lonisiana to France, and Napoleon sold it to the United States in 1803.
35. When the treaty of peace was signed, it was trusted that there would lee an end to those horrid ravages which had desolated the interior of the country. But the month of May, 1763, proved the fallacy of such hopes. The Indians did not wish to see the country transferred by the French to the English. It was one thing to have the French trading among them, another to have the hated English occupying their lands. It was about this time that the famous uprising of the Indian tribes broke out. The Delawares and Shambees and other of the tribes of the Ohio were foremost in this conspiracy. Pontiac, an Ottawa chief, Was the prime mover and master spirit in this affair, and hence it is called Pontiac's War. Pontiac expected the French to join him, for they were secretly encouraging him. Nost of the western tribes were dramn by him into the plot, but Sir William Johnson prevented a greater part of the Jroquois from joining him. Pontiac's plans were deeply laid, and conducted with Indian craft and secrecs. At a concerted time, an attack was made upon all the posts from Detroit to Fort Pitt (formerly Fort Du Quesne). The Indians captured and destroyed eight of the twelve forts, but mere unable to take the important posts of Detroit and Fort Pitt, though Pontiac besieged the former place for five months. The frontiers of Maryland, Virginia and Pennsylvania were laid waste, and terrible havoc wrought in the frontier settlements. The English, surprised by the first attack, soon roused themselves and met the danger promptly. The power of the tribes became broken, and most of them sued for peace. Pontiac retired to the Illinois country, and made a stand there for some time longer, finally submitting in 1766.

111. CAUSES OF THE AMERICAN REVOLUTION.

37. The addition to the British empire of new provinces, equal in extent to old kingdoms, not only excited the jealousy of European powers, but occasioned doubts, in the minds of enlightened British politicians, whether or not such immense acquisitious of territory would conduce to the benefit of the parent state. They saw, or thought they saw, the seeds of disunion planted in the too widely extended empire. To combine in one uniform system of government the extersive territory then under British sway, appeared to men of reflection a work of doubtful practicability; nor were their conjectures at fault. The seeds of discord were soon planted, and speedily grew up to the rending of the empire. The high notions of liberty and independence which were nurtured in the colonies by their local situation, and the state of society in the new trorld, were increased by the removal of hostile neighbors. The events of the war had also given them some experience in military operations, and confidence in their own ability. Foreseeing their future importance from the rapid increase of their numbers and extension of their community, and being extremely jealous of their riglats, they readily admitted and indulged in sentiments and ideas which were favorable to independence. While combustible materials were daily collecting in the new world, a spark to kindle the whole was produced in the old.
38. In the first period of the settlement of English origiu America, the mother country regarded the provinces as the dis. instruments of commerce. She contented herself with a monopoly of their trade without taking upon herself the care of their internal policy, or seeking a revenue from them. Previous to the close of the war in 1755, the catalogue of grievances she imposed upon the colonists was undoubtedly small. The following appear to have been the chief: An act of the British parliament forbidding the cutting down of pitch and tar trees, not being within a fence or enclosure, and sundry acts which operated against colonial manufactures. By one of these, it was made illegal, after the 24th of June, 1750 , to erect in the colonies any mill or wher engine for slitting or rolling iron, or ans plating forge, to work with at tilt hammer, or any furnace for making steel. By another, hatters were restrained from taking more than two apprentices at a time, or any for less than seven years. The colonists were also prohibited from transporting lats and home manufactured woolens from one province to another. These regulations were, for the most part, evaded ; but if carried intoexecution, would have been but slightly inconvenient, and that only to a few. These restrictions, though seemingly a species of affront, and calculated to keep the colonists in a constant state of inferiorits and subjection, would have been overlooked and forgotten had not other grievances been superadded.
39. The real story of colonial oppression began in the year 1764. Great Britain then adopted new regulations colonta respecting her colonists, which, after disturbing the oppress: ancient harmony of the two countries for about twelve years, terminated in the dismemberment of the empire. These consisted in restricting their former commerce, but more especially in suljecting them to taxation ly the British Parliament. The imposition of duties, for the purpose of raising a revenue in Aunerica, was considered as a dangerous imovation, but the methods adopted for securing their collection were resented as arbitrary and unconstitutional. It was enacted bs Parliament, that whoever was caught violating the acts, should be tried in the courta of admiralty. Thus the defendant in such a case was deprived of the right of trial by jury, and subjected to the necessity of having the case decided upon by a single man, a creature of the crown, whose salary was to be paid out of forfeitures adjudged by himself. Moreover, the prosecutor was not called upon to prove his accusation, so the defendant was obliged, either to evince his innocence or to suffer. Thus the guards which the British constitution had placed around property, and the bar-
riers which the ancestors of both peoples had erected against arbitrary power, were thrown down, as far as they concerued the colonists thas charged with violating the laws for raising a revenue in America.
40. After the peace of Paris, 1763, the national debt of Great Britain amounted to $150,000,000$ pounds sterling. To aid in diminishing this hears debt, the British minister conceived the idea of raising n substantial resenue in the British colonies, from taxes imposed by the Parliament of the mother country. On the one hand it was urged that the late war had originated on recount of the colonies-that it was reasonable, since it had terminated in a manner so favorable to their interests, that they should help to defray the expenses arising from it. Thus far both parties were agreed; but England contended that her Parliament, as the supreme power, had the constitutionsll right to impose taxes on every part of the empire. This theory, phasible in itself, and in accordance with the letter of the British constitution, when all the dominions were represented in one assembly, was denied by the colonies as contrary to the spirit of the same government, when, on account of the extension of the empire, it was necessary to have many distinct representative assemblies. The colonists believed that the chief excellence of the British constitution consisted in the right of the subjects to grant or withhold taxes, and in their having a share in enacting the laws by which thes rere to be bound They conceived that the superiority of the British constitution to other forms of government was not because of the Parliament's forming the supreme council of the nation, but because the peonle had a share in it by appointing members who constituted one of its constituent branches, without whose concurrence no law, binding on them, could he enacted. In the parent state it was asserted to be essential to the unity of the empire, that the British Parlimment should have the right of taxation over every part of the royal dominions. In the colonies it was beliered that taxation and representation were inseparable, and that they, as colonies, conid neither be free nor happy if their property could be taken from them without theil. consent. The American people reasoned thus: That if the British Parliament, in which they had no representation, were able to take any part of their properts from them by direct taxation. then it might take as much as it pleased, and there would be no security, for ansthing that remained, from further spoliation.
41. The colonists claimed that they had the exclusive right of laying taxes on themselves, free from extraneous intuences, just as much as the British Parfiament claimed the peculiar privilege of raising money independent of the crown. The parent state appeared to the colonists to stand in the same relation to their local legishators as the monarch of Great Britain to the British Parlinment. His prerogative is limited by that palladium of the people's liberty, the exclusive privilege of granting their own mones. In fact, they claimed that though subjects of the king, they were not under the control of the British Parliament; that if the king required mones of the colonies, he must olatain it throngh colonial legishation jast as in England he would obtain it through the British Parliament. principles on which the colonies were founded, becatme the sulnject of serious investigation on both sides. One clanse was found to run through the whole of them except that which had been granted to William Pemn. This was a declaration, "That the emigrants to America should enjoy the same privileges as if they had remained, or had been born, within the realm;" but such was the subtility of disputants that both parties construed this general principle so as to fasor their respective opinions. The American people contended that, as English freeholders could not be taxed but by representatives, in choosing whom they had a vote, neither could the colonists : but it was answered that if the colonists had remained in England they must have
been bound to pay the taxes imposed by Parliament. It was therefore inferred that, though taxed bs that authority, they lost none of the rights of native Englishmen residing at home. The advocates of the British policy could see nothing in charters butsecurity against taxes by royal authority. The colonists, adhering to the spirit more than to the letter, looked upon their charters as a protection against all taxes not imposed by representatives of their own choice. The nature and extent of the connection between (ireat Britain and America was a great constitutional question, involving many interesta and the general principles of civil liberty. It was a vain attempt to decide the dispute bs ans recourse to parchment authorities, made at a time long past, when neither the grantor nor grantees foresaw anything like the present state of the two countries. It neaded great skill and tact to so manage affairs that everything might redound to the satisfaction and good of all concerned; to strike the middle line which would have secured as much liberty to the colonies, and as great a degree of supremacs to the mother country as their common good required. But this skill was lacking in Mritish statesmanship. On the one hand, the spirit of the Pritish constitution was opposed to the idea that the British Parkiament should exercise the same unlimited authority over the anrepresented colonies which it exercised over the inhabitants of Great Britain. The colunists, on the other hand, did not claima total exemption from its authorits, but allowed the mother country a certain undefined prorogative over them; and accepted the idea that Parliament had a right to make any acts binding them in many subjects of internal polics and regulating their trade. That nice point, which marked the end of Parhamentary authority and the beginning of the coloniat independence, was not ascertained. Had the question never been ngitated, or had a satisfactory compromise been effected, the American Revolution, undoubtedly, would never have become a part of our history.
42. The great French and Indian War, though crowned with success, had aroused a spirit of discontent in the colonies. From the beginning, as has been shown, the commercial policy of England toward the colonies had onnercial policy of England toward the colonies had Policy ol been wholly restrictive. "It was a system of monopoly." England Her navigation laws had closed their ports against foreign ressels; obliged them to export their productions onls to countries belonging to the British crown; to import European goods solely from England, and in English ships; and had subjected the trade between the colonies to duties. All manufactures, ton, in the colonies, that might interfere with those of the mother country had been either totally prohibited, or subjected tn intolerable restraints. The acts of Parliament, imposing these restrictions and prohibitions, had at various times caused great discontent and opposition, on the part of the colonists, especially among those of New England. But nothing so aroused the jealous sensililities of the colonists as any attemptson the part of the parent state to raise a revenue from them by taxation. They had ever mantained, from the parliest period of their estahlishment, that they conld onls be taxed by a legishature in which they were represented.
43. While the French whr was in progress, many projects were hatched in England with regard to the colonies which were to he put in force when peace was The Ardeclared. In 1760 , an attempt tras made in ljoston to tempito collect duties on foreign sugar and molasses imported rolleck into the colonies. Writs of assistance mere applied for Duties. by customhouse officers, empowering them to break open stores, ships and private dwellings, in search of goods that had paid no duts, and to compel others to assist them in carrying out their odions measures. The merchants opposed the writ on constitutional grounds. The question was brought into the courts, where James Otis argued so eloquently in favor of American rights, that all who heard him were ready to oppose all writs of assistance. John Adams, who was present, said: "Then and there was the first

The con.
nection be cween
Greal
Britain and
Britaina
America.
$-$
\qquad

[^300]\qquad
\qquad

> -
 $=$
scene of opposition to the arbitrary claims of Great Britain. Then and there American Independence was born." In his speech, Otis used the words, "Taxation without representation is tyranny." This sentence became a watchword in America during the exciting times which followed.
The Stamp to. In I765, Lord Grenville, having previously given notice of his intentions to the American agents in London, introduced into Parliament a long cherished scheme for the purpose of raising a revenue from the American culonies by means of a stamp duty. Petitions poured in against it from the Americans, and at first it met with strong opposition in the Honse of Commons. But the remonstrances of the colonies could not change the avaricious feelings of Parliament, and the bill passed by a large majority. Those shortsighted legislators did not foresee that in the passage of an act so odious to the colonies, they were awakening an opposition and spirit of indepeadence among them which would materially weaken their own power. The night after the bill passed Benjamin Franklin, who was then in London, wrote to Mr. Charles Thomson, "The sun of liberty is set; jou must light up the candles of industry and economy." Mr. Thomson answered, "I was apprehensive that other lights would be the consequence, and I foresee the opposition that will be made.
46. By this act, no written instrument, such as com-

The Provisions of the stamp Act. mercial transactions, marriage licenses, deeds, suits at law, and the like, could be legal, unless stamped paper was used, which the colonists were compelled to purchase, at an exorlitant price, of the British agents. Moreover, it contained another startling provision, and that was, that the colonial legislatures were commanded to grant permission to billet the royal troops in America in inns, alehouses, harns, and vacant houses, and to fumish them with bedding, potables, candles, cooking utensils, etc. As soon as it became known that
The excite- the Stamp Act was passed, the colunies, from one end mentpro- of the land to the other, were full of indignation. the passage Parliament had turned a deaf ear to their petitions, and of the Act. showed by the passage of the Act a determination to treat them, not as English citizens, but as servants and slaves. Parliament, they said, might make laws to regulate the commerce of the empire, and so draw a revenue from America, hut it had no right to levy a direct tax like this. Only the colonial government, elected by the people, could do such a thing. Thes must either surrender without a struggle their liherty, or oppose strongly and firmly the grasping avarice of a nation, the most pormerful in the world.
Patrick 47. They Were not long in making up their decision Henry and proclaiming it to the world. The legislature of Virginia was in session when the news arrived. Patrick Ilenry, then a young man, but possessed of brilliant talents, opposed it with all the energy of his great mind. He brought before the house five resolutions Which were adopted, and which closed by declaring "That any person who, by speaking or acting, should assert or maintain that any class of men, except the general assembly of the province, had a right to impose taxation, he should be considered an enemy to his majesty's colony:" In advocating these resolutions, he holdly denounced the policy of the British government. and declared that the king hat acted the part of the tyrant. Warming $u p$ with his subject, and alluding to the fate of other tyrants, he exclaimed, with flashing exes and in thunder tones, "Casar had his Brutus, Charles I, his Cromwell, and George III" -"Treason! treason!" arose from every part of the house. Pausing a moment until the tumult had subsided, he added, "may profit by their example. If this be treason make the most of it." Similar sentiments flew like lightning through the other colonies. The tongues and pens of the citizens labored to kindle the latent sparks of patriotism. The press strongly opposed the innoration and called upon the citizens to resist it.
The Conti- 48. The expediency of calling a continental congress, nental congress.
of that province fixed on New York as the place, and the second Tuesday of October, 1765, as the time, for holding the congress, and invited all the other colonies to send delegates to the same. Nine colonies took part in it, and sent their most distinguished men. For the first time the whole country had a common cause, and there was need that the people should consult together. This congress drew up a declaration of their rights and a statement of their grievances. They asserted in strong terms their exemption from all taxes not imposed by their own representatives. They also concurred in a petition to the king, a memorial to the House of Lords, and a petition to the House of Commons. The colonies that were prevented from sending their delegates, forwarded petitions similar to those which were adopted by the deputies who attended.
49. On the Ist of November, the day on which the Stamp Act was to go into operation, the bells were tolled, and the flags hung at half mast, as if for the "funeral of liberty." The courts were closed; business was suspended. The houses of the British officials were attacked by mobs, and the effigies of the planners of the Act were carried about the streets in public derision and then burned, or torn in pieces by the enraged populace. In different parts of the country the stamp-masters were compelled to resign their offices to prevent being mohbed. The Stamp Act was so formed that the penalty of disobedience would be no less than the suspension of the whole machinery of the political and social order, and the creation of a state of anarchy. Neither trade nor navigation could proceed, no contract could be legally made, no process against an offender could be instituted, no student could receive a diploma, nor even could the estates of the dead be legally settled, or the marriage ceremony performed, until the stamp duty was paid. By degrees, however, things began to assume their usual course, and all kinds of business were transacted in open defiance of the Act.
50 . Associations, under the title of the "Sons of sons of Liberty," were formed in every part of the country. Liverty. They denounced the stamp Act as being an outrage on the British constitution, and resolved that they would defend those who fell into the hands of British ty1anny, on account of their clinging to their rights as freemen. Merchants resolved to import no more goods from Great Britain until the act was repealed, and the people generally denied themselves the use of foreign luxuries. No one would venture to carry the Stamp Act into execution; in fact, no stamped paper was to be seen; all had been either destroyed or concealed.
51. The information of the violent proceedings of the The Effer colonies was received in England with consternation. in Englan A small party in Parliament upheld the colonies. In the House of Commons, William Pitt uttered the memorable words: "We are told that America is obstinate -America is in open rebellion. Sir, I rejoice that Ameriru has resisted! Tbree millions of people so dead to all the feelings of liverty as voluntarily to submit to be slaves mould hare been fit instruments to make slaves of all the rest." In the meantine, Lord Grenville had "been dismissed, and the Marquis of Rockingham, a friend of the Americans, appointed in his place. Under his administration the obnoxious Stamp Act was repealed March 15, 1766 , for the English government Repeal of saw that it was impossible to enforce it. At the same the stawp time, Parliament took care to say that it "had a right Act.
to bind the colomies in all cases whatever."
52. The news of the repeal was received with the How the liveliest expressions of joy and gratitude. Public Kews was thanksgivings were held, English goods imported, and a general calm succeeded the storm which had raged so violently. By the people of New England and New York less joy was felt. They feared, from the passage of the declaratory act, that this was only a truce in the war against American rights. In the mirror of the past they saw reflected the future, and trembled at the picture. Nor were their suspicions unfounded.

Scarcely had the excitement over the Stamp Act died out, when other causes of complaint arose. In June, 1767, Charles Townsend, chancellor of the exchequer, brought into Parliament a bill imposing duties in the British colonies on glass. paper, painters' colors and tea, which became a law. Another law was also enacted, appointing officers of the navs as custombouse officers, to enforce the act of trade and navigation. Previous to this new act of tyranny, the legislative power of New York had been suspended, until it should furnish the king's troops with certain supplies at the expense of the colony
53. Early in 1768 the general court of Massachusetts sent a petition to the king, and addressed circular letters to the colonial assemblies asking their co-operation in obtaining the redress of their grievances. The British ministry was alarmed and demanded of the court that it should rescind the vote directing circulars to be sent. The assembly refused, and the governor dissolved it. This attempt to intimidate onls served to strengthen the opposition. Shortly after this, Mr. Hancock's sloop "Liherty" was seized for not having entered all the wines brought from Madeira. This act of the customhouse otficers was resented by the people. The houses of the officials were attacked, and they were compelled to seek safety in flight. The refractory spirit of the citizens of Boston had been displayed on so many oceasions that General Gage was directed to station one or more regiments there to overawe the citizens and protect the officers in the discharge of their duties. Two regiments were accordingly ordered from Halifax, who took possession of the atate house, and planted trro pieces of cannon at the principal entrance. All this only tended to increase the general indignation.
54. Early in the year 1769, Parliament passed resolutions censuring the conduct of the citizens of Massachusetts, and directing the governor to make strict inquiries as to all treasons committed in that province since the year 1767 , that the offenders might be sent to England for trial. The legislature of Virginia, on the receipt of that order, passed resolations denying the right of the king to remove an offender out of the col-ony-away from his home and friends-for trial. The governor, on hearing of the resolutions, immediately dismissed the assembly. The members met at a private house, and entered into a written agreement not to import any of the taxed articles. Their example was extensively followed. The assembly of Massachusetts convened, but refused to proceed to business while armed troops surrounded the state house. The governor refused to remove them, and the assembly adjourned to Cambridge. Toward the close of the season the governor requested it to provide funds to pay for the quartering of the troops, but the deputies refused, declaring they would never make ans provisions to support a standing army among them in times of peace. The governor, therefore, prorogued the assembly.
55. The presence of the soldiers in Boston was a constant cause of irritation, and the citizens had many quarrels with them. At length, on March 5, 1770, a serions collision nccurred between the troops and a mob, and the soldiers fired, killing five of the crowd, and mortalls wounding two others. The reports of this Boston masancre, as it was called, were greatly exaggerated, and filled the country with excitement. The citizens assembled in crowds, and could only be dispersed by the governor promising them that justice should be done. The troops were remored from the city, and Captain Preston, who ordered the firing, and his men tried for murder. Although the excitement was intense, yet such was the lore of justice that the soldiers, who were defended bJ John Adams and Josiah Quincs, were all acquitted except two, who were convicted of manslaughter.
56. In England, on the very day of the ontrage in Boston, Lord North mas called to the British Ministry, He introduced a bill into Parliament, which passed on April 12, removing the duties that had been laid
in 1767, excepting that on tea, but still declaring its right of taxing the colonies. For a long time no tea had been imported, and the effect had begun to be severely felt by the British merchants. By an act of Parliament, therefore, the East India Company was allowed to import its teas into America free of duty in England. The naked question of the principle regarding taxation was thus presented. The scheme was an insidious one, but it failed most completely. Lord North supposed that by reducing the tax on tea to three pence a pound, the Americans would buy largely, thus reliering the East India Company, who had large quantities of tea stored up in its English warehouses. Tea was accordingly shipped from England in great quantities to various parts of the colonies. This brought matters to a crisis. One sentiment prevailed throughout the wbole continent. Taxation was to receive its final blow. Whoever submitted to it was an enemy to his country. From New lork and Philadelphia the ships were sent back, with their cargoes, to London. In Charleston the tea was landed, but not permitted to be sold, and being stored in damp cellars, finally perished. Still more decisive action was taken in Boston. The ships anchored in the harbor, Some small parcels of tea were brought on shore, hut the sale of them was prohibited. The captains of the vessels would have made sail back to England, but they could not obtain the consent of the consignees, a clearance at the customhouse, or a passport from the governor to clear the port. To settle the matter completels, a company of men disgnised as Indians went on board the Destrucships during the night and threw the cargoes into the tion of Teo water. Three hundred and forty-two chests were thus at Boston. broken open and the contents thrown into the barbor (December 16, 1773)
57. When the news of this affair reached Englann. Tbe Bostoz Parliament, in order to punish the inhabitants of Bos- Port Bill. ton, passed the Boston Port Bill in 177t, which prevented the lading and unlading of goods, wares and merchandise in that town and harbor on and after June 1,1774 , and the seat of government was to be transferred to Salem. But the people of Salem refused to build their fortunes on the ruins of their countrymen, and the inhabitants of Marblehead generously offered the Boston people the use of their warehouses and harbor. In the following March, two other bills, equally tyran- Other Ty nical, passed both houses of Parliament. One subverted rannical the whole constitution and charter of Massachusetts, ${ }^{\text {Bills. }}$ taking all power ont of the hands of the people and vesting it in the crown. The other authorized the governor to send any person, indicted for morder or other capital offense committed in aiding the magistracy, to England or some other colony for trial.

5 . These laws, which were gross violations of the Popular rights and charters of the colonies, excited the deepest Agtation indignation everywhere in America. The people of Boston, reduced to distress by the stoppage of their trade, were regarded as martyrs of liherty, and contributions were made for their relief, not only in the thirteen colonies, but eren in London and Quebec. In Boston itself, although patriotic meetings were held almost daily in Faneuil Hall and the old South Cburch, all disorderly and unconstitutional proceedings were avoided, so that nothing was done for which the British anthorities could ponish the people. The friends of the crown about this time became known as Tories, and the popolar party as Whigs. The Quebec Act, which was passed among the other acts just mentioned, extended the boundaries of Canada over the whole territory situated north of the Ohio and east of the Dississippi. This was done to prevent Canada from joining the rebellious colonies. The colonies warmly protested against this concession to liberts of conscience, for the Act sanctioned throughout the province the free exercise of the Roman Catholic religion, and confirmed to the clergy of that profession their accustomed dues and rights, thus practicalls establishing the Roman Catholic system in the new territory. To such freedom the colonists were, on principle, opposed at the time, though somewhat later they found it expedient to
adopt nearly the same policy, and to promote a closer union among themselves by juster treatment of their Roman Catholic brethren.
59. Committees of correspondence had already been formed at the suggestion of Patrick Henry, Thomas Jefferson, Richard Henry Lee, and other Virginians, and by this means the colonies took counsel together for the common defense. Ir n!ay, 1774 , proposals were made by the assemblies of several of the provinces for a general congress of delegates. The scheme was taken up with great enthusiasm, and on September 5 , 1774, an assembly of fifty five delegates, representing all the colonies except Georgia, met in Philadelphia, under the presidency of Peyton Randolph, of Virginia. This was the first, or, as it is often called, the "old," continental congress. The action of this body was still mainly deliberatic. 't passed a resolution highly commending the conaret of Nassachusetts in the conflict with the wicked ministers, and exhorted all to press on in the cause of liberty. It drew up a bill of rights, entered into an agreement for the delegates and for all their constituents to cease all importations from Great Britain, ary adopted measures for organizing committees in evel; town and city to see that this agreement was enforced by every species of popular influence. The delegates voted an address to the king, one to the people of Great Britain and another to Canada. Their petition to the king entrested him, in eloquence the most affectionate and respectful, to restore to them their violated rights-their rights as English freemen. Provision was then made for another congress to meet in the following May, unless the grievances should neanwhile be redressed. When the proceedings of
Pitt's
Opinion. Congress were publisherl in England, Pitt (now Lord Uhatham) said: "For solidity of reason, force of sagacity, and wisdom of conclusion, under a complication of difficuit circumstances, no nation or body of men can stand in preference to the general congress at Philndelphia. The histories of Grece and Rome give us nothing equal to it, and all attempts to impose servitude upon such a mighty continental nation must be in vain."
60. These resolutions of the Continental Congress aronsed the indignation of the British ministers America, they said, had long wished to become independent, and to prevent this was the duty of every Englishman, and that it must be done at every hazard.
The People rake Arms In the meantime, the situation of affairs in Massachusetts became alarming. The people collected arms, enrolled themselfes into companies and prepared to turn out at a moment's notice, from which circumstance they were called "minute men." Public speakers and writers boldly defended the right of the people to withstand oppression. Royal nfficers were forced to resign. General Gage began to fortity Boston Neck, and the powder and other military stores in Cambridge and Charleston were, liy his order, removed to Boston. He had about 4.000 troops under him, and sent home a request for 20,000 more. An assembly was called in Massachnsetts, but dassolved by the governor. The members then met in Salem, appointed a committee of safety and sent messenger's to New IIampslire, Rhode Island and Connecticut, asking for their assistance in raising an army of 20,000 men to act in any emergency. England, although she could distinctly see the upheav. ing of the riolence of colonial indignation, shut her eyes to the sight. Chatham, Burke, Fox, Barré and other enlightened statesmen in Parliment, urged the zovernment to recede from its untenable position, but the obstinacy of the king prevented any conciliation; it was resolved that America was in rebellion and must be subdued; and so the revolution began.
61. It was a fortunate circumstance for the colonies that the royal army was posted in New England. The people of that morthern country have their passions more under the command of reason and interest than in a southern climate. One rash, offensive action against the royal forces at this early period, though successful, might have worked great mischief to the
friends and weakened the disposition of the other colonies to assist them. The patient and the politic New Conduct England men, fully sensible of their situation, submit- the Peop ted to many insults and festrained their feelings of resentment. In civil wars or revolutions it is a matter of much consequence who strikes the first blow. The compassion of the world is nearly alrays in favor of the attacked. For the space of nine months after the arrival of General Gage the behavior of the people of Eoston is particularly worthy of imitation by those who wisb to overturn established governments. They conducted their opposition with exquisite address. They aroided every kind of outrage and violence, preserved peace and good order among themselves, successfully engaged the ot her colonies to make common cause with them, and comnteracted General Gage so effectually as to prevent his doing anything for his royal master, while by patience and moderation they protected themselves from just censure. Though resolved to bear as long as prudence and policy dictated, they were all the time preparing for the last extremity by furnishing themselves with arms and training their militia.
62. Pruvisions had also been collected and stored in The Begi, different places, particularly at Concord, about twenty $\begin{gathered}\text { ning of ti } \\ \text { Straggle. }\end{gathered}$ miles from Boston. General Gage sent out a detacliment of 800 men, under the command of Colonel Smith and Major Piteairn, to destroy these stores. Notwitlustanding the precautions taken to prevent the spread of the intelligence, the march of the troops had been well made known by expresses and signal guns. Thus, when the British troons, early in the morning of the 19th of Arril, 1775 , reached Lexington, two-thirds of the was to Concord, they found a small body of Americans, under Captain Parker, drawn up on the common to dispute the way. Captain Parker had given orders not to fire unless fired upon. The Iritish troops rushed upon them, firing and calling upon them to disperse. Eight of the Americans were killed and Lexington several more wounded. The little band of patriots and conslowly retreated, returning the fire as they went, and the British kept on to Concord, where they destroyed a few stores. At a bridge near the village they encountered 400 Americans, hastily collected from the neighboring towns, and were so warmly received that they hegan a hasty retreat. The militia pressed thrm on all sides; the retreat became a rout, and when the British were at last rescued, by the arriral of Lord Perey with reinforcements, they had lost 273 men. They continued their retreat under Perey, Jearing their dead and wounded with them. All the way, from behind stone walls, fences and farmhouses, the angry farmers galled them with shot. They did not desist until the troops had crossed Charlestown Neck and were safe under the guns of the British vessels.
63. As arms were to decide the controversy, it was another fortunate circumstance for the Americans that the first blood was drawn in New England. The inliabitants of that country were so connected with each ether by descent, manners, religion, polities and a general equality, that the killing of a single individual interested the whole people and made them consider it a common cause. The blood of those who were killed at lexington and Concord proved to be the firm cement of an extensive union. Intelligence of these events spread like wild fire throughout the country; the torch of war had been lighted, blood had been offered on the altar of liberty, fearfully was the death of those patriots slain at Lexington and Concord to be avenged. Comriers galloped in every direction, beating drums, and shouting in tones that thrilled every listening ear, "To arms, to arms! liberty or death." The streets of Lexington and Concord had been soaked in blood, and the whole country was in a blaze of wrath. But amidst the intense excitement which prevailed, the still thoroughly English characteristies of the people manifested themselves. The Provincial Congress of Massachussetts, which was in session at the time of the fight, dispatched an account of it to Great Brytain, accompanied with many depositions to prove the British were the aggressors. The delegates made an address to the
people of Great Britain, in which, after complaining of their sufferings, thes said: "These hare not yet detached us from our rogal sorereign; we profess to be dutiful and loyal subjects, and, though hardly dealt with as we have been, are still ready with our lives and fortunes to defend his person, crown and dignity. Nevertheless, to the persfention and tyranny of his evil ministry, we will not tamely submit." From this commencement of hostilities, the dispute between Great Britain and the colonists took a new direction.
64. Up to this time no party in America had thought of a separation from the mother country, but nors the colonists were aflame with the spirit of independence. Mechanics left the shop, and farmers the plow, and hurried to the scene of conflict. In the course of one or two days the king's army found itself besieged in lioston by an irregular and ill-furnished, but large and determined. body of men, who marched to the scene of action from all parts of New England. The Prorincial Congress of Massachussetts cume together under the presidency of Dr. Joseph Warren, voted to raise 13,000 men, and invited the other New England colonies to make up the army to 30,000 . In a few dass a line of encampment stretched from Roxbury to the river Msstic, and the British forces in Boston were environed by an army of 20,000 soldiers. Benedict Arnold gathered about him a band of rolunteers, and rushed to Boston. Here he formed the bold plan of seizing the important fortresses of Ticonderoga and Crowu Point.
65. Haring received instructions from the committee of safety to raise a sufficient number of men for the purpose, he marched to Bennington, where be found that Colonel Ethan Allen had collected a large band for the same object. They marched on together at the head of three hundred men, and reached Ticonderoga on the I0th of Mas, I7T0. Adrancing to the gateway, Arnold and Allen entering side by side, Allen rushed to the governor's room and demanded his surrender. "In whose name?" stammered the terrified governor. "In the name," said Allen, "of the Great Jehovah and the Continental Congress." This was high authority, and the governor immediately surrendered. They were equally successful in obtaining Crown Point. By this fortunate expedition they gained possession of two important fortresses. and gave the American troops about Eoston a much-needed supply of arms and ammunition.
66. The second Continental Congress met at Philadelphia, May 10 , the day of the capture of Ticonderoga. Peston Randolph was at first the president, but John Hancock soon succeeded him in that position. Washington, Jefferson, Franklin, the Adamses, Patrick Henry and R. H. Lee, were members. The Congress was moderate, and asked only for a redress of grierances, not for independence; but it took active measures for carrying on the war. It formed a federal union, assumed the general authority of government, issued bills of credit to the amount of three millions of dollars for defrasing the military expenses, and pledged the faith of the Lnited Colonies for their redemption.

iv.-THE TAR FOR INDEPENDEXCE, 17150 - 83.

67. In May, 1750, the British army in Boston received reinforcements from England, under Generals Howe, Clinton and Burgoyne, which, together with the garrison, formed an army of more than twelve thousand men. The Americans comprised a numher of independent commands under Generals Artemas Ward, of Massachussetts: Israel Putnam, of Connecticut; Nathanael Greene, of Rhode Island and other states, General Ward being recognized as chief. The whole number of men was about sixteen thousand. Upan the arrival of the English reinforcements, General Gage now proclaimed martial law thronghout the state, offering pardon, howerer, to all rebels who would return to their allegiances, excepting Samuel Adams and John Hancock. The Americans, learning
that General Gage was determined to penetrate into the country by the was of Charlestown Neck, issmed orders to Colonel Prescott, on the evening of the 16 th of June, to take one thousand men and form an intrencbment on Bunker's Hill, an eminence which commanded the neck of the Charlestown peninsula. By sone mistake they went further on, and occupied Breed's Hill. At midnight those stern-hearted men stood on the top while Putnam marked out the line of intrenchments. By daylight they had thrown up a redouht eight rods square, in which thes could shelter themselves. In the morning the English officers and the people of Boston could hardly beliere their eres as they saw this redoubt almost over their heads. The patriots on the hill were first seen from the ships, which immediately opened fire. All the artillery of the city and the floating battery were pointed against that single, silent structure. Still those bards heroes toiled on amid the storm of shot and shell which fell among them, until by noon they bad run a trench nearls down to the Mystic river on the north; then laying down their picks and shovels they twok up their muskets, and prepared themselves for the coming attack.
68. The cannonading having failed to dislodge the Battle of Americans, about noon Gage sent a bods of about three Bunker Hin. thonsund men, under Howe and Pigot, to carry the heigbt by assault. Having crossed the Charles river from Boston in boats, they advanced up the bill under cover of fire from the ships and batteries. The provincials stood firm. "Don't one of sou fire," was the command of Putnam, "till you see the whites of their eyes." The English advanced, stopping erery few jards to deliver their deep and regular volleys against the entrenchment; but not a shot replied. That silence was more awful than the thunder of cannon. When the hostile columns had almost reached the works, the stern order "Fire!" rang with startling clearness on the air. Suddenly a sheet of flame burst from that low, dark wall, and down went the enemy, rank by rank. Their lines wavered, then broke, and the troops fell hack in disorder to the landing place. There thes rallied and soon moved forward again to the charge, and again were driven back by the steady fire of the colonists. At this critical moment General Clinton arrived with reinforcements. BJ his exertions the troops were again rallied, and a third time adranced to the charge. Throwing aside their knapsacks and reserving their fire, the soldiers, with fixed baronets, marched swiftly and steadily over the heaps of their fallen comrades, up to the entrenchments. Only one volley struck them, for the Anmericans had fired their last round of ammunition, and were without hasonets. Clubbing their muskets, they still beat back the enemy, until the order was given to retreat, when thes retired slowly and made good their way over Charlestown Neck. At the beginning of the retreat, the brave General Warren was killed. The Americans lost 449 in killed, wounded, and prisoners, while the British loss was nearly I.500. The result of the battle was encouraging to the provincials. It gave them confidence in themselves, and consequence in the eses of their enemies. They had prosed to themselves and others that they could measure weapons with the disciplined troops of Europe, and inllict the most harm in the conflict. This dear-bought victory, won only through the exhaustion of the American's powder, was so little satisfactory to the British gorernment that General Gage was superseded by General Howe. This engagement. known as the hatile of Bunker H 11 , was the first real battle of the Revolutionary VIar.
69. In the meantime, Congress, on the 15 th of June, Wrashing at Philadelphia, elected George Washington, by a tonapunanimons rote, to the high office of commander-in pointed chief of the United Colonies. Washington, who was er-in-Cbief present, accepted the appointment, expressing a sense of the high bonor which be had received, and the vast responsibility of the station. He refused to accept any compensation for bis services, merely asking Congress to defray his expenses. Congress also acopted the unorganized force before Boston, naming it the Con-

Attack on Canada.

Privateer

number of privateers licensed, which scoured the seas and did great injury to the English commerce. General Washington employed in the service several cruisers to intercept the storeships of the enemy. Regular courts of admiralty were established for the adjudication of prizes, and by these timely measures much good was accomplished.
In the
South.
71. In the summer of 1775, Dummore, the royal governor of Yirginia, was driven out of Williamsburg, then the capital of the colony, and obliged to seek safety on board a British man-of-war. Collecting some ships and a considerable number of men, partly slaves and indented servants, to whom he promised freedom, he burned Norfolk (January, 1776), which was the largest and richest town in Yirginia, and made descents upon various parts of the coast. In North Carolina there was some sharp fighting between the Tory settlers and the patriotic militia, in which the Tories were worsted. In South Carolina, the gallant defense of Charleston (June, $177^{\circ} \mathbf{b}^{\circ}$), where a British fleet, under Sir Peter Parker, aided by a large land force, nuder General Clinton, was beaten off with great loss by a small body of men commanded by Colonel Moultrie, filled the colonists with encouragement.
72. During the year $17 / 5$ the royal government was generally terminated throughout the country, the king's governors abdicating their posts and taking refuge on board the English shipping. An act was passed by the English government prohibiting all trade and commerce with the rebellious provinces, and authorizing the capture of all American and other vessels found trading with the colonies, and the crews of the captured vessels were to be treated, not as prizoners, but as slaves. The colonists had sent over their last petition, styled the Olive Branch, to the king, but both houses of Parliament refused to hear it, alleging that they sould not receive any proposition coming from an unlawful assembly. Until nor they hoped for reconciliation with the mother country, but the rejection of this last petition determined the complete separation of Great Britain and the colonies.
Reremue of 1776 .
70. Meanwhile an expedition was organized for an attack on Canada, under the command of General Schnyler; but, Schuyler falling sick by the was, the command devolved on Richard Montgomery. This officer captured St. John's and Chambly, both on the Sorel river, and then made himself master of Montreal; but in making an assault on Quebec, December 31, 1775, he was repulsed, losing his own life, while Benedict Arnold, another leader, was wounded. Sometime afterward the British army in Canada was reinforced, and the Americans were obliged to abandou all designs in that quarter. While these events were taking place on the northern frontiers, English ships were laying waste towns and cities upon the Atlantic coast. Bristol in Rhode Island, and Falmouth in Massachusetts, were burned because they had taken part in the rebellion., Congress thought it time to turn its attention to the construction of armed vessels. Thirteen were accordingly fitted out, a navy established, and a large

tinental Army. In subordination to the commander-in-chief, Messrs. Ward, Charles Lee, Schuyler, and Putnam were appointed major-generals; Horatio Gates, adjutant-general, and Messrs. Pomeroy, Montgomery, Wooster, Heath, Thomas, Spencer, Sullivan and Greene, brigadier-generals. Soon after his election, General Washington, accompanied by Lee, proceeded to Cambridge to take command of the army, which amounted to about 14,000 men. He found them a crowd of brave, undisciplined soldiers, unprovided with arms, ammunition and provisions. His first business was to organize them into an arms, while he kept watch over the British in Boston.
overtures for peace, gave impulse to a bolder policy. All this time the second Continental Congress was in session at Philadelphia, and it agreed to consider definitely the question of independence. Then it took a recess of four weeks, to give the delegates an opportunity to go back to the people and learn what was the general judgment. When the members returned to their seats there mas no longer any doubt what course should be pursued. A committee had been appointed to propose a full declaration. The committee was elected ly hallot, and consisted of Thomas Jefferson, John Adams, Benjanin Franklin, Roger Sherman, and Robert R. Livingston. Mr. Jefferson and Mr. Adams acted as a sub-committee to prepare the draft, and Mr. Jefferson drew up the paper. The chief merit of the The Declar. document is his. Some changes were made in it, on ation of the suggestion of other members of the committee, and deace. by others in Congress while it was under discussion. On July 2, 1776, Congress adopted the resolution, "That these United Colonies are, and of right ought to be, free and independent states; that they are absolved from all allegiance to the British crown, and that all political connection betreen them and the State of Great Brition is, and ought to be, totally dissolved." Two days later Congress adopted the declaration written by Jefferson. It declared what were the natural rights of all men; it recited the acts of George III, King of Great Britain, by which he had abused his authority over the colonies, and deprived them of their rights and liberties. It reminded the world how patiently the colonies had born their injuries; of the petitions they had addressed to the king, which bad been disregarded; how the colonies had appealed, not to the king onls, but to their brethren, the people of England, but that all had been in vain. Therefore, as the representatives of the United States of Americu, in general Congress assembled, the delegates published this declaration of the independence of the states. The declaration was received by the people with demonstrations of joy. Washington caused it to be read to The Effec his soldiers in New York on the 9 th of July. On the af the De same evening the excited inhabitants pulled down a leaden statue of George III on horseback, which stood on the Bowling Green, and it was melted into bullets for the use of the patriot army. In all the other parts of the country the joy was intense.
75. The British ministry were confounded at what they alled the daring enormity of the colonists, in spurning the royal power and authority. They were surprised that rebels dared to show such temper and spirit. Forthwith they determined by augmented forces to crush them at a blow, and to coerce them into a sense of inty and submission to their king. Doubting the competency of its own power to subjugate the colonies, the Engish Parliament, at au immense expense, resorted vo the aid of foreign mercenaries to carry on its bloody work. Seventeen thousand troops, hired from the German states, were conveyed hither to aid in the subjugation of the colonies
76. When the British had failed to get possession of South Carolina in the early summer of 176, they turned their attention to New York. The American army was intrenched on Long Island and the heights overlooking New Iork when the British fleet entered the harbor and landed some of its troops on Stateu Island. General Howe and his brother, Admiral Howe, had been appointed commissioners to receive the submission of any rebels who might throw themselves on the king's mercy. Thes had been instructed to propose conditions of peace, but they had no authority to grant independence, and Washington refused any other terms. On the $22 d$ of August the British forces, under Generals Clinton, Cornwallis, Porter and Grant, landed on the southern shore of Lung Island. The larger part of the American army was posted in what is now the heart of Brooklyn. General J'utnam was in command of Long Island, but his army was greatly inferior in numbers and equipments to the enemy. On the morning of August 27, Putnam was attacked by the British and compelled to retreat to Brooklyn. Ilad the British general followed up his adyantage, he might have slain or captured all of Putnam's iorce. But at nightfall, under cover of the fog, Washington skillfully withdrew all the forces on the Brooklyn side and united them with the rest of his army in New York. He had completely foiled the enemy.

Eracuation

77. It 世as impossible to bold New Iork, because it could be shelled from Brooklyn Heights and attacked on both sides by the English fleet, so Washington withdrew his forces to Harlem Heights, and fortified himself there. The British then entered New York, and it remained in their bands until the close of the war.
The condition of the patriots was now deplorable. The army, greatly reduced by losses in hattle, was still further weakened by desertions and insubordination Thousands of disheartened soldiers went home. But Washington succeeded in partly establishing discipline. and opposed so bold a front to the enemy that Howe did not venture to attack him directly. Lord Corm wallis, however, succeeded in gaining a position on the opposite side of the Hudson. Washington was compelled to withdraw across the river, knowing that the enemy rould aim for Philadelphia. The two armies crossed New Jersey in hot laste, Wrashington manenrering so as to defeat the British design of cutting bim off from that city. The armies, while in motion, were often in sight of each other. Washington continued his retreat slowly, followed by the enemy, until early in December be crossed the Delawsie river near Trenton. Howe now thought the campaign over. and went into winter quarters.
78. The succession of disasters, beginning with the battle of Long Island, greatly discouraged the Americans. The legislatures of New Jersey and Pennsylvania adjourned and left the states almost withont a governmeut. Congress, fearing for its safety in Philadelphia, remored to Baltimore, leaving Washington with almost dictatorial powers. Apathy and disorder prevailed among the troops, many of whom had to march*with bare, hleeding feet along the frozen roads. A great number of prominent persons, believing that the cause of independence was lost, hastened to make their peace with the British authorities. It was truly a time which "tried men's souls." Amidst the prevailing gloom, Washington stood firm. Strengthened by the arrival of Lee's division, now under command of

Sullivan, since the capture of Lee by the British, Washington determined to strike a blow that would res. vire the drooping courage of the people. He resolvea to fall upon a detachment of Hessian troops, stationer. at Trenton under Rhal, and chose Christmas night for the attack. Recrossing the Delaware with 2,400 men, he attacked the town while the Hessians were caronsing, and completely routed them, taking one thowsand misoners.
79. This brilliant exploit had a wonderful effect upon the people. The soldiers who were about to return home consented to serve six months longer; Congress, which had exhibited great firmness during these times of trial, put forth fresh efforts to strengthen the army, and Washington, invested for six months with the anthority of a dictator, crossed the Delaware again and occupied Trenton. Cornwallis now advanced toward that place with all his available forces, and Washingtou's danger was greater than before. But again his masterly genius prevailed. Leaving his camp fires burning, he abandoned his position, passed silently around the enemy, and at sumrise (January 3, 1717) fell upon the British reserves at Princeton, just as they The Batte were starting out to take part in the expected battle at of PrinceTrenton, and ronted them. Thus Howe, instead of oc- tou. cupying all New Jerses, was cooped up at lirunswick and Amboy, and Philadゃlphia was relieved of further danger from Cornwallis. After these splendid successes Washington retired with his army toward Morristown, which he made his headquarters, and arranged his troops in safe positions between that place and the highlands of the Hudson. Here he passed the winter, frequently making sudden and daring exploits, without risking a general engagement. By this means the enemy was compelled to abandon every post in New Jersey, except New Brunswick and Perth Amboy. Philadelphia being now in no danger from the British, Congress returned to that place.
80. Aware of the importance of inducing the French to espouse the American cause, and relying on the enmity of France against Great Britain, Congress approinted, as commissioners to the court of France, commis. Benjamin Franklin, Silas Deane and Arthur Lee. They sioners sen were instructed to procure arms and ammunition, and to France. to obtain permission to fit out American vessels in the French ports, to annoy the commerce of England. They also directed them to solicit a loan of $10,000,000$ francs, and to endeavor, by every means in their power, to prevail on the French government to recognize the independence of the United States. The commissioners were kindly receired and obtained the aid they requested, although the French government was not willing, as yet, to recognize the United States as an independent nation.
81. Commissions were offered to French and other Forelgu foreign officers who wished to serve in the American officers army, and a large number of ambitious soldiers consequently embarked for America. Washington was embarrassed by the arrival of such a large number, not all of whom were men of merit. Among the foreigners, bowerer, who thus gave their services to the American cause, were several distinguished officers: Baron De Kalb, an Alsatian; Kosciusko and Pulaski, the famous Polish patriots; Baron Steuben, an experienced and accomplished Prussian soldier, and the young French Harquis de La Fayette, who purchased a ship with his own means and sailed for America, to offer his sword, without pay, to the cause of independence.
s2. Tear the end of May, 1777, the American army, campange numbering about 18,000 men, moved from its winter of $17 \% 7$.
quarters at Morristown, and took a position at Middle-
brook, on which the British left their encampment and General Howe endeavored to induce General Washing. ton to meet him on equal ground. But Wasbington chose to continue his defensive warfare, and not to risk an open battle. Finding varicus feints and attempts ineffectual, Howe ordered a hasty retreat to Staten Island. He then embarked 16,000 troops, and leaving Sir Henry Clinton in command at New York, put to sea, keeping his destination secret. On the 20th os

August, the fleet entered Chesapeake bay, intending an attack on Philadelphia. Washington hurried to Philadelphia by forced marches, and on September 11, engaged Howe at Brandywine creek. After a hard-fought battle, the Americans were forced to retreat. After some days occupied in maneuvering and skirmishing, on the morning of Octoher 4, Washington made a suddem attack on Howe's position at Germantown. For a while the victory seemed in favor of the Americans, but, owing to a heavy fog, they became confused, and the British troops rallied and drove them hack with heavy loss. After these battles, the British became masters of Philadelphia, and Washington took up his winter quarters at Valley Forge, about twenty miles distant from that city.
83. While these events were occurring in the Middle states, in July, 1777, Burgoyne, with an army of Brit-
Burgoyne's ish, Hessians and Indians, entered the states from CanInvasion. ada, intending to seize the whole line of the Hudson river. While on his route, he sent out detachments on both sides, one under St. Leger against Fort Schuyler, and another under Colonel Baum, to seize the American stores collected at Bennington. St. Leger's enterprise failed, and Baum was completely routed by the Green Monntain boys at Bennington (August 16). October 7, Burgoyne was defeated by the Americans under Gates, at Bemis Heights, and October 17, was compelled to surrender at Saratoga. The surrender of Eurgoyne proved to be the turning point of the war. It gave artillery and arms to the American army, it encouraged the soldiers, and made a great impression in Europe.
St. In the meantime the winter was passing, and bringing with it severe trials to the American army at Valley Forge. The men were without shoes, and the snow was stained with the marks of their bleeding feet. There was no money to pay them. The bills issued by Congress had become so depreciated as to be almost worthless. Food was so scarce that Waslington was authorized to seize provisions wherever he could find them. About this time there was a phot to compel Washington to resign, and to have Lee or Gates put in his place. But the scheme failed, and Washington became more popular than ever. In the The Pros- spring of 1778 the condition of affairs improved. Robert pect Fight-Morris, of Philadelphia, afforded relief to the treasary, by raising large sums of money for the government. on his personal credit, and continued to serve the country in this way through the war. When the news of Burgoyne's capture reached France, that country entered upon an alliance with America (February

France. 6,1778), and sent out a fleet under Count D'Estaing to aid the colonies. The news of the treaty was received by the Americans with great joy. The British government now sent over commissioners to offer terms of peace, giving the Americans all thes asked for except independence, but all propositions short of that were refused.
85. General Howe was now instructed to concentrate all his forces in New York. Conserguently, the British suddenly left Philadelphia, and set out on their march. Washington instantly left Valley Forge, and pursned the enemy with 12,000 men. He came up with them at Monmouth, where a hotly contested, but indecisive, battle was fought. The encmy continued their retreat, and were enabled to gain New York. Having failed in their designs against New Eugland and the Middle States, the British now transferred their operations to the South. An expedition was sent by sea, and Savannah, Georgia, was taken at the end of the year 1778. Augusta was then oceupied, and Georgia was practically in the hands of the British. Thus ended the campaign of 1778 . General Lincoln received orders from Congress to take command of the southern forces, and the army under Washington retired to winter quarters near Middle Brook, New Jersey.
86. There were no great morements during 1779. Washington resolved to make the campaign a defensive one. General Clinton, who commanded at New York, sent out an expeditiou which captured the balf finished
fort at Stony Point, situated on the west bank of the Iludson river. Washington determined upon its recapture, and upon the night of July 16, it was carried at the point of the bayonet by the troops uuder the gallant General Wayne, or "Mad Anthony Wayne" as he was called. In October, the Americans, aided by the French, made an attack on Savamah in order to wrest it from the British. At the end of five hours' hard fighting, in which the brave Pulaski was mortally wounded, the French refused to continue the attack longer, and sailed for the West Indies, whereupon the Americans retired to Charleston. This brought the southern campaigu of 1779 to an end. This year was sigualized by the victories achieved by the infant nary of America, under the command of the intrepid Paul Jones, who fought with the "Serapis" one of the most desperate naval battles on record (SeptemLer 23).
87. The seat of the war was now mainly in the Operations South. The people there were nearly equaliy divided in the in allegiance. Savannah, the chief lown of Georgia, was already in possession of the British, and in May Charleston was captured by them. The enemy had how a large army in the field in that quarter. At first it was opposed by no united American army. The mitriotic planters gathered in companies, and rode here and there under the leadership of daring men like Marion and sumter. They harassed the British wherever they could find convenient points of athack. Clinton, having gained possession of South Carolina, returned to New Iork, leaving Cornwallis in command. Meantime an American force, under Baron De Kalh, had been sent by Washington to the South; but Congress interfered and put Gates in De Kalh's place. Gates, whose military capacity was much overrated. collected together about six thousand men, and marched hastily toward Camden, in the interior of South Carolina. Here he was met by the British under Battle of Comwallis, who inflicted a disgraceful and disastrous camden. defeat upon him (August 16, 1780). During the fight the heroic De Kalb lost his life. Gates fled to North Carolina, leaving his fugitive soldiers to take care of themselves. Soon afterward he was removed from command, and Greene appointed in his place. In Septemher, 1780, Arnold's treachery against the government was discovered, and he was compelled to flee to the Mritish lines. Major Andre, who had been arranging terms with Arnold, was captured on his return, tried as a spy, condemned, and executed October 2, 1780. Greene, being now in command of the American troops in the South, showed at once the qualities of a good general. He secured additions to the weakened southern army, and legan operations against Cornwallis. In December, 1780, Greene was at Charlotte, North Carolina, and Cornwallis was in South Carolina, moving northward. Greene divided his forces in two bodies. His plan was to get on each side of the British army, and, while avoiding a general Jattle, to annoy the enemy continually. Although Ge-neral Greene's men were scantily clad, half starred and dispirited, destitute of arms and ammunition, the ofticers under his command were as brave men as ever followed a leader. Morgan, Lee, Marion, Sumter and Colonel Washington formed a group to which the Fritish army could furnish no parallel. In the course of his movements, Cornwallis dispatched Tarleton against Morgan, who commanded one of the divisions of Greene's army. They met at Cowpens (January 17), The Baste and after one of the severest conflicts of the war of Cowpwns Tarleton was completely defeated, with the loss of the greater part of his force and all his artillery and baggage.
88. Morgan now hastened his march eastward to join Greene, and Cornwallis followed in hot pursuit. In order to move faster the British burned their stores and superfluous baggage, but Morgan succeeded in effecting a junction with Greene. Now followed a series of masterly movements by Greene, lasting through the winter, the spring, and the following summer, The hostile forces met at Guilford Court

House (March 15, 1781). Tbe battle was fought desperately for two hours, and all the advantages of a victory were on the side of the Americans. Notwithstanding Cornwallis chamed the victors, he retreated, closely pursued ly Greene. Cornwallis aroidnd a battle and retrented to Wilmington, und from there proceeded to Petersburg, Virginia. Greene moved to suoth Carolina, where be had a fight at Hobhirk's Hill (April 25), with a force under Lord Rawdon, whom Cornwallis hat left in command. Here cireene was compelled to retreat, but Rawdon's lose was so great that he soun after evacuated his man position at Camden. During April und Day, Greene swept throngh the country, carrying the British posts in sucession, until the enemy were confined to three points, Ninety.. x, Eutaw Springs and Charleston.
89. Having rested his army. (ireene marched against Eutaw Springs, where he found the British forers under Colonel Stuart (Rawdon having resigned and sailed for England) drawn up to receive him. A severe engagement took place (September 8, 1781), both sides claiming the victory. This was the last general action in South Carolina; the British, abaidoning the open country, retired to Charleston. Cornwallis armived in Virginia in May, 1781. Having received reinforcements, he fortified himself at Jorktown, on the south side of York river. Tarleton oceupied Cloncester Point, opposite Yorktown. The British force in Virginia at this lime was about 8,000 men.
90. Neanwhile Washington, having been reinforced hy a lately arrived body of 6,000 French tronps, under Kochambeau, was threatening New Vork. About this time the French admiral, De Grasse, who had been engaged against the English in the West Indies, came north to co-operate a little while will Washington, and it was resolved, instoad of carrying out an attack upon New York, which had been planned, to strike a hard blow at Cornwallis in Virginia. The army of Rochambeau marched from New port to meet Washington in the highlands. Their destination was kept secret, and the movements of both so artfulls contriped that Clinton supposed they were going to attack New York. lle did not discover their object until they had reached the Delaware. Sir Henry then sent out an expedition under Benedict Arnold to ravage Connecticut, hoping tberebs to cause Washington to return, but this manewver did not effect its object. Washington and Rochambeau pressed forward with the utmost alacrity. They received the gratifying intelligence that De Grasse had already arrived with his fleet and had blockaded the Cbesapeake, thus cutting off the escape of the British by water. On September 30,1781 , the allies invested Yorktown and Gloucester. After a siege of nearly three weeke, Cornwallis, finding it no longer possible to hold Yorktown. surrendered his whole army of nearly 8,000 men to Washington (October 19, 1781). On that day Clinton left New York to join Cornwallis. A week later, when off the Virginia capes, he heard of the news of the surrender. It was too late for him to be of any service, and he returned to New York.
91. The surrender of Cornwallis sent a thrill of joy through the country, and was the most decisive event of the war. The territory of the thirteen states was now restored to the jurisdiction of Congress, and the contest decided in favor of America. The surrender of Cornwallis was accepted both by the Americans and the English in America as the end of the war. Congress recommended the states to observe a day of thanksgiving to God for the signal success of the Americanarms. The people waited impatiently for the two governments to agree upon terms of peace. There were after this a few encounters lel ween the two armies, lut there was no general battle. The British still had possession of New York harbor and the surrounding country. General Washington went into camp with his army at Sewburgh, on the Ifudson. There be could keep open communication bet reen New England and the rest of the country. The French allies remained in Virginia. Generals Wayne and Greene drove such portions of the British forces as remained in the Carolinas and Georgia
down to the sea-coast. and shut them up in Sarammah and Charleston. There they were protected by their vessels. The people of Great britain became clamorons for peace. The obstinute king was still resulved " never to consent to a peace at the expense of a separation from America," but a resolution in favor of pence, supported by the lemding members, passed the Itouse of Commons February 27, 17ヶ.2. The king was comprlled to dismiss Lord North and aceept a ministry headed by the Marquis of lockingham, who was committed to the palicy of peace, and commissioners were appointed on both sides to uegotiate a treats, hostilities being stopped in the interral.
\$2. Much firmness and wisdom were shown by Massrs. The Treatg Juy, Franklin, Adams und Laurens, the Anerican com- of Peace. miseioners. Many questions were raised, an important onf of which was that of boundary, Fngland wishing to kew the Ohio ralley and part of lanine. The property of the Tories had been contiscated; the English wished it restored. England tried to exclude New England from the right to fish off the banks of Newfoundland. These and other questions caused delay. The delay was increused by the efforth of france and Spain to pustpone the final settlement unt il they shonld get alf which they demanded as nations from Great Britain. The preliminars article's of pence were zettled at Paris on the 30th of November, 1782 and in September, 1583, a formal treaty was signed. By this treaty (ireat Britain acknowledged the independence and sorereignty of the United States, and a new nation took its place among the governments of the earth.
93. The American army was now dishanded. During the progress of negotiations the temper of the ofticers and coldiers was far from satisfactory. They had received but a small portion of their pas, had often suffered from alsolute hunger, and were becoming restless under their wrongs and neglect. Some of then so far forgot themselves as to desire the estaljisbment of a military despotism, and Washington received a letter in which he was advised to declare himself king -a proposition which he indignantly refused to entertain for a single moment. Then anonymons lutters Were circulated among the troops in March, lis3, tending to inflame their minds and advising them to organize for the purpose of enforcing Congress to grant their demands. To counteract this morement Washington called all the officers together, and in his subsequent farewell address soothed them by kind words and promises, und appealed to the mobler sentiments of the

Thus the danger was dispelled, and on November 3 , still glowing with patriotism, the soldiers sepsrated, resolved to endure all necessary privations. The army certainly had been treated badly by both Congress and the states, but there was some excuse for their conduct in that the countrs was very poor, and that, after spending nearly $\$ 100,000,000$ during the war, the treasury was found at the end about $\$ 0,000,000$ in debt. This was exclusive of the outlay of the separnte states, which amounted to $\$(00,000,000$ or $\$ 0,000,000$ more.

On Norember 25, the British evacuated Nen York, Evacuatlos and Wrashington's troops marched in by the way of of New
King's Bridge. On November -, Washingion issued his farewell address to the army; on December 4 , with a heart full of love and gratitude, he bade his oflicers adieu. It was a dreply affecting scene, and men, who had braved the horrors of many a battle, now, as they approached their beloved commander-in-chief, were melted to tears and incapable of utterance. Washington then proceeded to Annapolis, at that time the seat of Congress, and tendered his resignation as command- Washing. er-in-chief of the anmies of the United States, and ton's Resis immediatuly retired as a private citizen to his home at natlon. Mount Vermon, on the lotomac, in Virginia.
F.-TILE FURNATION OF THE FEDERAL CONSTITUTION.
94. The states mere governed during the latter part of the $\nabla_{6} r$ b by "Articles of Confederation," proposed
by Congress at the time of the Declaration of Independence, but not adopted until several years later. Nearly all power was vested in the separate states, the federal union being loose; there was no president or other execntive chief. During the war for independence the army, which was called the Continental army, was under the authority of the Continental Congress, and it received its pay, when paid at all, in Continental cur rency. These two words, "Continental Currency," were placed at the head of the paper mones which Congress began to issue at the beginning of the war No other way of raising money to meet the military expenses seemed clear to Congress than to issue this currencs, since there would be no revenue from duties, as resolutions had been passed to have no trade with Great Britain. All the colonies represented in Congress agreed to redeem the bills which should be issued, just as each colony had been accustomed to redeem its own bills. At first the money was found to be very useful, and its value was not questioned, as nearly everyone thought that the war would soon be over. But the war dragged along; Congress had heen obliged to issue bills to the amount of $\$ 30,000,000$; whether or not the colonies would be able to win independence was a matter of doubt; the country was poor and it was not certain that the Confederation would last. Under these circumstances people began to refuse to take the money at the value printed upon it.
Powers of 95. Under the "Articles of Confederation," adopted Congress. in 1777, the powers of Congress were but small. The colonies were jealous of each other, and especially the smaller of the larger, and so they all wished to give the " Confederation," as it was called, just as little power as they could. The new government was to be merely a "firm league of friendship" between sovereign states, which were to retain every power not "expressly" delegated to Congress. At this time Congress consisted of but one house, in which each state had an equal vote. There was no national executive head. Congress retained the power to borrow money, but was not authorized to raise mones by taxes, or to fix the rate of duties on foreign goods imported, or compel obedience to any law. In fact, the provincial spirit which manifested itself in the several colonies, so prevailed over the spirit of nationality, as to completely take from Congress all power of action, even in violent emergencies, without the express consent of the several provinces. This was a result of the "Articles of Confederation," by which Congress was reduced from a prompt and energetic exercise of power, assnmed and used for the general good, to a mere advisory body, which, strictly speaking, had no authority at all. for the very first article, after that giving title to the instrument, made the following declaration: "Each state retains its sovereignty, freedom and independence, and every power, jurisdiction, and right which is not by this confederation expmessly delegated to the Crited Ntates in Comgrors assembled." Thus Congress was bound, hand and foot, by the narrow-minded jealousy of the several states. Important mensures required the votes of nine of the 13 states, and amendments the votes of all. Congress alone could decide upon the needed amount of money, bnt the power of collecting the taxes was vested in the states, only. Congress could decide disputes between the states, hut it had no power to compel respect or obedience to its decisions. It alone could make treaties with foreign nations, but no individual state was bound to respect those treaties, so far as Congress was concerned. Every state had the power of regulating its own commerce, both foreign and domestic. In truth, all the acts of Congress were simply recommendations to the state assemblies; and these recommendations were alwass largely debated, oftentimes rejected, and never assented to in reason to have their best effect. Washington and the army and the Revolutionary cause were thus nearly sacrificed by a states-right prejudice, as bad in principle as it was slow and injurious in fact.
96. When Congress tried to borrow mones in Europe,
it succeeded in getting some at high rates of interest. But in the present state of the country foreigners were slow to lend; they were not sure of getting their money back again. They knew they would not if the states failed in establishing their independence. And even if they did, the question was, would they pay if peace came? Under the then existing form of government it seemed doubtfol. The several states could raise money to meet their obligations by taxing their citizens; they could also impose duties on articles of trade. The government, as vested in Congress, could do neither ot These things; it could only apportion to the several states their share of the public expenses. If the states refused to pay, Congress bad no power to compel them. Foreign countries, also, did not like to make treaties with such a loose aud feeble government. Washington said: "We are one nation to day, and thirteen to-morrow; who will treat with us on these terms?" Thus, both Congress and the states struggled on, making more paper money and borrowing at high rate of interest. Laws were passed requiring the people to take the paper money in payment of debts. But the currency became more and more worthless, so that about the middle of the war, sixteen hondred dollars of it was asked for a suit of clothes. After the alliance with France. the prospect brightened. People had more confidence in the success of the United States, and it became easier to horrow money in Europe. About this time, also, Robert Morris, of Philadelphia, who thoroughly under- Robert stood the mistakes which had been made, was offered the position of superintendent of finance. He accepted the office only on condition that Congress should abandon the attempt to compel the people by law to take the paper money in payment of debts. In 1781 Congress passed a resolution that it would pay all its debts in solid coin, and recommended the states to do the same. It chartered the Bank of North America, and this bank lent money both to the government and to the people. At the close of the war the government found itself deeply in debt. Part of this money was due to foreigners, and part to the people of the country How this deht was to be paid, was the question to be settled by the Confederation.
97. One way was througl the sale of unoccupied lands. The Sale When the Confederation was forming there was much dispute and uncertainty about the western boundaries of the different colonies. Tirginia, for example, claimed the country now occupied by Kentucky, Indiana, Ohio and lllinois. It was proposed that the states should give up their western lands to the United States. V'irginia was the first to do this, and other states followed her example (1784). Congress used this property to pay the debts of the goverument. It gave lands to oflicerv and soldiers in payment of their claims. Many of these moved ont on their lands, and companies were formed for colonizing, especially in the Ohio valley. Congress conld not go mnch farther. It could say What taxes onght to be paid, and could recommend a uniform rate of duties throughout the country; but it was obliged to ask the states to lay the taxes, to levy the duties, and then to pay the money raised into the treasury of Congress.
48. It was perceived that this wonld never do, that a stronger form of goverument was necessary for the welfare and prosperity of the country. Disorders arose within the separate states, and a state of anarchy in general prevailed. The western counties of North Carolina undertook to form a state of their own, called Frankland. The part of Virginia which afterward became Kentucky, made a similar attempt. An extensive rebellion in Massachusetts, led by an ex-captain in the Continental army, named Daniel Shays (December 1786°), and directed against the collection of taxes, etc., for six months resisted the anthority of the state. It was finally put down by a military force under General Lincoln. The one act of authority which Congress could exercise was in providing for the government of the country which had been ceded to it by the states. This led to the passage of the important ordinance in ordinan 1787. By this ordinance all the district northwest of of 1787.
the Ohio was formed into one territory. Congress appointed a governor, a council and judges. The people of the territory were allowed to choose their own assembly and make their own laws. The most important provision of the ordinance was that by which slavery was forever excluded from the northwest territory.
99. It was impossible for the country to go on as it was. The states were separating from one another, and from Congress. Congress could with difficulty bring enough members together to form a quorum. Scarcely anyone outside paid attention to what it did. Least of all was it respected by foreign governments. John Adams, who had been sent as minister to England, could hardly get a hearing there. Ilany of the states refused or neglected to pay even their allotted shares of interest on the public debt, and Congress had not the power to compel payment. The national credit became worthless. Foreign nations refused to make commercial treaties with the United States, prelerring rather to take advantage of the impotency of Congress, and lay any burden upon American commerce that they thought fit. In 1785, Algeria declared war against the United States. Having no efficient nayy, Congress recommended the building of five ships of war, but as it had the power to recommend only, the ships were not built, and American commerce was left a prey to the Algerine pirates. Great Britain still refused to carry ont the treaty of 1783 , or send a minister to the United States. The federal government was despised abroad, and disobejed at home.
100. Amidst this discouraging and confused state of affairs, the more thoughtful of the people saw that some change in the form of government was necessary and so a convention of delegates was called to meet in

ention

 to decide upon a new constitution, and make, if possible, a stronger government. without doing harm to the liberties of the people. The stares sent their ablest men to represent them. Dlany of the delegates had been members of the first Congress. Among others, Virginia sent Washington, Edanund Randolph, George Mason, Madison and George W'sthe; New York, Hanilton; Massachusetts, Rufus King, Strong and Gerıy ; Pennsylvania, Franklin, Robert Morris, Gouveneur Morris and James Wilson; New Jersey, Paterson; Connecticut, Sherman, William S. Johnson and Ellsworth; and South Carolina Rutledge and the tro Pinckness. Washington was appointed president of the convention.101. There was great difference of opinion among the delegates regarding the question at issue, but all agreed that it was necessary to give the government greater authority. After a long discussion, lasting many reeks, the convention drew up a constitution of the United States (September 17, 1787) which was to take the place of the Articles of Confederation. The conrention reported its work to Congress, and Congress submitted it to the several states. Py the terms of the constitution, it must be ratified by nine states before it could become the law of the land. Much opposition was manifested toward its adoption. It was discussed ererswhere, and its every article was earnestly debated. Hamilton, Madison and John Jay of New York published a celebrated series of papers called "The Federalist," in which they went over all its features with great thoroughness, showing the reasons for the action of the convention. By this means they did much to convince the people of the importance of the work done. Delaware was the first to ratify the constitution, which it did unanimously. Pennsylvania followed, ten days afterward, with a two-thirds vote in favor. Eight other states also ratified it, so that it went into effect in 1788. Of the three states which remained, New York accepted the constitution in time to take part in the first presidential election that same year. North Carolina accepted it during the jear following; and Rhode Island, last of all, in the year after that (1790). Thus the old "Confederation" came to an end and the new "Union" began.
102. The opening words of the constitution are as follows: "We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquility, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this constitution for the United States of America." This first sentence of the constiution is The Prearn. often called the preamble, but no such term was applied ble. to it by the framers of the constitution, neither is it found in the original manuscript. It is not a preamble in any sense, but is the enacting clause-an integral part of the constitution, stating that it was the neople of the whole United States who established it. A preamble gives reasons why a resolution sloould le adopted or enacted, but it is no part of the resolution or enactment. The enacting clause, on the contrary, is mandatory. No other part of a statute is more important. Thus, this introductory sentence gives the authority and the ends for which the constitution was made. It was ordained by the people of the United States as a nation, and for the purposes so admirably set forth in its opening clause ; and wherever in the constitution the words "United States" occur they signify the nation as a whole: wherever the word "states" occurs, it denotes the states considered separately, or as distinguished from the nation.
103. The constitution contains seven articles, which Articles of are subdivided into sections. Ibesides these seven ar- stitution. ticles, fifteen amendments have been made to the constitution. which are as binding as the original articles. By the first article all legislative power is vested in the Congress of the United States, which consists of a senate and house of representatives. Under the Confederation the whole governmental authority was vested in Congress. There was no executive department and no judicial. The first resolution adopted in the constitutional convention stated that a national government ought to be formed, consisting of supreme legislative, executive and judicial departments. Nost legislative bodies have two houses. This is true of all the existing state governments, and was true of all the states at the time the constitution was framed, except Pennsylvania and Georgia, which had but one each. The Continental Congress had but one house. While there is a general distribution of powers among the three great departments of government, the exercise of these powers is not absolutely exclusive.
104. The federal house of representatives is descended, through the state houses of representatives, from the colonial assemblies. It is an assembly representing the whole population of the country, as if the people were all in one great state. It is composed of mem- The Hoase bers chosen every second jear throughout the states. of RepreA candidate for election to the house must be at least seutatives. twenty-five years old, must have been seven jears a citizen of the United States, and must be an inhabitant of the state in which he is chosen. As the federal Congress is a taxing body, representatives and taxes are apportioned among the several states according to the same rule, that is, according to population. At this point a difliculty arose in the convention as to whether slaves should be counted as population. If they were to be counted, the power of the slave states in all matters of national legislation mould be greatly increased. The difficulty was adjusted by a compromise measure The Threeaccording to which five slaves were to be reckoned as Fifths three persons. Since the abolition of slavery this pro- Compro. vision has become ohsolete, but until 1860 it was a very important factor in American history.
105. In the federal house of representatives, the great states, of course.hare much more weight than the smaller ones. In 1790 the four largest states had 32 representatives, while the other nine had only 33. The largest state, Virginia, had ten representatives, to one from Delaware. These disparities have increased. In 1880, out of thirty-eight states, the nine largest had a majority of the house, and the largest state, New York, had 34 representatives to one from Delaware. This feature in the house of representatives caused the smaller states
in the convention to oppose the whole scheme of constructing a new government. They were determined that all the states, both great and small, should have equal representation in Congress. Their prolonged opposition threatened to ruin the whole plan, when a method of compromise was fortunately discovered. It was intended that the national legislature, in imitation of the state legislatures, should have an upper bouse or senate, and at first the advocates of a strong national government proposed that the senate also should repre-

The Con necticut Compro mise. sent population. But it happened that in the state of Connecticut an unique governmental method had been adopted. There it had always been the custom to elect the governor and upper house by a majority vote of the whole people, while for each township there was an equality of representation in the lower house. The Connecticut delegates in the convention, therefore, being familiar with a legislature in which the two houses were elected on different principles, suggested a compromise. Let the bouse of representatives, they said, represent the people, and let the senate represent the states; let all the states, great and small, be equally represented in the senate. Such was the famous "Connecticut Compromise." Had this not been adopted the convention would doubtless have broken up without accomplishing its purpose. After it was accepted, and the jealous fears of the smaller states allayed, the work yet to be accomplished was comparatively easy.
The Senate.
106. Thus it came about that the upper house of the national legislature is composed of two senators from each state. As they represent the state, they are chosen by its legishature and not by the people. They are chosen for a term of six years, and one-third of the number of terms expire every second year, so that, while the whole senate may be renewed by the lapse of six years, there is never a "new senate." The senate has thus a continuous existence and a permanent organization, whereas each house of representatives expires at the end of a two-years" term, which is usually known as a "congress," and is succeeded by a "new house." A candidate for the senatorship must be at least thirty years of age, must lave been nine years a citizen of the United States and must be an inhabitant of the state which he represents.
Eime of Assembling.
107. Congress must assemble at least once in every year, and the constitution appoints the first Monday in December for the time of meeting; but Congress can, if necessary, enact a law changing the time. The established custom is to hold the election for repregentatives on the same day as the election for president, the Tuesday after the first Monday in November. As the period of the new administration does not begin until the fourth day of the following March, the new house of representatives does not assemble until the December following that date, unless the new president should think it necessary to call an extra session of Congress at an earlier date. Each house is judge of the elections, qualifications and returns of its own members, determines its own rules of procedure and may punish its members for disorderly behavior, or by a two-thirds vote expel a member. Absent members may be compelled, under penalties, to attend. Each bouse is required to keep a journal of its proceedings, and at proper intervals to publish it, except such parts as for reasons of public policy sbould be kept secret.
108. Senators and representatives receive a fixed salary by law, which is paid out of the public treasury. In all cases, except treason or felony or breach of the peace, they are privileged from arrest during their attendance in Congress, as also while on their way to it, and while returning home; "and for any speech or de- bate in either house they shall not be questioned in any other place." During the session of Congress neither bouse may, without the consent of the other, adjourn for more than three days, or to any other place than that in which Congress is sitting. No person can at the same time hold any civil office under the United States government and be a nomber of eitber house of Congress.
109. The vice-president is the presiding officer in the Presid senate, with power to vote only in case of a tie. The officer house of representatives elects its presiding officer, who is called the Speaker. In the early history of the House of Commons, in England, its presiding officer was naturally enough its spokesman. He could spenk for it in addressing the crown. Instances of this kind occurred during the fourteenth century, until, in 1376, the title of Speaker was definitely given to Sir Thomas Hungerford, and from that date the title has always held. The same title was given to the presiding officers of the American colonial assemblies, and thence it passed on to the state and federal legislatures. The Speaker presides over the debates, puts the questions and decides points of order. He also appoints the committees of the house of representatives.
110. The house of representatives has the sole Powe power of impeachment, and the senate has the sole Impea, power to try all impeachments. When the president of the United States is tried, the chief justice of the supreme court must preside. As a precaution against the use of impeachment for party purposes, a twothirds' vote is required for conviction. In case of conviction the judgment cannot extend further than "to removal from office, and disqualification to hold or enjoy any office of honor, trust or profit under the United States;" but the person convicted is liable afterward to be tried and punished by the ordinary process of law.
111. The constitutional provisions for legislation are admirably simple. All bills for raising revenue must originate in the lower house, but the upper house may propose or concur with amendments as in the case of other bills. After a bill has passed both houses, it must go to the president for his approval. If he approves it, be signs it, and it becomes a law. If he disapproves it, le returns it to the house in which it originated, The pri with a written statement of his objections, which must dent's be entered in full upon the journal of the house. The power. bill is then reconsidered, and if it obtains a two-thirdss vote it is sent, together with the ohjections, to the other house. If it passes there by a two-thirds' vote, it becomes a law. Otherwise, it fails. If the president keeps a bill longer than ten days (Sundays excepted) without signing it, it becomes a law without his signature, unless Congress adjourns before the expiration of the ten days, in which case it fails to become a law, just as if it had been vetoed. This method of vetoing bills just before the expiration of Congress, by keeping it in one's pocket, so to speak, was styled a "pocket veto," and was first employed by President Jackson in 1829.
112. By the constitution, Congress has the power Powers "to lay and collect taxes, duties, imposts and excises, pranter to pay the debts and provide for the common defense congre and general welfare of the United States," but all duties, etc., were to be uniform throughout the United States. Other powers are naturally attached to thissuch as the power to borrow money on the credit of the United States; to regulate foreign and domestic commerce; to coin money and fix the standard of weights and measures; to provide for the punishment of counterieiters; to establish post-offices and postroads; to issue copyrights and patents; to establish courts inferior to the supreme court; to punish offenses committed on the bigh seas, or against the law of nations; to declare war, grant letters of marque and reprisal, and make rules concerning captures on land and water; to raise and support an army and navy (no appropriation to be for more than two years), and to make rules for the regulation of the land and naral forces; to provide for calling out the militia to suppress insurrections and repel invasions, and to command the militia while actually employed in the service of the United States. The several states, however, were to train their own militia and appoint the officers. Congress may also establish a unform rule of naturalization, and uniform laws on the subject of bankruptcies. but it has not yet done so. It was also empowered to
establish a national capital or federal district (which is the District of Columbia, containing the city of II ashinton), to exercise exclusise control over it and over furts, magazines, arsenals, dockjards and other needful buildings, which it erects within the sereral states upon lands purchased for such purposes with the consent of the state legislature; and finally, "to make all laws which shall be necessary and proper for carrying into execution the foregoing powers and all other powers vested by tbis constitution in the government of the United States, or in any department or oflice thereof." This last clause mas be called the elastic clause of the constitution. It lias been the subject of continued debate. and has undergone a great deal of stretching for one purpose and another. It was a profonnd disagreement in the interpretation of this clause which, after 1789 , divided the American people into two great political parties.
113. The national authority of Congress is further sharply defined by the express denial of sundry powers to the several states. The states are expressly forbidden to impose any duties on imports or exports, except for inspection charges, which must be passed over to the treasury of the United States; to make treaties of any kind; to lay any duty on tonnage; to keep tronps or ships of war in time of peace: to engage in war unless actually invaded, or in such imminent danger as will admit of no delay; to grant letters of marque and reprisal; to coin money; to emit bills of credit; to make anything but silver a legal tender; to pass any bill of attainder, ex post jucto law, or law impairing the obligation ol contracts, or to grant any title of nobility.
114. Some express prohibitions were laid upon the national govermment. Duties may be laid upon imports, but not upon exports. Duties and excises must be uniform throughout the country, and no commercial preference can be shown one state over another. The privilege of the writ of habeas corpus cannot be suspended except "when, in cases of rebellion or in rasion, the public safety may require it.". A census must be taken every 10 years in order to adjust representation, and no direct tax can be imposed except according to the census. No bill of attainder, or ex post facto law, can be passed. A bill of attainder is a special legislative act by which a person may be condemned to death, or to outlawry and lanishment, without the opportunity of defending himself, to which he is entitled in a court of lart. Congress can grant no title of nobility, and no federal - officer can accept a present, office or title from a fureign state without the consent of Cougress. "No religious test shall erer be required as a qualification to any oftice or public trust under the United States." Money is to be taken from the treasury only in cousequence of appropriations made by law.
115. No one is eligible to the office of president unless he is a native born citizen. The candidate must he at least 35 years old, and must hare been 14 years a resident of the United States. The president's term of office is four years. The constitution says notbing about his re-election, and there is no written law forbidding his being re-elected many times. Some of the presidents have served tro consecutive terms, and it seems to have become the established custom not to go heyond that. The president is solemnly sworn to execute his office faithfully, and " to preserve, protect, and defend the constitution of the United States" to the best of his ability. In case of his death, resignation, or inability to perform the duties of his office, the vice-president takes his place; and. in the case of the inability of both, the members of the cabinet succeed in the order prescribed in the Presidential Succession Act of 1886. The president is commander-in-chicf of the military and naral forces of the United States, and of the militia in the sereral states actually engaged in the service of the United States: and he has the prerogative of granting reprieres and pardons for offenses against the United States, except in cases of impeachment. He can make treaties with foreign powers; but no treaty is valid unless confirmed by a twotbirds'
vote of the senate. He appoints ministers to foreign countries, consuls, and the greater officers, such as the heads of executive departments and judges of the sumpeme court, and all other otficers whose appointment Congress has not vested in other officers; but all presidential appointments are to be confirmed by the senate. When vacancies occur during the recess of the senate, he may fill them by granting commissions to expire at the end of the next session. He commissions all federal officers. 1le recuives all foreign ministers. He mas summon either or both houses of Congress to an extra session, and i : the two houses disngree in regard to the time of adjournment, he may adjourn them to such a time as he thinks best, but, of course, not beyond the time fixed for the beginning of the next regular session. The president must from time to time make a report to Congress on the state of affairs in the country, and suggest such a line of polics or such special measures as may seem proper to hinn. This report has taken the form of an annual written message. He may also call upon the heads of departments for an opinion, in writing, on any subject relating to such department. The president is paid by the United States, and his salary is not to be increased or diminished by Congress during his term of oftice. The uct authorizing any increase must apply only to the successors of the president who signs the act

11ヶ. The constitution made no express provision for Executu* the creation of executive departments, but lelt the depart matter to Congress. At the beginning of Washington's administration three departments were created-tbose of state, treasury and war, and an attorney-general was appointed. Since then the number of departments has been increased, until now (1890) there are eight: those of state, of the treasury, of war, of the navy, of the post-otlice, of the interior, of justice, and of agriculture. The chief officer of each department is called its secretary. The secretaries of these departments are the president's advisors, and constitute his calinet. They are selected by the president and are confirmed by the senate, but are responsible to no one but the president.
117. The secretary of state ranks first among the The Secre cabinet officers. He is the minister of foreign affairs, tary of and is the only officer who is authorized to communicate with other governments in the name of the president. He is at the head of the diplomatic and consular service, issuing instructions to the United States ministers abroad, and taking a leading part in the negotiation of treaties. He keeps the national archives, and superintends the publication of laws, treaties and proclamations, and he is the keeper of the great seal of the United States. The cabinet officer next in rank is the secretary of the treasury. He conducts the financial business of the country, superintends the collection of revenue, and gives warrants for the payment of moneys out of the treasury. He also superintends the coinage, the national banks, the customhouses, the coust-survey and lighthouse system, the marine hospitals, and lifesaving service. He sends reports to Congress, and suggests such measures as seem good to him. He is aided by two assistant secretaries, six auditors, a register, a comptroller, a solicitor, a director of the mint, comuissioner of internal revenue, chiefs of the bureau of statistics and bureau of printing and engraving, etc.
118. The trar and navy departments need no special Warand description here. The wrar department is divided into ten bureaus, annong which is the weather bureau, presided over by the chief signal officer. The nary department consists of eight bureaus, and among its many duties it has charge of the naval observatory at Washington, and publishes the nautical almanac. The de- Departpartment of the interior is divided into eight bureaus. ment of It deals mith public lands, pensions, patents, Indian affairs, education, public documents, and the census. The pustmaster-general's department has to do with the Postmaster postal affirs of the country. The attorney-general's Generaland department was organized in 1870 into the department of justice. Thattorney-general is the president's legal
adviser, and represents the United States in all law suits to which the United States is a party. The agricultural department, which was created in 1889 , superintends the agricultural interests of the country.
119. The best method of electing the president was a question which perplexed the constitutional convention as much as any other. To submit the election of an officer so exalted to the proper vote, was regarded with general distrust. At one time the convention decilled to have the president elected by Congress, but there was a grave objection to this; it would be likely to destroy his independence and make him the mere creature of Congress. At last the plan of an electoral college was devised. Each state is entitled to a number of electors equal to the number of its representatives and senators together; and the electors choose the president and vice-president, meeting at their state capitals for that purpose, and sending separate certificates di their choice of president and vice-president to the presiding officer of the Senate at Washington. No fedaral senator or representative, or any person holding aivil office under the United States, can serve as an elector. Each state may appoint or choose its electors in such a manner as it sees fit ; at first, they were more often then otherwise chosen by the legislatures; now they are always elected by the people. The day of election must be the same in all the states. By act of Congress the electors are to be chosen on the Tuesday after the first Monday in November.
Powers of 120 . It was the original intention that the electors should be left free to make their own choice, and there are instances in early years of electors of one party voting for personal friends of the opposite party. At first the electoral votes did not state whether the candidates named in them were candidates for the presidency or vice-presidency. Each elector simply wrote down two names, only one of which could be the name of a citizen of his own state. In the offcial count, the candidate who bad the highest number of votes, provided they were a majority of the whole number, was declared president, and the next highest became vicepresident. The natural result of this was seen in the tirst contested election in 1796, which gave the presidency to John Adams, while his antagonist, Thomas Jefferson, became vice-presilent. In 1800, Jefferson and his colleague Burr received exactly the same number of electoral votes. This thress the election into the house of representatives, and such intrigues followed for the purpose of defeating Jefferson that the country was threatened with civil war. This necessitated a change in the method of election. In 1804 , the twelfth amendment was adopted. The method by this amendment was changed so that the electors make separate ballots for president and vice-president. In the official count the votes for the president are first counted. if no candidate has a majority, then the house of representatives must immediately choose the president from the three names highest on the list. In this choice the house votes by states, each state laving one vote; a quorum for this purpose must consist of at least one member from two-thirds of the states, and a majority of all the states is necessary for a choice. Then if no candidate for the vice-presidency has a majority, the senate makes its choice from the two names highest on the list. A quorum for the purpose consists of two-thirds of the whole number of senators, and a majority of the whole number is necessary to a choice.
121. In 1877 an unforeseen difficulty arose, and one for which no provision had been made. During the presidential contest between Tilden and Hayes, Sonth Carolina, Florida and Louisiana had each set up riva\} governments. Ballots for Tilden and ballots for Hayes were sent in at the same time by the two hostile sets of electors in each of these states, each list being certified by one of the two rival governors in the same state. In the absence of any recognized means of deciding which ballots to count, the two parties in Congress submitted the result to arbitration. An "electoral commission" was created for the occasion, consisting of five sena-
tors, five representatives and five judges of the supreme court. By this expedient, a clumsy one perhaps, the difficulty was tided over. The question of contlicting returns has at length been set at rest by the act of 1887 , which provides that no electoral votes can be rejected in counting, except by the joint action of both houses of Congress.
122. The judiciary is the third of the three great departments of the general government. The constitution itself provides for one supreme court, but leaves it to Congress to determine how many inferior courts should be established. The organization of the supreme court is also left to Congress. The chief reason why a national judiciary is necessary in addition to the state Need for systems is that the state judges might be biased in favor federal of their own state. Laws of Congress often bear with judiciary greater hardship on some states than others, and public opinion, in those states upon whom the burden lay, might be so strong in opposition, that no judge elected and supported loy those people wonld sustain it. But if the judge belonged to a national system, and thus represented and was supported by the whole nation, he would have nothing to fear, and thus his decision would be more impartial. The experience of the Confederation tanght this. The national judiciary consists of three grades of courts: The supreme court, the circuit Courts. courts and the district cuurts. The supreme court is the highest in the land, and was established by the constitution itself. The others were estahlished by Congress. The supreme court consists at present of a chinf justice and eight associate justices, and its jurisdiction is almost wholly appellate; that is, cases are not tried in it, but it only hears appeals from other courts, and that only in the most important cases. It has original jurisdiction in a few cases. Of the circuit courts there are nine in the country. Each of the nine judges of the supreme court is also presiding judge of a circuit court. The area of the United States, not inclading the territories, is divided into nine circuits, and in each circuit the presiding judge is assisted by special district judges. The circuits are divided into fifty-six districts and in each of these there is a special district judge. The districts never. cross statelines. They cover each a state or a part of a state.
123. By the constitution, the judges hold office dur- Tenure o ing good behavior. In no other department of the gen- Oftice. eral government are offices held for so long a term. The parpose is to insure a correct and impartial administration of justice by making the judges independent of contlicting parties. The object of the framers of the constitution was to remove them as far as possible from undue political influences. As with the president, so in this case. Congress, though it fixes the salaries of Salary. the judges, cannot diminish them while in office. The jurisdiction of the federal courts does not extend to all Federal kinds of cases, but only to such as the constitution jurisdic specifies. The cases enumerated in the constitution in which the national courts have jurisdiction may be dirided into three general classes, (I) those arising under the constitution, the laws of Congress and treaties, (2) those affecting foreigners, and (3) those between different states or the citizens of different states. Cases which arise under the constitution, laws or treaties of Cases un the United States may be those where a person is given United a right by the constitution, etc., which he does not liave by the laws of his state, as, for instance, a right to sue an infringer of a patent granted to him, or where he violates a law of Congress or treaty, as in counterfeiting coin, or doing anything forbidden by a treaty, or where any question arises as to the meaning of the constitution, laws or treaties of the United States, or as to whether a law of Congress is constitutional or not. In these cases it makes no difference whether the parties are citizens of the same state or not. The jurisdiction is given to the national judiciary for two reasons: First, in order that, in the interpretation and enforcement of its own laws, it may not be dependent on the states; and second, in order that the interpretation may be uniform throughout the country.
124. In cases affecting foreigners the decision properly belongs to the federal courts, for the reason that if a foreigner is injured here, the nation, and not the state, is responsible to the foreigner's government; therefore, the nation, and not the state, should make redress for the injury. And where the foreigner is an ambassador, or other minister, the supreme court has criginal jurisdiction in the case. Admiralty jurisdiction is also given to the federal courts, for the reason that many admiralty cases affect foreigners. Another reason is that admiralty is a part of the regulation of commerce, which is a subject taken away from the states and given entirely to the United States.
125. The third class of cases in which the federal courts have jurisdiction, is where the parties on the two sides, plaintiff and defendant, are either two different states, or citizens of different states. The federal courts are to decide controversies between two or more states; because, domestic tranquility requires that the contention of states should be peacefully lerminated by a common judicators and because in a free country, justice ought not to depend on the will of either of the litigants. They are to decide controversies between a state and the citizens of another state; because, in case a state (which comprebends all its citizens) has demands against some citizens of another state, it is better that she should prosecute their demands in a federal court than in a court of the state to which those citizens belong, the danger of irritation and criminations arising from apprehensions and suspicions of partiality being thereby obviated. They are to decide controversies between citizens of the same state claiming lands under grants of different states; leecause, as the rights of the two states to grant the land are drawn into question, neither of the twostates ought to decide the controversy.
126. The judicial power of the United States extends to all cases of law and equity arising under the constitution and laws thereof, and to treaties made under their authority. But there are two kinds of jurisdiction, original and appellate. Original jurisdiction is jurisdiction of a cause from its beginning. If a party can begin his suit in the circuit court, for instance, then that court has original jurisdiction in the case. If he cannot bring his case into the circuit court until it has been tried in some lower court, then the circuit court is said to have appellate jurisdiction. Appeal lies from the district court to the circuit court when the matter involved is of a value greater than $\$ 500$, and from the circuit court to the supreme court when $\$ 5,000$ or more is involved.
127. No direct suit can be brought against the United States, either by a citizen or a state, without the authority of an act of Congress. But in 1855 Congress established a court, called the court of claims, in which those having claims against the United States may bring a suit in the ordinary way. The demand is presented to the court by petition, setting forth specifically its origin and nature, and the party is allomed to prove it by the same rules of evidence which are usually adopted in a court of justice. If a claim is established Congress makes provision for its pajment. An attornes, called the solicitor of the United States, appears before this court in behalf of the government.
128. In the constitution, treason is made to consist only in leving war against the nation, or in adhering to its enemies, giving them aid and comfort. The purpose was to make the meaning as definite as possible, so that all opportunity for constructive treason might be removed. It has been decided by the court that there must be an actual levying of war; that a conspiracy to subvert the government by force is not treason. But if war be actually levied, that is, if a body of men be actually assembled for the purpose of effecting by force a treasonable purpose, all those who perform any part, however minute, or however remote from the scene of action, and who are actually leagued in the general conspiracy, are to be considered as traitors. Conviction of treason requires the testimony of tro witnesses to the same overt act of treason, or a confes-
sion in open court. A private confession passes for nothing. To Congress is given the poser to declare the punishment of treason, " but no attainder of treason is to work corruption of blood, or forfeiture, except during the life of the person attainted." The attainder spoken of in this clause must be that connected with the judgment pronounced by a court, and not a legislative attainder, for we have already seen that Congress is forhidden, as also the states, from passing any bill of attainder. Congress might provide for a judicial attainder in the case of treason, but the effects of this attainder must be limited to the life of the offender.

As treason is a crime against sovereignty, a violation of one's allegiance, there can be no treason against a particular state. The states, however, have always asserted their power to punish for treason against them individually. It has never heen fully maintained in practice; but the theory had its effect in the secession period. If a state, by its courts, punishes treason, it must not he as treason against itself, but as treason against the union; and in this view the propriety of that state legislation which affixes to it particular penalties, is doubtful.
129. Article IV of the constitution contains a number of important provisions, most of which affect the rela-Relations tions of the states to each other, and to the general of state. government. The first one is in regard to the effect which the laws, records and judgments of one state shall have in another, and the provision is that they shall have full effect everywhere. No state can grant Privileges privileges to its own citizens, from which the citizens of of citizens. other states are excluded. There must be an equality of citizenship everywhere. Without such a provision, any state might deny to citizens of other states the right to huy and hold real estate, or to become voters after living in the state the prescribed time, or to enjoy equal privileges in trade or business. The subject of Fugitive delivering up fugitives from justice, is one which, criminals. among different nations, has involved some doubts. The coustitution of the United States, however, provides that they shall always be given up to those who, in the states, have a right to require it. By the com- Fugitive mon law, a slave escaping into a non-slaveholding state slaves.
became free. But the constitution provided that fugitive slaves were to be surrendered to their owners. Escaped slaves were, under this provision, returned to the South up to 1861. The clause is, of course, obsolete now.
130. The constitution provides for the admission of sew new states to the union, but it does not allow a state to states. be formed within another state. A state cannot "be formed by the junction of two or morestates, or parts of states, without the consent of the legislatures of thr states concerned, as well as of the Congress." Shortlis hefore the making of the constitution, the United States had been endowed for the first time with a public domain. The territory northrest of the Ohio river The had been claimed, on the strength of old grants and Northwest charters, by Massachusetts, Connecticut, Jew York and Territors. Virginia. In 1777 Maryland refosed to sign the Articles of Confederation until these states should agree to cede their claims to the United States, and thus, in 17st, the federal government eame into possession of a magnificent territory, out of which tive great states-Ohio, Indiana, Mllinois, Michigan and Wis-consin-have since been made. While the federal convention was sitting at Philadelphia, the Continental Congress at New Lork was doing almost its last, and one of its greatest, pieces of work in framing the ordinance of 1787 for the organization and government of this newly acquired territory.
131. In 1803 the rast territory of Louisiana, comprising everything (except Texas) between the Mississippi river and the crest of the Rocky Jountains, was purchased from France. A claim upon the Oregon territory was soon afterward made by discovery and exploration, and finally settled in 1846 by treaty with Great Britain. In 1848, by conquest, and in 1853 by purchase, the remaining Pacific lands were acquired from Nexico.

All of this vast region has been at some time under territorial government. As for Texas, on the other hand, it has nerer been a territory. Texas revolted from Mexico in 1836, and remained an independent state until 1845 , when it was admitted to the union. Territorial government has generally passed througb three stages: First, there are governors and judges appointed by the president; then, as population increases, there is added a legislature chosen by the people, and empowered to make laws subject to confirmation by Congress; finally, entire legislative indebendence is granted. The state is then ripe for admission to the union as a state
Guarantee clanse.
132. The national government was to guarantee to each of the states a republican form of government and to protect each of them against invasion or, on application of the legislature or governor, against domestic violence. This clause makes a republican government necessary in every state. It is eqnivalent to saying that no other shall be permitted to be established. This is the only instance in the constitution where the government has a duty enjoined upon it, while the particular department is not mentioned. Here the obligation is from the United States to the states; but whether it be exercised by the president or by Congress is one of the questions that has grown out of the reconstruction measures. In the case of Rhode Island the supreme court held: "It rests with Congress to decide what government is the established one in a state. For, as the United States guarantees to each state a republican goverument, Congress must necessarily decide what government is established before it can determine whether it is republican or not. And when the senators and representatives of a state are admitted to the councils of the union, the authority of the government under which they are appointed, as well as its republican character, is recognized by the proper authority."

The constitution does not define a republican government. The national government may be assumed to be republican in form, and thus a model for the states. Mr. Madison says: "We may define a republic to be a government which derives all its powers, directly or indirectly, from the great body of the people, and is administered by persons holding their offices during pleasure, for a limited period, or during good behavior." Farrar says: "The principle of republicanism is the equal right of the people, the citizens, all the members of the body politic. In theory it is the government of public opinion. The fundamental principles of right and justice for the government, the representative character of the governors, and their practical responsibility to the governed, are the essentials of republicanism.
134. The constitution indirectly requires rarious provisions in the state governments by enjoining duties The senators of the United States are to be elected by the state legislatures. Members of the bouse of representatives are to be elected by the same electors as vote for the members of the most numerous branches of the state legislatures. The executives of the states are often referred to. The judges are to take oath to obey the constitution of the United States. Thus, the states must have three great departments, the legisla tive, executive and judicial. The legislature must be in two branches, and the most numerous branch must be elected by the people. The states are supposed to have written constitutions.
135. One of the strongest objections urged by its apponents, against the adoption of the constitution as it came from the hands of the convention, was the want of a recognition of certain rights of citizens. To meet this objection, in September, 1789, the first ten amendments were proposed by Congress, and in December, 1791, they were declared in force. Theses ten amendments which are called a "Bill of Rights," because they contain a list of the rights deemed most important to the liberty of the people, do not change any original provision of the constitution. They act merely as restrictions and limitations upon the porere
of Congress, and were deemed unnecessary by those who framed the constitution for the reason that these rights were 80 generally acknowledged, and that the powers of Congress were limited to those expressly granted to it. But as several of the state conventions had, at the time of adopting the constitution, expressed a desire that declarations and guarantees of certain rights sbould be added in order to prevent misconstruction and abuse, the first Congress, at its first session, proposed twelve amendments, ten of which were ratified by the requisite number of states. Thesc amendments forbade the establisbment of any religion by Congress, or any abridgment of freedom of worship, of speech, or of the press, or of the popular right to assemble and petition the goverument for redress of grievances, the billeting of soldiers, unreasonable searches or seizures, or general warrants, trials for infamons crimes except through the action of a grand jury, subjecting a person for the same offense to be twice pat in jeopardy of life or limb, compelling him to witness against himseli in criminal cases, the taking of life, liberty, or property without due process of law or without compensation for property, and the demand of excessive bail, or the imposition of excessive or of cruel or unusual punishments. They confirmed the right of the people to keep and bear arms, to a jury trial from the vicinage in criminal cases or in cases involving more than twenty dollars, to a copy of the indictment, to the testimony against the prisoner, to compulsory process in his behalf, and to coursel for him. Finally, it is declared that "the enumeration of certain rights shali not be construed to deny or disparage others retained by the people," and that "the powers not granted to the United States by the constitution, nor prohibited by it to the states, are reserved to the states respectively, or to the people."
136. All the debts of the federation, and its engagements, were made binding on the new government; and the constitution, and the laws and treaties to be made under it. were declared to be "the supreme law of the land;" the judges in evers state were to be bound thereby, "anything in the constitution or laws of any state to the contrary notwithstanding." The language of this cause is clear and explicit. The people of the United states estahlished this constitution for the Lnited states. It was the work of the nation itself, and was linding in every part of the republic. This clanse was intended to aftrm the supremacy of the national government over the state governments. If the constitution was not the supreme law of the land it would not be a constitution, it would be a nullity. Its supremacy is necessarily involved in the instrument itself, get it was necessary to declare it, in order that all inight understand it and no room be left for controversy.

wi. tie gofernmint under the constitution.

137. As soon as the constitution bad been ratifed by the requisite number of states, Congress named the first Wednesday in January, 1789, as the day for the choice of electors, the first Wednesday in February for the choice of president and vice-president, and the first Wednesday in March for the inauguration of the new government at New York city. The last date fell on the th of March, and this has been the limit of each president's term since that time. The election took place at the appointed time, and when the votes of the electors were counted before Congress it was found that George Washington had been unaninuously elected wabinz that John Adams, standing next on the first pres ist, was vice-president. Before the inauguration, the dent. old Confederate Congress bad "given up the ghost." On October, 1788, its record ceased, and for nearly six months the United States was witbout any national government. The contest for nationality had been successful, and the old order of things passed eway forever.
e condi. 138. The nation over which George Washington was n of the called to preside in 1789 was a third-rate power, inferior
intry. in population und wealth to Holland, for example, and about on a level with Portugal or Denmark. The first census was taken in 1750, and the population was then four millions. The people were thinly scattered throngh the thirteen states hetween the Atlantic and the Alleghanies, beyond which mountrinous barrier a few hardy pioneers were making the beginnings of Tenuessere, Kentucky, and ohio. Roads were few and bad, none of the great rivers were bridged, mails were irregular There were few nanufactures. There were mans
traders and merchant seamen in the coust towns of the t raders and merchant seamen in the coust towns of the north, but the great majority of the people were farmers, who lived on the produce of their own lands, and seldom undertook long journeys. Hence, the different pa-'3 of the country knew vers little about each other, and entertained absurd prejudices, and the sentiment of union between the states was extremely weak. East of the Alleghanies the red man had ceased to be dangerous, but tales of Indian unassacre still came from regions no more remote than ohio and reorgia. Spain still held vast possessions west of the Mississippi. The only other power which had possessions in Nopth America was England. The feeling entertained toward the states in England was one of mortification and chagrin, accompanied with the bope that the halfformed union would fall to pieces, and its separate states loe driven by disaster to heg to be taken back into the British empire. The rest of Europe knew little about the United States, and cared less.
138. It was under these circumstances that the young government began its career, and it was fortunate for it that it began under the auspices of such an administration as Washington's. Congress met in Ner York, March 4, 1789 . It adopted twelve amendments to the constitution, ten of which. as has been shown, were ratified by the states. But the most pressing business before Congress was to obtain money to pay so successfully acconplished that This dificult work was so successfully accomplished that little change has leeen found necessary in fananeial methods from that das to this. Washington's cabinet consisted of Thomas Jefferson, as seeretary of state; Alexander llamilton, as secretary of the treasury; and Heury Knox, as secretary of war. John Jay was appointed chief justice, and Edmund Randolph attorney-general. The financial success of the government was mainly due to the organizing genius of Hamilton, assisted by the skill and tact of Madison, as leading member of the bouse of representatives. Hamilton saw, in the payment of the national debt, an opportunity to give
strength to the United States in the eyes of foreign strength to the United States in the eyes of foreign nations. He saw also that it gave an opportunity to bind the states in more perfect anion. He proposed three measures: First, that the government should assume the foreign debt of the confederation, and pay it in full; secondly, that the domestic debt, which seemed to bave been rirtually repudiated, should likewise be assumed and paid; thindly, that the dehts of the separate states should also be assumed and paid by the federal government. The first proposition was adopted unanimously. The specond was opposed on the ground that it would only benefit specnlators, who had bought up United States securities at a discount. Dut, by dint of forcible reasoning, the measure was es ried. The third measure caused great dehate, and met with violent opposition. There was a fierce and bitter fight over it, which at last was only setiled by great politieal
manipulation. manipulation.
139. There were already two parties in the country, the Federalists, who desired a strong general government, and whr had urged the people to aecept the constitution, and the anti-Federalists, who wished to give more power to the state governments, and less to the general government. Hamilton was the leader of the Federalist party, and the anti-Federalists united to defeat his last measure. At this time the site of a federal capital was to be selected. The northern people generally wished to have it not further south than the

Delaware river, while the southerners were determined to have it no further north than the Potomac. Hamilton was bent on carrying his point, and took adrantage of this dispute. Ile persuaded two Virginian Congress. men to ehange their votes and support his measure. In return, be promised to use his intuence to have the capital located or the banks of the lotomac, instead of at some northern point. This change of votes gave him the requisite majority. The assumption of state debts was a muster stroke of poliey. All those persons to whom any state orred money were at once won over to the support of the federal government. Muny of these persons were powerfal and wealthy; and all now felt a common interest in upholding the national credit, which, throngh these wise and vigumous measures of Hamilton, was soon completely resfored.
1 . The noxt step was to raise a revenue for the Revenue. carrying on of the government, and this must be raised hy fedral laxation. There were two ways in which this could be done-by imposing duties on goods importud into the country, or by levying internal taxes. Ps the first method, the Enited States would declare its right to tax foreigners; by the second, to tax its own citizens. The former method was mainly resorted to, becanse it was more indireet, and because the people, as yet, did not like the ider of being directly taxed to support the general government, even hough it had been estahlished by themselves. However, a tax was laid upon the manufacture of spirituous liquors in 1794 , and this caused serions trouble. The seitlers in the mountains of Peunsylvania and Virginia had long since found out that it cost more to carry their corn and Wheat to market than they conld sell it for, and accorlingly they distilled it into whisky. When Congress laid a tax on whisky, they bitterly opposed it, and when the revenue officers came to collect the tax, the settlers wriused to pay it, and threatened to take up arms. But Washington instantly sent an army of sixteen thousand men into the disuffected region, and the insurrection was summarily suppressed.
142. The Indian tribes on the Ohio beeame very Indian war troublesome to the settlers who now began to pour into the west. Ceneral Harmer, who was sent against the Envages in I790, was defeated near the present site of Fort Wayne, Indiana, and General St. Clair met witha similar disaster the next jear. General Wayne ("Mad Anthony") was then dispatehed to the Indian country. He devastated their villages, sweeping eversthing before bin, till he reached the Maumee river, in the nort h_{1} west corner of Ohio. There he won a great victorry near the site of Naumee City, August 20, 1794, and obliged the Indians to sue for terms. By a treaty concluded in the folloming year, the United States acguired from the savages a large tract forsettlement in the present states of Ohio and lidiana.
143. About this time the divisions hetreen political Orimin of parties became strongly marked. The necasional irata. political tion shown in the debates in Congress is an evidence vartics. that the first ill-defined estimate of the new scheme of government was giving may to positive and settled opinions of its powers, and of the poliey which should he followed in managing it. As we have spen, people were first divided into two great national parties in the antumn of 1757 , when the question at issue was whether the federal constitution should be ratified by thestates. It is probable that a majority of the American people were anti-Federalists in 1789, although the Federnlists, by the active assistance of many of their natural opponents, had gained the executive, the house, the judiciars and most of the state legislatures, and were able to defeat the disagreping factions known collectively as anti-Federalists. Hamilton's measures as secretary of the treasurr eanbodied an entire system of punlie polies, and the opposition to them made the differences between the two parties still more prominent. Ilamilton's opponents, led by Jefferson, made the objection to his principal mensures that they assumed powers in the national government which were not granted to it hy the constitution. Hamilton then fell back upon the elastic clause of the constitution, and maintained that
$W h=k y$ in.
surrection.
these powers were implied in it. Jefferson held that this doctrine of "implied powers" stretched the elastic clause* too far. He clainsed that this clause ought to be construed strictly and narrorly. Hamilton conteuded that it ought to be construed loosely and liberally. Hence the names "strict-constructionist" and "loose-constructionist," which mark, perhaps, the most profound and abiding antagonism in the history of American politics.

14 . During the year 1792 , the various anti-Federalist factions had become cemented into one party througla their efforts in resisting the Federalists, but the party still lacked a name. That of anti-Federalist was no longer applicable, for its opposition to the federal unicn had entirely ceased, and the parties had become divided in the only sound and healnhy way possible in a free country, namely, into those who wished to extend, and those who wished to limit, the powers of government. Neither party had been consistent in applying its principles, but, in the main, Hamiton can be called the founder of the Federalist parts, which had for its successors the National Repablicans of 182S, the Whigs, of 1833 to 1852 , and the Republicans of 1854 to the present time ; while Jefferson mas be regarded as the fonnder of the party which, after discarding the old name of anti-Federalist, adopted that of DemocraticRepublican. This always was the official party title. They preferred to be called Republicans, while their enemies tried to call them Democrats, an epithet, which was then supposed to convey a stigma. However, the oorrect name for this party was Republican from about 1792 to about 1828 , and since then it has been known as the Democratic party.
145. At the request of both Federalists and Republicans, Washington consented to serve as president a second time, so that the party contest was narrowed down to the vice-presidency. For this office the antiFederalists, or Republicans, as they were now called, supported George Clinton, of New Iork, while the Federalists presented the name of John Adams. Jefferson would doubtless bave been put formard, but that would have cost Virginia her yote, for her electors could not have voted for Washington and Jefferson, both being from Virginia. The presidential election took place November 6, 1792, and resulted in a Federalist success and the re-election of John Adams. During Washington's first term, Vermont, by consent of Congress, was admitted into the Union (February 18, 1791), and kentucky became a state on the 1st of June, 1792. In the year 1791 a bill for the establishment of a national bank was introduced into Congress, and passed after a strong debate.
146. During the first years of the American Republic, the terrible scenes of the French Revolution were enacted. Jefferson and the anti-Federalists sympathized strongly with the French Revolutionists, and wished to aid them in their struggle against the European powers. This party apecialls affected the leveling principles avowed by the French Republicans, and the opposite party did not olject to these principles to a limited dpgree. Early in April, 1793, news was received that the French Republic had declared war against Great Britain and Holland. It excited the sympathies of the American people for their sister republic, even though that republic was the aggressor; and it needed a firm hand and indomitable will, like Washington's, at this time to control public affairs, for the country was in a position to drift easily into war as an ally of France. Washington consulted his cabinet, and by their unanimous adrice determined to regard the former treaty as nullified by the change of government in France, and to issue his proclamation of neutrality between the French Republic and her enemies. The proclamation at once called down a storm of rage and invective against the president. He was assailed by the pross and extreme Republicans, and accused of being an enemy to France and republican institutions, of 1 is-
regarding a solemntreaty, and of usurping the functions of Congress in regard to the announcement of peace or war.
147. The French expected the Americans to help them in their war with England; and in 1793 they sent over a minister to the United States to induce them to do so. This man was called Citizen Genet. He arrived at Charleston, South Carolina, in April, and was received with the most extravagant marks of public attachment. Misled by the warmsth of his reception, he entered on and persisted in a course which would Fonly have been pardonable if he had been still on French soil. He fitted out privateers from American ports to cruise against the enemies of France, and sought to embark the American people in the cause of his country whatever might be the determination of the government. Hany Republicans were disposed to uphold him in all his acts, but his insolence presently disgusted his own supporters. He violently assailed President Washington and the gorernment, and otherwise misbehaved himself until Washington sternly checked bis proceedings, and at length conplained of him to the French government, which thought best to recall lyim.
148. Abont this time war was apprehended between Tireat the United States and England. England bad never warwi accredited a minister resident to the United States, and had refused to carry out those articles of the treaty of 1783 which bound her to surrender her military posts on United States soil, and to pay for the slaves carried away by her armies. She had also issued orders which bore hard upon American nerchants and sailors. She claimed the right to lay hold of any provision for the enemy which she might find in a neutral ressel, to seize the product of French colonies wherever found, and to board any vessel to make seurch for seamen of British birth, and carry them off for her own service. It was also beliered that her agents hadinterfered to prevent treaties of peace with the savages of the northnest, and had incited them to renewed attacks upon the froutier settlements. Her refusal to evacuate the western posts was grounded on the alleged unjustifiable neglect of the United States to enforce that article of the treaty of 1783 which provided for the payment of debts due to British subjects. For her further offensive measures no justification was offered, except her sovereign will. Out of these circumstances war might easily have grown, and it required all the wisdom of Washington and his advisers to prevent it. So bitter was the feeling against England held by men of both parties, that Congress began at once to take measures to rase an army, equip a navy and to stop all commerce with her. War was imminent, and Washington determined to avert it.
149. He appointed John Jay, who was then chief justice, to be envoy extraordinary to England, for the purpose of preserving peace by a new treats, in which the points in dispute between the two countries should be settled. Jas concluded a treaty with England which did not satisfy hin, but which was the best he could secure. It reached America March 7, 1795, and was sent to the senate in special session, June 8. The treaty provided that the western posts be surrendered to the United States, that compeusation be made for illeg. I captures of American property, and British creditors be secured the means of collecting debts contracted prior to the Revolution.

But Eugland still retained the right of impressing American seamen of English birth, and of shutting off American commerce from the West Indian trade. When the conditions of the treats lecame known there was great excitement in all portions of the country, and the wrath of the Republicans rose to fever beat. Hamilton was stoned on the street, and scurrilous newspapers railed against Washington, calling him the "step-father of his country." But the senate ratified the treaty, and Washington signed it, because, imperfect though it was, it was better than none, and would ayert war. It was the first substantial recognition which England had made of the sovereign rights of the United States,
and the result proved Washington's wisdom, for peace prevailed, commerce revived, and many who had at first denounced the treaty, became its friends.
150. During Washington's second term, party con tests had become numerous in the sessions of Congress. After much opposition on the part of the Republicans, the Federalists succeeded in passing a system of indirect taxation to provide for the increased expenses of the goverument. A Federalist bill to prevent such practices as Genet's was opposed by the Republicans, but was passed with some nodifications. An attempt was made by some of the Kepublicans to secure the passage of resolutions censuring llamilton's management of the treasury, but it met with no success. The supreme court had decided that an action brought by a citizen of the United States would lie against a state, just as against any other corporation. This alarmed the Republicans. An amendment to the constitution was therefore adopted by Congress, securing states against suits in the United States courts. It was afterward ratified by the required number of states, and became the IIth Amendment, which has enabled so many states to repudiate debt with impunity. In June, 1796, Tennessee, formerly a part of North Carolina, became a state of the union.
151. The time for a new election of president was now at hand. Washington was importuned to accept a third term of office. Electors nominated by both parties were called upon to promise that, if elected, they would give their first votes to Washington, but he refused to accept. When he retired from the presidency he made a farewell address to the people of the United States. In that address, which is weighty with words of wisdom, he urged the people to prize the Union which they had formed; to remember that each part of the country bad free intercourse with all other parts, and that each could help the other. He begged them to suffer no parties to gain ascendancy in the
Union which should weaken its strength, and bade Union which should weaken its strength, and bade them to glory in the name of America. He reminded them that Europe had interests in which Anserica had little concern, warned them against the admission of any European or other foreign influence
into American councils, and urged them to into American councils, and urged them to make religion, education and public good faith the basis of government.
152. As Washington refused to be a candidate for a third term, the election of 1796 was warmly contested by the two parties. No formal nominations were made, but it was understood that the Republican electors rould cast their votes for Thomas Jefferson, of Virginia, and Aaron Burr, of New York, and the Federalist electors for John Adams, of Jassachusetts, and Thomas Pinckney, of Maryland. Hamilton, haring made so many enemies by his political zeal, was eprinci- not considered a suitable candidate. The principles of es of the the two parties were distinctly ninderstood. The Rethe rights of man, the advocates of poonomy and of the rights of the states. The Federalists claimed support as the authors of the government, the friends of neutrality, peace and prosperity, and the direct inheritors of Washington's policy. In Fehruary, 1797, the electoral votes were counted. and John Adams, the Federalist candidate, was found to be elected president, and Jeferson, according to the rule at the time, as second on the list, became vice-president. This was an unwise rule, since under it the death of the president might reverse the result of the election.
153. On March 4, 1797, Adams and Jefferson were sworn into office. Shortly after the commencensent of President Adams' admiuistration the French Jirectory, displeased with the strict neutrality which the United States had observed during its war with England, and also on acccunt of the treaty of peace which had been recently entered into between England and the United States, adopted resolutions highly injurious to American commerce, and refused to receive Mr. Pinckney, the American minister, until the United

States had complied with their demands. The first act of Mr. Adams was to call an extra session of Congress, to determine how a war with France was to be avoided. A special commission of three envoys was sent to France, John Marshall, afterward chief justice, Charles Pinckney and Elbridge Gerry, but the French government refused to receive then. Prince Taileyrand had the impudence to send secret agents to deal with the envoys. These agents demanded that a large sum of mones be paid the goverument before the envoys could be received at all. After that the United States must lend money to France to enable her to carry on her war. When this was done France would repeal some of the acts which injured American commerce.
154. The envoys indignantly refused to accept such terms and sent home to America an account of this infamous proposal, anả Mr. Adams laid the dispatches before Congress, substituting the letters X . Y. Z. for Talleyrand's emissaries. Hence, these papers have ever since been known as the "I. I. Z. dispatches." April 8 the Senate voted to publish the X. Y. Z. letters and the dispatches of the envoys. To England they seemed of such importance that they were sent to every part of Europe to excite feeling against France. One burst of indignation arose in America, and for the moment the Republican party seemed overwhelmed. Pinckney had declared, "Millions for defense, but not ane cent for tribute," and the wp-ds were taken up as a popnlar cry. The United Sía, es prepared for war. A few excellent frigates were built, an army was raised, and Washington was placed in command with the rank of lieutenant-general. It was during this excitement that the song of "Hail Columbia" was published. American men-of-war were ordered to seize any French vessels which should zommit depredations on American commerce, and some naval engagements took place with success on the Anserican side. lntercourse with France was suspended. The treaties with France were no longer binding upon the United States, and authority was given to the president to issue letters of marque and reprisal.
155. The country was now on the side of the government. The Federalists, who had been losing ground, were now stronger than before. They attempted to strengthen the government still further by passing in Congress two acts, called the alien and sedition laws. Allen an The first of these acts, passed June 25, 1798, author-sedition ized the president to order ont of the country any alien Whom he might regard as dangerous to the peace and liberty of America, and made provisions for the fining and imprisonment of such aliens as refused to obes the president's order. July 14 the sedition law was passed. By this act a heavy fine and imprisonment were insposed upon such as should combine or conspire together to oppose any measure of the government, and upon such as should utter any false, scandalous or malicious writing against the government, Congress, or president of the United States. This act was to remain in force until March 3, 1801. These laws placer a power in the hands of the government which alarmé the Republicans. They claimed that the laws were aimed against them. They opposed the action of Congress, not as friends of France, but as Americans. They believed that less power should be given to the federal government, and more to the separate states. This belief, which so nearly prevented the adoption of the constitution had never disappeared. It showed itseli on every occasion, and helped to shape the course ot the Democratic-Republican party. This party cane to be called the State-rights party, because it was jealons lest the states should not have all their rights under the constitution.
156. Thus, when the Federalists forced through Congress the alien and sedition laws, they called forth a vigorous remonstrance from the southern Republicans A series of resolutions, drawn un by Jefferson, was adopted by the legislature of Kentucky (1798), and a similar series, drawn up by Madison, was adopted in the same year by the legislature of Virginia. These

Rent at once agreed to the proposition, though he believed that the constitution gave the Federal government no power to purchase foreign territory and make it a part of the union. In this instance, an article for the ratification of the purchase was prepared as an amendment to the constitution, but was never offered, as the president's action met with a general acquiescence and has since been imitated in similar instances without question. The Louisiana purchase included everything west of the Mississipni not already occupied by Spain, and comprised the whole or part of the present states of Arkansas, Colorado, Iowa, Kansas, Louisiana, Minnesota, Missouri, Nebraska, Oregon, the two Dakotas, Montana, Washington, Wyoming. Idaho, and the Indian Territory. The effect of this great acquisition of territory, by such an active and prosperous people as the Americans, was to insure them the ultimate control of the continent without incurring any foreign warfare worth historic mention. It set the nation free for an indefinite length of time from European complications, but, on the other hand, it was the means of creating some new and fornidable fature in the rivalry between the free states and slave states.
163. The Barbary states on the southern shores of the llediterranean were in the habit of sending out piratical vessels to pres upon the commerce of other nations and reduce their sailors to slavery. All the great powers of Europe, as well as the United States, had adopted the custom of paying tribute to these petty governments, in order to secure immunity for their trade. But these pirates grew increasingly insolent, so that the patience of the American government became entirely exbausted. A small Heet was sent out to the Mediterranean, which bombarded Tripoli. After a desultory warfare extending over two years, the Tripolitans sued for peace. The English government then followed the example of the United States, and in a few jears more this abominable nuisance was suppressed.

In the latter part of 1808, during the first session of the VllI Congress, the manner of the presidential election was amended to the form which it has at present. The amendment having been ratified by the necessary number of states, this became the twelfth amendment to the constitution. Articles of impeachment were roted by the house against a federalist judge, Chase, of Maryland, for arbitrary and oppressive conduct in trying cases under the alien and sedition laws. At the next session of Congress in 1804, Chase was tried and acquitted.
164. In 1804 .Jefferson was re-elected president, with George Clinton for rice-president, in place of Aaron Burr, who had separated from his party. The federalists then made Burr a candidate for the governorship of New York, but here, as in 1801. Hamilton used his influence against him, and Burr was defeated. Resenting this opposition, Burr contrived to force Hamilton into the acceptance of a challenge. They met on July 11, 180t, and IHamilton was killed. The mourning of the country over the luss of this distinguished man was intense, and the wretched Burr found that his public career was at an end. Bankrupt infortume, and a fugitive from home, he visited Xew Orleans and other parts of the south and west (1805) for the purpose of arranging an enterprise whose exact object has never ljeen positivels discovered. He planned either the seizure of Mexico, or the establishment of a monarchy west of the Alleghanies. He was arrested by the federal government on a charge of treason, and was tried before Chief Justice Marshall in September, 1807, but after a long investigation he was acquitted in consequence of a defect in the chain of evidence. Afterward he became an outcast from society and died in obscurity.
165. On the 4 th of March, 1805, Jefferson and Clinton were sworn into office. Jefferson's second administration was the beginning of a stormy period which ended in war. The wars of Napoleon still continued, and France and (ireat Britain were using every expedient to cripple each other without regard to the rights
of neutral nations. In the beginning of these wars the C"nited States, being a neutral power, had acquired a valuable foreign commerce, but this was speedily destroyed by the arbitrary measures of the belligerents. With his famous Lierlin and Milan decrees, Napoleon sought to prevent neutral vessels from entering British harbors, and claimed the right to seize all ressels trading with England or her colonies (1806). England replied with her orders of council issued by the king, which forbade all commerce with the ports of Europe that were within the Freuch dominion or in countries ablied with France. If an American vessel touched at almost any port of continental Europe, the first British cruiser that came along deemed her its lawful prey; if she touched at a Pritish port, she was liable to capture by the first French craft that she slould meet. Jefferson had abandoned the policy which Adams had adopted of building a strong nars. He imagined it possible to defend American harbors lys meaus of gun-boats carrying each one gun, and had reconmended this, plan which Congress adopted. This "Gunboat System" was alwass hateful to the navy, and was a constant object of federalist ridicule and attack.
166. While the offensive measures of England and France made American mercbantmen a prey to both parties, England, in another respect, possessed a peculiar power of annoying the United States. She still Theright claimed and exercised the right of stopping American vessels and seizing all sailors, even naturalized citizens, who were supposed to be British suljects. In June, 1807, the insolence of this claim was carried so far that the British man-of-war, Leopard, stopped the United States frigate, Chesapeake, ofl the entrance of Chesapeake Bay, fired into her, killing or wounding twentyone of the crew, and took off four men, three of whom were Americans. President Jefferson demanded reparation for this outrage, and issued a proclamation ordering all British war vessels out of Auserican waters. The British government was ready to disavor the act of the Leopard, but there was no willingness shown to make reparation. Feeling unprepared for war, the United States government had recourse to an exceedingls stupid and dangerous measure. The president recommended a bill by which American vessels should be prohibited from leaving foreign ports, and foreign vessels from taking cargoes from the United Stater, Embargo and all coasting vessels should he required to give Bill. bonds to land their cargoes in the United States. This was the celebrated Embargo Bill, which did more harm to American commerce than all the cruisers of France and England were able to do. It also intensified party feeling and even threatened the existence of the union.
167. As time went on the Embargo Act became so unpopular that before the close of Jefferson's second term many of his friends forsook him. A great pressure was brought to bear upon Congress to repeal the act. It passed in its place the Non-intercourse Act. Non-InterThis act prohibited trade with England and France so course act long as their olmoxious measures should be kept in force, but it allowed free trade with other countries. Among the other important events of Mr. Jefferson's adminisuration were the passing of an act of Congress prohiliting the slave trade after Junuary 1, 1808 ; the beginning of the United States const survey, a valuable work which is still continued to the great credit ol American science, and the application of steam to navigation by Robert Fulton. Jefferson refused to be a candidate for a third term, and at the election in 180s, James Jadison, of Virginia, was chosen president by the liepulnican, or, as it now began to be called, the Jemocratic party. Clinton was re-elected vicepresident. The candidates of the Federalists were C. C. Pinckney and Rufus King.
165. The Non-intercourse Act went into force March madrons 4, 1809, when Mr. Madison succeeded to the presidency. adminne He belonged to Jefferson's parts and continued his tration. policy. l'arty feeling had grown very bitter. New England, which suffered the greatest from the breaking up of trade, was the stronghold of the Federalists.

They complained loudly that if it were not for the Embargo and Non-intercourse Acts there would be no trouble. The southern and western people, who were principally Democratic-Republicans, retorted that they had evidence of negotiations between the New England Federalists and England; that the Federalists were planning for a separation of New England from the union. This charge was indignantly denied, but it helped increase political hostilities. In 1810 Congress repealed the Non-intercourse Act, which had accomplished nothing in the way of intimidation. Congress then informed England and France that if either nation would repeal its obnoxious measures, the Nonintercourse Act would be revived against the other. Napoleon was studying how he might get the adrantage of England, and he withdrew, or pretended to withdraw, his decrees prohibiting commerce with England so far as the United States was concerned, but at the same time gave secret orders by which the decrees were to be practically enforced as harshly as ever. Congress at once revived the Non-intercourse Act against Great Britain alone.
Beginning
169. England and the United States grew more irritated with each other, and in 1811 hostilities actually began on sea and land. In May the United States frigate Pirsident hailed the British man-of-war Litlle Belt and was answered by a shot. The President then replied with a shot in turn, and a sharp action ensued in which the Little Belt was badly crippled, and lost thirty-one killed and wounded. Tecumseh, the famous Shawnee chief, had gathered a large number of warriors, and at the instigation of the British they were attacking the northwestern settlements. General Harrisou marched against them, and on November 7, he defeated them at Tippecanoe. The English continued to seize vessels and men. More than nine hundred American vessels had been seized since 1803 , and several thousand American seamen had been impressed into the British service. The people of the United States were exasperated at their losses and their inability to protect themselves. Madison wished to continue the general peace policy of Jefferson, but new leaders had sprung up in the Republican party who were in favor of war. Chiel among these were Henry Clay, of Kentucky, speaker of the house, William H. Crawford, in the senate, and John C. Calhoun, of South Carolina, in the house. These became the recognized congressional leaders of the party. The economical and retrenching policy of Jefferson was abandoned, and preparations were begun for hostilities. Bills were passed to entist men, to organize the militia and to enlarge and equip the army.
170. President Madison was given to understand that his nomination for a second term of office depended upon his adoption of the war policy, otherwise De Witt Clinton, of New York, would be nominated in bis stead. The president accepted the conditions, and on June 18, 1812, war against Great Britain was formally de clared. It was soon learned that the British government had revoked the orders in council five days after the declaration of war, but this concession came too late. Even if it had come in time probably nothing short of an abandonment of the right of search and impressment on Great Britain's part would have proved satisfactory. The war feeling was by no means unanimous. The New England Federalists bitterly opposed it. The chief support came from the south and west, which felt less keenly the effect upon their prosperity, caused by the breaking up of commerce. Immediately after the declaration of war the Federalist members of Congress had published their protest against it in an address to their constituents. When requisitions were made by the president upon the governors of the different states for their respective quotas of troops, according to the act passed by Congress to embody the militia, the governors of Massacbusetts and Connecticut refused to allow their militia to leave their states on the ground that it was unconstitutional for the Federal government to call out the militia except in case of an invasion or resistance to
the laws of the United States, and neither of these had taken place. April 30, 1812, Louisiana was admitted into the union of states.
171. The wrar opened by the invasion of Canada by General Hull, who was ordered to cross at Detroit and attack Fort Malden a few miles distant, but he was compelled to fall back again to Detroit. Here he was attacked by a large force of British and Indians under General Brock and Tecumseh. Believing he was not strong enough to defend the place he surrendered (August 16, 1812), not only Detroit, with its garrison and stores, but the whole territory of Michigan. Being exchanged, after some time he was tried by a courtmartial on charges of treason and cowardice. He was acquitted of treason and was sentenced to be shot for cowardice, but was pardoned by the president on account of his past good services. In October another attempt was made upon Canada, near Niagara. A small force crossed the river and attacked the British in a strong position on Queenstown Heights. At first Queens the Americans were successful, but were at last defeated Height with heavy loss.
172. To compensate for these disasters on land the Naval little American navy won imperishable glory on the exploits. ocean. The United States frigate Essex, Captain Porter, captured the British sloop-of-war Alert after a fight of eight minutes, without losing a man. The Constimtion, Captain Hull commanding, fought a famous action with the British frigate Guerriére near the Gulf of St. Lawrence (August 19), and in less than an hour completely destroyed ber. This victory dispelled the belief that the British navy was invincible, and the whole country was filled with transports of delight. On the 18th of October the sloop-of-war IFasp, commanded by Cuptain Jones, captured the British brig-of-war Frolic off the coast of North Carolina, but the same day the British ship Poictiers took both the captor and her prize. On October 25, the frigate Cnited States, under Commodore Decatur, fought a memorable action with the British ship Macedonian, which surrendered to Decatur after being nearly cut to pieces. This engagement took place off the Island of Madeira, but Decatur succeeded in carrying his prize to America. The Constitution, commanded by Captain Bambridge, in a two hours' fight off the coast of Brazil, knocked to pieces the British frigate Jara (December 29), which lost 230 men and had to be burned, while the Constilution lost but twelve men and not a single spar.
173. During the first six months of the war the despised American navy, of which even the Americans expected but little, became the admiration of the world. Privateers also were very active, and before the end of the year the captures from the British numbered about fifty vessels of war, two hundred and fifty merchant vessels, and three thousand men. Under the impulse of these successes the Federalists, who had been opposed to the war, were beaten in the autumn elections, and Madison was re-elected president, with Elbridge The re-el Gerry for vice-president. The American disasters on Man of land had led the government to collect a large army, which was placed under the command of General Harrison. He first made an attempt (January, 1813,) to re- The war cover Detroit and the territory of Michigan, but was the nort driven back to Fort Meigs by Proctor, who besieged him there, but unsuccessfully. So much of the frontier was occupied by the great lakes that it was of the greatest importance to get control of these, and for this purpose, both British and Americans were busily engaged during the summer of 1813 in building fleets. Captain Oliver H. Perry directed the building of the fleet on Lake Erie, and sailors were sent forward from the seacoast. He had just completed nine vessels, which were at anchor in Put-In-Bay, when he saw the British ap- Batte proaching. He at once moved out to meet the enemy Lake Er (September 10), and in a little more than two bours was able to send this dispatch to General Harrison, who was in command on the Sandusky: "We have met the enemy and they are ours; two ships, two brigs, one schooner, and one sloop." This victory turned the
scale of war in the northwest. Harrison shipped his army across the lake in Perry's Heet, and attucking Proctor at the River Thames (October 5), inflicted a crushing defeat upon him. This was a severe blow to the Indians also, for their great leader, Tecumseh, was killed. The American success restored the northwestern territory to the country.
174. In the spring of 1813 Tecumseh had visited and roused the Creek Indians of the southrest, and in August they took occasion to attack the frontier settlements, beginning with the terrible massacre at Fort Alimms, near Mobile. General Andrew Jackson, with the formidable Tennessee militia, marched into the Creek country, and won a series of telling victories, by which they were entirely subdued, and purchased peace by the surrender of two-thirds of their hunting grounds. In the meantime the British, after the defeat which they had suffered from the American navy in 1812, strengthened their Atlantic squadron. During the summer of 1813 they attempted to blockade the coast from Maine to Georgia. Congress, in turn, hastened to build new ships; and the courageous privateers continued to fight pluckily, and to bring prizes into the United States ports. In February, 1813, the American sloop Horme, Captain Lawrence commanding, destroyed the British brig Peacock, which sank before all of her crew could be removed. On his return to the U'nited States, Lawrence was promoted to the frigate 'hesupeake, with which, on June 1, he had a severe engagement with the Britisb frigate Shamon near Boston. Lawrence was mortally wounded at the beginuing of the action. As he was carried below, he exclaimed: "Don't give up the ship!" The "hesaprake, however, was captured by boarding, after she had lost a large proportion of her officers and men. The Argus, Captain Allen, was captured by the British man-of-war Pelican (August 14), after a gallant fight in which Captain Allen receired his death wound. Lieutenant Burrows, in the brig Enterprise, captured the British brig Boxer (September 5), after a short action. The frigate Essex, Captain Porter, made a brilliant and successful cruise during the year 1813, and did great damage to the British commerce. At length, however, she was attacked in March, 1814, by the British ships Ihoebe and Cherub, and after the bloodiest fight of the war, the Essex was compelled to surrender. The sloop Percock captured the British brig Epervier off the coast of Florida (April, 1814). The Hasp made a brilliant cruise, taking a number of British vessels. The old Constitution, Captain Stewart, engaged singly the British sloops-of-war Cyane and Levant of the coast of Portugal, and captured both in a remarkable night engagement, February 20. The Hornet captured the British brig Penguin in March, off the Cape of Good Hope, and in June, the Peacock closed the long record of victories by taking the British ship Nautilus. These last three actions took place after peace had been concluded.
175. In the summer of 1814, the Americans made a fresh attempt to invade Canada under General Brown, with whom served Brigadier-General Winfield Scott. They crossed the Niagara river and in four hard-fought battles defeated the British at Chippewa (July 5), Lundy's Lane (July 25), and Fort Erie (August 15 and September 17), but in spite of these successes, they could not establish themselves in Canada, and retired across the line before cold weather came. In March, 1814, Napoleon was dethroned and sent to Elba, and the European rar being over, England was enabled to spare more men for the war in America. Her policy was to march two armies into the United States. One was to descend from Canada by the route which Carleton and Burgoyne had followed, and the other was to land at New Orleans and move northward. To divert attention a fleet under Admiral Cockburn sailed up the Potomac and attacked the capital. There was scarcely any resistance, and the British wantonly destrosed puhlic buildings, books and papers (August, 1814). Nothing was spared except the patent office and the jail. The British then moved upon Baltimore. General Ross and bis troops were landed a few miles below the town, but
the Americans gallantls repulsed them. Then the fleets hombarded the forts which protected lialtimore (September 12 and 13). Fort Mchenry received the hottest fire from the fleet. It was upon seeing the flag still fly. ing from the fort, when the smoke cleared away, that Francis S. Kej wrote the national song, "'The Starspangled Banner." The fleet finally abandoned the attempt and sailed awas.
176. The British in Canada, having been reinforced by the arrival of fresh troops from England, advanced with an army of fourteen thousand men under Prevost, to attack Plattsburg, on Lake Champlain, while a Brittish squadron, under Captain Downie, sailed up the lake to co-operate with him. The Americans, under General Macomb, being only fifteen hundred strong, fell back behind the Saranac, and there made a vigorous defense. They had also a squadron of small vessels under Commodore Macdonough, and this was stationed at the entrance of Plattslurg bay. Captain Downie attacked Macdonough (September 11, 1814), at the same time that General Prerost attempted to force the passage of the Saranac, but the British fleet was annihilated ly Battle of Macdonough and Prevost, beaten at ever's point bs Ma- Platisburg comb, retreated in disaster to Canada. But while this attempt on New York proved a failure, the British succeeded in seizing the unoccupied wilds of Maine east of the Penobscot river, and thus created a panic in New England.
17. The expedition against Washington was designed The war m chiefly as an insult; the expedition against New Orleans the Soatb. was for conquest. If the British could gain this important position they would control the Mississippi and the western country. In December, a British army of 12,000 men under General Pakenham, landed below New Orleans. General Jackson hastened to that city with $6,000 \mathrm{militia}$ to oppose him, and fortified the town as best he could. After a fortnight's siege the British determined to assault the American works. Earls on the morning of January 8, 1815, they made the attack. Jackson's men, trained to ritle shooting and aided ly artillery, met them with great coolness, and in less than half an hour the British were in full retreat, leaving Pakenham and 2,600 men behind them, killed or wounded, while the American loss was but 8 killed and 13 wounded. This battle also occurred after peace was deciared.
178. Negotiations for peace bad been begun in August, 1814. The American government was anxious for almost any honorable peace in preference to continuing the war with England. The latter country had revoked the orders in council long before, but stil] England's demands were such that they could not be accepted with honor by the Federal government. The war feeling was thus continued among the republicans, and some of their leaders began to meditate measures which the strict constructionist principles of the party would not justify. I'ropositions were made to introduce the English system of impressment of seamen, and of allowing officers of the army to enlist minors over eighteen years of age without the consent of their parents or guardians. The Connecticut legislature ordered the governor to resist the execution of these and similar measures if they should become laws. In view of these things, and provoked by the British invasion of Maine, the legislature of Massachusetts had invited the other New England states to send delegates to Hartford, Connecticut, "to confer upon the subject of their public grievances." Delegates from Massachusetts. Connecticut and Thode Island, and from parts of Vermont and New Hampshire, met at Hartford The in December, 1814, to discuss the sithation of affairs Hartiord and decide upon the proper course to be pursued. Convention Among other measures thes recommended the adoption of several amendments to the constitution, chiefly with intent to restrict the powers of Congress over com. inerce, and to prevent naturalized citizens from holding oflice. As there was much secrecy in its proceedings. a popular suspicion was aroused that a dissolution of the union had been proposed, perhaps resolved upon, in its meetings. This suspicion completed the ruin of the the Federal party. From this period the few remaining Federalists ceased from any united party action. There was but one party, whose principles consisted of a combination of those which had characterized the originał Federal and Republican parties. The leading principle of the Federal parts, the estahlishment and continuance of the Federal government, had been quietly adopted by the Republicans, white the Republican principle of limiting the duties and powers of the government had been as quietly accepted by the Federalists after the Republican party had come into power. In the presidential election of 1816 , the Federatist candidate, Rufus King, received only 34 electoral votes against 187 for the Republican candidate. James Monroe. His administration lasted from 1817 to 1825, for in 18:2 the Federalists put no candidate in the field, and Monroe, being nominated for a second term, his election was practically unanimous. His administraThe era of tion has been called the "Era of good feeling." People laod feel- forgot the old quarrels in their joy at the end of the war and the revival of business. For a time the violent party feeling, which had flamed so high during the European strife, had quieted down. New occasions for political contest had not yet come. Congress occupied itself chiefly in the regulation of internal affairs. Taxes were reduced, and a slight increase was made in the tariff. The feeling was growing among the Republicans that the tariff ought to be so arranged as to afford protection to those manufactures which had been developed in the United States during the war, but were now suffering from a competition with the cheaper goods which were imported from England. But no action was taken on the subject.
181. As has been stated, the charter of the national bank, which had been granted during Washington's first administration had expired in 1811, and the Republicans, then in power, had refused to re-charter it. The attempt to carry on the war by loans had resulted in almost a state of bankruptcy. In A pril, 1816, a bill was passed. granting a charter for a national bank to expire in 1836. It was modeled upon the one which the Republicans bad formerly opposed. The Republican newspapers warmly adrocated the scheme, and repubished Hamilton's argument in favor of such a bank, hus showing how far loose constructionist ideas had
spread in the Republican party. The bank was organized with a capital of $\$ 35,000,000$, four-fifths of whict might be in government stock. It was to have custody of the government revenues, but the secretary of the treasury was empowered to divert the revenues to other custodians, giving his reasons for such actions to Congress.
182. In 1817 hostilities broke out with the Seminole Trouble and Creek lndians of Spanish Florida, Georgia, and Floridu Alabama; General Jackson being sent to the scene of disturbance, chastised the savages and destroged their villages. Jackson, with all bis admirable qualities, was not a cautious man. Satisfied that the Spaniards had incited the Indians to make war, he invaded Floride (April, 1818) and took possession of Spanish forts and built a fort of his own. Then he seized Pensacola and seni the Spanish troops and ciril authorities to llavana. Though Jackson's high-handed measures were not fully sustained by Congress, yet, so popular was be, that instead of being reproved by Congress, he was regarded as a great hero worthy of warmest praise. Spain vigorously protested against these proceedings as a gross violation of neutrality, but she was too weak to offer any effectual resisiance. The matter was finally arranged by the purchase of Florida by the United States for $\$ 5,000,000$ (1819).
183. The growth of the nation was so rapid that for Growtho six years after the close of the war of 1812 a new state the nation was added each year. Indiana was added in 1816, Mississippi in 1S17, lllinois in 1818, Alabama in 1819, Maine in 1820, and Missouri in 1821. The population now numbered nearly ten millions; the public revenne had ncreased from five million dollars during the time of Washington to twenty-five million dollars. Since 1790 the government had granted patents to its inventors. A few had been granted prior to 1812 , but after that the number increased rapidly. In 1836 the patent office was made a distinct burean under the secretary of state, and a commissioner of patents was appointed at its head. The great coal and iron regions lying in the Appalachian range were now yielding their riches. Charcoal was formerly used in smelting iron, but in 1520 the ironworkers of Pennsylrania began to make experiments in mixing anthracite coal with charcoal. When it was found that anthracite coal could be used alone the manufacture of iron received a new impetus and increased rapidly. With a country so large, and with a population spreading in every direction, the urgent denand of western settlers for some quicker and easier mode of inter-communication and transportation led to a variety of plans to accomplish the end. Private companies, and sometimes the state, built roads and canals. The greatest of these public works was the Erie canal, which owed its execution chiefly to the Erie Cans energetic governor of New York, De Witt. Clinton. It was begun in 1817, and opened for traffic in 1825. It extended across the state from Lake Erie to the Hudson, and was the largest canal in the world. When the enterprise was first undertaken, and until its comp!etion, it was called "Clinton's big ditch," but it was one of the principal means by which the city of New York hecame the chief commercial city of the new world. This was before the locomotive had been perfected, so that steam railroads were not jet iu operation.
184. In 1807, Robert Fulton had invented the steam- Steamboat. In 1811, a steamboat was launched on the Obio boats river at Pittsburg, and presently many like craft were traveling the western rivers, thus opening an easy means of communication between distant points. Just after the Erie canal was begun, a steamboat was Luilt, which was the first to navigate Lake Erie. The next year the steamer Sammah crossed the Atlantic, went as far as St. Petersburg and returned. Six years later, when the Erie canal was finished, the steamer Enterprise went from America to India by way of the Cape of Good Hope. In 1826, the first railroad in the United Railroan States was opened from Milton to Quincy, in Massachusetts. It was only two miles long, and was used for hauling granite, the cars being drawa by horses. In

1830, the first passenger railroad in America was opened, the Baltimore and Ohio Railroad, which was fifteen miles in length. The cars were at first dram by horses, but by another year a locomotive was used. The construction of railroads nors began in all directions, and during the next twenty sears nearly ten thousand miles rere built. By the application of steam to industry, the discovery of large tracts of coal and iron ore, the invention of labor-saving machines, the communication by steam and railroad, the means were given to an energetic people for transforming the wilderness of the southern half of North America into a rich and prosperous country.
185. In its international relations, the action of the government had become strong, quiet, and selfrespecting. Mexico and the Spanish colonies of South America had revolted against Spain, and established republics, and, in 1892, President Monroe acknowledged them as independent nations. During the revolt, it seemed likely that the "Holy Alliance" of Austria, Prussia, and Russia meant to assist Spain in bringing her revolted colonies to obedience. Great Britain had been gradually withdrawing her support from the alliance, and Canning, the new British secretary, determined to impress a check upon it by calling in the weight of the American government. A hint was given to the American minister, and in his annual message to Cougress, in 18:3. Jr. Monroe declared that: "We could not view an interposition for oppressing them (the South American States), or in controlling in any other manner their destiny by any European power, in any other light than as a manifestation of an unfriendly disposition towards the United States." This statement announced the great fact that "the American continents are not to be considered as subjects for future colonization by any European power." This principle, so boldly declared, became known as the "Monroe doctrine," and, having the full sympathy of England, it proved effectual. The attitude of the national mind implied in such a declaration showed that our period of national weakness had come to an end.
186. Before the Revolution, all the colonies beld negro slaves, but north of Maryland these slaves were few in number, and were soon emancipated in all the northern states except Delamare. In the early jears of the Republic, many of the wisest men in the south were desirous of getting rid of slarery. All but three of the United States which made the confederation forbade the importation of slaves. These three were North Carolina, South Carolina. and Georgia; and they insisted when the constitution $w a s$ formed, that the right to import slaves should continue until 1808. At the close of the eighteenth century there was a strong antislavery feeling even in Virginia and North Carolina, and the supposition generally prevailed that the slavery system wrould gradually die out without causing any serious political trouble. In tro states onls, South Carolina and Georgia, was slavers looked upon with any narked degree of favor, and this was owing to the fact that these two states were mostly given to the cultivation of rice and indigo, which seemed to make slave labor indispensable. In 1753, the famous cotton-gin was invented hy Eli Whitney, a comnecticut schoolmaster living in fiengia. The construction of this machine was so simple that the slares could use it, and cotton could be cleaned and prepared for market with great rapidity. Hitherto very little cotton had been raised in South Carolina and Georgia, but with the advent of the cottongin, cotton-growing became a profitable industrs, and, in consequence, there was an increasing demand for slaves. As the importation of sluves had been prohihited by the constitution, after lans, the cotton-phanters could henceforth obtain slaves onls by purchasing them in such border states as Kentucky and Virginia. To the tobacco-planters of these states, this spemed to promise a source of great protit, and mayy of them gave their attention to the raising of slaves for the southern markets. Hence, anti-slavery sentiments were soon extingnished among them. There was no likelihood
now that slavery would die a natural death. The interests of the south seemed to be bound up in the slavery system, and the way was prepared for uniting all the slave states into a solid south, as opposed to a solid north. The greatest danger to slavery had been the growing conviction that it was wrong in principle, and that the nation ought not to permit it. But slavery existed under the laws, and the states where it did not exist were not at first disposed to interfere. Thes held that slavery was purely an allair of the states in which it was found. Besiles, the northern states were now engaged in a variety of enterprises, while the southern States were still chiefly employed in the few agricul tural industries of tobacco, cotton, rice, and sugar. The south thus looked to the north for clothing, tools, much of their food, and all the luxuries of life. The merchants of the nortl found a great market for their goods in the south; the manufacturers also needed cotton to keep their mills in motion. For these reasons, chiefly, the relations between the two great sections in regard to slavery had not been disturbed; but the time was at hand when this question of slavery was to be the paramount one in the whole republic.
187. In the northwest territory, slavery was prohib- The slaven ited by law; in all territories south of that domain it struggle. was permitted. There soon grew up a contest between the free and the slaye states for control of the government, the south wishing to extend the area of slavery by the admission of new slave states, the north seeking to confure the institution to the localities where it already existed, while the abolitionists of the North wished to put a stop to it altogether. Thus began the "irrepressible conflict" between free and slave labor, which ended, after more than forty years, in the great civil war. It Was nut until the Mlississippi was crossed, and settlements began to be made in the great territory originally called Louisiana, which Jefferson had added to the national domain, that the question arose whether the states made from it were to be slave states or free. The first discussion was over the admission of the territory of Missouri as a state. A kind of compromise had been kept up from the beginning by admitting a slave state and a free state by tarns, so as to counterbalance each other in Congress. Thus Vermont bad been connterbalanced by Kentucky, Tennessee by Ohio, Louisiana by Indiana, Mississippi by Illinois. In the same manner, the admission of Alabama, in 1819, should have counterbalanced the admission of Maine in the following year; but, as Missouri was also knocking at the door of Congress, the southern members refused to admit Maine until it should be agreed to admit Nissouri as a slave state.
189. When Missouri applied for permission to enter The Mis the sisterhood of states, and a bill was brought before promise. Congress to that effect (1819), an amendment was offered to the bill, forbidding slavery or involuntary servitude in Nissouri, except as a punishment for crime. At once party lines were broken. The members from the free states roted for the amendment, and the members from the slare states against it. It was carried in the house, but rejected by the senate, and the hill was lost. At the next session of Congress, Dlissouri again presented her plea for admission as a state, and Maine made her tirst application for the same privilege. The Maine bill passed without opposition in the house, but by a sectional rote of that bods slavery was again prohibited in Missouri. In the senate, the Haine bill and a Nissouri bill permitting slavers were united, and then passed by a sectional vote. As the case now stood, both bills were compelled to stand or fall together, and the responsibility of their acceptance or rejection was thrown upon the house. The house held to its first action, and rejected the combined bills as passed by the semate. The difliculy was at length settled by the famous Missouri Compromise of 1820, in which unch section gave up some of its demands, the house by permitting slavery in Missouri, and the senate by permitting Maine and Missouri to be voted npon separately. Thus Maine and Nissouri were admitted into
-he union, the latter as a slave state; but it was agreed गy both branches of Congress that slavery should be orohibited forever in all other territories north of the varallel of $36^{\circ} 30^{\prime}$, which was the southern boundary a Missouri.
189. In 1824, Congress requested President Honroe to invite La Fayette to visit the United States as a guest of the nation. The marquis, then sixty-seven years of age, spent eleven months in a tour of the states, receiving everywhere the highest honors. His great fortune had been lost during the French Revolution, and Congress voted him a present of a township of land and two hundred thousand dollars in money. On the 17th of June, 1825, the fitieth anniversary of the battle of Bunker Hill, General La Fayette laid the cornerstone of the Bunker Hill monument. There were present on the occasion about forty of the survivors of the battle and two hundred soldiers of the Revolution. A memorable oration was delivered by Daniel Webster.
190. In the presidential election of 1824 , there were no recognized parties, and political issues were so obscure that the contest turned chielly upon the personal merits of the candidates. The leading candidates were John Quincy Adams, of Massachusetts, secretary of state, William 11. Crawford, of Georgia, secretary of the treasury, Henry Clay of Kentucky, speaker of the honse, and Andrew Jackson, a private citizen of Tennessee. On account of the number of the candidates and the character of the contest, the presidential campaign of 1824 has been humorously styled the "Scrub race for the Presidency." All the candidates claimed to be Republicans. Crawford and Jackson were representatives of the strict constructionist principles, but Jackson was not in favor with the Crawford faction on account of his leaning toward a protective tariff. Adams and Clay were loose constructionists. The personal nature of the canvass is shown in the tendency of the supporters of the different contestants to designate themselves as "Jackson men "or "Adauns men "rather than by any real party title. John C. Calhoun, of South Carolina, was generally supported for the vice-presidency by the friends of all the other candidates. In February, 1825, the electoral votes were counted, and were found to be, for president, 99 for Andrew Jackson, 84 for John Quincy Adams, 41 for William H. Crawford, and 37 for Henry Clay, and for vice-president, 182 for John C. Calhoun, and 78 for various other persons. Calhoun was therefore declared elected vice-president. Jackson had received the greatest number of electoral votes for president, but no one had a majority; and so the election went to the house of representatives. As Clay stood fourth on the list be was not eligible, and only three names were open to choice in the house. The friends of Clay therefore-unable to vote for him-united with the friends of Adams and thus secured the election of the latter. The feeling excited by this result had a tendency to widen the breach between the two divisions of the Republican party, and before long they became openly opposing parties.
The Adams adminis. tration.

The

accepted the invitation in behalf of the union. Congress, however, after a stormy debate, refused to send delegates. It was claimed that these South American states had abolished slavery, that they were near neighbors to the south, that they might include Cuba, which was still a part of Spain, make the island independent, and free the slaves there. The whole scheme was fraught therefore with danger to the slave states, and was rejected. The slave states were strong supporters of the doctrine of state sovereignty. They held that the states were independent of one another and of the federal government, a doctrine which had been held from the beginning of the union. The independent power of the state ras a safeguard against too great a power in the central government.
192. The first tariff act of 1789 involved the idea of protection to home manufactures. The duties, however, ranged only from $7 \frac{1}{2}$ to 10 per cent., averaging about 81 per cent. The system, too, which was introduced by Hamilton, seemedto be rather for political than economic purposes. Up to the passage of the tariff act, the laying of duties had been controlled by the states. The possibility of secession among the states in which the state-rights feeling was strong, was a feature that every statesman had to take into account. Hamilton wished to establish the new. Federal government as firmly as possible, and lis ohject in the tariff system seems to have been to create a class of manufacturers, running through all the states, but dependent for prosperity on the Federal government and its tariff. This would be a strong factor in support of the government against any attempt at secession, or any tendency to return to the old system of control by state legislatures. The war of 1812 had made it difficult to obtain manufactured goods from abroad, and many needed articles had begun to be made in the United States. After the war was over, American manufacturers wished to continue their business, but as they could not competesuccessfully with English manufactured goods, a higher protective tariff was thought necessary. In 1816 a tariff was instituted which imposed a duty of about twenty-five per cent. on imported cotton and woolen goods, and specific duties on iron imports. The English manufacturers nade far more clath than could be used in England alone, and they sold it to other countries. They could make the cloth better and more cheaply than it could be made in the United States. The people of the United States, therefore, would prefer to buy it of England rather than of the American manufacturers. Now England had established herself in India, and received at first most of her cotton from that country. She wished to favor her own merchants, who brought the cotton from India, and therefore she laid a tax upon the cotton from the southern states. Then the south began to send her cotton to the north, where they could sell it without paying duties, and favored a heavy duty on all cotton goods brought from England. By this means they thought that northern manufacturers could make up their cotton into goods which would cost the buyers less than English goods of the same kind. They reasoned thus: If the cotton has to travel across the Atlantic, pay a tax there, be made into cloth, cross the Atlantic again, and then pay a heavy duty at the custom-house, it will cost the merchant who buys it so much that when he sells it he must ask a higher price than for the cloth made perhaps in the next town to him. So the customer will buy the native cloth. This tariff on European goods, therefore, was called a protective tariff, because it was intended to protect the American planter and manufacturer. At first the northern people did not favor it. Their business was much more in ships than in mills; and if the tariff prevented the importation of European goods, their ressels would not be of much use.
193. There was nothing new in the principle of the protective tariff. As has been shown, Hamilton had urged it at the beginning of the government, and it was the method used by many countries for the protection of their own industries. But the tariff of 1816 in
the United States came at a time when it had a marked effect on the history of the people. If the United States could manufacture its own goods from its own products. and sell them to its own citizens, then one part of the country would help another, and the whole union would prosper together. Thus the tariff fell into its place as one of the plans adopted by the country when it settled down to the mork of possessing the land and improving it. But as time went on, the south, which had at first favored a protected tariff to ensure the sale of her cotion, now began to oppose any further increase of duties on foreigu goods. Thns, in 1822, a proposition for making the tariff more protective was defeated ly the southern section in Congress. The tariff of 1824 was adopted by very small majorities. It was an advance on all preceding tariffs in its consistent design of excluding foreign competing goods from American markets. It was passed by the northern members, except those from the northeast, against the almost unanimous vote of the southern members, who considered it unconstitutional, sectional, and unjust. In 1828, the Protectionists, as those who favored a high protective tariff were now called, succeeded, after a debate of six weeks, in passing another tariff bill Which was so protective as to be satisfactory to manufacturers but very objectionable in the southern states, where it was prononnced a legalized robbery. From this time the nullification doctrines of the Kentucky resolutions of 1799 began to gain strength rapidly in the south.
194. In the presidential canvass of 1828, the two factions of the great Republican party now assumed the character of two distinct and opposite parties. The supporters of Jackson assumed the name of Democrats, while his opponents, who favored the re-election of Adams, were known at first as National Republicans. But in the course of Jackson's administration, as they sam fit to represent him as a kind of a tyrant like George III, they assumed the name of Whigs; and henceforth, until 1854, Whig and Democrat were the names of the two great political parties in the United States. Without entering into a detailed history of these parties and their principles, it may be said in general that the questions which have divided them have been concerned with the powers of the national government. The Whigs wished to give the federal government the power to use the public money in the making of roads, improving rivers and harbors, etc., under the general head of fiternal Improvements; the Democrats claimed that these things ought to be done by the states or by private enterprise. The Whigs espoused the policy of laying duties on imports as high as revenue results would approve; within this limit the duties were to be defined for purposes of protection; and the superabundant revenues were to be expended on internal improvements. This was known as the "American system." This policy was opposed by the Democrats but not always intelligently. The Whigs also favored the contmuance of the national bank which had been chartered in 1816. The Democrats strongly opposed it, and on that question they achieved a complete and decisive victory under President Tyler. On the question of internal improvements also the parties were often in opposition, but most of its details have been settled by the great development of the powers of private enterprise during the past sixty years, and it is not at present a leading question. The question of the tariff, however, remains to-day as a "burning question," but it is no longer argued on grounds of constitutional law, but on grounds of political economy.
195. In the presidential canvass of 1828 Jackson was elected president with John C. Calhoun as vice-president, and on March 4 they were sworn into office. The eight following years have been called "the reign of Andrew Jackson," from the arbitrary methods which he seemed to assume in regard to money affairs in his administration. One of the greatest mistakes of the president was the use of government offices as rewards for his friends and adherents. As early as the begin-
ning of the present century a vicious system was growing up in New York and Pennsylvania. In those states the appointive offices came to be used as bribes or as rewards for partisan services. Ly securing votes for a successful candidate, a man with little in his pocket, and nothing particular to do, could obtain some office with a comfortable salary. It would be given him as a reward for political services, and some other inan, more competent than himself, would have to be turned out in order to make room for him. A more effective method of driving "good citizens" out of politics could hardly have been devised. The result was that the civil service of those states was seriously damaged in quality. politics degenerated into a wild scramble for office, salaries were paid to men who did little or no public service in return, and thus the line Which separates taxation from robbery was often crossed. About the same time the idea obtained that there is something especially democratic, and therefore meritorious, ahout "rotation in office." Government offices were regarded as plums at which ererjone ought to be allowed a chance to bite. The way was prepared in 1820 hy W. H. Crawford, of Georgia, who succeeded in getting the law enacted which limits the terms of office for postmasters, revenue collectors and other serrants of the federal government to four years. The importance of this measure was not understoad, and it excited very little discussion at the time. After Jackson olitained the presidency the methods of New Y'ork and Pennsylvania were applied on a national scale. Jackson cherished the absurd belief that the administration of his predecessor, Adams, had been corrupt, and he accordingly tarned men out of office with a keen zest. During the forty years letween Washington's first inauguration and Jackson's, the total number of removals from office was seventy-four, and out of this number five were defaulters. During the first year of Jackson's administration the number of changes made in the civil service was suid to be 2,000 . Such was the abrupt inauguration upon the broadest scale of the so-called "spoils system." The phrase The originated with W. L. Marcy, of New York, who, in a "spolls gry speech in the senate in 1831, declared that "to the national. victors belong the spoils." The author of the phrase did not, of course, realize that he was making one of the most infamous remarks recorded in history, and Jackson doubtless would have been greatly surprised could he bave foreseen that he was introducing a gigantic system of political knavery and corruption, which would help sustain all manner of abominations, from grasping monopolies and civic jobbery down to political rum shops.
196. Jackson made another mistake which, however, The United was trivial compared with the adoption of the spoils ${ }_{\text {Bank }}^{\text {States }}$ system. He was bitterly opposed to the United States bank because he believed that it was unauthorized by the constitution and a means of political corruption. As the charter was about to expire in 1836 he urged Congress not to renew it. An angry controversy followed. A hill renewing the charter passed in 1832, but Jackson retoed it. Subsequently he recommended that the public money should be removed from the bank, and when Congress refused to consent to this measure he took the responsibility of ordering the secretary of the treasury to remove it (1833), a measure which, at first, was followed by great distress among merchants. It was in this quarrel that the supporters of the bank became known as Whigs, while the partisans of the president kept the old name of Democrats. The bank was finally closed in 1836 wben it3 charter expired.
197. In 1832 hostilities with the Sax and Fox tribes Indian of Indians broke out in what is now Wisconsin. Their troubles chief, Black Hawk, was captured. and the Indians were removed beyond the Mississippi. Georgia wished to get rid of the Creeks and Cherokees remaining within the state; but they refused to go. The United States had made treaties with them, and these treaties acknowledged the right of the Indians to the land which they held. They were more civilized than the Indians

Rotatioz in offica"
in general and had farms which they cultivated. A few of their chiefs were persuaded to sign a new treaty with Georgia, giving up their lands. The other Indians at once put them to death; they declared that these chiefs had no authority to sign for the tribes, and that in consequence there was no treaty. Georgia would not wait for the Indians to yield, but ordered a surves of their lands to be made for settlement by the whites. It must be remembered that although the territory was within the boundaries of Georgia it was set distinctly under the control of the Indians by agreement with the United States. The federal government was very desirous of getting the Indians out of Georgia, and tried every means to persuade them to leave, and accordingly, in a tacit manner, suffered the state to crowd the Indians out. It was no less true that the state was taking to itself a power which belonged to the union. The wrangle over the Indians began in the administration of John Quincy Adams, and continued after Andrew Jackson was chosen president. Jackson had no love for the Indians, having fought them all his life, and be did not now interfere. Georgia had its own way, and the doctrine of state sovereignty was more firmily held than ever.
NullificaNon.
198. At this time the southern people felt that they were Virginians, Carolinians and Georgians, as well as

American citizens. Brought up in eager logalty to their native states, they regarded the states as sovereign and the union as their creature, existing only for the general protection, and they resented the federal theory of the supremacy of the national government and state subordination to it . Since slavery could be sustained only by state law, in opposition to the spirit of the age, the state must be made so sover eign as to be able to withstand all national interference. To make sure of this result at the time now before us, some of the prominent southerners met on a certain occasion to try the temper of President Jackson by an attempted defiance of the national authority. But the indignant and determined response of the president checked for a moment their designs, few men daring any longer to follow to their ultimate conclusions the teachings of the great southern leader, Johu C. Calhoun; and so, for nearly two years, but little opposition was openly undertaken. Calhoun, however, never ceased his efforts; and in 1832, such had been the progress of his plans, that be deemed himself strong enough to carry his state-rights doctrine triumphantly through, in sprte of the known hostility of the patriotic Jackson. Congress, as will be remembered, had enacted a tariff of a mixed character, mainly for revenue, but incidentally protecting some of the manufacturing interests of the northern states; and among the articles thus protected were conarse woolen goods, which were used in the south as clothing for its slaves. The price of those articles was thus made a trifle higher than it would have been without this protection; and the slave holders, always a unit for the state-rights doctrine, had to pas this higher price. The north was all the while under the same tariff, pafing an increased price for cot ton on every yard of imported cloth. This was not considered hy the sunth, and so, in 1833, a state convention in South Carolina declared the tariff acts unconstitutional, and therefore null and void, and resolved that any attempt to collect the duties at any port in that state should be resisted liy force of arms. Preparations were also made to take South Carolina out of the union. "Nullification" was the name given to this act by which the state declared certain laws of the general government to have no force in her territory.
199. The 1st of February, 1833, in case Congress did not repeal its protective system prior to that date, was fixed upon as the limit of the state's forbearance; for after that day, South Carolina, in the event of the noncompliance of the United States with her sovereign pleasure, was to consider herself as forming no part of the federal union. All she desired, she said, if her demands were refused, was "to be let alone," when she would proceed to gnvern herself, according to the alleged Jeffersonian doctrine, as an independent state.

The excitement was intense all over the union. Welster was in the senate and General Jackson in the presidential chair, and they worked together, though opposite in their party connections, like twin brothers, for the salvation of their common country. Webster pleaded for the union, claiming that the constitution was not a " compact of states," but a "nation," created by the whole people for their collective government and benefit. In the course of controversy in the sen-webster ate, he held his fanous debate with Mr. Hayne, lasting and Hay for several days, and presented the arguments against the right of secession with an eloquence and force never equalled in any discussion on that question. President Jackson firmly beliered that the states should manage their own affairs, but he also held that when laws were passed in Congress for the whole country, no one state had a right to refuse obedience to such laws. He declared that "the federal union must and shall be preserved," and sent an armed fleet to Charleston harbor, warning South Carolina at once that, if she resisted, the whole force of the union would be used against her. For a while it looked as if there would be a resort to arms, but Clay, who was the leader of the Protectionists, came forward and proposed a compromise by which the tariff was modified. South Carolina had won her point. The doctrine of nullification had not been put to the test of arms; but the doctrine of state sovereignty had established itself more firmly at the south.
200. After the fall of the United States bank many state banks had been formed, often with little capital, to supply the expected need of paper money. These banks issued notes which were largels used in the purchase of public lands from the United States, and the treasury was accumulating paper currencs of doubtful value. Soon after Congress had adjourned, the president directed the secretary of the treasury to issue the so-called specie circular, ordering the United States' agents to receive in future only gold and silver in payment for land. The demand for specie at once became pressing, and could only be met by the banks in which the revenue was deposited. Other banks fell into difficulties which culminated in the great "panic of 1837," which took hace under Martin Tan Buren's administration. General Jackson, having served two terms, was succeeded by Mr. Van Buren, who became president on March 4, 1837 . The administration of Mr. Van Buren (1837-41) was occupied chiefly with efforts to remedy the conmercial disasters of the nation. The new president had taken Jackson's cabinet, and had declared his purpose " to follow in the footsteps of his illustrious predecessor." He, therefore, caught the first full effects of the storm produced by Jackson's financial polics, from which even Jackson's popularity and admitted honesty would hardls have saved him. A spirit of reckless speculation had been excited by the excessive amount of paper money in circulation, and property had acyuired a fictitious value. Most of the banks which were not lucky enough to have gorernment deposits at command went down under the specie circular of 1836. The "pet banks." which had received the deposits of the public mones, had used them as loans to business men, and now, when a sudden demand for those deposits was made, many of these banks also were involved in the general ruin. The sudden calling in of these loans was the beginning The panit of this famous panic of 1837, the counterpart of which had never before been seen in the United States. Early in May the banks of New York city refused to pay gold or silver for their notes, and the New Tork legisIature authorized a suspension of specie pasments throughout the state for one year. This was followed at once by the suspension of banks in other cities. The president, by proclamation (May 15), called an extra session of Congress to meet September 4 , and consider and secure the financial interests of the government. lleanwhile the panic continued during the summer of 1837, causing widespread ruin among banks, corporations and business men, and violently reducing nominal fortunes to far less than their real value.
201. Finally, after some vicissitudes, the financial difficulties of the nation were satisfactorily adjusted bs the adoption of one phase of the National Bank question, that of the so-called sub-treasury system which was ultimately established in 1846, and has been in force ever since. By this system the public revenues are not deposited in any bank, but are paid over on demand to the treasury department bs the collectors, who are required to give bonds for the proper discharge of their duty. The establishment of this system was creditable to Van Buren's administration, hut the country was not prosperous during bis term of office, and he was defeated as a candidate for re-election (1840) after a remarkably exciting canvas. The Whigs, relsing upon the same kind of popular feeling which had elected Jackson, again put in nomination the plain soldier, Harrison, who had been Tan Euren's opponent in the preceding canvass, and who had lived in a \log cabin. and had hard cider on his table. In the fumous "hard cider campaign" of 1840, Harrison won a swerping victory, obtaining 234 electoral votes to Van Buren's 60. John Tyler, of Virginia, a Democrat in politics, was elected vice-president. The election of Tyler was a political mistake on the part of the Whigs, for, in one month after his inauguration, President Harrison died, and Tyler succeeded to the presidency. Thas the government had a Democratic head, and the Whigs lost, in the main, the fruits of their victory.
202. Mr. Tyler retained llarrison's cabinet, and promised to carry out his policy. In an extra session of Congress, beginning May 31, a bill to abolish the subtreasury of the previous administration was passed by both houses, which now had a Whig majority, and wrs signed by the president. Both houses then passed a bill to incorporate the fiscal bank of the United States. llany of the objectionable features of the old United States bank had been discarded ; but the measure still met with great disfavor among the Democrats. The bill was vetoed by the president. He stated, as his objection, that the powers given to the bank were such as he and a majority of the people believed to be unwise and unconstitutional, to grant. An effort was made to pass the bill over the veto by a two-thirds' vote, but it failed. The Whig leaders then requested the president to present them with an outline of a bill which he would be willing to sign. After consultation with the cabinet, it was given, and passed by both houses. The president vetoed this bill also. A twothirds' vote could not be obtained to pass it over the veto. This action of the president in vetoing a bill which had been drawn according to his own suggestions, roused the indignation of the Whigs who had elected bim, and all his cabinet resigned. Daniel Webster, however, the secretary of state, retained office long enough to finish a negotiation with Great Britain for the settlement of a dispute regarding the northwestern boundary.
203. The northwestern corner of North America, down to the parallel of $54^{\circ} 40^{\prime}$, now known as the territory of Alaska, then belonged to Russia. The region known as Oregon, which lay between Russian America and California, was clamed by the United States on the ground of the discoveries of Lewis and Clarke. After the second war with England, when both countries claimed this region, it was agreed in 1818 that thes should hold it jointly for ten years. The Iludson Bay Company, which was fully equipped for the fur trade, increased its stations. At the end of ten years it seemed to have almost entire possession. In 1828 it was agreed to continue the joint occupation until notice of its termination should be giren by one nation or the other. When this agreement was renewed St. Louis was the rreat center of the fur trade of the west. Expeditions from that point into the disputed territory soon hecame common. The hunters brought back word of the fine farming and grazing lands which they had seen, and parties of emigrants began to make settlements in that direction. The Hudson Bay Company put every possible obstacle in the way of immigration. as they had wished to keep the country for lunting and
trapping. They managed to create the impression in the United States that the Rocky Mountains could not be crossed by wagons, and that the country on the other side was a barren wilderness. In 1836 Dr. Marcus Whitman was sent out with a company of missionaries to the Oregon lndians. He was a man of energy and foresight. Hr saw that it was practicable for emigrant trains to cross the mountains by good passes, and he knew that if be could make this generally known the people of the United States would soon occupy the country.
204. When Lord Ashburton came in 1842 to settle with Mr. Webster the boundary line between the British possessions and the United States, the Hudson Bay Company had succeeded in keeping out almost all American emigrants. It had laid its plans also to bring in English settlers from the Fied river country, so as to strengthen the British clam to all Oregon. As soon as In, Whitman learned (his, he set out in October of that year, and made his way across the entire continent to Washington. There he found that a treaty had been signed, but that Oregon had heen left out of consideration altogether. Dr: Whitman's errand was to make known to the administration at Washington the ralue of Oregon, and then to organize companies of emigrants to settle within its bounds. He did both. In the following summer he had a great body of setthers over the mountains, and at the close of 1844 there were three thousand Americans in oregon. The people were fast deciding the question of ownership. Congress now took up the matter in earnest. The American people claimed the whole western territory, and the Democrats went into the next presidential campaign with the allernative war-cry "Fifts-four, forty, "Fifty fou or fight," meaning that the parallel of $54^{\circ} 40^{\prime}$ must be forty or made the northern houndary. But the wiser men were fight." ready to compromisp, and a treaty was made with Great Eritain in 1846, by which the forts-ninth parallel was made the dividing line west of the Rocks mountains.
"05. In 1842 an affair known as "Dorr's Rebellion" Dorr's occurred in Rhode Island. The state was still governed rebellion under the old colonial charter, and a party led by Thomas Dorr was anxions to exchange it for a new constitution giving greater power to the people. Dorr assumed to be governor by the votes of his partisans; the lawful governor, under the charter, called for the assistance of the United States, and ciril war was imminent, when President Tyler sent troops into the state to uphold the old government. Dorr was convicted of treason and sentenced to imprisomment for life, but he was soon pardoned, and a more liberal constitution was afterward adopted.
206. Calhoun was steadily teaching the southern states that their safety lay in the doctrine of statesovereignty, and the slaveholders were beginning to think that the union was not worth much to them unless it protected the slave system. Meanwhile, a very different belief was hecoming common in the north, which was largels due to the influence of William Lhosd Gar- Oprostic's rison, of Massachusetts. He bad established a weekly to staters. paper in 1831, called The Lilueralor, which was devoted to the entire and immediate abolition of African slavers in America. 31 any others, men and women, came forward to support him, and in 1833 the National AntiSlavery Society had been formed, and its liranches had multiplied rapidls. The renemal of the slavery yuestion alarmed the southern people and also many of the northern people, who considered ans attack upon slarery dangerous to the peace of the union. From this time dates the existence of the party opposed to slavery in the United states, at first known as abolitionists. The abo? They did not, howerer, constitute a political party, hut thonists as individuals kept up an incessant attack upon the evil of slavery. They were persecuted in every way possible, but every attempt to intimidate them only gave a new opportunity for the discussion of the rights and wrongs of the slave. The slaveholders, and their friends at the north, declared that the abolitionists were destroying the peace of the country, and charged them

Mob

violence.

Petitions to Congress.
with inciting the slaves to insurrection. Hence they called upon all friends of the union to put them down. Finally mob violence was resorted to in Boston and other northern cities to destroy abolition printing presses, break up abolition meetings and silence abolition orators.
207. These lawless outrages only served to fire the zeal of the abolitionists, and they began to offer petitions to Congress to abolish slavery in the district of Columbia, while the dissemination of abolitionist books and papers was greatly increased in every part of the country. Congress in 1835 had resolved to lay all future petitions on the subject of slavers upon the table. In 1836 the president's message to Congress made indignant reference to the practice of sending abolition doc uments through the United States mail. He recom mended a bill to prohibit the practice in future. Accordingly, a hill was introduced in Congress prohibiting any postmaster from knowingly putting any abolition documents or newspapers into the mails. The bill was rejected. The right of petition has been a right always held sacred by the people, and a chaumion for this right appeared in John Quincy Adams, who had been sent bach to Washington as a representative from his district in Massachusetts. He presented these petitions again and again. The slavery party refused to admit them, and in consequence multitudes of people at the north were gained over to the anti-slavery side.
208. The political parties had not yet openly divided on the question of slavery, but the opposition to the Democratic party had become firmer, which resulted, as has been shown, in the formation of the Whig party (1836). Since Missouri had been admitted into the union tro other states had been formed, Arkansas in 1836, and Michigan in 1837. Half of the states were now free states and half slave. But in population the free states were rapidly gaining on the slave states. In 1830 thes exceeded them by over a million; in 1840 the excess was nearly two and a half millions. Moreover, after the admission of Arkansas, Florida was the only territory which could he admitted as a slave state, whereas the north had still a vast space westward at its command. To southern statesmen it seemed likely that the north would presently far exceed the south in territory, population, wealth and political power and would steadily gain a majority in the senate and the house. It was, therefore, probable that before long the north would come to control the action of Congress, and might then try to abolish slavery. This the south naturally dreaded, and this feeling of dread was intensified and exasperated by the abolitionist agitation. The only safeguard for the south seemed to be the acquisition of fresh territory, and southern statesmen looked for this to the great country of Texas, which lay south of $36^{\circ} 30^{\prime}$, was suited to the institution of slavery and was already occupied by many southerners.
209. Texas was originally a part of the Spauish province of Mexico. In 1821 Mexico revolted from Spain, and formed a republic modeled after the United States. Like other Spanish states in America it abolished slavery. The south thus had for its neighbor a free country hemming it in on the south and southwest. Presidents John Quincy Adams and Jackson each had made the attempt to buy Texas from Mexico, but she had refused to sell. Meanwhile emigration had set in from the southwestern states, and many Americans had made their home in Texas. The most noted of these was General Sam Houston, the leader of an adventurous set of men. At his instigation Texas rebelled against Mexican rule, and, in the decisive battle of San Jacinto (1836), won her independence and set up a government of her cwn with Houston at the head. Texas then applied for admission to the mion. The importance of such an addition was seen at once. Out of this vast territory five states could be formed. If slaye states thes would greatly strengthen the slavery parts. The Whigs, under Webster and Clay, opposed annexation on the ground that
it would bring on a war with Mexico, which had not acknowledged the independence of Texas. The question of annexation was hotly discussed in the presidential election of 1844. Van Buren, who had opposed annexation, was rejected by the Democratic party, and James K. Polk, of Tennessee, who favored annexation, was nominated. The Whig candidate was Henry Clay; and there was a third candidate. This settled the result of the election. The abolitionists had put forward James Birney as a presidential candidate in 1840, who had received very few rotes. They now nominated him again. A close and bitter contest followed. The Democratic party was committed to the annexation of Texas, although the demand for the tariff of 1842 , and for "the whole of Oregon or none, with or without war with England," helped to gain votes. Nevertheless, the success of the Whigs seemed probable, until the weakness of Clay's moral fibre ruined it. He wrote a letter in which be tried to conciliate southern Democrats by saying that be would be "glad to see" the annexation take place at some future time. By this device he won no Democratic votes, for Polk was a warm advocate of annexation, hut angered a great many anti-slavery Whigs, who purposely threw away on Birney their votes, by which means New York was carried for Polk, and he was elected president. It was the most closely contested election in the bistory of the United States, except those of 1800,1876 and 1884 . The result in fourteen of the twenty-six states was doubtful for some days, and most of these chose Polk electors by very slender majorities. In several of them the small abolition vote would have turned the scale and chosen Clay electors. Thus Polk was elected, and, in December, 1845, Texas was annexed by resolution of Congress, and admitted into the union (December, 1845) with the understanding that it might be hereafter divided, so as to make several slave states. Florida had already ljeen admitted as a state in March of the same year. In spite of the strong opposition to the annexation by the anti-slavery party there was a general feeling of pride that the country had acquired so large an addition to its domain. Politicians in favor of annexation did their best to draw the popular mind away from the question of slavery, and to hold out splendid prospects of the rapidly increasing United States. They began to aver that it was the "manifest destiny" of the nation to possess the whole continent. But the slarers question could not be held in abeyance. With the election of Polk the north and south were finally arrayed in opposition to each other. The policy of the Democratic party now began to be shaped chiefly by the adherents of Calhoun, the representatives of slavery and nullification, though the latter political heresy was not likely to be pushed to the front so long as the control of the federal government was in their hands; but the slavery question hecame the "burning question" from that time on until it was decided by the civil war.
210. When Texas was annexed to the United States, The Mexi Mexico was so occupied with intestine dissensions and can war. revolution that her exhibition of resentment was at first confined to a formal protest, and the withdrawal of her minister from Washington. No aggressive movement was made by her even when the United States troops, under General Taylor, occupied the east bank of the Nueces riser, a part of the state which Mexico insisted had never belonged to Texas. In the meantime, in anticipation of trouble, a naval expedition had been sent by the American government to the gulf, December 31, 1845, and an act passed extending the United States revenue system over the doubtful territory beyond the Nueces river, to carry out which a revenue officer was appointed to reside in the new district. Eren then Mexico did not institute hostilities, but expressed her willingness to negotiate concerning the disputed territory between the Nueces and the Rio Grande. In March. 1846, General Taylor was ordered by the president to advance from the Nueces to the Rio Grande and occupy the debatable district. These measures, adopted by the president, by which our troops crossed the
boundary claimed by Mexico, were considered by a large portion of the people of the United States as impolitic, if not unjust, and the occupation by our troops of a territory, which at least was a subject of dispute, was deemed by many a belligerent act. General Ampudi so considered it, and notified the American general to retire beyond the Nueces within twenty-four hours. In April, General Arista superseded Ampudi in command and communicated to Taylor that he considered hostilities commenced. Early in May, Arista, with 6,000 Mexicans, crossed the Rio Grande, attacked General Taylor with his force of 2,300 at Palo Alto, and was badly defeated. The next day Taylor assumed the offensive, attacked Arista at Resaca de la Palma, and compelled him to retreat in haste across the Rio Grande.
211 . The United States goverament, before it could hear of these actions, declared war against Mexico (May 13, I846), and called for 50,000 rolunteers. Mexico likewise declared war against the United States for interfering in her affairs with Texas. Soon after the declaration of war, Colonel Stephen W. Kearny was purpose of separating that province from Mexico. Leaving Bent's Fort, he followed what was known as the Santa Fe trail, along the Arkansas river, across the Colorado mountains to the Kio Grande, and down that river to Santa Fe. Here he took possession of the country in the name of the United States, declaring New Mexico a territory of the union, and left a governor and some troops. Then he set off for California, to carry out the same design of separating a Mexican province from the Republic of Mexico and attaching it to the United States. Before war was declared, Captain fremont in John C. Fremont was sent on an exploring expedition to California. Some vessels of the navy also were sent to the Pacific coast to be in readiness. The United States had reason to think that England would make an excuse of the Mexican troubles to set up a claim to Californin. Fremont and his men, aided by officers of the navy with marines, made no delay when they learned that war was in progress. They easily took possession of one village after another. They expelled the Mexican soldiers, and finally seized Monterey, the capital of the province. There was a number of American settlers there, who proceeded to declare the independence of California and organize a government.
Doniphan's 212. When Colonel Kearny left Santa Fe , he ordered expedition. Colonel Doniphan, with about a thousand volunteers, to chastise the Navajo Indians. Having periormed this duty and compelled the savages to make a treaty of peace, Doniphan marched a thousand miles to join the army in Mexico. At Bracito, December 25, IS46, he defeated a large force of Mexicans, and near Chihuabua, February 28, gained a decided victory over an army four times as large as his own. Finally he reached General Wool at Saltillo, May 22, after a march which is considered as one of the most brilliant exploits of the war.
213. In the meantime Taylor had conquered the northern portion of Mexico; while Scott, landing at Vera Cruz, advanced and captured the City of Mexico. The United States soldiers were victorious over the Mexicans wherever they came into conflict, and whatsoever the disparity of numbers, as instanced in Doniphan's victors; while at Buena Vista, February 22, 1847, Taylor routed a Mexican army more than four times greater than his own. To the student of history the Mexican war will have great interest, as haring been the school in which most of our great generals. who made their mark in the civil war, received their practical training. The capture of the City of Mexico (September 14, 1847) put an end to the war. A treaty was entered into with Mexico, by which the Rio Grande was made the southwestern boundary of the United States, and the Gila river the northern boundary of Mexico. The United States paid Mexico $\$ 15,000,000$ for the territory which was thus added to its domain, exclusive of Texas. Five jears later, the United States
bought the Mesilla valley, south of the Gila river, for $\$ 10,000,000$. General James Gadsden was the agent in this purchase. By these two cessions Mexico transferred to the United States the country now comprised in California, Arizona, Nevada, Utah, and parts of Wyoming, Colorado, Kansas, and New Mexico.
2It. This immense acquisition of territory, though a fortunate one in many respects, had an immediate effect upon American politics, far more disturbing than anything which had occurred since 1820 . The general sentiments of the anti-slavery party had been opposed to the war, and these sentiments had been fully set forth in a series of remarkable political poems, entitled "The Biglow Papers," by James Russell Lowell. The The Bigsectional strife, which had been allayed for the time being by the Missouri Compromise, now began to be renewed. In the new territory acquired from Mexico, slavery had been forbidden by the Mexican law, and the north desired this prohibition kept in force, but the south opposed the idea. It was proposed by some, as the simplest solution of the difficurty, to prolong the Dissouri Compromise line from the Rocky mountains to the Pacific, but neither party was willing to give up so much to the other. The increased opposition to slavery in the north had created an increased ohstinacy in the south, so it was rapidly becoming a difficult thing to effect compromise between the two sections. In 1846 , David Wilmot, a Democratic member of the house, from Pennsylvania, offered an addition to a bill making appropriations for the purchase of the Mexican territory. This addition was the celebrated "Wilmot Pro- Th viso," applying to any newly acquired territory the Proviso. provision of the ordinance of 1787, "that neither slavery nor involuntary servitude sliall ever exist in any part of said territory, except for crime, whereof the party shall be first duly convicted." The Whigs and northern Democrats united in favor of the proviso, and it passed the house, but was sent to the senate too late to be acted upon.
215. In the same year that peace was made with Mexico (1848) came the presidential election. Several efforts had been made to pass the Wilmot Proviso, but without success, but it called into existence the Free Soil party, formed by the union of anti-slavery Dem- Th ocrats and Whigs with the abolitionists. As a compromise between the advocates and opponents of the extension of slavery, a bill had been passed by the senate establishing territorial governments in Oregon, New Mexico and California, with a provision that all questions conceraing slavery in those territories should be referred to the United States supreme court for decision. It was roted for by members from the slave states, but lost in the house. A bill was then passed in the house, by a sectional rote, to organize the territory of Oregon without slavery. This was passed by the senate with an amendment declaring that the Missouri Compromise Line extended to the Pacific ocean. The amendment was rejected by the house, again by a sectional vote, and, the senate withdrawing it, the bill passed.
216. The Whig National Consention met at Philadelphia, June 7, 1848, and nominated Zachary Taylor, of Louisiana, and Millard Fillmore, of New York. No platform was adopted, and resolutions affirming the Wilmot Proviso as a party principle were repeatedly roted down. The Democratic National Consention met at Baltimore, May 2?. It revised the strict constructionist platform of 1840 and 1844 , and nominated Lewis Cass of Michigan, and William O. Butler, of Kentucky. The National Convention of Free Soilers met at Buffalo, August 9. It adopted a platiorm declaring that Congress had no more power to make a slave than to make a king, and that there should be no more slave states and no more slave territories. It nominated Martin Van Buren, of New York, and Charles Francis Adams, of Massachusetts. The Free Soilers decided the election by drawing the Democratic vote from New York, and so Taylor became president. He was brave, honest and shrewd, and by far the ablest
president between Jackson and Lincoln. Though a Louisiana slaveholder, he was nnflinching in his devotion to the union.
217. The leading political struggle during Taylor's administration related chiefly to the admission of California as a state in the mion. Texas was the last slave state. The tide of emigration was moving steadily westward and nortbwestward. In 1846 Iowa was admitted into the union, and in 1848 Wisconsin. While the representatives of the people in Congress were struggling with the question of free or slave territory, the people themselves were rapidly increasing the influence of the free states. In the year that California became the property of the United States (1818) gold was discovered in the valley of the Sacramento, and a very hasty exploration showed that there was an immense deposit of the precions metal in the newly acquired territory. The news spread all over the world and immediately there followed a great rush to the gold region. In a little over a year the population had become large enough to entitle it to admission to the union, and there was need of a strong government to keep in check the numerous hordes of ruffians who had flocked in along with honest people. President Taylor was eager to bring. California into the union before the question of slavery in that territory should be discussed in Congress. He arged the people to call a convention and organize a state. They did this (1849), and since they were almost wholly from the north, they framed a constitution prohibiting slavery, and applied for admission. The sonth earnestly opposed the admission of California as a free state, and the extreme southern party even took some steps toward secession. The debates were conducted on both sides with great bittemess.
218. The controversy went on for a year, until it was settled by a group of compromise measures devised by Clay, who thirty years before had succeeded so well with his Missouri Compromise. He proposed that California should be admitted as a free state; that any new states properly formed from Texas should also be admitted; that the territories of New Mexico and Utab shonld be organized without the Wilmot Proviso (i.e., with squatter sovereignty, by which the people of eacb territory were left free to settle the question of the existence of slavery for themselves) ; that the slave trade shonld be abolished in the District of Columbia, and especially that a more rigid fugitive slave law should be enacted. The constitution expressly gave to alaveholders the right to recover their slaves if they escaped into another state, but the increasing hostility of the people in the free atates to the slavery system made it extremely difficult for slaveholders to find and recover runaway slaves when they had escaped into the northern states. This matter was one of great irritation to the sontherners. They complained that they were deprived of their rights in direct opposition to the constitution. The new fugitive slave law was therefore so drawn as to require the arrest, by United States officers, of fugitive slaves in the northern states, and it also gave the officers the right to call upon any citizen to help them in their search and capture. The law also imposed penalties on all rescuers and denied them a jury trial.
219. Webster gave his support to the Compromise of 1850. Like many others, he viewed with alarm the growing dissensions between the tro sections of the country. He worked with all his might to preserve the union against the attacks of the extreme proslavery men on the one band and of the abolitionists on the other. California was admitted to the union, and the fugitive slave law was passed. Instead of bringing quiet, as the Missouri Compromise had done, the Compromise of 1850 was the beginning of a more bitter and deadly strife. Perhaps the most important feature of the Compromise, in its bearing upon future events, was the fagitive slave law. The crnelties attending its execution aroused the fierce indignation of the north. The disgust and horror felt toward it caused the passage, by some northern legislatures, of
"personal liberty laws," intended to protect free Personal negroes falsely alleged to be fugitive slaves. During Liberty the discussion of Clay's Compromise Bill of IS50, Laws. President Taylor died, after a very short illness (July 9, 1850), and Vice-President Fillmore succeeded to the vacant office. He enforced the Compromise Act impar- Filmore tially, but the fugitive slave law was often evaded president. and sometimes forcibly resisted. It strengthened the anti-slavery party in the free states, while the agitation of the question of the morality and wisdom of slavery was hotly resented at the south.

220 . It was now the middle of the century, and the Developunion seemed full of prosperity. So varions had the ment of th interests of the people become that a new department in the administration had been created (1849), called the department of the interior, and comprising a number of offices, like the census office, patent othice, land office, and burean of Indian affairs, all of which had formerly been scattered among the other departments. The secretary of this department was made a nember of the cabinet. During Mr. Fillmore's administration postage was reduced, so that an ordinary letter could be sent to any place in the country for three cents. Iefore that it had cost ten cents to send a letter from Philadelphia to Boston. At once the number of letters transmitted through the mails was wonderfully increased. The extinction of Indian titles in northern Michigan brought about the discovery of the great copper mines of that region, whose existence had long been snspected before it could be proved. Railroads in the east were beginning to show something of a connected system, and the increase of railways in the west made it possible for the great farms to send grain and other provisions to the cities very cheaply. Railroads in the south had hardly changed since 1840 . In 1840 Samuel F. B. Norse, an American art ist, had received The a patent for an electric telegraph apparatus, and four telegraph years later he sent his first dispatch over the wires from Baltimore to Washington. This practical proof of the power of the telegraph was followed by a rapid extension of lines in every direction.
221. Several expeditions were ordered by the govern- Government to gain a better knowledge of the national domain. In 1848 and in I852 and 1853 Captain John C. Fremont was sent out with exploring parties to the Rocky mountains. The discoveries which be made, and the new importance of California since the discovery of gold there, induced the government to make more careful surveys. The war department undertook one to determine the most practicable and economical route for a railroad from the Mississippi river to the Pacific ocean. Captain Wilkes was sent to the Pacific ocean, where he explored the Antarctic continent; an expedition under Lieutenant Lynch explored the valley of the Jordan and the Dead Sea; and Commodore Perry was sent with a fleet to Japan, a comntry which had heretofore been almost unknown to Europe and to America.
222. Petween the east and the west, railroads were growing busier. Towns and cities sprang up along their routes, and where a new and fertile district was fonnd the settlers did not rest until they had a railway for the transportation of their produce; and very often the railroad itself was the pioneer of a new territory, being followed by the people who made claims along its route. Ships and steamers were constantly crossing the Atlantic. Improvements were made by American shipbuilders in the construction of sailing vessels, and the clippers, as they were called, were built, which were able to sail with a good wind almost as swiftly as steamers. The increased development of wealth in the country gave a fresh impetus to the spirit of invention. McCormick invented his reaping machine, and obtained a patent for it in 1834 . Its results have been hardly less in importance to the United States than the invention of the locomotive. Since then agricultural macbines and implements have rapidly increased. It was agricultural machines that made the western farms profitable, and enabled the railroads to fill the west so rapidly with population. Friction matches bad come
into use, and anthracite coal was now extensively used both in manufactures and locomotion. In 1839 Goodyear had devised his method of valcanizing india rubber. In $18+6$ came the sewing machine, the power-loom, and the use of anæsthetics in surgical practice. The rotary printing press was invented in 1847.
223. During this rapid change in all the conditions of life, it was not strange that there should be a corresponding change in the minds of men, and that their ideas should become somewhat unsettled. Hence, transcendentalism in religion, literature and politics began to flourish; visionary proposals of every kind were made; new communities were established, and new sets sprang up. In 1830 Joseph Smith had declared that he had received a revelation from God which was contained in a book called "The Book of Mormon." He formed a society of men and women Who were his disciples and called themselves Jormons, and they made a settlement in Missouri. In 183s, Smith, with his followers, was driven away to Nauvoo, in Illinois. Ten years later Sunth was killed, and the Mormons, under Brigham Young, remored beyond the western frontier, and settled on the broad plain abont Great Salt Lake, in the new Territory of Utah. Their missionaries traveled in the older states and in Eurnpe, making converts, and bringing them to the new Mormon home. They offered to people who were discontented, and to the hard-worked poor, a land of promise and plenty. They appealed to religious people, and declared that God was with them, as IIe had been with the Jews of old. Salt Lake City was founded, and became their capital. Since then, having rapidly increased in wealth and population, they became a dangerous factor in the American system. Their peculiar tenets, which consisted mainly in their polygams and submission to their sacred hierarchy, rendered it impossible to admit them as a state into the anion, while their numbers became so great that it was contrary to American ideas to deprive them of the right of self-government, and keep them under the power of Congress. A solution of the vexing question was ultimately reached bs Utah consenting to discard polygamy with a view to entering the union as a state.
224 . About the middle of the centurs, the American methods of education were greatly improved, and American literature began to attract the world's attention. There were publication societies formed by the thurches, which multiplied books, papers and tracts without number, and these fonnd their way to remote villages and homes. Educational societies helped establish schools and colleges in the thinls settled parts of the countrs. There was a Colonizatios Societs. which tried to answer some of the diflicult questions of slavery by sending free blacks to liberia, in Africa. This was the time when the lyceum system became popular. In the cities and towns courses of lectures were instituted, and the latest thoughts in science, art, literature, politics and philosophy, were given to the people. The newspaper had become a national institution, and was a familiar visitor to the great majorits of families of the republic. There were dails papers in all the cities and towns, and in many papers the contents of books were published, aside from the general news and topics which interested the country. American authors were taking their place among the great men of the ages in the realm of letters. Before 1830, Bryant, Irving and Cooper had become distinguished. In 1847, Edgar Allan Poe, the most imaginative of A merican poets, had died. In 1850, Washington 1 rving had written all his works except his "Life of Washington." The poems by which William Callen Bryant is best known had been written and given to the world. James Fenimore Cooper died the next year, leaving behind him a long list of norels, the best of which were descriptive of American life. Then came Longfellow, Whittier, Hawthorne, Holmes, Bancroft, Prescott and Emerson. The "Scarlet Letter," which made Hawthorne famous, had been given to the public. Longfellow had published "Evangeline," and many of his
most popular poems. Whittier had become celebrated as a poet: Oliver Wendell Holmes, as a poet and wit; William Gilmore Simms, as a novelist; Ralph Waldo Emerson had become known by his essays as one of the great masters of English prose; James Russell Lowell, poet and satirist, had issued his "Biglow. Yapers," which belped people to understand the meaning of the Mexican war, while they laughed over the verses. And besides these, there were many others who assisted in raising the standard of American literature, and making it a distinct voice of the nation.
225. All these things - churches, lyceums, poblic meetings, societies, newspapers, and books-had their influence in shaping public opinion; and as they increased, more earnest grew the discussion of the slavery question. Alout this time, when the administration of Fillmore was coming to an end, a book was brought out which had an enormous sale, and was translated into all the literary languages of the world. This book was "Uncle Tom's Cabin," written by Mrs. rncle Harriet Beecher Stowe, and it was for the time more Tom's widely read throughout the world than any other book. Cabin. It was a story claiming to show what negro slavery really was, and what it meant in the lives of men and women, white and black, in the southern states of the union. The book was candidls written, and in a wonderful spirit of fairness, rather understating than exaggerating the evils of slavers, and its truths were all the more convincing for that reason. Its influence was doubtless very great in strengthening the anti-slavery feeling at the north, and in finally extinguishing the distarbing evil of the country.

VH.-THE APPROACUING CONFLICT.

226. June 1, 1552, the Democratic National Conven-Convention met at Baltimore. Its platform included the tions of strict constructionist platiorms of former conventions. 1852. endorsed the Virginia and Kentucky resolutions of 1798, and pledged the Democratic party to a faithful observance of the Compromise of 1850 , including the fugitive slave law, and denounced all agitation of the slavery question. It nominated Franklin Pierce, of New Hampshire, and William R. King, of Alabama. The Whig National Convention met June 16 at Baltimore. In its platform it adopted its usual loose constructionist principles, though somewhat more cautiously worded than formerls, and endorsed the Compromise of 1850 and the Fugitive Slave Law. It nominated Winfield Scott, of Virginia, and William A. Graham, of North Carolina. The Free Soil Democratic Conventiou convened at Pittsburgh, August I1. In ite platform it declared slavery to be a sin against God and a crime against man, and denounced the Compromise of 1850 , and the two parties who supported it. It nominated John P. Hale, of New Hampshire, and George W. Julian, of Indiana. Some of the Whigs, dissatisfied with General Scott, wished to bring forward Daniel Webster as an independent candidate, but Mr. Webster died in October of that year. Henry Clay had also died in June of the same year. These two great leaders of the Whig party were succeeded by such men as Sumner, Seward and Chase, arowed enemies of slavery. John C. Calhoun was also dead, and Jefferson Davis, afterwards to play sucb an important part in the nation's history, acquired the leadership of the slaveholders of the south.
227. The slavery question was the principal issue in the presidential election in November, 1852, and in the contest the Whigs met with a crushing defeat, which put an end to their party. When the electoral votes were counted in February, 1853, it was found that Pierce and King had received 25t, and Scottand Graham only 42. Mr. Pierce's administration (I853-57) was Pierce's chiefly occupied with the slavery dispute, in which he adminit represented the policy of the southern party. He chose tration. William I.. Marey for secretary of state, James Guthrie for secretary of the treasury, Jefferson Davis for secretary of war, and Caleb Cushing for attorney-general.

The slave power.

228 The slave power was now at a loss what to do for new territory in which to extend itself. The north had already a preponderance in the senate, consequent upon the admission of California, and from the rapid growth of the northwestern states, in which New Eng. land ideas and sentiments were lecoming predominant, the southern leaders recognized the fact that ere long the north would hold the power in the house. Webster had shown, in his memorable speech of March 7 , 1850, that there was no more termitory for slavers withiu the limits of the union. What, then, were the southern states to do? It seemed absolutely necessary at once to get a new slave state to balance California, but the available land south of $36^{\circ} 30^{\prime}$ was already occupied. New Mexico and the Indian Territory south of Arkansas presented themselves, but the westward movement of population along these lines rould be far too slow for their purpose.
229. Seeing no legitimate method to acquire territory, their former plan was repeated, if not by the sonthern states themselres, certainly under the instigation of many of their citizens, and by members of the State-rights party of the south, and for their advantage; for it was precisely at this period that William Walker, Filibuster- of Tennessee, the notorious filibuster, undertook to snatch Sonora for the sonth from Mexico, exactly as his predecessors had done with Texas. But he failed. In 1855, he and his band made the same experiment in Nicaragua. Here, for a time, he was successful. He overturned the lawful government, made himself president, and almost made the state in readiness for slavery and annexation to the federal government. But he was subsequently driven out, after which he returned home greatly disappointed and mortified. After two more unsuccessful attempts on Nicaragua, he planned his fifth and last expedition against Honduras. He was encouraged and assisted by his sonthern friends; mass meetings of his supporters were held even in New York, and in many other northern cities; and the state sovereignty party everywhere applauded his efforts to revolutionize and wrong a state. But Walker failed more fatally this time. He was defeated, captured and shot.
230. Having been foiled in the attempt to gain a foothold in Central America, the slave power now turned to another state as offering a solution of their difficulties. The southern states wished to annex Cuba. Mr. Pierce proposed to buy it, and at his suggestion a conference was held at Ostend, in Belgium (1854), between the American ministers to Spain, England and France, Messrs. Pierre Soule, James Buchanan and John Y. Mason to consider the question. A memorandum, drawn up by these gentlemen and submitted to
manifesto. deslared that Cuba was necessary to the United States; that it was the duty of this country to prevent the emancipation of slaves in the island; and that if Spain refused to sell Cuba, the United States would be justified in taking it from her by force. This declaration caused great indignation in the north. Nothing, how ever, came of it.
Tendencies
231. Meanwhile, the tendencies to disunion were becoming stronger. Texas, the last slave state ever admitted, had refused to be divided, hence the south could hope for no further increase of numbers. After 1850, the political power had passed out of the hands of the south. The free states now, by uniting, conld control both louses of Congress, elect the president and vice-president, dictate the appointment of judges and other federal officers, and make what laws they pleased. Thus the interests of the south depended upon the one question whether the free states would thus unite or not. Under circumstances so critical, it were better for the slave power that all questions calling public attention to the question of slavery should be avoided; this, however, was simply impossible. The numbers interested in its solution had become too great to be silenced. It was the question of the hour, disenssed in all ranks of society, breaking up party lines, and even disorganizing ecclesiastical institutions. The

Protestant church organizations of the United States had been greatly agitated by the irrepressiblequestion, and some of them became divided. In 1845, the Baptist church separated into a northern and southern branch, and the Methodist church shared the same fate the following year. The Presbyterian church managed to maintain its integrity until 1861, when it :lso yielded to the pressure; and the only churches retaining their national character were the Episcopal and Romain Catholic.
232. The southern leaders, strongly desirous of acquir- Kansas ing more territory in which to extend slavery, now Nebras concocted a seemingly practicable scheme to get con. trol of that part of the country lying west of Missouri and Iowa. This land lay to the north of $36^{\circ} 30^{\prime}$, and, according to the terms of the Missouri Compromise, was forever to be free soil. A plan was devised to ohtain, if possible, the repeal of that celebrated compact. With the aid of some of the northern members of Congress this might be done. The scheme proved successful, so far as legislation could go. In December, 1853 , a bill was introduced in the senate to organize the territory of Nebraska. A southern senator at once arose and demanded that the Missouri Compromise should not be so construed as to prohibit slavery within the new territory. The bill was at once dropped. But a sufficient number of free-state Democrats soon acquiesced in the southern demand to make it a success. One week later a new bill was brought in, known as the KansasNebraska bill. It divided the region covered by the previous Nehraska bill into two territories, one directly west of Mlissouri, and between the parallels of 37° and 40°, to be called Kansas, and the other, north of this, and between the parallels 40° and 43°, to be called Nebraska. Thus, two states were opened to the southern institution, instead of one, for this new bill distinctly declared that the Missonri Compromise had been swept away by the later Compromise of 1850. President Pierce had pledged himself to the south, in his letter accepting his nomiation, to acknowledge and execute this latest bargain with slavery, in case he should be elected.
233. The bill was enacted, but the position was now Squattes assumed that Congress had no authority to vote slavery in, or to rote it out, of either of these territories, since it belonged of natural right to their respective populations to decide for themselves the character of their own institutions. This idea was known as that of squatter sovereignty, and it was proclaimed in order to open Kansas to an immediate slave immigration from llissouri, while Nebraska might afterward be captured in the same way from slaveholding Kansas. It was a plausible doctrine, because it appealed to that strong love of local self-government which has always been one of the soundest political instincts of the American people. The plan was an astute one. It originated with Stephen A. Douglas, a northern Democrat, and laid bare the finest region of country which was open for settlement, as a battleground between the slave-labor and the free-labor systems.
234. This act was the most palpable blunder ever known in the history of American politics. Its practical result was to create a furious rivalry between north and south, as to which should first get settlers enough in Kansas to secure a majority of the popular vote. The issue, thus clearly defined, wrought a new division between political parties. The southern Democrats and southern Whigs united in favor of the Kansas-Nebraska bill, while the northern Whigs and Free Soilers united against it. The division between the northern and southern Whigs was final. The northern section at once repudiated their old party name, and, combining with all the northern men who were opposed to the extension of slavery, took the name of anti-Nebraska men, and succeeded in of the herse atives. A new party lad arisen in 1852, which was now an important factor in American politics. It assumed the form of a secret oath-bound organization, of whose name, nature and objects nothing was told, even to its members, nntil they had reached its higlier de-

[^301]
\square

grees. Their consequent declaration that they knew nothing about it gave the society its popular name of Know-Nothings," but it assumed the name of the "American party." Its design was to oppose the influence of the Roman Catholic church, the easy naturalization of foreigners, and to aid the election of nativeborn citizens to office. Its nominations were made by secret conventions of delegates from the various lodges, and its nominees were to be roted for by all its members, under penalty of expulsion in case of refusal. For a time it was quite successful in state elections, and was now aiming at a greater extension of its influence. At first it had intended to ignore the slavery fuestion, but, after a few years of existence, the complications arising from the discussion of this subject affected its organization and resulted in its division.
235. The old Whig party disappeared about this time. Some of its members joined the Americau party, and the majority, including the old anti-slavers men and Free Soilers, with many others, united under the name of the Republican party. The name was at once ecognized by the Democrats, who, in contempt, called them "Black Republicans," because of their alleged fondness for negroes. The Democratic parts, which had been practically the only party since 1852 , had now to contend with a political organization which adopted broad constructionist principles, declared itself in fayor of protective tariff, internal improvements, and a national system of bank currency, and added to them the further principle that the federal government has the power to control slavery in the territories. It affirmed, at first, that it bad no design to interfere with the institution of slavery in the states where it belonged, but simply intended to exclude it from the territories. But with the enunciation of its fundamental principles, it was at once recognized as an antislavery party, and the only one to which the southern slave could look with the faintest hope of aid in throwing off the chains of bondage. The Democratic party had quite thrown aside its original title-that of Repul)-lican-but the name was still popular. and the new party, by a skillful stroke of policy, took advantage of this feeling and assumed the old name. Thus, in 1856 , the two great parties which were to figure so largely for the succeeding jears in the history of the country, were arrayed against each other.
236. The attention of the whole country had now been turned to the struggle provoked by the KansasNebraska bill, and the repeal of the Missouri Compromise. Kansas had been offered as a prize to be contended for by free and slave states, and both had accepted the contest. As in the case of California, it was found a slow work to colonize the new territors, even from Missouri, by permanent settlers, for the people of that state had land enough of their own, still unoccupied, to absorb for years their surplus population. The only recourse, therefore, was to send their worst inhabitants across the border, not to settle, but to rote and fight for slavery. Consequently gangs of "border ruffians" poured into Kansas from Missouri and Arkansas. But the free states were not behind in a struggle. Anti-slayery societies subscribed money to hasten immigration into the contested territory, and people from the free states migrated thither in such numbers that in a few months they constituted a decided and lawful majority of the actual settlers. The administration took alarm at the ill success of its own plans. Many of the inhabitants of Missouri undertook to impede the passage of northern emigrants through their state, but the immigrants circumrented them by winding their way around through the free state of Iowa. In the meantime the government sent an army to Kansas, professedly to keep the peace, but it would seem in reality to compel the acceptance and establishment of slavers. The first election of a delegate to Congress took place Norember 29, 1854, and was carried by organized bands from Missouri, who crossed the border on election day, voted, and returued at once. In the spring of 1855 , the ruffians in this way voted to organize a territorial legislature, and this measure was
carried in the same lawless manner. In July, I855, this legislature, all pro-slavery, met at Pawnee, and adopted a state constitution. To save trouble, as well as to secure at once the establishment of slavery, they took a summary vote, adopting in their entirety the laws of slaveholding Missouri. At the same time they enacted a set of original statutes, which denounced the penalty of death for nearly 50 different offences against the institution of human bondage.
237. To defend themselves against these illegal pro- Free-state ceedings, the actual settlers held a free-state conven- governtion at Topeka, September 5,1855 , repudiating the ment. work of the pro-slavery party ; and on January 15, 1856, they elected state officers under the lawful constitution. Nine days afterwards the state-rights president, in a special message to Congress, endorsed the pro-slavery legislature, and pronounced the attempt to form a freestate goremment, without the approval of the federal authorities in the territory, to lie an act of rebellion. He then issned a proclamation warning all persons against such acts of resistance to the lawful government, and dispatched another hody of troops to enforce the constitution of the horder rutians. The struggle continued unabated. In the senate chamber Charles Sumner had been knocked down to the floor by sumner Brooks with a stick, so as to be severely injured, and Brooka for daring to criticise what he held to be unjust and one-sided proceedings. The assailant, Brooks, was expelled by northern rotes, but was immediately returned by his southern constituents. In Kansas, the free-state settlers refuse to recognize the territorial government of the slave party, and as the pro-slavery settlers and their allies would not render obedience to the other government, the contest passed into a real civil war, the two sides mustering considerable armies, fighting battles, capturing towns, and paroling prisoners. Two free-state towns, Lawrence and Ossawattomie, were sacked. The free-state legislature paaceably assembled at Topeka, and was dispersed by order of the president. Many of its members were arrested and imprisuned. Every free-state citizen's dwelling had to be guarded and defended by armed force, and no free-state man could plow or plant or gather in his crops without fighting for his life.

The free settlers still continued to maintain their position, in spite of the persistence of the slave partr, with the whole force of the administration at its back. Several pro-slavery governors - Shannon, Geary and Walker-were sent to represent the southern party and subdue the citizens to its purpose and control. A second slave constitution, made at lecompton, was offered to the people in a tricky and nefarious manner. It was to be voted for "with" or "without" slavery, but in either case there would be an affirmation of the doctrine of state-rights. The free settlers accordingly refused to vole. The constitution of necessity was adopted and the new document sent to Washington, was accepted by the president and State-rights party. But the measure failed to carry through the house. A nother territorial legislature was elected, and this body sent the Lecompton constitution to the polls to be voted for, or against, as a whole. It was defeated by a majority of six thousand. In spite of this, however, the president, in a special message, urged upon Congress the Lecompton constitution with its slavery features, declaring that the new legislature had no right to submit it so a second-vote. But he was not sustained. In July, 1859, the citizens of Kansas met again in couvention at Wyandotte, and adopted a resolution forever excluding slavery. It received a majority of four thousand at the polls.
239. In the heat of the Kansas struggle came the Presidenpresidential election of Isā6. The Democrats nomi- tial camnated James Buchanan and John C. Breckenridge, paign of adopted the strict constructionist platform of former conventions, and added to it an endorsement of the Kansas-Nebraska bill and the priuciple of squatter sovereignty. The Republicans nominated the western explorer, John C. Fremont, and declared the right and duty of Congress to prohibit slavery in the territories,
thus planting themselves upon the ground of the Wilmot Proviso. The small remmant of Whigs, including the Know-Nothings of the north and those sonthern men who wished no furtber discussion of slavery, nominated Fillmore, and tried to turn attention away from the great question at issue by protesting against the too hasty naturalization of foreign-born citizens. Buchanan received 174 electoral votes, Fremont 114 and Fillmore 8. The large Republican vote showed that the northern people were at length awakened to the situation, and the south in consequence was both astonished and alarmed. For the first time in the history of the country a distinctively nuti-slavery candidate had obtained an electoral vote, and had nearly gained the presidency. Though the Democratic party had been successful in this election, its triumph was seen to he far less complete than when it came out of the election of 1852 . It no unger controlled twent y-seven of the thirty-one states; all the free states hut five had cast their votes against it, and its candidate no longer had a majority of the popular vote, but was simply chosen by a majority of the electoral vote.
The strongest section of the umon was in the hands of its political opponent, through whose ranks a spirit of earnest enthusiasm was being increasingly diffused.

240 . The strength of the opposition manifested against the Democratic party in this election, more than ever convinced the south that the time was fust approaching when political power would pass from those who defended slavery to those who opposed it. Hence the slave power gathered up its forces for the great struggle vhich must inevitably ensue. It hecame more aggressive than ever. The African shave trade forbidden since Isos, was reopened extensively and with but scant disguise, many northern shipping merchants engaging in this revival of the pernicious traffic. During 1857 the British fleet on the African coast capt ured twenty-two slavers, and every vessellut one was American. By 1860 the tratic had consillerably increased and was widely advertised, while it is due to the south to say that she imported but few negroes from Africa, though her planters purchased many that were lrought over. Meanwhile this was not deemed sufficient. To insure the perpetuation of the "peculiar institution," it was necessary to enlist the active protection of the federal government in its favor. Squatter sovereignty had not served the purpose, for in the Kansas struggle, despite all the efforts made, slavery had been worsted. Squatter sovereignty was accordingly thrown aside, and a demand made that the federal government should protect slavery in all the territories.
The Ined scott de. cisio:.
241. Up to this time the constitutionality of the Missouri Compromise had never heen considered in the supreme court. The question was hrought to test in
state laws; that Congress was constitutionally bound to protect liberty as well as property ; and that its duty Wus to prohibit, not to protect, slavery in the territories. It wasplain that the decision of the supreme court would never be received as the law by the free states. A storm of angry dissent arose, of which the slaveholders hastened to take advantage. They maintained that the duty of Congress to protect slavery in the territories had been confirmed lyy the highest judicial authority in the land, and that the Republicans had refused to accept its rulings; therefore, whatever the result might be, the Republican party must accept the responsibility. At this time, as will be seen, the northern, or Douglas Democrats as they were called who had heretofore supported the south, now refused to follow the southern lead any further, but chose rather to divide the party.
242. In 1860 the slave states were sixteen in number, Slave stat namely, Delaware, Maryland. Virginia, North Carolina, and free South Carolina, Georgia, Alabama, Kentucky, Tennessee, Louisiana, Mississippi, Missouri, Arkansas, Florida, and Texas (admitted 1845). The free states were eighteen, namely, Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Ohio, Indiana, Illinois, Michigan (admitted 1837), Iowa (1846), Wisconsin (1848), California, Minnesota (1858), and Oregon (1859). Kansas had adupted a free-state constitution, but was not admitted until 1861. At this period the population of the United States was more than $31,000,000$, an increase of over $8,000,000$ in ten jears. The population of the slave' states was $12,000,000$, including $4,000,000$ slaves and 250,000 free blacks; but the colored element in the southern population could hardly be regarded as a factor of strength, but rather as a possible source of danger. No serious slave uprising had ever threatened the south, hut John Brown's raid and the alarm which it produced in the southern states betokened a danger which added a new terror to the chances of a civil war. Brown, a Connecticut man of the old Puritan type, had been an anti-slavery leader in the Kansas fights. H is plan wasto raise an insurrection among the slaves of Virginia, and arm them to liberate their people by force. In October, 1859, he and his men surprised and seized Harper's Ferry, where there was a large store of muskets and ammunition ; but the negroes did not rise, and Brown was overpowered by national and state troops, and hanged (December 2) by the authorities of Virginia.
243 . The next election for the presidency was looked forward to as a critical time. Many persons of influence in the south declared that if the election should strengthen the preponderance of the north, the slave states would break up the union and form a confederacy of their own. The Democratic National Convention, which met at Charleston, S. C., A pril 23, 1860, was characterized ly its stormy session. The demands of the southern extremists produced a political schism, and the convention with the party was split into two The split 11 distinct portions. The Douglas Democrats refused to the Demojield to the wishes of the slave power, and stiM maintained the principle that the question of slavery in each territors should be decided by its settlers; hut they made a concession by offering a resolution that the party would abide by the decisions of the supreme court. The southern delegates offered resolutions affirming the doctrine of the Dred Scott decision, that neither Congress nor the territorial legislatures had a right to prohibit slavery in the territories. The convention adopted the Donglas platform, whereupon the delegates from many southern states successively protested and withdrew, and at once organized a new convention in Charleston, adopted their platform, and adjourned to meet again in Richmond, June 11. The original convention, after balloting fifty-seven times for candidates without a choice, adjourned to meet again at Baltimore, June 18. Upon reassembling at the appointed time, it seated some new delegates friendly to Douglas, whereupon the remaining southern delegates, who chiefly belonged to the border states, also withdrew, and

a case which was decided in 1857, two days after Buchanan's inauguration. One Dred Scott, a slave who had been taken by his owner from Missouri into free territory, and had therefore sued for his freedom, was sold to a citizen of another state. Scoft then transferred his suit to the federal courts, under the power given them to try suits between citizens of different states, and the case came by appeal to the supreme court. The decision was startling to the nortb. It declared, in sulistance, that, according to the constitution, no slave, or the descendant of slaves, conld he a citizen of the United States; that Blaves were not persons, but property, and that slave-owners could migrate from one part of the union to another and take their negroes with them, just as they could take their horses or any other property. It, moreover, pronounced the Missouri Compromise Act unconstitutional and void, slaves being private property, with which Congress had no right to interfere. And it further declared that it was the duty of Congress not to prohibit, but to protect, slavery in the territories. The mass of the northern people held the opposite of Chief Justice Taney's decision. They claimed that slaves were regarded by the constitution, not as property, but as "persons held to service or labor" by
joined their brethren at Richmond. Here they nominated John C. Breckenridge and Juseph Lane for president and vice-president. The remainder of the Baltimore convention nominated Stephen A. Douglas and Herschel V. Johnson. The Republican convention assembled at Chicago, May 16. It adopted a sonewhat broad constructionist platform: advocated the exclusion of slavery from the territories by congressional measure; declared in favor of a protective tariff, the homestead bill, internal improvements, and a Pacific railway. It nominated Abraham Lincoln and Hannibal Hamlin. There was a fourth organization called "The Constitutional Union Party," composed of the fragments of the old Whig and Know-Nothing parties. It declared as its political principles, "The constitution of the country, the union of the states, and the enforcement of the laws." Its candidates were John Bell and Edward Everett. Four parties were now in the field, and only two had the courage of their convictions, the southern Democrats and Republicans. The Bell party had adopted a "take it as you please" platform; it simply evaded the slasery question altogether; while the Douglas platform suught to throw the responsibility of a decision concerning the question upon any shoulders except those of the Douglas Democrats.
24. An exciting canvass now followed. The Republican party had been gaining confidence and enthusiasm, and the discordant efforts of the three parties opposed to it, only made Lincoln's election more certain. In the electoral college Lincoln obtained 180 votes, Breckenridge 72, Bell 39, and Douglas 12. No candidate received a majority of the popular vote, Lincoln standing first and Douglas second. The popular rote for Douglas, though large, was not so distributed as to gain a majority in any state except Missouri: beside the mine electoral votes in that state, he obtained three in New Jerses. Thus the election resulted in a decisive rictory for the Republicans. Its significance was far reaching. The interests of the south, and even of slavery there, would be safe enough under Lincoln, but the overthrow of the Dred Scott and squatter sovereignty doctrines was certain, and an immediate stop would be put to the extension of slavery in the territories. In such circumstances the course of erents was evident. Nullification was no longer feared by the nation. Secession, on the part of a fingle state even, was now almost out of the question. No one of the southerw states would agree to secede unless assured of support by the others; a combined action was necessary to assure the success of any secession plans.
245. During the discussion which preceded the election, the north heard repeated threats from the south, that if the Kepublican party were successful, the slaveholding states would leave the union; but these threats were looked upon as merely the angry declarations of a few heated politicians. Yet these disunion expressions were sincere. The southerm people had learned to look apon the north as thoroughly hostile to the south. They made little distinction between the Republican party and the abolitionists, and they felt instinctively that a government elected in a spirit of opposition to slavery would find many wass to injure it. The political habits, and the way of life at the south, made it easy for southern voters to believe in disunion as a cure for the evils with which they felt they were threatened. The doctrine of state independence had become familiar to them; it had been laid down in the Kentucky and Virginia resolutions of 1798 , and had been nuaintained by Georgia in the difficulty with the Indians, and by South Carolina in her Nullification Act. They had remained "Planting States;" they still had their own social life; the same families lived upon the same estates. There was no such constant movement from one state to another as at the north, nor any such introduction of immigrants from Europe. They were, in brief, much prouder of their seseral states than of the union. South Carolina took the lead in fulfilling the promase of secession. As soon as it Was announced that Mr. Lincoln was elected, her legislature ordered
(November 10, 1860), the assembling of a convention in December following. The senators from the state, and all office holders in South Carolina under the federal government, at once resigned. The convention met at the appointed time, aud, on December 20 , unanimously passed an ordinance of secession declaring "that the union now subsisting between South Carolina and the other states, under the arme of the United States of America, is herebs dissolved." As reasons for this course, the convention referred to the nullification of the fugitive slave law by the personal liberty hills, and the election of a president " Whose opinions and purposes were hostile to slavers." The convention then took all the necessary steps to put the state in readiness for war, and adjourned. A cops of the ordinance was sent to each of the slaye states, and several of them now rapidly followed this lold lead. Similar ordinances were passed by Mississippi, January 9, 1861; Florida, January 10; Alabama, Jannary 11; Georgia, Januars 19; Louisiana, January 26, and Texas. Fehruary 1. Tennessee, North Carolina, Arkansas and the border states still refused to join their more southern neighhors. One force, however, might be exerted which would compel them to a decision. Should the federal government attempt to coerce the seceding states, a state which did not wish to secede, but maintained the doctrine of state sovereignty and the right of secession, would be inclined to take up arms in its defence. Thus, in the following spring, four more of the slave states reinforced the original seren seceding states, making their final number eleren.
246. The act of secession, at first, met with opposition in the south, not from any sentiment that the act was wrong, but from the expediency of its exercise. Delegates had been elected to the state conrentions who were to rote against secession, but they were defeated through the idea which had obtained that the state "could make better terms out of the union than in it." It was held that it would be more adrantageous to their rights and interests to withdraw temporarily from the federal gorernment until proper guarantees for the observance of these should be given; and if all conditions were satisfactory, then they might deem it best to return. In planning secession, the southern leaders recognized many things in faror of independence on which they supposed they might reasonably flans or count.

To gain success, it was not necessary for them to conquer the uorth, or any part of it, but only to hold their own frontier; whereas, should the north attempt coercion, it would necessitate the military occupation, by its armies, of the whole vast area of the southern country, which would be a tremendous undertaking never at tempted before on a corresponding scale by any civilized government. Thes did not believe the United States authorities would really attempt such a measure. In this they fatally erred. They believed that all the slave states would join in the secession movement. This, howerer, was not done. Then they hoped that the action of the Republican administration would be so paralszed by Democratic opposition in the north, that its efforts at coercion would be rendered futile. In this they were doomed to disappointment; for when war came, the great majority of the northern Democrats loyally supported the government ; while those, nicknamed "Copperheads," who endeavored to impede its efforts, were too small in number to do any serious harm. Finally, they thought they might look for aid from England and France. "Cotton is king," was the cry, and while the English manufacturers were dependent for their cotton upon the south, it would scarcely le possible that the English government would allow the southern coasts to be blockaded. But the sentiment of the great majority of England's working people was found to be in favor of the north. The great mass of the English people, in spite of many aristocratic sympathizers with the south, felt that the action of great Britain, in the African slave trade question, would not permit her, without the most glaring inconsisteney, to give support to the principal slave power in the morld. With respect to France, the
case was just as hopeless. Napoleon III, it is true, was desirous of recognizing the independence of the south, for he had designs upon Mexico incompatible with the Monroe doctrine, but he was unwilling to make the move without the concurrence of England, and this he could not obtain. Thus the southern leaders failed in their expectations, and were thrown upon their own resources.
Organizalon of the Confederaey.
247. In February, 1861, a convention of delegates from the seceding states met at Montgomery, the capital of Alabama, and formed a government under the
name of the Confederate States of Americh. The title thus declared that the states formed a confederacy and not a union. The government was a provisional one for a year, since only seven of the southern states were represented. Jefferson Davis, of Mississippi, was chosen president, and Alexander H. Stephens, of Georgia, vice-president. A provisional constitution was formed, and an army, treasury, and other executive departments established. The permanent constitution, adopted in March, was copied from that of the United States, except that it made careful provision for slavery, and forbade a protective tariff or the maintenance of internal improvements at general expense. The seceding states at once took measures to take possession of the arsenals, forts and other property of the United States within their borders. Mr. Buchanan's secretary of war was John B. Floyd, of Virginia, a zealons secessionist, and by his orders an immense quantity of muskets, cannon, ammunition, and other warlike stores had been transferred from northern to southern arsenals. All this fell into the hands of the secession party. The army was scattered at remote posts where it could be of no use, and most of the navy was at foreign stations. General Scott urged President Buchanan to strengthen the garrisons of the southern forts, but Mr. Floyd protested, and nothing in that direction was done.
248. The forts throughout the south were mainly in the hands of southern men, who delivered them to the new authorities. The commanders of Fort Pickens, at Pensacola, and of the forts at Key West and Tortugas refused to give them up. The greatest interest, however, attached to the forts within the borders of South Garolina. The harbor of Charleston was commanded by Forts Sumter and Moultrie and Castle Pinckney. Fort Sumter was not get finished, and the garrison, under Major Anderson, was occupying Fort Moultrie, a weaker work. This officer secretly transferred his men and supplies to Fort Sumter during the night of December 26, 1860. South Carolina demanded the evacuation of the fort. President Euchanan refused the demand, and sent the steamer Star of the ITest with supplies and reinforcements for the fort. He intended the expedition to be a secret one, but it was known at once in Charleston, and when the steamer appeared it was fired upon and driven back (January 9, 1861). The South Carolinians had taken possession of the other forts in Charleston harbor, and now erected additional works. General P. G. T. Beauregard was placed in command of the harbor defences. President Buchanan was filled with perplexity. In his message to Congress he stated his inability to execute the laws in the seceding states, but Congress gave him no help. He condemned the doctrine of secession, and denied the right of the states to secede; he also denied the right of the government to coerce them when they did secede. Ilis cabinet was divided. The southern members dropped out as their states seceded, and General Cass, of Michigan, secretary of state, resigned in displeasure at Mr . Buchanan's inaction.
249. The resignation of the southern senators and representatives gave the Republicans a majority in Congress. That body now proceeded to admit Kansas as a state, and passed a protective tariff designed to encourage manufactures. Otherwise Congress did nothing but pass resolutions intended to pacify the south. Time which should have been spent in concentrating the energies of the federal government, and preparing it to assert its supremacy, was frittered away in vain discussions about measures proposed to avert the
disaster. Mr. Seward, senator from New York, and one of the most conspicuous of the Republicans was willing to give up congressional prohibition of slavery in the territories, to enforce the fugitive slave law, and to perpetuate slavery by a constitutional amendment. The people throughout the country were in a The po state of bewilderment. The government authorities larfee seemed to have no power to direct affairs. Great meetings were held in the principal cities of the north, denouncing abolitionism and urging extreme concessions. Prominent journals of both parties declared that armed coercion was madness and never would be permitted. At the suggestion of the Virginia legislature, a peace congress, composed of delegates from Peace thirteen fiee states and seven border states, met at Washington (February 4, 1861), and tried to bring about harmony between the sections, by proposing a number of amendments to the constitution. Nothing came, bowever, of any of these schemes. Disunion was now an assured fact, and was soon to pass into open hostility. It was during this state of affairs that the new administration of Abraham Lincoln entered upon its perplexing duties.

VHI.-THE CIVIL WAR.

250. Mr. Lincoln was inaugurated March 4, 1861. In Lincols his address he declared that he had neither the right Inaugu nor the desire to interfere with slavery where it already existed ; that no state could lawfully go out of the union; and that he should maintain the laws and constitution of the United States to the best of his ability. The new administration was beset with difficulties on every side, and the condition of affairs seemed almost desperate. Many of those who for years had guided the "ship of state," and who understood its workings, were now foremost in advocating secession. Mr. Lincoln's oflicers were new to the business of the federal government. The treasury, by defalcation, was nearly bankrupt. Few troops were within call ; and the army had been almost broken up ly the surrender of detached forces in the Confederate states, and the capture of munitions of war. The vessels of the navy were sailing or at anchor in distant waters, and numerous officers of both the army and the navy were resigning their commissions on the ground that they owed allegiance first to the states from which they came. Seven states had already revolted, and others were ready to swell the number upon the first attempt to enforce the federal authority. The public offices were largely occupied by persons in sympathy with the secession movement, and every step taken by the new government was known at once to the leaders of the Confederacy, and to crown all, Mr. Lincoln was beset by a vast horde of office-seekers eager to take advantage of the change of administration.
251. The president waited a month and then notified Fort Governor Pickens, of South Carolina, that he should Sumte send supplies to Fort Sumter at all hazards. This anouncement precipitated an attack upon the fort. Major Anderson was first summoned to surrender, but he refused. At daybreak on the morning of April 12. 1861, the Confederacy began its open conflict with the United States. All the Latteries around the fort opened fire upon it; the fort replied, and the bomhardment continued for thirty-six hours without loss of life on either side. The ammunition in the fort was then exhausted, and the works inside were on fire. Thereupon the United States flag, for the first time in its history, was lowered to insurgent citizens, and the garrison capitulated. This event aroused the north as Effect if from a trance. Until now, the mass of the people had refused to believe in real danger; but the first shock of arms thoroughly convinced them that the south was ready to fight, and could not be curbed without war. It did more than this. In the northern states party distinctions were for a time swept aside; there was but one party worth the name-the party for the union. The southern states were no longer "erring to bear arms in defence of the union. In the south also, the effect of the first conflict was correspondingly great. To the ignorant masses it did not seem possible that any other power could be superior to that of their own state; while the more intelligent classes had, from their childhood, imbibed the doctrine that state sovereignty was the foundation of civil liberty. Hence all felt bound to follow the lead of their state; and when the president of the new Confederacy issued his call for men, it was answered, as in the north, by overflowing numbers.
252. Those southern states which had wavered were now compelled to make their choice. When Mr. Lincoln called for troops the Governors of Arkansas, Virginia, North Carolina and Tennessee refused to obey. North Carolina and Arkansas then seceded, and joined the Confederacy. In Tennessee and Virginia "military leagues" were formed with the Confederate states, by which Confederate troops were allowed to take possession of their territory, and by their aid the question of secession was submitted to popular vote. Thus the secession of these two states was accomplished in part. but not wholly. The people of the Alleghany mountains were loyal to the union; in eastern Tennessee they aided the Federals as much as possible; the opposition to secession was so strong in the western counties of Virginia that the inhabitants refused to obey the convention which passed the ordinance; they chose a legislature which claimed to be the true government and at last formed a new state which was admitted into the union in 1863 under the name of West Virginia Even thus curtailed, Virginia was a nost important accession to the confederacy; it increased its military strength greatly, and at once became the chief battle ground of the war. The confederate government was moved from Montgomery to Richmond: and since Washington was separated only by the Potomac from the confederacy, it was clear that the great contest would be fought in the country which lay between the two capitals. Moreover, Virginia was the richest and greatest of the slave states, and furnished the southern army with its ablest leaders, many of whom-such as Lee, Jackson, Johnston, and Ewell-were opposed to secession, but thought it right to shape their own course by that of their state.
253. There was a strong anti-union element in Missouri, Kentucky, Maryland, and Delaware, and the most momentous results-involving, doubtless, the success of the Union cause-were involved in the action they would now take. Aside from Virginia, Missouri was the most powerful slave state, and her geographical position, with that of Kentucky and Margland, was of incalculable military importance. Had these three states united with the confederacy it might have won the prize for which it was contending-independence. Missouri, however, did not break away, though the issue was for some time doubtful with her. Delaware cast her lot with the union. In Maryland and Kentucky efforts were made to maintain neutrality, but they were soon induced to declare in favor of the Federal government. Kentucky, however, had some of ber sons in the southern ranks, among whom was John C. Breckinridge, a former vice-president of the United States, who became an officer in the confederate army.
254. The Federal government was in no want of men, but the action of Secretary Flosd had almost stripped it of arms to equip them. Agents were sent
abroad to purchase guns, private manufactories were worked day and night to produce them, and in a short time the administration was able to call more men into the field. The northern people were unmilitary in their babits and thoughts. They had a militia, but it was poorly organized. The Mexican war had drawn few volunteers from this section, and the United States army was very small and imperfectly equipped. The early action of the Confederates also had weakened it. There was, however, a greater population to draw from than at the south. There was also a wider range of industry to supply the necessary funds to carry on the war. The agricultural products of the United States far exceeded in rolume those of any other country, and in merchant shipping it was only second to Great Britain. Between 1830 and 1860 American civilization had shown a wonderful growth in all directions-in facilities of trarel and exchange, in home comforts, in manufactures, in literature and art, and especially in the development and building up of that moral sense which enabled the country to pass so successfully through the trying times of the next four jears.
255. But this material progress was more largely made of the in the North. The South was far from developing an south, equal share of it. Her case was one of arrested adrancement on this line, not on account of a natural inferiority of her people but chiefly because slavery had blunted their spirit of enterprise. Labor was in many instances regarded as degrading; railroads and manufactures did not thrive. In the North men became distinguished either by successful business relations or high intellectual attainments; in the South only by oratory, literature, law or kindred professional pursuits which gave them position in good society and opened to them the avenues of state and national promotion. Thus the advance of civilization was checked, and whatever might have conduced to the naterial melfare of the south was kept away as far as possible. In the north the rising man was marked by the extent of his business relations; in the south by his ability to buy slaves, Which assured him nearly always an entrance into the ranks of the dominant class. This class furnished the representatives and senators in Congress, the governors, and incumbents of all offices which the slave power controlled. Thus its ablest and best men combined to defend certain tendencies which were foreign and hostile to those of the rest of the country, and of the world in general. UTh such odds against it, the struggle of the south during the four years of war showed of what heroic stuff its people were made.
256. The first blood of the war was shed in the streets first blood of Baltimore. Massachusetts and Pennsylvania troops of the war. on their way to Washington were attacked by a Baltimore mob (April 19, 1861), and some of the soldiers killed. The populace, which sympathized with the south, declared that no northern troops should pass through the city. The railroad was blocked up, bridges were burned, telegraph wires were cut, and all direct communication with the north was stopped, until the president sent a military force from Annapolis to occupy Baltimore and keep the rond open. In a short time the active hostility of the people was overcome, and the national capital made secure. By July 4 the confederates had pusbed their forces as far as Manassas Junction, about thirty miles from Washington. Their line of defence was already marked out, and its length has been estimated at eleven thousand miles, including the Atlantic and gulf coasts. It comprised the left lank of the Potomac from Fortress Monroe nearly to Washington; from thence it extended to Harper's Ferrs, on through the mountains of Western Virginia and the southern part of Kentucky, crossing the Mississippi a short distance below Cairo. From this point its direction was through southern Missouri to the eastern border of Kansas; then southwest, through the Indian territory, and along the northern boundary of Texas to the Rio Grande. The area contained within this interior line and the sea-coast was about 800,000 square miles, with a population of over $9,000,000$. It comprised, also, the territors devoted to the raising of cot-
ton. an article necessary to the manufacturing interests of the world. It was upon this production that the south relied largely for aid; all the munitions of war conld be procured in exchange for it; and she believed it would be a nowerful factor in preventing the blockading of her ports.
255 . In consideration of this fact, and also tbat the confederate line of sea-coast was over three thousand miles in length, with but one port of refuge for a blockading fleet about the middle of the line, it scarcely seemed possible that a blockade could be maintained with any marked degree of success. Nevertheless the president issued a proclamation (April 19, 1861; declaring a blockade of all the sonthern ports, and the Federal goremment proceeded to purchase and arm a large number of merchant vessels. But it could not at once bring together a nays powerful enough to keep vessels from entering or leaving the blockaded ports. The south not only sent out vessels laden with cotton to the West ludies and to Europe, but received in return military supplies of all kinds. Upon the appearance of Mr. Lincoln's blockade proclamation, Mr. Davis issued one also, granting letters of marque and reprisal to private ressels, against the commerce of the United States. The governments of Great Britain and France now issued proclamations of neutrality, thus making the contest between the north and the south a civil war, according to subsequent decisions of the supreme court. At the meeting of Congress (July t, 1861), the Republicans had a majority iu both branches only the free states and border states being represented. The house roted to devote its time solely to the business connected with the war. It supported the president's proclamation closing the southern ports against commerce. Bills were passed to define and punish conspiracs against the United States, and to confiscate all private property, including slaves, employed against the Federal government ; to authorize a loan; to call out 500,000 volunteers, and to appropriate money for the army and navy. During this session oceurred the first battle of Bull Rum (July 21, 1861). General Scott had been appointed conmander-in-chief of the union forces. The first militars movements were in the mountains of western Virginia, and the success of the union army there led many people to suppose that in a short time the rebellious states would be compelled to obedience. Mr. Seward, who was secretary of state, was especially cheerful, and promised that the war should be over in ninety days. The newspapers aad people generally urged an inmediate movement upon Richmond. Very few had any knowledge of the difficulties before them, and general Scott, pressed by public opinion, gave the order to adrance. This resulted in the first serious battle of the war. The union forces were defeated, and retreated in a panic upon Washington. Both armies were set so new in military training that the confederates gained nothing from their success.
7.ffect of
257. This disaster opened the eyes of the north, and the country settled down into a more serious temper. Congress was, more than ever, stimulated to increased energy, and pledged itself to vote any amount of money and any number of men necessary to maintain the union. Propositions to consider negotiations for peace were constantly offered by extreme Democrats, and as constantly rejected by large majorities, on the ground that negotiation with armed rehellion was unconstitutional. General Scott, having resigned the command of the northern armies on account of his age and infir-

vicClellan

 uland.mity, was succeeded by General George B. McClellan, whose successful campaign in western Virginia had given him a high reputation throughout the arms. He had a gewius for organization, and possessed the unbounded confidence of the people. He immediately set about forming the first great army of the warthe Army of the Potomac-at Alexandria, in preparation for a second advance. But the advance was delayed much too long to suit the impatience of the people and the administration; and as the winter of

1861-62 passed away without any forward movement, the expressions of dissatisfaction became louder and more general. The confederacy also spent the summer Confer and autumn of 1861 in organizing its northern Army ate sra of Yirginia, under General Beauregard.
261. In the autumn of 1861 a portion of General Ball's Stone's command on the Upper Potomac was sent on a Bluff. reconnoissance into Virginia, under Colonel Baker, and, teing attacked by the confederate general, Evans, at Ball's Bluff. was disastrously defeated. Colone] Baker was among the killed. Although Nissouri had not seceded, a strong parts, with which the governor The ne was acting, wished to carry it orer to the confederacy. states. A confederate camp near St. Louis was broken up Uy Captain Lyon, of the regulars and the St. Louis arsenal was saved to the goverument. The state was afterward invaded by confederates from Arkansas, who were defeated by Ljon (now a general) at Booneville, June 17, and by Sigel at Carthage, July 5. A large force of confederates under McCullough and Price attacked Lyon at Wilson's Creek (August 10). Wilson Lyon was killed, and his command fell back toward Creek. the center of the state. Price with 20,000 men then attacked Lexington, which mas garrisoned bs 2,000 federal troops under Colonel Jlulligan. After an lieroic defense of three days the little garrison was compelled to surmender (September 20) after its water supply had been cut off for forty-eight hours. General Frenont was now appointed to the command of the western department. He drove Price into the south. west comer of the state, and was about to gire battle when he was superseded by General Hunter (Novenber 2). Ilunter retreated to St. Louis, with Price in pursuit; but in a fortnight Hunter was replaced bs IIalleck, and Price was driven into Arkansas. Ken- kentuc tucky, like Missouri, was distracted by dissensions among its own people, and bs armies on both sides. General Polk of the confederate arms occupied llickman and Columbus, tomns on the Dlississippi. There was also a confederate force at Belmont, Missouri, opposite Columbus. [Tysses S. Grant, recently appointed a brigadier-general of rolunteers, now first came into notice. Ife drove the confederates out of Belmont (November 7), but was unable to hold the town because it was commanded by the fortifications of Columbus.
262. From the beginning of the war, the federal Fugitio government was embarrassed by the question of fugi- slaves. tive slaves. Congress had passed the act confiscating slares emplosed in service liostile to the United States. While General Fremont was in command of the forces of the west, he had issued a proclamation declaring the slaves of Missouri confederates free men; but this was countemanded by President Lincoln, who did not wish to estrange those slave-holders, especially in Kentucky, who were still loyal to the union. In Virginia, General Benjamin F. Butler had declared that slaves were "contraband of war," and therefore liable to confiscation by military law. But as yet the disposition of the north was to subdue the south without interfering with slavery and some union commanders restored to their masters the slaves who had escaped into the federal lines.
263. Formidable expeditions were fitted out to Opera recapture southern harbors. A combined land and outbe naval force under General Butler and Commodore Stringham reduced and occupied two forts at Hatteras Inlet, North Carolina, at the entrance to Albemarle and lamlico Sounds (August 29), and Port Royal harbor, near Beaufort, South Carolina, was secured through the reduction of Forts Walker and Eeauregard by the fleet under Commodore Dupont (November 7), and a land force under General Thomas W. Sherman. These successes were of great value to the Federal government. They not only closed important southern ports, but they furnished conrenient stations for the blockading fleet. The "paper blockade," as it had been called, was soon made a rery effective one along the whole length of the southern coast from the Potomac to the Rio Grande, an achievement which by
many had been deemed impossible. Still, in spite of the watchfulness of the federal nayy, several confederate men-of-war and privateers sailed out of port, and did much damage to merchant ships. The practice of "running the blockade" became a very profitable business ; and notwithstanding the danger of capture, which always accompanied it, the profits on a single successful voyage were so great that adveuturers found they could afford to take the risk.
264. As has been stated, the south depended largely upon assistance from alroad, and the southern leaders still clung to the hope that they could prevail upon Great Britain and France to recognize the independence of the confederacy. Two commissioners, therefore, Messrs. Mason and Slidell, were sent by the confederate government to London and Paris. They ran the blockade, made their way to Havana, and then embarked for England in the British mail-steamer Trent. Some distance out, the Trent was overhauled by an American man-of-war under Captain Wilkes, the two commissioners were taken off (November 1861), and carried to Boston IIarbor, where they were imprisoned in Fort Warren. This action, which was illegal and unauthorized, caused great excitement in England, and came very near causing a collision between the two countries. Lord Palmerston made a peremptory demand for the surrender oi the prisoners. The American government had already disavowed the act of Captain Wilkes, which, though it was justified by the British claim of the " right of search," was contrary to American principles. The confederate envoys were therefore promptly released and sent to England. Just before this occurrence. President Linculn requested two confidential agents to visit France and England, in order to help the federal cause and avert the danger of foreign war by their influence with the governments and with persons of distinction. The persons selected for this delicate and important trust were Archbishop Hughes, of New York, and Mr. Thurlow Weed. They sailed in November and rendered very raluable service, Mr. Wreed in England, and the archbishop iu France.
265. At the beginning of 1862 , the war had assumed vast propurtions. The number of men under arms on hoth sides was nearly a million. The confederates held possession of the Mississippi ricer from the gulf of Texico to the southern boundary of Kentucky, and occupied a chain of strong positions extending thence through Tennessee and Kentucky to the southwestern corner of Virginia. Between the Alleghanies and the Blue Ridge was the fertile Shenandoah valley, often disputed by both armies. At the east, the confederates were posted in great force between the Totomac and the Rappahannock. Now that Delaware, Maryland, Kentucky and Missouri had been saved to the union, it was certain that the battle would be fought out in the territory to the south of them. The plan of the federal authorities was to open the Mississippi and penetrate the confederate line at the west, while, at the same time, Mcclellan attacked Richmond, and a land and naval force continued the process of capturing the southern ports on the Atlantic const. Simon Cameron, who had been secretary of war, resigned lanuary $20,186^{2}$, and Fas succeeded by Edwin M. Stanton. Al! the federal armies were to move simultaneously on the 22d of February, Washington's birthdas, but this order could not be strictly carried out.
266. The first adrance was made in the west. General Grant had entered Kentucky from Itlinois, and succeeded in securing the mouths of the Tennessee and Cumberland rivers, two strenms which were to serve as military highways by which the federal armies mere to penetrate into the heart of the confederacy. The chief zonfederate positions between the Mississippi river and the Alleghany mountains were Fort Henry on the Tennessee, Fort Donelson on the Cumberland (hoth in Tennessee), and Bowling (rreen and Mill Spring in southern Kentucky. This line of defence was in command of Gen. Albert S. Johnston, with heedquarters at Bowling Green. Here be was confronted by feneral Buell's army, the nidd one of the three great federal armies

Which came to be known as tho Arms of the Cumberland. Forts Henry and Donelsou formed the center of the confederate line, and were confronted bs Grant, Whose troops afterwards formed the Army of the Tennessee. 1 n January, 1862, General Thomas, with the left of Buell's force, thoroughly defeated the confederate right at Will Spring. General Grant, aided by the river Heet under Commodore Foote, now assailed the center. Fort Henry was first attacked and reduced by the gun-rorts Henry boats before Grant had time to invest it. The combined and Donelbrave 15,000 prisoners. The center of the confederate line was now pierced, and Johnston and Polk were compelled to retreat for fear of being cut off. Columbus, Bowling Green and Nashville were evacnated, and the whole of Kentucky and most of Tennessee was in the hands of the federals. General Buell occupied Nashville; a strong union party showed itself in Tennessee, and Senator Andrew Johnson was appointed military governor of the state.
267. The confederates formed their second line of defense along the railroad from 3lemphis to Chattanooga, and hegan massing their forces at Corinth. The armies of Grant and Buell were to unite and attack the enemy in their new position. Grant moved up the Tennessee river and halted at Pittsburg Landing, or Shiloh, about twenty miles from Corinth, there to apait the arrival of Buell. Here Johnston made a brilliant attack upon him with the intention of crushing him before Buell could come np. A terrible battle was fought (April 6 and 7), in which the confederate leader, who was one of the slain, came very near effecting his purpose. But the federal forces, though driven back at nearly every puint, stubbornly resisted, and at the close of the first day. Buell's adrance guard came upon the scene. The next morning, Grant, now reinforced, assumed the offensive; and, after a fight of several hours, the confederates were driven hack to Corinth.
268. While these operations were taking place in Ten- ou the Mis nessee, Commodore Foote, with his gun-l,oats, entered sissippl. the Ml ississippi with a small army under Pope, and captured Island Number Ten on the day of Grant's victory at Shiloh. Two monthe later, Fort Pillow was abandoned by the confederates, and Memphis at once fell into the hands of the union arms. The victory at Shiloh decided the fate of Corinth, an important railroad center, though it was not captured for several weeks afterward on account of the slow advances of General Halleck, who had assumed command of the federal forces at that point. Meanwhile a fleet under Farragut and Porter, with a land force under Butler, had been sent to attack New Orlenns. Farragut ran past the batteries and forts at the entrance of the river, attacked and destroyed the ironclads which met him, and captured New Orleans, which was occupied by the army xuw on under Butler. Farragut, with a part of his theet, then leanstabera. pushed up the river, clearing away all obstacles, passed the batteries at Vicksburg, and met the federal gunboats, under Captain Davis, alove. Thus, the war in the west had been, so far, marked by an almost unInoken series of victories for the federal armies. At the northern houndary of the state of Mississippi, the union adrance stopped for a time, but all was held that had been won. To gain control of the great river, it was necessary to take Vicksburg, with its outpost, Port Hudson, which, betreen them, commanded the entrance to the Red river, and thus kept open the communications of the eastern part of the confederacy with its states of Texas, Louisiana and Arkansas. To capture Vickshurg wonld cut off these states, and greatly cripple the fighting power of the confederate government. The occupation of Chattanooga was also neces:ary to the success of the union arms. It would open the way into Georgia, and prevent the confederates from recovering any of the lost ground in Tennessee.
269. While the south had met with defeat in the west, The Moniit was encouraged by a success in Hampton Roads tor and the The confederates had taken the Merimac, a former Merrimac. frigate of the United States nary, and transformed her
\qquad
\qquad

Abstract

^[]

into an ironclad ram, with sloping sides and huge iron beak. On March 8, 1862, this strange looking craft entered Hampton hoads and attacked the federal fleet lying there, which consisted of five wooden ships of war. The Merrimac destroyed the Cumberland, and also compelled the frigate Congress to surrender. At night she went back to Norfolk. The next morning she Was seen conning out again to complete the work of destruction. Suddenly the Monitor, a turreted ironclad vessel, advanced to meet her, and after an obstinate engagement of several hours the llerrimac was compelled to retire. These encounters were remarkable as the first engagements between ironclads and wooden vessels and between two ironclads. The result caused a revolution in the navies of the world; the day of wooden war-vessels was seen to be over, and all the great porers began at once the construction of iron and steel vessels.
270 . The military operations in Virginia during the year I862 offered a strong contrast to the course of events in the west. This Ths owing partly, no doubt, to the superior ability of the confederate commanders, as compared with their antugonists, partly because on the union side military affairs were too much intermingled with politics. While General McClellan was organizing a splendid army of 200,000 men near Washington, General Banks was ordered to occupy the Shenandoah valley. He began his advance in February, and having, as he supposed, cleared the valley of the enemy, set out with his own corps proper to join McClellan. As soon as he was gone, Genera! Jackson, popularly known as "Stonewall Jackson," hastened to attack the division of Shields which remained in the valley. After a desperate battle at Kearnstown (March 23), Jackson was compelled to retire. Banks returned to the valley and Shields was sent to join McDowell at Fredericksburg. General Fremont now approached from the west, in order to unite with Banks near Stanton. To grevent this Jackson formed the plan of attacking the Federal forces in detail. He nearly succeeded in getting into the rear of the main body with a much larger army than Banks could muster. By a hurried retreat Banks reached and crossed the Potomac, with the confederate cavalry in close pursuit. Shields hastened back to the valley, but his advance guard was defeated at Port Republic (June 8) by Jackson, who, the same day, had checked Fremont at Cross Keys. Having thas saved the valley to the confederates, and obliged the government at Washington to detain for the defence of the capital a large body of troons which McClellan greatly needed for other duty, Jackson joined the confederate army in front of Richmond.
The A:my
Potomac between Westingtontrated the Arms of the Potomac between Washington and Manassas, as if intending to advance against Richmond by that route. He then withdrew his forces and went by water to Fortress Monroe ill order to advance up the peninsula between the James and York rivers. Here be was held in check for a month by Johnston at Yorktown, and when McClellan was ready to take the place, the confederates retreated toward Richmond. The union forces followed, and both armies concentrated around Richmond. NlcClellan gained the battles of Williamsburg (May 5), and West Point (May 9), and advanced within seven mikes of the city. A panic broke out in the southern capital, and the confederate Congress adjourned in haste. It was just at this time that Stonewall Jackson, by his brilliant and daring exploits in the Shenandoah valley, obliged the federal government to keep in front of Washington a corps under McDowell which was about to co-operate with McClellan by way of Fredericksburg. The movements of McClellan involved the separation of the two wings of bis army by the little river Chickahominy, which by a sudden rise was changed into a wide stream. The confederates under Johnston at once attacked the union left wing at Fair Oaks and Seven Pines. A fierce battle ensued, lasting two days: the result, however, was a union victory. Johnston was wounded, and was succeeded hy

Robert E. Lee, who retained command of the army of Virginia during the rest of the war.
272. The absence of McDowell, who was expected to support McClellan's right, compelled a change in the whole plan of operations. Although Lee had been repulsed in an attack on the Federal lines at Mechanicsville (June 26), he fell upon them again at Gaines Mill the day following, in overwhelming force, and drove them across the Chickahominy with severe loss. Jackson liad now reinforced Lee, and McClellan was cut off from his base of supplies on York river. Unable to reunite his wings and regain his base, the union general decided upon the difficult maneuver of establishing another base on the James river. While effecting this change, the union troops were hard pressed by Lee and Jackson, who, during the period from June 26, to July 1, attacked them at Golding's Farm, Savage's Station, The 'rove White Oak Swamp, Glendale, etc., and finally at Mal- Daysi vern Hill, where the confederates were signally repulsed. This was the last of a series of engagements known as the "Seven Days' Battles," in the course of which HcClellan lost over 15,000 men. Lee suffered almost as much. The union army had now reached the James river, and established itself in a position from which it could not he driven.
273. Lee and Jackson then turned their attention toward Washington, which was defended by an army under General Pone. Pope's forces stretched along the Rappahannock and Rapidan to the Shenandoah valley. General Lanks held a position at the westeruend of the line, and was attacked by Jackson at Cedar Mountain. Lee followed close behind, and the two generals forced Banks back and then attacked Pope. NeClellan received orders from Washington to join Pope, and a portion of his forces came up in time to take part in the second inattle of Bull Run, August 29. Pope's army The secon was put to rout, Washington was threatened and the battle of whole country was wild with excitement. Lee now led Bull Run his rictorious army across the upper Potomac and entered Maryland. McClellan, gathering up the remmants of the two defeated armies, followed and confronted the confederates at Antietam creek. A desperate struggle took place (September 17). It left each Battle of army exhausted, but the victory remained with the union forces. The confederates recrossed the Potomac and retired up the Shenandoab valley. The administration was dissatisfied with McClellan's course, and his command was given to General Burnside. The new commander at once moved toward Richmond, proposing to cross the Rappahannock at Fredericksburg. Here he found Lee posted upon the hills bebind the town. Burnside crossed the river, and, forming his army in three divisions, attempted to storm the heights (December 13). It was a day of terrible slaughter for the federal troops. They were repulsed with the loss Fredericks of twelve thousand men, the army was demoralized and burg. retreated to the north side of the river. Burnside was then superseded by General Hooker. The close of 1862 thus found the opposing armies in nearly the same positions as at the beginning of the war. At the north gloom and discouragement prevailed. At the state elections held in the autunin there was a majority against the administration in several of the northerm states, and the result of the campaigns on the Potomac gave great strength to the peace parts, which believed that the attempt to subjugate the south ought to be abandoned.
27. In June, 1862 the great union force at Corinth was divided, Buell's army marching eastward to seize Chattanooga, while Grant's remained at Corinth till it should be ready to start for Ticksburg. The campaign. was so badly managed by Halleck that the confederates, under Bragg, seized Chattamooga before Buell's arrival. They were thus enabled to press him so vigorously that he had to be largely reinforced from Grant's army. Thus weakened, Grant was unable to advance for several months. During the summer of 1862 the confederates made a great effort to repair the disasters they had suffered on the Tennessee and Mississippi rivers by an invasion of Kentucky. An army,
perstions under Kirby Smith, moved from Knoxville, East Tenn Ken. cky. nessee, while another, under Bragg, marched from Chattanooga. The confederate general, Smith, defeated

General Nelson near Richmond, Kentucky, August 30, and advanced toward the Ohio threatening Cincinnati. General Lew Wallace, however, compelled him to fall back to Frankfort. Bragg in the meantime hastened toward the city of Louisville. Buell, leaving Nashville, by forced marches reached the place one day anead of Bragg. Being reinforced, he slowly pushed the confederates back. Bragg formed a junction with Smith at Frankfort, and four days later a severe but indecisive battle was fought at Perryville (October 8). The confederates then retreated through Cumberland Gap.
275. During Bragg's campaign the confederate army in Mississippi, under General Van Dorn, made an attempt to turn Grant's left wing at Corinth, and thus force him back down the Tennessee river. This wing was commanded by General Rosecrans, who defeated Price at luka, a few miles from Corinth, September 19. On October 4, Van Dorn and Price together attacked Corintb, but were repulsed by Rosecrans with a loss of fire thousand men, and pursued forty miles. Soon after this Rosecrans superseded Buell in command of the army of the Cumberland. Bragg had adranced to Murfreesborough, in central Tennessee. There Rosecrans attacked him (December 31), and a bloody battle was fought, in which 40,000 men were engaged on each side, and each lost more than 10,000 . This engagement is generally known as the oattle of Stone river. It was indecisive. On January 2, 1863, Bragg renewed the attack with great rigor, but this time he was signally defeated and compelled to retire to Chattanooga.
276. While these battles were being fought, Grant had begun his first movement against the strong and important post of Yicksburg, on the Mississippi. His plan was to march from Jackson, Mississippi, while Sherman, with his 40,000 men, and Porter with a fleet of gunboats, descended the river from Memphis. The movements were made according to this arrangenent, but Van Dorn's cavalry succeeded in getting in Grant's rear and cutting off his supplies. This compelled Grant to abandon his march to Jackson. Strerman and Porter attacked the bluffs north of Vicksburg, but were repulsed with heavy loss (December 29). Hearing of Grant's misfortune they returned to Memphis.
277. After Hatteras Inlet to Pamlico Sound had been captured, it was next resolved to attack the confederate position on Roanoke Island, which commands the passage between Pamlico and Albemarle Sounds. A land and naval expedition, under General Burnside and Commodore Goldsborough, took the forts and batteries of the Island (February 8, 1862), captured a confederate flotilla, occupied Newbern, North Carolina (March 14), and reduced Fort Macon, at Beaufort, April 25. Expeditions from Port Royal, under Commodore Dupont, took possession of Darien and Brunswick, Georgia, and of Jacksonville, Fernandina, and Saint Augustine, Florida. April 11, 1862, General Gillmore captured Fort Pulaski, on the Savannah river. Thus the port of Savannab was compleiely closed, although no effort was made for some time to occupy the city.
278. During the morements of the armies in 1862, Congress had not been idle. It was chiefly occupied in measures connected with the prosecution of the war. Its most far-reaching action was in the provision for a uniform national currency. At the beginning of the war the government had borrowed large sums of money to defray expenses, and it continued to borrow, as new demands arose. The result was similar to that which occurred in the Revolutionary war. The promises to pay became less valuable as compared with gold, which was the standard of value throughout the civilized world. The banks in the several states could no longer obtain gold without paying a high price for it; and at the end of 1861 thes suspended specie payments. In order to nrovide a currency for the people, a bill
was passed by Congress, early in 1862, authorizing the issue of notes by the United States treasury. These notes received the popular name of "greenbacks," from the color of the paper on which they were printed; and to insure their success they were declared by Congress to be "legal tender" (February 25, 1862). Early in 1863 Congress passed an act establishing national banks. Heretofore the states had incorporated all banks, and the bills of each bank were seldom current except in its own neighborhood. By the national banking system, the banks were to be organized, and United States bonds deposited at Washington. The banks were then permitted to issue notes up to ninety per cent. of the value of the bonds deposited, and the notes, being thus secured, became current in every part of the country. The uational banks are still in operation. A homestead bill was passed, which assigned public lands to actual settlers at reduced rates. Congress also prohibited slavery in the District of Columbia; slaves of insurgents were ordered to be confiscated; and the army was forbidden to surrender fugitive slaves to their masters. It provided for the construction of a Pacific railroad and telegraph, and began a further development of the system of granting public lands to railway corporations.
279. Since the south had brought on the war in defence Emancipa of slavery, the abolition sentiment had spread very rapidly in the north, and it had now become supiported by the military needs of the hour. At the beginning of the conflict the union leaders and people generally bad not farored any interference with slavery, but circumstances had proved their position to be untenable. President Lincoln, who watched anxiously every movement, was convinced that the time had come when the federal government could no longer attempt to carry on the war successfully and spare the system of slavery, which was perceived by every discerning man to lue at the foundation of the confederacy. He therefore announced (September, 1862) that unless the revolting states should return to their allegiance by January 1, 1863 , he should declare the slaves in these states to be free. It was a formal notice given out of respect to law; no one serionsly expected that it would be regarded by the confederate states. Aud it was not. They only grew more firm in consequence of the action taken. On the first day of January, 1863, in accordance with his notice, the president issued his celebrated Proclama- Proclamation of Emancipation. This act caused much discussion. Mr. Lincoln could not, legally, issue such a declaration, for the constitution gave him no authority to abolish slavers. But he acted on the principle of military necessity, advocated by John Quincy Adams in his speech of April 14, 1842, in which he said: "Whether the war he civil, servile or foreign, I lay this down as the law of nations: I say that the military authority takes for the time the place of all municipal institutions, slavery among the rest. Under that state of things, so far from its being true that the states where slayery exists have the exclusive management of the subject, not only the president of the United States but the commander of the aray, has power to order the universal emancipation of slaves." However the case may be, the president's course was dictated by clear common sense and wise statesmanship. The events of the preceding summer had shown that the war was far from being at an end. The cutting off of the cotton supply had been a general calamity, and the distress produced in consequence created a fear lest England and France should unite in an attempt to put au end to the contest. But the proclamation changed all this. By it the struggle was converted into a crusade against slavery and in this light foreign intervention was now simply impossible, owing to Great Britain's attitude toward slavery. Moreover, should the federal government be successful, the question of slarery would practically be settled forever, for its abolition would be certain when the union was re-established. One of the first results of the act was the formation of regiments of negro sol- Negro diers. An attack made by one of these regiments, Soldiers. under Colonel Shaw, upon Fort Wagner, in Charleston
harbor, though unsuccessful, showed so much bravery that the prejudice against negro soldiers disappeared, and great numbers were enrolled.

Third year

 of the war
Battle of

 Chancelsorsville
Yavasion of

tice. lee now repeated the maneuver he had practiced after defeating General Pope. Turning Hooker's right flank, he pushed on through the western part of Maryland into Pennsylvania, so as to threaten Philadelphia, Baltimore, and Washington. There was intense alarm at the north, and reinforcements were hurried into Pennsylvania from all quarters. In con sequence of a disagreement with General Halleck, Hooker resigned the command of the Alms of the Potomac, and it was given to General George G. Meade. The two hostile armies, each 100,000 strong, were now moving in parallel lines, with the Elue Kidge and South Mountain range between them. On the 1st of July they came into collision at Gettysburg. A tre--mendous battle was fought, lasting until the close of July 3. It resulted in the defeat of Lee, with a loss of nearly 40,000 men; Meade's loss was 24,000 . This lattle was one of the greatest of modern times, the loss on both sides being more than one-third of the whole number engaged. It was also the turning point of the civil war. The south was never able to collect so fine an army again, and never recovered from the exhaustion of the Gettysburg campaign. Lee moved slowly back to his old position on the Kapidan, where he and Meade held each other in check until the following spring. Many in the north were inclined to believe that Lee's former successes had been due to Stonewall Jackson's ability, and that he had lost his prestige upon the death of that brave commander. But the campaign of 1864 was to prove the contrary.
The 2S2. On the next day after the battle of Gettyslourg,
Vicksburg General Grant gained a decisive victory on the Missis-
campaign. sippi. Having failed in several attempts to take Vicksburg from the north, he now determined to transfer his army to the south side of this strongly fortified place. To do this it was necessary to cross the river, march down its west bank, cross again below Vicksburg, and march up the east bank, while the fleet, which had run past the batteries of Vicksburg after. the capture of New Orleans, would have to pass them again in order to transport the army over the river and protect the crossing. This plan was carried out in April. Commodore Porter performed his task successfully under a heavy fire, and on the 29 th of April opened a cannonade upon Grand Gulf, at the mouth of the Big Black river, where it had been determined to attempt a crossing. The confederate batteries here proving too strong, the fleet ran past them, also, and the crossing was made at Bruinsburg, a few miles below. Grant now pushed rapidly forward. The confederates were beaten at Port Gibson, and compelled to evacuate Grand Gulf. MePherson and Sherman captured Jackson, the capital of Mississippi, and a place of great military importance on account of its railmay connections. The union army thon turned, fell upon
the confederate general, Pemberton, who had marched out of Vicksburg to unite with Johnston, defeated hin at Champion Hills (May 16), and at the crossing of the Champio Black river (May 17), and at last shut him up in Vicks- Hillsack Ri burg. After a siege of forty-five days Pemberton surrendered, and the great confederate stronghold of the west, with 27,000 prisoners, fell into the hands of the victorious federals. Port Hudson, under siege at the sanue time, could no longer hold out, and the Mississippi, as President Lincoln said, "ran unvexed to the sea." This was the heaviest blow that the confederacs lind as yet received; its whole western zone was now virtually conquered, and it became possible to concentrate greatel union forces against its middle and eastern zones. The news of Gettysburg and Vicksburg made the Fourtl of July, 1863, a day of rejoicing in the north, and of mourning in thousands of bereaved homes.
283. The Vicksburg campaign marked the decline of the confederate fortunes in the west, as the Gettysburg campaign did in the east. In the meantime the people had learmed to give a more careful attention to the welfare of the soldiers who were bearing the brunt of the conflict. The Sanitary Commission, the Christian The SaniCommission, and other voluntary associations, had been thry and organized, and were doing a grand work for the moral Commisand physical needs of the men in the field; and this sions.
care was not confined solely to northern tronss, but was often extended to the confederates as well. The expenses of the National government for prosecuting the war now amounted to $\$ 2,000,000$ per day on an Goveraaverage, and notwithstanding the heavy taxation mentex imposed upon the country, the debt had increased to $\$ 500,000,000$ bs June, 186^{2}; during 1863 it was double that amount; by June, 1864, it bad grown to $\$ 1,700,000,-$ 000 ; and at the end of August, 1865, it attained its maximum, ${ }^{2} 2,845,007,626$. But the best of care and judgment was exercised in the use of these vast expenditures. The army was constantly supplied with improved weapons and munitions of war; the blockading fleets were kept in perfect order, and everything was done to insure the success of the union arms.
284. As early as April, 1862, the confederate Con-Cougress had passed a monscription act, enrolling in the army all adult white males below a certain age, but, as the war went on, the demand for men became continually greater and the conscription was made more sweeping. Toward the end of the war every white man between the ages o: seventeen and filty-five was held liable to military service, and in practice the only limit was physical incapacity. The federal government also was compelied to take almost a similar course. In March, 1863 , Congress passed an act for the enrollment of all able-bodied male citizens between the ages of eighteen and forty-five, and the president was authorized to make drafts for military service, those between twenty and thirly-fire to be first called upon. Under this law a call for 300,000 troops was made in May. As the full number was not made up by volunteering, a draft was ordered to supply the deficiency. The first attempts to carry it out resulted in forcible resistance in many places, the most notable being the "diaft riots" in New. York city in July, just Draft rio after the battle of Gettysburg. These riots lasted four days in that city. During this time New York was in the hands of a lawless mob, many shocking murders were committed and $\$ 2,000,000$ worth of property was destroyed. All opposition was at length put down, but exemptions and substitute purchases were freely permitted, and the states endeavored to fill their respective quotas as far as possible by offering bounties as a stimulus to volunteering.

2s5. After bis renowned victory near. Murfreesborough, chats Rosecrans remained quiet for a period, preparing for a nooga new campaign. Late in June he began a series of skillful movements against Bragg which compelled the confederate general to fall back upon Chattanooga. Early in September, Rosecrans forced bim to evacuate the place by threatening his communications. The*
union general followed him across the Tennessee river and was thus beyond the strong position of Chattanooga．General Bragg，having been beavily reinforced from Virginia，turned at Chickanrauga creek to give battle．A severe engagement was fought （September $17-20,1863$ ）in which Longstreet routed the right of the union forces，but the wonderful skill and bravery of General Thonas，who commanded the left wing，saved the federal army and secured its retreat to Chattanooga．Bragg having gained possession of the mountains around the place cut off almost all avenues of further retreat and laid siege to Chattanooga．The government at Washington had committed the mistake of dividing the union forces，for while Rosecrans was left to face an army greatly superior in numbers，under General Bracg，General Burnside was sent into east Tennessee with an independent command．Bragg was now so sure of Rosecrans＇defeat that be dispatched Longstreet with a part of his army to attack Burnside at Knoxville．In October．Risecrans was superseded by Thomas，and Grant was put in command of all the western armies．He was joined at Chattanooga by two corps under Hooker from the l＇otomac．General Sherman came up from Vickshurg with a greater part of the army of the Tennessere．Bragg＇s positions on Lookout Mountain and Missionary Fidge were now assaulted．The former was successfully stormed by Hooker（November 24），part of the fighting taking place amidst a thick mist which covered the summit， hence this has been called the＂battle above the clouds．＂On the next day Missionary Ridge was car－ ried by the main army，llooker on the right，Thomas in the center and sherman on the left．Bragg was driven from all his positions back to Dalton and was soon afterward superseded by General I．E．Johnston． Longstreet raised the siege of Knoxville and retreated across the mountains into Virginia to join Lee．
－286．Many attempts had been made to reduce Charles－ ton，South Carolina，the strongest，as well as the most important of the southern seaports，but without suc－ cess．At length Fort Wagner was taken（September 7 ） after a tremendous bombardment by the federal fleet and Gillmore＇s batteries：Fort Sumter，also，was reduced to ruins．The blockading vessels were thus enabled tu enter the harbor，and the port of Charleston was entirely closed．Taking adrantage of every loophole in the British foreign enliatment act，the confederate authorities had succeeded in fitting nut several formida－
He cruisers，which，in the course of the year 1863 ，did immense damage to American commerce．Whenerer they were closely pursued by［＇nited states vessels they took refuge in meutral ports，and then put out to sea again upon the first favorable opportunity．The most active ones were the Floridn，the Alabama and the Georgia．The Florida，built at Liverpool，after having captured twenty－one ressels，was seized in the harbor of Bahia，Brazil（Octoler，186t）．The Geurgia，built at Glasgow，put to sea in April，but was captured after a short cruise by the United States frigate Niagara． The most important of the confederate cruisers was the Alabamu．She was built at Liverpool for the con－ federate captain，Semmes．The British government was urged by the American minister，Mr．Adams，to enforce its own laws，and prevent ber going to sea；yet she was allowed to set sail in July．After destroying more than sixty vessels，she was met by the United States steamer Kearsarge，commanded by Captain Win－ slow，off Cherbourg（J une 19，1864），and after an hour＇s action the Alabama was sunk．

287．At the beginning of 1864 ，several detached opera－ tions were carried on which，though attracting much attention at the time，had but little direct bearing upon the closing campaigns of the war．General Sherman made his raid nearly across the state of 11 ississippi，destroy－ ing railroads，bridges and supplies．General Seymour， leading a union expedition into Florida，was defeated． General Banks was sent up the Red river to attack Shreveport，and bring away cotton．The expedition ended in failure and disaster．General Rosecrans ras appointed to command in Missouri．He succeeded in
repelling an invasion by Price，who was fonally driven from the state．General Forrest，with a confederate force made a raid into Tennessee and Kentucky，and captured Fort Pillow（April 12），where a number of negro troops were massacred．

288．The success of Grant in the west had made him Grant the chief figure in the war．In March，186t，he super－in the east seded Halleck as commander－in－chief，with the rank of lieutenant－general．He at once took personal direction of the campaign against Richmond，while retaining Meade in immediate command．The army of the Potomac was re－organized in three corps，under Han－ cock．Warren and Sedgwick，to which was soon added another under Burnside，while General Philip Sheridan wascalled from the west，and appointed to the com－ mand of all the cavalry in the eastern army．Lee＇s forces，which comprised the flower of the southern troons，had likewise been divided into three corps， under Generals A．P．Hill，Ewell and Longstreet． Sherman had been left in command of the three western Sherman． armies of the Ohio，the Cumberland，and the Tennes－ see，and he was to oppose Johnston at Dalton．Accord－ ing to arrangement，a simultaneous advance was made in Georgia and Virginia，early in Nay．The army of the Potomac，numbering about 125,000 men（nearly twice as many as Lee＇s），crossed the Rapidan and entered the＂Wilderness＂on the other side．It was Grant＇s olject to push through this difficult country as rapidty as possible and get between Lee＇s army and Richnond．In pursuing the direct route through Fredericksburg to Richmond，the union army encoun－ tered a series of strong defensive positions，of which Lee arailed himself with consummate skill．The battles began on the 5 th，and continued until the I2th without interruption，both sides fighting with the utmost bravery and suffering severely．Lee was steadily forced back，and on the 9 gh Grant was clear of the Wilderness with his forces concentrated near Spott－ sylvania courthouse．Here there was furious and ob－ stinate fighting for ten days．With scarcely any inter－ mission．Then followed the battles of North Anna and Cold Harbor in which the union losses were ter－ rible．Haring now reached the Chickahominy，and finding it impossible to break throngh lee＇s lines of defence，Grant crossed the river and moving far to the right of his adversary，transferred his army beyond the James to assail Kichmond from the south．This involved the reduction of the strongly－fortified town of Petershurg，on the Appomattox，practically a part of Petersbure the defences of Richmond，from which it was twenty miles distant．It also brought the Federal lines into dangerous proximity to Lee＇s railroad communications with the south．At this point，therefore，the confeder－ ate commander stationed the best part of bis troops， and stubbornly resisted all Grant＇s efforts to extend his lines further to the soutbwest or to reach the rail－ rords．
289．A long siege of Richmond and Petersburg was now begun early in June，but neither army remained in－ active．In July，Lee sent Early into the Shenandoah ralley with a corps strong enough to menace Washing－ ton，hoping that Grant might be induced to call off troops from Petershurg．The chief result of Early＇s morement was the burning of Chambersburg，and the capture of a quantity of supplies．Grant put Sheridan in command of the valley，who defeated Gen．Early at Winchester（September 19），and at Fisher＇s Hill two days later，after which he destroyed all the rich crops in the valley and carried off the cattle，so that the con－ federates might not be tempted to reneat the raid．But Early，having obtained fresh troops，suddenly fell upon the federals at Cedar Creek（October 19），driving them Cedar back in great confusion．Sheridan was absent when creek． the battle सas fought，lut，getting intelligence of it，he rode rapidly up the ralley，rallied his men，who were， however，heing enheartened by their respective com－ manders，and scattered Early＇s forces，which never met Sheridan again as a compact army during the remainder of the war．
Mequwhile，Grant bad succeeded in getting possession
of a few miles of the Weldon railroad, upon which Lee depended for transportation, but the confederate general brought his supplies in wagons round that portion held by the federals. The two armies now remained in comparatively the same position until the following spring.
290. The western campaigu in I864 began at the same time as Grant's movement in Virginia. Sherman advanced from Chattanooga with 100,000 men under Thomas, McPherson, and Schofield, against Johnston's force of 75,000 . The objective point of the campaign was the capture of Atlanta, Georgia, a very strongly fortified place about one hundred miles south of Chattanooga, and the chief manufactory of the confederate military aupplies. Johnston, with his weaker force, dared not risk a regular battle, but he made the best use of the various defensive positions which the rough and mountainous country afforded. By a series of masterly Aank movements Sherman compelled him to evacuate one position after another. Severe battles were fought at Resaca (May 15), Dallas (May 25), Lost Mountain (June 14), and Kenesaw Mountain (June 27). By the 10th of July, Johnston was intrenched behind the defences of Atlanta, and the two armies were facing each other with the Chattahoochee river between them. Johnston's retreat had been conducted with great skill, but he was now superseded by Hood (July 17), who ras
Qperations known as a "fighting general." Hood at once proceeded to carry out the active policy of the confederate government, and assumed the offensive. Before the end of the month he had made three furious assaults on the union lines and was repulsed in every one of them. The federals, however, sustained a heavy loss in the death of General McPherson. At length, by fine manenvering, Sherman succeeded in gaining the rear of Atlanta, and cutting the supply railroads. This obliged the confederates to retreat in all haste, and on the $2 d$ of September, Sherman was able to telegraph to Washington that Atlanta was won.
Hood in
Tennessee
291. Hood, by the direct command of Davis, now made a fatal mistake, which materially hastened the downfall of the confederacy. He moved northwestward by Tuscumbia and Florence into middle Tennessee, thinking that Sherman would follow him in order to defend that state. But Sherman was no more to be controlled by this device than Grant had been by Early's raid into the Shenandoah. He divided his army, sending back part of it under Thomas to take care of Hood, while he himself prepared to continue his advance through Georgia. Hood, moving northward toward Nashville, was met and defeated at Franklin (November 30), with heavy loss, by Schofield. The confederate General arrived at Nashville with about 44,000 men. The union forces awaited him there behind the fortifications. Thomas, having completed his preparations,
Nashville. saddenly moved out of his works and fell upon the confederate lines (December 15). The battle lasted two days and ended in the utter route and demoralization of Hood's forces. Thus one of the two great armies of the confederacy was scattered, never again to be united. Of all the battles fought in the course of the war, this was the most complete victory.
292. While these things were going on, the presidential election of 1864 took place. Some of the more radical men, dissatisfied with what they called Mr. Lincoln's timid and irresolute policy, met in convention (May 31) at Cleveland, Ohio, and nominated John C. Fremont for the presidency. Mr. Lincoln and Andrew Johnson were nominated (June 7) for president and vice-president by the Republican National Conrention at Baltimore. The Democratic National Convention declared in its platform that the inability of the federal government to restore the uniou by war was demonstrated by four Jears of failure; that the constitution had been violated in all its parts under the plea of military necessity; and that a cessation of hostilities ought to be obtained. It nominated George B. McClellan and George H. Pendleton as president and vice-president. This declaration of the peace Democracy that the war was a failure, when all things were now pointing toward the final success
of the north, caused many doubtful votes to be cast for the Republican candidates, and assured their election. When the electoral votes were counted, Lincoln and Johnson had received 212, McClellan and Pendleton 21.
293. Sherman had burned Atlanta, destroyed the Sherme railroads and telegraphs in his rear, sent back the sick march and wounded, and much of the baggage, and set out (November 14) on his "famous march through Georgia." His army, 65,000 strong, was spread out over a breadth of forty miles, subsisting mainly on the produce of the country. For a month scarcely anything was heard of him at the north, when he suddenly turned up at Savannah, Ga. lle had met with but little opposition on his route. The confederates had numerous bodies of troops which might have been concentrated to oppose his march, but he had threatened so many points and kept the enemy in so much doubt as to his objects that they could not tell for which point he was making. On December 13 Fort Mcallister was taken by assault, and on the 20th Savannah Savana was evacuated by the confederates, Sherman sending the news of the capture to President Lincoln as a "Christmas gift." He also sent word that the confederacy was nothing but a shell, and that he was ready with his victorious army to mareh northward.
294. The only important ports, except Galreston, Mobile which remained open to the confederacy in the summer. Wilmin of I864, were Mobile, in Alabama, and Wilnington, in North Carolina. The forts commanding the entrance to Mobile Bay were captured (August 5) and the port was closed. On January 16, 1865, Wilmington, North Carolina, was taken by a combined land and naval force, under General Terry and Commodore Porter. On the day before this event, Sherman had begun his northward march, passing through Columbia, to Fayetteville, North Carolina. This movement had forced the eracuation of Charleston and other coast cities, and their garrisons had been concentrated under Johnston as a last hope. The military support of the confederacy now rested on the army which Lee commanded within the intrenchments of Kichmond and Petersburg, and on the remnant of the western forces with which Johnston was trying to check Sherman's advance. Some sharp fighting took place north of Fayetteville, but Goldsborough was reached 11 arch 21, and Johnston retreated to Raleigh. Sherman pushed on after him, but events in Virginia were fast rendering a contest in North Carolina unnecessary. While the union army occupied Goldsborough, Sherman took a steamer on the coast and hurriedly visited the James river, where he met the president, General Grant and General Meade, and iarranged with them the plan of operations for the future. During Sherman's march through North Carolina, Sheridan had led a column of cavalry up the Shenandoah valley to destroy Lee's communications in the rear of Richmond. He passed along the James jiver, doing great damage to the canal and railroads, and joined the main arms in front of Petersburg just as Sherman arrived there for his conference with the president and Grant.
295. The situation of Lee was now becoming des- Fall of perate. He determined to abandon Petersburg and confedRichmond, move by way of Danville, and effect a junction with Johnston. With this purpose he made one desperate attempt to break the center of the union lines at Fort Steadman, intending under cover of the aitack to withdraw his force. The effort failed, and Lee was repulsed with heavy loss. Grant resumed his attempts to push his lines further round to the south of Petersburg. Sheridan was put in command of the extreme left. Here he attacked Lee's right at Five Five fr Forks (April 1), destroyed the Southside railroad, and maintained his position. To aroid being outflanked, Lee was compelled to lengthen out his line, already too thin. The next morning (April 2), Grant made a general assault, and carried his army within the lines of the Petersburg defences. Lee retreated, with the intention of bringing his forces and Johnston's together for a final stand while the advance guard of the union army
achmondentered Richmond. The confederate authorities hastened to escape to Danville, having first set fire to the shipping, tobaceo warehouses, etc., at Richmond. No time was lost in celebrations of the victory. Grant pressed on in the pursuit of Lee with all vigor. He had so disposed the federal army that the escape of the confederates was almost impossible. The confederate forces were headed off at Appomattox Court House, where Lee surrendered (April 9, 1865). The terms of surrender offered by Grant were very generous: all private property belonging to officers and soldiers was to be retained, the men were even allowed to keep their horses, " because," Grant said, "they would need them for the work on their farms." Officers and men were at once set free on parole, with the understanding that so long as they did not violate their parole, nor break the laws, they would not be disturbed by the federal government.
296. Sherman had begnn his final operations against Johnston when the news arrived of the surrender of Lee. Johnston thereupon capitulated (April 26), on much the same terms that had been accorded to the confederate army in Virginia, after an unsuccessful effort at a more favorable settlement. All the other confederate forces in the field also surrendered, and the great civil war came to an end. The news was receired with an outburst of joy at the north. Mr. Lincoln had begun his second term on March 4, 1865. At that time the end of the struggle was plainly near, and the president in his inaugural address had already expressed the hope that there would be a reconciliation between the two sections. He said: "With malice toward none, with charity for all, with firmness in the right as God gives us to see the right, let us strive to finish the work we are in, to bind up the nation's wounds, to care for him who shall have borne the hattle, and for his widow and for his orphans; to do all which may achieve and cherish a just and a lasting peace among ourselves and with all nations."
297. The public rejoicings over the capture of Richmond were clouded by the death of the wise and noble Lincoln. He had gone to Ford's theater on the evening of April 14, and was sitting in his box, when an actor named J. Wilkes Booth entered unperceived and shot the president through the head, crying: "The south is avenged. Sic semper tyrannis." Almost at the same time one of Booth's accomplices named Payne attempted to assassinate Secretary Seward, who was ill at home, and wounded him seriously bnt not fatally. There had been a plot on the part of some desperate characters when the confederacy fell, to destroy the leaders of the federal government, but their plans were accomplished in part only. The chief parties implicated perished miserably. Booth and Pajne escaped for a time, but were soon caught. Booth was killed while resisting arrest. Payne and three others were hanged, and several persons concerned in the plot were sentenced to imprisonment. The president lingered a few hours, and died without giving any sign of consciousness. His death caused the deepest sorrow, not only in the north, but in the sonth as well, and throughout all the civilized world. He had won the abiding love and trust of the people, and his name will forever be linked with that of Washington; for he was in many ways the second founder of his country.
298. Jefferson Davis, while trying to escape, was captured by a detachinent of General J. H. Wilson's cavalry at Irwinsville, Georgia, and was sent to Fortress Monroe. Here he was confined a close prisoner for a long time on charge of treason. He was at last liberated on bail furnished by Horace Greeley and others, and all proceedings against him were finally abandoned. In fact, the glorious triumph of the government of the United States was in no wise sullied by any dismal executions for treason. The assassination of Lincoln checked for a time the moyement, which had already begun, for the restoration of the seceding states. People who had been ready in their joy to make peace with those who had been leaders in the con-
federacy were now ready to believe that the spirit, which had brought on the war was unchanged. There was a demand that the laws against treason, passed by Congress during the heat of the war, in 1862 , should be rigidly enforced. These laws prescribed that the punishment of treason and rebellion should be denth, or fine and imprisonment. But a wiser judgment prevailed. There was no hanging for treason. The leaders of the confederacy were never brought to trial. The president of the confederate states was suffered to go free; and the vice-president, before his death, became an efficient and respected member in the Congress of the United States. For a long time, however, all persons who had previously taken oath of allegiance to the federal government, and then had broken it by joining the confederacy, were debarred from holding any office under the government of the United States.
299. At the close of the war the federal armies num- Number of bered about $1,000,000$ men, of whom nearly 600,000 men in the were present in the field. The number of confederate ${ }^{\text {armies. }}$ soldiers surrendered and paroled was 174,000 , besides whom there were 63,000 prisoners in the hands of the federals. The whole number of men supplied on the noion side during the war was 2,778.304. Of these 110,070 were killed, 199,720 died of disense while in the service; many thousands more died by accident, or while in prison. The armies of the confederacy are supposed to have reached their strongest point at the beginning of 1863 , when they numbered about 700 ,000. There was great dissatisfaction among the southern people at the manner in which Jefferson Davis conducted the war; and the arbitrary attempts of the confederate government to force men into the ranks, aroused, at last, a spirit of opposition. During the latter part of the war desertions had become very frequent ; and this fact, taken in connection with the losses in battle, and from disease, caused a great reduction in the nnmerical force so that at the end of the struggle, it is doubtful whether the confederate armies contained more than 200,000 men. As soon as possible after organized resistance had ceased, the Federal armies began to be disbanded. The men were discharged at the rate of about 300,000 a month, 50,000 being retained in service as a standing army.
300. The expenses of the Federal government amounted at one time to three and a half million dollars a day. By August 31, 1865, the whole debt had reached its maximum, amounting to about $\$ 2,845,907,626$. Some $\$ 800,000,000$ of revenue had also been spent mainly on the war. Beside the regular outlay by the government enormous sums were spent by states, cities, counties and towns, in bounties to volunteers, and by the sanitary commissions and other societies for the comfort of sick and wounded soldiers, and for the whole army in general. The expenses of the Confederate government can never be known. Its debt was estimated at about $\$ 2,000,000,000$, but this was wiped out hy the failnre of the confederacy, all its bonds and notes becoming worthless. The amount of property destroyed by the union and confederate armies can scarcely be estimated, and the money value (\$2,000,000,000), of the slaves in the south fell a sacrifice to the war. In the United States funds were raised by the sale of bonds, the issue of paper money, of "greenbacks," and the imposition of heavy taxes, including for some jears a tax on incomes. The notes became greatly depreciated, so that in July, 1864, the price of gold in paper currency was nearly three dollars. Gold and silver almost disappeared from circulation.
301. The finances of the confederacy were in a ruin- Confedous condition long before the end of the war. It could erate make no drafts on the futare, by bond issues, and it finances. was a rery difficult matter to find purchasers for southern bonds. As expenses incrensed, they had to be met by paper issues, and each issue was accompanied by a corresponding decline in value, until a dollar in coin was worth fifty dollars in paper. Large sums were
required to buy eren the most necessary articles. Boots were worth two hundred dollars; shoes, one hundred and twenty-five dollars; coats, three hundred and fifty dollars; pantaloons, more than one hundred dollars; flour, two hundred and seventy dollars per barrel; potatoes. twenty to twenty-five dollars per bushel; Jacon, ten dollars per pound ; meal. sixty-five to seventy-five dollars per busbel; butter, sixteen dollars per pound. Other things were proportionately liigh in price ; lusuries of all kinds had disappeared, and almost the entire population was reduced to extreme porerts.

FIII.-THE RESTORATION OF THE UNION.

302. At the beginning of the war the greater part of the northern people was opposed to ans interference with slavery, and the federal government announced its determination not to meddle with the question. But the progress of the war compelled it to a different course. Hence, first came the Proclamation of Emancipation ; then in February, 1865 , Congress proposed the Thirteenth Amendment to the constitution, abolishing slavery in the United States forever, and it was ratified by twenty-seven states and adopted. Those most prominent in putting down the confederacy desired that the Union should be restored as quickly as possible to its former state, with the exception of slavery. It was to be many years, lowever, before the warring seetions of the union could be transformed into a harmonious nation. The war had devastated the country in which it had been engaged. The people on each side had suffered in the loss of friends, hoime and property, and could not at once be reconciled. The great change which had taken place in the aloolition of slavery reached to the vers foundations of southern society and industry. wresident. 30h. Upon the death of Mr. Lincoln, Vice-President Johnson succeeded to the oftice of president, and to the difticult task of the reconstruction of the rebellions states. He had been selected by the Republican party as representing the union men of the south. He was not, however, in full sympathy with the Republicans, and it soon became evident that there was a breach between the president and Congress, which constantly widened. The first business engaging the attention of the government after the restoration of peace was the establishment of regular governments in the southern states. The president issued various proclamations, in which he declared all southern ports open to commerce except four in Texas, and yranted amuesty and pardon to all persons engaged in the rebellion, except fourteen specitic classes of leaders, who were to make special applications for pardon. About the manner of restoring the state governments, however, a serious quarrel arose between the president and Congress. The constitution made no irnvision for the readmission of a state which had witldrawn from the union, and Mr. Johnson, as a former state-rights Democrat, held that the southern states had never been out of the union; that the leaders were solely responsille; that as soon as the seceded states applied for readmission under such a form of government as the constitution required, the federal government was bound to admit then without imposing conditions upon suljects over which the constitution had not expressly given Congress jurisdiction. The Republican leaders held that the action of the seceded states had deprived them of their rights as members of the union; that in the relation they now occupied they were in the category of territories seeking admission to the union, in which case Congress could admit or reject them at will. The particular question which brought on the controversy was the civil gtatus of the negro. The Republicans held that slavers had been the cause of the war; that it was now abolished; and that only yy giving the freedman the right to vote could he be protected, and the results of the war secured. They also claimed that no state should be

Johnson as
The 13th amendment.

Quarrel
between
doe presi-
dront and
Cougress.
admitted until it had granted the right of suffrage to the negroes within its borders. Johnson held this to be a matter of internal regulation beyond the control of Congress.
304. When Johnson succeeded to the presidency in A pril, 1865, he had a clear field before him, for Congress was not to meet until December. From May 9 to July 13, he appointed provisional governors for seven states, whose duties were to reorganize the governments. The state goveruments were organized, but passed such stringent laws in reference to the negroes that the Republicans declared it was a worse form of slavery than the old. When Congress met in Decembex, 1865, it was very largely Republican and firmly determined to protect the negro against outrage and oppression. The first breach leetween the president and the party in power was the veto of the first Freedmen's Eureau bill in February, 1866, which was designed for the welfare of the colored people. President Johnson objected that it had been passed by a Congress in which the southern states had no representatives. The bill failed to pass by a two-thirds vote. Congress then passed a civil right's bill in March, 1866, by which freedmen were made citizens of the United States, and United States officers were instructed to protect these rights in the courts. The president vetoed this hill also, the oljection being that it interfered with the rights of the states. This bill was passed over the reto. To make the bill stronger, Congress proposed the Fourteenth amendment to the constitution (June 16), The Fou and submitted it to the states, the necessary majority teenth of which ratified it. Both bouses then passed a joint ment. resolution that no delegation from any of the states lately in rebellion should be received by either the senate or the house until both mnited in declaring said state a member of the union.
305 . The president disapproved of these measures, and there was now open hostility between the executive and Congress. In February, 1867, a bill was passed admitting Nelraska as a state, with the provision that it should never enact any lan denying the right of suffrage to any person because of his color or race. This was vetoed, and passed over the veto. On March 2,1867 , the "bill to provide efficient governments for the insurrectionary states," which embodied the congressional plan of reconstruction, was passed over the president's veto. This bill divided the southern states into military districts, each under a brigadier-general, who was to preserve order and exercise all the functions of government until the citizens had formed a state government, ratified the amendments, and been admitied to the union. On the same day the Tenure Tenure of Office bill was passed over the veto. This provided Office bi that civil officers should remain in office until the confirmation of their successors; that the members of the cabinet should be removed only with the consent of the senate; that, while Congress was not in session the president might suspend (not remove) any official; and in case the senate at the next session should not ratify the suspension, the suspended official should resume his office.
306. On August 5, 1867, the president had requested Impeacl Edwin M. Stanton to resign his office as secretary of mecut of war. Mr. Stanton refused, was suspended, and General Grant was appointed to his place. When Congress met, the senate refused to agree to Stanton's remoral. General Grant then resigned the office, and Stanton again taok possession. The president removed him a second time, and appointed General Lorenzo Thomas to the place. Stanton held to his office, and sent notice to the speaker of the house ; thereupon the house passed a resolution (February 24, 1868), for the impeachment of the president. The articles of impeachment accused him of disobeying the tenure of office law, and of various other offences. The trial took place according to the constitution, members of the house appearing as accusers, and the senate acting as judges, with Chief Justice Chase, of the supreme court, in the chair. After the trial began the president made a tour of the north
and west, and delivered many violent and passionate speeches to the crowds which assembled to meet him, and denounced the Congress then sitting as "no Congress," because of its refusal to admit delegations from the southern states. On these speeches the house based additional articles of impeachment. The exciting trial lasted two montlis, and ended in May with a vote of thirty-five for conviction, and nineteen for acquittal. Thus there was not a two-thirds majority for conviction. The senate adjourned sine die, and a verdict of acquittal was entered.
307. The Russian possessions in North America, comprising a large and thinly populated territory at the northwest corner of the continent, were purchased of the Russian government by the United States in 1867 for the sum of $\$ 7,200,000$. This territory is known as Alaska. Nevada, the thirty-sixth state, was admitted during Mr. Lincoln's administration (1864); Nebraska, the thirty-seventh, was admitted in 1867. In 1868 General Grant was elected president, as the candidate of the Republican party, thus sealing the process of the reconstruction; schusler Colfax became vice-president. The Democratic candidates were Horatio Seymour, of New York, and Frank P. Blair, of Missouri. Virginia, Mississippi and Texas were the only states of the late confederacy which were excluded from this election; all the rest had been reconstructed and admitted by Congress in June, 1868. The Republican candidates carried twenty-six of the thirty-four voting states. In his inaugural address, General Grant declared that the government bonds ought to be paid in gold, advocated a speedy return to specie payments, and made many important recommendations in reference to public affairs. Regarding the good faith of the nation, he said: "To protect the national honor, every dollar of the government's indebtedness should be paid in gold, unless otherwise expressly stipulated in the contract." Congress acted promptly upon his recommendation, and on March 18, 1869, an act was passed, entitled "An Act to strengthen the public credit." Its language gave a pledge to the world that the debte of the conntry would be paid in coin, unless there were in the obligations express stipulations to the contrary.
308. On February 26, 1869, the Fifteenth Amendment to the constitution was proposed by Congress. Its adoption had been previously recommended by Grant. It guaranteed the right of suffrage withont regard to race, color, or previons condition of servitude. It was ratified by the requisite three-fourths of the states, and declared in force Marcl 30,1870 . In the meantime the foreign affairs of the country bad been favorably established. Its promptness in disarming at the end of the war had put it under no disadyantage in dealing with other nations. The successful completion of the Atlantic cable (1866) gave a promptness and dispatch to diplomacy which was well suited to American methods. The most important measure of foreign policy during President Grant's administration was the treaty with Great Britain (Mlay 8, 18i1), known as the Treaty of Washington. Soon after entering upon his office, the president had begun negotiations, looking to a settlement of the claims made by the United States against Great Britain,arising from the depredations upon A merican commerce by confederate cruisers fitted out in British ports, the questions growing out of the Canadian fishery disputes, the location of our northern houndary line at its junction with the Pacific ocean, and the settlement of the jurisdiction of the island of San Juan.
309. A high joint commission had assembled at Washington, composed of American and English statesmen, which formulated the Treaty of Washington, and by its terms the claims against Great Britain, commonly known as the "Alahama claims," were referred to a court of arhitration, which held its session at Geneva. Switzerland. $1 \mathrm{n} \cdot$ September, 1872 , it a marded the Uuited States the sum of $\$ 15,500,000$ which was subse-
missioners, one to be chosen by the I'nited States, one by Great Britain, and the third by the other two, provided they should make a.choice within a stated time, otherwise the selection to he made by the Emperor of Austria. The two commissioners having failed to agree, the third was named by the Emperor of Austria. The award was unsatisfactory to the United States. The decision of the commission was severely criticised by the people and the press, and the dispute has been reopened since from time to time, to the detriment of hotb countries. The San Juan question was referred San Juan. to the Emperor of Germany as arbitrator with sole power. His award fully sustained the claim of the United States.
310. President Grant's first administration had been vigorous and progressive, but a number of Republicans had become estranged, feeling that they were being
ignored by the executive. These persons formed themselves into an organization under the name of Liberal

Liberal ReRepublicans. This opposition resulted in the nomination of Horace Greeley for president, and B. Gratz Brown for vice-president, by the Liberal party (1872). These nominations were afterwards adonted by the Democratic party. The republican convention renominated President Grant, with Henry Wilson as nominee for vice-president. When the election took place Grant carried thirty-one states with a popular vote of $3,597,070$, the largest that had ever been given for any president. He received 286 electoral yotes, against 66 Re-clection which would have been cast for $\mathbf{M r}$. Greeley had he of Grant. lived. Mr. Greeley, however, died before the electors voted. The canvass had heen one of the most exciting and aggressive in the history of the country, and abounded in personal attacks on the candidates. During President Grant's first term of office the work of reconstruction according to the plan settled ly Congress had been steadily carried out, and by July, 1870, the work had been accomplished, and all the states were again members of the Union, although the votes of Arkansas and Louisiana were not received by Congress in 1872 , because of alleged fraud and illegality in the election.
311. The relations between the United States and RemationSpain were frequently disturbed by incidents growing with ; ; pains out of an insurrection in Cuba, which had lasted for a number of years. Several American citizens bad been arrested by the Spanish authorities, under the pretense that they had been furnishing aid to the insurgents, and American vessels plying in Cuban waters had been subjected to much inconvenience. Matters at length culminated in the seizure hy Spain (October, 1873), without justification, of the American steamer- lir- Casc of the gimins. The outrage created intense excitement in "rir. the United States, and many statesmen were clamorous ginius." for war ; luat the president took more pacific measures, and, by acting with promptness and firmness, soon wrung from spain ample apology and full reparation. Political troubles were still rife in certain states of the south. In Mareh, 1871, the disorders in the southern Political states, growing out of the conflicts between the whites trounliles in and the negroes, had assumed such proportions that the the south. president sent a special message to Congress requesting "such legislation as shall effectually secure life, liberty and property, and the enforcement of law in all parts of the United States." On April 20 Congress passed an act which authorized the president to suspend, under defined circumstances, the writ of habeas corpus in any district, and to use the army and navy in suppressing insurrections. He issued a proclamation (Mlay 4), ordering all unlawfil armed bands to disperse, and after expressing his reluctance to use the extraordinary power conferred upon him, said he wonld "not lesitate to use that porer to its full extent, whenever and wherever it should be necessary to do so for the purpose of securing to all citizens the peaceful enjorment of the rights guaranteed to them by the constitution and the laws of the United States." As this did not produce the desired effect he issued a proclamation of warning (October 12), and on October 17 suspended the writ
of habeas corpus in parts of North and Soutlı Carolina. He followed this by vigorous prosecutions, which resulted in sending a number of prominent offenders to prison, and the outrages soon ceased.

Louisiana.

312. Soon after President Grant entered upon his second term of office, the disputes in Louisian a concerning the result of the election in 1872 became more bitter, and armed violence was threatened in tbat state. Early in 1873 the president called the attention of Congress to the inadequacy of the laws applying to such cases, saying that he had recognized the officers installed by the decision of the returning-board as representing the de facto government, and if he had exercised undue interference by such a course he urged Congress to an immediate decision in regard to the matter. Congress, however, took no action, and left with the president the sole responsibility of dealing with this delicate question. The next year the difficulty was renewed and a fierce contest arose between the Republicans under Kellogg, and the Democrats under MeEnery, the respective candidates of the two parties for the governorship, which resulted in armed hostilities. Kellogg, the de facto governor, called apon the federal government for protection, which it inmediately granted by sending troops thither, and the outbreak was for a time suppressed. But troubles again arose, and General Sheridan was sent to report upon the situation of affairs, and, if necessary, to take command of the troops and adopt vigorous measures to preserve the peace. Sheridan became convinced that his duty was to sustain the government of Kellogg, and on the demand of the governor he ejected some of McEnery's adherents from the state capitol. As Congress still omitted to take any action in the case, the president continued bis recognicion of the govermment of which Kellogg was the head until the election of a new governor. After this there was no serious trouble. Difticulties of the same nature arose in Arkansas and Texas, which were almost as perplexing to the executive as those in Louisiana; but these attracted less attention from the people. the "Infation lill" which increased the paper curreney of the country, and was contrary to the financial policy which the president had maintained and advocated in his state papers. Strenuous efforts were made by his warmest political supporters to convince him that the measure was financially wise and politically expedient. President Grant gave much thought and study to the question, and at length fully decided that the measure would in the end prove injurious to the true business interests of the country, and delay the resumption of specie payment. He, therefore, returned the bill to Congress with his veto (April 22). The arguments contained in his message were unanswerable, the bill was not passed over his veto, and his course was sustained by the whole country. The president now earnestly advocated the resumption of specie payment. In a letter addressed to Senator Jones, of Nevada, he gave a full statement of his views on the question. This letter was made public, and attracted much attention; and in January, 1875, the resumption act was passed, which to a large extent embodied the views that had been suggested by the president. There were doubts in the minds of many as to the ability of the government to carry it into effect; but it proved entirely successful, and the country was finally relieved from the stigma of circulating an irredeemable paper currency.
313. Great trouble was caused soon after the close of the war by the depredations of the Indian tribes of the west and southwest. The Sioux and Clieyennes having begun hostilities, an expedition was sent out against them under the direction of General Hancock in 1867 , and another in 1868 , beyond the Arkansas river, where General Custer gained an important victory. In an expedition against the Modocs of Oregon, in 1873, General Canby was treacherously murdered during a parley with the Indian chiefs. The Sioux had ceded to the United States a large tract of country in what was then Dakota territory, reserving to themselves
the district known as the Black Hills. When it was Black H . rumored that gold had been found on their reservation, the whites began to push into this region, regardless of the rights of the Indians. The Sioux were a warlike tribe, and they retaliated by attacking the frontier settlements in Nontana and Wyoming. United States troops were sent out against them, but met at first with a terrible disaster. In June, 1876, General Custer, with The custf about two hundred and fifty soldiers, was surprised, massacre and the entire force massacred. The war lasted into the winter of 1877 , when the Sioux, with their chiefs, Sitting Bull and Crazy Horse, went across the border into British territory.
314. During 1875, the president had reason to sus- Whiskey pect that frauds were being practiced by government frauds. officials in certain states, in collecting the revenue derived from the manufacture of whiskey. Ie at once took active measures for their detection, and the punishment of the offenders. He issued a stringent order for their prosecution, closing with the famous words, "Let no guilty man escape." Many indictments soon followed; the ringleaders were sent to the penitentiary, and an honest collection of the revenue was secured. The year for nominating a president was at hand, and the excitement ran high. Friends of the convicted, political enemies and rivals for succession in his own party, resorted to the most desperate means to break the president's power and diminish his popularity. The grossest misrepresentations were practiced, first in trying to bring into question the honesty of his purpose in the prosecution of offenders, and afterward in endeavoring to rob him of the credit of his labors, which had resulted in the purifying of the revenue service. But tbese efforts signally failed. In 1876 the United States celebrated the one hundredth anniver- The censary of the Declaration of Independence. There were independ great rejoicings throughout the country, and the ence. various battles of the revolution, as well as the signing of the Declaration, were commemorated by appropriate exercises. The centennial year was chosen for holding a great international exhibition at Philadelphia, to which all the nations of the world were invited to contribute. It was opened in May and closed in November, having been visited by about ten millions of people.
315. The changes at the south, and the dissatisfac- Election tion of many at the north with the rule of the Repub- of 1876. lican managers, were seen in the election of 1876 . The Democrats nominated Samuel J. Tilden and Tbomas A. Hendricks for president and vice-president; and the Republicans, Rutherford B. Hayes and William A. Wheeler. A national Greenback convention was also held, May 17 , composed of men who desired national paper money instead of national bank notes, and who opposed resumption of specie payments. It nominated Peter Cooper and Samuel F. Cary, The contest was very close, and a dispute arose as to the counting of the votes of certain southern states, both sides claiming them. The controversy was finally settled by the appointment of an electoral commission of fifteen, eight of whicl decided in favor of Mr. Hayes. In this year, Colorado, the thirty-eighth state (and the last up to 1887) was admitted in time to take part in the election.
316. The administration of President Hayes, altbougb The Kayr much attacked by the politicians of both parties, was, adminis. on the whole, very satisfactory to the people at large. By witlidrawing the federal troops from southern state bouses, and restoring to the people of those states practical self-government, it prepared the way for that patriotism among those lately estranged from the union, that fraternal feeling between the two sections of the country, and the wonderfu] material advancement of the south which we now witness. It conducted with wisdon and firmness the preparation for the resumption of specie payments, as well as the funding of the public debt at lower rates of interest, and thus facilitated the development of the remarkable business prosperity which continued to its close. While in its endeavors to pffect a thorough and permanent reform of
the civil service, there were conspicuous lapses and in. consistencies, it accomplished important and lasting results. Not only without any appropriations of money, and without encouragement of any kind from Congress, but in the face of the decided bostility of a large majority of its members, the system of competitive examinations was employed in some of the executive departments at Washington, and in some of the great government oflices in New York, thus proving its practicability and usefulness. The removal by President Hayes of some of the most poweriu] parts managers from their offices, avowedly on the ground that the offices had been used as part of the political machinery, was an act of high courage, and during his administration there was far less meddling with parts politics on the part of the government officials that at any period since Andrew Jackson's time.
317. The financial condition of the United States had been steadily inproving since the war. A few months after the conclusion of peace the public debt had reached its highest amount, $\$ 2,800,000,000$, and by the close of President Hayes' administration no less than one thousand million dollars of that amount had been paid off. The credit of the government rose, and the paper mones, once worth only a third of its denomination in gold, increased in value. The operation of refunding the debt had been begun July 14, 1870. At that time Congress passed an act authorizing the issue of five, four and a hall, ond four per cent bonds to take the place of those at higher interest. $\$ 500,000,000$ were issued in five per cent bonds, $\$ 185,000,000$ in four and one-half per cent, and $\$ 710,3+5,950$ at four per cent, thus reducing the annual interest charge from $\$ 81,639,684$ to $\$ 61,738,838$. This first refunding operation was completed in the year 1879, at the time when specie payments were resumed. In 1881 about $\$ 200,000,000$ of six per cent bonds fell due. Mr. Windom, secretary of the treasurs, took the responsibility of allowing the holders of the bonds to exchange them for three and one-half per cent bonds, redeemable at the pleasure of the government. Holders of other bonds to the amount of $\$ 300,-$ 000,000 also availed themselves of this privilege, thus saving $\$ 10,000,000$ interest. In 1875 Congress passed a law providing that the paper "fractional currency" used for small change should be redeemed at once in silver, and that after the 1st of January, 1879, the "greenbacks" sbould be paid on demand in coin.
318. At the elections of 1880 the Republican candidates were General James A. Garfield for president, and General Chester A. Arthur for vice-president; while the Democrats nominated General Winfield S. Hancock and William E. English. The Repuhlican ticket was successful, receiving the electoral votes (214 in number) of all the northern states except California -which was divided-Nerada and New Jerser. The Democratic electoral vote was 155 including 11 from Georgia, which, not having been cast on the day appointed by law, were objected to when the returns were opened. As they could not affect the result the question whether they should be counted or not was never decided. The new administration was inaugurated March 4,1881 , and the scramile for oflice which had marked each advent to the presidency since 1829, followed. There was bitter dissension in the party in New York over the distribution of offices. The New York senators, feeling aggrieved at certain appointments in their state, resigned, and then made efforts to be re-elected by their state legislature, in which thes failed. In the midst of it all President Garfield was shot (July 2, 1881) by a crazy, disappointed office-seeker. The avowed object was to promote to the presidential chair Vice-President Arthur, who represented the Grant or "stalwart" wing of the party. The president was not instantly killed. For three months he lay helpless while the nation watched anxiousls every turn in his condition. The sympathy shown by all parts of the country did much to draw the nation together and to lessen the old distrust. Garfield died

September 19, 1851, and was succeeded by Vice-President Arthur.

3:0. The prominent events of President Arthur's Arthur's administration may be here summarized. Shortly after adminte. his accession to the presidency he participated in the tration. dedication of the monument erected at Yorktown, Va., to commemorate the surrender of Lord Cornwallis at that place, Oct. 19. 1781. A convention was made with Mexico (July 29, 1882) for re-locating the boundary between that country and the United States from the Rio Grande to the Pacitic, and on the same day an agreement was also effected permitting the armed forces of either country to cross the frontier in pursuit of hostile ludians. The death of President Garfield called general attention to that reprehensible system under Which each party, while in office, had paid its party expenses by the use of minor offices for its adherents. The president's power of appointment could not be controlled; but the Pendleton Act (1883) permitted the president to make appointments to designated classes of offices on the recommendation of a loard of civil service commissioners. From the British government a full recognition of the rights and immunities of baturalized American citizens of Irish origin was obtained, and all such who were under arrest in England or Ireland as suspects were liberated. A bill passed by Congress prohibiting the immigration of Chinese laborers Chinese for a term of twenty Jears was vetoed (April 4, 1882), immigran as being a violation of the treaty of 1880 with China, which permit ted the limitation or suspension of immigration, but forbade its absolute prohibition. The yeto was sustained, and a modified bill suspending immigration for ten years, was passed, May $6,1852$. which received the executive approval. A law was passed (August 3, 1882) for returning convicts to Conviet Europe, and on Fehruary 26, 1885 , importation of contract laborers was ferhidden.
32h. The suspension of the coinage of standard silver dollars and the redemption of the trade dollars were repeatedly recommended; also, the repeal of the stamp taxes on matches, proprietary articles, playing cards, lank checks, drafts, and of the tax on surplus bank capital and deposits. These taxes mere repealed by act of Congress (March 3,1883) ; and by executive order Repeal of of June 25,1883 , the number of internal revenue col- Etamp. lection districts was reduced from 126 to 83. The tax on tobacco was reduced by the same act of Congress. On July 12, 1882, an act became law enabling the national banks, which were then completing their Nationad twenty year terms, to extend their corporate existence bank. The attention of Congress was frequently called to the decline of the American merchant marine, and legislation was recommended for its restoration, and the construction and maintenance of ocean steamships under the United States flag. In compliance with these recommendations, the following laws were enacted: June 26, 1884, an act to remove certain burdens from American shipping; Juls 5, 1884, an act creating a bureau of navigation, under charge of a commission, in the rres do the treasury department ; and March 3,1885 , an amend-aud turean ment to the postal appropriation bill granting $\$ 800,000$ of navigafor contracting with American steamship lines for the tion. transportation of foreign mails.
322. The reduction of letter postage from three to two cents was recommended, and was effected by the act of March 3,1883 ; the unit of weight was made (March 3, 1885) one ounce instead of a half ounce; the rate on transient newspapersand periodicals was reduced (June 9. 1884), to one cent for four ounces, and the rate on similar matter, when sent by the publisher to actual subscribers, was reduced to one cent a pound (March 3, 1885). The fast mail and free delivery systems were largely extended. Special letter deliveries were established March 3, 1885. The star service at the west was increased at reduced cost; the foreign mail service improved; and rarious postal conventions were negotiated. A law for the adjudication of the French spoliation claims was passed (January 20, 1885), and Freceh preparations made for carrying it into effect. On chaims.

Klection of 1884.

March 3, [855, a bill was passed retiring General Grant with the rank of general of the army, and witb full pay.

323. In 1884 the Republicans nominated James G.

 Blaine and General John A. Logan, and the Democrats Cleveland and Hendricks. The greenback and antimonopolist parties put forward the name of Benjamin F. Butler. The prohibitionists, also, had organized themselves into a party, and presented as their candidate Governor St. John. A small majority for the democratic candidates in the State of New York gave them its electoral votes, and decided the election in their favor. They were inaugurated March 4, 1885. The president announced in regard to official changes that, with the exceptions of heads of departments, foreign ministers, and other offices charged with the execution of the policy of the administration, no removals would take place except for cause. He therefore came into conflict with many infuential members of his party who advocated the speedy removal of Republican office-holders and the appointment of Democrats, in order to strengthen the party as a political organization. While that class of politicians objected to the slowness with which removals were made, and to the appointment of independents, and in a few instances Republicans, the Republicans and some of the civil service reformers complained of other appointments as not being in accord with the professions of the president."Offensive partisuaakip.' removal; and numerous Republican functionaries wele displaced under that rule, wlile the term itself became a by-word. On March 13,1885 , the presiflant issned a proclamation announcing the intention of
Oklahoma conntry. in Indian territory the white intruders who sought to settle there, which was done shortly afterwards by a detachment of soldiers.

30t. In his message at the opening of the XLIXth Congress, December 8,1885 , President Cleveland recommended the abolition of duties on works of art, the reduction of the tariff on necessaries of life, the suspension of compulsory silver coinage, more stringent laws for the suppression of polygamy in Utah, an act to prohibit the immigration of Mormons, and the extension of the civil service reform. In January, 1886, Congress passed the bill regulating the presidential succession in the event of a vacancy. Mr. Cleveland exercised the veto power beyond all precedent. Of 987 bills passed by both houses in the session ending August 5, 18S6, 115 were vetoed. Of these 102 were private pension bills, and six were bills for the erection of public buildings. Of the general measures which failed to receive his signature, the most important was the Morrison resolution requiring the secretary of the treasury to apply to the redemption of bonds any surplus to the treasury exceeding $\$ 100,000,000$. The river and harbor bill, containing appropriations, deemed by many useless and extravagant, and the bill taxing oleomargarine two cents a pound, which was considered an anjust discrimination against one class of producers for the benefit of another, were not vetoed. On signing the latter, the president sent a message to Congress, in which he gave as his reason that the stamps required by the act Would mark the character of the substance and prevent it being fraudulently sold.
325. The presidential campaign of 1888 was noted for the number of candidates in the field, who were as follows: Republican, Benjamin Harrison and Levi P. Morton; Democratic, Grover Cleveland (renominated) and Allen G. Thurman; prohibition, Clinton B. Fisk and John A. Brooks; union labor, A. J. Streeter and Charles E. Cunningham; industrial reform, Albert E. Redstone and John Colvin; united labor, Robert H. Cowdrey and W. H. T. Wrakefield; woman suffragists, Belva A. Lockwood and Albert H. Love. The main issue between the two leading parties, Republican and Democratic, was on the tariff question; the former favoring a modified protected tariff, while the latter demanded a tariff chiefly for revenue. The principles
of the other parties related to labor, national currency prohibition and woman's suffrage. The Republican party was successful, and Harrison as president, with Morton as vice-president, was inaugurated March 4, 1889. The administration of Mr. Harrison, thus far, Harri has been characterized by the passage of the McKinley tratio tariff bill, which both increases and diminishes the duties on many necessary articles and adds to the duties on luxuries, and by the regulation of pension matters. The invalid pension bill has lueen passed, granting pensions to all disabled soldiers without reference to the time when the disability was contracted. On the beginning of June, I890, the enumera- The ce tion of the general census for the last decade was begun, under the control of Superintendent Porter, and the returns of the census enumerators give the population of the United States at $60,250,000$, which is less than was anticipated. Many consider the returns as imperfectly made.
326. In the meanwhile the prosperity of the United The States las known no cessation, During the civil war prese? oi 186I-I865, the emperor of France, Napoleon Ill., ${ }^{\text {artior }}$ attempted to establish in Mexico a foreign government under Daximilian, an Austrian archduke, aided by a French army. The remonstrance of the United States and the resolution of the Mexicans compelled Napoleon to abandon the attempt. Maximilian was seized by the Mexicans and executed (1867). A new invasion of Nexico from the United States wrs begun, but it was the perceful invasion of commerce. Railways were pushed down along the great plateau which reaches Lrom the United States into the heart of the country, making thus a closer connection between the two peoples. In 1869 the first of the great railroads, the Central Railw Iracific, was finished, connecting the Atlantic and I'acific Oceans, and opening the country to settlement and travel. Since then other railronds have stretched their iron bands across the continent. Of the 290,000 miles of railroad in the world, there are, probably, about 135,000 miles in the United States. This country possesses, also, more than 550,000 miles of telegraph lines; Teleg and the American telephone lines arestill longer in the and ti aggregate. In 1866, a previous attempt in 1857 baving failed, a telegraphic cable was laid upon the bed of the Atlantic between America and Europe. This cable was Attan followed by others, so that now the citizen of the United States may know each day the principal events which oceur in the civilized world. The stimulus given to new territory possessing the requisites for settlement by the introduction of a new railway has been wonderful beyond description. Most of the western railways have had to build up their own traffic. The railway has leen mainly constructed under land grants from the government, and the sales of these lands have brought into existence the towns and even the states which support it.

327 . In the government reports of 1854 Nebraska was described as a desert country totally unsuited for agriculture, and in the maps of the time it was put down as a part of the great American Desert. It is now one of the leading agricultural states of the union with a population of over a million. Since the admis-New ε sion of Colorado in 1876 six other states have been admitted to the union, namely; North and South Dakota, Washington, Montana, W'yoming and Idaho. There are jet five territories, including Alaska, not yet organized into states, and the District of Columbia. The mineral wealth of the country has become greatly developed. A few years after the discovery of gold in California, the precious metal was found also at Mine Pike's l'eak, Colorado (1858). Since then it has been discovered in most of the Pacific states and territories. In 1858 silver was discovered in Nevada, and this metal has been found widely distributed in the country hordering on the Pacific coast. The extent of the vast coal fields of the country has been pretty clearly ascer- Coal. tained. In 1883 it was estimated at over 200,000 square miles. Petroleum was discovered in 1859 in north- Petro western Pennsylvania, numerous wells were sunk and
vast quantities of the oil have been taken from the earth, but the reservoir seems to be unfailing. Manufacturing establishments of every variety have rapidly increased in every part of the country. The absolute free trade which exists between the states has resulted in a constant shifting of centers of production and an increasing development. Among the nations of the world, Great Britain, in 1870, stood first in wealth, France the second and the United States the third. In 1880 the United States had left France behind in the race and stood at least second. When all the census returns of 1890 shall be given, they will doubtless show that this country ranks with the first. The United States, whose population has been dereloped within less than three centuries, does already more than one-third of the world's mining and one-fourth of its manufacturing. It embraces also one-fifth of its agriculture.
328. In this wonderful progress and development the south, since the close of the war, has borne her share. Being relieved of the incubus of slavery she has come up "through great tribulation" to assume her rightful place as a most important factor in advancing the prosperity of an undivided nation. Under the stimulus of free labor her growth bas been extraordinary. New railroads have been built and new territory opened up. Southern railways occupy a leading position in the railway systems of the country. Southern manufactures began to effect northern markets. Cotton mills have been successfully established, which have the advantage of an immediate contiguity to the cottonraising states. The great mineral fields, over which contending armies fought fierce battles during the late war, have been brought to light and are being rapidly developed. Pennsslrania iron-masters have a new rival to contend with in the iron production of the sonth. The former slave is now a free laborer, and the white man is no longer ashamed to work. White labor produced ten per cent of the cotton crop of 1860 and fifty-five per cent of that of 1886 . Under slavery, cotton-seeds were waste material ; in $1886,600,000$ tons of them were crushed, yielding a new production in the form of cotton-seed oil valued at $\$ 12,000,000$ per annum.
329. Among the political and economic questions lemanding the attention of the government, no one of them is more important than the question of the reform of the civil service, but it is not avowedly made a party question. Twenty sears ago both parties laughed at the idea of civil service reform, now each one makes a show at least of treating it with respect, and the control of the immediate political future, probably lies with the party which will treat it in the most serious and practical manner. It is a question that was not distinctly foreseen in the days of Hamilton and Jefferson, when the constitution was made and adopted, otherwise the founders of the constitution might have had something to say concerning it. The question as to the civil service arises from the fact that the president has the power of appointing a very large number of petty officials, chiefly postmasters and officers concerned with the collection of the government revenue. Such officials hare properly nothing to do with politics; they are simply the agents or clerks or servants of the national gorernment in conducting its business, and if this business is to be managed on the ordinary principles of prudence which prerail in the management of private husiness, such servants ought to be selected for personal merit and retained for life or during good Lehavior. In 1883 Congress passed the civil service act allowing the president to select a board of examiners and make appointments upon their recommendation. Candidates for office are subjected to an easy competitive examination. The system has worked well in other countries, and under Presidents Arthur and Cleveland it was applied successfully to a considerable part of the civil service. It has also been adopted in some of the states and principal cities of the union. It is objected to by the opponents of reform, on the
ground that its examinations are not alwass intimately connected with the work of the office; but even if this were so, it remoses the offices from the category of things known as "patronage," and this alone endows the system with great merit. Then again, it relieves the president of much needless work and wearisome importunity. The executire and heads of departments appoint (in many cases through subordinates) about 115,000 officials. It is, therefore, impossible for the principals to know much about the character or competency of those appointed. It becomes necessary to act by advice, and the advice of an examining board is sure to be much better than that of political schemers intent upon getting a salaried office for their needy friends. The examination system has made a fair beginning and will doubtless be gradually improved and made more stringent. Something bas been also done toward stopping two old abuses attendant upon political canvasses, namely, that of forcing government clerks, under penalty of losing their places, to contribute part of their salaries for election purposes, and that of allowing them to neglect their work in order to take an active part in the canvass.
330. Another political reform promising excellent re- Ths sults is, the adoption by many states of some form of Ausirelas the Australian ballot-system, for the purpose of check ing intimidation and bribery at elections. The ballots are printed by the state, and contain the names of all the candidates of all the parties. Against the name of each candidate the party to which he belongs is designated, and against each name there is a small racant space to be filled with a cross. At the polling place the ballots are kept in an enclosure behind a railing and no ballot can be brought outside under penalty of fine or imprisonment. One ballot is nailed against the wall outside the railing, so that it may be read at pleasure. The space behind the railing is divided into separate booths quite screened from each other, each booth is provided with a pencil and a convenient shelf on which to write. The voter goes behind the railing, takes the ballot which is handed to him, carries it to one of the booths, and marks a cross against the names of the candidates for whon he votes. He then puts his ballot into the box, and his name is checked off on the register of voters of the precinct. This system is very simple, and it enables a vote to be given in absolute secrecy. It is favorable to independence in roting, and is unfavorable to bribery, because, unless the briber can follow his man to the polls and see how he votes, he cannot be sure that his bribe is effective. During the past few sears, complaints of bribery and corruption hare attracted especial attention in the United States, and it is highly creditable to the good sense of the people that preventive measures have been so promptly adopted by many of the states. With an independent and uncorrupted ballot, and the civil service taken "out of politics," all other reforms will become far more easily accomplished.

But a very few of the works treating of the History of the United States in its manifold plases can be bere given, as they are so numerous. The Mistories of the Thited States, by George Bancroft, David Ramsay, Richard Hildreth, Bryant, Higginson, Lossing, Lester, Frost, Schouler, Von Holst, Ridpath, Hamilton, Hassard, Gray, Leeds; American History, edited by Edward L. Knapp; Gilman, History of the American People; H. H. Bancroft, History of the Pacifir Coast; Willson, American History; Hazard, Historical Collections: Stephen H. Newman, America; McMaster, History of the People of the Tnited States; Winsor, Norrative and Critical History; Grabam, History of the United States; Parkman's 1Forks; Ludlow, JFar of A merican Independence; Gordon, History of the Independence of the Enited states; E. D. Neill, College Contributions ta American Mistory: Gordon, History of the American Revolution, Register of Debates in Congress, Congressional Globe, Annals of Congress; Coles, History of the Ordinance of 1787; Adams, Neu England Federalism, 1500-15; Greene, Historical Tiew of the American Revolution; The American Commonwealth Series: Lodge,

English C'olonies in America; Carrington, Battles of the American Revolution; Neill, English Colonization of America; Duyckinck, National Portrait Gullery; Holmes, Annals of America; Marshall, History of the Colomies; Palfrey, History of New England; Story, Commentaries: Story, On the Constitution; Frothingham, Rise of the Republic; Harpers" Cyclopadia of American History; Appleton's Cycloprdia of American Biogra. phy; John Robert Ireland, The Republic; Scott, Constitutional Liberty in the Colomies; Benton, Thirty Years in the Senate; Irving, Life of Washinoton; Kent, Commentaries on American Law; Johnston, History of American Politics; Johnston, History of the United States; Fiske, American Political Ileas; Fiske, Civil Gowernment in the United States, Johns Mopkin's Iniversity, Studies in History and Politics: Howard, Local Constitutional History of the Thited Stutes: A. O. Wright, Constitution of the Inited States; Brownson, Ameriean Republic: Lamphere, American Government; Wilson, Congressional Government: Mansfield, The Political Mamual; Curtis, Mistory of the Constitution; J. D. Whitney, United States; Tribune Almanac: MePherson, Faliticel Manua7s; Spofford, American Almanac; Fallows, The American Manual; Congressional Records; Reports of the Officers of the Various States; Histories of the Various States; Compendium of the Census from 1850-1890; Cooper, Naval History; Preble, History of the Nary; Porter, Constitntional History; McKnight, Electoral System; McCrary, Election Laws: Cooley, Constitutional Limitations, Taxrtion and Constitutional Luw; Alden, Science of Gorernmen: Austin, Constitutional Kepublicanism; Bradford, History of the Federal Gnvernment. 1789-1839; Coles, IHiscory of the Ordinance of 1787 ; Dwight, History of the Hartford Convention; Draper, Civil Policy of America; Handlin. American Politics; Sneider, The Ameriean State; Spaulding, Administrations of the United States; Sumner, Works; Thompson, Church and State in the U. S.; Thompson, Revolution Against Free Cocernment; Townsend, Analusis of Cinil Gorernment; Elliot's Debates, Constitutional Convention; Young, American Statesman; Bancroft, Formation of the Constitution of the C. S.; Blaine, Twenty Years in Congress: Porter, Constitutional History of the United States; I'reble, History of the Flag of the United States; Sumner, Prophetic Voices Cancerning America; Wilson, Rise and Fall of the Slave Power; Woolsey and others, First Century of the Republic; Russell, History of the ITur of 1812; Ingersoll, History of the IVar of 1812; Abbott's History of the Civil I'ar; Compte De Paris, History of the Civil War in America; Borcke, Memoirs of the Confederate War; Brownlow, Rise and Progress of Secession: Campaigns of the Civil War: Drew, John Brown's Imrasian; Greeley, American Conflict: Harper's IIistory of the Rebellion; Pollard. Lost Cause; Pollard, Lnst Cause Regained: Nemoirs of Grant and Sherman-Life of Sheridan; Pollard, General Lee and IIis Lieutenants; Pollard, Military Life of Jeffersan Davis; Stephens, Constitutional l'iew of Late War. with Supplement: Blodgett, Commerrial Sirength of the Inited States; Bolles, Financial History of the United States;

Sumner, History of American Currency; Taylor, American Currency; Knox, Fifth Report of Americun Bankers' Association; Law, National Cireulating Medium in Inited States; Phillips, History of American Paper Curreney and Continental Money; Wells, Robinson Crusor's Muney; Spaulding, One Hundred Fears of Banking; Ely, Labor Movement in America; Gibbons, I'ublic Debt of the T'nited States: Mason, The Tariff; Young, Tarifl Legislation of the Cnited States; Hudson, Railways and the Remublic: Hadley, Ruilroad Transportation; Poor, Manual of C. S. Railroads; Porcher, Fesources of the Soulh; Dresser, Lnited States Tariff; Official Statistics of the United States, and tbe Several States.

PRESIDENTS AND VICE-PRESIDENTS OF THE UNITED STATES:
TERMS.

1789-93 1793-97 1797-1801 1801-05 $1805-09$ 1809-13

1813-17
1817-21
1821-25
1825-29
1829-33
1833-37
1837-41
1811-45

1845-49
1849-53

1853-57
185\%-61
1861-65 1865-69
1869-73
1573-77
1877-81
1881-85

18S5-89
1889
PrESIDENTS
. George Washington, Va. George Washington.
2. John Adams, Mass.
3. Thomas Jefferson, Va.

Thomas Jefferson.
4. James Madison, Va

James Madisou.
5. James Mouroe, Va.

James Nonroe
6. John Quincy Adams, Mass.
. Andrew Jackson, Tenn.
Andrew Jackson.
8. Martin Van Buren, N. Y.
9. William Henry Harrison, O. (d.1841.)
10. John Trler.
11. James Knox Polk, Tenn.
12. Zachart Taylor, La. (d. 1.50.)
13. Millard Fillmore
14. Franklin Pierce, N. H.
15. James Bnchanan, Pa.
16. Aluraham Lincoln, Ill.

- Alraham Lincoln (d. IS65)

17. Andrew Johnson.
18. Ulysses Simpsou Grant, 111.

Ulysses S. Grant.
19. Rutherford Birchard Hayes, 0.
20. James Ahrain Garfield, O. (d. 1881).
21. Chester Allan Arthur 22. Grover Clereland, N.
23. Benjamin Harrlson, Ind.

Vice-Presidente.

1. John Adams, Mass.

John Adams.
2. Thomas Jefferson, Va.
3. Aaron Buri, N. Y
4. George Clinton, $\underset{\text {. }}{ }$.

George Cliuton (d. 1812).
5. Eibridge Gerry, Mass. (d. 1814).
6. Daniel D. Tompkins, ${ }^{N}{ }^{1}$

- Damel D. Tompkins.

7. Jolun Caldwell Cal. houn. C .
John C. Calhoun (res. 1832).
8. Martia Van Buren, N. Y
9. Richard Mentor Johnson, Ky.
10. John Tyler, Va.
11. George Miffin Dallas,
12. Millard Fillmore, N. I .
13. William Rulfus King, Ala. (d. 1853).
14. John Cabell Breckinridge, Ky.
15. Hangibal Hamlin, Me.
16. Andrew Johnson. Tenn.
17. Schuyler Colinx. Ind.
18. Heary Wilson, Mass. (d. 1875).
19. Wm. Almon Wheeler.
20. Chester Allan Arthur, N. Y.
21. Thomas Andrew Hendricks, Ind. (d. 1885).
22. Levi Parsons Morton, N. I.

PART II.-PHYSICAL GEGGRAPHY AND STATISTICS.

PRYSICAL GEOGRAPHY AND STATISTICS.

North America is very unequally divided between races speaking English and those whose otticial language is Spanish. From the parallel of 30^{3} south the continent harrows very rapidly, aud uearly all the country to the north of this parallel is under the control of English-speaking people. It is true that many emigrants from rarious portions of Europe, and some from Asia, as well as the descendants of Africans, are mingled with the descendants of the English; but this does not materially affect the truth of the statement, that north of 30° the English language is not only dominant. but almost universal. This vast region, embracing an area of more than sered millions of square miles, is pretty equally dirided, so far as area is concerned, between colonial possessions of Great Britain and a conntry of which the nucleus was once colonial and English, but which for a Iittle more than a hundred years bas been indepeodent of the mother country, and which bas greatly iocreased in area since that change took place, by the absorption, as explained elsewhere, of laud formerly, to a certain extent, coutrolled by or in tominal possession of people speaking French and Spanish. The spanisb-speating iuhabitants of North America are known as Mexicans and Central Americans, the colovial Eoglish as Caaadians; and owing to the difficulty of making a courenient aod euphonious adjectireappellatife out of the name United States, the citizens of "the States " are being more aud more generalls desigaated by the term "Anericans."
Andartes The British possessions in North America, although about equal in area to the Crinted States, are much less densely populated than this country, and will in all probability ever remain so, since in regard to climate, soil, and mineral productions, the nortbern portion of the continent stands in a positiou greatly inferior to that of the more southern regiou. To the Cnited States belongs that portion of North America which br its position in Iatitude is, io large part, capable of supporting a dense population, add where the climatic cooditious are highly favorable to Intellectual and physical development.
The area embraced under the designation of "the United States" (of North America) extends from the Atlantic to the Pacific Ocean. Its boundaries, other than these oceans, are in part natural and in part artificial. The Gulf of Mexico forms the bouthern boupdary of the United States between the meridians of 33° and 90°. Between Mexico aod the United States, the boundary is in part natural and in part arbitrary. The most essential feature of this boundary is the Rio Grande. from the mouth of which the division line between Mexico and the United States follows this river to the point where the parallel of $31^{\circ} 4 z^{\prime \prime}$ intersects it.
The boundary line between the United States and Canada fol lows the middle of the St. Lawrence River and the Great Lates from the point where the 45 th parallel cuts that river to a point on Lake Superior where the Rainy Lake River enters that lake, thence up that river to a point on the west side of the Lake of the Woods, and thence along the 49 th parallel to Puget Sonnd.
The triangular area between Lakes Ontario and Erie on one side and Lake Huron on the other extends far to the south of the remaining portion of Canada, and this southeriy area constitutes the most valuable and thickly inbabited portion of the dominion. The Uuited States, as thus limited, leaving ont of consideration the remote territory of Alaska, comifises an area of $3,025,600$ square miles. This jucludes 50,600 square miles of water surface, embracing the followjug items:

C	17,200
Rirers and smaller streams	14,500
Lakes and ponds.	23,900
Leaving the total laud surface	2,970.000
Total..	3.0

Under the bead of "lakes and ponds," as giren abore, no portion of the Great Lakes is included. The area of Alaska is given in the Census Report of 1880 as being 531,409 zquare miles, which figures, however. can be only a rough ajproximation, and which differ greatly from those giren in the Report of the Commiesioner

Of the General Land Office for the sear ending June 30, 1886. The total of the possessions of the Uuited states is, therefore, approximately, $3,557,009$ square miles. The area of the British possessions in North America, including Newfonndlaud, hut not the Arctic Archipelago, is giren br Behm and Waguer at 3,248,077, and by Mr. Selwyn, goserument geologist of Canada, at 3.530.63 square miles-the latter estimate including Newfoundand, and also the jsladds in the Arctic Ocean and Hudsod's Bay. The area of Mexico is given by Behm and Wagner as $751,17 \%$ square miles, and that of Ceotral America 211,320 square miles. The total ares of North America, including the Aretic Archipelago and Central America, may therefore be approsimately stated as follows:

The area of the Uuited States lies between the 67th and 125 th degrees of longitude, and the 25 th and 47th degrees of latitude.
The form and character of the coast lines of the United States may properly first clam our attedtion io a topographic sketch of the area under consideration. The facilities for good harbors are lacking on both cossts. Tho \rightarrow, in this respect on this Pacific side is striking, velug only one important bay on this coast between San Diego and Puget Sound; namely, that of San Francisco. This, as compared with the mass of the land, is of insignificant size, but as furnishing a large, safe, and easily accessible harbor, is of the greatest importaoce. The jodentation at san Diego, js much smaller than that of San Francisco. but that also furnishes a commodious harbor. With these exceptions there are within the limits of the U'nited States no satisfactory harbors on the Pacific coast, except those of Puget Sound and Columbia River ill the extreme north.
The eastern coast of the United States is provided with several good harbors and some large bays. On the Maine coast there is the harbor of Portlaud, which may be taken as a type of a number of safe and commodious ports along the coast. In Massachusetts, Cape Cod incloses a large and safe bas, at the lowerend of which is situated the harbor of Boston. In New lork, the situation of the city by the same name makes that port the most important center of commerce in the United States.
The superiority and commodiousness of the barbor of New York depends in part on the breadth of the Hudson near its mouth this river beiug iu fact almost an arm of the sea-and also on the position of Long Island, the western end of which is soplaced n ith reference to the coast of New Jersey and a closely contiguous small island (Staten Island) as to inclose a large land-locked area called the Upper Bay
Long fsland, off the cost of Conuecticut, has a length of $1: 0$ miles. It is the only island of any importance on the Atlantic coast. There are a number of smaller ones, such as Block Islaod, Nantucket and Martha's Vinerard,
South of Sew lork are the Chesapeake and Delaware Bays. The latter receives the water of the Delaware River, and the Chesapeake that of the Potomac add the Susquehanna. The largest jndentation on the coast of the Cnited States is the Gulf of Mexico.
It is into this great reservoir that the superfluous waters of the larger portion of the I'nited states are carried, chiefly by the Mjssissippi and Missouri, but also by direct drainage into the Gulf from the adjacent States. The peninsula of Florida, project ing from and extendiog five degrees south of the maiuluad, and forming the eastern boundary of the Gulf, is of more importance in its relations to the currents entering into the Gulf than it ia as an addition to the inhabitable territory of the country.
A large portion of the northern boundary of the United States is of a peculiar kind. It is nefther land, river, nor ocean, but fresb water: it being a line drawn through the ceatral portion of four of the so-called "Great Lakes"-Ontario, Erie, Huron, and suyerior. Lake Michigan, on the other hand, is mbolly within the limits of the L゙nitedstates.
The Great Lakes, which are fire in number, constitute a most
important feature in the topography of the country. They are re markable for their size. aud for the near approach to equality of altitude above the sea-level of the surface of the fonr largest ones. Navigation is entirely uninterrupted between Erie, Hurou and Michigan, and these have the following elevations: Erie, 573 feet; Huron, 582 ; Michigan, 582 . Lake Superior is twenty feet higher than Lake Michigau, but this ohstruction has been overeome by the building of a canal around the Falls of St. Mary (Sault Ste. Marie), with a siugle lock of sufticient dimensions to accommodate vessels and steamers of the largest size. Lake Ontario is 326 feet lower than Erie, and these two lakes are counected by a canal on the Canada side; while Erie is also thus connected, on the American side, with the Hudson River, and through this with the Atlantic.
As before remarked, the chicf drainage of the United States is to the Gulf of Mexico, through the system of the Mississippi Missouri and their tributaries, as will be seen by the followiug table, showing the extent of the various divisions of the draiuage area of the country, as giveu by the United States Census of 1830 :-

Atlantic and Gulf.	2,178,210
Great Basin	228,150
Pacific Slope	619,240

The drainage area, of the Misalssippi-Missouri River is estimated at 1,240,039 square miles, or somewhat over one-third of the entire area of the country. The drainage into the Atlantic and Gulf, as stated above at $2,178,210$ square miles, is divided as follows:-

New England coast	61,830
Middle Atiantic coast	83,020
South Atlantic coast..	132,040
Great Lakes	175,340
Gulf of Mexica	1,725,980
Total	2,178,210

The drainage into the Gulf of Mexico is thus divided :-

Into the Gulf direct.	485,941
Through the Mississippi River.	1,240,039
	1.725

Thia indication of the overwhelming preponderance of the drainage of the territory of the United States into the Gulf of Mexico naturally opens the way to a recognition of the most important fact in the topography of the country-namely, the existence of such an orographic structure as compels the waters to concentrate themselves into one great system of tributaries coming in from the east aud the west, aud uniting in a main north-and-south ehannel. The cause of tbis state oi things becomes evideut when we notice the general relief of the country, and the positions of the varions watersheds. To acquire the best geveral idea of the relief of the surface of the United States, we nay begin by supposing the Jaud to he depressed, or the level of the occan raised, to an amount equal to one thousand feet. By doing this we should flood a great strip oif country across the continent Mexico would remain on the west a great mass of land, while to the nortb of the United States the land would rapidiy dimiluish as higher latitudes were reached.

GENERAL TOPOGRAPHY.

In deacribing the physical features of a country, it is necessary to consider its geveral plan, the skeleton or framework of mountains, to whieli its plaius, valleys, and river systems are subordinate, and on the direction and elevation of whose partsits climate is iu a very large degree, dependent.
The skeleton of the United States is represeuted by two great systems oi mountain ranges, or combinations of ranges, ane formIng the eastern, the otber the western side of the framework by which the central portion of our continent is embraced. These two systems are the Appalachian ranges and the Cordilleras of North America. These systems are of very different magnitude and extent. Betweeu them stretches agreat interior valley, ocen pied by the Misaissippi aud the great lakes.
The central portion of the United States is nearly a level area embracing a tract of country about 1250 miles east and west, and about 1200 miles north and south. It slopes gently downward to the center from the east aud west, and towards the gulf of Mexica from its northern limits. The mauntain regions, both on the east and west consts, are not embraced under one continuous range. but are complicated in their orographic structure.
The eastera and western elevated regions being made up of a great number of topographically more or less detached portions, ft was not until a comparatively recent period that these regions
recelved such general distinctive appellations as would evidently be required in any discussion or descriptiou of the country as a whole. At the present time, by general consent of geagraphera and geologists, the eastern elevated side of the continent is called the Appalachian Region; the western the Cormilleran, while the comparatively level country between these ranges is kuown as the Mississippi Valley.

The Great Basin of the Mississippi is blsected through its center by a aupreme artery, which, above St. Louis, has received thename of the Missouri, and below the Mississippi River.
This is 5,000 miles in length, and its surface is a continuous inclned plane, descending seren inches in the mile. Into this central artery, as into a common trough descend innumerable rivers coming from the great mountain chains of the coutinent.
All of the immense area thus draiued forms a single basin, of which the circumferent mountains form the rim. It may be also called an amphithcatre, embracing $1,500,000$ square miles of surface. This has been, during the antediluvian ages, the bed of a great ocean, such as is now the Gulf of Mexico, or the Mediterranean, above the surface of which the monntains protruded themselves aa islands. Gradually filled up by the filtration of the waters during countless ages, it has reached its preseut altitude above the other hasins, over which the oceaus now still roll, and into which the waters have retired.
The Basin of the Mississippi is, then, a pavement of calcareons Mississipp rock, many thousand feet in depth, formed by the aediment of the Basin. superiucumbeut water, deposited stratum upon stratum, compressed by its weight and crystallized into rock by ita chemical fermentation aud presalire. It is in exact imitation of this sublime process of the atural world that every housewife compresses the milk of herdairy into solid cheese and lutter. It is, therefore a homogeneous. undulating plain of the secondary or sedimentary formation, surmounted by a covering of soil, from which springa the vegetation, as hair from the external skin of au animal. Through this coating of soil, and into the soft surface atrata of rock, the descending fresh waters burrow their channels, converging everywhere, from the circumferent rim to the lowest level, and pass out to the sea.
The most noticeable facts in regard to this vast area are ita slight elevation above sea-level and the general plain-like character of its surface. These conditions are well illustrated by the statemeut that at Cairo, the juuction of the Ohio and the Mississippi, we are 1,100 millea from the Gulf, and yet only about 300 feet above the aea-level. At Pittshurgh, the head of the Ohio River proper, we have attained an elevation of only 699 feet. Going in the opposite direction, or following up the tributaries of the Mississippi and of the Missonri, which come in from the west we bave a similar coudition of thinge. One may travel up the Platte or the Kansas for huadreds of miles, rising so gradually and so imperceptibly that the country seems all the time a level plain. From Council Bjuffs to the souree of Lodge Pole creek, along the line of the Union Pacific railroad, the asceut averagea only 5 feet to the mile. From St. Paul, which is only 700 feet above the sea, we travel for 670 miles westerly before the mouth of the lellowstone is reached. and here we have attained an altitude of only 2,010 feet, with an average rise of only 2 feet to the mile.
The great lakes, those vart expausions of the upper waters of A rea a the St. Lawrence, are among the grandest of the geographical Great features of the North American continent. They are remarkable Lakea for their immease area, and for their unifarmity of elevation above sea-level, and the consequent facilities which they afford for commercial intercourse.
Their combined area is a littie more than 90,000 square miles, Lake Superior having over 30,000 , and Lakes Michigan and Huran each over 20,000 square milea of aurface. Erie, Huran, and Michigan are nearly on the same level, the extreme difference between the first and the last-named being only about 16 feet, whle Superior is Gnly 20 feet higher than Michigan, or 36 above Erie. The divide between the great lakes and the waters flowing into the Mississippi aud its tributarles is also everywhere low, and at the lower end of lake Michigan it is so trifing that only a small amount of excavation has been required to cause waters which iormerly flowed into that lake to run toward the fulf of Mexico. Lake Outario is, indeed, 323 feet lower than Lake Erie, about half the descent from one ta the other heing made in one single plunge of the fast body of water, forming a cataract which has, in all probability, no rival in the world.
The level and fertile region of the Mississippl valley is prolonged toward the far sonthwest, aromad the Gulf of Mexico and far into the interior of Texas, where it finally passes into the elevated, harren platean of the Liano Estacado.
All that partion of the Mississippi basin lying between the Mississippi River and the Atlantic, is densely timbered, excepting only a portion of Indiana, Illinois, and Wisconsin; ao also are the States of Loulsiana, Arkansas and South Missourl. Anirregular line from the head of Lake Erie, running toward the south and west iuto Texas, defines the cessation of the timher. Between this lime and the sea exists a continons forest region, perpetually moisteued by showers from the ocean. Beyond this line, and

deeper into the contineut. The upland ceases to nourisli timber which is replaced by luxuriant amual grasses, thongh uarrow lines of forest coutinue upun the saturated bottoms of the rivers and in the islands. This is the prable region of luxuriant annual grasses and soft arable soil, over which the fires aunually sweep after the decay of vegetation.
The termination of this belt is marked by an irregular line par allel to the first, where the rain ceases, and the timber eutirely disappears. It is ahout 450 miles in width, and withina It artificial irrigation is nat practiced nor wecessary, it being everywhere soft, arable and fertile
To this succeeds the immense rninless region obward to the mountains exclusively pastoral, of a compact soil, coated with the dwarf buffalo grass, without trees, and the abode of the aboriginal cattle. That no desert dues or cau exist withiu this basin, is manifest from the abuudance and magnitude of the rivers; the uniform calcareaus formation: the abseuce of a tropical sun; its longitudinal positiou across the temperate zone; and the greatness and altitude of the mountains on its western rim. The river system of the Mississippi Basin resembles a fan of palm-leaf. The stem in the State of Louisiana rests in the Gulf; above, the affuent rivers converge to it from all parts of the compass. From the east come in the Homochitto, the Yazoo. the Ohio, the Illinois, aud the Upper \fississippi. From the uest, the Red River, the Washita, the Arkausas, the White, St. Francis, and Osage Rivers, the Kansas, the Triple Platte, the L'Eau qui
Cours aud the Yellowstove, all Cours aud the Yellowstove, all navigable rivers of great leagth and importance. These rivers preseat a continuons navigable channel of 22500 miles, having 4,000 miles of shore-an amount of Davigation and coast equal to the Atlantic Oceau. The area of the Mississippi Basiu classifies itself into one-and-a-half-6ifths oi the compactly growing forest, the same of prairie, and two-fifths of great plains. Through all of these the river system is ramified as minutely complex as are the velus and arteries of the human aystem.
Beyond this great main river stretch out the vast prairiea of the west. These plains are not descrts; they are calcareous, and form the Pastoral farden of the world. Their position and area may be
easily uuderstood. The meridian line which terminates the states easily uuderstood. The meridian line which terminates the states of Louisiana, Arkansas, Missouri and Iowa on the west, forms their Between these two limits they accupy a longitudinal parallelogram of less than 1.000 miles in width, extending from the Texan to the Arctic coasts. There is no timber upon them. and siagie trees are scarce. They have a geutle slope from the wrat to the east and abound in rivers. They are clad thick with gutritious grasses, and swarm with animal life. The soil is not silicious, or sandy, but is a fine calcarcous mould. They run smoothly out to the navigable rivers, the Missouri. Mississipli, and St. Lawrence, and to the Texan coast. The mountain masses toward the Pacific form no serions barrier between them aud that acean. No portion of their whole sweep of suriace is more than 1 , mo niles from the most facile navigation. The prospect is everywhere gently undulating and graceful, being bounded, as on the ocean, by the horizon. Storms are rare, except during the melting of the snows upon The clinate is comparatively raing
The chinate is comparatively rainless; the rivers serve, like the Nile, to irrigate rather than drain the neighboring surface, and have few afluents. They all run from urst to cast, having beds sha!low and hroad, and the basins througb which they flow are flat, long andanarrow. The area of the Great Plains is equivalent to the surface of the twenty-four States between the Mississipni and the Atlantic sea. They are one homogeneous formatiou, anooth, uniform, and continuous, without a siagle abrupt monntain, timbered space, descrt, or lake. From their ample dimenslons and position they define thembelves to the the pasturc-ficids of the world.

The Pastoral Region is longitudinal. The bulk of it is under the Temperate Zone, out of which it runs into the Arctic Zone on the north, and into the Tropical Zone on the south. The parallel Atlantic arable and maritime region flawks it on the east; that of the Pacific on the west.
While, on the whole, so nearly a plain, this vast area, comprisIng over a milliou and a half square miles, has considerable diversity of surface, it being not altogether destitute of mountains, some of which slse to a considerable altitude. To describe, even With a moderate amount of detail the basin of the largest river system but one in the world would require many volumes. All that can be done is to indicate the sallent features of its gealogy, as supplementary to that which has beed said in regard to the structure of the great monutain systems by which thls geologically conparatively undisturbed region is iramed in.
The Tertiary and Cretaceous rocks, extedding along the (iulf . about one-half of Alahama and Arkansas, the entire State of Jississippi, Lonisiada, parts of Tennessee, Kentucky, a small corder of Missouri, aud bearly all of Texas. Thence this geolog. lcal formation follows the general trend of the Rocky Honntains, on their eastera side and underlles the western half of Kausas,
hearls all of Nebraska, Northand South Dakota, a portion of Iowa, aud the western purt of Minuesota.
Triasslc rocks stretch over a large area of Texas; they also ex tend into the Indian Territary and the southern part of Kansas. All but a small portion of the Northera Central group of Stutes aud portions of the sonthern Central group of states, are of the I'aleozoic rock formation, covered by post-Terthary and recent detrital formations. In sontheastern \$lysouri, the Azole area is important from an economical standpoist. Ironores of fimmense lrone occur in plifo fonnd fin the ab, Irou Mountain and other localities. Iron is also fonnd fin the Azole formations about lake Sulerior, In the States of Wisconsin and uorthwestern Minnesota. Sorth of this irou region is the copper beariug rock of the lower Silurlan age. Over Niw York, northern lennsylyanla, wad the country bordering on the Great Lakes is found a large amonnt of "drift." How this so-cnlled "drift" whs distributed over this area is a question which has long been s subject of discus-lon among geolthe subject ascribe the oripin of of those who have investigated the subject ascribe the orifin of this coarse detrital material to glacial causes. It is believed that at one time the northern fart of the continent was covered with Ice, aud that uhich we see on the present surface of the region that was thus covered, is the result of the action of these glaclers, or of the floods which werc pro-
duced when they melted.

tile cordilleras region

The Cordilleras are a part of the great system or chain of monutains which borders the Pacific coast of both divlalons of the American contincnt. South and North America, and forms its dominating and most imposiug feature.
From Mexico the system of the Cordilleras enters our terrltory, widening and gaining in complexity. Just above the southery border of Arizoua, alodg the parallel of 35 , occurs the greatest dexico; and here the continent doaico; and here the continent mar be traversed without risiag to an elevation of arer 4,000 feet. The country aloug this line is a table laud, with many short and broken ranges of no great altitude built upon it, but decply excavated by unmerous cauons, ss the called of which the canon of the the Cordilleras are universally called, of which the canon of the Colorado may be taken as the
type. type.
On this plateau. in latitude 35°, is a group of extlnct valcanoes, similar to the ruge which traverses Mexico. These grand rol. The Cor canic cones of which sau Francisco mountain is the loftiest aud the dilleras best known, rise to uearly double the altitude of the plateau ou which they stand. The greatest width of the Cordilleras is along the line passing from the vicinity of San Francisco, by Great Salt Lake, to Fort Laramle, or between la:itudes 38^{3} and 420 . Here the mass of monatains and plateaus uttains a breadth of fully a thousand miles; and if the Black Mills, an ontller of the Rocky Mountains, in latitude 44°, are included-as they may broperly be-the total breadth of the complexus of ranges will be, in its maximum, over 1,100 miles. The whole area embraced within the mountainous belt which we call the Cordilleras is but very little, if any, short of a million of square nilles, or onethird the area of the country. Hence it may, with propriety, be called the greatest physical feathre of our territory.
To raughly indicute the shape of the mass of the Cordilleras we may consider it as having a lozenge-shaped figure, bounded by two parallel thorth and south sides and two northwest and soluthenst sides. The length of each side is approximately tioo miles. The westeru edge of the figure correspouds in trend to the line of the Pacific const, which, as a glance at the map will show, is northWest and southeast as far as Cape Mendocino, and from there to Fancouver lalad north and sonth pearly. The north and south trending portion of the Pacific edge of the Cordilleras is known as the Cascade range; the northwest and southeast range as the Nevada ranges, but still mearer the occan, are the coast ranges, parallel with the lofticr masses on the east, and funcoulating with them, at various points, in such a manner that a distinct equa. ration betweell const and interior ranges seens hardly possible. either on geographical or on geological gromuds
The Racky Nountains proper form the eastern rim of the Cordilleras. Throughout New Alexico, Colorado, and sonthern Wyoming their face ranges north and south. The northern fart of this system, lylng in worthern Wyoming and Montana, presents to the Mafns a northwest and southeast face, similar to that
of the Siorra Nevada. of the Sierra Nevada.
The lozenge-shaped figure thus indicated. Framed in. as it were, by the Cascade range and Slerra Nevada on the west and the through its center east and west incloses a bigh flateau, which, through its center east and west, has an elevation of from 4,000 to 10,000 fect abave aca level, falling of toward both the worth and the gouth from its central line.
Let us consider it in its great general features. It may be divided into-
Ist. The section of the Rocky Mountains.
2 d . That of the plateaus.

3d. That of the Great Basiu, and
4th. That of the Pacific.
The country lying east of the first section is a great plain, extending to an undefinable easteru limit, which may he set, however, roughly at the louth meridian. This plaiu is not strictiy level, but nodulating, like the swell of the sea. Most of the stream yalless are shallow depressiona, and the divides between them are hut slightly murked. These piains rise slowly westward, with an evengradient, to a height of 4,000 to 6,000 feet at the eastern base of the Rocky Nouutains, belog the highest in Colorado, decreasing thence northward and sonthward. They are covered with grasses almost throughout, aud form a grazing ground of almost incalculable capacity.

With the exception of the Missouri and the Yellowstone, none of the streans are of auy importance to navigation, and they are of use ouly for irrigation. The capacity of this region for supporting life is largely depeudent upou its rainfall, which will be discussed further on.
Rocky Mountains

The Rocky Monutains form the eastern member of the Cordilleran system,--a member made up of many subordinate ranges, each range or sub-group of ranges having a distinctive name. rec. ognized by those living near. while the name "Rocky Mountains" is in general use as the proper appellation when a number of these sub-gronps of ranges are intended to be included under one common usme.
From the south border of the United states to about latitude 43^{3} their general course is nearly north aud south, and from this point northward to the British line it is nearly northwest, thus forming the two eastern sides of the lozedge above slokeu of They consist of a number of ranges, bearly all of which trend parallel to one another-a few degrees east of south and west of borth, or roughty parallel to the northeastern side of this region.
In the southern portion, the ranges run out one after another into the plains, forming an echelon arrangement, thus giving to the system a nearly north and south face.
In Colorado the underlying ilatean attains a greater elevation than in any other part of the Cordilleran system, reaching an extreme height in the South I'ark of 10,000 fcet. Here, too, the ranges reach a greater altitude than in any other part of the Rocky monntain system. Numberless peaks rise from 14.000 to 14,500 feet abore sea level. There are few passes io the ranges at a height much helow timber-line, which is from II,000 to 12,000 lect. Northward and sonthward the plateau decreases gradually in height, carrying downward the rauges which stand uon it. Southward through New Mexico the rauges not only decrease in height, but hecome broken and sattering, while the extent of level plateau country becomes much greater. Towards the north, in southern Wyoming, all the ranges stop abruptly, leaving to represent the Rocky monntaiu system onif a line of plateans of an elevation of 6,000 to 7,000 feet stretching from Bridger puss, iu the aonthern part of the territory, northwestward to the Sonth pass, at the south eud of the W'ind River chain. In this latitnde a number of rauges rise abruptly from the platean. beginuing with the Big Horu ou the east, then the Wind River range, some of whose peaks are inore than 13.000 feet in altitude, and the multitudioous ranges which horder the beadwaters of the Saake River. From this point, as the system continues onward iuto Idaho and Montana, the uuderlying platean and the ranges also greatly decrease iu height, but not in complexity. In the northwestern part of Montaga and northern Idaho, indeed, the whole comutry is a mass of mountain ranges, whose elevation is from 8,000 to 9,000 feet, separated in most cases, by very narrow valleys, the whole area beiug densely covered with forests.

the plateau province

The region of which the principal or more striking, topograph lal aud geological features are wext to be indicated, is that lying south of the Great Basin, and which is drained by the Colorado and its tributaries. It is included chietty within the houndaries of the Territories of Uitah aud Arizona; but, to a certain extent. similar characteristic features are found in the adjaceat portion of Colorado, New Mexico, and Nevada.
For convenience of geological discussion, that belt of country which lies betweeu the meridian of Deuver, Colorado, and the Pacific, and betweeu the $34 t h$ and $43 d$ parallels, is divided into provinces, each of which possesses topographical features which distinguish it from the others. The easternmost is pamed the Park Province. It is situated in the central and western parts of Colorado, and extends north of that State in Wyoming, aud sooth of it into New Mexico. It is pre-eminently a mountain region. haviag several long ranges of the second order of magoitude. The structure and forms of these mountains are not exactly similar to those of any other region now well known, but possess some resemblance to the Aips, though not a very close one.
To the westward of these ranges in Colorado, there are, ncar the western boundary of that State, regions having a very different topography. The mountains disappear almost wholly, and iu their stead there are platforms aud terraces nearly or quite hori-
zontal on their summits or floors, and abruptly terminated by long lines or cliffs. They lie at greatly varying altitudes, some as high as 11,000 feet above the sea, others no higher than 5,000 . and with still others occupying intermediate levels. Seldom does the surface of the laud rise into couical peaks, or into long, narrow, crested ridges; but the protiles are loug, horizontal lines, suddealy dropping downmany hundred or even two thousand feet, upon auother flat plain below. This region bas been vers appropriately named, by Professor Powell, the Plateau Proviace. It occupies a narrow atrip in the extreme western part of Colorado, a similar strip of western New Mexico, a large part of southern Wyomiug, and rather more than hall of Utah and Arizoua
This region may be roughly defined as comprising the drainage Draina basin of the Colorado River and its tributaries. The upper portions hasin of of its tributaries flow, however, iu the Rocky Mountains and the Colorso Wahsatch iange, and enter the Plateau region lower in their courses. This region lies west of the southern section of the Rocky Monntains and east of the Great Basin, aud constitutes a great depression or valley in the Cordilleran region of a ronghly triangular shape, its apex beiug in western Wyoming, near the head of the Green River, one of the forks of the Colorado. It is a region of table lands and canons; of table lauds horizootal or nearly so, stretching for many miles with searcely an undulation in the uniform surface, but suddeuly ending abruptly in a line of cliffs, perhaps thousands of feet in height, and exteoding iu an unbroken line for hundreds of miles. In this region every stream is in a gorge, cut bundreds, or even thousauds of feet below the surface by the action of water on the soft, stratified sandstones aud limestoues. Most of this region is uninhabited and uninhabitable, not ouly by reason of the climate, which forbids agricultural purguita, butifom its almost hopeless impassableuess.
Separating this region fron the Great Basin is the Wrasatch range, which may be considered as a spur from the Rocky Mountains. It is a rauge of considerahle breadth and altitude, extending from northern Utah nearly to the middle latitude of the State, aud descending to the general level of the country ou the south aud east by a series of plateaus, forming a verituble giaut's stairway. The elevation of this rauge in its highest portion is from 10.000 to 11,000 feet, one or two feaks ouly reaching an altitude of 12,000 feet. Joining this range in the northern part of Utah is that of the Uinta, which differs from nearly all the ranges of the Cordilleran region by having au east and west trend. It forms the southeru limit of the Greeu River basin, the region upon which the fugitive name "Great Amprican Desert" has beeu iateat bestowed, aud where it is probable it has at last found a final resting-place.
This range far exceeds the wahsateb in elevation, a number of its peaks extending skyward nearly 14,000 feet. and its broad, piateau-like summit being for a considerable extent at an elevation of 12,000 feet.
The Grand Canon District is a part of the Plateau Provinee. As Canons. already indicated, it lies between the Park and Basin Provinces, and its topography differs in the extreme from those divisions found ou either side of it. It is the land of tables and terraces, of buttes and mesas, of cliffs and canons. Standing upou ruy elevated spot where the radius of visiou reaches ont 50 or 100 miles, the observer beholds a strange spectacle. The most eouspicuous objects are the lofty and brilliantly colored cliffs. They stretch their tortuous courses across the land in all directions, yet not without system ; here throwiug out agreat promontory, there receding in a deep bay, and coutinuing on and on until they sink below the horizon or swing behiud some loftiermass or fade out in the distant haze. Each eliff marks the boundary of a gcographical terrace, and marks also the termination of some geological series of strata, the edges of which are exposed like courses of masomry in the scarp-walls of the palisades. Very wonderful at times is the sculpture of these majestic walls. Each geological formation ex hibits in its cliffs a distinct style of arehitecture which is not reproduced among the cliffs of other formations, and these several styles differ as much as those which sre cultivated by different races of men. The character which apfeals most strongly to the eye is the coloring. The gentle tints of an eastern landscape, the pale bive of distant mountains, the green of vernal or summer vegetation, the subdued colors of hill and meadow, are wholly wantiug here, and in their place is the brilliant red, yellow and white, which are intensified rather than alleviated by alternatiug belts of gray. Like the architecture, the colors are characteristic of the geological formations, eacb series having its own group and range of colors. They culminate in intensity in the Permian and Lower Trias, where dark, brownish red alteruate with bands of chocolate. purple, and laveuder, so deep, rich, and resplendent that a painter would need to be bold to venture to portray them as they are.

The Plateau country is also the land of canons, in the strictest meaniug of that term. Gorges, ravides, canados are found, and are more or less impressive in every high region ; and in the vernacular of the Hest, all such features are termed canons indiscriminately. But these long, narrow, profound treaches in the rocks, with inaccessible walls, are seldom found outside the plateaus. There they are innumerable, and are the almost universal
ainage. form of drainage channels. Nicurly everywhere the drsinage tannels. channels are cut from 500 to 3,000 feet below the general matform of the immediate country. They are abundantly ramified and every branch is a canon. All these drainage channels lead down to one great trank chamel cleft through the beart of the Plateau Irovince for elght bundred miles - the chasm of the Colorado, and the canon of fta principal fork, the Green River.
The region is for the most part a desert of the barrenest kind. At levels below 7,000 fect the heat is jutense, aud the air is dry in the extrense. Vegetation is very scanty, und even the ubicuitous sage is sparse and stunted. Ilere aud there the cedar is seeu, the hardiest of arborescent plants, but it is dwarfed and sickly, and seeks the shadiest nooks. At higher levels the regetation becomes more abundant and varied. Above 8,000 feet the flateaus are forest clad, and the ground is carpeted with rank grass and an exuberant grow th of beautifnl summer flowers. The summers there are cool auz moist; the winters severe and attended with heasy snow-fall. The Plateau Province is naturally divided into two portions, a Dorthern and a southern. The dividing harrier is the Uinta range. This fide mountain platform is, in one respectan anomaly smong the western ranges. It is the only important one which trends east and west. Starting from the eastern flank of the Wahsatch. the Vintas project eastward more than 150 miles, and nearly joiu perpendicularly the l'ark rauges of Colorado. Of the tiro portions into which the Plateau province is thus divided, the southern is much the larger. Both have in common the platean features; their topographies, climates, aud physical featuras in general, are of similar tryes, and thefr geological features and history appear to be closely related. But each has also its peculiarities. The northern portion is an interesting and already celebrated field for the study of the crctaceous strata, and the Tertiary lacustrine beds. The sonthern part of the Plateau Province may be regarded as a vast bnsin, everywhere bounded by highlands, except at the southwest, where it opens wide and passes suddenly into a regiou having all the characteristics of the Great Basin of Nevada. The northern half of its eastern rim consists of the Park ranges of Colorado. Its northern rim lies upoo the slopes of the Uidas. At the point where the Uintas join the Wabsatch, the boundary turus sharply to the south, and for 200 miles the High Plateaus of Utah constitute the elevated western margin of the Province. A crude conception of this region may be gained by imagining three lines, each 200 miles long, placed in the positions of three sides of a square; the fourth side being for the moment Deglected. Upon the eastern side, conceive the Fark Ranges of Colorado; upou the northern, the Uintas; and upon the western side, the southern portion of the Wahsatch and the lligh l'lateaus of U'tuh : aud all these highlands baving altitudes ranging from 9,000 to 12,000 feet above sea-level, while the included area varies from 5,000 to 7,000 feet in height. The space thus fartially hounded may represent the uorthern part of the southern Plateau Province. Along the line required for the fourth and south side of the complete square there is no boundary. The topography continues on beyond it to the southward, and also widens out both west and east and overspreads an additional area more than twice as great as that already defined. From the eastern coast of the Iligh Plateans may be olbained an instractive overlook of the northeru portion of the southera llatean country.

Throughout the great carboniferous age the entire area of the Plateau l'rovince was sulumerged beneath the ocean. Deposition of strata went on continuously, leaving at the close of this age a subaqueans surface, wheh was exceedingly fiat, and, except around the borders of the l'rovince, quitefree from any appreciable inequalities. The thickuess of the carboulierous system is from 4,500 feet to 5,000 feet in the interior of the Province, bat around its bordera, aud in the Uinta mountains, it is sometimes found in far greater volume. After the Carboufferous came the lermian age, in which were laid down from 800 to 1,500 feet of sandy ahales. The same state of affairs continued through the Trias, duriug which period sandstone beds were deposited. Drectly upon the Trias rests the Jurassic, -a wouderful bed of sandstone 800 to 1,200 adstone. feet thick, and very white and sugary. Next comes the Cretaceons system,-a mass of yellow sandstones with clayey and marly shales, aggregating from 4.000 to 5,000 feet thick. At the close of the Cretaceous period there are evidences that extebsive disturbances took place, resulting at some places in the dislocation and flexing of the strata.
The last period of deposition was marked by the accumulation of the Eocene beds. Aromud the sonthern finnks of the lintas their aggregate thickness exceeds 5.000 feet. bit southward the upper members disappear, and 80 miles north of the (irand Canononly ahout 1,000 to 1,200 feet make their appearance. In the course of geological history, this area, which had been a region of deposition and subsidence, became one of elevation and denudation. Since that change took place, the havoc wrought by crosion has been stupendous, the thickness of strata remover exceeding 10,000 feet in some considerable areas, and areraging probably 5,500 to 6,000 feet orer the entire Frovioce.

tile great basin

West of the Plateau Province is the (ireat Basin, ao Damed by Fremont, becanse it has no drainage to the ocean.
The first gencral idea of the drainage and principal topograph ical features of the fireat fasin, is due to Bonneville, whofited ont a party which started from Green liver with the intention of makitg the entre circuit of Great Salt Lake. This, as lrving states, was a favorite idea of Ronneville's; and in frepariag for this expeditionall the resulures at his command were taxed. The party, consisting of forty men, did not, however, succeed in carrying out Bonneville's plaus, but were driven, by the diflicult topography und acter Larrenuess of the country on the south side of the lake, toward the west, traveling in which direction they soon came upon the head-watery of the river called upon lionneville'a maps " Mary or Ogden's," Lut which fanow kuown as the Humboldt. This river they follawed until they found that "it lost itself in agreat swamy lake (the sink of the limmuldt), to which there was no apparent discharge." From here the party crosed the slerra Nevada and made their way to Monterey. Bonmerlle'a party was thus the first to explore and map the route afterward generally followed ly emigrants, and along which the Central l'acific-the first trans-contibental railroad-was buit. The jeculjar course of Bear River, here already noticed, was shown on this map, and the general character of the drainage of the lucific coast was, for the first time, correctly indicsted by Bonneville. The first working out of any of the details of the topograpiny of the (ireat Basin is due to Butler Ives, a topographer in the employ of the Central Pacific liailrond, the directors of this work having been desirous of ascertaining whether there wss ans practicable route across the Basid other than that through the ralley of the Humboldt: which, however, was the one ultimately adopited, all other routes having been jound too difficult. Still further and more detailed explorations and surveys were made on the western side of the IVasin, first by the California Geological Surver, and Iater by the Enited States Fingineers; and a belt a fundred miles in width was also surveyed across this region, starting from the crest of the sierra Nevada and going east to the eastern base of the Rocky mountains. This belt was the field occupied by the Fortieth Yarallel Survey, under the direction of Clarence king,
The topography of the Great Basin is wholly peculiar, and bears Topography no resemblance to either of the two just mentioned. It contains of the a large number of ranges, all of which are very harrow and short. Great separated from esch other by wide intervals of smooth, barren Basia. plains. The mountains are of a low order of magnitude for the most part, though some of the ranges and peaks attain considerable dimensions. Their appearance is strikingly different from the noble and picturesque outlines displayed in Colorado. They are jagged, wild and ungraceful in their nspect, and, whether riewed from far or near, repel rather than invite the imagination.
The Wabsatch, nowever, is an exception. This nolle range is properly a part of the Basin Province, and is one of the finest and most picturesque of the west, but so completely does it contrast with the other luasin ranges that it may be reaarded as an anomsly among them. The topographical features of this region are also fonnd outside of the limits which Fremont assigned to the Great Basin, and reach sonthward towards Arizona, and northward towsrds Idaho avd Oregon.
This great basin is of enormous extent, comprising nearly all of Nevada and large tarte of Ctah, Wyoming. Idaho. Oregon, and California. Instead of beiug one great Lasilu, as its name implies, it cousists in reality of a number of smaller lasins. It is traversed by a series of Darrow ranges, which are in general highy continuous, extending sometimes for hund reds of miles, fiaving a general north and south trend. Between these ranges, lic narrow, fiat valleys Hoored with detritus from the monutains. The rainfall over this region is so light, and the atmosphere so dry, that there are few living streame within its whole expanse. The little rivulets which trickle down the monotain side in the spring are absorbed iu the vallegs at their bascs, so that cach valley in very many enses is a sink for its own watcrs. On the east and the west sides, however, at the bases respectively of the Wabsatch and the Sierra Nevada, is a lake, or a serles of lakes, into which flow considerable bodjes of water from these ranges.
On the east fo lirent Salt Lake, having an extent of 2.310 square Surromanmiles, and receiving drainage from an area of 32.400 syuare miles, iugs of the larger part of which consists of high momutalns. The rapidity Great
of evaporation in this dry climate ls so great that the Juke is kept Basin. at approximately the same level despite the liberal contrlbutions made to it loy its tributary atreams.

The middle portion of the basin, along a llne running down eastern Nevada, is more clevated than that of the east or the west side, forming a sort of division, or water-parting, between the two portions. such of the waters as do not immediately sink fiow of toward the Great Salt lake on the one sifie and the rinks at the base of the sierras on the other. The latter are known as the Caran lake and sink. Humboldt l.ake, Mtud and Pyramid Lakes, forming a linealong the western part of Nevada.

Into this system of sinks flow not only the streams from the
east slope of the Sierras, but the Humboldt River-a stream which rises iu northwestern Utab, and, flowing directly feross the trends of uumherless ranges, receiving more or less water from them all, reaches the Carsou siuk scarcely larger than at its head.

A third system of sinks may be mentioned, viz., that lyiug in central Oregon, of which Harney's lake is the principal one.
It remains to give a slight sketch of the ranges of the Pacific division. They cousist of the Sierra Nevada of Califoruia, the Cascade range of Oregon and Washiugton Territory, aud the system of cosst ranges which border the Pacific. These ranges hare one very marked feature in commou; they are almost precisely paralle! throughout to the line of the I'acific coast. Treuding in the southern balf considerably east of south, they turu at ahout the parallel of 42^{3} to a course almost directly north.
The great mass of the Cascade range has the form of a volcanic plateau of an elevation very little above the country on its castern horder. At intervals along its erest, however, are stationed high volcauic peaks, ranging from 8,000 to more than 14,000 feet above sea-level. Among these may be mentioned Mout Rainier, in Washiugton teritory, 14,444 feet bigh; Mount Shasta, 14,442 feet high, iu California; and Mount Hood, in Oregon, 11,225 feet iu height. In mortheru Califoruia, just south of Mount Shasta, the range is very much broken down, and at this point the Pitt River, the head stream of the Sacramento, has cut its why through the range into California. Beyond this gorge again the range coutinues, with but slight change in its characteristics, until we have passed the head of the Feather River, where its eharacter changes from that of a volcauic rauge to one of granite and gneissic rocks. With this change comes an increase in elevation, at first gradual, but ultimately attaining enormons proportions about latitude $36^{\circ} 30^{\prime}$. Here the range has a great bresdth, while most of the peaks reach elevations of more than 14,000 feet, and the passes have au clevation of about 12,000 feet. In this regiou is the highest reak of the sierras, Mount Whitney, which falls but little short of 15,000 feet, and is the culminating point of this group.
West of the sierras and the Cascades lies the grent valley, extendiug from Puget Sound southward into the lower part of California. It is walled in from the Pacilie on the west by the Coust ranges. In Washington territory it is drained by numerous minorstreams flowing throngh the Cascade aud the Coast ranges into the Columbia River and Puget Sound. In Oregon it comprises the valley of the Willamette aud the upper valleys of the Rogue and the Umpqua Rivers. In California it comprises the valley of the Sacrimeuto and the San Joaquin. These valleys are separated from one another ty cross-ranges of monntains, which have the character of spurs sent down by the Cascade range, joining the Cusst rauges on the west. The great valley is terminated hy the westward treud of the Coast ranges and their junction with the Sierra Nevada in sonthern California.
Of the Cosst ranges little need be said, except that they are of minor elevatiou compared with the eastern part of the system, rangiug from 3,000 to 4,000 feet south of the bay of San Francisco to 5,000 or 6,000 feet iu the uorthern part of the State. They bave, however, a very important effect in modifying the climate of the great valley-an effect quite as important as that of the Sierra Nevada and the Cascade rauges upou the climate of the region lying to the east of them. Want of navigability is the characteristic of all the streams which drain the Cordilleras. Iustead of vast stretches npen to steam navigation, as with the Mississippland its tributaries, allowing aecess to areas 2,000 and 3,000 miles away from its mouth, we have the Colorado, which is of little account for the purposes of navigation, the Columbia, with two portages before the Cascade rauge is crossed, and the Sacramento and the San Joaquiu, uavigable for moderate sized boats foronly a few score of miles. With these exceptions there is no stream of any importance opening access to the interior along the whole Pacific const. On the other hand, the amount of waterpower stored in the streams of the west is fabulous. All the streams fall rapidly through nearly their entire courses, and in and near the monutains there is an abundance of water.

THE APPALACHIAN REGION

Leaving now the Cordilleras, we have next to consider the eastern border of our territory-the northeast and southwest-trendIng mass of rauges-known as the Appalachian region. In this portion of our brief resume of the physical features of the United States we shall have to rely mainly on the labors of others, and especially on those of Prof. Guyat and of Prof. J. P. Leslie, of the Pennsylvania Geological Survey, who have labored with great zeal and ability in making the topography of our eastern border Intelligible.
A glauce at the map shows that the central portion of North America, from the Gulf of Mexico to the Arctic ocean, is a regiou of great rivers and lakes, and not of mountains. A sinking of the land of less than 1,000 feet would open a water-way through from north to south; 2,000 feet of such a sinking, or an equivalent
rise of the ocean, would divide our territory into two distinct and remote portions. Ou the east we should have a comparatively narrow belt of laud, extending in a nortbeast and southwest directiou from Pennsylvania to Georgia, with groups of outlying islauds on the north, especially in about latitude 44°, where the tops of the Greeu, the White, and the Adirondack mountains would rise in the form of lofty and precipitous islauds above the waste of waters. On the west the mass of land remaining uncovered would be of graud, almost continental dimensions, for its breadth would be fully equal to 1.500 miles narrowing as we followed it northward, while in length, north and south, it would extend eutirely across our preseut territory. The breadth of the ocean separating these masses of laud would he not far from a thousand miles.
The Appalachian chain extends from the promontory of ciasur, Appal in a general sonthwesterly directiou, for a distance of about 1 , $\because n$ chian miles, into Alabama, where it dies out, and is buried under the horizontal strata of more recent geological formations, which cover nearly the whole surface of that state. The base from which this chailu rises on the eastern side is the Atlantie seaboard, which, in the early history of the United States, seemed to be the whole country, and which is still commercially the most important. and is the seat of our largest citjes. The plain is slightly inclined toward the Atlautic, and its elevation ahove the sea is incousiderable. In New Eugland it hardly exceeds 300 to 400 fect; bnt toward the south, after passiag the bay of New York, where it is uesrly at the sea-level, it gains in altitude aud also in width, finally attainiug a leight of a thousand feet at the base of the mountains and a breadth of some 200 miles. The western base of the Appalachiau range is a platean region, which desceudsgradually toward the great lakes aud the trihutaries of the Ohio, having a general elevatiou of a thousand feet or more, but deeply gushed by the streams which trayerse it and run in valleys depressed from 300 to 500 feet below the general level of the conntry
The Appalachian chain prescuts, iu many of its features, a most marked contrast to the Cordilleras just described. Prof. Guyot calls attention to a couspicuous feature of the most folded portion of the Aphalachians, characterizing the chaiu through its entire length; that is, the existence of a great central valley, running through the system from northeast to southwest, which can be traced without difficulty, althongh not perfectly uniform in its development. It is the Lake Champlaiu and lludson River valley in New York, the Kittatinny valley of Penusylvania, the great valiey of Virginia, aud finully, still farther south, the valley of East Tennessee. The ehain, or the system of chains, bordering this central depression ou the southeast is also a persistent feature of the Appalachiau system ; for it extends, with bnt few interruptions, from Vermont to Alabama, being kuown by a variety of names as it jasses from one state into another. It is the Green Mouutain range of Vermont, the highlands of New York, the soutb Jountains of Pennsylvauia, the Blue Ridge, of Virginia, and, finally, the Irou, Smoky and Unaka Mountaius of North Carolina and Teuuessee.
Possessing these features in common as a whole, the Appalachian chain preseuts three subdivisions, each exhilitiug its own well-marked peculiarity of structure. These are the northern, extending from Gaspe to the IIudson; the middle from New lork to the Kanawha, or New river, ju Vmgima; the southern from New river to the southwestern extremity of the system. Each of these subdivisions has its peeuliar curvature and general direction. The northern trends to the uorth from the Hudson river, to near the Canada line, there bends to the eastward, sweeping a great curve, so as to fresent on the whole its concavity to the southeast; the middle subdivision also curves quite regularly, the ridges trending from east and west around to southwest, so that the concavity faces the Atlautic shores, while the most southera portion of the range, from New river southward, bends to the west again, so as to form a geutie curve concave toward the northwest.
The most northern division of the three is quite distiuct from the oue next south, both geographically and geologically. It iucudes all the mountrin grouns and ranges north and east of the alleys of the Mohawk and the Hudson rivers, which make a complete break through the system, both vertically and longitudinally, forming the great natural highway between the east sud the west, or between the glast lakes and the Atlantic seaboard. This was the first route across the country which was traversed by canal and by railroad. So complete is the physical break here that a rise of the ocean of 400 feet only would separate all the extensive regiou included between the St. Lawreuce, the Atlantic ocean, and the IIudson and Nohawk valleys into a great island entirely detached from the rest of the continent. A rise of ouly 140 feet ouly would detach all that country which lies east of the fudson and Lake Champlain.
ill any geogrsphical treatment of this eastern group of the Geagr Appalachians the subdivisions takeu will necessarily be ratherica! tr artificial, for the mass of elevation is very irregular in its derelop- ment. ment. The most continuous ranges are the White mountains, the creen mountains, and the Adirondacks. Of the first-named group Mount Washington is the culminating point, 6,288 feet
bigh; of the last mentioned. Tahawas or Mount Marcy, with an ajtitude of 5,379 feet, is the domiuating peak. Greslock, ia Massachusetts 3,505 feet, and Mount Mansfield, in Vermont 4,430 leet, are the bighest points in those states.
The iine of summits extending through Massachusetts and New Ilampshire, heginaing with Wachusett, on the south, nud extead ing up to the White mountains, through Monadnock, suappee Kearsarge, and other peaks. is broken ami irregular. Both the White mountains and the Adiroudacken are rather isolated masres, while the Grenn monntains proper are in more intimate couneetion with the Camadian range, which terminates in Gaspé.
The Central division of the Appalachian chain extends from the Hudson river to the Kasawha, which makes an almost complete ent acrose the chaiv, heading in the Blue Ridge, and marking an importaut change in the character of the topography. This eentral division is ahout tiou miles in length. It is very uarrow toward its northeru end. but widens out in l'ennsylvauia, decreasins again in Virgiuin, It is composed of a considerable number of sibordinate chains, mach curved toward the west, and Femarkable for their regularity, their parallelism, their abrupt deelivitice, and their moderate elevation, both relative and absolute, which rarely rises to 2,500 feet above the sea-level.
West of this division of the Appalachian chaln is the great phatean, which occupies ali that part of New lork which lies sobth oi the Mohawk, and also the northwestern part of remasyivania, aud reaches an elevation mear Lake Erie of 2000 feet. From this tuble-land the draiuage descends by the grent lakes to the st. Lawrence, to the Gulf of Mexico by the Ohio, and to the Atiantic by the Susquebanoa, which breaks across the whoie chain, finding its way in the most unexpected bunner through gaps in the dif ferent ranges

The topography of the Appalachians in Pennsylvania has been earefuliy worked out by the state Geological surver, and it is so remarkable in its character that some addational details may with propriety be given in regard to that portion of the chain

According to Prof, H, D. Rogers, the mountaia-zone of Peunsylvania may be divided into tive weli-marked pratlel belts, which are as followa when enumerated in order from the enst toward the west: Ist. The South monntains, already mentioned as heing the continuation of the Highlands of New York, aud the equivalent of the Bhe Ridge of Virginia. 2d. The great Appalachian valiey. 3d. The ceatrai Appalachian ridges, or the Appalachian chaju proper. fth. The smb-dileghang ralley. 5th. The Alleghavy monntain, or the soutbeast escarpment of the Alleghavy plateau.

The South mountains have already been alluded to as part of the system of ranges bordering the great central depression of the Appaiachians on the east. In Pennsylvania this belt consists of two detached ranges of hills, oue of which is the prolongation of the New York Highlads, the other the Dortheastern termination of the Blue Ridge. Both of these groups of hils lave a moderate elevation in Pennsylvania, hardly exceeding 600 or 700 feet.

The Appalacbian valley, or kittatiuns valley, as it is msublly called in l'ennsylyaria, stretehen from the Delaware to Maryland. forming a jart of the great ceutrai vailey previously mentioned. It has an elevation of from 200 to 600 feet, and forms a broad, moderately undulating Hlain, baving a widh of from 10 to I miles. This valley is, beynnd doubt, one of the most favored parts of uns conntry-cimate, soil, mineral resourees, and scenery all combining to make it attractive to settlers.
The third division, or the Appalachime chain proper, may we thus described, usiug dearly the language of Professor II. D. Rogers: It is a complex cbain of long, arrow, very level mountain ridges, separated by long, Darrow, parallel valleya. These ridges sometimes end abruptly in swelliog knobs, and sometimes taper off in long, slender points. Their alopes are singularly uviform, being in many cases unvaried by ravide or gully for many miles; in other instances they are trenched at equal intervals with great regularity. Their crests are, for the most part, slarp, and they preserve an extremely equable elevation, being only hereand there interrupted by notchen or gapa, which sometmes descend to the water-level. so as to give passage to the rivers. The whole rauge is the combined result of an elevation of the strata in loug, slender, parallel ridges, wave-like in form, and of excessive erosion of them by water; and the preseut configuration of the surface is one which demonstrates that aremarkatle aud us yet little understood series of geological events bas been coacerned in its lomation. The ridges. which are but the remnants of the eroded strata, are fariously arrauged io groups, with lont, narrow crests, some of which preserve remarkuhle straicluthess for great distauces, while others bead with a prolonged and regular sweep. In mauy instances, two narrow, contignons parallei mountain crests unite at their extremithes and iuclose a deen. narrow, ovai balley, which, with its sharp mountain sidea, bears not unfrequently a marked resemblance to a long, alender sharppointed canoe.

Between the Appalachians and the Roeky mountaius there are within onr borders no condeeted masses of mountain rante-; isolated bill-ranges rise like fslands at various proints, as in missourí
and Arkansas, and there are a few sbort ranges on the South shore of Labesuperior.
North of the great lakes and the St Lawrence, bowever, there is the dividing ridge which separates the waters Howing into the last-bamed stream from those which rnn into lludson's bay. This is an imperfectly kuown region, wonderfully cut up by rivers and dotted with lakes. The highest point of the laurentian range, as these mountulis are called, is supposed to be where the saguenay cuts the chain, and 4,000 teft is given as the approximate elevation, while peaks in the parallel ridges bearer the st. Lawrence exceed hall that beight. Among the summits seen with such pietaresque effect from (gnebee. Mt. St. Ann is the higbest, and the elevation is aiven by Baytield at 2,68 feet.
This range falis off in elevation as we follow it west, and in the country between the ottawa and lake Haron the bighest summita do not appear to exeect 1530 to 1,700 fert. The rauge is made up of rounded hills, demsely wooded on its highest portions almost exclusively with couiferous trects. Its valleys are very wide and full of great jonds and lakes, so that one may traverse almost the Whole region with the aid of the birch eanoe. Sir William Logun noted, in 1863, that over a thonsund lakes have already been laid down on the maps of the Canadian portion of the Laurentian mountains, although the region had betn as yet only imperfectly explored.
Fast of the Appalachian system, and scparating it from the The Atlantic, is the strip of country known as the Atlantic plain. Atlantio This is the portion of the Cnited states first oceupied, und it is Plajns. ta-day the most densely settled jurtion of the country. In New England this region has a widely varying breadth and rough, irregular suriace, while its soil in geceral is not sulticiently rieh to equble the farmers of this regiou to compete suceessfally in the production of wheat or corm with thuse of the Mississippi yniley.
The breadth of the Atlantic piain is least about the bay of New York, the rabges of the Appalachian system here reaching nearly to the sen-coast. Sonthward from this point it increases gradnally in breadth, till it rencbes its maximum in south Carolina aud Georgia. This part, which comprises by far the larger portion of the Atlantic plain, has a very uniform, geutle slope from the foot of the mountains to the sea. The only feazure about it which requires notice is the line of separation between the metamorabic formations, extending eastward from the Appalachians, and the reennt stratified beds. This line is marked very generally by falls or rapids in the streams flowing seaward, which are in yery many cases the sites of valuable water-powers, and mark the head of navigation in all streams of auy considerable sloe, as in the Potomace at licorgetown, antio in the James at Richmond.
The general character of the enast-line may be briefly described. General In Maine it is bluff and rocky, with decep water immediately off character. the shore, which is deeply indented by uumerons bays and arms of the sea. These in tura are dotied by hundreds of islands of greater or less size. Proceediog southward, the character of the coast gradually changes from thls bluf, rocky Daure at first to sandy berches, as in Massachusetts and ou long Island, with small extents of coast swamp. This character develops farther in New Jersey, so that we have along the whole const a line of saudy ishands or reels, hack of which are coust marshes and swamps. The general character of these is briefly described tyy Protessor Cook in his volume on the geology of New Jersey, noder the bead of "Tide Marshes"
They are of very recent origin, and, in lact, are formed largely within the memory of the present generation. The futerval betweeus bigh-water mark on the shore and the beaches or harriera on the sea-side is mainly occupied bs marsh. Tbere are betucen 250,000 and 300,000 acres of marsh on the coast of Sew Jersers. Tho marshes are covered with grass, weeds, or coarse sedge; there is no growth of wood upon them; the upper surface is near the levei of high water, the parts near the water-course being high enough not to be covered by ordinary tides, whlle the parts moro remote from the water-course are lower, so as to be always wet. ['udcrneath, the sod which covers them is made of soft earth of various qualities, the depth of this underlying mud is variable: all, bowever, coming withinthe extreme depth of 40 feet.
Fartber southward the breadth of thls swamp section along the coast increases. On the castern shore of Maryiand there is fnside of the line of reels a section, several miles in lreadth, of swamp and overflowed lad-a paradise for sea-fowi and for the hunter.
in Corth Carolina tbe reef inclose, besides immense swamp rexions, large bays or sounds. such as l'amlico and Abemarle. The character of the swampa and reefs of this state is well given by trofessor W, C. Kerr (Givology of North Carolina, vol. 1, 1s75).
The chain ol long, linear sand fislands called "The Banks," which fringe the entire coast, constitutes a very remarkable feature of the region. Though composed of drilting sande, they form an impregnable barrier to the waves of the Atlantic. They are, in fact. sabd dunes of various elevations, from a few feet above tide level (fumang cases hroken over by stom tides) to 25 or 30 fect, atod sometimes more, as in Kibldevi] hills, along Corrituck somnd. The breadth of these islands varies from a few rods to more than two miles. The largest of them, and the widert, is known as Hatteras island, the easternmost point of whicb ls the
well-kuowa Cape Hatteras. These islanda are composed partly of flat marshes and partly of swells and ridges of beach saud, which the wiud has besped in ridges, often far begoud the reach of the highest waves.

As the sand and comminuted shells are rolled back in wayea from the beach hy the winds, they are in part caught and fixed by stragyling tufts of coarse grass, which has the power of continnous growth upward with the rise of the knobs and ridges of sand, and they are in part carried over into the flats and marshes and the ghallow sounds beyond, which are thus gradually silting up. The hanks are generally covered with low, serubhy thickets of cedar live oak, pige, yaupon, myrtle, and a number of smaller shrubby growths.
Surainps, porosins, and savannas.-There is a large aggregste of territory (between 3,000 and 4,000 square miles), mostly in the counties bordering ou the sea and the sonnds. known as swamp lands. They are locally designated "dismals." or " μ ocosins" of lands. The Great Dismal Swamp, on the borders of North Caroline and Virginia is a good uype. They differ esscutially in their and irginia is a good type. in ordiuary swamp. They are not characteristic features from un ordiuary swamp. They are not alluvial tracts, or subject to overflow. On the contrary, they occur on the divides or water-sheds between the rivers and sounds, and are frequently elevated many feet above the adjacent streams, of
which they are the sonrces. Some of them are iu large part mere Which they are the sources. Some of them are iu large part mere peat swamps or bogs heing characterized by the occurreuce of au accumulation of decayed and decaying vegetation, from I os 2 to 10 feet deep and even more, which, with the growing plants, acts as a sponge, arresting or retarding the escape of the rain water whether by evaporation or effiux. The promineut ingredients are peat and fine sand, in various proportions.and, wheu of any agricultural value at all, there are also small proportious of clay, irou, lime, and alkalies. The vegetation varies with the character of the soil, and serves, therefore, as an index of its fer tility. The prevalent growth of the best swamp soils is black gum poplar, cypress, ash, and maple. As the soil becomea nore peaty the proportion of cypress increases. Where juniper abounds wea is in excess, and the soil of little value or none. Ou the best lands there is often hesides a rank growth of canes; but such a growth is also often found on aoils too peaty to be of any value Much of the poorest and most worthless tracts of swamp which are covered with several feet of half-decased wood and other are covered vegetable matter satnrated with water, is occupied by a stunted and scattered growth of bay, swamp pine, and other scrubay rege tation; or, if the arainage be a ittle better, with a thickety growth of bays, gallberries, and a few other shrubs, with an occasiona pine and maple. Most of the large bodies of swamp contaiu lands belonging to all these descriptions, and inclose, besides. Within their boundaries, knolls, bummocks, belts and ridges, like islands, of firm land, and some of them large areas of barren, anady soil, covered with a tangle of brambles and tufts of sedge, and in the middle of several of them occur fresh-water lakes of considerable extent.
These swamps are, taken as a whole, quite well settled, a large portion of the inhabitants being colored. This is particularly the case in South Carolina, in which state much of the swampy lower coast region is utilized for rice plantations. The Okeefenokee swamp, of Georgia and Florida, is rather an inland swamp, and is described elsewhere. The Everglades of Florida, which appear to offer great difficulties to settlement, are also sketched iu another part of this report. The swampy region along the coast extends with but few minor interruptious all the woy down the Atlautic coast and around the Gulf. It is not hoverer the Atrautic coast and around the Gulf. It is not, however, so markedy characteristic along the Gulf coast in Ahamam and Mississippi as farther west. In Lollisiana it has a great breadth, and is almost continues to be the sameso far as relates to the line of low sand contini outlying islands, yet the area of the coast swamp becomes very much less, being confined to a small patch about the Sabine lake and narrow strips along a number of the streams. Whether it is due to geological canses, or to the lighter rainfall upon this aection of the coast, is a question which there is not space to discuss here.
The broken, irregular course of the whole Atlantic and Gulf coast affords many excellent harhors, particularly on the New England coast, where the harbors are large, deep aud well sheltered; farther southward the entrances are barrow and shelving, and are liable to be choked upby sand dritted in by storma. The gtreams, iu nearly all cases, form bars across their mouths, formed by the detritus brought down from the upper waters
The Pacific corst. as compared to the Atlantic, ls extremely simple. It contains few harbors of any value to navigation. Those of San Diego and San Francisco are the principal and almost the only ones. The coast is, in general, bluff and rocky, and the water is deep immediately off shore.

THE POLITICAL AND NATURAL SUBDIVIGIONG
Having given a description of the physical character of the area covered by the United States, withont refereuce to politleal divisious, it becomes necessary to state how this region is divided politically, aud how these divisions can be grouped, in a manner as natural as possible.

Some difticulties are thrown in the was of such a subdivision of the country as shall meet with general acceptance by the fact that gome of the States and Territories are so large that they include areas of very different physical character; and also because a nomenclature was introduced, and extensively made use of, when one-half the uresent area of the country wss so little known or considered that a mame for it was not thought of as heing necessary
The area of the Unlted States is at present divided into forty nine subdivisions, excluding Alaska. There are forty-four States. three Territories, and two other subdivisions, neither states nor Territories-the District of Columbia and the Indian Tertitory.

Ans Terrltory is likely, at any time, to be received into the Union as a State; and this may be done by subdividing the Territory, making a state of one portion aud allowing the remainder to remalu in a Territorial condition, or by admitting the whole as one State, or by dividing it into two or more States. Only once has a state heen divided after having been received juto the Union-namely, Virginia-and this was the result of the Civil War; and it is not possible to say under what circumstauces such a thjug is likely to happen again. Nor has any State been remanded back to the Territorial condition after having been received into the Union; although one State-Nevada-has les than half the population required for the election of one repre sentatlve to Congress, according to the last apportionment, based on the census of 1880 . There is, in fact, no provision in the Constitutiou for this exigency
The desirability of grouping these forty-nine political division (Alaska being omitted as not continuous with the rest of the United States) according to their geographlcal situation and topographical and climatic conditions, so that different regions may be spoken of by some collective name, will be erident to all The plan suggested for the snbdivision of the area included Within the United States by Mr. Ginnett, geographer of the census of liso, was " to divide the country into three great divisions, corresponding to the three primary topographical divisions of the country: the Atlantic region, the region of the Great Valley, and the Western or Cordilleran region." The physical character a these different regions has already been indicated at some length Phyeical in the preceding pages. The region of the Great Valley is called by Charact Mr. Gaunett the Central Region, which is again subdivided into two parts-the Northern Central and the Southern Central-the Ohio river and the southern houndary of Nissourj and Kansas being the dividing linc. The Atlantic Division is also divided by him into two anbdivisions by a line following the south boundary of Pennsylvania and New Jersey-these two subdivisions being called respectively the North Atlantic gnd Sonth Athutic divi aions. On the east, the western or Cordilleran division is marked by the eastern boundaries of New Mexico, Colorado, Wroming and Montana. The following table shows the area of each of these Political divisions in square miles and in percentage of the entire area of diviaion the United Statea:

North Atlantic
South Atlantic (including Delaware Bay)
Norther Ueatal
Western.
Total.
AREA.
PERCENTAGE
168.765

283,155
765,855
614.550

5.6
 9.4
 20.3 39.4
 100.0

[1n the Western Division, as here limited, Mr. Gannett includea an area of 5,740 square miles of "unorganized territory." lying north of Texas and west of the Indian Territory.]

The adoption of thls scheme of subdivision of the country does not the less render desirable and convenjent for varioua purposes a different nomenclature for certain regions, hased more excluaively on geographical position. Thus the States bordering on the Gulf of Mexico will naturally often he spoken of as the Gulf States; the region of the Great Lakes will be so desigusted, and this again subdivided into the Upper and Lower Lake Regious while each great river will give a name to its own adjacent region, as the Ohio Valley, the Upper and Lower Mississippi Valley, the Upper Missonri, etc. Appended is a statement of the namea of the political divisions included in each subdivision of the United States, as suggested by Mr. Gannett:

division.	SUBDIVIEION.	STATES WITHIN SUBDIVISION.
Atlantie.	North Atlantic.	Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut. New York, New Jersey. lennsylyania.
	South Atlantic.	Delaware, Maryland, Virginia, West Virginia, North Carolina, Snuth Carolina. Georgia, Florida.
	NorthernCentral	Ohio, 1 ud 1 ana. Illinota, Michigen, Wisconsin, Minnesota, North Dakota, South Dakota, Iow a, Nehraska, Kanses, Missouri.
Central.	Southern Central	Kentucky, Tennessee, Alabama, Mississippf, Arkansas, Indian Territory, Louisiang, Texas.
Weatera.		Montana, Idaho, W yoming, Colorado, New Mexico, Utah, Nevada, Arizona, Washington, Oregon, California.

The tabular statement following gives for the States and Terri tories a rєвume of their areas, population in 1850 and 1830 , populaton per aquare mile at the latter date, and the increase per cent during the decade 1881-90. The Territories are given ju falies in the table.

POLITICAL AND NATURAL DIVISIONS.
Arear and Popclation-Census of 1890.

	¢9w
	为

"This includes "["normanized Territory." tEstlmate.

chumate.
In endeavoring to set fortin the principal features of the climate faenerited States, it will be assumed that the reader has made himself arquainted irith the fonography of the conatry, as brietly himselt arguainted wiented fin the loreeding fares. The great influence which cer-

rainfall, and the temperature will be auflictently apparent from that which follows
The United stutes extends from the tropics north geross the temperate zone, and fromser-level to an elcration of over 14.no feet-an elevation which carries with it an aretic elimate. The mean annual tempernture ranges over more than 40^{-}F., while the extremes of recorded temperature run from 55 ' below zero up to a maximman above 115. The mean temperature of the hottest month of the year, July, ranges from below tiv to alove 90°, while the mean temprature of the coldest month ranges from zero to more than ins. Were the country a plain, the mean temperature of the year would be almost purely a gisestion of latitude; a difference of elevation, however. especially when it takes the form of a monntain range, causes a deflection sonthward of the isothermals, an abrupt rise of about 300 feet of elevation implying a decrease of annual temperature of one degree. Thus we fibd that the Appalachian system causes a very marked deflection to the sonthward of the isothermals. On the puns, however, where the urward slope Is very gradual, it is to be noted that the elevation causes little or no deflection gonthward of the lines of temperature, the plans and phateans generally having a mean amual temperature nearly or quite as blgh as polnts in the same latitude in the dississifli valley or on the Atlantic const. The temberature of the great western flains and plateans is however, modified loenlly to a marked extent by the exposure to west and northwest winds, which have an mbroken sweep in some places for handreds of milea, acquiring remeudous foree. Attention should be called here to the well snown fact that the climate of central Montana. Including most of the settlements an the upper Missonri, is abnormally warm. It lies at a comparatively low elevintion, belng only 3,000 to 4,000 feet above sea-lerel, and is sheltered from the fierce westerly winda by the Missourl range, while the aortherly winds. to which it ia exposed, come from the maisture plains of the saskatchewan.
The two maps showing the mean temperature of the warmest month, July, and the mean temperature of the coldest month, January, as given in the linted states Census for 1840, Vol. 1-ilfustrate, though only to a limited extent, the range of temperature in different sections of the country. The former shows a comparatively limited aumber of grades, runaing from 60° to 90°. the lines following approximately the parallels of latitnde. excelit where deflected by mountain masses. The influence of the coast in averaging the climate is distinctly perceptible on this map. There is apparently a Dorthward movement of the tomperature lines in the Cordilleran region, showing that in the summer the temperature is abnormally high in this arid section. These charanteristies are illustrated converseir br the January map, whieh also shows the infnence of the sea and other large bodies of water, while in the Cordilleran regiou the temperature lines are borne southward by the aridity and consequently extrme character of the climate. The fourth of these tumperature mapa, showing a generalization from the highest recorded readings of the thermometer, cougled with the fifth map. which showa a similar generalization with regard to the minimum temperature, Illustrates the extreme range of the thermometer in different parts of the conntry. In the former we see a belt rmming along the seacoast from Jaine to Texas, where the thermometer never risea above 100 , While within it is a regiod, stretching from New lork bouthward along the Alsantic pana and the lower Mississippi valley, where the maximum reaches 100 , thus illustratiug in the clearest manner the cffect of the sea in averagiog the temperature. The same thing is illustrated, though not so markedly.upon the mapoiminimum temperatures.
The fonrtu map shows also sdother peculiar characteristic, viz., the fact that as we pass up the slope of the flains the maximum temperature increases, not on a parallel, as in the case of the mean annual temperature but approximately on a contour or on a meridian, beiog apparently proportional to the uridity of the atmosphereand the amount of rainfall. Thls characteristic is, to a certain extent, disyuised in the heart of the cordill.ran region by reason of the great diversity of surface which is encountered there, but in general it holds good throughout.
The map showing minimum temperatures is not so clear on these points. Its lines follow parallels more nearly ; but there fa a marked dellection toward the southwest as we pass westward from the Mississippi valley. The characteristies of thls map are still further concealed by the effect of the detalls of topography in the Cordilleran region. A marked change in temperature, as Well as in raintall, tates place at the crest lime of the slerra Nevada and the Cuscade range. This change is not particnlarly apparent in the ment anmal temperature, but on the map showing the temuratnre of July und Janury it is quite apparent being shown by the slight differesce between these maps. At the bay of sun Francisco the dimerence between the mean tomperature of July and that of January is bat 10 . This effeet is still more marked in the last two maps, where, In the Misslesippi val ley, the runge between maximumaud minimam averages 110° and in the Cordilleran region 125°. On the lacific coast it decreases to only 60 , showing that this section of the conntry enjoys by far the most uniform cllmate as regards temperature.
The materlal for these temperatore and rainfall maps was drawn mainly from "Temperature Tables" and "Rainfall Tables" prepared by I'rofessor Charles A. Schott, und publlifhed by the mithsonian instimtion. The map of mean ambual temperature was compiled, vers largely, directly from Mr. Schott's admirable chart in the first of the above-mentloned volumes. The rainfall maps were prepared previons to the publication of the last edition of the smithsonian "Rainfall Tables" and, as much new materia had been collected in addition to that published in the first edition, the mans were ploted from original sources.

No lese than gaper cent. of the total population lires between a0 and 70 F . of mean anmal temperature, leavige a rery smal pronortion to be distribnted among the other sections. Of these grouns, those baving a temperature ntove sit eontaln the entire cotton recion those above io, the sucar add rice regions: while between 50° and ω° is comprised most of the tobaceo reglon. The
prairie region of the Mississippi ralley lies almost entirely below 55°. while the great wheat region of Minnesota and Dakota is mainly below 40^{5} of mean annnal temperature.

The hottest part of the conntry is, naturally, the southern end of Florida, while sonthern Texas and southwestern Arizoua come next in degree of temperature.
A rough computation shows that the mean anuual temperature of the collntry is about $53{ }^{\circ}$., to which the location of the population almost precisely corresponds, differing from it by only a fraction of a degree.
We give below a table prepared by selectiou from the roluminous records of the recent work on American temperature, shownog the mean annual temperature of the atmosphere at a given point in each of the forty-nine States and Territories of the tivion. point in each of the forty-mine States and Territories of the nion. town where observations hare been most continuously kept:

The position of the isothermal lines in the United States may now be noticed; and in this connection the influence of the topog. raphy of the country becomes at once extremely appareut. The raphy of the country becomes at once extremely appareut. Tbe marked regularity from the Atlantic coast west to the foot of the Rocky Mountaius, being in gencral only slightly modified in their direction, which is nearly east and west. Tbis indication of a change of temperature, cssentially dependent on that of latitude, change of temperature, cssentially dependent on that of latitude,
is in striking contrast with the condition of things on the Pacific is in striking contrast with the condition of things on the Pacific
coast, as will be seen farther ou. But as soou as the Cordilleran region is reached, the isothermal lines are bent awsy from their east and west course, aud become irregular and often concentric in their passage across the various mountain ranges.
By the character of these isothermal lines, three climatic divisions of the United States are suggested: 1. The Eastern Region, including all the territory lyiug east of the foot of the Rocky Mountains; 2. The Plateau and Moutain Region of the Cordilleras; 3. The Narrow belt on the Pacific coast, west of the Cascade and Sierra Nevada Ranges.
The Easteru diyision is, of course, by far the most inportant aud best known in its details, siuce it is that region where the wealth go hack the farthest, and where the population and first he considered. As the torographical features of this division are simple, and do not anywhere interpose any very decided or not easily overcome harrice to the movement of the people, so the climate partskes of a similar character, the passage from one type c.imate partskes of a similar character, the passage fromone type to another being gradual and decidedly uniform, although rapid.
The isothermal lines of mean annual temperature of 44° aud 72^{3}, laclude nearly the entire area of the United States. The corresponding degrees of latitude are about 45° and 29°, so that the average change of temperature wath the latitude is a triffe over
$I^{2} 6$ for each degree of latitude. The importance of this rapid change of temperature lrith the latitude, with reference to the intellectual and commercial develoment of the country is obrious, and has been already pointed ont by eminent climatologists.
The isothermal of 523 passes through the center of Florida; then, eutering Texas, is suddenly deflected southward, running parallel With the isothermals of 60° and 64° to the boundary line of Mexico. The isothermal of 76° crosses the extreme south end of Florida, almost on the parallel of 25°. The isothermal of 65° enters Florida just below the parallel of 31, and crossing the state in an almost direct east and west line, passes through the southern part of Alabama, Mississippi, and Louisiana, and into ward to the meridian of 102°, where it is suddenly deflected sonththe United Sound the south Caroliug coast. anses euters the dired erly direction rery ucariy ou deflected sonth and fir west as the meridiau of 100 , when it is deflected sonthward, like the other isothermals, by the gradually increasing elevatiou of the Plateau Region. The isothermal of 60° is, in its geueral course, parallel with that of 64^{2} except that the deflection to the south between the meridians of 80° and 87° is greater, owing to the iufluence of the lofty southeru extremity of the Appalachlans. It traverses North Carolina, South Carolina, Alabama; passes into the southern part of Tenuessee: is defected into Mississipm; then enters Tennessee again, passing across Arkansas and the Indiau Territory into New Mexico, when it is deflected toward the south, making two loops as it runs mearly coincident with the meridian of 101^{3} to the parallel of 81° in Texas, when it again heuds to the west, and, alter a southwest course, is deflected toward the northwest. The isothermal of 50° euters the United States on the Maryland coast. Its general direction to meridiau of 87° is southwest. Here, in ceutral Alabama, it is deflected to the northeast, following this general direction to the parallel of $3 s^{3}$ in Kentucky, when it beads again to the west and runs in analmost direct westerly course to the meridian of 101^{3}, where it is detlected to the south, passing through New Mexico iuto Texas, where it suddeuly bends back to the worth, and, after making a long loop in New Mexico, passes in a northwestcrly course across Arizoua. The isothermal of 52 , West of the Appialachiaus runs almost coincidently with the Ohio river as far as Cincinuati, then in au undulatiug course passes in a nearly westerly direction through Indiana, Hllinois, Northern Missouri, aud near the northern boundary of Kansas to the easteru border of Colorado, where it is deflected to the south, and runsin a directiou yearly south by west for a distance of fully five hundred miles along the eastern base of the Rocky Mountains. A large area is included between the isothermals of 44° and 52° It comprises: New Englaud, except the larger part of Maine, New Hampshire aud Vermont; the southern and central portious of New lork: Peuusylvania; nearly all Ohto the northern twothirds of Iudiuna and Illinois; the southern half of Michiran and Wisconsin; nearly ail of Lowa; the southeastern corner of Minuesota; nearly the whole of Nebraska; and the southern third of Dakota. The isothermal of 40° enters the Enited States on the esstern border of Maine, aud, passing through the center of the state, trarerses the northern end of Ner Hampshire and Ver mont. It then passes out of the United States. but enters the country gain at the western end of Lake Superior crossing the central part of Mianesota, bendiug to the south on the meridian of 97 , a ad making a large loop in Easteru Dakota, then turning of 97 , aud making a large loop in Easteru Dakota, then turning
to the northwest, and again passing ont of the United States at he merldian of 100°
West of the meridian of 105°, withiu the secoud climatic division or the Cordillerau regiou, the course of the isothernal is lurgely determined by the position of the several monutain ranges embraced in that area of complicated topography to which the name of Cordilleras is giren. These ranges, unlike the Appalachians, are lofty enongh to produce a decided inuence upou the climate. althongh nowberc reaching what may be called the region of perpetual snow. This deficiency of lasting accumulations of suow. precinitation ery considerable part due to the smallness of the is iu the Sierra Nerada, the former ranges covered to a large exteut with permaneut snow-fields and glaciers descending from them Obscrutions of neen temperature, hov. ever, on the higher ranges are extremely deficicut, so that only a few genaralizations cau be given with regard to the nosition of the isothermals iu that portion of the territory of the United the 1so
The isothermal of 44° follows a course iu the Cordilleran regiou Which embraces within a great loop to the south, the eutire higher portion of the Rocky Nountains, as far south as parallel 34. The tops of the Sicrra Nevada, Blue Mountains, and Cascade Ranges are also included withiu the loop of the 44 . The Central portion of the Cascade Range, and the Rocky Mountains in the southwestern corner of Colorado, have a mean annual temperature of 40°. The highest part of the Rocky Monntains is indicated as having a nean temperature of less than io. Accurate and long continued observatious iu this region wonld, howerer, furuish an extremely complicated system of isothermal curves, since the ranges are uumerous, and many of them high.
As the land assumes a more decidedly phatean character iu Arizona, Utah aud Nevada, the mean anmiral temperature rises in this portiou of the country. In Nevada, the isothermal of tiz extends as ar north as the parallel of 30°, and the isothermal of 52° reaches to the Trinity Monntaius in parallell 40°. In this Cordilleran region, We find that a great change may be made in the latitude with tut arery moderate one in the mean annual temperature. as shown by the parallelism of the isothermals with the coast line. The temperaon the higher aud more miform along the Pacific coast, than it is on the Atlantic coast of the runs nearly parallel with the coast, and not far from it from the Cosst from parallel nearly to the 35 th. The isothermal of 520 follows the oast from San Francisco as far north as the parallel of 46°
The isothermals for the summer months-June, July and August -show greater irregularity ou Mr. Schott's chart than those of the

Whr．This holds true especially in the eastern region of the ivuutry．The aummer lsothermals all hend to the north in a very －haracteristic manner，owing in great measure to the sontherly wiuds，which are heated by the Gulf of Nexicu．The summer isothermal of $s 0^{\circ}$ bounds ou the gorth an irregular area，iucludiag Florida，the southern part of Georgia，Alabama aud Mississlppi： Louisiana，the southeastern corner of Arkansas：the southeastern half of Texas；and a tougue of land in New Mexlco．Within this area the mean summer temperature ranges from 80° to $8 s^{\prime}$ ．The southwestern half of－rizona，and patches in southera and central California have a like summer temperature of from 80 to 85° ．A stripincluding the greater liart of North and South Carolina，por Minsouri，Arkansas，Kansas，the Mexico．Colurado，Utah．Arizona，and（alifornia，ljes hetweenthe mean summer isuthermals of i^{-}and an＇．The belt near the Ohio extending north as far as the Great Lakes，and south aloug the Appalachian tahle－land ioto Teunessee，Mississipni．Alabana， and Georgia，and west through Indiana，hllinois，lowa，portions of Wisconsin，Minuesota，Dakota，and Montana．Nebraska，and northern Kansas，lies hetween the sumnaer isothermals of 68 and 76^{2} ．Ou the Pacific coast the summer isothermals approach more nearly to the mean annual isothermalsjn their characterand pusi－ thou than do those on the Atlantic const of the vited states． The resion of the Vnited states lyiug uorth of the states anmed above has a mean sumber temperature ranging from 54° to th
The isotbernals for the winter months－December，Jauuary and Fehruarr－in the eastern region of the＂nited states，are more regular than the summer curves，thas appoaching in this respect sotheracter of the mean ammal sothermals．The wine isothermal of 6is．It rans parallel with，and at a little distance from．the Gulf of Mexico．The winter curse of 48° correspouds rery closely with that of 61° for the sear aud the winter curve isothermal of 32^{\prime} enters the（＇nited states at the sonthern end of Massachusetts，and passes in a southwesterly course across long Isassachusetts，and passes in a southwesterly course across Long Island，just south of New lary cits，through New sersey and across the northern end of Maryland．Where it is detlected to the
south，and makes a long loop aronnd the Appalachians；then near south，and makes a long loop aronnd the Appalachians；then near the Ohio，throngh Indiana，Illinois，Missouri，and Kanses，into
New Mexico，where at the meridian of 105，it is deflected to the New Mexico，where at the meridian of 105 ，it is deflected to the southwest and passes around the Rocky Mountains and through the center of the Great Basin．On the Pactic coast，the winter isothermals also closely coincides with the mean annual isother－
mals．For example，the winter isothernal of 5 ？corresponds in mals．For example，the winter isothernal of 52^{2} c
The pecularities of the North American climate which most strongly impress themselves on newly arrived visitors，and which are not so apparent in geveral statistical statements as they are in Nature，may be best sct forth and discussed after the more essential facts regarding the other priucipal climatic elements have been presented．

And it would seem to be next in order to state the principal facts regarding the distribution of the winds in the United $=$ tates， sioce a knowledge of these will he esseutial to an understanding of the important subject of the amount and distribution of the precipitatiou．
The prevaling winds of the Enited states，as of all countries lying in the middle latitudes，are westerly．At the 40 th parallel as an arerage position，and on the mean annual isothernal of 50° the evidences of this prevalence and constancyare overwhelming． Dr．Gitbous has noticed，with great care at san Francisco．the course of the higher strata of clonds－the cirrus，and the very high stratus－where they were visible，and has fonnd them to come unifarmly from some westerly point．During three years of sery careful registry directed to this particular point in western New York，but three instances of a contrary direction were ohserved． During storms the lower clouds are from various foints，and the wind is quite rariable during the greater storms；two strata of different movement often lying beneath that from the west，yet the stratum from a westerly point usually deposits the rain，and when it ceases the rainfall ceases，though the lower strata may when it ceases the rainiall ceases，thongh the or even longer．
Below the 35 th parallel and on the Gulf coast ouly，do the show ers of summer take a different movement，showing that the stra－ ers of summer take a different movement．showng that the stra－ move from the west，but from the east or sontheast－an inflection of the trade－wind mingling with a local coast wind
The following tahle．arranged from data firmished hr the signal Service Burean，gives an idea of the direction of the wiud in vari－ ous parts of the country：
ST． 1 TEIVEXT showing have many times the wind was observed biowing from the right principal points of the compass during cach scrason of the year cadinu Jum so．Ns，Compaved from ubsertations taken at the several stations of obecrations at o（1．m．．ep．m．and $9 \mathrm{p} . \mathrm{m}$ ． （local time）．

Station．

Blstr arck，Dak

Wind． N． N． S． 1. S． s． E． Calin． Claok
 | 5 |
| ---: |
| 3 |
| 3 |
| 32 |
| 75 |
| 15 |
| 16 |
| 17 |
| 34 |
| 36 |
| 13 |
| 21 |
| 0 |

New Orleans, La................................	C 0 0 0 0 0 0 0 \vdots \vdots \vdots \vdots	$\begin{gathered} \mathcal{O} \\ \text { O } \\ \text { O } \\ 0 \\ \text { \# } \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	Augusta, Ga..	Boston，Mass		$\begin{aligned} & \% \\ & \% \\ & 0 \\ & 5 \\ & 5 \\ & \frac{5}{6} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			H $\stackrel{y}{4}$ 0 $\%$
		$\begin{aligned} & \text { 我 } \%{ }^{n} \% \\ & 0 \end{aligned}$				x_{0}^{∞}	$\frac{\infty}{\infty}$		\％
									spring．
									Summer．
									Antumn．
をこ	ムーー 2 ¢		－			－リ¢	カーき		Winter

The winds along the whole extent of the Athatic Coast region have a marked resemblauce in their important features, wotwithstanding the great difference iu latitude. Westerly winds predominate duriug the entire year; but they are
erly in summer, and worthwesterly in winter. In the district between the Appalachians and the Mississippt Westerly aud scnthwesterly wadsare prevalerritory in the southsummer. Ont the other hand, over a large territary ine the southwestern portion of the ern Wyoming and Colorudo, Arkausas. Texas, (Ttah, New Mexico and Arizona, the summer wiuds are from the sonth, while the winds of winter are north and northwest. In northern Michigan, Wisconsin, and Minnesota, this reversal of the winter winds is less marked. In New Mexico and among the Rocky Mountains generally, the winds are of the most extremely irregnlar character. At the passes of the sierra Nevada, and at all eutrances from the coast of the Facific to the jnterior, arid districts and deserts, there are violent and continnous westerly winds. On the eoast of Califoruia, the inward draft of air produced by interlor this us the locality of the "Mexican Mousoou," blowidg alternately up and down this coast, or northwest and southeast. The duration of the northern mousoon is from December to May; the currents of air are from the northwest, and nearly parallel with the May to september the carrents of air are from the sonth and sonthwest. These are the stormy months, attended with great explosions of electricity, and with coplous and constant preeipitaexplosions of electricity, and with coplous and constant preeipitabring a northwest wiad on the coast from the daud to the sinth prinallel, and thenth or southwest wind for a long distance below parale, and the entrance to the Gali of Californig-lines which, if projected to the interior, would eross nearly at right angles over the central areas of the dry interior. On the other side of the continent the southeast monsoou of Texas blows direetly toward the northwest wind of Califoruia-all proving how great and important this agency of interjor rarefaction is in producing the surface winds of the latitudes below the well-determined belc of westerly winds. To sum up what has hecn said in regar

1. The influence of the trades is hat very slightly felt in the extreme sontbeasterly portion of the country
2. The prevailing wiads elsewhere are, ju geacral, westerly 3. On the Atlantic coast. east of the Appalachians, northwesterly winds mevail in winter; sonthwesterly in summer winds gouthwest and west winds prevail both in winter and summer. 5. Orer a wide area, extending from sonthenstern California to Missouri, and along the hase of the Rocky Mountains from New Mexico to southern Dakota, the winds of summer are nearly the
reverse of those of winter, being south, soutbeasterly or sonthwesterly, with a great predominauce of southerly; but north and westerly, with agre
northwest in winter northwest in winter
3. On the Pacific e
4. On the Pacific coast, the prevailing and normal westerly directlon is maintained throngh the year, intensified in summer by the superadded monsoon influence of the beated platean region to the east.
5. Through the Platcau or interior Cordilleran region, the sorface wiuds are variable and irrcgular in character, but the bigher enrrents are in the normal westerly direction
winds ereatly of the Lower Colorado is one in whlch southerly is uot so complete a reversal summer, but where in winter there area specifict under 5
Ratufall.
The prosperity of a country depends largely upon its rainfall, as, to a very great extent, the primary industry, that upon which ish in a degree directly promortioned to the amount of moisture of rainfall, this countiry receifes in its different parts a very different supply. Throughout the easteru half of the Uuited states, the rainfall is ample fol all purposes of arriculture, while in the western half, with the exception of a narrow strip along the Pacife coast, the supply is very defieient. With the exception of Ge cordileran region, the rainfall is nearly all derived irom the Gulf of Mexico and the Atlatic ocean. Of the two, the principal
source is the Gulf. The wara, moist currents whichaccompany source is the Gulf. The waran, moist currents which accompany the Gulf Stream Irom the Caribbean sea are not deflected toward the eastward in the Gulf of Mexico, as tiue great oceanic rirer is,
but pass northward and eastward over the laud in a hroad helt 3xtending from the coast of Texas to the peninsnia of Florida. Judging from its effects in the form of rainfall, the central portion of this eurreut passes over eastern Iouisiana and Mississiplyi and western Alabama. The natnial result of leaviug the warm oeean surface and entering the continent is to cool these air euralong the northern shore of the Ger vapor. The heaviest deposit is Nississippi and Alabana, and the western parc of Florida, where the rainfall reaches 60 iuches per annum. Were there no monntains or other irregular topogriphical features to modify the raiufall, this waye would inovéinland in \{ northesterly direction, the precipitation deereasing eastward, northward and westward, the This form we see roughly ontlined in the western part of the Mississippi valley, the rainfall decreasing regularls to the northward and westward. To the northeastward, however, these moistureladen currents encounter the southern end of the Appalachian laden curreuts encounter the sontheru end of the Appalachian
chain, and are dricen atonce up to bigh altitudes, where they are forced to disgorge their vapor, giving to this end of tbe moumtain system a heavy raiufall; while farther along the chain, toward the northeast, the rainfall diminishes, becoming even less than that of the lower country on the east and west. The portion of the moisture-laden current which passes to the eastward of the Appalachian chain meets and mingles with moist air enrrents
parts of North and Sonth Carolina, an area of obnormally heavy ainal. A second source of moisture is the atlantic ocean. of heavy rainfull along the Athatic coast. reaching from Florida to the nuighborhood of the bay of New lork. This strip is quite narrow, being confined to the coast and its immediate neighborhood. Back of that, and over the greater portion of the Atlantic plain, the preclpitation is notably less. The conditions of the coast as regards rainfall are somewhat ehanged north of the latituda last mentioned; that is, near the bay oi New York. The Gulf Stream, whieh has been gradually treading off shore, is here at a considerable distance from the coast. Between the coast and the Ginlf stream has appeared apolar current flowjug southwesterly. The contact between the warm air currents of the Gulf tream and the cold winds accompanying this polar current undoubtedly causes the heavy fogs which prevail on the banks of Newfonndland and St. George's Banks, exteuding, jn a greater or less degree, to the New England coast. Althongh there is a decrease in the rainfall of this part of the coast from that farther sonth, yet it is not particularly marked. The precipitation is, however, greateat on the coast, and decreases inland.

Learing now the eastern half of the country, let us trace the rainfall westward. The lines indicating a smaller degree of rainfall succeed one another at interfals more or less regular as we go west, out of the course of the great contimeatal wave of moisture, and up the slope of the plains. The country bere is noiform and geaerally level, and there is nothing to interrupt the regular decrease in the amount of precipitation until we reach the base of the Rocky Mountains. From this line westward to the Sierra Nevada, we find the conditions of rainfall which are iucident to a monntan country accompanied by a dry atmosmhelp. Thang the Cordilieran region as a whole, with the exception of that part ying west of the Sierra Nevada and Cascades, the rainfall prohahly does not weragemore than 10 or 15 inches unnually. This, however, is not deposited uniformly over tine conntry ; there are certain conditions under which the rainfall in some parts of this region is much greater thay in others. Other things heiug equal, the higher the latitnde aud the greater the altitnde, the greater will be the rainfall. Uuder this rnle the more northern parts of the Cordineran region enjoy agreater rainfall than the conthernparts. The monntains and high plateans are better watered than the low lands. The best-watered parts of this region are the northern marts of Washington and Idaho, the western Fart of Montama, northwestern W yomius, which includes the elevated region known as the Ypllowstone National Park and the high fateans and ranges of central Colorado. The most arid portions, and those which receive the least rainfall, are western drizona, southern Vevacia, and sontheastern California. Althongh thronghout this region we have but few and scattered observations of rainfall the
 certainty by the eharaeter of the vecetatom Everywhere arbo certanaty be the edaracter or the yegetation. Ererywhere arborecordingly we find the higher plateans, the mon of randall, nud accordingly we fiud the higher plateans, the monntains, and tho regions in the higher latitudes covered with forests. A second zone of rainfall is indjeated by the bunch and gama grasses which cover the plains and most of the mountain ralleys. Theyindicate a rainfall not ingeacral sufficient for the neuds of qgriculture. A
third zone is indicated by Artemisia. or "gage brush," as this characteristic westurn shrub is popularly called; while a fourth zone is indieated by the eqetus, the yucca, or by an absence of all vegeation whatever.
As has been suggested heretofore, the rainfall in the Cordilleran region east of the sierra Nevada is in general insufficient for the needs of agrienlture, excepting in a few isolnted areus where locab topograpby indues a rainfall greater than the normal one. In of ceral crops. Generally it engere necessary for the production rainfall than 20 inches, or less rainfall than 121_{2} inches durjng the rowing season of crops-that is, during the spring and summersinsullieient for their successful cultivation; and where this sup py is not furnished uatnrally, an equivalent must be supplied by means of irrigation. This limit is reached along a line rumning approximately on a meridian, and passing through the midde of
Dakota, western Neluraska, western Fansas, and central Texas. In the neighlorhood of this linestan hansas, alld central cexas. In the neighloorhood of this line, and extending perhaps a degree on each side of $2 t$, is a delatable ground, where, in ome seasons, the
rainfall is suffient for all crops, while in others it is insuflicient. rainfall suficieut for all crops, while in others it is insuflicient.
This is Powell's subhumid region. As a rule, wherever irrigation is becessary, the possible extent of agriculture, and in consefuence the possible density of settlement, are dependent upon the amoont of water carlied in the streams. In most jarts of the Cor. ailleran region, there is apparently a far greater amonnt of lana suitable for cnltisation than ean ever be irrigated, even under the most conomical distribntion of water. Concerming this point, however, we are at present much in the dark, the eajacity of few streams having heen measnred, even approximately. ©nder the Wasteful system of irrigation at present jraeticed throughout the West (except in some porlions of southera California), the limit of settlement will very soon be reached, so far as the popinlation is dejendentapon agriculture.
A questjon which has assumed practical importance of an almost ational character is the effeet of the planting of trees and the caining that thcse causes prodimee an increase in rainfall, and conaining that these causes prodnce anincrease in rainfall, and cousequently that it is possible to redeem the whole Cordillesan region hy a judicions system of cultivation and tree planting, par. lieularly of the latter. It is doubtful whether that effect can lie woduced hy this or by fny other means within the power of man. dilleran region do not sulustantiate the theory, the records showing hat the rainfall has not increased in the regions cove ed by our border settlements siuce their earliest formation. At the same time, it seems highly probable that a change has been produced, which, while not affecting the climate, has modified decidedly the condi. tions of moisture. The effects of cultivation wpon the soil in cov-
ering it with vegetation, and eapecfally with trees, has in general fing it to run directly offinto thestreams ar to s, fustead of allow. byg evaporation. In other words.andreams, or to be taken up at once bainfall is rendered eflective for agricultural aner wrolortiou of the fainfall rendered entective for agricultural yurposes. Tbiseffeet and even to some extent inoughout Dakota, Kansas, and Nebraska,
and eren to some exteut in L'tah and Colorado.
respects peculiar, and different from the Pacific coast. It Is in all There along the whole coserent from that of the rest of the country. Sierfa Nevada and the Cascade range, well-defined wot and dry aeasans-the former corresponding to the easteru wiuter alhe dry to the eastern summer. Taking the jear through, the rainfall is very much bearier in the northern part of this section than iu the southern. In westera Washington Territory, it rains almoat conthe supuly of rain in southern calf, while even in the wet seasom, an explanation of this peculiar climate is to
ocean currents and the prevailing winds. to be fonma in the ocean curreats and the prevailing winds. The winds on the west and southwest. These winds pass, on nearing the const, over the great Japanese current, which morth of Oregon, is relatively to the land, a warm current, while south of Oregon it is, rulatively, a cool current. In passing over this portion of the sea, the atmos phere becomes anreharged with moisture. In reaching the cuast depends upon the chauge of temperature which it encounters North of Oregon, the land being, as stated above, colder than the Gea, there is great precipitation, while south of that state the land belug the warmest the precipitation decreases, till in southern California, where the differenee between the sea and land temperature is the greatest, it is almost oothing. The line of demarkranging northerd inerent temperatures varies with the seasou thus giving the alteruations between the wet and dry seasons peculiar to this cosst. The influence of the mountains of the nomeaa of this climate. still plays a cery sccount for all the pheascent of the warm eurrents up the mountain sides of conrse cools them Fery greatly, and causes them to deposit whatever remaining molsture they may contain. To illustrate the extent of the action of monntaiu ranges, it may be stated that. althongh in the ralley Sierras it has been found toinfall is very light, yet, upon the hjgh The colder months in the reach 90 inches in a single year.
The colder months in the United states, including May and Sep tember of the warmer months. precipitate most of the raiu aud
anow which falls in what are called general atornis. Mosi of the anow which falts in what are called geueral stornus. Most of the ton is in storms of two or three days' duration. A south or south east wind, with high temperature and a palpable sense of prepara tion, usually beging the change; east and vortheast winds follow next for a day or more, during which most of the rain falls, aud *est and northwest winds blow with unusual strength for two days following, restoring the equable and averuge weather for the month. In the Northern States, a greater number of mouths is inoluded in those of general rains, which may occur in evers month of summer, though they rarely do so. Inthe Gulf states the period of aummer showers is more extended geuerally, though where the hurricanes of August and September occir, as they do in all the Sonthern States bordering the Gulf and the Atlantic, the number of extended rains ju the summer is more nearly equal to that jn
New York and New England. In the southweat, at adistance from New York and New England. In the southwest, at adistance from the coasts, thes are rare from the elose of April to the middle of October; in the interior fartber west they are equally rare, and on the Pacific coast they belong only to the rainy months. But ou the Pacific the rains have little, if any, corresnondence at any scaan with those east of the Rocky Monntains.
Some geveral distinctions should be made at the outset of the examination of storms in the temperate latitudes. The hurricanes, typhoons and tornadoes, each of whieh more gemerally be long to the tropies, frequently enter these latitudes in their origi asi forms, and subsequently become blended with the forms which originate here, either by eucountering one of these. or by putting on such forms by a gradual process of change. The West lndia burricanes $\operatorname{mmpress}$ their character ou a series of successije or their approach to temperate latitudes, aud the tracks of these in the western Atlantic and along the coast uresent the most frequent jnstances of the mingliug of storms which were oricinally wholly different with the widely extended rains abore the $35 t h$ wholly
The observations with respect to the general winter storms of the United States may be stated as follows

The general winter storms of the Cnited states often cover an area of from three to five hundred miles in digmeter, which area is usually oblong or ovol, wjth its greatest jeagtl from southwest to northeast.
2. They all more eastward with the westerly winds of the belt where they are formed, and in a line with the isothermals of the mouth in which they occur-coming from a lloint north of west at the Mississippi river, and leaving the Atlantic eoast in a direetion Dorth of east. This course eonforms in both eases to the course of the isothermals; or, in other words, they do not leave the measure of beat where bey orisinate to go into colder or warmer climates.
3. Their movement is generally at the rate of movement of the air in these latitudes, or uearly tweuty miles per hour: but it may he much grester, or yery little
meridian and an an and an this belt, and at ant meridian. and they have egually no polnt at which thes are more
likely to become exhansted and to disappear than an other. likely to become exhansted and to disappear than any other.

Ther are more violent at the Atlantic coast and at the Gulf Stream than elsewhere, because the eontrast of land and sea air is there rery great in the colder seasons, and breanse the direet line of thefr progress earries them into a beft of high temperature.

When the contrasi la not great, as in the warmer montha, there is ediucreuse of severity there
ans others duriug the firat half: or, fil by northeast winds than fortheass area almost always induces adraft from that quarter, the rarefied winda. area abmost al Wass indnees a draft from that quarter first, and It
continues over most of the district fo which a draft contrary continues over mose of the district fo which a draft contrary to

None of the wiuds from othe
of fropulsion, or wropagated from than westerly points are winds of propulsiun, or propagated from their apparent polnt of origin: they are all. including a portion from the west, winds of aspira: tiow, fnduced ly the agitatiou, or by the disturbance of equilibrinu itself.

All the movements and processes are nsually earried past the mean by the forecs set in motion in tnese storms: the mini inum of heat, mositure, clollds and winds, following the removis of the excess of the first wo: hud this milnimum, though a calm and qulescent state, is itself an extreme aud not an average con. ditfon in these latitndes
Tornadous have less connection with general atorma tban hurricanes. thongh they often exist as the nuclens of a gencral rain sometimes found in storme of mid-winter mar maims. they are one proherly limited to local storms of excessive riolevce, afliet iug but a uarrow strip of surface a few miles in length, and uanally but sometimes as conseqtience exists anywhere in the veinity characteristie is intease elccorical aetion and several lines or threads of toruado force are somen action, and several lines or stratum of air of high temperathre with colenderofed fri a wide larly if in a cool month or watire with clowds and rain. particu larly if in a cool month, or when the general storm is of much more than the usual excess of temperature. These may be exhanstcd after traversing a short path, and may reajpiear, without formity to the general condition and without jroducing any eanformity to their peculiar violuce in the wholeareacovered by the ruin as the hurrieanes of the Athantie do.
These hurricaue's evidently coutrol the movements of any storm or eondition with which they come in contact, suberadding to it the characteristics of hurrieane violenee, until this violence he. comes exhansted hy distanee, while tormadoes have no general cport on tornadoes. The following extract is takeu from the A uram ireadoes for 1850 . hy Mr. John P. Finley :
of the L'uited States show the entire topography of that portlon would plainly illustrate an important truth in the tornado wrob em-rilz. that there is not allother section of our vest domaio wherein there exists opportunities so undimited for the vable structed minglingand opposition of warm and cold currents and eurrents higbly contrasted in humidity. As an area of low turometer (not necessarily a storm area) advances to the Lower Missouri falley warm and cold currents set in coward it from the north and aouth respectively, which, if the low pressure conthoues about stationary for some time, ultimately emanate from the wrarn aud moist regions of the Gulf and the cold and comparathe marked eouthasts british Possessions. Ifere lies the key io the marked contrasts of temperature and moistnre, iurariahly which this region is peculiarturbauee of unustal violence. for which this region is pecnliarly fitted by N゙ature, aud in apparent recognition of which it has received the euphonious title of the battle-ground of tornadoes.' It caunot be disputed that, so far as the history of cornadoes is coneerned, the majority liate oceurred over this reglon, because of its peeuliar topographr. From the Guif northward to the central fortion of the Lower Missouri vall.:g. and from the British Possessions soutbward to the same locality, there is permitted an eutirely free movement of the air; nothing in the shape of earthorwater exists tomodify its charaeter, except, luerhaps, to jnteasify the contrast of atiry ontes. Orer Texas, Louisiana, Arkausas, and Indfan Terrisory bilurs but on the whole presenting a sameness of outine to marked degree. Similurly conditioned are the states of to a nesota. lows. Nehraska, and the eastern balf of Dakota Territory Wesota. ows, Nehraska, and the eastern half of Dakota Territory. traversed by great monntain ehains, which deflect the course and nodify the temperature and moisture of passing eurreuts. On the eust side of the sath meridian, the cireat Lakes introduce an equally important factor iuto the modifieation of lassing As to the
he
The time of passing any point wan varionsly estimated from five sccouds to two minutes. "Quicker than thongbt. was an expression oftcu used as collveying the observer's idea of the rapidity of destruction. Fstimating the average dianseter of the clond at 1 on fuet, und its average velocits at a mile fn imo minutea, we have its mean duration at any one joint, aloomiteo and a half sceonds. There were times iu the passage of the cloud when it appeared to remaln almost stationary, whirling unon its untrow horse gently calloping, but only for half a mile or so. whem it would make hp for lost time br dashing forward at a rate of io or 60 miles per hour, aud then mraduafly working down to ita accus. 60 miles per hour, and theugraduatly wor
tomed velocity of about an milea frer hour
The storm of Nareh $11-14$, Insht. deserves a notice in this con-Storms of nection-for, althongh not a tornado, it eanstd mmeh sufferiug. March Its most interesting feature wha the extraordinaty amonnt of ists. show which fell: and as this fall took place in the nost densely sertled bart of the country, and cumsed a complete stoplage for several dass of all interennirat hetwceu New Jork and the adjacent citit*, it wha, मrolshbly, of all the storms which hare ocenrred since this eonntry was settled- the one whieh gase rise to the largas amonnt of fommant. The average snow fall in central Connectient and nver a large part of easteru New York exceeded farty inches, and in flaces this was iiled up in drifts of from fiften to forty feet in height. The maximum precipitation re. ported (5.7s inches) was at Middletown, Conn. This remarkab?:
storm was the result of a conflict between a cyelone advancing from the couth, hut deflected to the west
and a cold wave coming from the west.*

the forests of north america.

The North American continent, or that part of it situated north of Mexico. which will aloue be considered here, may be conveniently divided, with reference to its forest geography, into the Antlavic and Pacific regions, by a line following the eastern base Athatic and Mountains and ius ontlying easteru ranges from the Arctic circle to the kio Grande. two divisions of the consibutiou as the clinate and topography of A eatern America differ from the climate and topograpasimilar facific slope. The canses which have produced is the clilomatic pitions of a geological era carlier than our own and in the uditions of a geological era earlier than our own and in the be discussed here
The forests of the Atlantic and Pacific regions, dissimilar in omposition io the ceutral part of the continent, are united at the contioent north of the fiftieth degree of latitude. One-half gi the speeies of which this northern forest is compused exteuds ironn the Atantic to the Pacific; and its geveral features, although differing east and west of the continental divide, in conformity with the climatie conditions peculiar to the Adantic and the Picific sides of the continevt, still possess considerabic also united at the south by a narrow strip of the flora peculiar to the flateau of northern Nexico, here extending northward into he vited states. Certaid characteristics species Pacific, and bhile the peculiar features of the eastern and the western slopes of abile the pechountain sustem of the continent are still majotained here, the Atlantic and Jacific regions of the Mexican forest belt possess many geaeral fatures in common. Typical North Araerlean specjes. moreover, peculiar to the Lorest of the Atlantie or of the pheific. minge other monutains of western Texas, the exthe Guadarupe and of the Rocky Mountain range, and the outtreme eastern ridges of the Rocky Foumtain range
The Atlan yosts between the A tlantie and the Pacific regions.
fe forests of the Atlantic rege uoder six natural divisions: the Northeru Forest, the northera Pine Belt, the Southern Maritime Pine Belt, the Deciduous Forest of the Nisissippi Busia, and the Atlantic Plain, the Semi-tropical Forest These natural divisions, although composed in part of species Cound in other divisions and fossessiog many general features in common, are still for the most part well charactera separation naturai and convenient.
The Northern Forest stretches along the northern shores of Labrador nearly to the sixtieth degree of north latitude, swecps to the south of huisod ary, and then nortends sonthward to the fiftieth degree of north latitude on the Atlavtic coast, and the fif the forth degree the louth meridian. It occupies nearly to the fity-tourth aegree at tlantic sea-board and nearly a 10 degrees or degrees in its greatest extuntaios. The region occupied by this Northero Forest, except towards its sonthwestere linits, enjoys a copious rain-fall; it is divided by inmmerable streams and lates, and abounds in swamply areas onten of great exterature eheck the of the surface and the low abnual mean temperature check the species of whe growth, and is composed, to cight. Of these, fonr cross to the Pacific coast. while the remainder, with a single exception, are placed west of the continental divide by closely allied forms of the Pacific forest. The white and the black sprucer are characteristic trees of this region; they orm an open, staje forest upoo the low divides of the water-sheds, and reach a higher latitude than ady other arborescent species of the contideut; the valleysaud wide bottoms are clothed with broad sheets of poplars, dwarf birehes and willows. The forest of this entire region is seattered, open, stunted, and of vo great economic ralue. It embraces, south of the sixtieth degree of borth latitude, the northern bracesion of the great mideontinental plateau, which will be extension of the gre

Northern

 pine belt.fouth of the Northera Forest the Northernerian of longitude. east of the apalachian Monutain system it exteods soulh over nearly 6 degrees of latitude with a loog, narrow spur [ollowing nearly 6 degrees of latitude. with a lodg, narrow spur collowing the higher Alleghany ridges for mearly 3 degrees farther sonth; west of the Alleghany Mountains, in the region of the great lakes, the pioe forest is replaced sollth of the forty-third degree of tatitude by the deciduols grow th of the Mississlppirasin. ond division of the Atlantic forest may be characterized by the white pine (Pinus ATobus), its most important not its most geoerally distrihuted species. East of the Appalachiau system this tree often forms extensive forests upod the gravelly drift plain of the St. Lawrence basin, or farther south and west appears io isolated groves, often of considerable extent, scattered through the deciduous forest. Forests of black spruee are still an important feature of this region, especially at the north; and withio its boundarics the hemlock, the yellow cedar, the hasswood, the ulack and white ash, the sugar-maple and several species of birch and elm fiod their northern limits, and the eenter of their most important distribution. The bickories and the oaks, characteristic features of the deciduous forests of all the central portion

[^303]of the Atlantic region, reach here the northern limits of their dis tribution, as do the chestnut, the sassafras, the tulip tree, the magnolia (here represented by a single species), the red cedar, tupelo, the sycamore, the beech, and other important genera The Southern Marilme Pine Brll extends froon the thirty-sixth Soutbery degree of north latitude aloug the coast in a narrow belt, varying pine lelt from one hundred to two hundred miles in width, as [ar soutb as Cape Malabar and Tampa bay; it stretches across the Florida peniusnla and along the coast of the Gulf of Mexico until the alluvial denosits of the Mississippi are eacountered; it reappears west of that river in Lonisiana, worth and south of the Red river and he gradually mingles with the decidnous forests of the Mississinpi basin in Arkansas and eastern Texas. This belt is well chracterized by the almost contionous erowth, outside of the brond river hottoms and the immediate neighborhood of the the broad the long-leaved pine (P. palustris), coast. by the oped orest The live oak, the palmetto, and various species of pide charac. terize the coast forest of this region, through the rathrough the and along the borders of the shallow fonds, scattered tarough the pine iorest, different gums, water oaks, hickories add ashes, attain ooble dimensions. The soltherd cypress (axodnm), although extending far lxyond the limits of this uatural division, here attains its greatest development and ralue, and, next to the
long-leared pine, non be considered the characteristic species of the maritime pine belt.
The Decirluous Forst of the Mississippi Busin and the Athmtic Decidona Plain occupies, with two unimportant exceptions to be considered forest. hereafter, the remainder of tho Atlantic region. Through this deciduons [orest, where peculiar geological fatures have favored the growth of Comifuair, belts of mine, groving gregarionsly or mised with oaks and other broad-leaved trees, occar especially upon some portions of the Athantic plain and toward the limits of the Sonthern Maritime Piue Belt, west of the Missiesippi river. the sormer The characteristic bower, in the broad-leaved species of which it is largely composed. Oaks, hickories, waluuts, magoolias, and ashes give composed. Oaks, hethis forest; aud here with the exception of a few species peculiar to a more northera latitude, the deciduous trees of the Atlantic region attajo their greatest develomment and ralue. Trou the slopes of the southerw Alleghany mountains aud io the vallev of the lower Red river, regions of copious rainfall and rich soil, the deciduous forest of the continent attains unsurpassed varicty aud richness. Upon the Alleghany monntaids northern and sonthern species are mingled, or are only separated bs the altitude of these monntains; rhododendrons, laurels, and magnolias here attaining their maximum derelopment, eniven the forests of borthern pines and hemocks which chothe the danks of these monotains, or are scattered throngh forests of other broad-leaved species. The cherry, the tulip tree, and the chestrut here reach a size unknowd iv other parts of the country. The forest of the hed river falley is hardly less varied. The mortheru speckes hrich the clevation of the Amegany mon to the southern Atautic add ciulf coasts are here miosled with plants of the sonthern deciduous forest. The seven species of Carya (the hickories) are wowhere else closely associated. A great fariety of the most importaut oaks grow here side by side; here is to ceatel distribution of the North American hawthorns, orange is peculiar where attain region; the red cedar, the most widely distributed of American (onifica, the sonthern and the yellow piae (Pinus paluctris and mitis) here reach their best development. Just ontside of this region, upon the "bluff" formation of the lower Mississippi valley and of western Louisinna, the stately southern magnolia, perhaps the nost beantiful of the North American trecs, and the beech, assume theirgreatest beauty, aud give a peculiar charm to this southern forest.
The westero third of the Atlantic region is subjected to very different climatic couditions from those prevailing in the eastern portion of the continent; it consists of an elevated plateau, which ialla away [rom the eastery base of the Roeky Mountains, Corming what is kinown as the Great Plains. This great interiot region, on account of its remoteness from datural reservoirs of moisture, receires a meager and mucertain ranfall, sufficient to losure a growth of herbage but not suflicient to support, outside the nar grow botmoms of the infrequent streams, the scauticst forests This treeless plategn extends north to the fifty-second degree of north latitude; it follows southward the trend of the Rocky Mountains far into Mexico, extending eastward at the point of its greatest width, in about latitude $40^{\circ} \mathrm{N}$., Dearly to the videtysetcoth meridian. This whole region is generilly destitute of forest. The harrow bottoms of the large sireans are lined, however, with willows, poplars, elms, aud hackberrics-trees adapted to flourish under such unfarorable conditions. These dimioish in size and number with the rajnfall, and often disapuear entirely from the banks of even the lagest streams toward the western limits of the platean, south of the forty-fifth degree of latiude. Forth and east of these central treeless plains a belt of prairie exteuds from the sixtieth degree of north latitude to southern Texas. The average width east and west of this prairie region, through much of its extent, is not far [rom 150 miles. Its eastern extension, between the fortieth and forty-lifth degrees of latitude, is much greater, however, here reaching the westera shores of lake Michigan, add forming a great recess in the western liue of the heary forest of the Atlantic region with a depth of nearly 600 miles The transition from the heary forest of the easterl and centra portions of the Atlantic region to the treeless plateau is gradual The chate prairie regions. Here is the strip of debatable pround, where a continuous strugale between the fores 1 deliata ground were a there ishere suficient precipitation ol and the flain takes place. There is here sufticient precipitation of moisture to cause, under normal condations, a grow interference forest; but, so nicely balanced is the struggle, that any interfereace
quickly thros the scale. Trees planted within this pralrie belt quickly thros the scale. Trees planted within this prairie belt thrive if protected from fire and the encroachment of the tough
prairie sod, and so exteod the forest line westward; if the forest

Which fringe the eastern edge of the prairie is destroyed, it does not soou requia pus.
The eastern line of the Main, where mrboreacent vegetation is confined to the river bottons and which divides it from the prairie where trees grow uaturally, to some extent, outside of the couditions everywhere, is determiued by the raiusall enjoyed by couditions ererywhere, is determined by the raiuiall cbjoyed by this line is found, npon the fortieth tegree of north latitude, near the uorthern bonndary of the state of Kansas. North of the fortieth degree it gradinaly treads to the west. rearlinge the eastera base of the Roeky, Monutains in about latithate
borthwestern trend of the easteru plain line may be ascribed to the comparatively small evaporation which takes filace during the shorter summer of the north, and to a slight local increase spring and summer rainiall. south of the fortieth degree
phaiu line gradually treuds to the southwest ander the influme
of the Gulf of Mexico, remehing its extreme western point in Texas upon the one hundreth meridiau.
Other causes, however. than insufticient rainfall and a uicely balanced straggle between the forest and the riaib, have wrevithted the general growth of treesin the prairie region cast of the ninety the growth of a heavy forest. The rain falling lupon the prairies of Aliuuesota. Wiscousin, Lowa, Illinois, and Missonri equals in amonnt that enjoyed by the Michigan peninsula aud the whole region sontho lakes Ontario and Erie, while frairics want of suflicient hear, or of sufficient or equally distributed moisture. Which has checked the general sprend of forest over these prabies. The soll of which the miniries are composed, as is and rapidity, is not uasuited to treegrowth. It is wot, jerhapg improbable that the forests of the Allantic recion once extended coutiunously as far west, at least, as the nimety-fifth meridian, athough circumstautial evidunce of such a thory does not exist and the canses which first led to the destruction of the forests iu this region, supposing that they ever existed, cunnot, with the present howledge of the subject, be even guessed at. it is, how ever, fair to assume that forests once existed in a region adapied oy climate. raiufall, and soil, to produce forests, and that then It is not difficult to understand that the forest onee destrosed over such a vast area conld not easily regain possession of the soil protected by an impenctrable covering of sod and subjected to the aunual burnjogs which have occurred down to the present time: while the force of the wiud. whelected by eny forest have made the spread of forest growth slow and difficult. The have made the spread of forest growth slow and diflicult. The
assumption that these eastern praicjes may have once been covered with forests is strengthened by the fact that since they covered with forests is strengthened by the fact that since they
have been devoted to agriculture, and the annual burning has beeo stopped, trees which were formerly confined to the river bottoms have gradually spread to the uplands. Small prairie situated just within the western edge of the forest bave catirely disappeared within the menory of persons still living; the oak openings-open forests of large oaks through which the aunual fires phyyed without greatly injuring the full-grown trees-once the characterstic feature of these prairies, have diappeared They are replaced by dense forests of oak, which only require protection from fire to spring into existeace. In wostern Texas, the mesquit, forced by unmal burning to srow almost entirely below the surface of the ground, is, bow that prairie fires are less common and destructive, sureading over what a few years aco was treeless prairie. The prairics, the or the eastern portions of them situated in the region of abundant rainiall, are fast losing their treeless character, and the forest protected from fire is gradually gaining in every dircction: regions which fifty yerrs ago wering 10 or even 20 per ceat of their ares covering 10 or even 20 per ceat. of their area. These eastern well watered prairies must not, however, be confounded with their
dry western rim adjoining the plains- the debatable gronnd tedry western rim adjoining the plains-the debatable gronnd be-
tweenforest and plain-or with the plains themselves. There is twew no gradual, constant spread of forest growth npon the plains They are treeless ou account of insufficient moisture to develop forest growth; and while trees may, perbans, if planted, survive during a few years beyond the westera limits of the prairle as here lald down, the permanent establishment of forests there does not seem practicable, and, sooner or later, a period of unnsual drought must put an end to all attempts at forest cultivation in a region of such insuficient and uncertain rainfall
It remaios to consider the Semi-tropical Forest of Floridu and the Mexican Furest of Southern Tceas

A group of arborescent species of West Indian ongin occupies the arrow strjp of coast and islands of southern Floricla. This belt of semi-tropical vegetation is coufined to the immediate acighborhood of the coast and to occasional hummoeks or islands of high ground situated in the savanuas whicli cover a grent portion of southeru Florida, checkiog, by the nature of the soil and want of drainage, the spread of forest growth across the peniusula. This
semi-trouical forest belt reaches cape Malabar on the east and the semi-tropical forest belt reaches cape Malabar on the east and the
shores of Tampa bay on the west coast, while some of its representshores of Tampa bay on the west coast, while some of its represent-
atives exteud fully 2 degrees farther north It fis rich iu cumpoatives exteud fully 2 degrees farther north It is rich iu cumposition; nearly a quarter of all the artorescent species of the
Atlantic forest are fond within this insignifieant region. The Atlantic forest are fonnd within oriety, is of flttle economic semi-tropical forest, in spite of hich it is composed here reacher ionportance. The species of of their distribution: Chey reachen the extreme northern limit of then eraly smal, stuataio respectable proportions; the mahogans sue mastle, the roval phim, the manqrove, the sen-grape, the Jamaica doowood, the manchiueel, and other species bere becone considerable and important trees
In western and southern Texas the trees of the Mississippl

Lasin, checked by insufticrent moisture from farther extension -ubthward outside the river bottoms, are renlaced by suecies of the phateau of northern Mcxico. The streans flowing into the Galf of Mexicoure still lined, however, enst of the one-huodredth meridian, with the sjecies of the Athantic basin. Which thus reach sullhward to beyoud the lio Graude. The sexican forest belt of Texas exteuds from the valley of the Colorade river, near the nimety-eighth meridian, to the lio Grande. It touches the coast not far from the Nisere, river, and extends to the eastern base of the mountain ranges west of the l'ewos; bere the species of Which it is componed miugle with those jeculiar to the lacificMexican forest. The furvst of this region. hike that of all conntries of insufficieut moisture is opurn, stumt d, and comparatively of litile value. It is characterlzal by enormons areas covered with chaparral (deuse mad oftenimpeneirable thiekets of thorny shrubs and small trecs), by a stunted nud occasional arboresceut grow th upon the hills and plains, and by fringes of heavier timber along the river bottoms. The most ralizable and lerhajs the most charHeteristic siecies of this whole region- the mesyuit-exteuds to the Prefic const. With this exception, none of the arborescent pecis pecoliar to this region attan any considerable size or in. low limestone hills of forest of small juapucs which cover the Heountry so generally destitute of trees. The rugion immediately adjoining the l:io crinde atombis in different species of Aracid,
 the ary bleins of the Presidle, the spanish hayotet (Yued barcuta)
usth
The Pacific forest region is coextensuve with the great Cordille- Pacific ran Bonntain system of the contincot. The causus which bave region. iullumeed the present positiounud density of these forests must lie sought in the peculiar distribution of the rainiall of the region. The precipitation of moisture upon the northwest coast is unequaled by that of any other part of the continent. It
gradually decreases with the latitude until, in sonthern calior nia, the tensperaturc of the land so inr exceeds that of the ocean that precipitation is impossible through a large part of the rear The iuterior of all this great regiou, shat of by the bigh montata ramges which face the ocenn along ito cutare exteut, is very imper fectly supplied with moisture. It is a region of light. uncertuiu, unequaly distrbuted railah, havier at the acth, as dion the coast, ank decrensig. armat nearly the same proportion. This entirel separatiag lon tand gencrally narow valleys. The precinitation of moisture within the interior region is largely regulated fy the position of the motatain chains. Warm currents ascrading their sides hecome cold, and are forced to deposit the moisture they contain. It follows that, while the interior valleys art rainless or nearly so, the munutain ranges, and especially the high ones recelve during the rear a considernble precipitation of both rain
and suow. If the distribution of the forests of any region is dencudent upon the distribution and amount of mofsture it re cen the continent would be found upon the northuest coast they would gradually diminish toward the south, and eniircly disnppear near the southern boundary of the luited states: while the forests of all the ítuterior region, from the summit of the prancipal Const Langes to the eastern base of the Rocky Monntains, would be contined to the flanks and summits of the monntains. These forests would be heary upon the high range: espucially toward the north; they would disappear entirely from the valleys nod low mountain ranges. An exanination of the forests of the lacific region will show that, in general distribution and density, they actually follow the distribution of the rainfali of the region. These forests well fllustrate the influcnce of mois ture npon forest growth. Within the Jacific region. the heavieat and the lightest forests of the continent coexist with its heavicet and forests of for
The forests of the Pacific region may be considered under four The Pacife divisioos: the Northero Forest, the Coast Forest, the Juterior For Forest. est, and the Mexican Forest
The Nurthern Forst of the Pacific resion extends from nearly the seventieth to about the fifty-eighth degree of north latitnde, or,
immediately nuon the const, is reniaced by the Coast Forest nearly 2 degrees farther north; it extends from the continental divide heremingled with the Northern Furest of the Athantic region, to the shores of the Pacific. The southernlimit of this open, scanty Northeru Forest.composed of spectes whicheatend heruss the continent, or of species closely alljed to those of the Sorthern Forest of the Atlantic region, is still imperfectly hnown, esperially in the interior. determination of the sonthern range in Alsaki and British Columbia of several sucits, as well hs the borthern rauge here of a few others, must he still left to further exploration. The white spruce, the most important sud the most northern species of the forest of the North Athatie region, is here also the most important sjecics. It attains a considerable size as fit north as the sixty-fifth degree, forming, in the valley of the lukon forests of no little locnl fmportance. The eance bireh the Lalsam pophar, and the aspen, familiar trees of the North At Inmic refotalso accur here. The gray pine nud lhe halsam fir Eeners. The larch alone, of the denizens of the extreme Northern Forest of the Atlantic ceast. find wo congener here fin the uorthern Pacific forest
The Pacific
-aried, folcat of fircst, the heaviest, although far from the most and harrow strip from the sixtieth to the fiftieth parallel: liere it Waras, embracing the shores of Puget somad and extcoding castward over the high mountain ranges north and south of the Cobst form follo carriad urehuard over the Gold, selkirk, and other interior ranges of British Columbia. in a narrow spur exteudiog north
nearly to the fifty-fourth parallel. It reaches sonthward along the Cour d'Alene, Bitter-Roat, and the western ranges of the Rocky Moubtalu system Washiugton Teritory, Idaho, and portions of western northeru
Montana. Coast Forest south of the fiftieth degree of latitude aceupies the region between the ocean and the eastern slopes of the Cascade Range; in Califormia the summits of the princlpal sauthern prolongation of these molibtains, the sierra Nevada, mark the easters of the thirty-fiith parallel, although still carried by
 ern boundary of the United States. The Coast Forest. Hike the forests of the whole Pacific region, is largely composed of n few couiferous species, generally of wide distribution. The absence nif braad-leaved trees in the Pacific region is striking; they nowhere form great forests, as in the Atlantic region; when they acenr they are confined to the vallegs of the coast and to the banks of mobutain streams, and, economically, are of comparatively little value or importance. The characteristic and nost valuable species of the northern Coast Forest are the Alaska cedar (chamacyparis), the tide-land spruce, and the hemlock. These form the principal farest growth which covers the ranges and islands of the coast between the sixty-first and fiftieth parallels. Other species of the Coast Forest reacll here the norihern Jimit of their distribution, although the center of theirgreatest development is fouud farther south
The red fir
The red fir (Pscudotsuga), the most important and widely distributed timber tree of the Pacific region, reaches the casst archipelago in latitude 51°; farther inland it extends fully 4 degrees arther north, and in the region of Puget sonnd and throngh the ing forest tree. The characteristic forest of the northwest coast
 although represented by several species extending son south of as cape Mendicino, uear the fortieth parallel, is replaced sor to the the Rogne River valley by a forest in waich forms pecular to the south rather than to the north gradually predomimate. The farest of the northwest coast reaches its greatest density and variety in the narrow region between the summits of the cascade cange and the oceun. North of the fifty-first paralied. fin density, rud sonth of the forty-thira paralel position and character. This belt of Const Forest is ondy surpassed $1 u$ density hy that of some portions of the redwood forest on the Caiformin coast. The red fir, the great tide-land spruce, the bemlack, and the red cedar (Thuya) reach here enormous dimensions. The wide river bottoms are lined with a heavy growth of maple, cottonwood, ash, and alder, the n rrow interior valley with an oven growth of ark. In this great coniferous forest the trunks of trees two or three hundred feet in height are often only separated by the space of a few feet. The ground, shaded throughout the rear by the impenetrable canopy of the forest, never hecomes dry; it is densely covered by a thick carpet of mosses and ferns, often of enormous size. The more open partions of tals forest are choked by an impenetrable growth of various Hucincse of almost arborescent proportions, of bazel, the vinemaple, and other shrubs. The soil which has prodiced the maximup growth of thin, pores luches in depth; the luxuriance of vegetable growth, thereiare, illustrates the in
The general character of this forest in the interior, although composed largely of the species pecular to the fonst, aiter what from the Coast Farest proper in composition and largely in natura, features. The dense, lmpenetrable farest of the corst is replaced, east of the summit of the Cascade Range, by a more apen growth, generally largely destitute of nudelgrowth. The red fir, the hemlack, and the red cedar (Thuya) are still important elements of the forest. Less valuable species of the Const Forest -the white fir (Abies grandis), the sew, the alders, the mountain bemlack (Tsuga Pattoniana), the hawthorn, the buekthorn, and the white pine (Pimus monticola)-are still represented The latter, a local species upon the coast, only reaches its greatest develop, Coast Forest, the maples, the ash, the oak, the arbutus, and the Aastere do not extend east of the Cascades. The ide-land Alaska cedar allied species of the interior tegion. The
 sented in the northern portions of the immediate Coast Forest, be comes, east of the mountains, one of the most important and char acteristic elements of the forest. The Coast Forest south of the forty-third degree of latitude changes in composition. The tideland spruce, the hemlock and the Thuya are gradually replaced by more southern spectes. The sugar pine (P. Lambcriana) here first appeals. The California lanrel (lombrlulari) covers with magnificent growth the braad river hottoms. The Libocrdrus several aaks, and the chinquapin here reach the vorthern bimits of their distributian. The change nom the therthero orford ceda (Chamacmoris Lausonitana), adding variety and value to the forests of the southern Oregou coast. Farther south, near the northern boundary of Califormia, the redwood forests (Scruoia) appear.
Const of ${ }^{\text {a Ppear }}$ Toast Forest of California will he most conveniently dis cussed under three suodivisions: the forest of the coast Range the farest of the state, extends to the const covering the mass of mountains which here unite the sierra Nevada and the Coast Range: and, third, the open forest of the Nevada long, narrow valleys lying betwer the Sierra Nevada sollth of this northern cammecton the important feature of the Casst Range, as far sonth as the thirty-seventh decrep on latitude, is the hermped strip of territory facing the ocean, and bardjy exceed-
ing thirty miles $1 n$ widuh at the joints of its greatest development The heaviest growth of the redwood forest occurs darth of the bay an francisco: and here, along the slopes and hottom or the narrow canons of the westeru slove of the Caast Range, the maxi mum productive capacity of the forest is reached. No ather forest of similar extent equals in the amount of material which they contain the groups of redwaod scattered along the coast of northern California. The red fir reaches, in the Califormia Coas Range, a size and value only surpassed in the more northern for ests of the caast; the rellow pine is an important tree in the northern partions of this region, and here flourish ather specses o. the genus endemic to this regjon. The forest of the Canst Range is marked hy the presence within its limits of several species o siugularly restricted distrihutiou, C'pressus macrocarpa hua Pinus insiguis are confined to a few isolated groves upon the shores of the bay of Monterey; ibics bracteata ocellpies three o four canons high up in the Santa Lincia mountains; it is found nowhere else; and Pinus Torieyana, the most local arborescent species of North America, has veen detected only in ane or two small groups uron the sand-dmues just vorth of the bay of sam Diego The eharacteristic iorest of the Coast Fange is checked from forther sonthern develomment a little helow the thirty fifth warallel by insufticient moisture the scanty forests which clothe the high declivities of the Coast Range farther south beloug in composition to the Sierra forests.
The heavy forest which covers the western slopes of the Sierra Tevada a forest only surpassed in density by the redwood belt of The sie Nerada, $九$ forest the coast and the fir lorest of Puget solnnd, occupies, in its forests greatest development, a belt situated uetweez 000 and, 000 feet elevation. This forest belt extends from abont ionnt Shasta at the north to the thirty-fifth parallel; iartaer gonth it diminishes in density and disappears upan the southern ridges an the Coast Range just north of the southern boundary of Califormia. Its greatest width occurs in northern Californin, where to the sonth of Monnt Shasta, the sierra system is broken down into a braad mass of low ridges and peaks. The characteristic species of this forest is the great sugar pine (P. Lambertinf), which here reaches its greatest development and भalue, nud gires unsur yassed beauty to this mountaill forest. With the sugar piae are associated the red fir, the rellow pine, two noble fuics, the Isibocidrus; and, toward the central part of the state, the great souvia appenring first in small, isolated groups, and them, farther south near the headwaters of Kera river, in a nalrow belt extending more or less continmonsly far several niles. This heave forest of the Siurns, of the sicis, arown it shows the intluence of warm climate grow a azd and unevenly distributed raimal upan corestgrowt. The trees often remote from one abother, have attained an enomous size; but they have grown slowly. Above this owth. It is here substreches upward to the limits of tree growth. It is here subalpine and alpine in character, and of little economic value. Different pimes and firs, the mountain benlock, and the western juniper, are scattered in open stretches of forest upon the high ridges of the Sierras. The forest below the belt of heavy growth gradually becomes more open. Individual trees are smaller, while the number of shecies iocreases. The small pines of the upper foot-hills are mingled witb oaks in considerable variety. fually dianally
The forest of the valleys is composed of oaks, the individuals falley ften widely scattered and of great size, but howhere forming a foresta continuous, compact growth. The Coast Forest of the Pacific region, nosurpassed in dunsity, is composed of a comparatively small number af species, aflen attaining enarmous size. It presebts the same gencral features throughout its entire extent, except as madified by the elimatic couditious of the regious which t covers. The species whjeh compose this forest range thraugh nearly 26 degrees of latitude, or northern species, are replaceed in the south by elosely allied forms; and, as in the Atlantic region. the so
The Intcrior Forest extends from the southera linits of the northera subarctic forest to the Jlatean of oorthern Mexica; it accupies the entire regton between the eastorn limits of the Iacific Coast Forest and the extreme wistern limits of the Atlantic region. The forests of this cntire region, us compared with the forests east and west of it, are stumtod und remarkanle in their poverty of composition. They are confined to the bigh slopes and canons of the numerous monntain ranges composing the interior egion while the vallevs ate treesess, of antaike of the narrow river bottoms, nearly treeless. The interior forest attains its greatest development and considerable importance nhon the Western slone of the Chliforma siejras and upon the flanss of the high peaks of the santhern Rocky Mountain system, fram Colo13,500 feet 1s.00 reet, to soutche antside the abselutely absolutejy treeless reglans, both in the the proportion or Corest Jountains and the Sierra Nevada, known as the Great Basin. Here the onen, stunted forest is confined to the highest ridges and slopes of the infrequent canons of the low mountaio rauges which occupy, with a general porth and south trend, this entire region The individuals which compose this forest are small, althongh often of great age, and everywhere show the marks of a severe strug gle for existence. seven arborescent species only hase been de tected in the forests of the northern and ceutral portions of thi: region. The mountain mahagany (Corcacarpus), the only braad leaved species of the region, with the exception of the aspen, which throughont the entire interjor region horders, above all elevation of 8,000 feet, all mountain streams, reaches here its greatest characterizes this region. Stunted junipers are seattered over tho

lowest slopes of the mountains, or farther south oftur cross the high valleys, and cover with open growth the mestre, as the lawer foot-bills are locally known. An open orest of riburescent
 characteristic and pecular teature of the red fir and the yellow pine, widely distributed region. The red fir and the yenow pondif region, do not oceur upon the monntain aoges of the Great Basiu.
The leavy iorests of the interior region, found aloug the western slopes of the Calliornia sierras und njon the Rocky Monntain aystem, are, for the most part, situated south of the forty-aecond degree of latitucle. The forests oi the whole nurtheri futerior portion of the continent, outside the rexion oceupied in the northern Rocky Mountains bs the eastern developncint of the Casst Forest, feel the influence of iusufficient moisture: the number of species of which they are composed is not large; the iadividuals are often small and stanted, while the forests are open, scattered, without undergrowth, and coufaed to the canous and high slopes of the mountalas. The most generally distributed species of this northern region, a serub pine (Pinus Murrayama), occuples $₹$ ast areas, almost to the exclasion of other fiecies, and is gradually taking possession of around cleared parallel the red fir (Psrudotsugn) and the yellow pine (Pinus ponderosa) appear: (Psrudotsugn) and the gellow Blae Mountains and in someof the With theni is associated, inacky Mountains. the western lareli ranges of the northern locky Mountains, the western arch
(Iriric occidentalis), the largest and most valuable tree of the (Uriric occidentalis)
The forest covering the eastern slope of the Sierra Nevada corulsts almost exelusively of various species of pine, often of great size and value. The characteristic suecies of this region are the rellow pine aud the closely allied Pinus Jiffryi, here reaching greatest development. The red fir is absent rron this forest,与hile the oaka, mnltiplied in many forms on th

The forests of the southern Rocky Hountain repion, less heavy and less generally distributed than those of the western slope of the sierras, are, as compared with those of the Great liasin, heavj beuse, and valuable. They owe their existeuce to the compara tively large precipitation of moistare distributed over this ele Fated region. The characteristic species of the Colorado monmrins is a suruee (Picir Engrlmanni) it forms, at hetween $\delta, 000$ aud 10, an eet siderable density and great eaury tir of wide northern distribution, and various alpine and subalpine cpecies of pine; at lower elevations forests of yellow pine and red fir eover the mountain sloges, while the bottons of the streams are lined with cottonwood, alder and maple, or with an oped frowth of the white fir (.lbics concoln), a speejes of the cons Forest, here reaching the eastern limits of its distribution; the 'oot-hills above the treeless plain are covered with scantgroves or tue nnt-pine (Pinus edulis), stunted junipers, and a small oak. which in many formsextends through a large area of the southera nterior region. A forest simes of the same species, exteuds over the blah mountains of New Mexico to those of western Texas aud westeru and northwestera Arizona, where a heavier forest of pine covers the elevated region lying along the thirty-fifth parallel. culminating in the high forest-clad Sau Francisco mountaius of northern Arizona

The species of the interior Hacific region mingle along its sontharn borders with the species peculiar to the platean of nortbern Mextco. The Pacife-Mexiern Forest, althongh differing widely in natural features from the Atlantic-Mexican Forest, bossesses several species pecnliar to the two. The forests of this region are confined to the bigh monntains and their foot-hils, and to the bunks of the rare water-eourses. They disappenr catirely from .he Colorado desert and from the valleys and low mountain ranges of southwestern Arizona. The most important and genetaly distributed species peculiar to the vallegs of this region is the mesquit, the characteristic species of the Atlantic- Mexican region. The suwarrow, however, the great tree cactus, is purhaps the most remarkable species of the region, giviug an unusual and striking apperrance to the dry mesas of central and southern Arizona. appenrance to the dry maxas of central and the boundary of the United States, between the one hundred and filth and the one hundred and eleventh meridinns, enjoy a larger and more regnlarly distributed rainfall than the regions east, and especially larty distributed rainiall than the reghons caser these southerמ wnonntaln ranges are often dense and varied. Upon their summits monntain ranges are often dense and varied. find and pines of the and almost inaecessible npper siopes the firs and arbutus, and Pacifaregion are mingled with wnes, a junijer, un arbutis, and Various other species peculiar to the Mexican patean. Exteasive forests of a cypress of Mexican origin also characterize flif mountain vegetation. The bottoms of the canons are hmed anash. densegrowth of cot tonwood, backberry, a noble sycamore, an ash. a cherry, and other deciduons trees. The high foot-bills and mesas are coveretl with open groves of various oaks, peciliar to Sates Mexlcao-l'rcific region, here reachi
Suchare some of the prominent forest features oi North America dense forest, largely composed, except at the north, of a great variety of broad-leaved species, and extendiug from the Atlantic sea-hoard in one nearly unbroken sheet until checked hy insufticient molsture from further western developmeat-the forest of the Atlantie region: a foreat of conifers, occurying the ranges in the great Cordilleran mountaln system. insurpussed in ithasidy terior-the forest of the l'acific region.
terior-the forest of the lacific region the distribution of North A more detailed examjartion of the distribution of intrate American arborescent genera and species wind serve the comparathe the wealth of the forests of the Atlantic It will show, too, more plearly how wldely the farests of these two great regions differ in composition.

The cconomical importance of the forests of the Enited Statca The economs very freat, but can hardly be expressed by figures. sume facts, icalimporthowever, may be stated in this counectlon. The wood trom the anee of the drest is used in the main for fuel. Although coal exlsts in abun- oreata. dance over certain reglons, and although there are parts oi the thekly settled regions where Iorusts art scanty, there is no district where
Eame woud-even those whleh are lu the Immediate vicinity of coal-a fost-eved deal of wood is necessarlly consumed lu the form of kindfing deal of wood is necessarly consumed in thertant item where anthracite is the cosl sufflled: and, moreover. ojen fires are exteusively used by the weralthier class, In eonjutuction with coal ln furuaces. In other regione where coal is abundant, forests are also abundant, and as these must be cut down to be anwa lnto lumber, or to cluar the land for cultivation, there is a barge sinply of wood available fas fuel, but not fit to be used for buliding or manufacturlug. Fixcebit in the large eitlea, and occasionally lin the towns of second aja third raik. wool is used almost exclusively for the bullding of hoases and barns in the Tnited states. Fences also consume n very large amonnt of wood, this material tellig fn common nae for this purfose wherever timber is abundant, and often where it in not, bs in the prafic states, where, however. Within a few years, wire has begun to be veryextensively used for fenets. Thert in also a bery large consumption of wood for firmlture and for those portions of rafious fmplemeats, especially agricultural, which are man for hoxes and liartils in which farious artleles of merchandise are transported. The cansumjtion of wood in the form of barrels, as renuired by the two articles flour and salt, Ia very larke.
Thegreat demand for chealy wooden ware, and the extenslve use cheap of wood fil billding houses, and for rarions bortions of the tinisb-wooden ings and fitings of houses and barns, has led to the invention of hare. ings and fitings of honses and barns, has led to the in contion of into almost every varietyof forms with very bittle direet beljfrom buman hands. This mukes the coarser kinds of furniture hnd of housebold fmplements exceediugly elecap. As an exanmpe. it may be mentioned that barrels strong enough to hold in transfortation two hundred and eighty pounds
so small a sum as twenty cerits.
The Luilding of \log honses-that is, of such dwelliugs as are Log bousee made hy plling trunks of trees on each other, either in their aatural shape, or partly squared with the axe-ls almost a thing of the jast, although once extremely common. Very few districts in the reglon of abundant Iorests are so far uway from sew-mills and railroads as to make a log house the most comomicul form of dwelling. Oceqsionally some large, substantlal and well-finished buildings ure erected " log-house fashlow." elther as a matter of fancy, or to attract atcuntion by an exterlor of excejtional appearance.

Some idea of the importance of the forests from an economical point of view can be gainerl from the following fighres given by the census of $16 \omega_{0}$, in reference to the manufacture of sawir lumber:

Number of establishments	25,708
Capital invested	\$181.180,122
Average numater of hands emplo	7.950
Feet of lumber jrodnced.	.091.
Number of luths..	1.161.05,000
Number of shingles	5,5i5,016.000
Number of stavers.	$1,48,206000$
Jumber sets liesdiugs.	146, 523,000
Feet of bobbin and spool stock.	34,076,000

Total valne of the above speclficd prodncts
$\$ 230,685,062$
Value of other products.
$2,682,668$
Total value
\$233,36i7.722

The consumption of wood "for domestic purtioses"-that is, as fuel ith houses- is giveth by the census of ion has monoun
The total consumption of wood as Iuel is given as follows:-
Valne.

- $3,0,950,030$

Cords
$140,537,439$
$3.971,813$
$7 \times 7,862$
624.215
$1,157,522$
540,448
154,208
$145,778.134$

$301,950,010$
$5,126-714$ $5,126.714$ $1,212,043$ 8.545 .285
3.975 .21
121.081
425,239
$\$ 21202038$
Total
$.145,778,134$

The total value of the wood used as Inmber and as fuel amounts thurefore, to no less than $\$ 355,330,102$, if the figures Riven by the census of thatare to be trusted. The value of the woud conaumed as fuel hathe l'nited states was nore than thret times as great as that of the coal mined. In Iact, the timber of the country is the greatest of all its niaterial possessions with the lapse of an indetinite can uever forme for the conditions favorable to the productor of amonnt of inme. on the carth hase entirely censed to exlst. The timber. on conl on the carth hase entirely ceasce to kis. thw other hana, is restored. hasid of Nablire. This la the cate. At least over the whole of the onte densely timbered fiortion of the commerial forest has been regrow ths aucceedidg erch other aiter fors substitute for that which hus been made
moved offer satlsfactory
use of, either anturally or as an ensily attainable result of cultivation. In regions where the rainfall is of insufticieut amount there appears to be a temdency in Nature to replace the origma growth by oue of inferior guulity. Whether this inferionity would diminut or diminution of the preciputation, certanuy dating back to the rertiary age, and, in all probability, to a much eartier time, is a geolocical fact established beyond ani possible donbt. farstan diminution has any thing to do with the removal of the forests by the band of man, or that man can to auy perceptible cxtent in-
fluence the general climate of the country, there is not the slightfluence the general clin
est reason forbeljeving

SCENOGRAPIHICAL.

The great extent of the territory occupied by the United States is a sunficieat reason why there should be a corresponding variety in the scenery. In the early history of the country, when only the Atlantic coast and the eastern side of the Appalachian belt were known to travelers, the landscape was generally considered monotonous by those who visited this region as tourists, or with a view to the enjoymeat and description of its scenery. This impression of uniformity and munotoay was further confirmed, as the Mississippi Valley and the region of the Great Lakes were added to the tourist's range. Mamy persons visited the prairies of Mnnois aud the adjacent Statcs for the purpose of getting au idea of a vast expanse of almost mubroken country such as could hardly be outained elsewhere in the Northern Hemisphere without visit ing southeasteru Russia and the country east of the Urals. The general resemblance of the Apmachian Monntain scenery to that of parts of Northerb and ceutral Elarope-as, for instance, that of the White Monntains to that of the Erzebirge, or that of
Northern New England to that of Scandinavia-conld hardly Northera New England to that of Scandinavia-could hardly escape notice, similarity of topographical features being suplemented in mayy cases by the absence of any specially marked dif fereaces in the floras of the regions in question. Thus the writer having spent a summerib a geological cxploration of New Hamp shire, fonnd himself after a very shortinterval of time trayeling thrangh Southern Sweden. The impression of the sceuic similarity of the two regions was extremely interesting. Not ouly were the rocks, rock-forms and topographical features the same, but the regetation-although, of coursc, not identical so far as the suecies were concerned-made, from the scenic point of view, almost exactly the same impression on the eye in the scandinavian combtry that it did over large portions of New Eugland
In those early days of travel. especially of English travel, to the United States, the dommating idea was to see Niagara Falls which was the preat point of attraction Occasionall an adren turous traveler went farther west and down the Mississippi; but for uiuety-nine out of a hundred tourists who visited this country and described its scenery, Niagara was the fllima Thule. The opening of the "Frarthest West" by roads and railroad, the scieutific exploration of the Cordilieran regiou, the develomment of its mineral resources, and the rapidly growing desire on the part of many to see as much of the world as possible-all this has very greatly enlarged the range of experience in the enjoyment of scenery, while the art of photography has rendered it possible for those not cariag to travel to understand and enjoy the seenic features of distant countries, and to compare understandingly the landscapes of regions widely separated from each other
To attempt to describe the principal features of the scenery of a country having an area of more than three million square miles, is, of course, something not to be thought of in the present con aection. All that can be done is to marate some of the point most visited, and most worthy of being visited, by tourists, and to compare in ageneral way, some of the more striking features of the laudscape of this cuuntry with those of regious of similar scenic character in other parts of the world
Appalachan Mour In doing this we mas begin with the momatains. The Appala chian Monntaia scenery is only to be compared with that of the minor chains of Europe, since these eastera ranges never rise to the snow-line, and are almost always wooded to their summits. The principal features of Appalachian topography have bee already dwelt upon to as great an extent as space would allon; often of exceediag interest to geologists and other close students of nature, they do not exhibit any forms which in grandeur can be compared with those of common ocenrrence in the Cordilleras or the Alps or, still more, in the Himalaya. There are from the scenic point of vew few, if any, uniquc tigures in the Appalachian ranges. The uearest approach tosuch is perhaps the Natural Bridge in Virgizis-an arch of limestone gracefully spanuing a chasm about two hundred feet deep aud sixty feet wide-and the Profile in the Franconia Notch, in which messes of rock are so disposed as to represent, in gigantic dimensions and with striking approach to accuracy in general outline, the profile of a human face. Fully as fine a profile as that in the White Nountains is to be seen in Colorado; but as this later locality is not easily accessible, and is surrounded by an abundance of grand scenery, it is hardy kuown to the geueral tourist, and seems never to have been described, while of the Profile in the White Mountains the descriptions are nmmerons. To the trained eye of the topographer and geologist the extraordinary, intricate and exceptional forms of the ranges and valleys in Central Pennsylvania are of vastly greater iuterest than such accidental and fanciful occurrences as the Profile in the Franconia Notch.

A purely American name for something which is not of uncom mon occurrence in mountaia regions is the word, "flume," which as applied in the United States, and chiefly in the White Monatains, means a uarrow passage or defile between nearls perpendic ular rocks, through which runs astream, and usually Hith a suc cession of cascades. The White Monntain flume. in the Francomia Notch, is the locality of this kind most visited. It is about four
huadred feet in length, and the walls are from twenty to fifty feet
in beight. A deep cut in the sandstone at Keesville, New York, hear Lake Champain, on the Au Sable River, is called a chasm. The term " potch" is used in the White Monntains, and to a lim ited extent in the Alirundacks, for pass or mountan valley. Sim thar passes or depressious in the Appalachiad ranges farther South especially in Pennsylvauia, are called "gals." Those which are deeply cut down, so as to give passage to streams, are called "watc"-gilus;" those in which the depression in the ridge is not sutticienty deep to give passage to a water-conrse, are known as "wind-gaus." The gorge at the great bend of the Delaware whers this stream traverses the Kittatiuny Rauge, and which is known as the "Delaware Water-Gap." is a prominent scenic feaknre of this kind
The puints in the New England portion of the Appalachian sys. New Eng ramic vicws which thes afford are Jount Washington-the ouly point over six thousand feet in elevation in the Appalachians north of sorth Range (5290 feet): Mousilnuke (4.790 feet), a little farther south; Monadnock, near the southern border of New Hampshire (3,169 feet): Mount Mansfield, in the (reen Mouatain Range in Ver mont (4,309 feet): Greylock, in the northwest corner of Massachusetts (3.505 feet). The Adirondacks also attract great numbers of visitors, where the lakes and streans afford opportunities for boating and hishing, and where the scenery is extremely attractive especially in the antumu after the leases have begun to change their colol, most of this region beiug stili corered with the prime val forest. Monnt Marcy or Tabawas sum feet, and linteface (1.. 1 eet) are the poiuts most frequeuty ascended in this region fcet in elevation, which offer fine views, and are not at all dificult of access. The Catskill group, is also a region much resorted to br tourists, partly on acconat of the beanty of the scenery, and fartly hecanse it is oo ensily reached from New York. I be high mountain region jn North Carolina is too remote to attract may visitors from the Northera and Eastern states: and the farilities for travel in that region are as yet extremely deficient, in striking contrast with the condition of things in this respect in the monntain dis tricts of New Eugland and New Vork, where almost evers point can be reached by railroad, and where hotels are numerous and commodiaus, and the business of receiving and taking care of "summer boarders" seems to be a most important one for the permanent residents.
The mountain scenery of the Cordilleran region is extremely Cordille varied iu character, as has already been made evident to the Mounta reader in the sketch of the topograpiny of that part of the country sceuery. given in the preceding pages. Only a few of its more important features can here be indicated
In elevation the Cordilleran ranges are comparable to the $S w i s$ Ahn, althongh there is no point in the United States proper quite
 culminuting point of the Beraese Oberland (It 0ag feet -and there are a large number which hase a oreater elevation than the Jung frau (13, fil feet) A very curions feature in the cordilleras is the clow with which clostude os a follo the altitule, as shown by the following table of elevatious of all the threc hundred feet high, all of which are in the Kockr Mountains, and all in Colorado with the exception of the two rolcanic cones, Shasta and Raivier

hountain.

Blanca Peak
Monnt Ruinie
Mount Shasta.
Monnt Harvard
Nount Elbert
Gray's Peal
Monint Fosalie
Torrey's Peak La Plata Nt.
elevation at
EA LEVEL.

The above are all the points in the Cordilleras believed to he orer fourteen thousand three bundred feet in elevation, with the excention of Mount W hiter, which has been several times measured, with rather discordant results. ranging all the way from 14,600 to 14,598 ieet; there is good reason, however, for believing this to be the highest point in the United States, not includiug Alaska. All the beights given above, with the exception of Kainier, were obtained by the aid of the harometer, and are not to be taken as being absolutely accurate. The elevations in colo- Eleratis rado by the Hayden Suryes. which are the result of a combination in Colore of barometrical and trigonometrical measurements, are pribably pretty close approximations to the truth. The measurement of Rainler, depending as it did on trigonometrical measurements made at a great distance, are-in the writer's opindou-mot to be accepted as final, and may be farther from the truth than a single barometrical observation wonld have been; but this monntain, althongh seseral times ascended, has not been measured barometrically.
The essential difference between the Cordilleran ranges and the Compart Alps is that the latter are minch more extensively covered with of Cordil snow that are the former, and that this snow gives rise to perma-leras a descending har below the enor-line, and constitut- Alps. scenery of the Iligher Alps, llith the exceptiou of the great vol-
 cart of the conlillers part of the Cordilleras where snow or ice forms a prominent monntains are visited by tourists. The winter snow, of course, covers the mountains, oiten to a very large extent, and summer
snow－falls do the sume oceasionally；but the effect of this hatter kimd of oecurrence is in so respect to be eompared with that oi the permanent Ahinesnows and ghelers；indect．the irreguler mete log awny of the＊ummer＇s suow on the thanks of the ranges． ing great patches promiscaously＊catcercd hereand there
rather a disagreeable than a pheasant feature．A remarkub
toption is the cross of snow on the＂Mountain of the Hols of lee around toe highest peatis of some of There are small m； of ice around the highest peaks of sume of the cordilleran fahges but these are frequenty covered and entircly concenled ley sunw，
even during the summer；gud whetber I roperly called gliticro or
 those asceading to the sumuits of the bighest pealis，aud then ouly in farorable sensons．
Thesnow and jee cosering the himber fortions of the frem vol－
 of landscape when they，presemt is a jeeuliar oum ：And，perhaps
 the mont sonthera of these vuleaniemassees，mulitianearly as high

 northern rival．The suow－heldson the ugner fortion of the somb ern thank of Jassen＇s J＇onk have aluats Wreactutu wenrly the sum
 indicatiug a constderable degres of permateney；yet when the fields were climbed over there whe no indication of the existerne of ice visible．
Mount Shasta，seventy miles farther north，and Dearly four thuusand feet bigher thao Lasfeas＇s tcak，is，gi conrse，munch more after several suceessive dyy sensons，meser disatherars rtatirchy even onthe santh side．Un that side，when this mulntatin ascunded hy the writer in septerntrer，intis．seven miles of the as－ ceut were made over a saow－ficld flliug one of the greas ravinc ly which thas mighty cone is farrowed．Acrew years later this
field was almost entirely gone di the same stason of the your，and the evaporation of the suow had uncovered alarge ficla of ice and the north side of the cone，of whikehnothing lod tuen visible lmiz，in looking from the summit down mpont the fhanks of the monntain in that direction．At all times of the gear when sum

 joint fifty－taree miles distant in a sontherly drection，wha that os an almost regular cone．growing slaghty steeper tow ard the mit，aud baving a slope of $25-27$ on one cife．unci of $3 \boldsymbol{3}-3$ the other．With a smaller，somewbst stequer．subsicliary forma the westera side．

Mount Hood is a vers conspicunus anclgrand monntain mass on acconnt of its isolation，its regular formb，and the exitent to wheh it is covered with snow．It Hyteros hichor than it renlly is．les．
 Which is but little above the seम－level．and where the fine scencry
of the Columbia River and of the basaltic region udjacent to mancs au admarabse foreground．It is a favorite subject for land． scape artists，and has been repeatedly clinbed by tonrists，the ascent being without spect

Monat Ranier，of which the aboriginat mame is said to be Tacoma，is mucb less accessible than elther Hood or shasta，but has been climbed several times，and first ia $1: 70$ lys Musirs．ateveus and Vau Trump，of Ulympia，Washingtan．As seen from the southern end of Puget Sound，at a distance of forty miles from it： base，this mountaio is an object of surpassing grandetir．It is of almost exactly the same beight as shasta，but is much more deeply and exteasively cosered with soow and ice than is that cone．As Ranier is in the midst of a tangled forest without ers ficted out with pack annmals and canp equipage，and who are able and willing to bear the fatigues of camplife in a difticult forested country．Sofar as kwown to the writer，its higher for tions have never heen visited by any skillful yhotograpber；while Shasea aud Hood bave been foely photographed from a great number of points of view by Mr．（．E．Watkins，of san Erumcisco．

On the whole，these great isolated snow－covered volcanic concs of the Pacific coast are，from the scenle jomt of vew，the grand est objects which this country jresents．In the jicturestueeffect which they produce they may be fairly placud on an éguality with anything which the Adpshave to show．comeris，on of pliotographs onlr，these almost extinct volcanoes of the Caneade Kauge mus be fulls ns attractire，from a scenic point of view，as the higher obes of Mexico，and，perbaps，not much less admirable as scumfe objects than the much loftier cones of South America，which all rise from very bigh heses，and of which tne snow－covered portions seem but insignifieant in extent as compared with the uncovered rocky slopes．
whichthey stand，so sharp and so vertical that the descriftive term＂spike＂is olne which involumtarily sucerest itself to the lliud on secing them．These pinnaclemste of course，too stecp Zo Le covered by show：but theyrive often ironfreat snow－fields， fresunling a womberiul apperirance of miugled desolation and frumaleur，und makiug，perbals，as strong an impression on the mind as uny type of mountain scenery cau．

The dotue structure of the granitic masses．so wonderfully ex． hibited in jrarts of the sierra Nevada，is also a leature of great scenie iuterent，and one which，so far as knowo to the writcr．is not seen anywhere else fin the world on so frand a scale．These lones are especinlly well exhibited jn the region just above the Cosemite Vallev；and luere also da that unique feature of the scebert－one of thon grrat，rounded and exceedingly steep masses，rislug almoit fin thonsand frel above the adjacent valley， anal which has becen elplit in two so that on the side fronting that Valley it presents an nlsulntely vertical fuce of somewhat over
fistec口 hundred feet in height．
Noxt to monmiains，watcrolmlls，jerbajs，offer the greatest scenie attuactions，Hud the mumber कnd varlety of form of those oceur－ ring in the －Hited－intes is very great．ludeed，there are in the Cordilloras great wumblus oi winter－falls whlela have been seen bo exslorers．but whiels hase never hees deseribed or named；and ome of thes unksown loerallicus nre finer than ans of the monch－ isited falls of the Alp，or evell of Norway
Among the well known and［reyueatly visited water－falls，therewaterfalls sre three which descrse sueciml notiec－Niggara，the shoshoze， and the losemite Finlls．The first is the type of a fall ju whieb volune of watcr is the all－important featire．In the shoshone fall．the volumt of water is farge，althongh greatly inferior to that of the Xiagara；the lucjght is considerable－somewhat greater than that of Angaramand che Enrrounding scenery grand and utirely uujujured hy the so－ealled＂improvements of civiliza 1ou．The yosemile min，on the olher hand，is ane in which the
 stimg af the fall is surphssingly grama．Siagara is so well known tions of the coumtry mose frenuently visited．not only becamse it is tions of the country most frequentiv visited，not only becanse it is
one of the greatcst（if tha whtr－falls of the world－only the fall of the Zamberi surphssume it in elevation and，yerhaps，in voluane －but because It is within a few bours easy ride of the Atlasitic eanst．The lusermite Valley，with all its water－falls，is farther uway from the Vinst than the shoshone Fills，but really mach more accessible than the lather，which lics at a considerable dis－ tance iroms aus inlabited region，Among the centirely unvisited recions of watur－ialls．that of the Canan of the Tuolumue River， a i－y miles north of the losemite Valles，is jerhapa，the most erent beaght．Set in the falls and cascades of the wildest and most rome and senery－a region thto whwh hardly a traveler basever found his way Cery much the snme may be said wjth truth of the region oi the Sonthera Iligh sierrat adjucent to Nount Whatuey，where Wefind namy of the sume fentures as those which eharacterize the lostanite，aud on almost an grand a seale as in this wow very frequently visjted mud comparmtively aceessible lacality．
most remarknine type oíscenery，and one which combines Soenery o fratures c゙blually interesting to the tourist and the seientific Colorado observer，is that ut the platcaus of the Cordilleras，of which a without a brief aceonat has already been kiven in the precediog pagest．The rival． eauans of the Colorado nual its branebes，onee so remoee．hase now ten＇u brought comparatively near by the extension of railroada towart the sonthwest，and the tide of fersure travel is beginuine tu How in that direction．Jn the recultar type of sceners which is unfoleded ulous the Colorado，this conntry is without a rival The louss region of horthern Chinmany be stranger and more unimtelli－ gilum in the record which it presents of past geological events：but from a servic point of view the tremendous canons of the south ern llateau region，with their mang－colored walls，may unles tatlogly be included in the list of the exrth＇s grestest wonders

A portion of the conatry which has within the jast few years become the resort of travelers iasegreb of the pieturesque，and which is now quite aceessible by railrosi，is the liesser region of the lellowstoue．Here the sclentitically inceresting and the use－ turestuc unite to furdish a type of situery wlthunt a risal of \％erlaud．The Jellowstone l＇srk，as it is frequently called，be eansereserved by the Cuited states and devoted to public use as a visiting ground or park，with the idea or frotecting it from specth－ lators mad mischief－makers，was early kaown to some of the more adsellturons of the fur－hniters who roancd over the freat North－ west；hat it is only within a few regrs that deserintious of it have bect l＂mblished，and its extraordinary character so clearly estatblished as to induce travelers to nudertake the long jonrdey necessary fut its inspection．Thurmal spriogs in great bumber，Thermas many of whicharethe［eriodically spoutiug，or geyier type；pools Springs． of hot water，both large and smoll，the sides and bottoms of which are lined with the must exquinituly and brilliautly colored micro scopic vegetation；remarkable deposits from the hot springs，some of whichexbibit curjons forms，seen nowwhere elsu，exceftin Asis Slinor Hnd in New Zcaland as it was before the volcanic eruftion of 1 mad ；grand monntain secomery，with water．falls，lakes and deep canons，whase walls are fantastically colored by valcanic deposita and sulphurons emanations－these are the prinejpal features of the lellowstone reglon．It can lie reached by the Northern Pncifie rajlroad，frons a station on which road，called Livingstont ten bundred aud tbirty－ewo miles fromst．Paut，a branchfiftyone miles in length runs io Cinnabar，on the houndars line of the so－ called ellowstone sational Park．Ibere are numerons ex cellent photographs of thls reglon．which has also been finelyillus． trated in a folio volume withe hramo．lithograjhs from paintings by Thonas Joran．The geological and sernic pečularitien of the f゙ellnwstone reeion have lewn fully theldated in varions［＂nited states geological reports，and esuccially in a voluminous one by

Dr. A. C. Peale, included in the second volume of Hayden's Report for the year 1878.
There is a type of scenery of a remarkable character well exhibited along the hase of the Rocky Mountains at various points, and especially at a locality called the Garden of the Gods, near Pike's Peak, and easily accessible by railroad. The attraction here is the remarkable effect of the erosion and withering of the saft sandstones, which occur in beds of great thickness. Many fantastic shapes, such as colnmus or ohelisks, of large dimensions, oceurring ither singly or in clusters, and often capped in the most curions aanner by great flat tables of harder rock, are seen in this intering region. Indeed, all along the eastern base of the Rocky Iountains in Colorado are many strange and picturesque forms, partly the result of direct uplift, and partly of erosion, which are like interesting to the lover of the picturesque, and the studeut of cology. The lang crested uplifts of sedimentary rock worn it ocurved ontlines, and often of grand dimensions, which characterize this region are known by the familiar name of "hogbacks," and the region itself as the "hog-back country.
Of the sacnic effect of the vegetation of the country, and especialiy its forests, notice bis already heeu taken to as great an extent as space bere permits.

MINERAL RESOURCES

Fron ore was smelted at Falling Creek, Virginia. as early as 1620. The raids upon the whites at this time, made by the Indians, puta stop to the industry. From 1o4s to 101 the business or smefting aud manufacturing iron was successfully carried on at Lynu, Nassachusetts. Abont 1769 there were fourteen furnaces and niore than thirty forges in operation in Pemnsylvauia.
The business of mining for other metals than irou withiu the territory of the United States is of much more recentarigin. To this statement, however, an exceptiou must be made in reference to the metal conper, which had been extensively mined in the Lake Superior region loug before the first visit of the English to these shores. Iudeed, so ancieut are thesc workings that no pasitive knowledge existg as to the people or tribes by whom they were executed. When the regiou in question was apened to the whites for settlement in 1844 , it was found that the copper-bearing rocks aad been mined through their whole extent along the southern shore of Lake Superior and even on the almostinaccessible islaud called Isle Royale. There is no reason to suppose that these ancient workings, which in some places had beencarried to a depth of more than fifty feet in solid rack, were known to the Indians inhabiting that region at the time of the first visit of the Jesuit Fathers iu 1659 -60; and the appearance of the excavations indicates, heyond possibility of doubt, that they had been made long before that time.
Hovernor Winthrop

Ahout the middle of the seventceutb century the metalliferons j= ications commou in New lingland, and especially iu Connectiut, eugaged the attention of Governor Winthrop, hy whom mineralogical notices of that region were sent to England and puhlished in the Transactions of the Royal Society.
Just at the beginuing of the eignteentn century a Frenchman, Le sueur, explored the region of the UPper Mississippi, and sent back to France, rock which he had muned. supposing it to be an ore of copper ; but it proved to be of no value. Later in 1719 and 1720, the French again attempted to explore what was then called the western portion of the conntry, along tac Mississippi near the function of the Missourl; nud some mining of the lead ore, which at that time had already bccomc known, was attemptcd. The precious metals being what was sanght for, and there being noue found in the region, the euterprise was soon ahaudoned.

At the beginniag of the present century, as it appears from what has heen stated, all that had beun done in the way of discovering and developing the metalic weal th of the | mited states |
| :---: | was the mining gad smelting of the ores of iron on a limited scale, in the Atlantic states, and a suall production of lead in the mining region of Missouri. Exact statistics of these metals at the heginuing of the nincteenth century are wanting. The amount of iron produced in 1 sio has been estimated at fifty thouand tons; the production of lead about that time may have becn approximately one thousand tons a year

Gold.
An event of great importance took place almost immediately after the value of the Lake superior copper mining district had heen fully ascertained, in the rear 1844. This was the demonstration of the fact that gold existed in large quantities along the western slope of the sierra Nevada.
The accurence of gold on that portion of the Pacific coast, called by the Hexican-spanish Upurir Caliornia, had been known for several years prior to its discovery by immigrants from the dnited States and workings had been carried on for this metal in the Const Ranges, far south of the lacality where it was discovered in 1848
The demonstration of the fact that aver a vast extent of that distant country gold was to be had in almost unstinted quantity, as it at first-not witnout reason-appeared, led to an extraordinary excitement thronguout the olace states, and to an emigration from all parta of the world toward the newly discovered land of gold on an unprecedented scale of magaitude.

coal.

The area underlain by the coal-measures in the United States is very large, as will he seeu from the following table, which represents approximately the coal areas of Carboniferous age east of the Cordilleran region. That different portions of the areas here designated are of very different value, as respects quality aud quautity of coal, is certain; and that portions of them do not contain coal-heds of sufficieut thickness or of good euough quality to be
worked with profit, either at present or at any future time, is also an undoubted fact, although these unproductive portions are, except perhaps, in the case of the Western and Michigat fields, of comparatively small extent:-

Name of the field.

Area. Coal

500 sq. milea.
Rhode Island

Central (Illinois, ludiana aud Keutucky)......... Texas)
Michigan.
59,165
47,250
78,430

Total.
192,045 sq. miles

Of these fields the Appalachlan is at present by far the most im portant, and is likely to remain in this position for an indefinite period. The coal field of Khode island is not now, nor has it ever been, worked to such an extent as to be of special importance. The Michigan coal-field has also no present value, the quality of the caal being inferior, and the conditions not such as to allow successful competition with the coal of adjacent regions. The present relative importance of the different states as regards the production of caal aud the yield of the various fields will be easily recognized from an inspection of the following table:-

Coar. Producen in the Several States and Teqritorieg, not
Incluming the Local and Colliery Consumption, and
the Value of the mines in 1885.

States and Territoaieg.	1882.	1883.	1884.	1885.
Pennsylvania:	L'ng tons.	L'ng tons.	L'ng tone.	L'rig tons.
Anthracite	29,120,096	31,793,027	30,718,293	32,265,421
Bituminous	22,000,000	24,000,000	$25,000,000$	23,214,225
Illinois	9,000,000	10,350,000	10,000,000	8,742,745
Ohio	9,450,000	8,229,429	7,650,062	6,978,732
Maryland.	1,540,466	2,206,172	2,469,051	2.865,974
Missouri	2,000,000	2,250,000	2,500,000	2,550,000
West Virginla.	2,000,000	2,805,565	$3,000,000$	3,008,091
Indisua	1,976,470	2,560,000	2,260,000	2,120,535
Iowa.	3,127,700	3,881,300	3,903,458	3,583,737
Kentucky	1,300,000	1,650,000	1,550,000	1,700,000
Tennessec	850,000	1,000,000	1,200,000	892,857
Virginia.	100,000	225,000	300,000	567,000
Kansas.	750,000	900.000	1,100,000	1,082,230
Michigau	130,000	135,000	135.000	45,178
Rhode Island.	10,000	10,000	10,000	
Alabama	800,000	1,400,000	2,000,000	2,225,000
Georgia.	175,000	200,000	200,000	133,929
Colorado.	947,749	1,097,851	1,008,950	1,210,769
Wroming	631,932	696,151	805,911	720,828
New Mexico	146,421	188,703	196,924	271,442
U'tah	250,000	250,000	250,000	190,286
California	150,000	175,000	150,000	63,942
Oregon.	30,000	50,000	50,000	44,643
Washington	295,000	300,000	300,000	339,510
Texas.		100.000	100,000	133,928
Arkansas.		75,000	150,000	138,928
Montana.		60,000	60,000	77,179
Dakota.		50,000	31,250	23214
Idaho.		10,000	20,000	893
Indian Territory..		175,000	400.000	446,429
Totals.	86,710,834	96, 223,198	97,518,599	95,832,705

States and Territories
Penusglvadia: Anthracite
Illinols.
Ohio....
Missouri
West Virginia
Indiana
Iowa
Keutucky
Virgiuia.
Kansas
Michigau
Rhode Islaud
Alabama
Georgia
Colorado.
Wyoming
Utah.
Califorvia
Oregod
Washingtou
Texas
Arkansas.
Montaur
Idabo.
Indian Territory
Total

Value of Coal at
Mines, 1×5.5.
$\$ 2,254,544$
$11,456.113$

3, 200, n91
$3,250,000$
$3,369,46^{\circ} 2$
$3,369,662$
$2,731,250$
4.04 .200
2.034 .400
$1,100,000$
6666.752
$1+10.43$
775.000
2.930,000
180.690

3,051,590
$2,421,9 \times 4$
918, tion
426,000
214,815
125,000
920.615
300,509
300.009

235,040
802.540
802.540

91,040
4,040
750,000
$\$ 152,915,268$
The commercial product. exclusive of that which is cousumed at the mines, kaown as colliery consumption, during 1*85, was: Penusylvania authracite $36,137,272$ short, or $32,265,42 t$ long tons, the market ralue of which has beeu estimased to have been $\$ 72,2,4,544$; bitumidous, brown cosl, lignite, and small lots of au. thracite, mined iu Colorado aud ArliansRs, $71,195,328$ short, or $63,5 i 7.2 y+$ long tons, the market value of which bas been estimated
 ahort, or $9 ., 8,32,705$ long tons, valued at $\$ 152.915,264$. The total production, including colliery ronsumption. was liennsylvania anthracite $38,335,973$ short, or $34,224,54 \mathrm{~s}$ long tons, all other coals i2., 621.519 short, or $4,840,668$ dong tons, makiug the total absolute troduction of the coal mines of the Uuited States for the year, $110.957,522$ short, or $99.069,216$ long tous.
The coul areas of Carbouiferous age in the l'uited States are five iu number. They are:
The Massachusetts-Rhode Island area, comprising approxinately 500 square miles :
The Alleghany area, about 59,000 square miles:
The Michigau aren, ahout 6,500 square miles:
The lllinois, Indiana and West Kentucky ajea, about 47,000 aquare miles; and
The Iowa. Missouri, Kansas, Arkansas and Texas arca, about 78.000 square miles:

Forming a total of ahout 191,200 square miles, underlaid by coalhearing strata, of which wot over 120,000 square miles contain workable coal-beds
Two geveral classes of coal are recognized, viz, anthracite and bituminons, the latter heing often subdividedjuto bituminous and semi-bituminous coal.

Anthracite forms the whole of the coal found in the Massachu setts-fhode fsland area and in that portion of fendsrlvaula occurring in the nelghborhood of Pottsville, Mahauoy City, Shamokin, ring in the nelghborhood of Pottsville, Mahauoy City, Shamokin,
Hazletod, Nauch Chunk, Wilkes-Bare and Ecranton. It also Hazletod, Mauch Chunk, WilleceBay
Bituminous coal occupies the rest of the districts just named.
A glance ou a map of the coal-felds shows how unequally the coal areas are distributed over the United siatea. While New England and the seaboard Atlantic states contain practically no coal. the greatest developmeat of the workable coal strata is in the Alleabany Mountains aud to the west of them, extending from Peunsylvania and Onio in an unbroken line to Alabama.
Next to the one just mentioned the most important field is the one occurriog in lllinois, Indiaua and Western Kentucky. The coal area which extcuds from Iowa to Texas is of much lesaimportauce and exteut, and the Michigan coai-field has acarcely been opeoed.
The Massachusetts-Rhode Island Abfa --The coal is coufined to eastern Rhode Island and Bristol and Plymouth countics in month, Rhode island, where F, one of the the worked is at lortsexploited. The coal-beds in this area seem to rary from one to thir teen fu number, but the explorations made in the past have been so unsystematic and pecturiarils, so unsatisfactory, that the data so whsystematic and pecunaris, so unsatisfactory, that the data acter of the coal is the hardest kind of anthracite, often containing spaugles add plates of graphite disseminated through it, which spaugles add plates of graphitc disseminated through it, Which
characteristics are due to the highly metamorpbic action it has uncharacteristics are due to the highly metamorphic actionit has un-
dergone. To this same action is due in agrat measure the pecnldergone. To this same action is due in a great measure the pecul-
iarly folded character of the deposits, which has locally caused iarly folded character of the deposits, which has locally cansed
expausious and contractious of the coal-heds. so that in sorne expausious and contractious of the coal-bens, so that in some suaces an irregularity renders the cost of mining the coal very great, owiug to the large amount of "dead work" required. and to this cause mar in part le ascribed the slight progress which has beed made in the development of the region. The working is now colltined to a single mine.

The Alleghant Abea, the most importadt in the Cuited statea

In its extent in the number of workable coal-beds aod in the qualitvund variety of the cuala fonud, is eituated in I'eunsyluania Ono, Wext Tirginia. I Cghina. enstern hentacky, East Teunessee and northery Alabama. This nrea is divided into numerous different fields. more or fess contiguous to one another, and of which a brief meutlon follows:

The Anthracite: Coal-Fielns of Eastern Jfessifliania.These anthracite fieldsare confined to a limited area of not over $46:$ quare miles, sithated in the rollathes of Carbon, schuylkill, Northumberlaud, Columbia, Davplin. Luzerne and Lackawanua. Three districts are commouly recognized in this region, known as the first. second and third coal-fields. The Coal Mensures within this regiou are almost universally surronnded by two mountain ridges, the exterior one cousinting of sub-Carboniferous \&andstone. This is sejarnted from the interior ridge by a valley. mare or less broad, of easily decomposing red shale, overlyiag which oecurs the true conglomerate, holding fin its bosom the valleya or baslus the true conglomerate, holding in its bosom the valleys or bashas
in which the fathracie oceurs. The two geriea of ridges were in whichent protectars of the conl from the denudiag agents, which
the efthen removed it from the jutervening barren districts, separating the different anthracite basias from each other and from the bitumiwous conl-fields of Ceutral lemusylvania.
North of the authracite coal-heldsproper, is the semi-anthracito emi-an of the lfernice basin insullyan comnty, Peunsylvania, where the thraclte princlpal coal bed, ejght to nine feet thick, contains eight to nine percent. volatile matter. The coal, while classed asan anthracite facks the briliant anthracite luster and conchoidal fracture, reth erally breaking in culues; in consumption it closely resembles the semi-authracite of Lyheus Valley, in Dauphin connty. The whole of this coal is carricd North and West for distribution and consumption.
The Broad-Top-Coal-Fiflid of Pexisyivania.- The coals of this batin, which occuples about twenty-five spuare miles, all bclong to the Lower l'rotective Coal Measinres, of which more presently, with the exception of a few neres of conl of the मiltsturgh bed. The mensuresin this coal-field have been mueb disturbed, so that the relatiens of the strata are not fully understood, and consequently frequent crrors have been made in identifying the conl in different portions of the district. There are apparently three workable beds. The conl of this district, while actually bituminous in cbaracter, is commonly called semi-bituminous on aceonnt of the comparatively small hmonnt of volatile matter it contains, oftea as low na eiglit fer cent. At one time the matues of
and this district were actlyely worked, he coal heing nsed for steamraising and rolling-mill purposes. since the oneding of the clearfield cual-district and the more active exploitutions of the cumherland coal-beds the mining iuterests of this district have languished, owiog in part to an inferiority in quality of this coal to eitber of the others, in part to the greater cost of extraction due to the more disturbed condition of the strata.
The Bituminous Coal-Fievis of Pennsyivanja.- While the hituminous conl-fields of penusylvania are contiguons to those of Ohio and West Virginia, the laticr being actunlly but extensions of the former, they are, for the sake of deacription, sepmrated geographically
In the binminous coal area of Pennsylvadia, Ohio and West Virginia geologists and engincers bave recognized (1) U'pher lar ren Mensures; (2) Euper Mroductive Coal Measures; (3) lower Barren Measurcs: (4) Lower l'roductive Coal Measures; (j) Interconhlomerate conls.
The following conl strata occur in the "gper l'roductive coal Neasures, commencing with the upher lied: Waynesburg coal-hed, , Redstone com-bed. .itc: the others are locally of importance
Iu the Lower Barren Measures are a few heds whlch are most uncertain in character and of litele economical value; they are most unreliable jn character, and while locally they thicken, so as to be of some local value, they sucedily thju out agaln.
Below the Lower Barren Measures are found the following coal strata, Viz.: Cpper Frechort coul bed. Lower Freeport conl-hed, Coal-hed aud Brook coall-hed. lower Kittanning coal-bed, Clariou coal-hed aud Brookville conl-bed.
Conglomerar, geologically, are the coals occurring in the cireat Conglomerate, which include the Clariongronn, C, the Quakertown bed of Lawrence county, nd the sharon bed of Merewo county. These coals occur in six different basins, of which the sixth js the most southwesterly in position and least distinct as to jis division. Each basid is separated from its atighbor by anamticlinal
\qquad $-$ $-$ -
\qquad -

[^304]

[^305]

[^306][^307][^308][^309]wave. or Jather by a series of separate antlclinals, the cuds of which lappast ench other.
Having the Alleghany mountafna as an castera barrice, the coal fieldsextend westwardly in a more or less unbrokeu succession into this area the coal-heds are by no means equally distributed over lifted, hy geoloidate peansylvania and midale dew hork were than southwestern Pennsplrania, Ohio and Virginia were, the destraction of the coal measures has been greatest in the North and Northeast, gradually diminishing toward the southwest. Only the lowest, or two or three lowest, beds of com have been left as lsolated patches on the molintaln tops of Wyomiag, sullivan. Lycom. ing, Clinton, Bradford, Tioga, Potter, Camerou, Mckeau and Warren conaties.
The great productive bituminous coal-field may he said to commence in the belt of connties composed of Clearfield, Jeffer:ou, Clarion, reuango and Mercer counties-a distauce of 140 miles to the Ohio line from the crest of the Alleghanles. In the countles last mentioned, as well as in Cambria, Indiana, Armstrodg. Butler. Lawrence, Beaver, Someret (with the exception of the Salisbury patch), eastern Westmoreland, and eastern Fhyette. only the 1.ower Productive coal-beds, aud in places the inter-conglomers te conls have been left, while the Cpper Productive Neasures have
been swept assay. These latter are found in a great part with ali

[^310] all
the Lower Productive Coal Measnres in Alleghany，western West－ moreland and western Fayette counties，while the whole of the Upper and Lower Productive Measures occur in Washington and Greene counties．In trief，the coal Neasures are most eroded towar
The Oh1o coal field

The Coal－Fields of Ohio．－The Ohio coal－fields are but the western extension of the bituminous coal－region of Pennsylvania； consequeatly，the coal－beds which are found in them are the same， with local modifications，as those of the latter state．Commenc ing at the Peunsylyania－Ohio line we find that＂the margin of the coal besin forms a torthous line，commencing in the northermpart of Trumbuil county，passing theuce southwesterly to the Mabou－ ling Valley，where it is deflected far town it runs through the southern townships of Trumbull county，where it is deflected north wearly to the center of Geauga county，where it incloses a long tongue and two or three small islands of coal．Thence retnrning into Portage，it passes south－ easterly through the southern part of Summit，where it is deflected to the nortbwest．From bere it runs southwesterly again to the southwest corner of Holmes．Thence it passes nearly southward along the western margin of Holmes and Coshocton；thence south－ westerly through the eastern part of licking．From here its coursc for fifty miles is nearly south to the center of Hocking，where it turns slightly westward，and passes throngh Viuton，Jackson，Pike and Scioto to the Ohio，where it crosses＂into Kentucky．The counties more or less nnderlajd by coal in Ohio are Mahoning Columbinna，Portage，Stark，Holmes，Carroll，Tuscarawas，Jeffer son，Harrison，Belmont，Guernsey，Coshocton，Muskingum，Perry， Noble，Morgan，Washiugton，Monroe，Meigs，Athens，Jackson， Gallia，Lawrence．Trumbull，Summit，Medina，Wryne，Licking， Hocking，Pike and Scioto
Virginian The Coal－Fields of West Virginia and Virginia．－No State in the Union surpasses West Virginia in the variety of coals it contains，nor does any contain au equal amount in proportion to its ares；for of the fifty four counties it the State，but six are entirely destitute of this important fuel．In msay of them，how－ ever，the coal is so deeuly buried，and in others the means of transuortation are so inadequate，that it will be many years be－ fore the mineral wealth thes contain will cren commence to be developed．In Virgioia，on the other hand，there are but six conoties which contain coal of Carboniferons age，and they are in the extreme sonthwestern corner of the state，adjoining West Virginis and Kentncky．The coal－field of West Virginia nod Virginia is but an extension of the Appalachian coal－field from Penasylvania，Maryland and Onio，and the general system of the measures is the same，with the exception that locally some of the coal－beds in the Great Conglomerate are of a sufficient thickness to be profitably worked．
Maryland coal field．

The Martland Coal－Field，better known as the Cumherlaud coal－basin，is but a prolongation of the Potomac basin mentioned under uest irginis．This corl－field is one of the most important in the Tinited states，due to the thickness of the main bed，its good quality，and the large aunnal production．The coal is most extensively used for rolliug－mill and steam－raising purposes．its chief and only competitor among the bituminous conls being that from the Clearfield region of Pennsylvania．This coal－field is an outlyer of the main Alleghany coal area，of which there are several others in Pennsylvania，such as the Brond－Top，Snow－ shoe，Ralston and Blossburg basius．The coal is semi－bitnminous in character，and does not coke quite so readily as those which contain moregas．
The Eastern Kentucky Coal－Field ia but a continuation of that described in Ohio aud West Virginia．The western bound ary of the Alleghany coal area in Kentucky is approximately as follows，in a qorth－south direction：Starting at the Ohio river near Tygart＇s creek，the line runs through Greenup，Carter， Rowan，Morgan，Powell，Estill，Jackson，Laurel，Pulaski，Wasne and Clinton connties to the Teunessee line．This coal－field nnder－ lies the whole of fifteen counties aud a portion of five others，con－ tainiog 8,983 square miles．The houndary line is very erooked， hrowing off numerous spurs，extending west of the line mentioned．

The Tennessee Coal－Field is but a prolongation southward of the eastern Kentucky field．Its ares is co－extensive with that of the Cumberland mountain or table－lsnd．The Cumberland monntain crosses Tennessee obliquely，and although much in－ dented by valleys and coves，is nowhere completely cut in two by them．The eastern border of this table－land is comparatively a nearly direct or gracefully curving line，the indentations made by the streams on this side being scarcely noticeable．It is rery iregular，however，along its western border，being cut out and notched by deep valleys and coves，separated from each other hy longs purs jutting to the West．These deep indeutations give the western outline a very ragged appearance．Along the Kentucky line the coal－field is about seventy miles wide，while it narrows along the Alabrma line to fifty miles．

The georgia Coal－Field．－The Tennessee conl－field west of the Sequatchie valley extends over the border into Alathana，and then soon dies out．That on the eastern side of the valley，on the contrary，extends through Dade，Walker and Chattooga counties in Georgia into Alabama．Almost the whole of the former is underlaid hy an excellent quality of bituminous cosl，while there is not quite such an extent of it in the other two counties．
The alabama Coal Regiox is an extension southward of the Georgia into northern Alahama．It is divided into three fields， the Black Warrior，the Cahaba and the Coosa．Of these three the first is much the largest．
The jllinois，indiana and West Kentucky area．－The coal measures of this portion of the United states form but one measu
area．

Thf，Indiana Coal－Field．－The Carboniferous Measures occur in the counties of Possey，Vanderburgh，Warwick．Spencer，Perry， Crawford，Gibson，Fike，Dubois，Knox，Daviess，Martin，Sullivan， Greenc，Clay，Owen，Vigo，Jarkt，Vermiliion，Fountain and War－ ren；or，in other words，in the southwestern part of the State， There sre three beds of coking coal in this field，varying from four and a half to ten leet in thickness，sud three sesms of open－ burning or splint coals that range from twic and a half to five feet in thickoess，the average thickness being four feet．One hed of cannel coal occurs in Daviess county．abont four and a half feet thick．The principal coals mincd with this exception are the block coals from Clay county

PETROLEUM

Petroleum has beew known to exjst in this country almost from its first settlement．The records of travels，especially through the region west of the Appalachian chain，in what was then known as the Grat Ohio Valley，coutain coustant evidences of the existence of this material in the reports of burning springs and the oil that accompaoied them．
It was not，however，until 1859，at the time of the drilling of Drkke＇s first well，that it began to assume any commercial impor－ tance．The excitemeut attending the discoveries in the Pennsyl－ vania oil field led to explorations in many States，and developed the fact that petroleum existed in many localities．These locali－ ties are chiefly on the the western slopes of the Appalachian chain， reaching from Petrolea in Ontario to jnst across the Tenuessee State line in Alabama．Some quite extensive fiolds are also found in Caljfornia and in Whyming，and later evidences of the exist－ ence of oil have been discorered in other States，bnt the Appala－ eniau and the California oil fields are at present the only ones of commercial importance
The most important of these fields are what are descrithed fur－ ther on as the l＇enasylvamia and New York oil fields．Next in tmportance to these is the Macksturg field in Ohio，near Marietta， the third in importance being the California field．West Virginia produces some small amounts of heavy oil for lubricating purposes， its light oil having been comparatively exhausted some yefrs since． There are also oil fields that with beiter facilities for transporta tion might be of importance in both Tennessee and Kentucky． The Wyoming oil fields described farther on in this report are also of importance in the amount of petrolemm that can some day be made available；but of this field，as of all others outside of the Pennsylvsnia and Macksburg regions，with the exception of Cali－ fornia，it will be found that the expense of producing and trans－ borting the oil to market will effectually prevent any great pro－ duction in these fields until the price of Penasylvania petroleum shall materially advance．
In the following table will be found a consolidation of the statis－ tics of the production of petroleum in the various fields of the country，so far as the same could be obtained from the hegiuning of operations in these fields：－

$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{8}{7} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { ت゙ } \\ & \stackrel{5}{0} \\ & \text {. } \end{aligned}$	
$\begin{aligned} & \text { os } \\ & \underset{\sim}{\mathbf{o}} \\ & \text { z} \\ & \text { 茫 } \end{aligned}$	－高	
$\begin{aligned} & \text { 感 } \\ & \stackrel{y}{E} \\ & 6 \\ & E \\ & E \\ & E \end{aligned}$		
$\begin{array}{ll} \text { F } \\ \text { 刃 } \\ \underset{H}{3} \\ \text { Z } \\ \text { z } \\ \hline \end{array}$	$\frac{0}{3}$	
$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \\ & 0 \\ & 0 \\ & \text { 思 } \\ & \text { an } \end{aligned}$		888 0.8 0.0 0
(पquy) do No		8ిర్రి， 以न（
$\begin{gathered} \text { E } \\ \text { E } \\ \text { 吕 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { in } \\ & \stackrel{y}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	

Years.	Production of Crude Petroledm.-Continued.					
	$\begin{gathered} \text { Pennsylyania } \\ \text { und } \\ \text { New lork. } \end{gathered}$	West Virginia.	Ohio.	Kentucky. Tenuessec. and other States.	California.	Total.
1578	15.163.462	180,000	88,179			
1879	19,685,176	180,000	29,112		19,858	19,914.14f
1880	26,027,631	179.000	34,940		40,552	26,246,123
1881	$27.374,509$	151.100	33,867		99,862	27,661,238
1882	30.05 .5010 $23.128,389$	128,000 126,000	39,761		128,636	30,349,897
1×84	$23.12 \mathrm{X}, 029$ $23,772.209$	126.000 $90.069)$	47.6828 90.181		142.457	23,444.878
1885	20.776, 141	91.000	6,50,010		262,000 325,000	21,214,290
1286	25,798.100	102,0109	1.788 .970	295,000	377.445	20,285,115
1×87	22,354,193	145,(0)0	5,018,015	51,817	678.572	28,249,597
Total	330,312,443	4,664.000	$8,030,208$	276.817	2,289,709	845,573.17\%
$=$						

More than 50 per cent. of all the oll prodnced in the United States is from the Bradford and Alleghany fields, these two districts being credited with $11,099.512$ of the $21,42,041$ barrela produeed in the country in 1885 . The froductiou in these fields. however, is kept up only by the liberal use of aitro-glycerine, and even with the use of explosives to an extent belore unknown the production is ralliag off, aud it is a question if the vigor of these old fields ean be restored.
From the time of the first settlement of Califoruia by the whites there have been evidences, in the form of spriugs and seepage from the asphaltum beds, of the existeuce of petraleum in the State. No attemits, however, were made to utilize these deposits uatil the excitement fallowiag the Pennsylvania oil discoveries led to prospecting these surface depositis and the enger gearching for others. During the years 180° aud $18 t 6$ upwards of beventy conpanies, each with a large nomiual capital, were incorporated io Califoraia for the purpose of searching for petroleum. While a majority of these companies froceeded no further than to organize, having never expended any money iu actual operations, some of them began active operations, binking wells and driviug tuonels iu their search. Most of the work at thls time was iu Humboldt, Colusa, Cautra Costa, Sata Clara, and Los Angeles counties.
About 1875 the oil business in California look on new life. Two welis putdownilat year slelded eome 13 or 20 barrels each per day. Drilling by steant began to be more generally used in pace oi the spring pole. In 1877 the Ventura and the I'ico Canon wells produced daily 80 and 40 barrela respectively. Some co barrels of refived oil were made daily at the Pico refinery at the latter place. The nextyear 60 barrels of crude oil were for a mamber of days tabeu from the Boyer well, iu the santa Cruz mountains, every 21 hours. The oil bere, ths in most cases in Colifornia, whs lironght to the surface by pumplng, no fowing wells having as yet beeu ta the suriace by pu
From this time there has been a steadily increasing output of oil in Califorula.

There are, as far as now known, two oll fields in this state, probably origiually the same, but now divided by the range of mountains in which the headwaters of the North llate and Wind rivers find their sources
As jet no valuable depasits of petroleum or its concomitant, asphaltum, have been found anywhere in the far west. except in Califoruia. Recently euconraging indicatious of mincral oil are reported to have been met with at Puyallup, in Washlugton.

NATURAZ GAS.

According to Mr. Swank, natural gas was first used as a fuel In connection with the manufacture of iron and steel at Leechburg, Armstrong county, Peunsylvania, it 1874. when it was taken fron a well twelve huindred feet deep, and where it at that thme fur-
nlahed all the fuel required for fudding, beatha, and making steam at the rohing-mill of Messrs. liogeraand Darehfield. Between
 establishnemts for pucting and rollug. The usce of this new fuel spread so raplaly, that in 1807 there were mhety-six rolling-mallz athd steel woras cither wholly or in part using uatural gas: and Mr. Swank states that at the present time nearly one-fourth of all the establishment: of thiskind in the thlted states are thus enjplied with fuel. The territury in wheln are lacated iron and steel works using untural gas exteuds as fareast as Johnstown, seventyniue miles cast oi l'ittsburg. Nome gas is nsed in olllo, plped froin wells in the adjacent repion of tenuculvania, and sonic is also obtained from local wells. Pemnsylunla gas is also used to a limited extent iu West Virginia. Nntural gas has also been obtained at various localities in Indiana.
According to Mr. Ashburner, of the lennsylvanda Survey, thera were, in liky, no less than 150 dwellings, iG glass factorics, $3 t$ roiliug mills, and t5 other industrinlestablishments sumplied with natural gas in the eity of Pittshurg alone; and this was estimated as representing or displacing an anount of coal equal to tern thousand tons a day. In the following table is given the amount and value of the coal displaced by uatural gas thronghout the comtry, as vearly as it could be estimated, for the years 1s55-87:

1585	Amount. 2,5iki,000 to11s	Value. $4, \$ 57,200$
1886	5,761,000 -.	10.012,000
1887	S, 500,000	15,8029500

The rapld inerease in the amount of natural gas consumed during the past few years ls easily seeu in the above table. The surpassing importance of Peunsylvanis in general, aud of the Pittsburg District in particular, as consumers of this klud of fuel, and the progress which has heen made in other states in the development of this branch of indistrs may be seen in the following table, in which the detailed statistics for the sear 185 are given:

Amount of Coal Disilaced by Nitigal. Gas.

Locality.	Cual Displaced.	Value.
Penusylvania :		
Allcghany County.	4,8,0,000 tons.	\$1, 516,250
Remainder of Pittsburg Dis. triet	1.437.900 *	2,415,750
Western rennsylvania (out-		2,15,250
side) of Pittsburg District...	1,603,100 *	4,156,500
Total Penusylvania	7,9:31,000 tons.	\$1:3,749,500
New York	94,600	233.000
Ohio	446,000 "	1,00,000
West Virginia	53.500	120.000
Indiana.	208,000 "	$\therefore 00,000$
thinais	2,500 ".	6,000
Kausas	4,460	15.000
Elsewbere	4,460	15,600
Total.	8 804,520 tous.	\$15,838,500

The development af the irom and steel busiuess In the luited Iromana States during the lasthan century has been as rapid as that of ateel. the mining of coal. In man the total production of iron throughout the worla was aloout six million cons, of wheh fully half uns to be eredited to Great Britain: that of the frited states was ghout one million cons of one sixth of the whole amount in the
 the worla raried tutwew uivetwen and twentrewo millous the worla tous, averaging a little over twenty millions, of whichabout four. iltha here due to Englama, the culca satcs Rna ciermayy in the last filteengears the proportional produetiou of Eugiand has gradually declined: for the five years endiug 1×85 it was very nearly five-twellths, aud it 1 saz a very little over one-third of the total. England aud the [nited states togethermade in 1No vers neary tive-eighths of the total.
In regard to the geograjuical distribution of apecial producta, the Sinelal Agent of the Census of liso in charge of this depart ment-Mr.J. M. Swank-makes the followlmy statencont:

A glunce at the stutistics for lha shows that New England now makes but little pigiron, and that the santh mones considerable pik iron and searcely any rolled ron; that the west hus largels enharked in the manufacture of stecl of the Bessemer process, while N゙ew Jork cannot bonst of a sjugle Bessemer establishment, but has jreferred the opeu-hearth process: that New Jork makes most of the blooms that are made from ore, and jennsylvauia most of the blooma that aremade from fifgud seraf-iron; that Michiguv is the leading producer of charcoal mg-iron, and now makes $n 0$ uther kiad; that West Virginla has develoned a remark. ably active interest in the manufacture of cut nalls: that only five States muke Bessemer steel; and two states, tenusvirauia and Finf Jersex, mate nearls all of our crucilio stecl; and that leun.
 sylvania has made a greater effort t!
fucture all kinds of ironaad steel."
ficture all kinds of iron and steel."
At the clase of the rear 1*s7 there wert 613 hlast furnaces, then either completer or linilding (not connting any of which had been abaudoned, iu the (ulted sintes and they were this distributed.

Divislon.	Subdivision. Number.	Total.
	(North Atlautic.... 315	
Athantic.	Middie Atlantic...... 54	
	(South Atlautic 6	375
Central.	(Northeasteru Central 147	
	Northwestern Central..... 13	
	Southeasteru Ceutral 71	
	(Southwestern Central..... 2	233
Cordilieran	(Rocky Mountain.......... 2	
	Plateau...................... 0	
	(Pacific Coast............... ${ }^{3}$	
	Total...................... 8	613

Of the 613 blast furnaces, 213 were in Pennsylvania, Ohio coming next in order with seventy-eight. In the Northern States there were 459; in the southern 15t, of which forty-four were in Alabama (tventr-four completed and twenty bnilding). Of 414 iron and steel rollug mills, 169 were in Penasylranja, Obio coming next with fifty-fire. Of Bessemer and Clapps-Griffiths steel works there were forty-three, of which nineteen were in Hennsylvania and six in the sonthern States. Of open-hearth steel works there were fifty, of which tweuty-seven were in Pennsylvania and two in the Southerustates. Of crucible steel worss there were forty-one, of whieb twenty-oue were iu Penusylvania, and two in the southern States
The production of pig iron and of Bessemer steel ingots and raile in the United States since 1880 is stated in the following table, compiled from the statistics collected by the Aolerican Iron and Steel Association:

Pig-iron.
Bessemer steel ingots
Bessemer steel rails.

Pig-iron
Bessemer steel ingots
Bessemer steel rails
1851.
$4,144,253$
$1,374,247$
$1,187,769$

623,323 4 595,510 4, 1884. $1.514,687 \cdot 1,477.345 \ldots 1, \ldots 375317$ $1,284,066 \ldots 1,145,709 \ldots . .996,465$
1885.1886.
$4,044,526 \ldots 5,683,329 \ldots .6,417,148$
$1,519,426 \ldots 2,269,190 \ldots 2,396,033$

From the ahove tahle it will be seen that 1882 and 1883 wereyears of large productiou, both of iron and steel: that in 1844 and 165.5 , of lare was a considerable falling off in the amonnt of pig-iron mare was a considerable while the production of steel remained nearly the sane: made, while the production of stee remarned nearly the sanje: and it will also be noticed that in lss6 there was alarge increase in both iron and stee, waren inerease was continued in 1887-the production of the latter year being more than a million and a half of tons qreater than it was in 1884 . The increased use of Bessemer steel for purposes other than the mannfacture of rails is also clearly indicated in the following table:-
1852. 1883.1884.

$$
1885 . \quad 1886 . \quad 1857
$$

Production of Bessemer stcel........ 1,519,426 . . 2,269,190 . . 2,936,083 Percentrge used in rails

Bessemer
The production of Bessemer steel was forty-nine per cent. larger in 1886 than it was in 1885 , und 29 per cent. larger in 1857 than in 18i6. The total numher of eompleted Bessemer steel works in the Caited states at the close of 1880 was thirty-three, with sixty-aine converters. Pennsylvaniain that year made fifty-aine per cent. of the ingots produced: 1llinois, 21 : and other States, 20.
The rapid growth and present inmportance of the steel industry in the United States will be appreciated on examination of the fol. in the cuited siates whe the amount of steel of all kinds prodnced is given for each fifth year from 1870 on and also for the years 1586 is given for each
and $10 s 7$, in tons:

Year.	Bessemer steel ingots.	Open-hearth steel ingots	Crucible steel ingots.	All other ateel.
1870...	37.500	1.339	31,	
1875..	335,283	8.080	35.179	11,256
1880..	1.074,261	100.850	64.664	7 7,558
1885..	1,519.430	133,375	57,599	1,514
1886...	2.269 .190	218,973	71.972	2,306
1887...	2,936,033	322.069	75.376	5,593

Production The production of rails of all kinds in the United States is given i. rails. In the following table for the year 1867 , in which the manufacture
of Bessemer steel ralls began, and also for 1870 and for each succeeding tifth yeur, as well as for the yuars 1886 and 185\%:

The ores of iron are widely disseminated over the Unitcd States General and are of very diferent qualities; but there arecertain regionsul survey greaty predominating importanee, and certain geologica hori varions ores is derived. To each of these a few words of descrivtion mas iron ore he devoted
The great coal field of the Central United States is surrounded on the north east and south by the unlifted older rocks of the Wisconsin-Michigan, the Appalachinn and the Ozark regions
This hasin and its border contain the fucl and the ore on which and with which the material prosperity of the Undted States of the tweatieth eeatury must be built. It bccomes, therefore, of importance to ohtain a general survey of the distribntion of the various kiuds of iron ore both geogiaphically and in the geologjeal column
On the extreare edge of the border that incloses the coal basin we find in the north and east the Archean with its immense development of magnetic and specular ores. Next within this and overlying it is the Canadian-Cambrian series, the substructure of the first great longitudinal valley of the Appalachiansextending fromCanada to Alabama. This valley is not less remarkable for its enormons wealth in limonite ores than for the fertility and durability of its soil. Still fartherinward the shales of the Clinton age mark a belt of hematite ore extending from Central Alabama to aud throngh eastern New lork, and thence westward across the state. The belt thus ontlined will be seen, on the map, to have a breadth of from fifty to orer one hundred milcs. Within it, but less persisteat in longitudinal representation, are deposits of iron ores occuring-some here, some there-in strata of almost every age from the Archana to the Conl Jeasures, and the great coal field thus iron-bound, is itself rich in carbonate ores, generally accurfing either as clay iron stone, or as black hand, or in plaecs as a erriferons limestone altered to limonite. The map docs not attempit to represent the actual distribntion of the ores of the coal Measures, but only the areas within which they were sampled for this investigation.
On the South the Archacan rocks come to the surface only in eastern 11 issouri, and they here exhihit a great development of magnetic and specular ores. But they oecupy only a small area in the broad irou-bearing bolt on the map that stretches with a breadth of oue hundred miles or more northwesterly from Alabama to western Missouri. With the exeeption of the Missonri Archean ores this belt consists whojly of later ores, yiz.: specular and limonite ores of the Cambrian in Missouri, and limonites on the Subcarhoniferous limestones of Missouri, Tennessee and Kentucky.
On the North, far remored from the coal-field, are the extensive and numerous deposits of rich specnlar and magnetic ores of the Haronian in Northern Minnesota and northern Michigan. Farther eastward the northern border is represented beyond our field of Investigation by ores of dimerent kinds, but especially Arehrean in that part of the territory of the Dominion of Canada Iying north of the great lakes.
Iron lil various mineral conditions, and especially as an oxide, is among the most widely disseminated of the elements. It is a hase with a strong aftinity for the acids wost frequent in the waters circnlating in the upper crust of the earth, viz.: carhonic sulphuric and the organic acids. It also has a stronger affinity for oxygen, and in the presence of this it forms the nearly indestructible and-in the ordinary processes of Nature-in the absence of organic matter, almost insoluable sesquioxide. As a sesquioxide, in the presence of organic matter, it provides the onygen for decay, and its residuary protoxide is itself dissolved by the resulting organic acid, and enters into circulation. If the laboratory is a marsh or fond, the iron protosalt is reoxidized at the surface of tbe water and returis to the bottom as the higher oxide to again part with part oi its oxpgen and agaiu to be dissolved as a protoFalt, and this is coutinued until the organic matter is cousumed: then the iron aecumulates on the Lottom as a hydrated oxide, or limonite, or "bog ore."
Rock strata containing organde matter and diffused iron oxide have lived through similar urocesses, except that the iron, after furnjshing Its oxygen to the decaying matter and forming a solu-
able protosalt with the resulting organic acid，baa entered fito more extended eireulation
The most common solvents of iron in Nature are carbonte ucid and sulphurjc acid；the fatter becomes sulmportant agent in moving and concentrating iron，under eertain circunstances，as in solfatarie action and in the oxidation of pritiferona rocks like the Devonian shales of Pennsylvania and Virginia．Jut，doubtless， earbonic acid is the most gederal seme．Besides urising from the oxidation of organic מuatter coofined in sedimentary strata，it eaters the eartb as an accessory of rain wster，and more is taken up by the water from the decaying vegetablomonid；it is alsolib erated in depth from limestone by the aetion of chemicul processes and enters the ascending currents．However formed，it becomes an ucessory constituent of the water tbat jermeates the rocks， aud alone，or in connection with other agents，it decomposes the silicates and carries oft the irod as a biearbonate．It icllows the channels of flow unijlit reaches an arresting cause．One sucb arresting eause，of ultimstely great veononic importance，is the carbonate of lime in limestoncs and dolomites and calcareons sand－ stones，resulting in the replacemerat of lime by tron：unother of efual importance is oxygen．whether st the surface．where the soluable iron protosalt，emerging jn sprimg weter 1 s oxidized 0 a limonite，or In caverns or small cavities，where it is oxidized，and parting with its scid，is denositud in succuscire thin films to iorm stalactitic and namimillare masses of bydrated sesquioxide．there fore when we eonsicker the penerul dinusion of rour in trital and erystalline rocks in all sediments rod nll cruptions，and trital and erystanime rocksinall sediments add nif erujuinons，and remarkabse reciprocating relation in the most commonadd essen－
tial wrocessus of Ninture，it la not strange that we shonld find tial wrocessus of Natnre，it ls not strange that we shonld find it represent

The an口exed table，published by Mr．Swank，shows the produc tion of iron ore in tons in the leading ore－producing districts for the years 1886，2887：

Lake Superior mines of Nichigan add Whs vermilion Lake mines of Minmesota
1856.

Nissourf mines．
Cornwall，l＇enusyjvanin
New Jersey miues．
Chnteaugay mines，New York
Crown Yoint mines．New York
Port Heary mines，New Yurk．
Other lake Champlain mines，New York
Hudson River Ore and 1 ron Company，New York．

$3,263,961$
304.396
379.56
685，159
500，501
214.800
（0，054
298，808
15.000
75.000
17，728
18，000
36，000
24，106
81，650
344，481

Forest aster mines，New Yorb
Forest af Dean mines，Kew yo
Cranberry mines，North Carolina
Tennessee Coal and Iron and Railtond Conj－
pany＇s mines．
81,650
344,484
Obio（whole State）
－
Alleghany County，Virginia．
Preston County，West Tirginin
Calboun．Etowah，and Shelby counties，Ala．
bama
Total of the the above districts．
American Imports of lron and Steel．－It bas beed suffi－ ciently shown tat this country is a farge producer of iron and steel．The statistics of our production of these articles do not bowever，show the magnitude of their consumption by onr people． We export only very small qusutities of iron sud steel，princlphly in the form of machinery，but bave been large fouporters of iron and teel in all forms，which we hnve consumed in addition to the large quantities we bavc onselres produce fears bave heen as follows：The quantities of pig，bar，band．phate，and shect－iron， rails，old iron，and tin piates，are glved for every year mentioned and for 1852 and succecding years the quantities of other iroll and steel which could not be obtained for preceding yearsare added：

Years．	Long tons．	Years．	Loog toos．
1871	1．141，938	1879.	769.954
1872	1，183．066	1880.	1，836，919
1573	640.858	1801.	1．180，749
1874.	301.647	1ヶヶ5．	1.192 .296
1875	239.712	1×8.3.	6.54
1876	204，211	1×4.	654,696 $57 \times, 478$
1877.	211.408 211,102	1 1ini．	50×178
	211，102		

The production of gold in the southern States rose to nearly a mfllion of dollars a year in a few years after the first mining ex－ citcment hegan in that region．This was in 1838 gnd 1 isid．Then there was a falling off to ghout balf that：but from 1842 on，until the time of the discovery of gola the sonthern Appalacbian region bere was a rise in the prod $(1+2-45)$
The discoverigs of the precions metal in Callfornia have already geen noticed．By the end of the rear at the beginaing of which the first nugget of gold had been pleked up in surter＇s mill－race on the American River（ 1 \＆－18），miners were at work niong the weet－ Kiver，a distance of full a bundred and fifty miles．There are sup－
posed to bave been not le日s than fifty thousand men mang for gold at the close of the year 1450 ；and those who had good oppor－ tumity for observiug estimate the number thas engaged durlng the years lait and lefs at not leas than one bundred thonsand．At first some assistunce was had irom the aborjginal fiopulstlon；but in general there was uo hjred help，each man working for himself， or asmall mumbr of fersons owned the same clatm and mined torether us joint partuers．The earliest washlugs were along the togetber as joint partners．The earliest washings were along the
rlvers．on the＂luars．＂or gravel nceumulatious aloug the sides or on the beds of the streams，snd in the＂gulehea＂or ravides lead－ on the beds of the streans，sind in the＂gulehea．or ravines lead． ing down the steep sides of the valleys，or eanons，through which
theserivers flow．soon the rivers themselves were partlally turated these rivers flow．Soon the rivers themselves were partlally turned
from thefr coursus he means of wing－dams，or entirely curried to from thefr courses hy means of wing－dams，or entirely carried to
one side of their naturat channels by＂flaming＂or billding arti－ one side of their naturat channuls by＂fluming．＂or bullding arti－
ficial chancla of timber．The sands and gravels thus exposed were tbe most productive＂placers：＂aud those whotirst got hold the rich lars on the Americnb，Yubs．Featber，Stamsians，and other emaller streams th the heart of the gold region made some times from one to five thousand dollars a day jer man．Thest very rich spots were，bowever，soon worked ont，and It might be dayis or weeks before another of equsl richness was fonnd．Froms． the sprimg of 1848 to 1801 nearly all the minjog was of the e baracter thus indicated，that in the river－beds belug called＂wet－dig． gings，＂and that jn the rayjuce or gulches adjacent to the rjoce ＂dry－digeings．＂
The yleld of gold in California during the ten years of fts great－Jeadof est productivencss－namely，from 1850 to 1859 ，inclusive－bas been gold in
 During the pentad， 1 sio－Gt，there was a rapld falling off in the yicld，whlel may be acconted for not only by the aprosehing exhanstion of the river diggings，but also by the fact that the dis． covery of the Comstock Lode turned the attention of the miners in the direction oi Nevada，whiftherereat numbers of stamp－mill were transported hodily in the course of the years 1 m61 nad 1862, these mills beidg such rs bad been worked in California with little or no profit to the owners．

From $2 \not \subset 65$ on．the gold mining business in California nssumed a certain degree oi permanence；at least，the yfeld of the preclous metal became，for a number of years，pretty neary stationary， never falling below fifteen millons，nor rising quite as high as twenty millions；the average for the fifteen years，18\％5－79，being about seveuten millions．The figures for the years 1581－8\％，as gived in the reports of the Director of the Mint，are asfollows：

1881.	\＄18，200．000
1882	16.800 .000
1853.	14．120，000
1584.	13，600，000
1585.	12．700，000
1886.	14，725．000
1 m 7 7．	13，400，000

The most powerful impulse to mining operations，and the im－ medinte eanse of a somewhat lengthy period of wild exeitement and speculation，was the discoveryand guccessful opening of the so－called Comstock Lode－a metallferous deposit，which，consid－ ering all the circumstances and conditions eonuected with ft，may be truthfully said to be the most interesting one ever discovered． The conditions whieb have gived this lode ita pre－eminence are： the great extent sod depth of its workings；the rapldity with which they have been carried on ；the lurge amount of the preclous metals produced；the extraordinary temperature encountered： and．finally，the very fulf record which has been kept of the facts observed．
The Comstoek lode lies on the east slope of the Virglnla Range．The Com－ a northeasterly offshoot from the range of the Surranceadn．The stock region fs a desert．supporting scarcely any vegetation besides the suge brush．Potable water is found only in quantities too small to supply a settlemeut，and the town now depends for its snppiy ou frst opened in this inbospitsble region in ins9，but have since been pushed with sueh Vor that their produet is supposed seri－ busly ously to have affected the silver market of the world．They have produced ahont $\$ 315,000,000$ wortb of bullion，of wbich $\$ 175, n 00,000$ wield 115 at hoe rate on dishursed in dividends．
yield，$\$ 115,571,000$ bas been dishursed in dividends
The last great ore body discovered ylelded $\$ 111.707 .609 .39$ of which $\$ 74,250,000$ was paid in dividends．The number of men em－ ployed fil the mines on JuDe 1，1\＆80，was 2 ，5 70 ，and the sum an－ nunlly disbursed in wges is now \＄4．550，000．The ageregste horse jower of the machinery of the mines is 24．130．The total ledgth of shafts and gallerles exceeds 150 miles and the greatest depth reached is abore 3.000 feet．
The gold regions of the Cinfted States are divided into three see． tlons，the Parific，Rocky Mountain and Eastern．These three great divisions will be taken upand treated fuorder．

statistics of the pacific mivision．

In production of gold Caltfornfa still holds the first place．The Califorate fat deposits oi auriferous gravel contidne to yfeld largels，though their final exhaustion in view of the enormour bydraulle opera－ tions now belug prosecuted，is to be looked for at no distant day． previous to the discovery of the Bodie district the placer mines furnished more than two－thirds of the total gold output of the Sthe：but the large fleld of that distriet，amounting to over two sud tirce－quarter inilliong fu gold during the years in addition to the conslderable sllver product，has placed the deep mines about on a psr with the placers in point of productiveness．
on a pr with the placers in point of produetireness．
Callfornfa furnisthes 71.47 per cent．of the total ylacer produet of the Unlted states，and 40.09 per cent．©！ibe total gold jroduct of the decf mines，or 51.38 per ecnt．of the gold product of the country（from all sources）．
The produetinn of this Stato showe a considerable decline as Nevac
compared with that of the preceding six years. This is uot due to f the state, but to the decrease the suld of the leadig source. the Comstock Lode.
The bulliou product of Nevada represents an average of $\$ 4.16$ gold, $\$ 112.29$ silver, and $\$ 156.45$ gold aud silver for each square ile of its area. In this respect Nevada is surpassed hy Colorado, the figures for which are $\$ 25.98$ gold, $\$ 159.22$ silver, and $\$ 15.20$ otal.
The bullion product of (Tah is remarkably steady, varying laterly hut little [rom year to year while a marked impulse has been given to the mining industry of Arizona by the fine showing of the new Tombstoue district, iu I'ima county.
gate then, a very large portion having passed through private refaeries and thus losing their identity wp to the close of the fisca, year ending June 30,1850 , are stated by the director of the mint to have been $\$ 24,137,417$ gold. $\$ 727,296$ silver, gad $\$ 24,864,713$ total. This amount is farless than the actual output up to that date. Fague unotlicial estimates placiug the total yield as high as $\$ 00,-$ (0),010.

Of the gold product for the census rear $1880,59.42$ per cent, is rom placers and 40.58 per celut. from the deen milles. Idaho furbishes 7.32 per cent of the placer outpont of twe cnited States, 2.10 per cent of the deep mioe gold, and 4.43 per cent of the total gold: 13 per cent of the silver, and 2 bo ver cent of the entire product of the precious metals in the whole country. As a gold producer orodicer ield per squer mile is $\$ 17$ j5 geld $\$ 50 \mathrm{silver}$ and 40275 totgl Un this respect Idahostands fifth in noint of gold, seventh in silver. and sisth iu developed richness in gold aud silver.
Oregon is one of the oldest of the western miniug states, the discovery of gold within its limits haviug followed closely upou but in Califoruia. Its output bas never been very large in comparison with the yield of its neighbor state, but althongh the mines laye become secondary to its agricultural resources in point of importance, they still furnish oceupation and profit to many of its inhabitants. The quartz reins of Baker Coumty, in the astern portion of the State, adjoining Idaho Territory, coutinue to yield the larger portion of the total deep mioe jroduct of this State. The prevailing type of the Oregou ores is a free goid quartz, though rebellious gold ores, requiring special treatment, fre found a some localities, and a small amoubt of sllyer is produced iu Grant couluty
Of the small product reparted from the deep miues of Washingon, nearly the whole comes from Peshaston district. in lakima county, where gold quartz mioing is conducted on a small scale.
The Upper Columbia placers furnish over one-hulf the total placer field of the State
This vast territory. occupying an area of over half a million square miles, is for the most part still an unexplored regiou. The small amonat of prospectiug whicb bas been done has developed the Iact that Alaskacontains many gold beariag localities, none of which however, have get yielded any considerable output.

STATISTICS OF THE DIVISION OF THE BOCEY MOUXTAINS.

From an average anoual production of only three or four millivns, Colorado has suddenly risen to the first rank as a producer of the rrecions metals among the States and Territories for gold and siver combined, as well as for silver alowe, wbile for gold it holds the fourth rauk. In the relation of prodnction to area it holds the first rank likewise for gold aud silver combined, and for silver alone, and the third for gold alone. In the relation of production to popmlation, bowever, it ranks only third for gold and silyer together, secoud for silrez alone, and sixth for gold aloue. The total value of its product during the census year in gold and silver was, in round numbers, niuteen and aquarter million dollars; and, if we add to this the value of lead and copder in crude metal produced, we have a total ralue of metalle product of twenty-two and three-quarters million dollars.
The metallic production of Dakota is derived from the region of the Black Hills, and in greater part from Lawrence county, wbere Iree milling gold quartz ores of low grade are reduced in amalgamating mills of great size.
Montana bas within its boundaries the elements favorable to a large production of the precious metals-rich and taried ores and abundant fuel, both corl and wood. As yet. liowerer. owiug to lack of develomment and want of sufficient tramsportation facili. ties, it has not takeu its prover rank as a producer.
The mines of New Nexico bave heen attracting much attention hail thear practical development is awaitiug the completion of the railroads which are about to intersect it, regions borders.

The following table shows the yield of the states of the Eastern division, for the year 1880 :-

EAATEAN DIVISION

The relative quota contributed by each of the tbree great arbltrary divisious into which the country has been apportioned is indicated in the following table:-

Pacific Division	\$25,261,828	\$21,143,881	\$46,405,709
Division of the Rocky		-	
Mountains............ ...	7,878,189	19,917,490	27,795,679
Easteru Division.	259,646	49,586	289,23\%
Total.	\$33,379,663	\$41,110,957	\$74,490,620

The following table shows the production of gold and silver for each state and Territory during the year 1885:-

Alaskr	\$ 300,000	\$ 2,000	\$ 302,000
Arizona	880,000	3.800,000	4,680,000
Califoruia	12,700,000	2,500 000	15,200,000
Colorado.	4,200,000	15,800,000	20,000,000
Wakota	3,200,000	100,000	3,300.000
Georgia	136,000		136,000
Idaho.	1,800,000	3.500,000	5,300,000
Moutana	3,300,000	10,0t0,000	13,360,000
Nevada	3,100,000	6,000,000	9,100,000
New Mexico.	800,000	3,000.000	3,800.000
North Carolina.	152.000	3,100	155.000
Oregon.	800.000	10,000	810.000
Sonth Carolina.	43,000		43,000
TValı	180,000	6,750,000	6,930,000
W'ashigeton..............	120,000	70,000	190,000
Техя. Alabrma,Teunessee. Virginis, Vermont, Michigan and Wyoming	90.000	5.000	95.000
Total.	\$31,801,000	\$51,600,000	\$83,401,100

Gold and Silyer Production of the Different States fof THE YEAR 1857.

State or Territory.	Gold.	Silver. (Coiniug ralue.)	Total.
Alaska	\$ 675,000	\$ 300	\$ 675,300
Arizona	830,000	3,800,000	4,630,000
Culifornia	13,400,000	1.500,000	14,900,000
Colorado	4,000,000	15,000,000	19,000,000
Dakota.	2,400,000	540,000	2,940,000
Georgia	110,000	500	110,500
Idabo..	1,900,000	3,000,000	4,900,000
Micbigau	20,000	35,000	61,000
Montana	5,230,000	15,500,000	20,730.000
Nevada.	2,500,000	4,900,000	7,400,000
New Mexico	500,000	2,300,000	2,800.000
North Caroliua	225.000	5,000	230,000
Oregon	900,000	10,000	910,000
South Carolina.	50,000	- 500	-50,500
U゙さab	220,000	$7.000,000$	7,220,600
Washington	150,000	100,000	250,000
Otherstatesand Territories	20.000	250,500	270,500
'Total.	\$33.136,000	\$35.941.800	\$57,077,806

Proncction of Gold and Silyer in the Tnited States for THE IEARS 1850-1887.

Icar.	S-1d.	Silver.	
		Coining Value.	Commercial Value.
1880.	\$36.000.000	\$29,200.000	
1 s 1.	34,700.000	43,000,000	
1882.	32,500.000	46,800,000	
1883	30,000,000	415,300,000	
$1 \mathrm{SS4} 4$.	$30,500.000$	48,800.000	\$42,000,000
1\$55.	31.500 .000	51, 6000,000	42,504.447
1.386.	35,000,000	51.000,000	$39,445,315^{5}$
1587.	83,000,000	53,357,000	40,450,000

The \&unexed table still Iarther lllustrates this hrazch of the subject by showiug the consumptiou of the precions metals in the Lnited states in the industrial arts, as reported by the Mint, for the Jears 1850, 1881, 1883 and 1855:-

	Gold.	Silver.
1850	\$ 8,684,198	\$3.464,169
1851.	10,086,723	3,388,421
1883	14,459,464	5,556,530
185	11.152,120	4,598,413

Nearly alf the quicksilver prodneed in the United States comea rom Califoruia．The total produce of the Californian maces．

No oew discoveries of localities of importance have been made durivg the past iew years，and the mines which are now worked in California have beelt of late years in a rather depressed condi－ tion，owing to the low price of the metn］，the increased expense of froduction consequent on the greater depth of the workings，and paid any dividend in 18sas：but sinee that tinue there has bech a rise iu the price of the metal，and a somewhat lacressed activity in its exploitation．Two mines phid divlleads in lave：the dew Almaden，$\$ 118,010.25$ ，and the Etim，$\$ 0,000$ ；the former also juid． in $1885, \$ 2 n 2.663$ ．A considerable portion of the quieksilver mined in Califormia is used in that and the adjacent Cordilleranstates． a part goes to Mexico，aud there is a small und varying expout to China．The low price of silver bas materially affected the profits The ore of tia has beven disco
Tuited states，and there discovered in several tocalities iu the Tuited states．and there bave beell many attempts made to open mines in various parts of the country，bit up to the present time the amount of this metal produced has beea entlrely iusignificant． Amoug the loculities in the Appalachan region where mining for tin has been attemptel are，Winslow，Jhine：Jnckson，New Hamp shire：one on the northwestern slape of the mhe lidage，in liock－ bridge county，Virginia：hod one near Ashland，in Clay connty Alabama．The veins in the first wo localitios meutioned are un－ questionably too small for successfu！working．In regard to the other places，it docs not yet seewa to he known whether the to the tions there existing art sufticiently favoralle to whrant the pectation that they will become prof table．The fact that there are no apparent indications－judying from the descriptions which have been published－of superficial dejosits which could be suc－ cessintly streamed for tin seems a strong reasonfor bulieving that in no ove of these loealities conld there be asuccessful comperti－ ion carried on with the stanuiferons districts of the East Indies and carried onliath the stanuilerous districts of the Enst Indies and of Australia，where the detrital ores of tin exist in the great－ est abundance．Of course tin mining could be made protitable in this country if a sufficieotly high duty were laid upouthis metal． The stauniferous region from which the most has been experted is the Black Mills of Dakota，ai a locality of about twenty miles southwest of Rapid City．
Accordiug to the otticial report of Mr．A．Williams，Jr．，nn the Mineral resonrces of the United states，for the years inhess，a large amount of money has been expended in opening and jros－ pectiog the Ettamiae．and in crecting mills and reduction

So far as kaown，however，up to January，las！，there has been no prodisction of the commercial iniportance is Dhkota，nor Tin orehas also ments of this metal from that resinn been begun． Californas，aud sereral attempts bave seen minde of the state of ulion the market the abservatione been made to piat the minus region in dstu，did not lead him to the conclusion that it was likely region in 18iu，did not lad him to the conclusion that it was if
Zinc has become within the past few years au juportaut article of production in tbe Linted states
The busivess of making metalic zinc had not hecome of any im－ portance previous to 1575 ．Since that time it has increased ut t moderate aud jrecty umiform rate．
Thelatest and most reliable statistics af zine are those given by Mr．C．Kirchoff，Jr．，in the＂，Mioeral Resources of the Cnited States for 1855 ，＂as follows，in tons

State．	1いい。	12：33．	1－st．	12．45．	2isvi．	1.5% \％
Illinois．	16．250	14，992	15，509	27.345	15， 510	111． 292
Kansas	6． 5.513	－，041	7.017	7.591	7.578	30， 0.71
Missoluri．	2．2：；2	5.118	4，469	1，126	5．24］	7.6
Eastern and south ern States	5，05\％	4，868	7，019	7，216	1．0：37	6，64s
Total．	30，145	32，922	31．414	36.53	2m，071	44，94i

The production of zinc in the l＇nitudstates for the fear 1 ans is estimated at 50, got ons－moderate increace nver the preceding
year．This country furnishes，therefore，at the iresent time a little over one－sixth of the total production of the world，whleh has increased siace the beginaine of the present decade from about 225,000 to very mearly 300,000 tons．

For a loug term of year the prodnction of lead in the t＂nited states was limited to the Mississippi valley．The deposits occur in two districts－onte，the so－palled＂Thur Mines＂covering an aren of three to four thousand symare miles facladed withth the States of Wisconsin，Jowa，and Illmois：the other，the＂Lower Mines．＂io southeastern Missouri． The mode of the ocenrence of ihe galena in hoth the ipper and
Lower Mines of the Nississippi Valley is extremely simple．In
the Upper Minea the geologieal age of the group of atrata in which this ore is found is Lower silurian．fa these mines the jrincinal leat－bearing rock is a crystallime dolomite，from 240 to 275 feet in fortion of this formation ts somewhat arem erosion The phener very pure heavy－bedded dolomitu：the lower a similar rock，biat contaiuiug unmerous cherty or fliuty masser，This kroup of strata comanalug unmerous cherty or finty masses．This grouf of strata
is locally kown as the liper Magnesian himustone．It ig sepa－ rated from a rock of very similar lithologleal character，called the Lower \＄aghesian Limestone，by three groups of strata，which are commonly dealganted as the Blae Limestone，the Buf Lime－ stome，mathest．Flecers sabdistone．The first of these is a thin－ buded，highty foesiliferons，purelycalcureons rock；the second，a heary－bedded，arghnceous dotomite；the third，a nearly chemi－ raly jure guartzoge gandstone．The Blue Limestone form fifty to geventy let in thekness，the bub，HtLen to twenty；Hud the sabdstone，from elghty in a handrat The llare and the bum fimestonca are of ahout the same geological age as the Trenton ana bhek Niver groups of the New York teologleal survey，
The yield of the flyer Mines is gradumlly dimlufshlng：and firs wifl continue to be the case，since the extent of the lead bearlug rock is limited，and the vericml range of the crevices con baned to a moderate thickaess，there belug no probability tha bayag mines will be diseovered in the Lower Nugnesian Lime－ tone
The lead ore，of Missonri occur，and almost alwas in association with those of wine，in three somewhat diatinet districts in the sontheastern portion of the state，where also alckel and cobsit ores are inuma；in the ecmirat，and in the southwertern．The

The numerons lead mines opened and worted in sarion．
The nmmerons lad mines opened and worked in various States sitnated in the Appalachian region．From Maine to North Carollaa， have nearly alf prosed musuccessful ventures．A few have for a short time produced a moderate supply of this metal：ome or two have been quite permanedt，althongh rielding but a jery small amount of lead；while nuch the larger anmber have proved entire「ailures．
Whille the Misslsajpp Valley lead mines have furnished，of late Years，but small proportion of the world＇s suphly of this metal， the C＇nited states has largely increased its product； so that，from lind on，this comntry has furnished a quarter or more of the entire rmonat of lead smelted in the world
The total yiela of metallic lead throughout the C＇nited States for Vield or the years 1A7n－mis given（in tons）in the following talle．premared unetalle by Mr．Kirchhof，＊The desilverized lead of the cordilleranstates lud in is sapared rom the nod－argentiferous of the Mtsaissippi Valtes，（nited extends：back to the time when the argentiferous lead pres of the siatea． extends back to the time when the argeutiferous lead ores of the
conntry began to he of importance：－

Year．	Desilverized Lead．		Noll－Ar－ gentiferous Lend．	Total．
	Amount．	Per cent．of Total．		
18.3	17．899\％	47.7	19.943	37.982
1931				\＄16．410
15\％	S1， 16 in	55.5	22．002	$53: 250$
15\％	33,615	54.8	2：3：540	57.2045
1s－4．	4．2，310	620	27.415	73，125
1sic．	55， 401	70.6	23.402	A1，513
1581.	57.723	69.7	25，116	82， s \％
1×9.	62.1220	71.7	24.74	87.354
1×2.	77． 1417	73.7	27.473	101.510
1×2.1	w2， 745	75 3	25，907	
1×23	102 ， 6 is	848	19，465	$12 \times .533$
linut．	107.112	86.4	17.796	1 24.904
$\operatorname{lin} 5$.	9，3026	83.0	18， 72×15	114， 1554
1 1266．	1025.56	850	18，571	121.097
$18 \sim$－	121.0 ± 0	\＆ 3	22，454	143，4世22

The Eqgineering and Miniog Journal estimates the production of lead in the［＇mited statec for the year 1 mis at no less than lim． 700 tous．It is un interesting fact that ldaho ia beginning to be of constucrable importancensalead－produciog state．The frinctjal mises are in the cortr d．Nede district．
To other very important articles－such as lime，cement，and Non－mete building－ztone－nnly brief allasion can here be made，since thelr liferons mote of occurscnce is so varied，and the manner in which they are minerals． utilized so Ir regular，that they hardly come within the scone of the preantut wark．Only very imperfect statistics conld hathtalned in regard to such materiats as lime and buidingetones of wheh the Has is：＊o wide－spread and solithe under possible coontrol．Necording to the estimntes of the officer in charge of the divisinn of Mining thetistes of the I nited states（ieological survey．the walne of the
 ione and of ehesenrticles，greater than that of the fictroleam pro－ bor enel of thes nrticles．greater than that of the beroleam pro－ the wine of the now－metallifrous minerals maned ；and the five
 items of cont，werolenm，natural gas，ballding．ntonc，and time
together make un fully anetecn－twenticths of the sum total． together make＂p fully ainetecti－twenticths of the sum total．
Other important irticles are：sate，of the produce of which to

－Mineral Resonrces of the U＇uited States，for the jear 1857.
great that space may be found here for a few remarks on the geological mode of occurrence of salt, and the geographical distribution of the salt industry.
'the common salt of the world is obtalued for use in four different ways: namely, the evaporation of the ocean water, the evaporation of the watur of saline lakes, the evaporation of saline water or hrine ohtajued by horiug, and the mining of solid or rock-sult. By each of these methods salt is, or has been, produced in the United Statea; but the third of these is at present by far the most important source of supply of this substance in this conntry.
In the early history of the conntry the salt used was in purt imported from England, adod in part produced by the evaporation of sea-water on the islands adjaccut to the const in a low latitude, and especially Turk's Island.
The present sonrees of supply for comper iu the thited states are chiefly the Lake smperior region and the Territorics of Mouthat and Arizona. The produce of the other States is comparaively insiguificant.
The mines of Lake Superior, of the date of the opeuing of which mention has alreudy been made, are of a peculiar character From these mines only is copper taken exclusively in its aative state.
The "Cliff Mine," on the Keweenaw Point, which was worked from 1940 to 1872 to a depth of nearly 1,500 feet, is of historieal importance jn the development of the mining industry of the conntry, as being the first permanent dcep mine worked, and as being the first mine of any ore other than that of iron to pay regular dividends. The Ninnesota mine, near the Ontonagon river was another one of interest, and, like most of those to the west of Keweenaw Point. of a somewhat different character from that of the Cliff mine, since the cupriferous lode ran parallel with the formation instead of across it. These longitudinal occurreacca are, apharently, intermediate in character bctween contact deposita and segregated reina.
The Lake superior region, soon after it was first opened, in $\mathbf{1 8 4 5}$, began to produce largely and for many yeurs it aupplicd from seven to mine-teuths of the copper furnished by the Uuited States.
Thegrowth in the production of comper in the United States compled up to 1885 , raclusive from the best data ayallable, is shown ju the following table. It proves in a striking manner how preponderating was, until the past few seara, the influence of the Lake Superior district ; and again of one great mine in it, the Calumet and the Hecla, for more than a decade. In order to point out more clearly how prenonde rating has been the outpat of the Lake district from 1867 to 1880 , a column has been added giviog its percentage of the total product from year to 5ear. it shonld be stated that the yield of copper from pyrites is not here included.

Production of copper in the United States from 1845 to 1855 inclusire.

Yeara.	Total producthon.	Lake Superior.	$\begin{gathered} \text { Calumet } \\ \text { and } \\ \text { Hecla } \end{gathered}$	Percentage of Lake Superior of total product.
	Long tons	Long tons	Long tons	
3816.	100 150			12.0
1847	300	213		71.0
1848	500	461		92.5
1849	700	672		96.0
1850	650	572		88.0
1851	900	779		86.6
1852	1,100	792		72.0
1853.	2,000 2,250	1,297		64.9
18.50.	3,000	1.813		71.1
1556	4.000	3.666		86.4 91.6
1857	4,800	4,255		88.7
1858	6,500	4.088		74.3
1859	6,300	8,985		63.3
1860	7,200	5.345		74.8
1861.	7.500	6,713		89.1
1862	9.000	6.065		67.4
1863	8.500	5,797		67.0
1864.	8,000 8,500	5,576	.	69.7
1815..	8,900	6,410		75.4
$1 \mathrm{sti7}$.	10,000	7,824	${ }^{6} 03$	78.2
1 six	11,600	9,346	2,276	80.6
1819	12,500	11,586	5.497	95.1
1870	12,000	10,992	6.277	87.2
1871.	13.000	11,942	7.242	91.9
1872	12,500	10,961	7,215	95.7
1878	15,500	13,433	8.414	87.3
1874	17,500	15,327	8.984	87.6
1875	18,000	16,0*9	9,585	89.4
1876	19,000	17.055	9,683	88.9
1577.	21.000	17,422	10,075	82.9
1878	21.500	17,719	11.272	82.4
1879	23,1000	19,129	11.728	83.2
1880	27.000	22.204	14,140	82.2
1881.	32,000	${ }^{24} 4,3163$	14,000	76.1
1889.	40.467	25.439	14.309	62.1
1883.	51,574	26,653	14,788	50.1
1885.	74,053	$30,9,16$ 32,206	17,812 21,093	48.4 43.5

The following ia, io detail, the out , ut of the Lake Superiormines. In the majority of cases it is the othicial product, based ous smelting works returns: in a few instances it is an official estinnte oi the ingot product based on the known output of mineral. The Mass is the ouly larger mine in the case of which the ingot was estimated from the published statement of the ontput of mineral. The total is accurate, therefore, within a few thousand pounds.

The Production of Lake Superior Copper Mincs, 1880 to 1885.

Mines.	1880.	1881.	1882.
Calumet and Hecla.	31,675,239	31,360,781	82,053,039
Quiney.	3,696,263	5,506,848	5,665.796
Usceola	3,353,537	4,179,976	4, 176,782
Frauklin	2,336,4166	2,677,932	3,264,120
Allouez	1,318,471	1,473,007	1,683,557
Allautic	2,3:11,195	2,528,009	2,631.708
1'ewahic	970,509	1,876,244	1,482.666
Central	2,009,078	1,418,465	1,353,597
Grand lortage	67\%,860	-26.264	757,080
Couglomerate.	23\%,814	S816,091	734,249
Mass..	517,159	467,684	737,440
Copper Falls	0,615	649,121	557.500
I'hemix.	436,010	409,357	5:37,177
Mancock	3,032	571.597	540,575
Iluron	70,285	254.515	364,579
Ridge	229.853	235,616	102,936
Saint Cla	13,195	135.493	87,126
Cliff	78,962	79,382	66,053
Wolverine			25,623
Noncsuch	55,584	119,061	46,450
Isle Royal	79.469	47,3018	35,447
Minong	27,407	15,397	21,380
National.			17,060
Mindesota	26,033	24,227	10,672
Belt...............			5,625
Sheldon and Solumb	26,931	10,031	3,299
Aztee	3,757		3,129
Adventure Pcninsula	2,951	7.500	429
Tamarack			
Ogimar.	5,885	16.776	-207
Concord	10,464	28,849	
IV vergreeu Bluff	10,651	968	
Flint Steel River	28,080	4,140	
Madison.		1,634	
Northwestern.	916		
Ash Bed.		24,804	:2,636
Centenala.			83,554
Sundry companies-tributers... Total	6,166	1,642	
	49,682.337	54,548,909	57,155,991
Mines.	1883.	1854.	1885.
Calumet and Hecla.	33,125,045	40,573,585	47,247,990
Quiney	6.012:239	5,650,436	5,848,5\%
Osceola	4.256 .449	4,247,630	1,945,208
Franklin	$3.4 \times 8,708$	3,748,652	4,007,105
Allouez	1,751.377	1.928,174	2,170.476
Atlantic	2,682,197	3,163,585	3,582,633
Pewabic	1,171,847	227,834	
Central	1,268.566	1.446,747	2,157,408
Lirand Portage.	745.598	255,860	,
Conglonerate	222.117	1,198,691	
Nass.	654.474	481,396	365,000
Copper Fall	804,000	891,168	1,168,000
Phanix	512,291	631.004	344,355
llancock	484,906	562,636	203,037
Huron	720.213	1,927,660	2,252,484
Ridge.	60,155	74,330	63,390
Saint Clair	125,225	189,407	
Uliff ..	10,374	28,225	
Wolverine	699,6022	751,763	328,610
Nonesuch		23,867	28,484
1sle Royal		16,074	28,81
Minong.	3,542		
National.	26.406	87,368	162,252
Miumesota	6,226	1,144	12,ti08
Belt.	16,402	130, $\times 51$	27,433
Sheldon and Columb		9,828	
Aztec.			
Adventure		4.333	4,000
Peninaula	849.400	1,225,981	
Tamarack	7,485		181,669
Ogima.	3,000	1,106	12,000
Concord.			
Evergreen Bluff.		954	1,500
Flint Steel River. Madison			
Northwestern			
Ash Bed.		1.517	
Centenuial			
Sundry companies-t		21,696	34,000
	59,702,404	69,353,202	22,148,172

Moutana is next In importance to the Lake Superlor distriet as 8，eopuer－producing region．The mines are for the most partin the beigbhorhood of Bilte City，eovering au area of two and a balf miles long by ono mile wide．

Alhongh there has，of late yeare，been a falling off in the pro－ duetion of eopper in Arizona，so that at present thls Terrltory is overshadowed by Lake superior and Montana，it appears that ihis Is due to it unfavorable situntion with referemee to a market． rather than to auy oxhanstion of its eupriferons deposita，whieh are unmerous aud infportant．
Therearemany loenlities in the Atlantic States，from Malne to North Carolina，where mining for copper has been attempted，but In Jew of these bas anything like a frimaneat paying mine beed developed．The Virmont Cojuer Company．loeated at Vernou， has made，perhaps，the nenrest thproach to a success of any copper－ mining comprny on the eastern side of the Appanchinns，since operations were carrled oll here for many years nulnterfuptedy and with moderate profit．This mine was abandonedior a time． hut work has lately leeu resimed．The present high prlee of this metal has been a great stimmlus to mluing，and within the past few months many loenlitles whith had been abaudoned have hecn taken hold of again by eapitalists．This is true for both Easteru and Cordilleran States．

The effect of this excitement wlll be seen in the annexed table， arranged and condensed from the various officinl reports on the Mineral Resources of the［rited states．It affords a comprehen－ sive view of the progress of the cofper－mining business In thls country during the years iniz to lost；the amonnts are given in ＊011s：－

2－x 901	$3+5 ゙ 68$	$100 \mathrm{~s}^{\prime} 12$	7－68092	＋46．99	0nc： 0	81600	［日：
セi゙\％\％	$129^{\circ} \mathrm{I}$	$000{ }^{\circ} \mathrm{z}$	İC？		972	9 t	
示I＇80I	$892 L^{\circ} 05$	（i）$)^{4} 66^{4}$	1905	$80 \% 19$	いごら	29F\％ 07	
\＆nes	T： $0^{*}{ }^{+1}$	0 だ「	Kritl	120\％		2468	
โ $8 \cdot 815$	016 ${ }^{\text {a }}$	$6 \times 6{ }^{6} 9$	$48 T^{*} 0$ T		$010{ }^{2} 11$	tic． $0 \times$	－บ10\％．1 5
\＆日Cutit	1619	61\％ 6	49\％${ }^{\circ} \mathrm{C}$	＊Mick 61		$\because: 10^{\prime} \mathrm{t}$	
40，8i：	\％ $69{ }^{+} \times$			［19608：	（69）	以洔家	．．．．．．．．．otmmins ayw
－83＊I	－28uI	！Pit	cost	＇1s\％1	＇6481	－ 688	

[^311]The following table glves the amount auf r．．．lue of metallic pro ducts ln the Cnited States．

\＆3 will be seen from the tablegiven farther on，the produetion of salt in Ohfo and Virginis．at the the present time．is mach leas than that of Miclugan aud New lork．耳he advantages whleb he two last－hamed states offer are，ou tha whole，decidedly superiou two last－hamed sotes of the former；so that the woduction of oblohas re－ mained nearly statlouary duriuy the last slx jears，while thato
 the Kanawha Valley，oued the mosi mportant saleproducing
reglon in the comntry，has during that timedecidedly deercased．so reglon in the conntry，has during that time decidedly deereased． 50
that at present it is liardy one－teuth as large rs that of lew lork． that at present it is liardly one－teutbas hargers tha
and less than oneseventecnth of that of Michigan．

The fuantity of rock－salt which has berng shown ly geologieal observation．or proved by the drill，to paint withith the limits of the＂nited states is verylarge．To the wxistewne of large bodjez of this material th Western Nexw York had Mjehigan allusion bas nlready been nunde．salt has alstu recently been discovered in Kallsas，uy persous eugaged iu frospecting for oll aud gas，in
several locaijties, and in quantities said to be large. Kansas Kausas of salt has the miniyg for rock-salt been of any importexce ap the present time. A lotality where this material oecurs in aptore the existence of which has been known fer a large quan bay ong which became of invortanee during the coast the cire for is obtained to gos extent in Louisiana. sonrce rom mined at this locality bas risen, from 276,000 barrels The quantity mined at this 10
 Rock-salt also occirs in larke quantity in arions portious of the Cordiljeran region, and it has been mined at some locaities both for household and metaljurgical purposes. A deposit has been long kuow to existou the Rio Virgen, in Lincola County, Nevada, where the salt alwears to occur iu very large quantity, it being-as is gtated-exposed in a canon cut through it for a distance of two miles, the deposit occunying an extensive area, with an unknown, but certainjy very considerable thickuess. There are also large deposits of this niveral in Ctah. especially in san Pete County, near the town of Nephi. Most of the salt used in that State at preseut, however, comes from the sait-farms around Salt Lake.
The following talle gives, in barrels. the amount of salt prodnced in the United sitates from 1ss3 to $18 \% 7: *-$

States.	1883.	1884.	1885.	1886.	1887.

Genelai fommary

The astonishing rapidity with which the mineral and metallifErons resonrces of the cordilleran region have been developed
 duriug the past thirty fears will have been made apprarent to the reader who bas examined the freceding pages. In 1854 the present writer estimated the total value of the metals produced in the United States at $\$ 79,827.000$, of which nearly $\$ 50,000.000$ was to be credited to gold. \dagger The change which has taken plaee since that time will be seen on examining the foliowing tahles, which give, in compact form, resultsobtajned and fublished by the Chief of the Division of Mining Statisties, of the Thited States Geological Survey. The first table shows the total value of the now-metallic products of the United States for the years 1582 to 1887 , and a!so
*By W. A. Raborg, in Minerai Resonrees of the Uuited States for the year 1887, p. 611. A barrel is five bushels of fifty-six pounds each.
tSee Metallic Wealth of the United States, pq, 505-510.
the grand total of the metallic and non-metallic products for the same years. The second shows the amount and value of the metal. lic products of the United States for the years 1882-s7. The value of the iron is the snot value; that of the gold and silver, the coining value: that of the copper, lead, and zinc, the value ut New York; that of the quicksilver, the vaine at san Francisco:-
was eight miles weat by south Irom Cincinuati, In Iatitude : m^{\prime} 4. 1^{\prime}, having moved westward 457 miles in niuety years. The mosontherly point reached was that of 1830 , when the center was In latitude $3^{5} 57^{\prime} .9$, the most rapid movement whs in the period 1siotio-namely, efghty-one miles, this being due to the rapid transfer of a considerable populatlon from the liastero to the Pacitic States, consequent on the discovery of the kold of calilornia.
The division of the population by sexes, as shown by the census of 1880, was as follows
Males
Females
250114.220
I4, 4

The number of females for each 100.000 males in 1850 and 1×80 was is follows:

Tumber of females to 100,000 males

As a natural resuit of the conditions Infuencing emigration diunog As a malder to the newer states, it is fonnd that femmles are lencing from the older the the newer sates, it ine fonnd that femanes are Khode Ishand and Massachusetti, the excess of femates over male, is five per cent. or more; in Connerticut, New llampshire, North Carolina, South Carolina, New York, lirginia and Ahbama, it is from two and a hall to five per cent.: In Maryland, (ieorgin, New Jersey, Lonisiana, Tennessee, Peunsylvania and jaine it is less than two and a half per cent. The states, ou the other hand, in which the males are cousiderably inexcess of the females are those sitnated in the Cordilleran region, where minag is the chief fursult and wherc the conditons of life are such as are more easily borne by men than by women. In Michigan. Munuesota, Kansas and Nehraska, whicb are not Cordilleran states, but whichare on the extreme northern, western, or sonthwestern horicers of the Ceutral region, the number of females is from cighty to mhety her cent. of that of the males, and New Mexico is in tbosame cutcgory. In the Paclice corst states the aumber of females is from lifty to eighty per cent. that of the males; and thesame is trne of Colorado and Dakota, which are situated on the eastern bordere of the koeky Mountains, and which are partly agricultarm mud partly mining States. In those states in which minlng and stock-rinising are by far the predominating interests, and whicbare cutirely inclosed in the Cordilleras, vamely. Idaho, Xevadi, Wroming and Montana, the inequality in the numbers of the sexes is greatest, there being in these territories less than half as many females as malcs. The same inequality exists in the territory of Arizona.

Of the colored population the ceusus of 1880 showed the number to be $6,540,793$ to $43,402,970$ whites, or 15,162 colored in cvery 100, , 50 whites. The slight increase in this ratlo from that given by the census of 1870 ($14,5 \leq 5$ to low, 0nv) is believed to be chicily, if not entirely, due to the impertection of the carsus. of ind. The colored populatiou is stil, in spite of some sight "anigration, of them-south courolina Uississinpi and Louisians- whe colore are in access of the whites. In Alamama, Florida, (icorgin, Virgiula, North C'arolina and the District of Columbia the colored element runs from fisty to nimety per cent. of the white; in Arkanelementruns trom fisty to muety per cent.on thenty-nine to thirtysas, Texas, Tennessce and Maryland, irom twenty-nine to twentyfive percent.; in Delaware and kentucky, frominine $\begin{aligned} & \text { mer pent. in Missouri, Kansas, Weat Virginia, New Jersey, }\end{aligned}$ Ohio, Rhede Island, Penusyl vania aud Indiana, from two to seven per cent.; in all the remaining States it is less than two per cent.; and in most of them, especially the more northern ones, it is less than one per cent.
 by Drainage Basins

Drainage Basin.	ATeain sq. miles.	Population.	
		Total.	Pet sel. mile.
New England Corst	61.130	2,708.331	111.2
Middle A + lantic Coast	K3, 020	9.240 .897	111.3
South Atlantic Comst	13:3,010	4,114,563	31.2
Great Lakes	1\%5.240	5,604,147	32.4
Gulf of Mexdco.	1.795,9\%0	25, ¢04, 117	11.9
Total Allantic	2,178,210	45.717 .2983	22.4
Great Rasin. Pacifle Ocean	225.150 619240	$\begin{array}{r} 227.107 \\ 811,383 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$
Total.	3, 3.25 .600	20,155.is\%	

The distribution of the popinlation in reference to ehe topographical mud climatic features of the conntry is sinchas uaturally arises from the eonstant operation of two causers, hoth seting jn the stme direction. Fmigration and overfow from a morethickiy settled region toward one more thinly inhabited takea hlace, wlih insignificant exceptions, from the enst townrd the west. Immigrauts arrive from Europe, are landed on the A thatic coant-ahont three-fourths atome point, Jew York-and thence in larre part
find their way westward in the direction of lands unoccuried or only thinly settled. To the east of the M1ssi<airpi the land is aluost everywhere exeeptionally fertlle, the the elimatic conditions are, over a large urea, a- cxplaned elsewhere, very moch the sume, aud on the whole highly favorable. Soon after crossing the Miscissippi, we find that this farorable condition of things begins to change. Not only is the immigrant getting farther and farther irom his home, but he fa finding his envlronment less and lesa sulted to the develomment of those conditions which favor the exinteuce of a dense population. Niever, by any fossibility, can the region of small rafnfall, and, in large part, of rugged mountains, exteming from the first helt of states heyoud the Mississippi to the belt lying directly on the lacific coase, berome a densely pornTated bortion of the comatry. Thas dryer region is also the most elevated, as has already been fully cxplained. The reanle of the conditions thas fudicated are buftieleatly shown in the above table and the following:
fieoibraphical Distribution of the Popliation of the Činted
states in Accorbance: with the Tororifalifidal, feateres.

Region.

lophlation.
Perecut-
nge of
Total
Pondet.

North Atlantic (n nst
Middle Atlantic eon-t.
Cotht Atlantic Const.
Gulf (08st
Sortheastern Appalachian Region. Central Appalachian Region.
kegion of the lireat Lakes...
Interior Table-laud
Sonthers Appatachian Region
Ohio Valley
Sonthera Iuterior Table-Inad
Mississippi River Relt, sonth
Mississipy fiver Belt, north
southwestern Central Region
Coutral Region.
Prairie Region.
Missonri River Belt.
Western Píains
Hearijy Timbered kegion of the Northwest Cordiberan Region
l'acific Const.

$\begin{aligned} & 1 . f 16.242 \\ & 4 .: \% 7.194 \end{aligned}$
- 75.3 ± 7
$1.1250,051$
1,569,226
2, 314.223
43.470
5.716. 2.20
-2.695.145
2.442 .792
3,62, 5 \% $\%$
710.268
1.991.362
$21.932, \times 07$
4.401,240
5,722,485
835,445
323,819
1.122,237
132.311
715.784

52
$\times 7$
1.7
2.1
3.3
47
61
114
54
49
7.2
1.4
40
58
48
114
1
0

The larger dirisions of the country are represented as follow, hoth ns to the aggregate population and its different clements:-

Region.

In regard to the distrihution of the population of the linited Stutes in towns and cities, and the positious of those centres, the following may be stated:-
In 1780 there were in the country four citlea having a population of from 8,000 to 20,000 and two nhove 20.000 , but not out aurpassing Fi, 000 in number. Fifty years later, there were forty-four towns and citles laving a poniulation of 8,000 and over, and one of about $50 n \mathrm{n} f 0$. In 1880 there were 2sti towns with over 8,000 Inlabitanta
the lollowing statement gives the names and popmlatlon of all the eities having, in 1890, a jopulation of over 100,000:-

ぶıme.	Population in 1890.
New lork	1.513.501
Chieago	1,094.576
Philadelp]	1.044,894
Brookls:	814,3\%7

(1ve:8 2:0,000 ANT IBFI.OW SMOMO.

Sumber of ative followlag tables show the uumber of immigrats arrying in immigrauts the United States for each decade from 1821 to 180, and for each arriving iu sear from 1831 to 184%. The rearls arerage during each cecade Unfted rose rapidly, from 14.344 in the decade 1s31-30 to 294,469 for the states.

UYE\& 100,000 AND BELOW 200,000 .
Kew Orleans, La
Pittsburg, Peun.
rashington. D. (
Metroit. Milwaree. Wis
¿ewisville. K
Louisville, Ky Minu
Jersey City, ${ }^{\text {J. J }}$
Rochester, $\mathrm{N} . \mathrm{l}$
Omaha, Neb
st. Paul, Midu.
Providence, R. 1
Denver, Col
10dianapolis, fud
Kapsas City, M 。
Alleghany City, Pa
Ovea 75.000 asd Below 100.041
Scrantoa, Pa
New Haren. Ct
Worcester. Mas
Paterson N.J

Statement Showing Immigrant Arrivals in the Unitfd Statrs for the Years 18in1-87.							
From	184.	15\%\%.	188\%,	1584.	15×5.	15459.	$18: 7$.
British 1slands		161,408	157.361	121.754;	105,510	126.601	179,609
Rest of kiurope	1运, 109	111, (his	:34,13i	$2 \mathrm{nc}, \mathrm{sin} 0$	221,522	$258,8.87$	$328,6 \mathrm{ta} 1$
Chinn	20,71t	33,611	33_{1}	$\lambda 1$	57	8	$2 \times$
Rest of the World	99,643	91.619	71,488	53,400	23, e9,	7,431	8,61.5
Total	720,045	730,34	570,316	461.346	350,510	392,**7	516,י138

[1u this and the following table notice must be taken of the fact that for the last half of lias and for 1880 and 1887 the Immigration from British North America aud Mexico is vot iucluded.]

Still further light will Le throw on this subject by the following table, in whjeh the vatiouality of the immigration into the United States is giren in cousiderable detail Ior the rears 1881 to 1887, in percentages of the total amount. From this table it will be seen that Germany has Inrnished during the past seven years somerbat less than one-third of the total mmongration: Great Britajn and Ireland somewhat more than a quarter: Norway and Sweden abont a tepth; British North America about a teuth: Aus-
 from four to five per cent.; and Italy nearly the same. These nationalities together have furnished during the past six years about vinety-fire per ceut. of the total. The immigratiou from taly and Russia shows a moderately rapid, but pretty uniform,inerease rom jear to jear:-

Fercestafe Table showing the Nationality of Immigrasts INTO THE UNITED STATES FOR THE YEARS 1881-84.*

| |
| :--- | :--- | ---: | ---: | ---: | ---: |

Iercentage table showing The Nationality of Immgranta into the l'nited states for the Yeara lahj-sT.*

Great Britain Ireland. Alsstro-IIungary Belgium . Denmark. France Giermany Italy Netherlands. Norway and Sweden Kussia... Suain and Portugal Switzerland Other European Cou Chins. British North Americ All Uther Countries .

The immigration into the United States is very unequally distribnted over the surface of the country. An insuection oi the census tables and the accompanying maps shows that inmmigrants in very large proportion seek Northern regions. In the Sonthers States, with the exceptions of Florida, Loulsisna, aud Texas, the States, with the exceptions of Florida, Loulsiana, and Texas, the
forefgn element is practically uull. Virginia, North Carolioa. South Carolina. Alabama, Georgia, and Mjssissipul have less than one per ceat. of foreign-borm notulation; and no state south of leunsylvania and the Ohio River and east of the Mississimul has as much as four per cent. In the belt of States between the parallels oi 41° and 45°, on the other hand, the foreigu element is most gtrougly represented. Thns in Massscbusetts. Connectlcnt. Rhode Island, New York. Michigan, Wisconsin. Minnesota, und Dakota the ioreign-born population is over twenty-fie per eent. of the native, and in the two last-named states over fifty per cest. Iowa. Nebraska, and Kansas, forming n belt of states extunding sonthwesterly from Wisconsin and Jimnesota to the 37th parallel, bave a loreigithoria population ranging between tell and twenty-five per cent, of the native, except jn the rase of Nwuraska, where the ioreign is a little over twrity-five jer eent. In some of the thinly inhubited States fartber west the foreignelement is still more prominent, as in Colorado, fah, Nevada, Arizona, and Califormin. Lorn inhahitauts were to the natives fn tbe ratio of \%ovarb to 100,000 . But it must be remembered in this connection that the entre popalation of Nevadaat that time was ooly fi2, 2tif, and that entire popalation of Nevaduat that time was ooly tha, 2tif, and that
of Arizona 40,440 . In no state or Territory does the forefgu cleof Arizona 40,440 . In no state or Territory does the forejgn ele-
ment equal the mative, and only in Nevada, drizons. Inkota. Ment equal the native, and onis in revada, arioons, wakota, the two last-named States it is but little more tians bulf. Texus forms an exceptiou to the other southern States, the forelga element being of importance, especially in the southuestern portion of the State. Thestate as a whole has, however, only a little less than eight per cent. of foreign-born inhabitaots
The percentage jncrease of the native white element of the fommIation was, for the threr decades $1851-\mathrm{N}$, as follows:-

Garly in 1882 an Act was passed by Congress snspeuding Chinese immigration Into the lnited'states for the term of twenty years. This was vetoed by the President, and abother one was pussed having nearly the same provisions as the first, but limiting the time of its operation to ten rears. This Act was not vetoed; but became a law May 6, 18s2. This second Act is entitled "AD Act to execute certain treaty stipulations relating to Chinese." From and after vioety dajs after the jassage of this Act the entrance of Chinese "laborers" into the luited states was forbidulu, aud any master of a ressel bringing them bere was punishalso by a the of $\$ 500$ ior each laborer so bronght, and also by imprisonineut for aterm not exceeding one year. the pretrxt for this nnprecedented Act whs "that the coming of (himese laborers to this country endancers the good order of certain loanlitios" within the territory of the Tnited states. The terns "laborerg" was held to mean "both skilled nud unskilled laborers, and chinese held to mean boyed in mining."

Further legislation relating to the exclusfon of the Clinese from the United States was had by Congress in likx. The two Aets were lussed, the first hariag beed approved sept. 13 , ink and a sucond supplemeatary to this, Oct. 1 , of the same yesr. The object of these two Acts was to prevent the Chimese who were then the the Vnited States from returaing after lisving left this conntry. The first Act (approred sept. 13\}. allowed a mative of chana to re-
*The immigration 1 aio the Coited Statec arriving at the six princlual ports (embracing sbont ninety-eight per cent. of the chtire imnigratiou) was, for the first mine months of the year inat. 432,802 , a slight increase over that of the corresponding months of the preceding year.
turll wrovided he had a "lawíul wife, child or parent withta the foited states, or braperty therein of the value of one thousand dollars, or debis ol like amoust due htm and preading settlement." This privilege was entlrely cunctlled by the suphementary Act. approved (ect. 1: und as the matter now stands. ouly "Chinese Excluslon oflicials, temehtors, students, merchanta, or travelers for pleasure or of Clidest curiosity are fermitted to enter he ("nitud sutes." Furtbermare, if is provided that lin arder to Lecome entitled to such entrance they must "obinis the iremissifon uf the f hiuece Govervment or other fovermment of whirh they may at the time becitlzens or sulyecte." This luermisiona, and the personal identfer of the party having obtafued it. muat lie suthentiented by the diplonatic or consular reyre-cntatise of the t"nated states at the port or place from which the fisrty eomes. It is further provided that any master of a cessel landing. or attumpting to land. sur Chinese lnborer 's in contravention to the wrovisions of this det shall be deemed gullty of a :nisicmemior, aud, on cumviction tbereof, shall be punished with a lime of not less than tive hundred nor more than one thomsand doliars, in the dicereton of the court for ucry Chmese laborer or other Chinese person so bronglit, and may" glso be imprisomed for a ferm of mot leks than one year, dor more than five gears, in the diseretion of the Court."
I'rovisiuns have also ucen made by det of Congress for the regu. lation of the immigrant "arrying fusine as and rules have been Firescriber as to food, water, light, space occinnied, etc. A tax of fifty ceuts is also imposted an ull immigrants lameling in this country to be lhed " fa defraying the expenge oif regulating inmigration mader this Act, and for the core of immigrants arsivitge in the (nited sitates. for the relief of such as are fu distress. ete"
13y an Act of Comgresin. Hiluroveri Ang. 3. 14*2, it ls provided that Rnles for anconvict, lunutic, filut, or person "thable to ake care of him. immiswlf or herself without heroming a fullic charge" shall be permit- grants. ted to lsnd. Under the provlsivns of this Act it appesrs thst from 1, Wh to sept. 25. JAhi, T.7ni immigrants bad been recurned from the Cnited States to their own conntriez-or an average of abont 1.300 rersons a rear. Of those thas returued from 183 to 1468 tuclusive, there were 27 convicts, 371 lumutles, and 131 fdiots. The remainder (2,25 persous) were returned as " liable to liecome a public charge." +

THE PURLIC LANDS

The cmjgration irom Europe and other coluntrles consistslargely of people secking lonnes in the New Worlal: and this want is chlelig supplied by the purchase of govermment luma-.. public lumds" as tismally designated by the anthorities-mat is, of suen lamd as is offered forsale ly anthority of the (icueral Government nader the direction of the ficueral fand ollice-a hranch ur suldeanatment of the Departmont of the Interior. It is desirable Extent fhercfore, that the wayln which the licaersl (iovernmant came in and possession of thesc lands shonld be brifily stated, and some jdea lositior fossession of hesi hands shomat be brielly stated, and some idea rlie bonndaries of the finited st
The boundaries of the linitedstates as fixed by the provisional treaty made with Cirunt liritaln ju 17..2, and by the dethnitive treaty
 the (irent Lakes and east of the sljusissiphs, as far sonth an the burallel of si and the southern boundary east of the Nississippi. as thus establishcd, nearly along the sist parallel. was, in 1795, reallirmed ly treaty wath spais, by whlels the line between the tnlted state and the Florldas was fixed; but dificulties soon arose in regsed to the northeru boundary, loth in its enstern and western furtions. Which were, during ninny years, the subject of herater discussion, and wheli more than once threatened to involve the two countries, (irant Liritain and the Lnited states, in war. The mastimportant bolnts, were, bowever, peaceably settled in lslfi, gud the jast point in dispute fimally disposed of, by refereace to the Fmperor of Germany na arbitrntor, in 1×-2.
At the time of the adoption of the constitntion by the ariginal thirtewn states. most of them had claims, rather vague, and in many cases decidedly coullicting, to a more or less indefinte area of condtry west of theirscttlenedts, and extending back to the IIfsissimpi River. After much discussion, the siates baving these clalms, infoenced by the distmet realization of the tronthe which would ensue in came an attempt was made to maintain them, did. in response to a resolution of Congress, eonsent to a transfer of in response to a resolutiou of Congress, eonsent to a transfer of
these claims to the E'nited States. The first cession of this kind was that of New York, In 17s1, Aind the Jast, that of tieorgla, in 1N0:. The region thus ceded was diviled finto two territories, one of whinh was ealled the "Jerritory Northwest of the Kiver Ohio." the other the "lerritory Nonth of the Liver Ohio." This region formed the Inclens of the public lands of the Inited States. This did mat inelude the prescint sitates of Kentucky and Tennessee. the former having been admitted to the Union without any elalm on the part of the United sitates to proprletorshly, in the soil, and similar rights in regard to the later having beed relimqulshed by Act of congress. The total area of the Tnited states at this time was ahout $=0,000$ equare milles. The first addition made to this Was ly the French cresion of the undutermined areaknown as Loulsfana. This was bronght abont ly Jefferson, who secogalzed the fact that France would not be uble to hold the region against the English, with whom Homaparte, nt the time (1n(0;-1:04) First
*This tax is not collected from imnigrants coming irom Canada or Nexileo.
faverystrlngent det wns missed Ly Compress in 1x.5, prohibito ing the in purtation and jmmatgration of foreigners and aliens"unJer contract or agrecment te ferform Iatior in the United states. its Territories, and the JHstrlet of Columbia." This Actcan have little practieal effert on the number ofifmmigrants arriving in this cominty, mur bas the writer feemable to grocure any definite information asto whether any jersons have ever been sent back under its provisioas.

Cousul, was about to go to war. The treaty of cessiou with Bous partegave no precise limits to the territory ceded. but ony de scribed it as beiug the same as that ceded by span to France accordiug to the treaty of salllderonso. this lagueness was, 10 doubt agreeable to the wishes of the American negotiators, who did not lack foresight, and who must easily have compreheuded the fact that the anore vague the terms of the cession the better the chance of a future extension of the claims of the Tinited states westward. Fu point of fact the French cession did not include the wes west to as it was afterwardheld to do for the French hat no clam whaterer to the region west of the bead of the Missouri. As a consequence of this cession, however, this vast the . 1 regin did come in posses ary having been finally settledin 1sid. after ninety years of discus sion. The final settlement was by a reference of the point in dispute to the Emperor of Germany, who decicled in favor of the linited States; the main question with regard to the extension of the boundary along the line of the 19 th parallel to the Pacific, baving been settled in 1846 by the Weloster-Ashburton treaty, which fxed the boundary asfar west as tbe Straits of Fnca. Thiscession of Louisiana, as firally settled by treaty with England, added largely to the aren of the United Staten, extending its limits to the Pacific ocenn, and giving that comntry complete posscssion of the Ceutral Piver system of the continent. The cost of this cession to the Uuitel states was about twenty-three aud a balf milliou dollars in principal and interest
A further addition to the territory of the Inited States was by a cession from smain of the territory comprised in the present state of Florida. Whicb took place in 1si9, the area thins convered bome about $5 x, 680$ square miles, and the cost about six and of half mil lions of dollars. Previons to this ression, however, the United lions of dolars. Previous to this c'ssiom, howeter, the unted not promulgated until isls, taken possesiou of au gria of ghout not promilgated until ish. taken posisession of au arta ol flout ish doverumeut as its property, but wbich claim was relinquisbed ish hoverumeut as its
by the cession of 1×14.
The bext acquisition of territory by the United states was the result of the aduission into the [miou of the fepmblic of Texas.a former province of Mexico, baviug an area of atin.7su synare milus This annexation led to a war with the country to which Texas had formerly belonged, the result of which was the conquest of Nexiro the occupation of its capita] by the [taited States urmy, and the dictatiun of a treaty of peace called the "treaty of Gatidalupe Hidalgo." which was proclaimed July 4. 1848. By this treaty the southeru boundary of the United States was established; but sub sequently, Dec. 30,1853, a purchase was made of a strip of land lying sonth of the dila River in New Mexico and Arizonu, and contaiuing about 47,300 square miles. This is known as the "Gadsden purchase.
Glaimo of The clai
Great Brit
West of Fague, it is not possilile to state, with any aprioach to precision what portions of this area originally belonged to the two powers in question. All that can be said is that, remotely, in consequence of the nurchase of "I ouisigna" from Bougarte and more directly as the result of treaties with Great Pritain and Mexico, settling the northern aud sontheru boundaries of the United States, the the northern aud sontheru boundaries of the United States, the last named conntry came miles of land, as shown in the following statement of the square miles of land, as shown in the following statement of the
mature and size of the aleas added from time to time to what was uature aud size of the aleas added from time to time to what was ment as au iudependent goverument :

	Square miles
Orioinal area of the United States.	819,145
Added by purchase of Florida, 1819,	
including $9,7 \pm 0$ square miles pre=	
vously in dispute, but in posses.	
sion of the LTnited states....	58,680
Annexation of Texas, 1848.	265.750
Gadsdeu Purchase, 1853	17.330
Purchase of Louisiaua and cessions by	
Mexico, 1604-3x.	1,804,665
Total.	3,025,600

Obe other addition to the area of the United States was made in In 1867, namely, by the purchase from the fussiau Government of the region known as Alaska, Which comprises an area of abone 530,000 square miles. The price paid for this piect of land was $\$ 7,200,000$. The purchase oi this territors, the nearest point of which is four hundred aniles distant from the uorthern line of Washiugton, was an entirely unprecedented act on the part of the United states, all the rest of the possessious of this countrs form ing one compact mass of land. Whenever, in the conrse of this work, mention is made of the Cnited States, it will be understood that Alaska is not included, unless a statement to that effect is syecially made in the savie conmection.

The entire area of the public lands of the U'nited States (exclu sive of Alaska, no portiou of which has yet been snryeyed) is esti mated by the Commissioner of the hemeral Laud Oftice, in his re port for the year 1×26, at $2,836,-25$ square miles, or $1,815,504,147$ acres Of this area there bad been surveyed, up to June $30,1886,971,174, i 73$ acres, leaving $844,329,269$ unsurveyed. In reference to this un survesed portion the Commissioner made the following remark "The volume of land in the unsurvered portion of the publio domain suitable for bomes and suliject to settlement under the laws of the United States is of comparatively small proportions.
Of the public lands of the İnited States a large quantity has beeu sold for cash, and a much larger amount taken, inder variou: Acts of Cougreas, for scbools and other edncational murposes: as mjlitary hominy; as "swampland. given to the respective states where it occurs, or has been claimed to occur; as a bonns for the
coustruction of various lines of railroad, especially those travers ing the contiuent from east to west: as "homesteads" to actual settlers, and for various other purposes. It is impossible to state the exact amonut of the public land which has been thus disposed of, but it is certain that nearly all the ralnable portion of the aation's great iuheritauce bas been taken up already, or bas Hassed ont of the control of the Governmeat. Hn regard to this point, the following quotation may be made from the introduction to the volume eutitled "Statistics of Agriculture," forming a part of the report of the census of 1850 , and published in 1880°, the remarks bere quoted being from the pen of Guveral Walker, formerly superateadent of tbat censis:
"It thus appears that, notwithstanding the imposing total of Valuab $1,400,000$ squaremiles of still unsettled territory, the amount of land land available for occupation for ordinary agriculture is uot large. The already Public land (omimission in their report of 1880 , say: "It was esti-gone Public band commission in their report of 1880 , say: it was estiStates) of lands over which the survey and disposition law's had extended, lying in the West, the Fnited States did not own, of arable agricultural public lauds, which could be cultivated with out irrigation or other artificial appliances, more than the area of the preseut State of Ohio, namely, $25,5610,960$ acres. The quantity of land taken up in the arable region during the year ending June 30,1880 , was about $7,000,000$ acres. The commission, therefore, reaches the startling conclusion that, at the same sate of absorp tion, the aratle lands so situated will all be taken up within three years, or by Jnne 30.188%.
"It is indeed an astonishing amnouncement that the public land sfstem, so far as relates to agrucultural settcrs, has virtually come to an end; that the bomestead and pre-emptiou acts are practically exbausted of tbeir contents.
Profescor A. B. Hart has compiled from pablic cocuments the following approximate statement of the manner in which the pubic hands had lreen disposed of unto the frarious periods mentioned The numbers gaven indicate acres

Date.	Sales.	Grants to individual: other than for internal improvements.	Grants to States other than for internal imHrove ment.	Grants for internal improvements to states anct (orporations.	Total.
To 1790.	1.487,986	$35.046)$	-		1,52:3,021i
1801	1,:14,917	2, 134, (titio	- .	2.734, 577
1820-21	19,423,212	7.2ti0.152		33.375 .901
1841	93,043,927	(1), 7 ($5,0,0 \% 3$	$8, \times, 0.604$	1.780.70.	118.420,119
I*61	161.796, 16	$75,16 i 6,345$		31. $600, \mathrm{Si}^{(2)}$	$3 \mathrm{k} 2.426,5024$
1381	181,837,35\%	140,524,032	154,187.144	162,230,09!	642.765.681
1884	192,544,116	167,483,506	158,417,594	$162,230,099$	680.715 .315

Fu reference to the wasteful and reckless manner iu which the mblic lauds of the United States had been given away, until but ittle of value remains, Professor Hart makes the following re marks:-

Experts in the Land Office assure us that, making all deduc. tions and allowances, the remaining lands are worth npwards of a thousand million dollers. There is no evidence in the past policy of the government for believing that we shall actually net one enth of that amount. The greater part of the region is officially classified as 'desert lands, and is for sale in tracts of six bundred and forts acres, at \& dollar and a quarter sn acre. Nothing but the temporary increase of pre-empticn enables the Labd Office at prestrit to pay its rumbing expenses ont of income. The golden time is past; our agricultural land is gone, our timber lands are fast going; our coal and mineral lands will be sampped up as fast as they rrove raluable."*
*Quarterly Journal of Economics, vol. 1, p. 181 (number for Janu ary, 18*7).

AGRICL＇ITC＇RE

The followiug statements and tables present a suncinct vew of the uature and importance of the urricultural interests of the I：aited states，begiuning with the cereals．

I．－THE CEREALS

The following table shows the production of the cerenle in rash－ els，as returned by the census of 1 sinu：－

The production of barley was largest io Calitornia（twelve and a half million busbels）；otber states producing considerable quan－ tities were：New York，Iowa，Minnesota．Nebraska，Ohio other State produced as much ss one million bushels．In wat the total production of harley fin the［＇nited states was 59.42 w ．wo bush－ els：of that anount California produced $16.058,000$ busbels；and Cew York，Minnesota，Wisconsin and lowa each over five million and less than ten milliou turhels；while Sebraska，Michigan and Whkota each produced over one million mad less than five million bushols．

The total production of buckwheat within the I＇nited States，ac－ cording to the ceusus of 1,40 ，was $11,217,327$ bushels ：of this amonnt New York and lennsylvania produced respectively， $4.461,200$ Hinl 2．at 320 bushels．No other State producci as much as halif a mil－ lion bushels；the production of this cereal in the fiulf states bejnif lextremely snall，that of the Pacific states being also very insig extremely small，that of the Pacific States being also very insig
nificant．Lo one of the States，other than Nw lork and Penasyl－ vavia，produced as much as half a million bushels．
In tow the total production of buckwheat was 11 ，wion 000 busbels， or almost exactly the same as in the last censva year（isis）．
Indian coru is the most bulky crop among the cereals，the total
 The principal production of this crop is in the helt of atates lying north of the Ohfo，and in the same latitude on the west of the Nississippi，as will be seen from the following thble：－
state．
Production in
Illivois．
hushels 141 1．79．
iowa．
Missouri
Indiaus
Ohio．．
325.792 .481
275.024 .297
$202.4 \times 5,723$
115.48 .2300

111，М－7．，124

These five states produced，as will be seeu，considerabls more than half the total yield of the country in the year for which the statistics are given．Is we go vorth，south，enist and west from this belt we find the ricld of Iodian corn diminishing．Still，this cercal is a product of importance even as far south as the ciulf states，but is of comparatively little consequence in dew Eugland． the total production of the six New England states jn 1879 being ouly 8．376，133 bushels．
In insi the total yield of Indian corn was $1,665,441,000$ bushels， aud the States producing over one handred million bushels each were：

Production in
states．
lllinois
Missouri．
Kansas
Indiaur．
lebraska brshels in 1×86.

2001，815． 0×10
190，257，1100
143，709，000
126．112，1000
118.795 .000
dot Iu－These six States produced in that year considerably more than corn．half of the total，and the gradual adiancernent westwart of the agricultural development of the country is shown in the appear－ ance of Jebraska in the above column of figures as a producer of orer a bundred millions of bushels．The yicled of Indian corn in orer a hundred ining to the census of 2．570，was 4.706 .710 bushels，unt this State，according to the census nf 1.50 was kota for the same jears were 233.140 and $2,000, n 64$ hushels．
of this crop，so important as it is for home consumption，but a very small fraction is exported．The following table exhibits the total produce of the country for the years since the ceusus year （1879）up to and inclading the year kami，together with the percent－ age expmoted for each year．
Year
1840.
1881
1882
1883
1884
188.
1880.

Production
in bushels．
1，117， 134,54 ？
1，194，916．001
1．617．025．100
1．2） $10,16,59$. 1.99 .524 .000 1，（1655．541，（100
lereent． exported．
5.5
3.7
2.6
3.0
2.9
3.3
2.5

The field of corn in 1×8 Is glved Ly the Department of Agricul－
 TH0，000 bushels．Since 1，79 the home consumption of this cereal has averaged about twents seven bushels per anuum for cach Inhubj－ tant of the country； 10 the tea year preceding it averaged atou＊ twentr－five bushels．
The total yield of oats，as reforted by the census of 18×0 ，was 407 ，nis，ges bushels．The distribution of this crop is pretty nndform all over the country，with the excention of the Gulf and lacific Const states，where the yleld of this cereal i－very small，barley taking the wace of oats in Chlifornla almost entrely．
The following table exbibits the production of oat－in the tonted states from lism to 1NR4．

The increase in the number of acrecultivated in oats since the cusils year has heen very marked：more so than in the case of wheat or Indian corn．The average for the derade．1．70－79 was

The amount of rye grown in the Conited statec as returned liy kyo． the census of 1×40 was $10,31,595$ bushels；the prineipal－tates where this crop is raised being，in the order of thetr yield，lenasyl－

 cereal in the stutes soun of kentucky and Virginia is extremely cereal in the shates sountion kentacky and some rye is given as grown in everystate and terri－ tory，excent Arizona and Nevada．The jroductiou of rye in live was $2 l$ ininoo tushels ：Kansas appearing this year as a pro－ live was
dincer of a litile over two nillion bushels，and thebraska of a pro－ one milliou．

Wheat is an extremely important crop in the l＇ntted states，and wheab in the ouly cerenl of which the export is considerable．The great ＂hert－growing states are those along the north side of the Ohlo， from New York westward und across the Misslssippi into lowa， Kunsas and the sorthweat，including Sebraska，Minbesoth and Dakota．The yicld of the census year（ 180.1 ）was 459.379505 bushels． In that yenr．Illinois．Indiana．Ohio．Michigan，Minnesota and lowa each produced over thirty million bushels：the total yield of those six atates whs somewhat more than half that of the whole
 bishels），but the distribution of this field was somewhat differ－ ent．There were in that rear also six states prodicing each more than thirty million bushels．Of thesesix，four are umong those included in a similar category for the vear laj！．Michigan and fowa havelropped ont of that list and jakota and california lowa have bropped ont of that ．The and patota and calicornia nust be inserted in their fuces．The－e zix thtes，he veinre 1 ro－ duce alnost exactly half the edtire neld of the conntry．What is

 than 52．106．006 hushels，or more than one－tenth of the whole crup of this eereal．Other states of importance in lani were Missouri． Iowa and Michigan，each of which produced vetween twenty and
thirty millions of kushels：and Jelsraska，Uregon，leunsylvanis， thirty millions of bushels；and Nelraska，Uregon，leunsyliania，
Winconsin，Kentucky and New lork，each of whis prodiced ve－ tween tenand twenty nillions of bushels．
In the tabular statement of the yield of wheat for the year 1ns7， as given by the Department of Agriculture fortretwo states and Territories appear as producing more or less of this cereal，hat the quantity grown south of Kentucky and Virgiala is very small The yield of the cinlf states is eutirely inslguificunt．Florida and Lonisiana not appearing at all in the list；and that of sew fing hand is equally unimportant，that whole froduce of that section ${ }^{\text {：}}$ the country being in that rear ouly it 54 ？lushels．
The following table gives the production of wheat，total value． value per bushel，and amonnt exported for each of the years． 1840－57：－

Fear．	Total produc－ （ion）． （Bushels．）	$\begin{gathered} \text { Total wilue } \\ \text { of } \\ \text { crop. } \end{gathered}$	$\begin{aligned} & \text { Av. value per } \\ & \text { bushel. } \\ & \text { (in cerise.) } \end{aligned}$	$\begin{gathered} \text { Amt.export- } \\ \text { (Bushels.) } \end{gathered}$
1：404）	$415,549,568$	\＄57．201， 50	95.1	1，40，321．514
18．31．		$1.66,50,427$	119.3	121.80 .384
1802．		＋14， 602,125	N． 2	147 ． 111,816
1：43	421.065	343，3649，272	91.0	111，534．183
1204	512.830 .000	350.42 .200	64.5	132．，no．ni\％
15：3．	357．112．000	25.5320030	77.1	34， 5655.598
1：ami．	4.57 .213 .000	$314.226,020$	6 6． 7	153．204．370
1：5\％	1．56．239，（0x）	$310,612.960$	64.1	
Average	44×315.693	373.791 .413	－3．3	133．5400，076

The estimate of the Agricultural Department of the gletd of wheat for the year 1,45 is 415, ，misi，（M0．
The grass crop is well uuderstood to he the grentest of all the crops of the＂ulted siates．Altogether．In addition to the very large amount cousumed from the gronnd durlug the grazlug sea．

[^312]son, the value of the bavested hay reaches nearly to that of the greatest of the cereal crops. The following statistics are pre-seuted:-

The area mown in 1879 was $30,631.054$ acres; in 1886, 36,501.6Ns acres. The valne of the hay cut in the latter year was $353.437,699$. ${ }^{*}$ ln one State (New Jork) the value amonnted to over fiftymillions of dollars; in one (Pennsylyania) to over thirty and less than forty millious; in three States (llinois, Ohio and Iowa), to over wenty and less than thirty millions.
The grass and hay producing industry decrenses in importance as wego from the North toward the South. Thus, the thirteen Statesin each of which (in 1879) more than a million of acres were mown, are all north of the parallel of 37 ; and all but two (Missouri and Kansas) north of 39°, exceptiug very small fractious of Obio, 1ndiana and Illinois.
Animals dairy prod cta.
was as follows:-

	Horses
	Mules
	Milch cows
	Oren and other cattle
	Sheep.
	Hogs .

The importance of the crop of Indian corn has given a great development to the business of fattening swine, and an average of about fifteen per cent. of this production has, during the past twenty-seven jears, heen exported. The average value of "hog prodiscts" (live hogs, bacon, bams, pork and lard) exported has been, during the years $1851-87, \$ 73,671,607$ per annum, as againgt $\$ 65,196,496$ in the decade 1871-80.

The statistics of dairy products given in the agricultural Report of the Census of $1 \times s 0$ for the year 1879 are presented in a very coudensed form, as follows :-

```
Milk sold, or sent to butter and cheese fac
    tories.
    530,109,755 gals.
Butter made on farms
Cheese made on farms
\(77,250,287 \mathrm{lbs}\).
\(27,272,489 \mathrm{lbs}\).
```

The very great exteat and importance of the ponltry industry in the United states is made apparent by the following statement of facts gathered by the census of $1580:-$

At twelpe cents a dozen the annual value of the egg product to the farm would reach nearly $\$ 50,000,000$, rnd the value of the fowls consumed as food may fairly tee estimated at $\$ 20,000,000$. The aver. age yield of eggs jer fowl is fully twice as great in the Northeru States as it is in the Southern.

Dothon.
 The cotton production of the United States is of great inpor-

 tance, both from the extent to which this material is manufact ared within the conutry, and because it is the first on the list in value among the exports.Cotton is mentioned in the records of the Colons of South Carolina as early as 1664 , and a snall quantity was exported in 1747. The invention of the cotton-gin by Eli Whitney, in 1794, was followed hy a rapid development of the cotton-raising business throughout the sontherustates. The first crop of sea-ialand cotton was raised in 1790 , from seed that cane either from the Bahama or Barhadoes Islands.

The total production of the country in the year 1579 is given by the census of 1880 at $5.737,257$ hales. of 375 pounds: this baving been assumed to be the weight of the bale, in 1879-the arerage proportion of seed to fibre, or lint, in the crop as it comes from the field being given as two to one. The stated number of bales is equivalent, therefore, to $1,362,599$ tons (of 2,000 pounds) of lint or fibre, and 2,725,197 of seed.

This prodnction was divided among the States as fallows:

	Field. Bales.	Av. Prodnet per acre. Fraction of bale.
Mississippí.	955,808	0.46
Georgia	814,441	0.31
Texas...	803,912	0.37
Alabama	699,654	0.30
Arkausas.	f108,256	0.58
Sauth Carolina	522,548	0.38
Lonisiana..	505,569	0.59
North Carolina	389,598	0.44
Temmessee.	330,644	0.46
Florida	54,997	0.22
Missouri	19,733	0.60
Indian Territary	17,000	0.49
Virginia	11.000	0.46
Kevtucky.	1,367	0.51
Total.	,737,257	-. 2v. 0.40

From the above table it will be seen that the limit of profitable cultivation of cotton is pretty sharply drawn at about the parallel of 37°; the production of Virginia and Kentucky-the sonthern border of which states is in the latitude $36^{\circ} 30^{\prime}$-being exceedingly small. The production of Missouri is limited to a highly fertile

This includes only bay cut on farms, and not that cut on public fands and lauds of non-residents.
legion lying in the extreme southeastern portion of the State: While that of Kentucky Yertains to the country lying adjacent to Western Tenuessee and the rich bottom-lunds along the Mississippi River. It does nut appear that any cotton is produced nortb of the Ohio River
According to Professor E. W. Hilgard, Special Agent of the Census of 1880 , in charge of the subject of Cotton Production, the high production of Mississippi is due in part to the great fertility and large area of the " bottom-land " along the Mississippi River within the limits of that State, and in larger lart to the fertility of the "uplands," or table-land bordering the Mississippi bluff, and the "prand resplt that cotorloultio the one pursult resmlt of this state devotes itself. It is rather great ing oral popuiation of this state devotes itself. It is rather great natural adyantages that the skin and place in the production of cotton. Professor Hilgard thinks that by eularging the area of tillable land in the lazoo bottom, by aim. ple exclusion of the overfiows of the Mississippi, withont any change in the methods of culture, the produce of the State might be raised to two and a quarter millions of bales; and that with improved cultivation the production might be brought up to five millows, so that under these conditions Mississippi alowe could producc the entire crop now grown in the rinted states.
Georgia stands second in total production among the States, but Georgia the average production per acle is but two-thirds that of Missis- a cotton sippi. The area of what would be called in the last-named State producia first and second class cotton soil is in Georgia quite limited-far state. more so than is the case in the neighboring state of Alabama; yet the former state is slightly in adyance of the latter in the average product ver acre The high position of (ieorgig as a cottor producing State is due thereiore, not to matural adwantares, lut to better cultivation of the soil, the use of fertilizers, and the thrit of an industrious papulation.
Texas-much the largest in area of the catton-producing states. and also slighty larger in population than ans of the other Gulf States-stands third on the list of total prodiction. In the arerage product per acre it is among the very lowest. This fact seems to be due, in large part at least, to the position of Texas in reference to precipitation. In this State the total amonnt of ralnfall is considerably less than in the otber Gulf States, owing to its position in reference to the prevalling winds; and the diminution of rainfall is rapid as we recede from the coast. The precipitation is Iargest in the extreme northeastera portion of the State, and here -north of the sed parallel and east of the 98 th meridian-more tban half the cotton product of the state is grown. The fact that Texas is so mucb larger than the other cotton producing States must also be borne in mind in connection with its position as the third on the list. It has, in fact, an area more than five times as great as the average area of the six otber principal cotton States
Alahama is naturally as well suited for the grow th of cotou as Alabam the two states adjacent to it on the east and west, Georgia and Mississipni: and its position as follth on the list, and as inferior to both these States, is considered by Professor Hilgard to be due to the fact that Mississippi is still within the period of the first flush of fertility, while Georgig has reached the stage where her fields are being renovated by the use of fertilizers; while the soil of Alabama has legun to be exhausted, hut this exhaustion bas not yet proceeded so far that the cultivators realize the necessity of making good this deficiencs by proper modes of cultivation. as is done to a certain extent in Georgia.
In South and North Carolina the average cotton production per south a: acre is high as compared with that of Alabama and Georgia, and North in the case of North Carolina ayuroaches that of Mississipplitself. Curolid: The reason for this condition of things is to he found ehiefly in the introduction of improved methods of culture, and the use of fertilizers. In South Carolina the so-called sea-island cotton is produced-a variety of cotton of great value although small in amonat, the production of it for the year 1880 being set down in the Ceusus Report as 9,966 bales. The finest cotton ever known to have been produced is the long-staple cotton of Edisto lsland, which sold for twa dollars a pound when other cottonswere only brimging nine cents. The islands where this crop is grown liue the coast, sometimes forming three or four farallel belts, having thejr greatest development at the mouth of Broad River, from which in each direction along the coast ther diminish in numWhich
bers. bers Arkana important cotton-prodneing states with the exception of Atlantio and Tennessee. He elmer on the Gulf of Mexico or the Atlantic coast: but the principal cotton-producing areas in the case of each of these states are at a considerable distance from the coast. Thus, in Mississippi hy far the greater portion of the area planted in cottan lies in the northern and western part of the State, while In the extreme south there is an area where coton cultureis either vers subordinate or practicallf non-existent; nor is this decrease of cotton culture accompanied by a corresponding ibcrease of some other production, $1 n$ Loulsiana an abrious fact-reudered apparent by a glance at the map showing the relative areas given to cotton culture in the state-1s the decrease of cotton culture Rs we advance sonthward. In Alabama the central prairie recion, five backsoll belt, a narrovis strjp of country only ataut State more that a per ceut of the entire cottou crop. Adjacent to this particul per cent. Of the entire cotton crop. Adjacent to this particuiarly ductiveness, making the total width of the central cotton belt about seventy-five miles; and here at least sixty per cent. of the about seventy-five miles; and here at least sixty percent. of the
cotton af the State is raised. In (reorgia the principal cotion-praducing belt runs nearly parallel with the coast, and at adistance of from one hundred to one hundred and fifty miles from it. A similar conditiou of things is clearly indicated in both North and South Caralina.

Un compring the facts here stated with the position of the isothermal and isohyetal curves in the region where cotton is grown, it will lee seen that nearly the entire production of cotton
comes from the area Included hetween the isothermals of 60° and Gs，uad there is mone coltivated in any region of lower uncau an－ nual texperatire than 5 ．It also aynears that the cotcou－pro－ duciug area is oot of comparatively large irceipitation，being no－ where less thas thirty－eight inches，aud gencrally considerably over tbat amomat；amanco that this precimitation is uretty umi－ formally distributed thronghont the year．From this it is seen that the climatic conditions favoring the growth of cotton are of such at auture as to limit its successinl production to a eomarara－ tively small area，differing in thin respect materially，from monte of the other staples of the country，cspecinly Indian cornand wheat． It will also be evident that the comditions existang on the l＇acific coast do not favor the successful caltivation of catton in that region．
The followiug table exbibitz the produceion of cotton and the smonntexported for each year from linu to lwi．The average al
 Jounds：duramg the theaty－two years from lain to lade it was $2.207 .000,000$ pounds－an incresse of fin．$\%$ per ceent．During the merb－
 the average of the years lmis to mi：－

Year．

I＇roduction in l＇ounds．

3．199．422．（642
 9.55754 .422 \％，1＊2 $3,3,100,000,000$

Expores in l＇ound

2．190，924．7\％ 1．739．85．5．4M1 ：204，075，012 $1,432 \times 72.5030$ 1,201, คin？ $.4=0$ 2， 0 K5，037，444 $2.169,4 \% 70$ $2.201,0(h), 000$

The elimatic conditions uuder which tolnaco cun be ralsed seem to be quite variable，kiuce more or les of this crop，is furnished by almost everystate in the Coiom．The yield of the extremesomed by atmosteverystate in the Coiou．The yield of the extremesomthern and extreme horthern कtutes is，hownver，very small；ns（in 1ヵ， of Maine only 250 funnds；of Oregon，18，ist；of Sew Mexico， 90 ； of Thouisiana，55．．1月4．
The largest cobaccoproduciug state is Keqtucky，with 151，120， Fist pounds in la79，areording to the census of 1880 ．Next
 Ohio，34．735．23：Tenmessee， $29,065.052:$ Sorth Caroliva，2f，9mi．213：
 From this it is evident that the culture of tobucco is carried ou most successfn\}ly ju the Middle - thamtic states and those bordering on the Obio Kiver，diminishing gradually fu this latitude westerly，and having no importane in the estreme Westera states．The mean twnuratire of the chief tobacco－producing area is indicated by the statemnat that it lics becwecu tho isother mals of 52^{3} and 60 ．As regards precipitaton somewhat moise climate seems to be remuired，and there is little tobuceo moise where the rainfall geergues less than thirtw ulols inclew isotbermal of thirty－two inches scoma io be the inches．The isotbermal of thirty－two incles scemz to be the limit beyond Whieh it camot yass．The total rield of the Thited stutes in the Year 1.79 whs $472,161.159$ jounds．having an cotimated value as

The production of tolaceo in lasi was about elevern per eent， largur than iu 18.9 －namels．53253T．0no poumds．The relative rank of the states in the prodnetion of this erop was almost ex－ actly the same at the two periods．Kemincky and Virglain to－ gether furnished in lsmi more than half the totnl．or 2ky．dot ono folluda．The entire valut of the tobacco raisced in limet wras \＄ $54.46 x, 218$
The broduction of rice for the rear 1889 as returaed by the cen－ sus of ingu whs his follows：－

Alabama

Florida

Georgia．
Lonisiaua
Mississipyi
Vorth Carolia8
South Carolius．
Texas．
Total
Ponnds，rielverame
Ponnds．Tielri pier acre
910．．．2？
25．3019）tin
511
50.4
23，12．5．311
1．714．9111
5． 1 （901． 191
ri2．liz

The production of sugar from the surar－cane is extremely small as compared with the consumption of this urticle．Loulisinatis the only state of ans importance in this conncetion，althongh a small quantity of sugar is made in each of the followiay situtes： ficorgia，Florida．Texas．Alabama．Misciscippand couth Caroina The total production in the year 1 sin ，as retnrum by the census of
 gallons，of which Loulslana furnisbed 171,740 hogshends and 11 ． $695.24 . \mathrm{gallons}$ ．

The ceusus of 1880 gives the following statistles of the produc－ tion for that feas of sugar and molssaes from sorghun and the maple：

Sorghun

Maple．
\qquad Sugar．
12.792118

Molavises．

The priacinal production of sorghum molasses is in the states of Missouri．Tennessee，Kentucky，lllinols，Hud lowa ：that of maple sugar，in Vermont and New York，in each of which Staté tle pro－ dugar．in Germant over $10,000,000$ poundi．
The following additional facts in regard to the agriculture of the

United States arecondensed and arranged from the volume en－Gerneral titled＂stutistics of Agricuture．＂iv the census report for liwd：－sammary

The term＂Ifrta，＂an here nsed，is mulerstood to meas a tract of not leas than threc acres，auless \＆（h）worth of prodice has sceually been anta uff from it dariag the year，asid owned or leased us oue mau and cialtivated under his care：－

Total area of Cuited states io acres
$1,2 \pi, 10 x, 400$ 5ini，cosl，त3：3

599 5i $7 \quad 169$
rof the saman on farans returnced，it fur cellt，were cultivated by their uwners．\＆Iere ecent．by temagt．on hashof fixed nomey reatal， andinger cent．by tennuts jaying s share of the froduet or rent．
The total sablue of the farman of tbe Cnited status，facluding jand，
 and the extimated valuc of all farm productioes mold，consumed，or on havd，iu 1－59．was $\$ 212.540 .927$.
Il efollowigg tabialar statemeat，from the volume of the cers＝lls Report of lwo，estitled＂oratistics of Agrlculture．＂and publi＝hed in koo，fresents a resume of the frincipal factseonnected with the agricultural interests of the country so far us eoreeros the nmonats or values of the different prodisets：－

 Agrimulture，＂Phblished 1nis．
Sumber of farmas ．．．．．．．．$\quad 4.0$ ．．．．907
Tolue of furma，inclucling land．fences，and lmildins－
$\$ 10.19 \%, 03 t, 714$
Fiatimated value of farm products for is $\$ 2.212 .510,2,2$
Wool jrodnect
Nilk（not incliding that sent to uuteer or cher＊e factories）
Butter（inchudiugthat inade onfarms aud iu
fac(orices)

Thewse（made on larms and io frecories）
Barley
Inckwheat
Indian cora
Orts
WYe
Cottols．
Flasieed
Flax： 5 тиw
Flax fibre
11（13）
－ugar（sugar－canc）
Molasses（sugur－cam（）．
＊ugar（sorglinai）
Molasses（：orghum）．
＊ugar（majle）
Mola～＊（ a （ man l ）
Iay Mown
Clover－scerc）
（irass－seed
Eggs
Hones．
Wax．
Tolonceo
Fotatoco．Irish
Botatocs swinh
Orebardjerarlucts（sold or cousumbed
Markct－gardea jrodners
Hops
Broom corn
Puas．
13（•Rns
Wood，amonat ent

50， $0,120,1,25$ gallous whi，fi－2．071 yonnds －4．． 1 in wis
$4: \therefore 144,+45$ busbels
11，心17，327
． 51.591 .127
407.254 .949
$45,431,547$

$451,4 \times 3,138$
$5,755,259$

$\% 1 \% 0.251$ bushels
421，024 tons
1，ris ；ill prownds
5．1125 tons
17s．8．2 blads．
16，\％） 12．72）jounds 2s，111：2n2 \％nllons
 1．15i，Hi gallovs 5．150．711 tous 1．12．thy tushels 1．nํ． 45シ！！10，！）1ti dozen 2i，$-12,2(4$ pounds 2i，$-1.2,2(4)$ pound $1.10 .2,649$

172． 1 titil． 15% bushels $\therefore 2=2 \pi-603$
50，$n=1,154$
221，－18！：$=0$

$2.1 .4 \div 0,1(n i$
16． 511.5% Lushels
Forest produets，value of all cousumed or
3．15．．．0．30
$51,412.124$ cords

The followine geveral summary presents In one table the esti－ mated quantitics，nun lucr of acres cnltivaterl，and amerengate value of the principal croy of the conntry in the year limi：－

Produets．	Qunntity．	No．of leres．	Value．
Indian coru．	1．tini， 111.1100 bu－bels		\＄110，311，000
Whert．	15\％215，		$314.2260,020$
Rリ゙e。	$\because 1.125 .0018$	－．13，914	13，1ヶ1 330
Onts	6．1．131，001－6	23．6nヶ，17！	1．41，137，930
Iarley．	$\therefore 29+4.900$		81.240 .510
Buckwheat	11.469 .0140	911，013	$6,465,120$
Potatoes	164.35 .51 .010	2，25\％，130	70，411，940
Total．．	3．010，in30，（100）bushels	141．1ti， 592	\＄1，240，603＋56
Tobseco	$5 \% 2570.070$ pounds	$7 . \times 1): 10$	99， 10 ¢ 218
11ay	41.215 .493 tous	36,511 ，（iky	$3-33.437 .699$
Cotton	（i，4ti，dint bales	1．4．tif．sin3	257＊295．327
Grand cotal		199＊）	\＄1200， 205.094

MANUFACTUAEs

The most important facts connected with the mannfacturing interests of the United states, as revealed by the census of 1 sso and those of the precediug decades, may be stated, in the most condensed form, as follows:-
First, a table is givel showing certain of the frincipal items connected with mandactures in the form of totals for the whole dnited States, for the three census years 1860,1570 , and $1880:-$

TABULAR STATEMENT OF MANUFACTURES IN THE CNTED StATEA

	1860.	1570.	18.40.
Number of Establishments	1411,433	252,148	253, 554
Cajutal Invested	\$1.009.855.715	\$2.118.206.769	\$2,790,272, 206
Average Number of Ilands Employed			
Males above 16 year's.		1,615.598	2,019,035
Females above 15 yeara.		223,770	531,639
Childreu and louths		114.625	181,921
Total amonnt paid in wages during the year	\$378.875.966	\$775,524,343	\$917.953,795
Value of materials nsed	1,031,605,092	2,488,427,242	3.396, 823,549
Value of Products.	1,485,861, 676	4,232,325,442	5, $569,579,191$

The proportion ju whicls the various branches of manufacture are geographically distributed over the country, according to the celisus of 1880, is shown hy the following percentage statemeut:-

Table of Geographical Distribition of Manufactures in THE UNITEDSTATES.

Next may follow a statement of the various most extensive mannfactaring industries arranged in the order of their importance, with reference to the value of their products. In this table all branches of mannfacture are included in which the total prodnction exceeds $\$ 40,000,000$ in value :-
 STATES, ACCORDING TOTHE CENSI'S OF 1880 .

Products.	Number of Establishments.	Number of IIands employed.
Flonring and Grist Mill Products.	24,33.4	5ヶ, 107
Slanghtering and Meat Packing.	872	27,297
Iron and steel.	1,005	1-10.878
Woolen of all classes.	2.c89	161.557
Lumher, Sawed	25.708	147,950
Foundry and Machine Shop Products	4,958	145,857
Cotton Goods.	1,005	185, 472
Clothing. Men's.	6.166	160.813
Boots and Shoes	17,972	133,819
Sugar and Molasses, Refined	49	5,85,7
Leather, Tanned.	3.105	2:,812
Liquors, Malt.	2,191	26,280
Carpentering	9,184	51.188
Printing and Publishing	3.467	58,478
Furaiture	5,227	59,304
Leather, Curried	2.319	11.05
Agricultural Implements.	1.943	39.50
Mixed Textiles...	470	4.3 .93
Bread and other Bakery Products	6,396	22.450
Carriages aud Wagons	3.841	+5,391
Tobacco, Cigars, cte	7.145	53.247
	692	2.1422
Tobacco, Chewing, Smoking and samff.,	478	33.756
Tiuware, Copper ware, and Shect-irou ware	7,595	26,248
Blacksmithing.	28.101	34.526
Liquors, Distilled.	844	6,502
Silk and silk Groods	382	31.337

Products.	$\begin{aligned} & \text { Amonnt } \\ & \text { laid in } \\ & \text { Wages. } \end{aligned}$	$\begin{gathered} \text { Value } \\ \text { of } \\ \text { Materinls. } \end{gathered}$	$\begin{gathered} \text { Value } \\ \text { of } \\ \text { Products. } \end{gathered}$
Flouring and Grist Mill. Products	\$17,\$22,314	\$111,545,245	\$505,185,712
slanghtering and meat Packing	10,500,530	2177.738 .902	303,502,413
Iron and Steel	55,476,755	191.271,150	296,557, dín 5
Woolen of all classes	47,389,047	164,371,551	267,252,913
Lumber, Sawed.	$31,845,974$	146,155.385	233,268,729
Foundry and Nachine Shop Prodicts.	65,982,133	103.325.083	214,878,468
Cotton Goods...	45,614,419	113,765,537	210,950,383
Clothing, Men's	$45.940,553$	131,363,282	209,54m,460
Boots and shoes..	$50,995,144$	114.966,575	196,920,481
Sugar and Molasses, Refined.	2,875.032	144.698 .499	155,484,915
Leather, Tanzed.	9,204,213	85,949.207	113,348,336
Liquors, Mult	12,198,05;	$56.436,500$	101,058,365
Carpentering	24,542, 1177	$51,621.120$	94,152,139
Printing and Publishing...	: $00,531,654$	32, 460,395	90,789,341
Furuiture...	23,695,080	35,860.206	77,845,725
Leather, Curried	4,845,413	59, 306,509	71,251,297
Agricultural Imjlements.	15,359,610	31,531.170	68,610,486
Mixed Textiles.... ...	13,316,753	37,227,741	66,221,703
Bread and other Bakery l'roducts.	9,411,328	42,612,027	65,824,896
Carriages and Wagons..	18.988,615	30,597,056	64,951,617
Sobaceo, Cigars, etc..	1.4.464,5tis	$29,577.533$	83,979,575
P'яиег.	$8,525,3,55$	39,951,297	$55,109,914$
Tobacco, Chewing, smoking and Suruff	6.419, 12.1	34,397,072	52,793,056
Tiu ware, Copper ware and sheet-iron ware	10.7229,974	25.932 .281	48,096.038
Blacksmithing.	11,126,001	14,572,363	43,771,271
liquors, Distilled. .	2,663,967	27,544,245	$41,063,663$
bilk and silk Goods.	9,146,705	22,467,701	$41,033,045$

The remarkable concentration of the manufacturing interests of the [risted States in the extreme northeastern portion of the country will treevjent irom the above table. New England, New Vork, New Jersey, and Pennsylvanin, tombracing only a little over olle-twentieth of the area of the whole country. produce six-tenths of the total gross wrodnct of its malunactures, similar condiditions ase shown in tontrasting the northern with the southern sections of the country. The North Atlantic and North Celltral divisions, with thirty-one ner cent. of the tota] ares, furnish over eighty-eight leer cent. of the gross uroduct. The Western or Cordillerau region, will mearly lorts per cent. of the total area of the country. farnishes only a little over two aud a balf per cent. of its manufactures.

The Census Report of 1882 gives a great mass of statistics in reference to the manufacture of cotton in the country, from which the followiug are selected as representing the most cssential features of this extremely imfortant business:-

Number of spindl	
Vumber of looms.	225.759
Rales of ectton consumed.	1,570,344
Number of He? sons employed	172,544
Wages paid	12,040.510

These are said to be the final figures of the specific manufacture of cotton yaru and woolen fabracs. inclnding some cotton hosiery: and by the tern "specific" is meant cotton "worked into a fabric knowil and sold under that name
Including the cotton nsed in mixed goods and upholstery, the total consnmption is estimated at $1,760,000$ bales. The total number of operatives employed, including those engaged in print and dye works and bleacheries, and also in manufacturing special
fabrics in which cotton forms a part, is 198.338 . The operatives fabrics in which cotton forms a part, is 198.338 . The operatives
employed in the specific cottou mills arethus classed as to age and sex:-

The average wages earned in the cotton mills amonnt, for 300 days in the year, to 81 cents per day. Since 1840 the hours of labor have been reduced from 13 or 14 to 10 or 11 , and the average earnjags per hour are now more ihan donble what they were at that time.
The manufactire of cotton is carried in nearly all the Atlantic, Central, and Sonthern States, hnt is principally developed in and nenr Massachusetts. This Statealone consnmed eonsiderably more cotton in 1880 than all the other States ontside of New England. Oi $1,570.544$ bales consumed in "specific" cotton mammfacture in the country, in $1880,1,129,498$ were taken by New England. \$assachusetts and Rhode Islaud, having together about ten thousand square nilles of area. consumed $742,337 \mathrm{bales}$, or nearly balf the whole consumption af the rinted states. Some cotton cloth is still made by hand in the mountalnons
sections of the south, some two or three hundred thousand persons
being supplied in this way，As a measure of their work，it is said by Mr．Atkinsoll．Afecial Ageut of the Census in charge of the subject of Cotton，that＂twu carders，two eninners，and owe weaver conld produce eight yards of coarse cotcon cloth in a day of ten hours．＂To this he adds：＂Of the whole force engrgeal in the specific cotton manifactures，alout 1 fon，（m0 are employed on goods for home collsumption．It would take 1 ，ta0， 140 to make the same number of yards by hand－work，and the cloth wonld te of a far different kind－more dnrabje，it is trile，but coarie and unsightly．
The following table will furnish the necessary data ior an muder－ standiug of the importance of the petroleum business in the（＂uited States：－

		Fxpurts，in ghllons．			
Year ending June 30.	Producti＂ in Barrels of 12 Gallons．	Illuminat． iug（uil．	Crude 13 s ．	Total．	$\begin{aligned} & \text { Total } \\ & \text { Value of } \\ & \text { Ex- } \\ & \text { मoris. } \end{aligned}$
IN64．	2．47．．5w	12．701～ilk	9．8．21． 3.74	2． 2.310 .369	
1865.	$\because .424 .90 \%$	12．7－2．2 60		$25 .+4 \cdot 10,5+9$	160ヶが，11．；
1806\％	二，105̄．500	$34,255,421$	$16,057,913$	（1）． 5 （1） 7.341	
18 3 7.	8． 3.41 .900	fix， 6.418%	Fortiel	（1），250．491	23.405 .174
1569．	3，1513．709	68.4009 .9501		79，4inis	21 － 10 dict
15×8.	4， 046,505	－ $1,405.469$	$13.425,566$		S1，127，423）
1870.	4．411，016	97.200 .505	10.403 .314	113， 7250204	
1871.	5.0384 .75	1：32，＋i94． 935	$4.854 .05 \%$	$149.542,641$	$30,841, \times 10$
1572．	$5 \times 42,497$	$122.30 \% 5505$		14．7．151003	$34,4,3 \mathrm{c}, 310$
1873．	－．212， 313	154．112．414	1． 4×0.40		42．0．0．75i
	11．158．741	217.200501	15．756， 89		＋1，24． 515
18.5.	10，083， 5	1！110031，33：	14，715，11t	212 ，2\％¢7．30）	interin，5is
1576．	0.823 .142	204.414 .618	21.509 .505		22.91 .7 .7 mi
15i\％．	［0． 22.8 .811	21314.415 .41		（09， $519 .!114$	（i1． 7 － 5 ． 1 \％
1578．	$11.8 \% 8.26$	2－4．214， 11			44.354 .974
1479．	14，917，606	：3i1 ，	－5．M．4．4ism	270310,1111	111．305， 249
1880，	22．248509	：4if ， $2.25, \mathrm{x} 2 \%$	$2 \times .217797$	120．3124．609	21，214．635
1×81.	25.4020363	：．．12．2－ 20.145	：3n，！2 4 ，M1		40，：35．609
1×2.			41.24 ，\％	$5.95 .26+593$	S1 239，40，
1823.	26，602．s0＊	115ヵさごったく！	52．－12．anmi		＋1，913，079
1884.	$23,7+1,124$	115． 61.8 ，to	67，I Ni， 2 M ）		$47,105,215$
1845，	$21.750,619$	454．21：3，132		$574,6=2,180$	（x）．257．947
1886.	$22,463,744$	419.471 .451	$80,244.5138$	$377.2-1.752$	－ 0.1149 .814
185%.	25.815 .000	$4 \times 0,+15,>11$	－6，042，M－5	$592.2 .40: 3.20 \%$	$410.4+4.903$
1848．	23，243，597	$450,417,201$	$\therefore=-235,505$	5/a, , 2ivl, nith	47，082， 409

nugtries．The relation of materials to nroduct，in the statistics of industry needs to be carefulls borue in mind；aud for the purpose or throw ing light on this subject，the（ensus Report of latu，in the volunse deroted to manufactures（fnhlishediulsh3）gronps the nammfactur． deroted to manufactures（unlishedin las ）gronps the nambractur．
ing and mechanica）industries into four classes，as follows：I． ing and mechanical indatimes into four chassen an follown： Those industries in whicly the subject－matter is of a diatimet and the person who treats it； $1 I$ ．Those industries in which the entire value of the subject－matter ss cartiedintuthe value of＂materials：＂ and appears again in the prodnct．enhanced by the value of labor． use of capital，rent，frcight，＂te．．Wht 111 which the salme js suat！ compared to the cost of labor；II，Indnetrims whinh Are otherwise nitder the same conditions as those of the sccond－clast，but in which the value of the materials approxches，or exen moneratels exceeds，the raluc of the labor employed，and lecomes thins an 1 m － portant element in the final value of the prodnct，enhanwing the apparent production of the industry in a high degree；and IV： Indastrica ju which the falue of the materials farexceedsall other elements in the cost of jroduction combined，althongl，in fret， counaratively little vialue has been added by＂theae operations，and only a small number of artisaus or latiorers sumported．The 10l－ lowing tahle is intended to illustrate the relation of materials to product，iudicated aliove：－

＊All the indiatriea tabuhated wer assiened whtire to ne class or another，necording to the princples indimated the thext．The lines of division taken for the second，third．and fourth clasees were：（1）where the valne of the materials is lean than two－fifthe of that of the utimate jroduct：（2）where the value of the materials is from two－fifthe to four－fifthe of that of the ultimate frodiact： and（3）where the value of the materials is over four－tilths of that of the nltimate produce
＋In this tathe the same groups of industries fo wo are come pared with eath other．The table differe from that contaised in the volnme on Manafactures of the Xinth Census and in the compendiam of that cen－me in thla，that the mining and th－bing untreata，and the statistifes of a few indistries whlch form the sulaject of special reports in the echsus of latu are，for furpozes of comparlson，excluded herefrom．

TalUEs iv DOLLARS OFTHE PRODUCTS OF DOMESTIC AGRICCLTURE EAPORTED FROM THE U'ITED STATES FOR THE YEARS 1806,1887 AND 1888

	1856.	1857.	1888.
Animals..	$\begin{array}{r} 12,51 \times, 660 \\ 718,6 \overline{2} ; \end{array}$	10.588 .362	$\begin{array}{r} 12 . .455,000 \\ 924,1: 36 \end{array}$
Ammal Oils \%oluding	718,62.		
Provisious. including Meat aud Dairy Products	$90,625.216$	22,783,291;	93,055,705
Brendstuffs	125,84ti.55s	165,76, 6 \%	12\%, 1:1, 6.67
Fruitz.	3, 308.308	$2,4633.1145$	3,510.20x
Seeds	1.944 .930	1.907.409	1.516 .190
Textiles, Ünmanuractured.	205.561 .916	206,300,0.9	223,022.032
Vegetable Oils and Oil-cake	9.255,170	9.011.451	Stisatius
Tobacco Leaf	27,158,457	25,445.277	$21,935 \cdot 084$
All Other Agricultural Pru-	$8.011,166$	7,275,647	$8,266,746$
Total Value of Agricultu-? ral Products	4,4,954,595	513,073,506	500,840,0.56
Total Value of all Exports of Domestic Merchandise.	66. $3,964.852$	703,022,923	683, 662,101
Percentage Value of Agricultural Products.	$73 . s$	74.40	73.23

From a comparison of the facts given in the various tables berewith presented, it will beevident that, with the exception of those items called "manufactures" in the Census Reports which are not properls manufactures, but the conversion of articles of food into properls manufactures, a more suitable and convenient form for shipment to ioreign conntries-8s. ior instance, slaughtering of animals, and grinding States are intended aud used for bome consumption. The amonnt States are intended aud used for bome consumption. The amonnt
of these exported is very small as compared with the total of the of these exported is very small as compared with the total of the
exports. There is no one manufactured article of which the Exports. There is no one manufactured article of which the
Enited States has anything like a mononoly abroad, or which Gnited States has anything like a monopoly abroad, or which
greatly pretominates in innortance as an article of export over greatly pretomin
any otber article

The following data, compiled from the reports of the Bureau of Statistics. will give a sufficientls complete and comprebensise view of the pature of the ininorts in to the (rated states.
The imported articles, including those admitted free of duty and the dutiahle, are thus classitied :-
A. Articles of food and lizer animals.
B. Articles in a crude condition which enter into the various proccescrs of domestic iudustry.
C. Articles u'fully or prerially mannfactured for use. as materials in the manufartures and mechanic arts.
I. Articles mannfacturad roudy for comsumption.
E. Artictes of roluntary use, hesuries, ctc.

The following table gives the amonnt in ralue of each of these classes imported during the years 1084 and 1.55 , and the average classes imported during the ycars $1 n 84$ and 1855 and the average
for the five jears ($1 \times 81-5$) : also the ad valorem rate of duts on the for the five fears ($1 \times 81-5$): also the ad valorem rate of duts on the
dutiable articles of cach class, and the percentage relation of the ad valorem dnty to the entire duts collected:-

Year.	1884 and 1885.				A verage of l'ears 1881-85.			
	1 ree of Duty.	Dutiahle.	Ad Valorem Rate on Dutiable.	Percent of Total Duts.	Free of Duts.	Dutiable.	Ad Valorem. Rate on Dutiable.	Per Cent. of Total Duty.
$\begin{aligned} & 1884 \\ & 1885 \end{aligned}$	$\begin{aligned} & \$ 0.2,59.2 .315 \\ & 86,599,991 \end{aligned}$	$\begin{array}{r} \$ 132,106.969 \\ 10,700,369 \end{array}$	44 78	$\begin{aligned} & 31.15 \\ & 3479 \end{aligned}$	$\begin{gathered} 386,551,648 \\ 30,066,234 \end{gathered}$	$\begin{array}{r} \$ 130,072.238 \\ 129,907,722 \end{array}$	41.90 46.41	$\begin{aligned} & 28.47 \\ & 30.57 \end{aligned}$
${ }_{1 \times 3 \%}$	$\begin{aligned} & 134,039,567 \\ & 82,507,747 \end{aligned}$	$\begin{aligned} & 41.457 .171 \\ & 37,101,545 \end{aligned}$	$\begin{aligned} & 26.82 \\ & 25.48 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 5.33 \end{aligned}$	$\begin{aligned} & 97,895, .975 \\ & 45,001,401 \end{aligned}$	$\begin{aligned} & 51,358,668 \\ & 49,163,995 \end{aligned}$	29.96 48.57	8.21 7.12
${ }_{1854}^{185}$ C	$\begin{aligned} & 12,186,427 \\ & 11,185,457 \end{aligned}$	$\begin{aligned} & 69,74,216 \\ & 61,045,0.53 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & 27.25 \end{aligned}$	973 961	$\begin{aligned} & 11,719.623 \\ & 11,850.88 .3 \end{aligned}$	® $6.492,197$ $66,169,652$	29.42	9.87 9.73
$\begin{aligned} & 18\rangle \pm \mathrm{D} . \\ & 1885 \end{aligned}$	$\begin{aligned} & 11.035,112 \\ & 10,617,105 \end{aligned}$	$\begin{aligned} & 123.205 .459 \\ & 108,606,576 \end{aligned}$	$\begin{aligned} & 47.54 \\ & 45.25 \end{aligned}$		$\begin{aligned} & 10,207,857 \\ & 10.504 .9665 \end{aligned}$	$135,1002.292$ $133,1550.050$	4722 47.52	3731 3208
$\begin{aligned} & 1 \times \times 4 \\ & 1855 \end{aligned} \mathrm{E}$	$\begin{aligned} & 1.429,878 \\ & 2,041,601 \end{aligned}$	$\begin{aligned} & 86,721,276 \\ & 72,178,227 \end{aligned}$	$\begin{aligned} & 48.12 \\ & 50.84 \end{aligned}$	$\begin{aligned} & 21.98 \\ & 240 \\ & \hline 29 \end{aligned}$	$\begin{aligned} & 1,199,32.2 \\ & 1,453,551 \end{aligned}$	$\frac{78}{2}, 128,020,207$	5109 50.69	2014 2049
Total 1心4	\$211,290,205	\$ $\$ 56.195,194$	Av. 41.61	100.00	\$207, 904,425	\$ $464,6834,230$	Av. 41.06	10000
"1805	192,912,234	345,667, $\times 20$	45.90	10040	204,877,035	454,0x6,570	43.05	100.00

Index．

Abolition，765．772．741．
Adams，l＇res．Jno．． 7 万̄̆． Adams，I＇res．Jno．Quiney 760．
Admission of Nebraskit Ts．
African Slave Trade， 7 it
Alabama，729， 824.
＂Alabama＂Claims， 2 si
A laska，786，814，820
Algerine War， \boldsymbol{T} ．
Alien and Sedition Law：
T．3．
Allen Ethan 734
American Authors，ซึ่
Ancerican imports of 1 ron and Stecl． 813
American Seamen，im pressment of， 756 ．
Andre，Major，-12.
Annals，5io．
Annexation of Texas， $3:$
Antietam，Battle uf， 786
Anti－Nebraska Men， 7 （is
Appalachian Chain， 294
Appalachian Region，Fin
Area of Great Lakes，Fim
Area of Urreat Stakes fit？
A rea of United
Armanas．lisbanded，the， 743
Army disbanded，the．
Arag of the Potomat， 76
7sth．
Assassination of Garfield 785.

Aclanta Campaign，iseo．
Allantic Region xin
Atlanticand Gulf Coast 802.

Augusta，Georgia， 7 ． Australian Ballot sy tem， 787.

Ball＇s Bluff，Battle of．Tit Beginning of the Govern ment． 751.
Beginning of the Strug gle，738．
Belmont，Battle of． 7 at
Bennington Battle of $\overline{\mathrm{i}} \mathrm{i}$ ．
Bessemer Steel， 812
Biglow Papers， 767
Bill of Rights，iss．
Bill，the Embargo， $7 \operatorname{Han}^{2}$
Bisuarek，Dak．， 790.
Bituminous Coal－fieldsof Penn．， 80%
Black Hawk War， 761.
Blockade rumning． $7 T^{2}$
Bonneville and his Party 793.
＂Border Rufians，＂Tha Border States． 773.
Boston，737，738，740，749
Boston， $137,738,140, ~ 129$
Boston Port Bill， $73 i$

Braddock＇s Defeat， 783 ．
Brandywine，Batt 712.

Brooks and Sumner， 76
Brown，Joha， 760 ．
Buchanan，I＇res．Jomms 760.

Bull Run，Battles of，iti 77%
Bunker［111］，733．
Burgoyne＇s lavasinn，it
Burr＇s Conspirney，：50
Calhoun，Jno．C．． $755^{\circ}, 7123$ California， $266, \times 23$ Californla Fields， 81 Campaign of 1777，i＋1 Canıpalgn of 1778.712 ． Campaign of 1779,712 ． Cumpaigns in the West． 7.6

Canada，attack on，74t．
Canby，murder of，ind
Cantal reusoved．
Carhoniferons Agゃ， 743
Carolina， 729
Garses of the American
Revolution，731， 539
Cedar Creck．T，
Cedar Creck 77 ，
cansus，
Chaneellersvilla．

Chattanooga， 778.
Chicuga，717．， 7 Ts．
Chicamauдa． 779.
Chinesce Immlgration Bill． 7.45, sil
Civil Rights Bill， 782.
Civil serviee tet isन̈．
Claims．Court of， 74% ． lay，Ilellry，75，नisi． Cleveland．pres．lirover．

－Tiffs， 792

Climate，701， 797
Coall－hede sus．
Com－heds．
Cuast of California， 80
Conast，uperathols on the 774.

Coast ranges， 7 ．
Colomial Oppression， 731 Cislurado， 814.
cnlorings，Tisz．
ummeree，Fureign， 827
Commissioners tofrance． \％11．
ompromise，Fffeets of intio．
tork Lade，the 8！3 Confederacy Organizod

Confederatu Cruisers， 779 ConfoderateFinances．i＊1 confederate Lima of le fensw，78
Congress．Continental

Connnecticut， $730,731,715$ Comnecticut Compro misu， 7 th．
Compuest of Canada， 331 Constitution，745－75l． Constitutiomal Unlon Party，7\％．
Cuventions of $1,552,767$. Convict law， 7 R 5.
（1）pper，si6．
Cornwallis，Iard． 743 Cost of the Civil War， 781 Cotton， $221,8 \%$ ． Cottong Gin the T59 Cuwpens，Batcle of， 72 Cowpens，Batis．
Cuba， 7 it
Cumberland，Army of the T75．

Custer Massucre，7h．

Dakotr，\＄14．
Davis，Jefferson，7．2． 2 k 1.
Declaration of Independ Delarat 740
De Kalb．Baron，Ist
Delaware， 730.
Lemoeratic Party．Splis in the， 370.
Denver，Colo．， 549.
Hetrolt．Surrender of，；55i Different Coal－fields，sog Ditheulties with France 154.

Disworery and sette mont of America， 229 ．
 Ihuglass，Stephen A．．Fis． Till． bownfall of the Fimberal Party， 758.
Iraft jkiota，Tisk
Ireed Scott Decolsion．Tin． lutel）settlements， 730 ．

Farly Discoveries， 720 Eaitern Kentueky Coal tield．$x 10$ ．
Effurts to found Colonies，
Election of 1min， 7.1

Flicerion of 1×8 ，Tiss． Fleretion of linu），TK5． Fifectoral Colloge．วtio Electoral Commission y 7 tis

Eleventh Amandment， limanclpatan， 8 万it Emancramton Proclama－ tion， 77.
Embargo det． \sin
Find of the Dutch bow er， тऔ）
English Pobley tuwards the Colonists， 731.
Fira of（iond Feeding．7．s Erie C＇anal．7ik． Butaw
Eutaw sprangs．Battle op 713
Fvarunthon of New York， 741.

Fixecutive Mepartments，
Fit． Exprodition of Doniphan， 7 \％

Fall of the Confoderacos， 7 7s）．
Federallsts and inti－
Federalists， 751.
Federal Iurisuluthon，oss．
Filibusturing．This．
Filtmore，I＇r＂t．Millard，
76ti， 21.7.
Flest Ten Amendments
the，750）．
Flshory Question，7w3．
Ftwe Fork s．lsattle of，zat Florida，72x，7－x．
Forejgn whicers， 711

Porrestis of inturior．aths．
Foreste：ast North Amer leat 812.
Fismation of the Consti－ tutlon，ins．
Fort Dhnelson，7iJ．
Fort DuOLE＇she， 733
Fort Eric，Batlle of， 857
Fort 11 enry，77．
Fort sumter，of2．
Fis．
F＇ourth Admbinstration，
751.

Framee，732，733， $731,742$.
Franklis，Benjamin，73aio． 741.

Frederickshurg， 7 8f．
Fremont，Jno．C．．Fitin，ig4．
Frenell and Indian Wur， 733.

Freneh Spollation Claim， \％s．
Fugitive Criminala， 749.
Fumltive slaves，万1！， 7 万i
Fulton，Robert， 755 ．
Gadsden Purehase，7ity．
liage，lieneral，73x
barfield，l＇res．Jas．A．，
785.

Bathering of Tronps． 773. lieneral lopography．700． （iemeral Winter storms， sin．
Gengraphy and statls．
thes， 818.
Grologlal History． 74% ，
Georgin， $729,73+5,712,13$,

521.

Cermantowis，battle of
713.

Cettyshurg，Batcle of． 5 Th bilhert，sï Humplirey， 729.
rowld and Silrer， 818.
finrges and Ravinces，Tg？
（iovernment Explndi－
tions．7tif．
rovernment lixponsea． is1．

7M1，7se，7．5．
direnhe，General，its
Girenville，Lartl．73ki
G．ruwth of Colanios． 731.
1；ulford，Battle of．71．3．
Jfamiltun and lurr，7an．
Harrisua，Pres．Benj．．imi

Ifarrlson，lres．Wm．II．． om．
 llay and laras：mes．
bayms Adminiaration，
Hinl．
IItord In Tembusine，TMo．
 tivers， $\boldsymbol{7} 15$ ，
fluw
11 udian liay Cominany
Thas．
Hurrleaness， 801
1daho，811
Immikration and Iopu－
lations，स24）
Impeaclument of I＇res

Impiorts， 828.
Indiana， 10 ．
Indian Troubles，sil．
Indian War， 751.
lisurrection，the whis ky．T11．
Invasion of Pennsylva nia， 7 \％

Hika，Buttle of， $57-$

Jackson，Thitle uf，Tin． Jacksun，Pres．Andrew． 757． 761.
Jamestuwn Colonr，- OQ．
Jufferson．Ires．Thumas 715， $751,755,754$
Johnson and Congress， TS2．
Jubnson，l＇res．Indrew，
Jutlicinry，74s．
Kansas Admitted，int．
Kußsルs－Nebraska K引ll，
205．
Kiarsarge and Alabama． the int．
Kıy，Francis S．，Fif．
King William＇s War， 732天路。

La Fayette，741，7ino．
Lake Champlain，Jattle of， 757 ．
Lake Erle，Battla of 7.5 m ． Lecompton Constlition， 769.

Lexington and Cunenta．
73 m
Lexington，Sloge of，774．
Liberty，the spirit of， 731.
Lincoln，l＇res．A．， $722,74$. TS3．
Liturature， 767.
Livingston，Rokert R，．740．
London Company． 729.
Long Island，Battle of，
741.

Lookout Mountain． 7 －
Los Angeles．Cal．，sor
L心uisitna，718．78t．
Loulsiana p＇urchase，754． T 5 ．

Madlson＇s Administra－ tiont 755．
Manthectures． $7 \times \pi$ ，nos
March to the sea，sher． M11an＇s．7an
yariuntte．Father 739
Maraball，C＇hlef Justice
7.5

Varyland， 729,730
Maryland Comi－field．suo． Masinn．Jno．． 729

Mesinger，the Prosident： 717.

M－xican War，Fit
M，xien． 7 mis．
Michigan， 7 ， 1
Military Condition of the North， 773.

M1litary Condition of the Shach．
Sineral Wenltb，7et．
Ninsmg Buthtess，sim，815．
M1sshmury Kidge， 76.
M1－sissi M，Busin，7h1
Mi：－usurl（ompromice． 558
Motile，ixo．
Monitor and Merrimac 785.

Smbinouth Battle of－ 32
Wumros，I＇ris．Jamer，7ts．
M10ntana， 814.
Mormons，the fist
Norris．leolecrt． 745.
Mnuntain Rekionse， 700.
Morint Ilood，Nit．
Mount shasta，my
Mivanent of lopulation， 81s．

Plymouth Colong, **3.
Plymourth Company i29 political Divisions, 790°. Molk, Jas. K.. 7bit.
Pola, Jas. K... (M,
Ponce de Lenn11. r29

Population. 731. s19. 820.
Forts and Harburs, 7ay.
Powers and Duties of the
President, 777.
Presidents of the Enited states, 2xs.
Princeton, Battle of, \%it.
['rivileges of Citizens.749.
Production of Rails, 812.
Project of separation,
sil.
Protective Tariffs, zio.
Provinces, 7 tw.
Prowisions of the sitamp Aet, 736.
Publie Lands. 21.
Puritans. the. 729.
Putnam. Ismel. $740,741$.
Qualifications for the
Fresidenes, 747.
Quebec Act. 737.
Queenstown lleights, 756.
Qnicksilver, 815 .
Raees and Language, 759.
Railroarls, 756, 78b.
Rainfall. suc.
Randolph, Edmund, 751. Randolph. Peyton. 739. Refunding the Debt, 785. Relations of States, 749.
Relicious Condition, 831.
Repeal of Stamp Taxes. 785.

Republican Government, sherman, W. T.. .7. ... 9, Republican Parts of 17q2. 752.

Republican Party of 1.456 , cos
Restrictive Poncy of England. 735.
Resumption Aet. 784
Rhode Island. 730, 731 .
Rice, 825.
Richmond, 780. 781.
Rights of English Subjeets, 731.
Rivers. 794.
Roek5 Mountains. 7.42.
Rotation in Oftice. 76i.
Rules for lmmigrants,
Rye, s23.
Sale of Lands. 74
Salt, 817.
Savannal. 742. 780.
scenographical sog. Schuyler. Philıy 740. scott winficla 757
scott, Winfield, 757.
scrub Race for the
Presidenes, 76
secession,
Seeond Continental Congress, 739.
econd Year of the Civil War, 775.
Sedition Laws, 753.
Senate, the, 746°.
Seven Days' Battles, 776.
Seven Pines, Battic of, 776.
seward, Wm. H. 781. Shays' Rebellion, 744.

```
inl.
Sle.ne ur lorkturn , 213.
```

sierra vievada Forests, sut.
Silver, S13, S14.
Slave Power, the. Jis.
Slavery, 759, 763 .
Slavery, $59,763$.
Slave. Trade Frobinted 755. Sons of Liberty, 73i, 737. South Carulina. 720. 730 , 824.

Southern Pine Belt, 802.
South, the, 787.
Specie Cireular. 76
Stamp det. 736.
State Governments, 750 .
Steamboats, 758.
Stone River, Batue ot 7π.
Stony Point, 742.
Sub-treasury Srstem. Tits
Singar. 825.
Summer Isothermals. 79% Supreme Court, 749 .
supreme Law of the Land. 750.
Surrender of Lee, Txi Surrender of Lee, isl. Basin, 793.
Swedes in America. 730.
Tariffs, 751,760
Taylor, Pres. Zachary Titi5.
Tea Vestrojed at Boston,

737.

Tecumseh. 757.
Telegraph, 7iti, 786.
Telephone, 786.

Tennessee Coral.fie]cs.sio. Tellure of Othce Bill, 782. Terms of Oftice, 717 . Texas. 764
The Approaching Cun flict. 767.
The A tlantie Plains 79. The Civil War, 77\%
The Cordilleran Region 791
The First Blood of the Civil War, 783
The Government under the Constitution. 750 . The Great Basin, 793. Thermal Springs, sot. Third lear of the Civis Wiar. 778.
Timber, 790
Tin. 815.
Tohaceo. 825.
Tomography of the Great
Basin, 703.
Treason, 749
Treaty of Alliance with France, 712.
Treats of Washington, Trenton Brttle of 741
Tvelfth Amendment. 748. Tyler, Pres. J no., 763.

Uncle Tom's Cabin, Influenee of, 767.
Union Flag, the. 740
United States Bank, 751.
Utah and Arizona, 81 t.
Vin Buren, wres. Martin.
362.

Vanes Eorests, 804.	Zlnc, 815.

I ulley Forge. 742
regetation, 793
feto, the President's, 746. Vicksburg Campaign,778. Virginya. 720, 730.
Virginia Campaign, 776. Tirginia Coal-fields, 810 . Volunteers, the First Cail for, 78.

War for Independence, the, 739. 744.
War of 1812.756
Washington, $811,814$.
Washington City, Capture of 757.
Washington, Pres. Geo., 733, 740, 751, 753, 754
Waterfalls, 807 .
W'elster, Daniel, 763.
Whigs, 761.
W'hisky Frauds. 784.
Wilderness, Battles of the, 7.9.
Wilmington. 780
Wilson's Creek, Battle of, 754.

Winds, 788.
Wyoming. $811,814$.
X. Y. Z. Dispatches, 754.

Yield of Gold in Callfornia, 813.
Yield of Metaric Lead. 815.

Fork, the Duke o1, 730. Forktown 743
losemite Valiey 807.

JUNIVERSALIST CHURCH, a religious-body in the United States of Ameriea, especially in the New England States, which lias for its distinguishing tenet. the doctrine of the final salvation of all souls from sin through Christ. The pioncers of Universalism in America were Dr Gcorge Do Benneville, whe taught from 1741 principally in Peansylvania; Dr Charles Clauncy, of the First Chureh, Boston (notably in The Salvation of All Men, published in 1784); Lr Joseph Huntington, of Coventry, Conn. (whoso Catvinis.n Improved was published after his death in 1796); John Murray, Elhanan Winehester, Caleb Rich, and, very specially, Hosea Ballou. Murray is, however, regarded as "the father of Universalism in America." In 1750 James Relly had avowed bimself a Universalist, basing his belief on a theory quite peeuliar; Murray, who bad preached as a Methodist in England and Ireland, was Relly's most distinguished convert. In 1770 he came to Ameriea, and, under circumstances so strango that most Universalists regard then as providential, overcoming a deep reluctance, he preached at Good Luck. New Jersey, and organized a society, "The Jodependent Christian Church," at Gloucester. Massachusetts. Hosea Ballou-a convert from the Calvinist Baptists-took up the cause io 1790 , and published the work that is regarded by Universalists as
epoch-making, A Treatise on Alconement. The number of ministers inereased, and societies rere formed. These in due time became the constitucnts of larger organizations, till a "New England convention" sal occasion, in 1803, to adopt a "profession of faith," which in three short articles avowed belief in the Bible as making known in a Divine revclation the nature of God, the mission of Christ, the final holiness of all souls, and the necessity of grod works. In 1866 a general convention, composed of delegates from the State conveations, was incorporated It has jurisdic. tion throughout the United States and Canada. It has a "Murray fund" of about $\$ 135,000$. Under the anspiecs of the Universalist Church are the "woman's centenary association," the "Universalist historical society," several organized charities, four colleges, threc theological schools, and five academies, - the total value of the schools, inelnding endowmeats, being hardly less than 3 inillion dollara. It publishes eight periodicals. The J'car Book for 1887 gives the following summary:-1 general convention; 22 State conventions; 945 parishcs, 38,429 families: 696 churches, 35,550 members; 634 Sunday schools, 51,871 members; 789 church edifices; value above indebtedness, 87,493,927: 673 clergymeu in fellowship and 120 licensed lay preachers.

U N IVERSITIES ${ }^{1}$

Orktoal THEE mediaral Latin term universitas (from which the neasing 1 English word "university" is derived) was originally of the employed to deuote any community or corporation re"erm garded under its colleetive aspect. When used in its resity " modern sense, as denoting a body devoted to learning and education. it required the addition of other words in order to complete the defivition, -t the most frequent form of axpressiou being "universitas magistrorum et scholarinm" (or is 4 m !. "discipulorum"). In the course of tinee, probably towards Lationts the latter part of the 14 th century, the term began to be used by itself, with the exclusive meaning of a community of teachers and scholars whose corporate existence had been reeognized and sanctioned by civil or ecclesiastical authority or by both. But the more ancient aud custonary designation of the university in mediraral times (regarded as a place of instruction) was "studium generale" (or eometimes "studiun" alone), a term implying a centre of iustruction for all. ${ }^{2}$ The expressions "universitas studiu" and "universitatis collegium" are also occasionally to be met with in official documents.
It is necessary hewever, to bear in mind, on the one hand, that a university often had of rigorous virtual existonce loug before it obtained that legal reeogaition which entitled it, teehnieally, to take rank as a "studium generale," and, on the other haud, that hostels, halls, and colleges, together with complete courses in all the recognized brauches of learoing, were by no means neeessarily involved in the earliest conception of a uaiversity. Tho uuirersity. in its earliest stage of development, appears to have been simply a scholastic guild,-a spontaneons combination, that is to say, of teachers or scholars, or of both combined, and formed probably on the analogy of the trades guilds, and the guilds of alieas in foreiga cities, which, in the course of the 13 th aud 14th centuries, are to bo fonnd apringing np in most of the great European centres. The design of these organizations, in the first instance, was 1. II is the design of the present article 10 exhibit the anversitics io thoir hilytoricel dovelopmeut, each beiog hronght nader wotice, ns far as practicable, is the onder of ts originnl foualalion. Ia the alphabetical enunueralion is the table at the eull, the dhate of fouodetion shus serves to inlicate opproxiunately tho phace where any univerity is firt referred to
'EDoslife. Die C'urcrosienten des Jithedalcrs, i. 38.
little more than that of seeuring mutual protection,--for the craftsman, in the pursuit of his special calling, -for the alien, as lacking the rights and privileges inherited by the citizen. And so the university, composed as it was to a great extent of students from foreign countries, was a combination formed for the protection of its niembers from the extortion of the townsurea and the other annoyances incident in medirval times to residence in a foreiga state. It was a first stage of develppment in connexion with these primary organizations, when the chaneellor of the eathedral, or some other authority, began, as we shall shorlly sce, to confer oa their masters the right of teaching at any similar centre that either already existed or might afterwards be formed throughout Europe, -"facultas ubique docendi." It was a still further development when it began to be reeognized that, without a licence from either pope, emperor, or king, no "studinm generale" conld be formed possessing this right of conferring degrees, which originally meant nothing more than liecnees to teach.
In order, hewever, clearly to understand the conditions Chief under which the earliest universities came into existenee, facts it is necessary to take aceount, not only of their organiza- in the tion, but also of their studies, and to reeognize the main learning influenees which, from the 6th to the 12 th century, served beforo to modify both the theory and the practice of education, the urIn the former century, the schools of the Roman empire, veraty which had down to that tinue kept alive the traditions of ${ }^{\text {era }}$ pagan cducation, had been almost entirely swept a way by the barbarie invasions. The latter century marks the period when the iustitutions which supplied their placothe episeopal sehools attached to the eathedrals and the monastic schools-attained to their highest degree of infaence aud reputation. Between theso and the pehools of the empire there cxisted an essential difference, in that the theory of education by which they were pervaderl was in complete contrast to tho simply secular theory of the schools of paganism. The cathedral school taught only what was supposed to be necessary for the eduention of the priest; the monastic seliool taught only what was supposed to be in harmeny with the aims of the monk But between the pagan system and the Clisistian system by which it had been superseded there yct existed some?
thing that was common to both : the latter, even in the narrow and meagre instruction which it imparted, could not altogether dispense with the ancient text-books, simply because there were no others in existence. Certain treatises of Aristotle, of Porphyry, of Martianus Capella, and of Boetius continued consequently to be used and rtudied; and in the slender outlines of pagan learuing thus still kept in view, and in the exposition which they necessitated, we recognize the main cause which prevented the thought and literature of classic antiquity from falling altogether into oblivion.

Under the rule of the Merovingian dynasty even these scanty traditions of learning declined throughout the Frankish dominions; but in England the designs of Gregory the Great, as carried ont by Theodorus, Bede, and Alcuin, resulted is. a great revival of education and letters. The influence of this revival extended in the Sth and 9th centurics to Frankland, where Charles the Great, advised and aided by Alcuin, effected a memorable reformation, which included both the monastic and the cathedral schools; while the school attached to the imperial court, known as the Palace School, also became a famous centre of learned intercourse and instruction.

But the activity thus generated, and the interest in learning which it served for a time to difuse, well nigh died out amid the anarchy which characterizes the 10th century in Latin Christendom, and it is at least questionable whether any real connexion can be shown to have existed between this earlier revival and that remarkable movement in which the university of Paris had its origin. On the whole, however, a clearly traced, althongh imperfectly continuous, succession of distinguished teachers has inclined the majority of those who have studied this obscure period to conclude that a certain tradition of learning, handed down from the fanous school over which Alcuin presided at the great abbey of St Martin at Tours, continued to survive, and became the nuclens of the teaching in which the university took its rise. But, in order

General causes of formation of first axuersisien. adequately to explain the remarkable development and novel character which that teaching assumed in the course of the 12 th and 13 th centuries, it is necessary to take account of the operation of certain more general causes to which the origin of the great majority of the earlier universities may in common unhesitatingly be referred. Theso causes are-(1) the introduction of new subjects of study, as embodied in a new or revived literature ; (2) the adoption of new methods of teaching which were rendered necessary by the new studies; (3) the growing tendency to organization which accompanied the development and consolidation of the European nationalities.

That the earlier universities took their rise to a great extent in endeavours to obtain and provide instruction of a kind beyond the range of the monastic and cathedral schools appears to be very generally adinitted, and this general fact has its value in assisting us to arrive at a conclusion with respect to the origin of the first European

versity of Salerno. aniversity, -that of Salerno in Italy, which became known as a school of medicine as early as the 9 th century. The circuinstances of its rise are extremely obscure, and whether it was monastic or secular in its origin has been much disputed. One writer ${ }^{1}$ derives its origin from an independent tradition of classical learning which continued to exist in Italy down to the l0th century. Another writer ${ }^{2}$ maintains that it had its commencement in the teaching at the famous Benedictine monastery of Monte Cassino, where the study of medicine was undoubtedly pursued. But various facts may be urged in contraven-

[^313]tion of such a theory. The school al Salerno, so far as its history can be traced, appears to have been entirely a secular community; it was distinguished also by its catholic spirit, and, at a time when Jews were the object of religious persecution throughout Europe, manbers of this nationality were to be found both as teachers and learners at Salerno. Situated, moreover, as it was on the seacoast, its communication with the neighbouring island of Sicily was easy aud frequent; and it would accordingly seem far more probable that it was owing to the new knowledge gained from the Saracens, after their occupation of that island, that Salerno acquired its reputation. It was by a band of these invaders that Bertharius, abbot of Monte Cassino, and the author of certain medical treatises, was massacred along with his monks in the year o 83 . The Saracens were famed for their medical skill, and, by their translations of Galen and Hipporrates, did much to advance the study; and, according to Jourdain, ${ }^{\text {s }}$ there were translations from the Arabio into Latin long before the time of Constantine the African, but these versions hare perished. In the course of the lith century, under the teaching of Constantine the African (d. 1087), the celebrity of Salerno became diffused all over Europe. Ordericus Vitalis, who wrota in the first half of the 12th century, speaks of it as then long famous. In 1231 it was constituted by the emperor Frederick II. the only school of medicine in the kingdom of Naples.
It was at a considerable interval after the rise of the Teachi school at Salerno, about the year 1113, that Irverius com- of menced at Bologna his lectures on the civil law. This instruction, again, was of a kind which the monastic and cathedral schools could not supply, and it also met a new and pressing want. The states of Lombardy were at this time rising rapidly in population and in wealth; and the greater complexity of their political relations, their increasing manufactures and commerce, called for a more definite application of the principles embodied in the codes that had been handed down by Theodosius and Justinian. But the distinctly secular character of this new stady, and its intimate connexion with the claims and prerogatives of the Western emperor, aroused at first the susceptibilities of the Roman see, and for a time Bologna and its civilians were regarded by the church with distrust and even with alarm. These sentiments were not, however, of long duration. In the year 1151 the appearance of the Decretum of Gratian, Decret largely compiled from spurious documents, invested the of Grat studies of the canonest with fresh importance; and numerous decrees of past and almost forgoten pontiffs now claimed to take their stand side by side with the enactments contained in the Corpus Juris Civilis. They constituted, in fact, the main basis of those new pretensions asserted with so much success by the popedom in the course of the 12 th and 13 th centuries. It was necessary, accordingly, that the Decretum should be known and studied beyond the walls of the monastery or the episcopal palace, and that its pages should receive authoritative exposition at some cominon centre of instruction. Such a centre was to be found in Bologna. The needs of the secular student and of the ecclesiastical student were thus brouglit for a time into accord, and from the days of Irnerius down to the close of the 13th century we have satisfactory evidence that Bologna was generally recognized as the chief school both of the civil and the canon latw. ${ }^{4}$ It has indeed been asserted that university degrees were instituted there as carly as the pontificate of Eugenius III. (1145-53), but the statement rests on no good authority, and is in every way improbable. There is,' however, another tradition which is in better harmony

[^314]Barba.
with the known faets. When Barbarossa marclicd his forces into Italy on his memorable expedition of 1155 , and reasserted those imperial claims which had so long lain dormant, the professors of the civil law and their scholars, but more especially the forcign students, gathered round the Western representative of tho Roman Cæsars, and besought his intervention in their favour in their relations with the citizens of Bologna. A large proportion of the students were probably from Germany; and it did not escape Frederick's penetration that the civilian might prove an invaluable ally in the assertion of his imperial pretensions. He receired tho suppliants gracionsly, and, finding that their grievances were real, especially against the landlords in whose houses they were domiciled, be granted the forcign students substantial protection, by canferring on them certain special immunities and priviliges (Novenaber 1158). ${ }^{1}$ These privileges were embodied in the celcbrated Aullenticu, Habila, in the Corpus Juris Civilis of the empire (bk. iv. tit. 13), and were eventually extended so as to include all the other universities of Italy. In them wo may discern the precedent for that state protection of the unirersity which, howerer essential at one time for the security and freedom of the teacher and the taught, has been far from proving an unmixed beuefit,the influence which the civil power has thus been able to exert being too often wielded for the suppression of that very liberty of thought and inquiry from which the carlier universities derived in no small measure their importance and their fame.

But, though there was a flourishing school of study, it is to be observed that Bologna did not possess a university so early as 1158 . Its first nniversity was not constituted until the close of the 12 th century. The "universities" at Bologna were, as Denifle bas shown, really student guilds, formed under influences quite distinct from the protecting clauses of the Authentica, and suggested, as already noted, by the precedent of those foreign guilds which, in the course of the 12 th century, began to rise throughout ,western Europe. They had their origin in the absolute necessity, under which residents in a foreign city found themselves, of obtaining by combination that protection and those rights which they could not claim as citizens. These societies were modelled, Denifle considers, not on the trade guilds which rose in Bologan in the 13th century, but on the Teutonic guilds mhich arose nearly a century earlier in north-western Europe, being essentially "spontaneous confederations of aliens on a foreign soil." Originally, they did not include the native student element.

The power resulting from this principle of combination, when superadded to the privileges conferred by Barbarossa, gave to the students of Bologna a superiority of which they were not slow to avail themselves. Under the leadership of their rector, they extorted from the citizens concessions which raised them from the condition of an oppressed to that of a specially privileged class. The same principle, when put in force against the professors, reduced the latter to a position of humble deference to the very body whom they were called upon to instruct, and imparted to the entire university that essentially democratic character by which it was afterwards distinguished. It is not surprising that such adrantages should have led to an imitation and extension of the principle by which they were obtained. Denifle considers that the "universities" at Bologna were at one time certainly more than four in

[^315]number, and wo know that the Italian students alone were subdivided intotwo, - the Tuscans and the Lombards. In other the centres formed by secession from the parent body n sinilar like subdivision took place. At Vercelli there were four command "universitates," composed respectively of Italians, Eng. Lies in lish, Provençals, and Germans; at Padua there were lity. there were comprising both English and Normans), Provencals (including Spaniards and Catalans). When accordingly we learn from Odofred that in the time of the cminent jurist Azo, who lectured at Bologna aloont 1200, the number of the studeats there amounted to some ten thousand, of whom the majority were foreigners, it seems reasonable to conclude that the number of these confederations of students ("societates scholarinm") at Bologna was yet greater. It is certain that they were not formed simultaneously, but, similarly to the free guilds, one after the other,-the last in order being that of tie Tuscans, which was composed of students from Tuscany, the Campagna, and liome. Nor are we, again, to look upon them as in any way the outcome of those democratic principles which found favour in Bologna, but rather as originating in the traditional home associations of the foreign students, fostered, howerer, by the peculiar conditions of their unirersity life. As the Tuscan division (the one least in sympathy, in most respects, with Teutonic institutions) was the last formed, so, Denifle conjectures, the German "university" may have introduced the conception which was successively adopted by the other nationalities.

In marked resemblance to the guilds, these confederations The were presided over by a common head,-the "rector schola. rector. rium," an obrious imitation of tho "rector societatum " or "arlium" of the guild, but to be carefully distinguished from the "rector scholarum," or director of the studies, with whose function the former officer had, at this time, nothing in common. Like the guilds, again, the different nations were represented by their "consiliarii," a deliberative assembly with whom the rector habitually took counsel.

While recognizing the essentially democratic character of Mature the constitution of these communities, it is to be remen- ase of the bered that the students, unlike the majority at Paris and students later universities, were mostly at this time of mature years. As the civil law and the canon law were at firsi the only branches of study, the class whom they attracted were often men already filling office in some department of the church or state,-archdeacons, the heads of schools, canons of cathedrals, and like functionaries forming a considerable element in the aggregate. It has been observed, indeed, that the prermission accorded them by Frederick I. of choosing, in all cases of dispute, their own tribunal, thus constituting them, to a great extent, sui juris, seems to presuppose a certain maturity of judgment among those on whom this discretionary power was bestowed.

With the middle of the 13 th century, these various con- amatga federations became blended, for the first time, into one or mation o other of the two great divisions already referred to",-those of the "nni the Ultramontani and the Citramontani, Johannes de Varanis tates" bcing rector of the former and Pantaleon de Venctiis of the into twe latter. Innocent IV, in according his sanction to the new divisions statutes of the university in 1253, refers to them as drawn up by the "rectores et universitas scholarium Bononicnsium." With the commencement of the 16 th century, the troo corporations were combined under one rector.

About the jear 1200 rere formed the two faculties of, med.cine and philosophy (or the arts ${ }^{2}$), the former being

[^316]
Study of

response to new wants the commencement of the university of Paris supplies us with a further illustration. The study of logic, which, prior to the 12th century, was founded exclusively on one or two meagre compends, received about the year 1100, on two accasions, a powerful stimulus, - in the first instance, from the memorable controversy between Laufranc and Berengar; in the second, from the no less famous controversy between Anselm and Roscellinus. A belief sprang up that an intelligent appreliension of spiritual truth depended on a correct use of prescribed methods of argumentation.
somewhat the earlier. It was devoloped, as that of the civil law had been developed, by a succession of able teachers, among whom Thaddeus Alderottus was especially eminent. The faculty of arts, down to the 14 th century, scarcely attained to equal eminence. The teaching of theology remained for a long time exclusively in the hands of the Dominicans; and it was not until the year 1360 that Innocent VI. recognized the university as a "studium generale" in this branch,-in other words, as a place of theological education for all students, with the power of conferring degrees of universal validity.
In the year 1371 the cardinal legate, Anglicus, compiled, as chief director of ceclesiastical affairs in the city, an account of the university, which he presented to Urban V. The jnformation it supplies is, however, defective, owing to the fact that only the professors who were in receipt of salaries from the municipality are mentioned. Of these there were twelve of civil law and six of canon law; three of medicine, three of practical medicine, and one of surgery; two of logic, and one each of astrology, rhetoric, and notarial practice. The professors of theology, who, as members of the religious orders, received no state remuneration, are unmentioned.

Colleges existed at Bologna at a very early date, but it is not until the 14 th century that we find them possessing any organization. They were designed solely for necessitous students, not being natives of Bologna. A separate house, with a certain fund for the maintenance of a specified number of scholars, was all that was originally contemplated. Such was the character of that fonnded by Zoen, bishop of Avignon, in February 1256 (O.S.), the same month and year, it is to be noted, in which the Sorbonne was founded in Paris. It was designed for the maintenance of eight scholars from the province of Avignon, under the supervision of three canons of the church, maintaining themselves in the university. Each scholar was to receive 24 Belognese lire annually for five years. The college of Brescia was founded in 1326 by William of Brescia, archdeacon of Bologna, for poer foreign students without distinction as to nationality. The Spanish college, founded in 1364, for twenty-four Spanish scholars and two chaplains, is noted by Denifle as the one college founded in medirval times which still exists on the Continent. Dialectic was looked upon as "the science of sciences"; nad, when, somewhere in the first decade of the 12 th' century, William of Champeaux opened in Paris a school for the more advanced study of dialectic as an art, his teaching was attended with marked success. Among his pupils was Abelard, in whose hands the study made a yet more notable advance; so that, by the middle of the century we find John of Salisbury, on returning from the Fronch capital to England, relating with astonishment, not unmingled with contempt, how all learned Paris had gone well nigh mad in its pursuit and practice of tho new dialectic.

Abelard taught in the first instance at the cathedral school at Notre Dame, and subsequently at the schools on the Montagne Sainte-Geneviève, of Which he was the
founder, and where he imparted to logic its new development. But in 11 ± 7 the secular canons of Ste Geneviève gave place to canons regular from St Victor ; and henceforth the school on the former foundation was merely a school for the teaching of theology, and was attended only by the members of the house. ${ }^{1}$ The schools out of which the university arose were those attached to the cathedral on the lle do la. Cité, and presided over by the chancellor, -a dignitary who must be carefully distinguished from the later chancellor of the university. For a long time the teachers lived in separate houses on the island, and it was only by degrees that they combined themselves into a society, and that special buildings were constructed for their class-work. But the flame which Abelard's teaching had kindled was not destined to expire. Among his pupils was Poter Lombard, who was bishop of Paris in Lomban 1159, and widely known to posterity as the compiler of Sentences the famous volume of the Sentences. The design of this work was to place before the student, in as strictly logical a form as practicable, the views (sententix) of the fathers and all the great doctors of the church npon the chief and most difncult points in the Christian belief. Conceived with the purpose of allaying and preventing, it really stimulated, controversy. The logicians seized upon it as a great storehouse of indisputable major premises, on which they argued with renewed energy and with endless ingenuity of dialectical refincment; and upon this new compendium of theological doctrine, which became the text-book of the Middle Ages, the schoolmen, in their successive treatises super Sententias, expended a considerable share of that subtlety and labour which still excite the astonishment of the student of metaphysical literature.

It is in these prominent features in the history of these Rise of early universities-the development of new methods of other instruction concurrently with the appearance of new early und material for their application-that we find the most probable solntion of the question as to how the university, as distinguished from the older cathedral or monasti schools, was first formed. In a similar manner, it seems probable, the majority of the earlier universities of ItalyReggio, Modena, Vicenza, Padua, and Vercelli-arose, for they had their origin independently alike of the civil and the papal authority. Instances, it is true, occur, which cannot be referred to this spontaneous mode of growth. The university of Naplea, for example, was founded solely by the fiat of the emperor Frederick II. in the year 1224; and, if we may rely upon the documents cited by Denifle, Innacent IV. about the year 1245 founded in conncxion with the curia a "studium generale," ${ }^{2}$ which was attached to the papal court, and followed it when removed from Rome, very much as the Palace School of Charles the Great accompanied that monarch on his progresses.

As the university of Paris became the model, not only Early for the universities of France north of the Loire, but also for the great majority of those of central Europe as well as for Oxford and Cambridge, some acconnt of its early orge. Such on account sity of organization will here be indispensable. Such an account Paris. is readered still further necessary by the fact that the recent and almost exhaustive researches of Denifle, the Dominican fatber, have led him to conclusions which on some important points run altogether counter to those sanc-j tioned by the high authority of Savigny.

The original university, as already stated, took its rise entirely out of the movement carried on by teachers on the
${ }^{1}$ The view oi Thurot (De l'Organisation de l'Enseignement dans l Universite de Paris, pp. 4-7) that the university arose out of a com. b' ation of these several schools is rejected by Denifle (see Die Uni. vc sit, ten, \&c., i. 653-694).

* Where the words siudium generale are plsced vithin marks o quotat in they occur in the original charter of foundation of the uni versity roferred to,

The teacling that formed its nucleus.
island, who taught hy virtue of tho licence conterred by the clanicellor of the cathedral. In the second decade of the 13 th century, it is true, we find masters withdrawing themselves from lis authority by repairing to the left bank of the Scine and placing themselves under the jurisdiction of the abbot of the monastery of Ste Genevieve ; and in 1255 this dignitary is to be found appointing a clancellor whose duty it should be to confer "licentia docendi" on those candidates who were desirous of opening schools in that district. But it was around the bestowal of this licenco by the chancellor of Notre Dame, on the ille do la Cité, that the university of Paris grew up. It is in this licence that the whole significance of the master of arts degree is contaived; for what is technically known as admission to that degree way really nothing more nor less than receiving the chancellor's permission to "incept," and by "inception" was implied the master's formal entrance upon, and coinmencement of, the functions of a duly licensed teacher, and his recognition as such by his brothers in the profession. The previous stage of his academic carecr, that of Bachelor bachelordom, had been oae of apprenticeship for the of arts. mastership ; and his emancipation from this state was symbolized by placing tho magisterial cap (biretta) upon his head, a ceremony which, in imitation of the old Roman ceremony of manumission, was performed by his former iastructor, "under whom" he was said to incept. He then gave a formal inaugural lecture, and, after this proof of magisterial capacity; was welcomed into the society of his professioaal brethren with set specches, and took his seat is his master's chair.
The uni- This community of teachers of recognized fitness did not versity is itself sulfice to constitute a universitf, but some time rormed. between the years 1150 and $11 \% 0$, the period when the Sentences of Peter Lombard were given to the world, the university of Paris came formally into being. Its first written statutes were not, however, compilcd until about the year 1208, and it was not until long after that date that it possessed a "rector." Its earliert Tccogaition as a legal corporation belongs to about the year 1211, when a brief of Inaocent III. empowered it to elect a proctor to be its representative at the papal court. By this permission it obtained the right to sue or to be sued in a court of justice as a corporate body.

This papal recognition was, however, very far from im-

Diff.

 calties attending its 6irst development. plying the episcopal recognition, and the earlier history of the new community exhibits it as io continual conflict alike with the chancellor, the bishop, and the catbedral chapter of Paris, by all of whom it-was regarded as a ceatre of insubordination aud doctrinal liceece. Had it not been, indeed, for the papal aid, the uaiversity would probably not lare survived the contest; but with that coverful assistance it came to be regarded as the great Sransalpine centre of ortbodox theological teaching. Successive pontiffs, down to the great schism of 1378 , made it one of the foremost points of tbeir policy to cultivate friendly and coofideotial relations with the authorities of the university of Paris, and systematically to aiscourage the formation of theological facalties at other cen res. In 1231 Gregory IX., io the bull Parens Scienl.arum, gave full recognition to the right of the several faculties to regulate and modify the constitution of the entire university, - a formal sanction which, in Deniffe's opinion, rendered the bull in question the Jagna Charta of tho university.In comparing the relative antiquity of the universities of Paris and Bologna, it is difficult to give an unqualified decision. The university of masters at the former was probably slightly anterior to the university of students at the latter; but there is good reason for believing that Paris, io reducing its traditional customs to statutory form,
largely availed itself of the procedents afforded by the already existing code of the Transalpine centre, while its rectorship, proctorships, and four " oations" are all clearly distinct adaptations of the corresponding divisions at Bologna. These nations, which iacluded both professors The and scholars, were-(1) the Freach nation, composed, in "Eatione addition to the native clement, of Spaziards, Italians, and Greeks ; (2) the Picard mation, representing the stadents from the north.cast and from the Netherlands; (3) the Norman nation ; (1) the English nation, comprising, besides students from tho provinces under English rule, those from England, Ireland, Scotland, and Germany. These several nations first came into existence some time before the year 1219, and all belonged to the faculty of arts; but the fully developed uaiversity was divided into four faculties,-thrce "superior," viz, those of theology, canon law, and medicine, and one "inferior," that of arts. The head of each faculty was the dean; the head of each nation was the proctor. Tho rector, who in the first instance was head of tho faculty of arts, by whom ho was elected, was crentually head of the whole university. Each of the nations and each of the superior faculties, while subject to the general authority which he represented, was, like a royal colony, in a great measure self-governed, and made statutes which were linding simply on its own members. Coagregations of the faculty of arts were presided over by the rector, who discharged the same function when geaeral congregations of the whole academic community were convened. Ia the former the votes ou any question were taken by nations, in the latter by faculties and aations. Only "regents," that is, masters actually engaged in teaching, had ans right to be present or to rote in congregations. Neither the entire university nor the separate faculties bad thus, it will be seen, originally a common head, and it was not until the middle of the lyth century that the rector became the head of the collective university, by the incorporation under him, frst, of the students of the canon law and of medicine (which took place about the end of the 13th century), and, secondly, of the theologians, which took place about balf a century later.
Apart from the broad differeuces in their organization, Paris and the very conception of learning, it will be observed, was Bologna different at Bologna from what it was at Paris. In the θ tran-ed former it was entirely professional,-designed, that is to say, to prepare the student for a defioite and practical career in after life; in the latter it was sought to provide a general mental traiaing, and to attract the learaer to studies which rere speculative rather than practlcal. In the sequel, the less mercenary spirit in which Paris cultirated knowledge added immensely to her iafluence and reputation. The university became known as the great school where theology was studied in its most scientific epirit; and the decisions of its great doctors upon those abstruse questions which absorbed so much of the highest intellectual activity of the Midalo Ages were regarded as almost final. The popes themselres, although arerse from Papal theological controversies, deemed it expedient to cultivato policy ie friendly relations with a centro of such importance for the relation purpose of securing their influence in a yet wider field. aniverDown therefore to the time of the great schism (1378), sitiea they at once conciliated the university of Paris and consulted what they deemed to be the interests of tho Roman sce, by discouraging the creation of faculties of theology elsewhere. The appareat exceptions to this policy are easily explained: the four faculties of theology which they sanctioned in Italy - Pisa (1343), FHorence (1349), Bologna (1362), and Padua (1363)-were designed to bencfit the ltalian mooastcries, by saving the monks the expense and dangers of a long journey beyond the Alps; while that at

Tonlouse (1229) took its rise under circamstances entirely exceptional, being designed as a bulwark against the heresy of the Albigenses. The popes, on the other hand, favoured the creation of new faculties of law, and especially of the canon law, as the latter represented the source from which Rome derived her most warmly contested powers and prerogatives. The effects of this twofold policy were sufficiently intelligible: the withholding of each charter which it was sought to obtain for a new echool of theology only scrved to augment the numbers that flocked to Paris; the bestowal of each new charter for a faculty of law served in like manner to divert a certain proportionate number from Bologna. These facts enable us to understand how it is that, in the 13th and 14th centuries, we find, even in France, a larger number of universities created after the model of Bologna than after that of Paris.

In their earliest stage, however, the importance of these new institutions was but imperfectly discerned alike by the civil and the ecclesiastical power, and the frst four universities of Italy, after Bologna, rose into existence, like Bologna itself, without a charter from either pope or em-
Founda- peror. Of these the first were those of Reggio and tion of Modena, beth of which are to be found mentioned as oniversities of Reğio and
Modens, schools of civil law before the close of the 12th century. The latter, throughout the 13 th century, appears to have been resorted to by teachers of sufficient eminence to form a flourishing school, composed of students not only from the city itself, but also from a considerable distance. "Both of them would seem to have been formed independently Vicen2a, of Bologna, but the university of Vicenza was probably the outceme of a migration of the students from the former city, which took place in the year 1204. In the course of the centary Vicenza attained to considerable prosperity; its students were divided into four nations, each with its orra rector ; and in 1264 it included in its professoriate seachers, not only of the civil law, but also of medicine, grammar, and dialectic. The university of Padua was founded in 1222 as the direct result of the migration of a considerable number of students from Bologna. Some writers, indeed, have inferred that the "studium" in the latter city was transferred in its entirety, but the continued residence of a certain proportion in Bologna is proved by the fact that two years later we find them appealing to Honorius III. in a dispute with the civic authorities. In the year 1228 the students of Padua were compelled by circamstances to transfer their residence to Vercelli, and the latter city guaranteed them, besides other privileges, the right to rent no less than fire hundred lodgigg-houses at a fixed rental for a period of eight years. At first Padua was a school only of the civil and canon law; and during the oppressive tyranuy of Ezzelin (1237-1260) the university maintained its existeace with some difficulty. But in the latter part of the century it incorporated the faculties of grammar, rhetoric, and medicine, and became known as one of the mest flourishing schools of Italy, and a great centre of the Dominicans, at that time among the most active promoters of learning.

The university of Naples was founded by the emperor Frederick II. in the year 1225, as a school of theology, jurisprudence, the arts, and medicine,-his design being that his subjects in the kingdom of Naples should find in the capital adequate instruction in every branch of learning, and " not be compelled in the pursuit of knowledge to have recourse to foreign nations or to beg in other lands." In the year 1231, however, he decreed that the faculty of medicine should cease to exist, and that the study should be pursued nowhere in the kingdom but.at Salerno. The university never attained to much emincace, and after the death of Frederick came for a time altogether to an end, but was restored in 1258 by King Manfred. In 1266 its
faculty of medicine was reconstituted, and from 1272-74
Thomas Aquinas was one of its teachers of theology. The commencement of the university of Vercelli' beloags to Vercellu ${ }_{2}$ about the year 1228 ; it probably included, like Naples, all the faculties, but would seem to have been regarded with little favour by the Roman see, and by the year 1372 had ceased to exist, although inention of colleges of law and medicine is to be found after that date. The two universities of Piacenza and Pavia stand in close con-Piacenss nexion with each other. The former is noted by Deaife as the earliest in Italy which was founded by virtue of a papal charter (6th February 1248), although the scheme remained for a long time inoperative. At leagth, in the year 1398 , the university was reconstituted by Gioranni Galeazzo Visconti, duke of Milan, who in the same year cansed the university of Paria to be transfcrred thither. Piacenza now became the scene of a sudden but shortlived academic prosperity. We are told of no less than twenty-seven professors of the civil law,-among them the celebrated Baldus; of twenty-two professors of mediciae; of professors of philosophy, astrology, grammar, and rhetoric; and of lecturers on Seneca and Dante. The facnlty of theology would appear, however, never to have been duly constituted, and but onelecturer in this faculty is mentioned. With the death of Galeazzo in 1402 , this precarious activity came suddenly to an end; and in 1404 the university had ceased to exist. Its history is, indeed, unintelligible, unless taken iu coajunction with that of Pavia. Even before Paria Irnerius taught at Bologna, Pavia had been widely known as a seat of legal studies, and more especially of the Lombard law, although the evidencs is wanting which would serve to establish a direct connexion between this early scheel and the university which was founded there in 1361, by virtue of the charter granted by the emperor Charles IV, The new "studium" included faculties of jurisprudence, philosoply, medicine, and the arts, and its students were formally taken under the imperial protection, and eadowed with privileges identical with those which had been granted to Paris, Bologna, Oxford, Orleans, aad Montpellier ; but its existence in Pavia was suddenly suspended by the removal, above noted, of its students to Piacenza. It shared again in the declino which overtook the university of Piacenza after the death of Giovanni Galeazzo, and during the period from 1404 to 1412 it altogether ceased to exist. But in October 1412 the lectures were recommenced, and the university entered upen the most brilliant period of its existeace. Its professors throughout the 15 th century were mea of distinguished ability, attracted by munificent salaries such as but fen other universities could offer, while in the numbor of students who resorted thither from other countries, and more especially for the study of the civil law, Pavia had no rival in Italy lut Padua. Arezzo appears to have been Arezza known as a centre of the same study so early as 1215, and its earliest statutes are assigned to the year 1255. By that time it had become a echool of arts and medicine also; but for a considerable period after it was almost eatirely deserted, and is almost unmentioned until the year 1338, when it acquired new importance by the accession of several eminent jurists from Bologra. In May 1355 it received its charter as a studium generale from Charles IV. After the year 1373 the school gradually dwindled, although it did not become altogether extinct until about the year 1470. The university of Pome (which is to be carefully distinguished from the school attached to the curia) owed its foundation (1303) to Boniface VIII., and Tras especially designed by that pontiff for the benefit of the poor foreign students sojourning in the capital. It originally included all the faculties; but in 1318 Joln XXII. decreed that it should possess the power of confer-
ring degrees only iu the canon and civil law. The unirersity maintained its existence throughout the period of the residence of the popes at Avignon (see Poppdexs), and under the patronage of Leo X . could boast in 1514 of no less than eighty professors. This imposing array would seem, however, to bo but a fallacious test of the prosperity of the academic community, for it is stated that many of the professors, owing to the imperfect manner in which they were protected in their privileges, were in the receipt of such insufficient fees that they were compolled to combine other employments with that of lecturing in order to support themselves. An appeal addressed to Leo X. in the year 1513 represents the number of students as so small as to be eometimes exceeded by that of the lecturers (" ut quandoque plures sint quil legan't quam qui audiant"). Scarcely any of the universities in Italy in the 14th Perugis, century attracted a larger concourse than that of Perugin, where the study chiefly cultivated was that of the ciril law. The university received its charter as a studium generale from Clement V. in the year 1308, but had already in 1306 been formally recognized by the civic authorities, by whom it was commended to the special care and protection of the "podestai." In common with the rest of the Italian unirersities, it suffered severely from the great plague of 1348-49; but in 1355 it received new privileges from the emperor, and in 1362 its first college, dedicated to Gregory the Great, was forinded by the bishop Treriso, of Perugia. The university of Treviso, which received its charter from Frederick the Fair in 1318, was of little celebrity and but short duration. It is doubtful, indeed, whether it continued to exist after the city became subject to the republic of Venice in the year 1339 ; but in 1409 the Venetian senate issned a decree that no subjects of the republic should resort for study to any city in its dominions sare that of Padua, and from this date the studium at Treviso must be held to have been no longer in existence. The circumstances of the rise of the university
Florence, of Florence are unknown, but the earliest evidence of academic instruction belongs to the year 1320. The dispersion of the unirersity of Bologna, in the March and April of the following year, afforded a favourable opportunity for the creation of is studium generale, but the necessary measures were taken somewhat tardily, and in the meantime the greater number of the Bolognese students bad betaken themselves to Siena. The charter of foundation for Florence was accordingly not granted until 3ist May 1349, when Clement VI. decreed that there should be instituted a studium generale in theology, jurispridence, medicine, and every other recognized faculty of learning, the teachers to be professors who had obtained the degree of doctor or master either at Bologna or Paris, or "some other studium generale of celebrity." On 2d Jnnuary 1364 the university also obtained the grant of imperial privileges from Charles TV. On 14th February 1388 it adopted a body of statutes which are still extant, and afford an interesting study in connexion with the university history of the period. The university now entered upon that brilliant period in its history which was destined to so summary an extinction. "It is almost touching," says Deniffe, "to note how untiringly Florence exerted herself at this period to attract as teichers to her schools the great masters of the sciences and learning." In the year 1472 , bowever, under the influence of Lorehzo de' Medici, it was decided that Florence was not a convenient seat for a university, and its stadents were removed to Pisa. The commencement of the university of Siena belongs to sbout the year 1241, but its charter was first granted by the emperor Charles IV., at the petition of the citizens, in the year 1357. It was founded as a studium generale in jurisprudence, the arts, and medicine. The
imperial charter was confirmod by Gregory XIL in 1408, and the various bulls relating to the oniversity which he subsequently issucd afford a good illustration of the conditions of neademic life in these times. Fesidence on the part of the students appears to have been sometimes dispensed mith. The bisliop of Sicna was nominated clancellor of the university, just as, exys the bull, ho had been appointed to that oflice by the impcrial authority. The graduates were to be admitted to the eame privileges as those of Bologaa or Paris; and a facults of theology was added to the curriculum of studies. The university of Ferrara owes its foundation to the house of Este,-Alberto, marquis of Este, baving obtained from Boniface IX in 1391 a charter couched in terms precisely similar to those of the chartcr for Pisa. In the first half of the 15 th century the university was adorned by the presence of several distinguished humanists, but its fortunes wero singularly chequered, nud it would appear for a certain period to have been altogether cxtinct. It was, bowerer, restored, and became in the latter part of the century one of the most celebrated of the universities of Italy. In the year. 1474 its circle of studies romprised all the existing faculties, and it numbered no less than fifty-one professors or lecturers. In later times Ferrara has been noted chiefly as a school of medicine.

Of the universities modelled on that of Paris, Oxford Oxiorl, would appear to have been the earliest, and the mannei of its development was probably similar. Certain schools, opened \cdot within the precincts of the dissolved nannery of St Frideswyde and of Oseney abbey, are supposed to hare been the nucleus round which the university grew up. In the year 1133 one Tobert Pullen, a theologian of considerable eminence (but whether an Englishman or a Breton is nncertain), arrived from Paris, and delivercd lectures on the Bible. He was followed a few jears later by Vacarius, a native of Lombsrdy, who is a student at Bologna had inherited the tradition of the teaching of Imerius. AIthough both the pope and King Stephen regarded the civil law at this time with considerable distrust, Vacarius maintained his ground, and the study became one of the recognized faculties at Oxford. Tomards the close of the 12th century- Giraldus Cambrensis describes the town as a place " where the clergy in England chiefly flourished and excelled in clerkly lore." In one respect, indeed, Oxford was more favoured than even Paris, for the town authorities could not pretend to assert any right of interference with the university such as that to which the French monarch and the court frequently laid claim. In the 13th century mention first occurs of university "chests," especially the Frideswyde chest, which were benefactions designed as funds for the assistance of poor students. Halls, or places of licensed residence for students, also began to be ectablished. In the year 125T, when the bishop of Lincoln, as diocesan, had trenched too closely on the liberties of the commanity, the deputies from Oxford, when preferring their appeal to the Ling at St Albans, could venture to speak of the university as "schola secunda ecciesixe," or second only to Paris. Its numbers ebout this time were probably some three thousand; tut it was essentially a fluctuating bods, and whenever plaçe or tumult led to a temporary dispersion a serious diminution in its numerical strength gencrally ensued for some time after. Against such vicissitudes the foundation of colleges proved the most effectual remedy. Of these the three earliest were University College, founded in 1249 by William of Durham; Balliol College, founded about 1263 by John Balliol, the father of the king of Scotland of the same name ; and Merton College, founded in 1264. The lastnamed is especially notable as associated with a new conception of unircrsity education, namely, that of collegiate
disciplino for the secular clergy, instead of for any one of the religious orders, for whose sole benefit all similar foundations had hitherto been designed. The statutes given to the society by Walter de Merton are not less noteworthy, as characterized not only by breadth of conception, but also by a careful and discriminating attention to detail, which led to their adoption as the model for later colleges, not only at Oxford but at Cambridge. Of the service rendered by these foundations to the university at large we have significant proof in the fact that, although representing only a small numerical minority in the academic community at large, their members soon obtained a considerable preponderance in the administration of affairs.

The university of Cambridge, although it rose into existence somewhat later than Oxford, may reasonably be held to bave had its origin in the same sentury. There was probably a certain amount of educational work carried on by the canons of the chi cn of St Giles, which gradually developed into the insuuction belonging to a regular studium. In the ycar $11 i 2$ the canons crossed the river and took up their residerte in the new priory in Barnwell, and their work of instruction acquired additional importance. Then, as early as the year 1224, the Franeiscans established themselves in the town, and, somewhat less than half a century later, were followed by the Dominicans. At both the English universities, as at Paris, the Mendicants and other religious orders were admitted to degrees, a privilege which, until the jear 1337, was extended to them at no other university. Their interest in and influence at these three centres was consequently proportionably great. In the years 1231 and 1233 certain royal and papal letters afford satisfactory proof that by that time the university of Cambridge was already an organized body with a chancellor at its head; and in 1229 and 1231 its numbers were largely augmented by migrations from Paris and from Oxford. Cambridge, however, in its turn suffered from emigration; while in the year 1261, and again in 1322, the records of the university were wantonly burnt by the towasmen. Throughout the 13th century, indeed, the university was still only a very slightly and imperfectly organized community. Its endowments were of the most slender kind; it had no systematic code for the government of its members; the supervision of the students was very imperfectly provided for. An important step in the direction of reform in this last respect was, however, made in the year 1270 , when an ordinance was passed requiring that every one who claimed to be recognized as a scholar should have a fixed master within fifteen days after his entry into the university. But the feature which most served to give permanence and cohesion to the entire community was, as at Oxford, the institution of colleges. The earliest of these was Peterhouse, first founded as a separate institution by Hugh Balsham, bishop of Ely, in the year. 1286, with a code which was little more than a transcript of that given by Walter de Merton to his scholars at Oxford. About forty years later was founded Michaelhouse, and at nearly the same time (1326) Edwàrd II, instituted his foundation of "king's scholars," afterwards forming the community of King's Hall. Both these societies in the 16th century were merged in Trinity College. To those succeeded Pem. broke Hall (1347) and Gonville Hall (1348). All these colleges, although by no means conceived in a spirit of hostility to either the monastic or the Mendicant orders, were expressly designed for the benefit of the secular clergy. The foundation of Trinity Hall (1350) by Bishop Bateman, on the other hand, as a school of civil and canon law was probably desigued to further ultramontane interests. That of Corpus Christi (1352), the outcome of
the liberality of a guild of Cambridge townsmen, was con ceived with the combined object of providiug a house of education for the clergy, and at the same time securing the regular performance of masses for the benefit of the souls of departed members of the guild. But both Trinity Hall and Corpus Christi College, as well as Clare Hall, founded in 1359 , were to a great extent indebted for their origin to the ravages caused among the clorgy by the great plague of 1349 .

Turning to France, or rather to the territory included within the boundaries of modern Erance, we find Montpellier a recognized school of medical science as early as the 12 th century. William VIII., lord of Montpellier, in the year 1181 proclaimed it a school of free resort, where any teacher of medical science, from whatever country, might give instruction. Before the end of the century it possessed also a faculty of jurisprudence, a branch of learning for which it afterwards became famed. The university of medicine and that of law continued, however, to be totally distinct bodies with different constitutions. Petrarch was sent by his father to Montpellier to study the civil law. On 26th October 1289 Montpellier was raised by Nicholas IV. to the rank of a "studium generale," a mark of favour which, in a region where papal influence was so potent, resulted in a considerable accession of prosperity. The university also now included a faculty of arts ; and there is satisfactory evidence of the existence of a faculty of theology before the close of the 14th century, although not formally recognized by the pope before the year 1421 . In the course of the same century several colleges for poor students were also founded. The university of Toulouse Toulouse is to be noted as the first founded in any country by virtue of a papal charter. It took its rise in the efforts of Rome for the suppression of the Albigensian heresy, and its foundation formed one of the articles of the conditions of peace imposed by Louis IX. on Count Raymond ofToulouse. In the year 1233 it first acquired its full privileges as a "studium generale" by virtue of a charter given by Gregory IX. This pontiff watched over the university with especial solicitude, and through his exertions it soon became a noted centre of theological and especially oí Dominican teaching. As a school of arts, jurisprudence, and medicine, although faculties of each existed, it never attained to any reputation. The university of Orleans Orleans had a virtual existence as a studium generale as early as the first half of the 13 th century, but in the year 1305 Clement V. endowed it with new privileges, and gave its teachers permission to form themselves into a corporation. The schools of Orleans had an existence, it is said, as early as the 6th century, and subsequently supplied the nucleus for the foundation of a university at Blois; but of this university no records now exist. ${ }^{1}$ Orleans, in its organization, was modelled mainly on Paris, but its studies were complementary rather than in rivalry to the older university. The absorbing character of the study of the civil law, and the mercenary spirit in which it was pursued, had led the authorities at Paris to refuse to recognize it as a faculty. The study found a home at Orleans, where it was cultivated with an energy which attracted numerous students. In January 1235 we find the bishop of Orleans soliciting the advice of Gregory TX. as to the expediency of countenancing a study which was prohibited in Paris. Gregory decided that the lectures might be continued; but be ordered that no beneficed ecclesiastic should be allowed to devote himself to so eminently secular a branch of learning. Orleans subsequently incorporated a faculty of arts, but its reputation from this period was always that of a school of legal studies, and in the 14 th century its reputation in this respect was surpassed by no other uni-
${ }^{1}$ See Ch. Desmaze. L' Université de Paris (1200-1875).
versity in Europe. Prior to the 13th century it had been famed for its classical learning; and Angers, which reccived its charter at the aame time, also once enjoyed a like reputation, which, in a similar manner, it exchanged for that of a school for civilians and canonists. The roll of the university forwarded in 1378 to Clement VIL containa the names of 8 professors utriusque juris, 2 of civil and 2 of canon law, 72 licentiates, 284 bachelors of both the legal faculties, and 190 scholare The university of Avignon was first recognized as a "studium generale" by Boniface VIII. in the year 1303, with power to grant degrees'in jurisprudence, arts, and medicine. Its numbers declined somewhat during the residenco of the popes, orwing to the counter attractions of the "studium" attached to the curia; but after the retarn of the papal court to Rome it became one of the most frequented universities in France, and possessed at one time no less than seven colleges. The university of Cahors enjoyed the advantage of being regarded with especial favour by John XXII. In June 1332 be conferred upon it privileges identical with those already granted to the university of Toulouse. In the following October, again following the precedent estallished at 'Toulouse, be appointed the scholasticus of the cathedral chancellor of the university. . In November of the same year a bull, couched in terms almost identical with those of the Magna Charta of Paris, assimilated the constitntion of Cahors to that of the oldest university. The two schools in Fratice which, down to the close of the 14 th century, nost closely resembled Paris were Orleans and Cahors. The civil immunities and privileges of the latter university were not, however, acquired until the year 1367, when Edward III. of England, in Lis capacity as duke of Aquitaine, not only exempted the scholars from the payment of all taxes and imposts, but bestowed upon them the peculiar privilege known as privilegium fori. Cahors also reeeived a licence for faculties of theology and medicine, but, like Orleans, it was chiefly
urenolle, kñown as a school of jurisprudence. It was as a "studium generale" in the same three faculties that Grenoble, in the year 1339, received its charter from Benedict XII. The university never attained to much importance, and its annals are for the most part involved in obscurity. At the commencement of the 16 th century it had ceased altogether to exist, was reorganized by Francis of Bourbon in 1542, and in 1565 was united to the university of Valence.
in the south, stood in the relation of a kind of subsidiary Salaochool, having been founded in 1254 by Alfonso the manco Wise, simply for the study of Latin and of tho Semitic Serfle, languages, espccially Arabic. Salamanca was founded in 1243 by Ferdinand III. of Castile as a "studium generale" in the three facultics of jurisprudence, the arts, and medicine. Ferdinand extended his special protection to the students, granting them numerous privileges and immunities. Under his son Alfonso (above named) the university acquired a further development, and eventually included all the faculties sare that of theology. But the main stress of its activity, as was tho caso wlth all the earlier Spanish universities, cecepting only Palencia and Seville, until the commeacement of the 15 th century, was leid on the civil and the canon law. But, notwithstanding the favour with which Salamanca was regarded alike by the kioga of Castile and by the Roman see, the prorision for the payment of its professors was at first so inadequate and precarious that in 1298 they by common consent suspended their lectures, in consequence of their scanty remuneration. A permanent remedy for this difficulty was thereupon provided, by the appropriation of a certain portion of the ecclesiastical revenues of the diocese for the purpose of augmenting the professors' 8alaries. The earliest of the unmerous colleges founded at Salamanica was that of St Bartholomew, long noted for its ancient library and valuable collection of manuscripts, which nom form part of the royal library in Madrid.

The one university possessed by Portagal had its geat Crimbra, in mediæra! times alterately iu Lisbon and in Coimbra, until, in the year 1537 , it was permanently attached to the latter city. Its formal foundation took place in 1309, when it received from King Diniz a clarter, the provisions of which were mainly taken from those of the charter giren to Salamauca. In 1722 the universitv was entirely reconstituted.

Of the German universities, Prague, which existed as a Prague, "studium" in the 13 th century, was the earliest, and was at first frequented mainly by students from Styria and Austria, countries at that time ruled by the king of Bohemia. On 26th January 1347, at the request oil Charles IV., Pope Clement VI. promulgated a bull authorizing the foundation of a "studium gencralo" in all the faculties. In the following year Charles himself issued a charter for the foundation. This document, which, if original in character, would have been of much interest, has but few distinctive features of its own, its provisions being throughout adapted from those contained in the charters given by Frederick II. for the university of Naples and by Conrad for Salerno,-alnost the only important feature of difference being tiuat Clarles bestows on the students of Prague all tho ciril privileges and immunities which were enjoyed by the teachere of Paris and Bologna. Charles Lad himself been' a student' in Paris, and the organization of his new foundation was modelled on that university, a like division- into four "nations" (although with different names) constituting one of the most marked features of imitation. The aumerous students-and none of the medieval unirersities attracted in their earlier history a larger concourse-were drawn from a gradually widening area, which at length included, not only all parts of Germany, but also England, France, Lombardy, Hungary, and Peland. Contemporary writers, with the exaggeration characteristic of medixeral credulity, even speak of thirty thousand students as present io the university at one time, -a statement for which Denifo proposes to substitute two thousand as a more probable estimate. It is certain, however, that Prague, prior to the foundation of Lcipsic, was one of tho most frequented centres of learning in Europe, and Paris suffered a considerable diminution in
her numbers owing to the oounter attractions of the great studium of Slaronia.

The university of Cracow in Poland was founded in May 1364, by virtue of a charter given by King Casimir the Great, who bestowed on it the same privileges as those possessed by the universities of Bologna and Padua. In the following September Urban V., in consideration of the remoteness of the city from other centres of education, constituted it a "studium generale" in all the faculties save that of theology. It is, however, doubtful whether these desigos were carried into actual realization, for it -is certain that, for a long time after the death of Casimir, there was no university whatever. Its real commencement must accordingly be considered to belong to the year 1400, when it was reconstituted, and the papal sanction was given for the incorporation of a faculty of theology. From this time its growth and prosperity were continuous; and with the year 1416 it had so far acquired a European reputation as to venture upon forwarding an expression of its views in connexion with the deliberations of the council of Constance. Towards the close of the 15 th century the naiversity is said to have been in high repute qs a school of both astronomical and humanistic studies.
vienas,
The Arignonese popes appear to have regarded the establishment of new faculties of theology with especial jealousy; and when, in 1364, Duke Rudolph IV. founded the university of Vienna, with the design of constituting it a "studium generale" in all the faculties, Urban V. refused his assent to the foundation of a theological school. Owing te the sudden death of Duke Rudolph, the university languished for the next twenty years, but after the accession of Duke Albert III., who may be regarded as its real founder, it acquired additional privileges, and its prosperity became marked and continuous. Like Prague, Vienna was for a long time distinguished by the comparatively little attention bestorred by its teachers on the study of the civil law.

No country in the 14th ceatury was looked upon with greater disfavour at Rome than Hungary. It was stigmatized as the land of heresy and schism. When, accordingly, in 1367 King Louis applied to Urban V. for his sanction of the scheme of founding a university at Fünf-
kirchen, kirchen, although theological learning was in special need of encouragement in those regions, Urban would not consent to the foundation of a faculty of theology; he even made it a condition of his sanction for a " studium generale" that King Louis should first undertake to provide for the payment of the professors. We hear but little concerning the university after its foundation, and it is doubtfu! . Whether it survived for any length of time the close of the century, having been about that period absorbed in all Ofer, probability in the university of Ofen. The foundation of this university is also involved in considerable obscurity, and its original charter is lost. We cnly know that it was granted by Boniface IX., at the request of King Sigismund, in the year 1389. In the first half of the 15th century it ceased for a long period to exist, but was revived, or rather founded afresh, by King Mathias Corvinus, an eminent patron of learning, in the last quarter of the century. "The extreme east of civilized continental Europe in medireval times," observes Denifle, "can be compared, so far as university education is concermed, only. with the extreme west and the extreme south. In Hungary, as in Portugal and in Naples, there was constant fluctuation, but the west and the south, although troubled by yet greater commotions than Hungary, bore better fruit. Among all the countries possessed of universities in mediæval times, Hungary occupies the lowest place-a state of aflairs of which, however, the proximity of the Turk must be looked upon as a main cause."

The university of Heidelberg received its charter (23 d October 1385) from Urban VI. as a "studium ginerale" in all the recognized faculties sare that of the civil law, the form and substance of the document being almost identical with those of the charter granted to Viensa. It was granted at the request of the elector palatine, Rupert I., Who conferred on the teachers aud students, at the same time, the same civil privileges as those which belonged to the university of Paris. In this case the functionary invested with the piver of bestowing degrees was nonresident, the licences heing conferred by the provost of the cathedral at Worms But the real founder, as he was also the organizer and teacher, of the university was Marsilius of Inghen, to whose ability and energy Heidelberg was indebted for no little of its early reputation and success. The omission of the civil lave from the studies licensed in the original charter would seem to show that the pontiff's compliance with the elector's request was merely formal, and Heidelberg, like Cologne, included the civil law among its faculties almost from its first creation. No mediæval university achieved a more rapid and permanent success. Regarded with favour alike by the civil and ecclesiastical petentates, its early annals were singularly free from crises like those which characterize the history of many of the mediæval universities. The number of those admitted to degrees from the commencement of the first session (19th October 1386 to 16th December 1387) amounted to 579.1

Owing to the labours of the Dominicans, Cologoe had Cologne, gained a reputation as a seat of learning long before the founding of its ubiversity; and it was through the advocacy of some leading members of the Nendicant orders that, at the desire of the city council, its charter as a "studium generale" (21st May 1388) was obtained from Urban VI. It was organized on the model of the university of Paris, as a school of theology and canon law, and "any other recognized faculty,"-the civil law beiug incorporated as a faculty soon after the promulgation of the charter. In common with the other early universilies of Germany-Prague, Vienna, and Heidelberg-Cologic owed nothing to imperial patronage, while it would appear to have been, frem the first, the object of special favour with Rome. This circumstance serves to account for its distinctly ultramontane sympathies in mediæval times aud even far into the 16 th century. In a report transmilic. to Gregory XIII. in 1577, the university expressly derive, beth its first origin and its privileges from the Holy See, and professes to owe no allegiance save to the Romau pontiff. Erfurt, no less noted as a centre of Franciscan Frfurt than was Cologne of Dominican influenie, received its charter (16th September 1379) from the anti-pope Clement VII. as a "studium generale" in all the faculties. Ten years later (4th May 1389) it was founded afresh by Urban VI., without any recognition of the act of his pretended predecesoor. In the 15 th century the number of its students was larger than that at any other German uni-versity-a fact attributable part'y to the reputation it had acquired as a school of jurisprudence, and partly to the ardour with which the philosophic controversies of the time were debated in its midst.
The collegiate system is to be noted as a feature common to all theso early German universities; and, in nearly all, the professors were partly remunerated by the appropriation of certain prebends, appertaining to some neighbouring church, to their maintenance.

Throughout the 15th century the relations of the Roman Relatioza pontifis to the universities continued much the same, of the although the independent attitude assumed at the great nopes to councils of Constance and Basel by the deputies from the the uni-
versities,

[^317]muivarsities, and esjecally by those from Pars, could not fail to excite therr apprehensions. Their bulls for each new \{o indation becin again to indicate a certain jealousy with respect to the appropriation of prebends by the foriders. Where such appropriations are made, and more particularly in France, a formal sanction of the transfer generally fiads a place in the bull authorizing the foundation ; while sometires the founder or founders are themselves enjoined to provide the endorments requisite for the establishment and support of the university. In this inanner the control of the puntiff over each newly-created seat of learning assumed a more real character, from the fact that his assert was accompanied by conditions whicl rendered it no longer a mere formality. The imperial intervention, on the other hand, was rarely invoked in Uermany,--Greifswald, Freiburg, and Tübingen being the only instances in which the emperor's confirmation of the foundation was solicited. ${ }^{1}$ But whatever induence the Roman see may have gained by increasing intervention was more than counteracted by those other tendeneics which came into operatios in the second half of the century. These were of a twofold character:- the first directly modifyiag the studies themselves, as the results of the discovery of printing and the new spirit awakened by the teach. ing of the lumanists; the second affecting the external conditions, such as the multiplication of schools, and the growiag demand for skilled physicians and learned civilians, -circumstances which afforded increased employment for the services of men of academic trainiag. In northern Germany and in the Netherlands, the growing wealth and prosperity of the different states especially favoured the formation of new centres of learning. In the flourishing duchy of Brabant the university of Louvain (1426) was to a great extent controlled by the municipality; and their patronage, although ultimately attended with detrimental results, long enabled Louvain to outbid all the other universities of Europe in the munificence with which she rowarded her professors. In the course of the next cencury the "Delgian Athens," as sie is styled by Lipsius, ranked second only to Paris in numbers and reputation. In its numerous separate foundatioas and general organiza-tion-it possessed no less than twenty-eight colleges-it closely resembled the Eaglish universities; while its active press afforded facilities to the author and the controversialist of whieh both Cambridge and Oxford were at that time almost destitute. It embraced all the faculties, and ne degrees in Europe stood so high as guarantees of general acquirements. Erasmus records it as a common eaying, that "no one could graduate at Louvain withont knowledge, manners, and age." Sir William Hamilton speaks of the examination at Louvain for a degreo in arts as "the Dest example upon record of the true mode of such examinatioa, and, until. recent times, in fact, the only exanple in the history of universitics worthy of consideration at all." He has translated from Verauliens the order and method of this examination. ${ }^{2}$ Is 1783 the faculties of jurisprudenee, medicine, and philosophy were removed to Brussels, and in 1707 the French suspended the university altogether. When Belgium was formed inte an independent state io 1831, the university was refounded as a Roman Catholic foundation.

The circumstances of the fondation of the university of Leipsic are cspecially noterrorthy, it baviog been the result of the migration of almost the entire German element from the university of Prague. This element comprised (1) Bavarians, (2) Saxons, (3) Poles (this lastnamed division being drawn fron a wide area, which included Meissen, , Lusatia, Silesin,"and Prussia), and, being

[^318]represented by; taree votes in the assemblies of the university, while the Bolemians possessed but one, had acquired a preponderance in the direction of affairs which the latter could no longer submit to. Religious differences, again, evoked mainly by the preaching of John IIuss, further intensified the existing disagrecinents; and eventually, in the year 1409, King Wenceslaus, at the prayer of his Bohemian subjects, issued a deeree which exactly reversed the previons distribution of votes, -three votes being assigned to the Bohemian nation and only one to all the rest. The Germans took deep ombrage, aud seceded to Leipsic, where, a bull having Leen obtained from Alexander V. (9th September 1409), a new "studium generale" was founded by the landgravo of Thuringia and the margraves of Meissen. The members were divided iato four nations-composed of natives of Meissen, Saxony, Bavaria, and Poland. Two colleges were founded, a greater and a smaller, but designed, not for poor students, but for masters of arts, -twelve being admitted on the former and eight on the latter foundation. The first university Rostock of northern U'ermany was that of Rostock, founded by the dukes Jolin and Albert of Mecklenburg, the scheine receiving the sanction of Martin Y". in a bull dated 13th February 1419 as that of a "studium geaerale" in all the faculties excepting theology. The faculty of theology was added is the jear 1432 . Two colleges were also founded, with the same design and on the same scale as at Leipsic.

No little illustration is afforded by the circumstances attending the foundation of the French universities of the struggle that was going on between the crown and the Foman see. The carliest foundation in the 15 th century Poitlere was that of Poitiers. It was instituted by Charles VII. in 1431, almost imnediately after his accession, with the special design of creating a centre of learning less favourable to English interests than Paris had at that time shown herself to be. Eugenius IV could not refuse hits sanction to the scheme, but he codeavoured partially to defeat Charles's design by conferring on the new "studium generale " only the eame privileges as those possessed ly Toulouse, and thus placiug it at a disadrantage in consparison with Paris. .Charles rejoined by an extraordinary exereise of his own prerugative, conferring on Poitiers all the privileges collectively possessed by Paris, Toulouse, Montpellier, Angers, and Orleans, and at the eame time placing the university under special royal protection. The Crea, foundation of the utiversity of Caen, in the diocese of Bayeux. was attended by conditions almost exactly the reverse of those which belonged to the foundation of that at Poitiers. It was founded under English auspices duriag the short period of the supremacy of the Eaglish arms in Normandy in the 15 th century. Its charter (May 1437) was given by Eugenius IV., and the bishop of Bayeux was appointed its clancellor. The university of Paris had by this time completely forfeitcd the favour of Eugenins by its attitude at the conncil of Dasel, and Eagenius inserted in the charter for Caca a clanse of an entirely novel character, requiring all those admitted to degrecs to take an oath of fidelity to the see of Rome, and to bind themselves to attempt sothing prejudicial to her interests. To this proviso the pragmatic sanction of Bourges.was the reply given by Clarles in the following year. Oa 18th May 14 ± 2 we find King Henry VI. writing to Eugenius, and dwelling with eatisfaction on the rapid progress of the new university, to which, he Eays, students had flocked from all quarters, and wera still daily arriving. ${ }^{3}$ On 30th October 1452 its charter was given afresb by Charles in terms which left the original charter unrecognized; both teachers and lcarners twere made subjcct to the civil authorities of tho city, while all privileges conferred in the former charter
${ }^{3}$ Bekynton's Correspondence, i. 123.
VXIIJ. - 106
in cases of legal disputes were abolished. From this time the university of Caen was distinguished by its loyal spirit and firm resistance to ultramontane pretensions; and, although swept away at the Frencl Kerolution, it was afterwards restored, owing to the sense of the services it had thus once rendered to the national cause. ${ }^{1}$ No especially notable circumstances charecterize the foundation of the university of Bordeaux (i441) or that of Valence (1452), but that of Nantes, which received its charter from Pius II. in 1463, is distinguished by the fact that it did not receive the ratification of the king of France, and the conditions under which its earlier traditions were formed thus closely resemble those of Poitiers. It seems also to bave been regarded with particular favour by Pius II., a pontiff who was at.once a ripe scholar and a writer upon education. He gave to Nantes a. notable body of privileges, which not ooly represent an embodiment of all the various priviloges granted to universities prior to that date, but afterwards became, with their copious and somewhat tautological phraseology, the accepted model for the great majority of university charters, whether issued by the.pope or by the emperor, or by the civil authority. The bishop of Nantes was appointed head of the university, and was charged with the special protection of its privileges against all interference from whatever quarter.2 The bull for the foundation of the university of Bourges was given in 1465 by Paul II. at the request of Louis XI, and his brother. It confers on the community the same privileges as those onjoyed by the other universities of France. The royal sanction was given at the petition of the citizens; but, from reasons which do not appear, they deemed it neces. sary further to petition that their charter might also be registered and enrolled by the parlement of Paris.

In Germany, the first of the universities representing the new infuences above referred to is that of Greifswald. A wealthy burgomaster, who bad graduated as a master of arts at Riostock, was the chief mover; and, his proposal being cordially socondod by the city council, the duke of the province, and certain abbots of neighbouring monasteries, the necessary bull was obtained from Calixtus III. (29th May 1456). The first session was commenced in October of the same year. Three colleges were at the same time founded, 一two for masters of arts, as at Leipsic and Rostock, and a third for jurists. The chairs in the different faculties were distributed as follows: theology 3 , jurisprudence 5 , medicine 1 , arts 4 ,-the number of jurists showing that the study of the civil law still ohtained a Eriburg, certain preponderance. The university of Freiburg was, founded by the archduke Albert, brother of the emperor Frederick III.,--the papal bull being given 20th April 1455, and the imperial ratification in the following year. The first session was opened in 1460 , under the presidency of Matthew Hummel, a privy councillor, aud the original numbers soon received considerable additions by sccessions from Vienna and from Heidelberg. The ondowment was further augmented by an annual allowance from the city council, and by certain canonries and livings attached to neighbouring parishes. In the same year, and probably in a spirit of direct rivalry, was opened the university of Basel. The cathedral school in that ancient city, together with others attached to the monasteries, afiorded a sufficient nucleus for a "studium," and Pius 11., who, as Atneas Sylvius, had been a resident in the city, was easily pre vailed upon to grant the charter (12th November 1459). In the character of its endowments, and in the relative importance attached to the study of the civil law, Basel much resembled Greifswald, but its succeess throughout the 15th century was marred by tho languid character of the

[^319]support aforded it by the civic authorities. Before he had sigued the bull for the foundation of the university of Basel, Pius II., at the request of duke William of Bavaria, had issued another bull for the foundation of a university at Ingolstadt (7th April 1459). But it was not until Ingol) 1472 that the work of teaching was actually commenced otudt, there. Some long-existing prebeads, founded by former dukes of Bavaria, were appropriated to the endowment, and the chairs iu the different faculties were distributed as follows:- theology 2, jurisprudence 3, inedicine 1, arts 6, -arts in conjunction with theology thus obtaining the preponderance. As at Caen, twenty-two years before, an oath of fidelity to the Roman pontiff was imposed on every student admitted to a degree. ${ }^{3}$ That this proviso was not subsequently abolished, as at Caen, is a feature in the history of the university of Ingolstadt which was attended by important results. Nowhere did the Reformation meet with more stubborn resistance, and it was at Ingolstadt that the Counter-Reformation was commenced. In 1556 the Jesuits made their first settlement in the university.

The next two universities took their rise in the archi- Trem episcopal seats of Treves and Mainz. That at Treves received its charter as early as 1450 ; but the first academical session did not commence until 1473. Here the ecclesiastical influences appear to have been unfavourable to the project. The archbishop demanded 2000 florins as the price of his saaction. The cathedral chapter threw difficulties in the way of the appropriation of certain livings and canonries to the university endowment; and so obstinate was their resistance that in 1655 they succeeded in altogether rescinding the gift on payment of a very inadequate sum. It was not until 1722 that the assembly of deputies, by a formal grant, relieved the university from the difficulties in which it had become involved. The Maing university of Mainz, on the other hand, was almost entirely indebted to the archbishop Diether for its foundation. It was at his petition that Sixtus IV. granted the charter, 23d November 1476 ; and Diether, being himself an enthusiastic humanist, thereupon circulated a letter, couched in elegant Latinity, addressed to students throughout his diocese, inviting them to repair to the new centre, and dilatiog on the advantages of academic studies and of learning. The rise of these two universities, however, neither of which attained to much distinction, represents little more than the incorporation of certain already existing institutions into a homogencous whole, the power of conferring degrees being superadded. But the university Tubiu of Tübingen, founded by charter of Sixtus IV. (9th gen. Novenber 1476), represents an entirely new creation. Its real founder was Mathilda, the motber of Count Eberhard of Würtemberg, who appropriated fivo livings and eight prebends to the endowment. Of the chairs, 3 were for theology, 3 for the canon and 2 for the civil law, 2 for medicine, and 4 for arts. The general financial condition of this university in the year 1541-42, and the sources from whence its revenues were derived, bave been illustrated by. Hoffmann in a short paper which shows the fluctuating, character of the resources of a university in those days,liable to be affected, as they were, both by the scasons an the markets. ${ }^{4}$

Nearly contemporaneous with these foundations were those of Upsala (1477) and Copenhagen (1479), which, although lying without the political boundarics of Germany, reflected lier influence. The charter for Copenhagen was given by Sixtus IV. as early as 1475 . Tho-students

[^320]attracted to this uew centre were mainly from within the radius of the nnirersity of Cologne, and its statutes were little more than a transcript of those of the latter foundation.

The electorates of Wittenberer and Drandenburg were now the only two considerable German territories which did not possess a studiuna generale, and the university founded at Wittenberg by Maximilian I. (6th July 1502) is notable as the first established in Germany by virtue of an imperial as distioguished from a papal decree. Its charter is, however, drawn up with the traditional phraseology of the pontifical bulls, and is evidently not conceired in any spirit of antagonism to Rome. Wittenberg is constituted a "stadium generale" in all the four faculties, the right to confer degrees in theology and canon law having been sauctioned by the papal legate some months before, 2d February 1502. The endowment of the university with church resenues duly received the papal sanction, - a bull of Alexander VI. authorizing the appropriation of iwelse canonries attached to the castle church, as well as of eleren prebends in outlying districts-ut sic per onnen modum unme corpus ex studio et collegio proNictis fiat et constituatur. No university in Germany attracted to itself a larger share of the attention of Europe at its commencement. And it was its distinguishing merit that it was the first academic centre north the Alps where the antiquated methods and barbarous Latinity of the scholastic era were oserthown. The last university founded in Germany prior to the Reformation was that of Frankfort-on-the-Oder. The design, first conceived by the elector John of Brandenburg, was carried into execution by his son Joachim, at whose request Pope Julins II. issued a bull for the foundation, 15th March 1506. An imperisl charter, identical in its contents with the papal bull, followed on 26th October. The university received an endowment of canonries and livings similar to that of Wittenberg, and some houses in the city were assigned for its use by the elector.

The first university in Scotland was that of St Andrews, fouoded in 1411 by Henry Wardlaw, bishop of that see, and modelled chiefly on the constitution of the university of Paris. It acquired all its three colleges-St Salvator's, St Leunard's, and St Mary's-before the Reformation, the first having been founded in 1456 by Bishop James Kennedy; the second in 1512 by the youthful archbishop Alexander Stuart (oatural son of James IV.) and Jolin Hepburn, the prior of the monastery of St Andrews; and the third, also in 1512, by the Beatons, who in the year 1537 procured a bull from Pope Paul III. dedicating the coilege to the Blessed Vi.sio Mary of the Assumption, and adding further endnwinents. The most ancient of the universities of Scoiland, with its three colleges, was thus reared in an atmosphere of medixval theology, and undoubtedly designed as a bulwark against heresy and schism. But "by a strange irony of fate," it has been observed, "two of these colleges bceame, aimost from the first, the foremost agents in working the overthrew of that church which they were founded to defond." St Leonard's more especially, like St Joha's or Queens' at Cambridge. became a noted centre of intellectual life and Reformation principles. That he "had. druak at St Leonard's well" because a current expression for implying that a theologian had imbibed the doctrines of Protestantisn. The university of Glasgow was founded as a "studium generale" in 1453, and possessed two colleges. Prior to the Reformation it acquired but little celebrity ; its discipline was lax, and the number of the students but small, while the instruction was not only inefficient but irregularly given; no funds were provided for the maintenance of regular lectures in the higher faculties; and there was no adequate executive power for the uaiateance of discipline. The uni-
versity of Aherdeen, which was founded in 1494, at lirst possessed only oue college,-namely, King's. Marischal College, founded in 1593 by George Keith, fifth Earl Marischal, was constituted by its founder iudependent of the university in Old Aberdeen, being itself both a college and a university, with the power of conferring degrces. Bishop Elphinstone, the funnder both of the university and of Kiog's College (1505), had been educated at Glasgow, and had subsequently both studied and taught at Paris and at Orleans. To tho wider experience which be had thus gained we may probably attribute the fact that the constitution of the university of Aberdeen was free from the glaring defeets which then characterized that of the university of Glasgow. But in all the medixval universities of Germany, England, and Scotland, modelled as they were on a common type, the absenco of adequate discipline was, in a greater or less degree, a common defect. In connexion with this feature we may note the comparatively suall percentage of matrieulated students procceding to the derrrees of B.A. and M.A. when compared with later times. Of this disparity the following. Degreen table, exbibiting the relative numbers in the university of taken at Leipsic for every ten years from the year 1427 to 1552 , Leipsic. probably affords a fair average illustratioo, - the remarkable fluctuations probably depending quite as much upon the comparative healthiness of the period (in respect of freedom from epidemic) and the abundanco of the larvests as upon any other cause :-

Years.	Matriculatlons.	Y cars.	P.A.	3. A.	Percentage of	
					B.A's.	M.A's.
1427-1430	737	1429-1432	151	28	20.4	$3 \cdot 8$
1437-1440	715	1439-1442	199	50	$27 \cdot 8$	6.9
1447-1450	808	1449-1452	274	(50)	$33 \cdot 9$	
1457-1460	1,447	1459-1462	559	81	$38 \cdot 6$	50
1467-1470	1,137	1469-1472	410	61	36.0	$5 \cdot 4$
1477-1480	1,163	1479-1482	453	49	$39 \cdot 4$	$4-2$
1487-1490	1,858	1489-1492	714	62	88.4	$3 \cdot 4$
1497-1500	1,288	1599-1502	497	59	$38 \cdot 5$	$4 \cdot 6$
1507-1510	1,948	1509-1512	510	65	26.1	$3 \cdot 4$
1517-1520	1,445	1519-1522	247	35	17.0	2.4
1527-1530	419	1529-1532	77	33	18.4	$7 \cdot 9$
1537-1540	686	1539-1542	122	27	$17 \cdot 8$	$3 \cdot 9$
1547-1550	1,318	1549-1552	200	72	$15 \cdot 2$	$5 \cdot 5$
	14,969		4418	67^{2}	29.5	$4 \cdot 5$

The German universitics in these times seem to have General adinitted for the most part their inferiority in learning to aspecto af older and more favoured centres; and their conscionsness German of the fact is shown by the efforts which they made to udiverattract instructors from Italy, and by the frequent resort sitiee of the more ambitious students to schools like Paris, Bologna, Padua, and Pavia. That they took their rise in any spirit of systematic opposition to the Roman see (as Meiners and others have contended), or that their organization was something external to and indepeadent of the church, is sufficiently disproved by the foregoing evidence. Generally speaking, they were emioently conservative bodies, and the new learning of the humanists and the new miethods of instruction that now began to demand attention were alike for a long period unable to gain adnission within academic cireles. Reformers such as Hegius, John Tessel, and liudolplus Agricola carried on their work at places like Deventer remote from university influences. That there was a considerable amount of mental activity going on in the universities themselves is not to be denied; but it was mostly of that uaprofitable kind which, while giving rise to endless controversy, turned upon questions in connexion with which the implied postulates and the terminology employed rendered all scientific iavesti-

[^321]gation hopeless. At almost every university-Leipsic, Greifswald, and Prague (after 1209) being the principal caceptions-the so-called Reaiists and Nominalists represented two great parties occupied with an internecine struggle. At Paris, owiag to the overwhelming strength of the theologians, the Nominalists were indeed under a kınd of ban; but at Heidelberg they had altogether expelled their antagonists. It was much the same at Tienna and at Erfurt,-the latter, from the ready reception which it gare to new speculation, being styled by its enemies "novorum omninm portus." At Basel, under the leadership of the eminent Johannes a Lapide, the Realistswith difficulty maintained their ground. Freiburg, Tübingen, and Ingolstadt, in the hope of diminishing controversy, arrived at a kind of compromise, each party having its own professor, and representing a distinct "nation." At Mainz the authorities adopted a manual of logic which was essentially an embodiment of Nominalistic principles.
Abandou. ment of logical studies in Italy.

In Italy, almost without excepition, it was clecided that these controversies mere endless, and that their cffects were pernicionst. It was resolsed, accordingly, to expel logic, and allow its place to be filled by rhetoric. It was by virtue of this clecision, which was of a tacit rather than a formal character, that the capounders of the new learning in the l5th century, men like Emmanuel Chrysoloras, Guarino, Leonardo Bruni, Bessarion, Argyropulos, and Valla, carried into effect that jmportant revolution in academic studies which constitutes a new cra in university learning, and largely helped to pave the way for the Reformation. ${ }^{1}$. This discouragement of the controversial spirit, continued as it was in relation to theological questions after the Reformation, obtained for the Italian universities a fortunate immunity from dissensions like those which, as me shall shortly see, distracted the centres of High re- learning in Germany. The professorial body also attained putation of Italian profes. yors. to an almost unrivalled reputation. It was exceptionally solect, only those who were in receipt of salaries being permitted, as a rule, to lecture; it was also famed for its ability, the institution of concurrent chairs proving an excellentstimulus. These chairs were of tro kinds-"ordinary" and "extraordinary,"-the former being the more liberally endowed and fewer in number. For eacli subject of importance there were thus always two and sometimes three rival chairs, and a porerful and contimuóus emulation was thus maintaiued among the teachers. "From the integrity of their patrons, and the lofty standard by which they were judged," says Sir W. Hamilton, "the call to a Paduan or Pisan chair was deemed the highest of all literary honours. The status of professor was in Italy elevated to a dignity which in other countries it has never reached; and not a few of the most illustrious teachers in the Italian seminaries were of the proudest nobility of the land. White the universities of other countries lad fallen from Christian and cosnopolite to sectarian and lecal schools, it is the peculiar glory of the Italian that, under the enlightened liberality of their patrons, they still coutinued to assert their European universality. Creed and country were in them no bar,-the latter not even a reason of preference. Foreiguers of every nation are to be found among their professors; and the most learned man in Scotland (Denpster) souglit in a Pisan chair that theatre for his abilities which he could not find at home."2

The Reformation represents the great boundary line in the history of the medieval universities, and also, for a long time after, the main influence in the history of those new foundations wlich subsequently arose in Protestant countries. Even in Catholic countries its secondary effects

[^322]were scarcely less perceptille, as thicy found expressínn in connexion with the Counter-Reformation. In Germany the Thirty Jears' War was attended by consequences which were felt long after the 17th century. In France the Revolution of 1789 resulted in the actual uprooting of the university system.'

The influences of the New Learning, and the special character which it assumed as it made its way in Germany in connexion with the labours of scholars like Erasnus, Johu Reuchlin, Ulrich von Hutten, and Melanchthon, augured well for the future. It was free from the frivolities, the pedantry, the inmoralities, and the scepticism which characterized solarge a proportion of the corresponding culture in Italy. It gave promise of resulting at once in a critical and enlightened study of the masterpieces of classical antiquity, and in a reverent and yet rational interpretation of the Scriptures and the fathers. The fierce Per bigotry and the ceaseless controversies evoked by the pro- nicious mulgation of Lutheran or Calvinistic doctrine dispelled, and otherwise have become the tranquil abodes of the Mnses ism. into gloomy fortresses of sectarianism. Of the manner in which it affected the highest culture, the observation of Henke in his Life of Cclixtus (i. 8), that for a century after the Reformation the listory of Lutheran theology becomes almost identified with that of the German universities, may serve as an illustration.

The first Protestant university was that of Marburg, Marburg. founded by Philip the Magnanimous, landgrave of Hesse, 30th May 1527. Expressly designed as a bulwark of Lutheranism, it was mainly luilt up out of the confiscation of the property of the religious orders in the Hessian capital. The house of the Dominicans, who had fed on the first rumour of spoliation, was conrerted into lecturerooms for the faculty of jurisprudence. The church and convent of the order known as the "lingelierrn" was appropriated to the theological faculty. The friary of the Barefooted Friars was shared betwenn the faculties of medicine and philosophy. The university, which was the object of the margrave's peculiar care, rapidly rose to celebrity; it was resorted to by students from remote countries, even from Greoce, and its professors were of distinguished ability. How much, however, of this popularity deperded on its theologival associationsis to be seen in the fact that after the jear 1605, when, by the decree of Count Maurice, its formulary of faith was changed from Lutheran to Calvinistic, its numbers greatly declined. This dictation of the temporal power now becones one of the most notable features in academic history in Protestant Germany. The universities, having repudiated the papal authority, while that of the episcopal order was at an end, now began to pay cspecial court to the temporal ruler, and sought in c:ery way to conciliate his goodwill, representing with peculiar distinctuess the theory,--cujus regio, ejus religio. This tendency was further strengthened by the fact that their colleges, bursaries, and other similar foundations were no longer derived from or supported by ecclesiastical institutions, but were mainly dependent on the civil power.

The Lutheran university of Königsberg was founded 17 th August 1544 by Albert III., margrave of Brandenburg: and the first dnte of Prussia, and his wife Dorcthea, a Danish princess. In this instance, thr, religious character of the foundation nol having been determined at the commencement, the pajal and the imperial sanction were botli applied for, although not accorded. King Sigismund of Poland, however, which kingdom exercised at that time a prutectorate over the Prissian duchy, ultimately gave the necessary clarter (29th Septemuer 1561), at the same time ordaining that all students who graduated as masters in the faculty of philosophy should rank as nobles of the

Polish kugdom. When Prussia mas raiscd to the rank of a kingdom (1701) the university was made a royal foundation, and the "collegium Fridericianum," which was then erceted, received corresponding privileges. In 1862 the university buildings were rebuilt, and tho number of the students is now nearly one thousand
Tho Lutheran university of Jena had its origin in a gymnasium founded by John Frederick the Magnanimous, elector of Saxony, during his inprisonment, for the express purpose of promoting Evangelical doctrines and repairing the loss of Wittenberg, where the Philippists had gained the ascendency. Its charter, which tho emperor Charles V. refused to grant, and which was obtained with some difficulty from his brother, Ferdinand I., eventually enabled tho authorities to open tho university, 2d February 1558. Distinguished for its vehement assertion of Tutheran doctrine, its lostility to the teaching of Witteuberg was hardly less pronounced than that with which both centres regard Roman Catholicism. For a long time it was chiefly noted as a school of medicine, and in the 17 th and iSth centuries it was in lad repute for the lawlessness of its students, among whom duelling prevailed to a scandalous extent. The beauty of its situation and the cuninence of its professoriate have, however, generally attracted a considerable proportion of students from other countrics. Its numbers in 1885 were 566.
The Lutheran university of Helmstadt, founded by Duke Julius (of the house of Brunswick-Wolfenblittel), and designated after him in its official records as "Academia Julia," reccived its charter, Sth Nay 1575, from the emperor Maximilian II. No university in the 16 th century commenced under more favourable auspices. It was munificently endowed by the founder and by his son; and its "Convictorium," or college for poor students, expended in the course of thirty years no less than 100,000 thalers, an extraordinary expenditure for an institution of such a character in those days. Beautifully and conveniently situated in what had now becomo the well-peopled region between the Weser and the lower Elbe, and distinguished by its comparatively temperate maintenance of the Lutheran tenets, it attracted a considerable concourse of students, especially from the upper classes, not a few being of princely rank. Throughout its listory; until suppressed in 1809, Halastadt enjoyed the sjecial and powerful patronage of the dukes of Saxony,

The "Gymnasium Egidianum" of Nuremberg, founded in 1520, and remored in 1575 to Altdorf, represents the origin of the university of Altdorf. A charter was granted in 1578 by the emperor Rudolph II., and the university was formally opened in 1580 . It was at first, however; emporered only to grant degrecs in orts; but in 1623 the emperor Ferdinand II. adden the permission to create doctors of law and medicine, and also to confer crowns on poets; and in 1697 its facultics were completed by the permission given by tho emperor Leopold I. to creato doctors of theology. Like Louvain, Altdorf was nominally ruled by tho municipality, but in tho latter university this nower of control remained practically iLoperative, and the consequent freedom enjojed by tho community from evils like those which brought about tho declice of Louvain is thus described by Hamilton :-" The decline of that great and wealthy seminary (Louvain) was mainly determined by its vicious patronage, both as vested in the university and in the town. Altdorf, on tho other land, was about the poorest university in Cermany, and long ono of the most eminent. Its whole endowment never rose above $£ 800$ a year; and, till the period of its declension, the professors of Aldorf make at least as distinguished a figure in tho history of philosophy as those of all the cight universities of tha British enpuire together. On looking
elosely into its constitution the anomaly is at once solved. The patrician senate of Nuremberg were too intelligent and patriotic to attempt the exercise of such a function. The nomination of professors, though formally ratified by the senate, was virtually made by a board of four curators; and what is wortlyy of remark, as long as curatorial patrouago was a singularity in Cermany, Altdort maintained its relative pre-eminence, losing it only when a similar mean was adopted in the moro Iavolured universities of the empire."1

The conversion of Marburg into a school of Calvinistic doctrine gave occasion to the foundation of the universities of Giessen and of Rinteln. Of these the former, founded by the margrave of Darmstadt, Louis V., as a kind of refuge for the Latheran professors froin Marburg, received its charter from the emperor Rudolph II., 1941 May 1607. When, however, tho margraves of Darmstadt acquired possession of lfarburg in 1625 , tho univetsity was transfered thither; in 1650 it was mored back again to Giessen. The number of matriculated students at the commencement of the century was about 250 ; in 1887 it was 484. In common with the other unirersities of Germany, but with a facility which obtained for it a specially unenviable reputation, Giessen was for a long time wout to confer tho degree of doctor in alsentia in the different facultics without requiring adequato credentials. This practice, however, which drew forth an emphatic protest from tho eminent historian Mommsen, has within the last few years been entirely abandoned. The university of Rinteln was Rintelm founded 17 th July 1621 by the emperor Ferdinand II. Almost immediately after its foundation it became the prey of contending parties in the Thirty Years' War, and its carly development was thus materially hiodered. It never, however, attained to mucl distinction, and in 1819 it was suppressed. Tho university of Strasburg was founded in Stras 1621 on tho basis of an already existing acadeny, to which burg. the celebrated John Sturm stood, during tho latter part of his life, in the relation of "rector perpetuus," and of which we are told that in 1578 it included more than a thousand scholars, among whon were 200 of the nobility, 24 rounts and barons, and three prinees. It also attracted students from all parts of liurope, and especially from Portugal, Poland, Denmark, I'rance, and England. Tho method of Sturu's teaching became the basis of that of the Jesuits, and through them of the pullic school instruction in England In 1621 Ferdinand II. conferred on this academy full privileges as a university; in the language of the charter, "in omnibus facultatibus, doctores, liecentiatos, magistros, et bnccalaureos, atque insuper poctas lawreatos creandi et promovendi." ${ }^{2}$ In 1681 "Strasburg becamo French, and remained so until 1870.

Tho university of Dorpat (now Russian) was founded Dorval. by Gustarus Adolphus in 1632, and reconslitutcd by the emperor Alexander I. in 1802. A special iuterest attaches to this university from the fact that it has for a long time been the scene of the contending infuences of Teutonism and Slavonianisn. Situated in Livonia, which at the time of its foundation represented a kind of debateable land between Iiussia and Yoland, its gradual monopoly by the former countay las not been without resistanco and protests on tho part of that Teutonic element which was at one lime the nore potent in its midst. The study of the Slavonic languages has here received cousiderable stinnulus, and by a decrec in Mary 1887 the use of the liussian language having been mado obligatory in all places of instruc. tion through tho Baltic prorinces, Tussian has now taken the place of German as the language of the lecture-room. Dorpat possesses a fine library of over 80,000 volumes, and is also noted for its admirable botanical collection. Tbr

[^323]Russian minister has also recently instituted a professorship of the comparative grammar of the Slavonic dialects (now filled by J. Baudouin de Courtenay). The general influence of the university has been rapidly extending during.the last few years far beyond the Baltic provinces. The number of students, which in 1879 was 1106 , in 1886 was 1751.1 A like contest between contending nationalities has recently met with a final solution at Prague, where a Czech university has been established on an independent basis, the German nniversity having commenced its separate career in the winter session of 1882-83. I'he German foundation retains its endowments, but the state subvention is divided between the two.

The repudiation on the part of the Protestant univerbities of both-papal and episcopal authority evoked a counter-demonstration among those centres which still adhered to Catholicism, while their theological intolerance gave rise to a great reaction, under the influence of which the mediæval Catholic universities were reinvigorated and reorganized (although strictly on the traditional lines), while new and important centres were created. It was on the tide of this reaction, aided by their own skill and sagacity, that the Jesuits were borne to that commanding position which made them for a time the arbiters of educa-

Bam.

 tion in Europe. The earliest university whose charter represented this reaction was that of Bamberg, founded by the prince-bishop Melchior Otto, after whom it was named "Academia Ottoniana." It was opened lst September 1648 , and received both from the emperor Frederick III. and Pope Innocent X. all the civil and ecclesiastical privileges of a mediæval foundation. At first, however, it comprised only the faculties of arts and of theology; to these was added in 1729 that of jurispradence, and in 1764 that of medicine. In this latter faculty Dr Ignatius Döllinger (the father of the historian) was for a long time a distin-guished professor. The university of Iacsbruck was founded in 1672 by the emperor Leopold I., from whom it received its name of "Academia Leopoldina." In the following century, under the patronage of the empress Maria Theresa, it made considerable progress, and received from her its ancient library and bookshelves in 1745 . In 1782 the university underwent a somewhat singular change, "being reduced by the emperor Joseph II. from the statns of a university to that of a lyceum, although retaining in the theological faculty the right of conferring degrees. In 1791 it was restored to its privileges by the emperor. Leopold II., and.since that time the faculties of philosophy, law, and medicine have been represented in nearly equal proportions. In 1886 the number of profesBreslau. sors was 74, and of students 869. The foundation of the university of Breslay was contemplated as early as the year 1505, when Ladislaus, king of Hungary, gave his sanction to the project, but Pope Julius II., in the assumed interests

The
Jesuits in the nini-uni- of Cracow, withhold his assent. Nearly two centuries later, in 1702, under singularly altered conditions, the Jesuits prevailed apon the emperor Leopold I. to found a university without soliciting the papal sanction. When Frederick the Graat conquered Silesia in 1741, he took both the university and the Jesuits in Breslau under his protection, and when in 1774 the order was suppressed by Clement XIV. he established them as priests in the Royal Scholastic Institute, at the same time giving new statutes to the university. In 1811 the university was considerably augmented by the incorperation of thateat Frankfort-on-the-Oder. At the present time it possesses both a Catholic and a Lutheran faculty. Its medical faculty is in high revnite. The total number of students in 1887 was 1347.

In no country was the influence of the Jesuits on the

[^324]universities more inarked than in France. The civil wars in that country during the thirty years which preceded the close of the 16 th century tald with disastrous effects upon the condition of the university of Paris, and with the commencement of the 17 th century its collegiate life seemed at an end, and its forty colleges stood absolutely deserted. To this state of affairs the obstiuate conservatism of the academic authorities not a little contributed. The statutes by which the university was still governed were those which had been given by the cardinal D'Estouteville, the papal legate, in 1452 , and remained entirely unmodified by the influences of the Renaissance. In 1579 the edict of Blois promulgated a scheme of organization for all the universities of the realm (at that time twenty-one in number),-a measure which, though productive of unity of teaching, did nothing towards the advancement of the studies themselves. The eminent lawyers of France, unable to find chairs in Paris, distributed themselves among the chief towns of the provinces. The Jesuits did not fail to profit by this immobitity and excessive conservatisin on the part of the university, and during the second half of the 16 th century and the whole of the 17 th they had contrived to gain almost a complete monopoly of bath the higher and the lower education of provincial France. Their schools argse at Toulouse and Bordeaux, at Auch, Colleges Agen, Rhudez, Périgueux, Limoges, Le Puy, Aubenas, of the Beziers, Tournon, in the colleges of Flanders and Lorraine, Jesuits ip Douai and Yont-a-Mousson,-places beyond the jurisdiction of the parlement of Paris or even of the crown of France. Their banishment from Paris itself had been by the decree of the parlement alone, and had never been confirmed by the crown. "Ljons," says Pattison, " loudly demanded a Jesuit college, and even the Huguenot Lesdiguières, almost king iu Dauphiné, was preparing to erect one at Grenoble. Amieus, Rheims, Rouen, Dijon, and Bourges were only waiting a favourable opportunity to introduce the Jesuits within their walls." ${ }^{2}$ The university was rescued from the fate which seemed to threaten it only by the excellent statutes given by Richer in 1598 , and by the discerning protection extended to it by Henry IV.

The "college of Edinburgh" was founded by charter Edin of James VI., dated 14th April 1582. This document hurgh contains no reference to a studium generale, nor is there ground for supposing that the foundation of a nniversity was at that time contemplated. In marked contrast to the three older centres in Scotland; the college rose comparatively untrammelled by the traditions of mediævalism, and its creation was not effected withont some jealousy and opposition on the part of its predecessors. Its first course of instruction was commenced iu the Kirk of Field, under the direction of Robert Rollock, who had been educated at St Andrews under Andrew Melville, the eminent Covenanter. "He began to teach," sajs Craufurd, "in the lower hall of the great lodging, there being a great concourse of students allured with the great worth of the man; but diverse of them being nat ripe enough in the Latin tangue, were in November next put under the charge of Mr Duncan Narne, . . . who, upan Mr Rollack's recoinmendation, was chosen second master of the college." ${ }^{3}$ In 1585 both Rollock and Nairne subscribed the National Covenant, and a like sulscription was from that time required from all who were aduritted to degrees in the college.

Disastrous as were the effects of the Thirty Years' War upon the external condition of the German universities, resulting in not a few instances in the total dispersion of the students and the burning of the buildings and libraries, they were less detrimental and less permaneut than those which were discernible in the tone and temper of these

[^325]S'raufuri, ITist. of the Uibiv. of Eilinburgh, [1]. 12-28.
communities. A formal pedantry and unintelligent method of study, combined with a passionate dogmatism in matters of religious belief, and a rude contempt for the amenitios of social intercourse, became the leading characteristics, and lasted throughout the 17 th century Fut in the year 1693 the foundation of the university of Halle opened up a eareer to two very eminent mea, whoso influence, widely different as was its character, may be *ompared for its effects with that of Luther and Melanchtloo, and scrved to modify the whole current of German philosophy and German theology. Hallo has indecd been described as "the first real modern university." It was really indeloted for its origin to a spirit of rivalry between the conservatism of Saxony and the progressive tendencies of the house of Brandenburg, but the occasion of its riso was the removal of the ducal court from Halle to Magdeburg. The archbishopric of the latter city having passed into the possession of Brandenburg in 1680 was changed into a dukedom, and the city itself was selected as the ducal residence. This clange left unoccupied some commodious buildings in Halle, which it was decided to utilize for purposes of education. A "Ritterschule" for the sons of the nobility was opened, and in the course of a few years it was decided to found a university. Sarony endeavoured to thrvart the scheme, urgiog the proximity of Leipsic; but Ler opposition was overruled by the emperor Leopold I., who granted (19th October 1693) the requisite charter, and in the following year the work of the university commenced. Frankfort-on-the.Oder had by this time become a centre of the Reformed party, and the primary object in founding a university in Halle was to create a centre for the Lutheran party, but its character, under the influence of its two most notable teachers, Christian Thomasius and A. I. Francke, soon expanded beyond the limits of this conSeption to assume a highly original form. Thomasius and Francke had both been driven from Leipsic owing to the 'disfavour with which their liberal and progressive tendencies were there regarded by the academic authoritics, and on many points the two teachers were in agreement. They both regarded with contempt alike the scholastic philosophy and the scholastic theology; they both desired to see the rule of the civil power superseding that of the ecclesiastical power in, the seats of learning; they were both opposed to the ascendency of classical studies as expounded by the humanists-Francke regarding the Greck and Roman pagan writers with the old traditional dislike, as immoral, while Thomasius looked upon them witlicontempt, as antiquated and representing only a standpoint which had been long left behind; both again agreed as to the desirability of including the elements of modern crlture in the education of the young. But here their agrecment ceased. It was the ain of Thomasius, as far as possible, to secularize education, and to introduce among his countrymen French habits and French modes of thought; his own attire was gay and fashionable, and he was in the luabit of taking his seat in the professorial chair adorned with gold chain and rings, and with his dagger by his side. Francke, who became the leader of the Pietists, regarded all this with even greater aversion than he did the lifeless orthodoxy traditional in the universities, and was shocked at the worldly tone and disregard for sacred things which charactcrized his brother professor. Both, hovever, commanded considerable following among the students. Thomasius was professor in the faculty of jurisprudence, Francke in that of theology. And it was a common prediction in those days with respect to a student who proposed to pursue his acadenic career at Halle, that he would infallibly, become either an atheist or a Pictist. But the uervices rendered by Thomasius to learning were genuine 6nd lasting. He was the first to set the example. soon.
after followed by all the universities of Germany, of lecturing in the vernacular instcad of in the customary Latin; and the discourse in which he first departed from the traditional method was devoted to the consideration of how far the Cicrman nation might with advantago imitate the French in matters of social life and intercoursc. His more general views, as a disciple of the Cartesian !hilosoply and founder of the modern Pationalisunus, exposed hin to incessant attacks; but by the establislıment of a monthly journal (at that time an original idea) he obtained a clannel for ex: pounding his views and refuting his antagonists whicli gave him a great advantage. On the influence of Francke, as the founder of that lietistic school with which the reputation of Halle afterwards became especially identified, it is unnecessary here to dilate. ${ }^{1}$ J. C. Wolf, who followed Thomasius as an assertor of the new culture, was driven from Halle by the accusations of the Pictists, who declared that his teaching was fraught with atheistical principles. In 1740, however, leo was recalled by Frederick II., and reinstated in high office with cvery mark of consideration and respect. Throughout the whole of the 18 th century Halle was the leader of academic thought and cnlture io Protestant Germany, although sharing that leadership, after the middle of the century, with Göttingen. The university of Göttingen (named after its founder "Georgia Augusta ") was endowed with the amplest privileges as a university by George II. of England, elector of Hanover, 7th Decenber 1736. The imperial sanction of the scheone had been given three years betore (13th January 1733) and the university was formally opencd lith September 1737. The king hiniself assumed the office of "rector maguificentissimus," and the liberality of the royal endowments (doubling those of Halle), and the not less liberal character of the spirit that pervaded its organization, soon raised it to a foremost place among the schools of Germany. Halle had just expelled Wolf; and Göttingen, modelled on the same lines as Halle, but rejecting its Pietism and disclaiming its intolerance, appealcd with remarkable success to the most enlightened feeling of the time. It iacluded all the faculties, and two of its first professors-Mosbeim, the eminent theologian, from Helmstadt, and Bühmer, the no less distinguished jurist, from Hallo-together with Gesner, the man of letters, at once established its reputation. Much of its early success was also due to the supervision of its chicf curator (there were two), -Daron Miinclausen, limself a man of considerable attainments, vilo by his sagacious superintendence did much to promote the general efficiency of the whole professoriate.: - Not lenst among its attractions was also its splendid library, located in an ancient monastery, and now containing over 200,000 volumes and 5000 MSS. In addition to its general influence as a distinguished scat of learning, Gïttingen may claim to have been mainly instrumental in diffusing a more adequate conccption of the importance of the study of history. Before the latter half of the 18th century the mode of treatment adopted by university lecturers was singularly wanting in breadtly of vicw: Pros fane history was held of but little account, excepting so fart as it served to illustrate ecclesiastical and sacred history; while this, again, was invariably treated in the narrow spirit of the polemic, intent mainly on the defence of his own confession, according as Le represented tho Lutheran or the Reformed Church. The labours of the professors at Göttingen, especially Putter, Gattercr. Schlözer, and Spittler, combined with those of Mascov at Leipsic, did much towards promoting both a moro. catholic treatment and a wider scope. Not less beneficial was the example set at Göttingen of securing the appointment of its profes: sors by a less prejudiced and partial body than a university
${ }^{1}$. See Paulseu, Gesch. des gelehrten.UnterrichLs, \&c., Pp., 948-858.

U N_I V ER S I_I'I E S

board is only too likely to become. "'The great Münchausen,' says 'an illustrious professor of that seminary, 'allowed our university the right of presentation, of designation, or of recommendation, as little as the right of free election; for he was taught by experience that, although the faculties of universities may know the individuals best qualified to supply their vacant chairs, they are seldom or never" "lisposed to propose for appointment the worthiest within their knowledge." 1 Thesystem of patronage adopted at Göttingen was, in fact, identical with that which had already been instituted in the universities of the Netherlands by Douza (see infroc, p. 850). The unlversity of Erlangen, a Lutheran centre, was founded by Frederick, margrave of Baireuth. Its charter was granted by the emperor Charles VII., 21st February 1743, and the university was formally constituted, 4 th November. From its special guardian, Alexander, the last margrave of Ansbach, it was styled "Academia Alexandrina." In 1791, Ansbach and Baireuth having passed into the possession of Prussia, Erlangen became subject to the Prussian Government. The number of the stidents, which at the commencement of the century was under 300 , was 880 in 1887.

On comparison with the great English universities, the universities of Germany must be pronoinced inferior both in point of discipline and of moral control over the students. The "superiority of" the formel in these respects is partly to be attributed to the more systematic care which they took, from a very early date, for the superrision of each student; by requiring that within a certain specified time after his entry into the miversity he should be registered as a pupil of some master of arts," who was respoinsiblo for his conduct, and ropresented linn generally in his relations to the academic anthorities. Maiburg in its earliest statutes (those of 1529) endearoured to establish a similar rule, but without success. ${ }^{2}$ The development of the collegiato system at Oxford aud Cambridge materially assisted the: carrying out of this discipline. Althongh again, as in the German universities, feuds were not unfre'quent, especially those between" "north" and "south" (the natives" of the northern and sonthern counties), the fact that in elections to fellowships and scholarships only a'certain proportion were allored to be taken from either of these divisions acted as a considerable. check upon the possibility of any one college representing either element exclusively. In the German universities, on the other hand, the ancient division into nations, which died ont with the 15 th century, was revived under another form by the institution of national colleges, which largely served to foster the spirit of rivalry and contention. The demoralization induced by the Thirty. Years' War and the increase of duelling intensified these tendencies, which, together with the tyranny of the older over the jounger students, known as "Pennalismus," were evils against which the authorities contended, lut ineffectually, by various ordinances. The institution of "Burschenthum," having for its design the encouragement of good fellowship and social feeling irrespective of nationality, served only as a partial check upon these excesses, which again received fresh stimulus by the rival institution of "Landsmannschaften," or societies of the same nationality. The latter proved singularly provocative of duelling, while the arrogant and even tyranni-

[^326]cal demeanour of their members towards the unassociated students gave rise to a general combination of the latter for the purposes of self-defence and organized resistance. " At all the great German universities both theso forms of association are to be fornd existing at the present day.

The political storns which marked the close of the last Extineand the commencement of the present century gavo the tion of death-blow to not a few of the ancient universities of Ger- German many. Mainz and Cologne censed to exist in 1798 ; sitiesBamberg, Dillingen, and Duisberg in 1801; linteln and during Helmstält in 1809 ; Salzburg in 1810 ; Erfurt in 1816. 1798Altdorf was united to Erlangeu in 1807, Franktort-on- ${ }^{1814}$ the-Oder to Breslau in 1809, and Wittenberg to Halle in 1815. The university of Ingolstadt was finst moved in 1802 to Landbhut, and from thence in 1826 to Munich, Munich where it was united to the academy of sciences which was founded in the Bavarian capital in 1759. Of those of the above centres which altogether ceased to exist but fow, however, were much missed or regretted,-that at Mainz, which had numbered some six hundred students, being tho one notable exception. The others had for the most part fallen into a perfunctory and lifeless mode of teaching, and, with wasted or diminished revennes and declining numbers, bacl long ceased worthily to represent the functions of a university. Whaterer loss may have attended their sup: pression has been far more than compensated by the activity and influence of the three great German univer: sities which have risen in the present century. Munich has become a distinguished centre of study in all the faculties; and its numbers, allowing for the two great wars,' bave been contmonsly on the increase. The number of its professors in 1887 was over ninety, and that of its students at the commencement of the session 1886-87 3209.

The nuiversity of Berlin, known as the Royal Friedrich Berlm Wilhelm university; was founded in 1809, immediately after the peace of Tilsit, when Prussia had been reduced to the level of a third-rate power. Under the guiding influence of Wilhelm von Humboldt, however, the principles which were adopter in connexion with the new seat of learning not ouly raised it to a foremost place among the universities of Europe, but also largely conduced to the regeneration of Germany. A notable characteristic in the university of Berlin at the time of its foundation was its entire repndiation of attachment to any particular creed or school of thought, and professed sulservience only to the iuterests of science and learning. "Each of the eminent teachers with whonn the university began its life-F. A. Wolf, Fichte, Saivigny, Reil-represented only himself, the path of inquiry or the completed theory which he had himself propounded. Its subsequent growth was astonish. ing. In 1813 Berlin harl only 36 teachers altogether; ir 1860 thero were 173 in all, -97 professors, 66 privatdo. centen, and 7 lecturers." In 1886 there were 296 teachers and 5357 students; and among the former a large pro portion of the names are already of world-wide reputation' while its classical school stands unrivalled in Europe.
The university of Bonn, founded in 1818, and known bonn as the Rhenish Friedrich Wilhelm university, has 88 pro fessors and 1125 students. Equally distinguished as \& school of philosoplhy and a school of theology, it is notable for the manner in which it combines the opposed schools of theological doctrine, -that of the Evangclical (or Luth: eran) Church and that of the. Roman Catholic Church here standing side by sile, and both adorned by eminent names. This combination (which also exists at Tiibingen and at Breslau) has been attended with completo success and (according to Dr Döllinger) with unmistakable advant. ages. When tried, however, a generation before, at Erfurt and at Heidelberg, its failure was not less conspicuons: and Erfurt was ruined by the experiment.

Dr Conrad, professor of political science at Halle, has recently made the statistics relating to the German universities the subject of a careful investigation and analysis, which offer some interesting results. The total cost of the universities of the German empire is shown to be much smaller than the total revenues of the English universitics and colleges, although the number both of professors and studeuts is much larger; and although 42 per cent. of the total expenditure is upon establishınents, such as hospitals, museums, and so forth. But in Cermany 72 per cent. of the cost of the universities is defrayed by the state, the stodents paying, in the shape of fees, only $9 \cdot 3$ per cent. To a great extent, however, the Gernan univcrsities are to bo looked upon as professional schools, giving an education which directly fits a man to carn his bread as a clergyman, a lawyer, a judge, a physician, a schoolmaster, a chemist, an engineer, or an agriculturist. Notwithstanding the rapid growth in the numbers of the students, the growth of the professoriate has fully kept pace with it. In 1880 there were 1809 teachers at work in the German universities, more than half of whom (967) were full professors ("ordinarii"), -the proportion of teachers to students being 1 to 11. This is a much higher proportion than that of Oxford and Cambridge, although in them there is a large staff of college lecturers, which is practically more important than the university staff. It is higher again than the proportion of the Scottish unirersities, where there are only some 105 professors to between 5000 and 6000 students, a proportion of 1 to between 50 and 60 students. Tho increase in Germany has taken place partly by adding on fresh teachers for the old subjects, such as Latin and Greek, but still more by founding new chairs for new subjects, such as Oriental and Romance languages, goography, and archæology, and by subdividing departments Which have been recently developed, such as those connected with political economy, political science, physiology, and biology. Owing to the great development of natural acience, the faculty of philosophy has at some centres increased to such an extent ss to equal in numbers all the other faculties put together. This inconvenience has been
differently met at different universitics. In those of Switzerland, no further remedy has been devised than that of appointing separate syndicates or boards of management for the two main divisions, - the philosophico-historic and the mathematical and aatural-scientific ; at Dorpat, Tübingen, and Strasburg, on the other hand, these divisions have been represented by the formation of two distinct faculties; while Tübingen, Munich, and Würzburg have created, in addition, a third faculty under which are grouped the several snbjects of political economy, statistics, and finance.
The following table (taken from Conrad) exhibits the average of tho total number of matriculated studeats at the German uaiversities for every five years from 1831 to 1884 ; it brings the teadeney to form large centres very forcibly before the viow. The tbree largest ceatres-Berlin, Leipsic, Munich-even in the first quiaquennium appear as absorbing no less than 35 per ceat. of the etudeats, and in the last as many as 42 per cent. At the same time, there has Iately beea a no less notable increase among tho centres of accoud magnitude. A quarter of a century ago only two universitieg had more than a thonsand students; st present there ore nine.

			$\begin{aligned} & \stackrel{\Phi}{T} \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$		$\begin{aligned} & \text { ஞi } \\ & \stackrel{せ}{0} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { i } \\ & \text { iow } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 玉. } \\ & \text { ew } \end{aligned}$	+1
	18	762	1715	,	1593	1593	1972	18	48		
									187		
Gralfo.	${ }^{810}$		${ }_{218}^{712}$	130	233	273	843	838	268	888	${ }_{28}$
Kסn! $\mathrm{c}_{\text {b }}$			347	323	858	390	445	469	608	723	909
Bona.			${ }_{238}^{632}$	${ }_{28}^{806}$	887	818	805	${ }^{688}$	770	944	${ }^{1038}$
Suinster		213	238	284	${ }_{848}^{84}$	473 687	${ }_{721}^{824}$	193			280
arbur	${ }_{331} 8$	273	263	265	245	254	264	${ }_{332}$	-		720
			205	151	141	149	194	12	17		
nic		392	1329	1695	2700	1292	124	1215	11	1883	
Mrirzour			472	882	343	648	025	81			1167
Erlange		45	316	${ }_{83}$	- 4	${ }^{338}$	474	${ }^{55}$	R ${ }^{2}$	45	${ }^{330}$
Tubingen		815		832	764	698	77	755	R62		1217
delb	${ }_{474}$	510	${ }_{235} 72$	${ }_{291}^{691}$	${ }_{831} 68$	1	74	${ }_{277}^{63}$		28	782 6.15
dpsic	1143	1002	017	970	843	654	991	1433	2686	30 H	
Jena.	800	433	421	-	336	437		${ }^{344}$	423	491	
Glesse	355 95	${ }^{268}$	484	${ }_{87} 87$	${ }_{98}^{383}$	${ }^{258}$	14.	294	318	300	${ }_{232} 197$
${ }_{\text {R }}^{\text {Rostock }}$				87		121		152	14		

The following table, taken from Ascherson's Deutseher Unirer. silits-Kalender, 1887, supplies the most recent statistics respecting both the teaching and the otudent bodics in the different faculties of the German-speaking universities on the Coutinent.

In 1878 a comparison of the numbers of the students in the different faculties in the Prussian universities with those for the year 1867 showed a remarkable diminution in the faculty of theology, amounting in Lutheran centres to more than one-half, and in Catholic centres to nearly three-fourths. In jurisprudence there was an increase of nearly two-fifths, in medicine a decline of a third, and in philosophy an increase of one-fourth. During the last few years, however, the faculties of theology have made some progress towards regaining their former numbers.

The universities of the United Provinces, like those of Protestant Germany, were founded by the state as schools for the maintenance of the principles of the Reformation and the education of the clergy, and afforded in the 16 th and 17 th centuries a grateful refuge to not a few of those Huguenot or Port-Royalist scholars whom persecution compelled to Hee beyond the boundaries of France, as well as to the Puritan clergy who were driven from England. The earliest, that of Leyden, founded in 1575 , commemorated the gallant and successful resistance of the citizens to the Spanish fleet under Requesens. Throughout the 17 th century Leyden was distinguished by its learning, the ability of its professors, and the shelter it afforded to the more liberal thought associated at tliat period with Arminianism. Much of its early success was orving to the wise provisions and the influence of the celebrated James Douza :- "Douza'sprinciples," says Hamilton, "were those which o'ight to regulate the practice of all academical patrons; and they were those of his successors. He kneiv that at the rate learning was seen prized by the state in the academy would it be valued by the nation at large.
. He knew that professors wronglt more even by example and influence than by teaching, that it was theirs to pitch high or low the standard of learning in a country, and that, as it proved easy or arduous to come up with them, they awoke either a restless endeavour after an even loftier attainment, or lulled into a self-satisfied conceit." Douza was, for Leyden and the Dutch, what Münchausen afterwards was for Göttingen and the German universities. "But with this difference: Leyden was the model on which the younger universities of the republic were constructed; Göttingen the model on which the older universities of the empire were reformed. Both Münchausen and Douza proposed a high ideal for the schools founded under their auspices ; and both, as first curators, laboured with paramount influence in realizing this ideal for the same long period of thirty-two years. Under their patronage Leyden and Göttingen took the highest place among the universities of Europe; and both have only lost their relative supremacy by the application in other seminaries of the same measures which had at first determined their superiority." The appointment of the professors at Leyden was vested in three (afterwards five) curators, one of whom was selected from the body of the nobles, while the other two were appointed by the states of the province, - the office being held for nine years, and eventually for life. With these was associated the mayor of Leyden for the time being. The university of Franeker was founded in 1585 on a somewhat less liberal basis than Leyden, the professors being required to declare their assent to the rule of faith embodied in the Heidelberg Catechism and the confession of the "Belgian Church." Its four facultics were those of theology, jurisprudence, roedicine, and "the three languages and the liberal arts." 1 For a period of twelve years (circ. 1610-1622) the reputation of the university was enhanced by the able teaching of William Ames ("Amesius"), as Puritan divine and moralist who liad been driven by Bancroft from Cambridge and fion Encland. His fame and ability are said to have
attracted to Franeker students from Hungary, Polaud, and Russia.

With like organization were founded-in 1600 the university of Harderwijk, in 1614 that of Groningen, and in 1634 that of Utrecht. The restoration of the House of Orange, and establishment of the kingdom of the Netherlands (23d March 1815), was followed by important changes in connexion with the whole kingdom. The universitics of Franeker and Harderwijk were suppressed, while their place was taken by the newly-founded centres at Ghent (1816) and Lićge (1816). A uciform constitud tion was given both to the Dutch and Belgian universities! It was also provided that there should be attached to each a board of curators, consisting of five persons, "distinguished by their love of literature nnd science and by their rank in saciety." These curators were to be nominated by the king, and at least three of them chosen from the province in which the university was situated, while the other two were to be chosen from adjacent provinces. After the redivision of the kingdom in 1831, Ghent and Liége were constituted state universities, and each received a subsidy from the Government (see Belgium). The university of Brussels, on the other hand, founded in 1834 , is an independent institution, supported by the liberal party; while the reconstituted university at Louvain represents the party of Roman Catholicism, and is almost exclusively a theological school for the education of the Catholic elergy. The universities of Belgiunı are, however, somewhat heterogeneous bodies, and present in their organization a singular combination of French and German institutions. In Holland, the foundation of the university of Amsterdam (1877) has more than repaired the loss of Franeker and Harderwijk, and the progress of this new centre during the ten years of its existence has been remarkably rapid, so that it bids fair to rival, if not to outstrip both Utrecht and Leyden. The higher education of women has made sume progress in the Netberlands; and in 1882-83 there were eighteen women studying at Amsterdam, eleven at Groningen, four at Leyden, and seven at Utrecht.

In Sweden the university of Lund, founded in 1668 and modelled ou the same plan as its predecessor at Upsala, has adhered to its antiquated constitution with remarkable tenacity. At both these universities the medirval division into "nations" is still in force among the students, the number at Upsala reiug no less than thirteen. The professoriate at both centres is much below the modern requirements in point of numbers. The university of Christiania in Norway, founded in 1811, and the Swedish universities are strongly Lutheran in character; and all alike are closely associated with the ecclesiastical institutions of the Scandinavian kingdoms. The same observa-' tion applies to Copenhagen,-where, however, the labours of Rask and Madvig have done much to sustain the reputation of the university for learning. The university of Kiel (1665), on the other hand, has come much more uraler Teutonic influences, and is now a distinguished cencre of scientific teaching.

In France the fortunes of academic learaing were even less happy than in Germany. The university of Paris was distracted, throughout the 17 th century, by theological dissensions, -in the first instance owing to the struggle that ensued after the Jesuits had effected a footing at the Collége de Clermont, and subsequently by the strife occasioned by the teaching of the Jansenists. Its studies, discipline, and numbers alike suffered. Towards the close of the century a certain revival took place, and a succession of illustrious names-Pourchot, Rollin, Grenan, Cotinn, Demontempuys, Crevier, Lebeau-appear on the roll of its teachers. But this improvement was soon interrupted by the controversies excited by the promulgation
of the bull Unigeaitus in 1713, condemnang the tenets of Quesnél, when Rollin himself, although a man of singularly pacife disposition, deened it his duty to bead the opposition to Clement XI. and tho French episcopate. At last, in 1762, the parlement of Paris issucd a decree (August 6) plaeing the collnges of the Jcuits at the disposal of the university, and this was immediately followed by another for the expulsion of the order from Paris. Coneurrently with this measure the prospects of the university assumed a more favourable character, the curriculum of its studies was extended, and botu history and natural science began to be cultivated with a eertain success. These better prospeets were, however, soon obsenred by the outbreak of the Revolution; and on the 15 th September 1793 the universities and colleges throughout France, together with the faeulties of theology, medicine, jurisprudence, and arts, wero abolished by a deeree of the Convention The Collíge de Franee, when restored in 1831, was reconstituted maiuly as a school of adult instructiou, for the most part of a porpular charater, and entirely dissociated from the miversity. It now numbers thirty-nine chairs, among which is one of the Slavonic languages and literature. The university of France (which succeeded to that of Paris) is at present little more than an aistract term, signifying the whole of the professional body under state control, and comprising various faculties at different centres-Paris, Moutpellier, Nancy, \&e., together with tirenty-seven aeademical reetorates. Each of these rectors presides over a local "conseil d'enseigueusent," in conjunction with which the eleets the professors of lycées and the communal seboolmasters, whose formal appointnient is then made by the minister of public instruction. There are ecelesiastics in some of the conseils d'enseignement, but the rectors are all iasmen who hare graduated in one of the faeulties. The grent schools bave also in no stnall measure supplewented the work of the universities by their advance in the direction of seientific instruction. Auong the munber the "Ecole Pratique des Hantes Etudes" in Paris (31st July, 1868) and the "Ecole Polytechuique," which traces its origin as far back as the year 1794, are esjecially distinguisled. The course of instruction at the former is divided into five sections-(1) mathematics, (2) physics and elemistry, (3) natural history and physiology, (4) history and philology, (5) economic science. At the latter the instruction is conceived solely with regard to the application of scientifie priuciples to all braneles of the public serviec, but more especially the military and mercantile. In 1875 the National Asserubly passed an Aet whieh enabled the Roman Catholic body to establish free universities of their own, and to confer degrees which should be of the same validity as those of the state university. At Lille and Angers such centres have been already organized. The unirersity of Strasburg, whieh in the latter part of the last century had been distinguished by an intellectual activity which becanlo associated with the nantes of Goethe, Herder. and others, was also swept a way by the lievolution. It was, however, restored lst Nlay 1872, after the eity had reverted to Germany, and was remodelled eutirely on German prineiples. Since then its suecess has been marked and continuous.

In Switzerlaud all the Ligher ellucation is supported mainly by the German and Protestant cantons. The four universities of Pasel, Eern, Zurieh, and Genera have an aggregate of some 1400 or 1500 students, and all pessess faculties of philosophy, jurisprudence, theology, and medicine. Basel is, howe er, the chief centre for theology, as is Bern for jurisprudence and Zurich for philosophy. At Genera the fanious academy of the 16th and 17th cenzaries, loug distingnished as a ceutre of Calviaistic teaching, is now represented by a university (first formed in 1876).
where the instructiou is gitcu (uainly in the Freach Language) by a staff of forty-ono professors, and where there ${ }^{\circ}$ is a rising school of science. Switzcrland alanost takes the lead in connexion with female entucation on the Continent, and in 1852-83 there were 52 romen at the miversity of Geneva, 36 at Bern, and of at Zarich.

In Spain the universities at present existing aro those of Barcelona, Granada, Madrid (transferred in 1837 from Alcala), Oriedo, Salamanca, Santiago, Seville, Vialencia, Valladolid. and Zaragoza. They are all, with the exception perhaps of Madrid, in a lanentably depressed condition, and mainly under the inflnence of French ideas aud arolelled on I'rench examples. But in Portugal, Coimbra, wheh narrowly escaped suppression in the 16 th century as a suspected centre of political disaffection, is now a flomrishing school. Its instruction is riven gratis; but, as all members of the higher courts of judicature and administration in the realn are required to have oraduated at the university, is is at the same timo ono of the most aristocratic schools in Europe. There are five faculties, viz., theology, jurisprudence, medicine, mathematies, aud philosoply. Of these, that of law is by far the most llourishing, the umber of students in this faculty nearly equalling the aggregate of all the rest. There is a valuable library, largely composed of collections formerly belouging to suppressed convents. As a school of theolory Coimbra is distinetly anti-ultramontane, and the progressive spinit of the university is shown by the fact that the rector has been instrueted by the government to deviso a scleme for the admission of women.

In Italy the universities are mmerically much in excess of the requirements of the population, there being no less than sixteen stato universities and four frce universities. Very few of these possess theological faculties, and in no country are theological studies less valued. Edneation for the charch is almost entirely given at the numerous "seminaries," where it is of an almost entirely elementary character. In 1875 a laudable effort was made by Bonghi, the minister of education, to introdnce reforms and to assimilate the universities in their organization and methods to the German type. His plans were, howel er, to a great extent reversed liy his successor, Coppino.

In Austria the universities, being modelled on the snme systein as that of Prussix, present no especially noteworthy features. Vienna is chiefly distinguished for its school of medicine, which enjoyed in the last century a reputation almost unrivalled in Europe. The other facnlties were, however, suffered to languish, and throughont the first half of the present century the whole uuiversity was in an extremely depressed state. From this condition it was in a great measure restored by the exertions of Count Thun. The number of the matriculated students in 1887 was $1<93$, and that of the professors 138 ; among the latter the natues of Zschokke, Mlaassca, Sickel, Jellinek, and Bi: linger are some of the nost widely knowu. The unirersity of Olmütz, founded in 1581 , was formerly in possession of what is now the imperial library, and containerl also a valunble collection of Slaronic works which mere carried off by the Swedes and ultimately disperser. It was suppressed ia 1853 , and is now represented ouly by a theological faculty. The university of Graz, the capital of Styria, was founded in 1586 , and is now one of the most flourishing centres, coataining some 1200 students. The university of Salzburg, founded in 1623, was suppressed in 1810 : that of Lemberg, founded in 1784 bs the emperer Joseple tI.. was removed in 1805 to Cracow and naited to that university. In 1816 it was opered on an iudependent basis. In the bombardunent of the town in 1848 the uoiversity buildings nere burnt down, and the site was changed to what was formerly a Jesuit convent. The fixe Library and natural history museum were at the same time
munest cntirely destroyed. The university at the present time numbers orcr a thounand students. The most recent foundation is that of Czernowitz, fornded in 1875, and numbering about 300 students. The universities of the Hungarian kingdom are three in number:-Budapest, priginally founded at Tyrnan in 1635, now possessing four faculties-theology, jurispridence, medicine, and philosophy (number of professors in 1885180 , students 3117): Kolozsvar (Klausenuarg), now the chief Magyar centre, founded in 1872 and also comprising fonr faculties, but where mathematics and natural science supply the place of theology (number of professors in 1877 64, students 391); Zagráb (Agrain), the Slovack university, in Croatia, fonniled in 1869 but not opened until 1874, with three faculties, viz., jurisprndence, theology, and philosophy. The chief centre of Protestaut education is the college at Debreczin, founded in 1531, which in past times was not unfrequently subsidized from England. It now numbers over 2000 students, and yossesses a fine library.

Russia possesses, besides Dorpat (supra, p. 845), seven other universities. (1) Helsingfors, in Finland, was originally established by Queen Christina in Abo (1640), and removed in 1826 to Helsingfors, where the original charter, signed by the celebrated Oxeustierna, is still preserved. It has four faculties, 38 professors, and 700 students. (2) Moscow is really the oldest Russian university, having been founded in 1755 ; it includes the faculties of history, physics, jurisprudence, and medicine; the professors are 69 in number, the students about 1660. (3) The university of St Vladinir at Kieff, originally founded at Vilna in 1803, was removed from thence to.Kieff in 1833; the students number alout 900 , and the library contains 107,000 volumes. (4) Kazan (1804) includes the same faculties as Moscow ; the students are about 450 in number, and it has a library containing 80,000 volumes. (5) Kharkoff (180t) numbers 600 students, and its library 55,000 volumes. (6) St Petersburg (1819) includes the four faculties of history, physics, jurisprudence, and Oriental languages, and numbers 1500 students. (7) Odessa, founded in 1865, represents the university of New Russia Generally syeaking, the nniversities of Russia are not frequented by the aristocratic classes; they are largely subsidized by the Government, and the annual fees payable by students are less than $£ 7$ a head. In 1863 the statutes of all the universities were renodelled; and since that time there has been a tendency to impress upon them a more national character, as distinguished from mere imitation of those in Germany.

The university of Athens (fonnded 22d May 1837) is modelled on the university systems of northern Germany, on a plan originally devised by Professor Brandis. It includes four faculties, viz., theology, jurisprudence, medicine, and philosophy. The professors (ordinary and extraordinary) are nuwards of 60 in number, the stadents about 1000. There is also a school of pharmacy, chemistry, and anatony, and a library of 130,000 volumeè, with 800 mannscripts.
The history of the two English universities during the 16th and following centuries has presented, for the most part, features which contrast strongly with these of the Continental seats of learring. Both suffered severely from confiscation of their lands and revennes doring the period of the Reformation, but otherwise hare generally enjoyed a remarkable immunity from the worst consequences of civil and political strife and actual waffare. Both long remained centres chiefly of theological teaching, but their intimate connexion at once with the state and with the Church of England, as "by law established," and the modifications introduced into their constitutions, prevented their becoming arenas of fierce polemical contentions like
thosc which distracted the l'rotestant uuiversities of Germany.

The influence of the Renaissance, and the teaching of Erasmus, who resided for some time at both universities, exercised a notable effect alike at Oxford and at Cambridge. The names of Colet, Grocyn, and Linacre illustrate this influence at the former centre; those of Bishop Fisher, Sir John Cheke, and Sir Thomas Smith at the latter. The labours of Erasmus at Cambridge, as the author of a new Latin yersion of the New Testament, with the design of placing in the hands of students a text free from the errors of the Vulgate, were productive of important effects, and the university became a centre of Reformation doctrine some years before the writings of Luther became known in England. The foundation of Christ's College (1505) and St John's College (1511), through the influence of Fisher with the countess of Richmond, also materially aided the general progress of learning at Cambridge. The Royal Injunctions of 1535, embodying the views and designs of Thomas Cromwell, mark the downfall of the old scholastic methods of study at both universities; and the foundation of Trinity College, Cambridge, in 1546 (partly by an analgamation of two older societies), represents the earliest conceution of such an institution in Englend in complete independence of Roman Catholic traditions. Trinity (1554) and St John's (1555) at Oxford, on the other hand, founded during the reactionary reign of Mary, serve rather as examples of a transitional period.

In the reign of Elizabeth Caınuridge became the centre of another great novement-that of the earlier Puritanism, St John's and Queens' being the strongholds of the party led by Cartwright, Walter Travers, and others. Whitaker, the eminent master of St Joln's, although he sympathized to some extent with these views, strove to keep their expression within limits compatible with conformity to the Church of England. But the movement continued to gather strength; and Emmanuel College, founded in 158t, owed much of its early prosperity to the fact that it was a known school of Puitan doctrine. Most of the Puritans objected to the discipline eniorced by the university and ordinary college statutes-especially the wearing of the cap and the surplice and the conferring of degrees in divinity. The Anglican party, headed by such men as Whitgift and Bancroft, resorted in defence to a repressive policy, of which subscription to the Acts of Supremacy and Uniformity, and the Elizabethan statutes of 1570 (investing the "caput" with larger powers, and thereby creating a more oligarchical form of government), were the most notable results. Oxford, although the Puritans were there headed by Leicester, the chancellor, devised at the same time a similar scheme, the rigid discipline of which was further developed in the Laudian or Caroline statutes of 1636 . It was under these respective codes-the Elizabethan statutes of 1570 and the Laudian statutes of 1636 -that the two universities were governed until the introduction of the new codes of 1858. During the Commonwealth the Puritan occupation and administration, at either university, were accompanied by little injury to the colleges, and were far less prejudicial to learning than the Royalist writers of the Restoration would lead us to suppose. William Dell, who was master of Caius College from 1649 to 1660 , advocated the formation of schools of higher instruction in the large towns, a proposal which was then looked upon as one of but faintly masked hostility to the older ceatres.

During the 17 th century Cambridge became the centre of another movement, a reflex of the influence of the Cartesian philosophy, which attracted for a time considerable attention. Its leaders, known as the Cambridge

Platonists, among whom Henry More, Cudworth, and Whicheote were especially conspicuous, were men of high character and great learning, although too much under -ie influence of an ill-restrained enthusiasu and purely specu!ative doctrines. The spread of the Baconian philosophy, and the example of a succession of eminent scientific thinkers, among whon were Isaac Barrow, master of Trinity (1673-i7), the two Lucasian professors, Isaac Newton (prof. 1669-1702) and his successor William Whiston (prof. 1702-11), and Roger Cotes (Plumian prof. :707-16), began to render the exact sclences more and more au object of study, and the institution of the tripos examinations in the course of the first half of the 18 th century established the reputation of Cambridge as a school of mathematical science. At Oxford, where no similar development took place, and where the statutable requirements with respect to study and exercises were suffered to fall into neglect, the de'generacy of the whole community as a sclool of academic culture is attested by eviderce too emphatic to le gainsaid. The moral tone at both universities was at this time singularly low; and the rise of Methodism, as associated with the names of the two Wesleys and Whitefield at Oxford and that of Berridge at Cambridge, operated with greater_effect upon the nation at large than on either of the two centres where it had its origin. With the advance of the present century, however, a perceptible change took place. The labours of Simeon at Cambridge, in connexion with the Erangelical party, and the far more celebrated movement known as Tractarianism, at Oxford, exercised considerable influence in developing a more thoughtful spirit at either university. At both centres, also, the range of studies was extended: written examinations took the place of the often merely formal viva roce ceremonies; at Cambridge elassies were raised in 1824 to the dignity of a new tripos. The number of the students at both universities was largely augmented. Further schemes of improvement were put forward and diseussed. And in 1850 it was decided by the Government to appoint commissioners to inquire what additional reforms might advantageously be introduced. Their recommendations were not all carried into effect, but the main results were as follows :-"The professoriate was considerably increased, reorganized, and reendowed, by means of contributions from colleges. The colleges were emancipated from their medirval statutes, were invested with new constitutions, and acquired new legis?ative powers. The fellowships were almost universally thrown open to merit, and the effect of this was not merely to provide ample rewards for the bighest academical attainments, but to place the governing power within colleges in the bands of able men, likely to promote further improvements. The number and value of scholarships was largely augmented, and many, though not all, of the restrictions upou them were abolished. The great mass of vexatious and obsolete oaths was swept away; and, though candidates for the M.A. degree and persons elected to fellorships were still required to make the old subseriptions and deelarations, it was enacted that no religious test should be imposed at matriculation or on taking a bachelor's degree." 1

In 1869 a statute was enacted at Cambridge admitting students as members of the university without making it imperative that they sbould be entered at any hall or college, but simply be resident either with their parents or in duly licensed lodgings.

The eutire abolition of tests followed next., After several rejections in parliament it was eveutually carried as a Government measure, and passed the House of Lords in 1871.
${ }^{1}$ Brōdrick, Universily of Uxford, pp. 136, 137.

In 1877 the reperts of two new commissions wers followed by further changes, the chief feętures of which were the diversion of a certain proportion of the revenues of the colleges to the uses of the university, especially with a view to the encouragement of studies in natural science; the enforcement of general and uniform regulations with respect to the salaries, selection, and duties of professors, lecturers, and examiners ; the abolition (with a few exceptions) of all clerical restrictions on beadships or fellow ships; and the limitation of fellowships to a uniform amount.

That these successive and fundamental changes have, on the whole, been is unison with the national wishes and requirements may fairly be inferred from the remarkable increase in numbers during the last quarter of a century, and especially at Cambridge, where the number of undergraduates, which in 1862 was 1526 , was in 1887 no less than 2979. In the academic year 1862-63 the number of matriculations was 448, and in 1886-87 1009.

Scarcely less influential, as a means of recovering for the two universities a truly national character, bas been the work which both have been carrying on and aiding by the institution of local examinations and of university extension lectures. Of these two schemes, the former was initiated by both Oxford and Cambridge in the year 1858; the latter had its.origin at Cambridge, baving been suggested by the success attending a course of lectures to women delivered by Mr (now Professor) James Stuart, in 1867, in Liverpool, Manchester, Sheffield, and Leeds. By the former the standard of education throughout the country has been raised, both in public and in private schools. By the latter, instruction of the character and method which characterize university teaching has been brought within the reach of students of all classes and ages throughout the land.

So long ago as the year 1640 an endearour had been made to bring about the foundation of a nortbern university for the benefit of the counties remote from Oxford and Cambridge. Nanchester and York both petitioned to be made the seat of the new centre. Cromwell - howeser, rejected both petitions, and decided in favour of Durbam, Here be founded the university of Durbarn (1657), endowing it with the sequestered revenues of the dean and chapter of the cathedral, and entitling the society " Tbe Mentor or Provost, Fellows, and Scholars of the College of Durbam, of the foundation of Oliver, de." This scheme was cancelled at the Restoration, and not revived until the present century; but on the 4th July 1832 a bill for the foundation of a university at Durban received the royal assent, the dean and chapter being thereby empowered to appropriate an estate at Soutl Shields for the establish. ment and maintenance of a university for the advancement of learning. The foundation was to be directly connected with the cathedral ehorch, the bishop of the diocese being appointed visitor, and the dean and chapter goverrurs; while the direct control was vested in a warden, a senate, and a convocation. A college, modelled on the plan rit those at the older universities, and designated University College, Durbam, was founded in 183i, Bislop Hatfield's Hall in 1846, and Bishop Cosin's Hall (which no longer exists) in 1851. The university includes all the facalties, and in 1865 there was added to the faculty of arts a school of physical science, including pure and applied mathematics, chemistry, geology, mining, engineering, dc. In 1871 the corporation of the university, in conjus :tion with some of the leading landed proprietors in the adjacent counties, gave further exteosion to this design by the foundation of a college of physical science at Newcestle-ipon-Tyne, designed to teach scientific priuciples in their application to engineering, mining, manufactures, and agriculture

Students who had passed the required examinations were made adinissible as associates in physical science of the university. There is also a medical college which stands in similar relations to Durlam, of which university Codrington College, Barbados, and Fourah Bay College, Sierra Lenne, are likewise affiliated colleges.
The university of London bad its origin in a movenínt initiated in the year 1895 by Thomas Canipbell, the poet, in conjunction with Henry (afterwards Lord) Brougham, Mr (afterwards Sir) Isaac Lyon Goldsmid, Joseph Hume; and some influential Dissenters, most of them connected with the congregation of Dr Cox of Hackney. The scheme was originally suggested by the fact that Dissenters were practically excluded from the older universities; but the conception, as it took shape, was distinetly non-theological. The first council, appointed December 1825, comprised names representative of nearly all the religious denominations, including (besides those above mentioned) Zachary Macaulay, George Grote, James Mill, William Tooke, Lord Dudley and Ward, Dr Oliiuthus Gregory, Lord Lansdowne, Lord John Russell, and the duke of Norfolk. On 11th February 1826 the deed of settlement was drawn up ; and in the course of the year seven acres, constituting the site of University Collegg, were purchased, the foundation stone of the new buildings beiug laid by the duke of Sussex 30th April 1827. The course of instruction was designed to include " languages, mathematics, physics, the mental and the moral sciences, together with the laws of England, history, and political economy, and the various branches of knowledge which are the objects of medical education." Iu October 1828 the college was opened as the nniversity of London. But in the neeantime a certain section of the supporters of the inovement, while satisfied as to the esscntial soundness of the primary design as a devclopment of national education, entertained considerable scruples as to the propriety of altogether dissociating such an institution from the national church. This feeling found expression in the foundation and incorporation of King's College (14tb August 1829), opened 8th October 1831, and designed to combine with the original plan instruction in "the doctrines and duties of Christianity, as the same ire inculcated by the United Church of England and Ireland." This new plase of the movement was so far successful that in 1836 it was deemed expedient to dissociate the university of London from University College as a "teaching body," and to limit its action simply to the institution of examinations and the conferring of degrees, -the collage itself receiving a new charter, and being thenceforth designated as University College, London, while the rival institution was also incorporated with the university, and was thenceforth known as King's College, London. In the charter now given to the uuiversity it was stated that the king "dcems it to be the duty of his royal ofice to hold forth to all classes and denominations of his faitlful subjects, without any distinction whatsoever, an encouragemeut for pursuing a regular and liberal course of education." The charters of the university of London and of University College, London, were signed on the same day, 28th November 1836. In 1869 both the colleges gave their adhesion to the movement for the higher education of women which had been initiated elsewhere, and in 1880 ladies were for the first time admitted to degrees.
The Victoria University took its origin in the institution known as the Owens College, Manchester, - so called after a wealthy citizen of that name to whom it owed its foundation. The college was founded 12th March 1851, for the purpose of affording to students who were unable, on the ground of expense, to resorb to Oxford or Cainbridge an aducation of an equally high class with that given at thlose
centres. The institution was, from the first, unsectarian in character. In July 1877 a memorial was presented to the privy council.praying for the grant of a charter to the college, conferring on it the rank of a university, to be called the "university of Manchester." The localization implied in this title having met with opposition from the Yorkshire College at Leeds, it was resolved that the university should be called the "Victoria University." Under this name the foundation received its charter 20th April 1880. "The characteristic features of the Victoria Umiversity, as compared with other British universities, are these:--(a) it does not, like London, confer its degrees on candidates who bave passed certain examinations only, but it also requires attendance on prescribed courses of academic study in a college of the university; (b) the constitution of the university contemplates its (ultimately.) becoming a federation of colleges; but these colleges will not be sitnated, like those of Oxford and Cambridge, in one town, but wherever a college of adequate efficiency and stability shall have arisen. University College, Liverpool, and the Yorkshire College, Leeds, Laving fulfilled these requirements, havo become affiliated with the university. The university, like the older bodies in England and Scotland, is at once a teaching and an examining body, and there is an intimate rapport between the teaching and the examining functions. To give it a general or national character, the governing body consists partly of persons nominated by the crown and partly of representatives of the governing and teaching bodies of the colleges and of the graduates of the university. External examiners are appointed, who conduct the examinations in conjunction with examiners representing the teaching body. The graduates of the mniversity meet its teachers in convocation to discuss the affairs of the university. Convocation will elect future chancellors, and a certain number of representatives on the court" (Thompson, The Owens College, \&c., p. 548). Like the Johns Hopkins University in America, the Victoria University Las instituted certain fellowships (styled the Berkeley fellowships) for the encouragement of research.

In Scotland the chief change to be noted in connexion with the university of St Andrews is the appropriation in 1572 of the two colleges of St Salrator and St Leonard to the faculty of philosophy, and that of St Mary to theology. In 1747 an Act of Parliament was obtained for the union of the two former colleges into one. Glasgow, in the year 1577, received a new charter, and its históry from that date down to the Restoration was one of almost, continuous progress. The restoration of Episcopacy, however, in volved the alienation of a considerable portion of its revenues, and the consequent suspension of several of its chairs. In 1864 the old university buildings were sold, and, a Government grant baving been obtained, together with private subscriptions, the present new buildings were erected from the joint fund. The faculties now recognized at Glasgow are those of arts, theology, jurisprudence, and medicine. At Aberdeen an amalgamation, similar to that at St Andrews, took place, by virtue of the Universities Act of 1858, of the two universities of King's College an 4 Marischal College. In conjunction with Glasgow, this unif versity returns a member to parliament. The peculiar constitution of the college at Edinburgh, as defined by its charter (the government being vested entirely in the lord provost, magistrates, and council, as patrons and guardians), involved the senate in frequent collisions with the town council. The latter, being a strictly representative body, included elements with which the senate of the university sometimes found it difficult to work harmoniously, and its disposition to dictate was strongly resented by the dis: tinguished metaphysician and professor Sir William Hamilton. On the other hand, the council sometimes
exercised a beneficial discretion by appointing professors of ability whom the semate might have regarded as ineligible on the ground of their religious tenets. Tho Disruption of $\mathrm{J} \delta 43$ emancipated the lay professors from subscription to the Established Church of Scotland, and resulted in many of the important changes which were subsequently introducel in the Universities Act of 1858 . On the 2 Sth October 12.59 the town council, notmithstanding that their powers were already terminated by the provisions of the Act. availed themselves of a technical right to appoint a principal. - their choice falling upon Sir David Brewster. The creat landmark in the listory of the Scottish as in that of the English universitice is represented by the remodelling of the several constitutions of these bodies in the year 185 S . The commissiouers of $185 \mathrm{~S}-62$ left the university of Edinburgh in the possession of constitutional autonomy, with its studies and degrees regulated Ly ordinances. The students also received the rectorial franchise, hut were uot, as at Glasgow aod Aberdeen, divided into nations. In arts the B.A. degree was abolished, the M. A representing the only degree in this faculty, as at the other Scottish noirersities. The course of study was divided into three departments :-(1) classics; (2) mathematics, includiog catural philosophy; (3) mental science and English literature. In each dejartinent it was required that there should be an additional examiner besides the professor, 8 that the candidates should not be entirely examined by their own teachers. It was also provided that, instead ef one examination for the degree at the end of a student's course, examinations in each of the departments might be passed separately. In the twenty years begiuning with 1863 , 1400 M.A. degrees have Leen conferred, as against 250 in the trenty years preceding. In the faculty of medicine, the origiual single degree of doctor of medicine gave place to three classes-bachelor of medicine (M.B.), master in surgery (C.M.), and doctor of medicine (M.D.). In 1866 it was further laid down that theses should no longer bo demanded from candidates for the lower degrees of $\overline{\mathrm{I}}$.B. and C.Mi., and, on the other band, that the degree of II.D. should not be conferred on persons not showing any evidence of medical study after leaving the university, but that a thesis should be intariably required. Since the enactment of these ordinances the cumber of the mucdical students has increased from about 500 to orer 1700 . In the faculty of law the title of the degree was to be LL. B., and it was to be conferred only on those tho had already graduated as M.A. But the minor degree, that of "bachelor of law" (B.L.), might be conferred if the candidate had attended one course of lectures in the faculty of arts, and passed a preliminary examination in (1) Latio, (2) Greek, French or German, and (3) any two of the three subjects-logic, moral philosophy, and mathematics. The chair of public law, which had fallen into abeyance in 1832 , was reconstitnted, and the chair of universal civil bistory was converted into a professorship of history and constitutional law. The degree of doctor of laws was left, as before, a purely honorary degree. Clairs of Sanskrit, engineering, geology, commercial and political cconomy, education, fine art, and the Celtic languages have also bcen founded. Dy the Representation of the People (Scotland) Act, 1868, the unisersities of Edinburgh and St Andrews were enupowered to retura jointly a meniber to the House of Commons.

A parliamentary return for the tea years ending 30th March 1883 showed that the sums roted annually by parliament or chargeable on the consolidated fund to the four unirersities had amounted during that period to $£ 65,821$ for Aberdeen, $£ 85.906$ for Edinburgh, $£ 66,182$ for Glasgorr, and £3S,111 for St Andrews. In addition to these sums Edinburgh had received $£ 80,000$ and Glasgow $\dot{£} 20,000$ in the form of arecial grants in aid

Trinity College. Dublin, was founded in 1591, under the auspice of Sir Joln Purrot, the Irrsh vicerny. A royal charter nominated a prorost and a umnimurs ni mber of three fellows and three scholars as a lody corporate, empowered to estailish amone themselves "whatever luwa of cither of the universities of Catalridse or Oxford they nay judge to loo apt and suitable ; aud especially that no other persons shonld teach or profcss the liberal arts in Ireland withont the queen's sluecial licence." The first fise provosts of 'Crinity College were all Canbridge men, and under the inflnewce of Archbishop Loftue, the first provost, and his successors, the fonndation recerved a stroncly Puritan bias. Prior to the year 1573 the provostshil, fellowships, and foundation ocholar=hipa could be beld only by nembers of the rhurel of Ireland; but all such restrictions were abolisbed by Act 36 Vict. c. 21, whereby the requirenient of sub:cription to any article or formulary of faith was finally abrogated. As at present constituted, the ordinary govermment is in the lands of the prorost and senior fellows in conjunction with the visitors and council,-the supreme authority being the crown, except so far as limited ly Act of Parliament.

The first departure in Ireland frou the exclusive systim of education iormerly representell by the foundation at Dublin, dates from the creation of the Qucen's U'niversity, incorporated by royal charter 3il Septomber 1850. By this charter the general legislation of the university, togetber with its government and administration, was vested in the university senate. In $186 \pm$ the charter of 1850 was superseded by a supplementary charter, and the unirersity reconstituted "in order to render more complete and satisfactory the courses of education to be followed by students in the colleges "; and finally, in 1880, by virtue of the Act of Parliament known as the Cniversity Education (Ireland) Act, 1579, the Queen's Caiversity gave Jlace to the Royal University of Ireland, which was practically a reconstitution of the former foundation, the dissolution of the Queen's U'aiversity being decreed so soon as the newly constituted body should be in a position to confer degrees; at the same time all graduates of the Qucen's University were recognized as graduates of the new university with corresyonding degrees, and all matriculated students of the former as catitled to the same status in the latter. The university confers degrees in arts (B.A., D.A., D.Litt.), science, engineering, music, medicine, surgery, obstetrics, and law. The preliminary pass examinations in arts are held at annually selected centres, -those chosen in 1885 being Dublin, Belfast, Carlow, Cork, Galway, Limerick, and Londonderry. All bonour examinations and all examinations in other faculfies are held in Dublin. The Queen's Colleges at Belfast, Cork, and Galway were founded in December 1845 , under an Act of Parliament "to enable Her Majesty to endow new colleges for the advancement of learning in Ireland," and were subsequently incorporated as colleges of the university. Their professors were at the same time constituted professors in the university, and conducted the exanioations. But in the reconstruction of 1880 the chief share in the condnct of the examinatious and adrising the senate with resrec: to theus was vested in a board of fellows, clectod b_{j} the senate in equal anmbers from the non-denuminational calleges and the purely Catholic institutions. The colleges retain, I owever. their independence, being in no way subject to the control of the university senate except in the regulati ns with respect to the requirements for degrees and ctber academic distinctions. On the other band, the obhigation formerly imposed of a preliminary course of study at one or other of the colleges before admission to degrees was abolished at the foundation of the lioyal Ciniversity, the exaninations being now open, like those of the universit?
of London, to all matriculated students on payment of certain fees.
There is at present no university of Wales, although the bestowal of a royal charter before long is confidently anticipated. The oldest college, that of St David's at Lampeter, possesses the right of conferring degrees. It was founded in 1822 for the purpose of educating clergy men in the principles of the Established Church of England and Wales, mainly for the supply of the Welsh dioceses. The number of the professors in 1887 was 8 , and the number of the students 120 . The next college in order of foundation is Aberystwith. It was founded 9th October 1872, but possesses no charter, and is mainly supported by the Dissenting bodies. The staff of professors numbers 13, and the students number 150. The University College of South Wales and Monmouthshire at Cardiff was founded in 1883. The number of professors in 1887 was 9, lecturers 4, demonstrators 2 ; number of students 140. The University College of North Wales at Bangor received its charter 4th June 1885, its object being to "provide instruction in all the branches of a. liberal education except theology." Its staff consists of a principal, 8 professors or lecturers, and 2 demonstrators; the number of the students is 127 . There is also a hall of residence for women students. At each of these three last-named colleges students proceeding to degrees have to go through either a London, Edinburgh, Glasgow, or Dublin course of study, but at Edinhurgh, Glasgow, and Dublin a certain proportion of the term of residence ordinarilv reouired is remitted in thelr favour.

In India, the three older universities all date from 1857, -that of Calcutta haviug been incorporated Jenuary 24, Bombay July 18, Madras September 5, in that year. At these three universities the instruction is mainly in English. "A university in India is a body for examiniag caadidatee for degrees, and for confarring degrees. It has the power of prescribing text-books, etandards of instruction, and rules of procedure, but is not on institution for teaching. Its goveraance and management ero vested in a body of fellows, 60 me of whom are ex officio, being the chief European functionaries of the state. The romainder are appointed by the Government, being generally chosen as representative men in respect of eminent learoing, aciontific attainment, official position, oocial status, or personal worth. Being a mixed body of Europeans and netives, they thus comprise all that is best and wisest in that division of the empire to which the university belongs, and fairly represent most of the phases of thonght and philosophic tendencies observable in the conatry. The fellows in their corporate capacity form the senate. The affairs of the university are conducted by the syodicate, consisting of a limited number of members elected from among the fellows. The faculties comprise arts and philosoply, law, mediciae, and civil engiacering. A degree in natural and physical science has more recently been added" (Sir R. Temple, India ins 1880, p. 145). The Punjab university was incorporated in 1883, -the Puajab University College, prior to that date, having conferred titles only and not degrees. The main object of this university is the encouragement of the stndy of the Oriental languages and literature, and the rendering accessible to native students the results of European acientific teaching through the medium of their own vernacular. The Oriental faculty is here the oldest, and the degree of B.O.L. (bacheler of Oriental literature) is given as the cesult of its examinatione. At the Oriental College the instruction is given wholly in the native languages. In 1887 the senate at Cambridge (mainly on the represeatations of Mr C. P. Ilbert, formerly vice-chanceller of the university of Calcutts) adopted resolutions whareby some forty-nine collegiate institntione already affliated to the latter body were affiliated to the naivorsity of Cambridge, their stadents this becoming entitled to the remission of one year in the ordinary statutable requirements with respect to residence at Cambridge. It is at these inotitutions, and the colleges of the first or aecond grade in the other presidencies, that the instruction is given.
In Australia, the nnivereity of Sydney was incorporated by an Act of the colonial legislature which received the royal assent 9 th December 1851, and on 27 th February 1858 a royal charter was granted conferring on graduates of the univeraity the same rank, style, and precedence as are enjoyed by graduates of universities within the United Kingdom. Sydney ie also one of theinstitutions associnted with the university of London from which certificates of having received a due conrse of instruction may he received with
a riew to admission to degrees. There are four facnlties, viz. arts, law, medicine, and acionce. The design of the university is to supply the nzeans of a liberal education to all orders and denomina. tions, withont any distinction wheterer. An Act for the purnose of facilitating the erection of colleges in connexion with different religious bodies was, however, passed by the legislature during the session of 1884, and since that time colleges representiag the Episcopalian, Presbyterian, and Roman Catholic Churches liave been founded. In 1885 the total number of students attencling lectures in the university was 206. The university of DIelbourne, in the colony of Victoria, was incorporstell and endowed by royal Aet 22d Jenuary 1853. This Act was ameaded 7th June 1881. Here also no religious tests are imposed on admission to any degree or election to say office. The council is empowered, after due examination, to coafer degrees in all the faculties (excenting divinity) which can be conferred in any miversity within the British dominions. It is alse autherized to affliate colleges; and Trinity College (Church of England) was accordingly founded in 1870 and Ornood College (Presbyterian) in 1879. The founding of a nniversity for Queensland is at the present time in contemplation. The university of Adelaide in South Australia (founded mainly by the exertions and munificence of Sir Walter Watson Hughes) was incornerated by an Act of the colonial legislature in 1874, in which year it was further endowed by Sir Thomas Elder. In 1881 letters patent were granted by the English crown whereby degrees conferred by the university were conatituted of equal validity with those of any university of the United Kingdom. The faculties in the university are these of arts, medicine, law, science, and music. The number of matriculations siace the foundation amounted in 1886 to 284, the number of undergraduates in that year being 90 .
The university of New Zealand, fonnded in 1870, and reconstituted io 1874 and 1875 , is empowered by royal charter to grant the several degrees of bachelor and master of arts, aud bachelor and docter in law, medicine, and music. Wromen are admitted to degrees. To this the Auckland University College, Nelson College, Canterbury College, and the university of Otago atand in the relation of affiliated institutions. This last-named institution wes founded in 1869 by an order of the previncial council, with the power of conferring degrees in arts, medicine, and law, and received es an endowment 100,000 acres of pastoral land. It was opened in 1871 with a staff of three professora, all in the faculty of arts. In 1872 the provincial conncil further oubsidized it by a grant of a eecond 100,000 acres of land, and the university was now enabled to make considerable additions to the ataff of professers and lecturers, to establish a lectureship in law, and to lay the foundations of a medical school. In I874 an agreement was made between the naiversity of New Zealand nad that of Otago, whereby the functione of the former were restricted to the examiantion of cendidates for matriculation, for schelarships, and for degrece; while the latter bound itself to become affiliated to the university of New Zealand, to hold in abeyance its power of grantiug degreee, and to waive the claim which it had advanced to a royal charter. As the result of this arrangement, the nniversity of Otago became possessed of 10,000 acres of land which liad been aet apart for naiversity purposes in the former province of Southland. In 1877 a school of mines was established in connexion with the university.

In Canada the M'Gill College and University at Montreal wes founded by royel charter in 1821 (amended in 1852) on the founde. tion of the Honourable James M'Gill, who died at Montreal 19th Decomber 1813. A number of colleges and achools throughout the prevince stand in the relation of affiliated institutions. The uaiversity is Protestant but undenominational. It includes the faculties of arts, applied sciences, medicine, and law. In 1885 the tetal number of etudente, iacluding women, was 526 . The university of Toronto was originally established by royal charter in 182\%, under the title of King' θ College, with certain religious restrictions, resembling those at that time in force at the English nniversities, but in 1834 these restrictions were abolislied, and in 1849 the designation of the university was changed into that of the university of Toronto. In 1873 further amendments were made in the constitution of the university. The chancellor was made elective for a period of three years by cebvecation, which was at the same time reorganized so as to include all gradnates in law, medicine, and surgery, all masters of arts, and bachelors of arts of three years standing, all doctor's of acience, and bachelors of ecience of three years standing. The pewers of the senate were also extended to all branches of literature, ecience, and the arts, to granting certificates of proficiency to women, and to affiliating colleges. The work of instruction is performed by University College, which is maintained out of the endowment of the provincial university, and governed by a council compesed of the residente and the professore. Its several chairs include classical literature, logic and rhetoric, mathematics and natural philoophy, chemistry and experimental philosophy, history and English literature, mineralogy and geology, metaphysics and ethics, meteorology and natural history, and lectureshipe on Oriental literature, German. and French. Other niversities and collegee with power to confer
degrees are the Victoria University at Cobourg (1830), supported by the Methodist Church of Cenada; Queen's University, Kingston (1841), representing tho Presbyterian body; and the university of Trinity College, Toronto, founded in 1851 on the suppression of the faculty of divinity in King's College. Lennoxville is a centre for university instruction in conformity with Church of England principles.
In Africa, an Act for the incorporation of the university of the Cape of Good Hope received the royal assent 26th June 1873, the council being empowered to grant degrees in arts, law, and medicine.

In the United States of America university education has received a great extension, without, however, exercising in Europe that reflex influence discernible in so many other relations. The report of the commissioners of education for 1883-84 gives a list of no less than 370 degree-giving universities or colleges ; but of these a large proportion are sectarian, others represent only a single faculty, and nearly nine-tenths have been fourded within the last thirtyfive years. - Although a higher education has unquestionably been thus very widely diffused, the undue multiplication of centres has, in some provinces, lowered the standard of attainment and led to a consequent depreciation in tho value of university degrees. This tendency it was sought to counteract in the State of Ohio, some twenty-fire years ago, by an organization of the different colleges. The instruction given is, in most cases, almost gratuitous, the charge to each student being less than 30 dollars a year. This cheapening of a bigher education is not, howerer, attended with quite the same results as in Germany (where lads with little aptitude ior a professional carcer are thus attracted to the professions), the rapidly increasing population and the wider scope for mechanical or agricultural pursuits probably exercising a beneficial counteracting influence. The distinguishing cbaracteristics which belong to these numerous centres are described by the president of the Johns Hopkins University, \quad. an address delivered at Harvard in 1886, as sugges ${ }^{\text {t }}$ - of four different classes of colleges, -(1) those which 1 ...eed from the original historic colleges, (2) those established in the name of the State, (3) those avowedly ecclesiastical, (4) those founded
by private benefactions. To the first class belong Harvard College and Yale College with their offshoots. Of these two, the former was founded in 1638 at Cambridge, Massachusetts, by a former fellow of Emmanuel College at Cambridge in England, and represented the Puritan tenets for which the parent society was at that time noted ; the latter was founded in 1701. by the combined action of a few of the ministers of the State, a charter being given in the same year by the colonial legislature. It was for a long time chiefly supported by the Congregationalists, but is now unsectarian. The total number of students at Harvard in 1882 was 988 , at Yale 692. The university of Pennsylvania was founded in 1751 by Thomas Penn and Richard Penn, on the lines of a scheme drawn up by Benjamin Franklin, and was from the first placed on a basis comprising all denominations. It is distinguished by the liberality with which it has opened its courses of instruction to the inhabitants of the city generally; the degree of Ph.D. is conferred on all comers after due examina. tion. At Harerford and Lafayette Colleges, and also at the Lehigh university, "advanced degrees" are offered "only for higher study, prolonged beyond the collegiate course," instead of being conferred as a matter.of routine after a certain term of years. The Johns Hopkins University, also an unsectarian body, was founded at Baltimore in 1867, and is already a school of established reputation, and especially resorted to by those designing to follow the profession of teachers. It is also distinguished by the possession of fellowships, to be beld only by students intending to pursue some especial line of original research. Other steadily growing centres are Columbia College in New York, founded in 1754 ; the Cornell University, also unsectarian, recently enriched by the acquisition of a considerable endowment ; Brown's University in Providence; and those of Princeton, Michigan, Virginia, and California. At A unherst College, where the number of students in 1882 was 339, the experiment has recently been made of partially dispensing with examinations during the course of

States and Tarrit	Nor $\begin{gathered}\text { No, Ot } \\ \text { colleges. }\end{gathered}$	Preparatory Department.		Collegrate Deparitment.		Income fromProd octiveFunds.	$\begin{gathered} \text { Receipts in } \\ \text { 1883 } \mathrm{Itrom} \\ \text { Tultioc Fees. } \end{gathered}$	Volumea in Collegs Lbrariea.	$\left\lvert\, \begin{gathered} \text { Valog of } \\ \text { Gubouds } \\ \text { Bullings, and } \\ \text { Apparatus. } \end{gathered}\right.$
		$\begin{gathered} \text { No. of } \\ \text { Instuctors } \end{gathered}$	$\begin{gathered} \text { Noo o of } \\ \text { Sunde to } \end{gathered}$	No. of	No. of Studenta				
Alabuma....	${ }_{5}$	18	${ }_{865}^{169}$	21	${ }_{\substack{332 \\ 230}}$	\$24,000		16,600	\$300,000
Aramsai.....	1	${ }_{8}^{18}$	${ }^{1,211}$	${ }_{135}^{21}$	${ }_{933}^{230}$	109,500	${ }_{6}^{85,320} 4$	2,820 $s_{8}, 100$	${ }_{\text {1,821,000 }}^{10,000}$
Connecticut...	${ }_{8}^{3}$	\ldots	$\stackrel{\text { a }}{ }$	${ }_{76}^{26}$	98888889		${ }^{11^{2,3,393}}$		(340,000
Dolaware.......	1	${ }_{6}$	${ }_{68}$	4,980		3,000	-1,40,0000
Georlaia	${ }_{8}$	\cdots	176	\%	749	177,500	$\cdots 300$	10.800	380,000
Itilinois...	${ }_{15}^{23}$	${ }_{81}^{83}$	2,795	${ }_{231}^{238}$	1,998	${ }_{\text {cki }}^{88,724}$	139,477	145, 129	2,501,000
Momat......	${ }_{19}^{15}$	${ }_{87}^{81}$	${ }_{\text {c }}^{1,369}$	${ }_{188}$	${ }_{\substack{1,288 \\ 1,268}}^{1}$	${ }_{5}^{52,455}$	75, 788		i, 1,878
Kansas	${ }^{8}$	${ }_{8}^{80}$	1,304		${ }^{4} 59$	18,650	16,168	${ }_{33,300}$	soo,
Konusky.	${ }_{10}^{15}$	${ }_{26}^{27}$	1,418	${ }_{86}$	${ }_{1}^{1,182}$		$\underset{\substack{6+2,29 \\ 88,601}}{\text { ciei }}$	$c1820088088$	900.500
Matee......	- ${ }_{10}^{3}$	29	393	38 118	${ }_{881}^{889}$		$\underset{\substack{21,450 \\ 48,275}}{\text { ate }}$	$\underset{\substack{61,050 \\ 74,400}}{ }$	${ }_{\text {813, }}^{81300}$
Sharyhand ..estio	8		209	168	2:010	${ }_{366,592}^{24,59}$	${ }^{162}$	312,51	${ }_{\text {2, } 261,027}$
SMlchzan ...	9	$\stackrel{29}{7}$	i, 6.49	117	1,029	${ }_{8}^{8,8285}$	${ }^{76,886}$	${ }_{8}^{80,865}$	1,380,989
Minsissippl...	${ }_{8}$	5	800	${ }_{28}$	${ }_{241}^{49}$	$\underset{\substack{\text { S1,204 } \\ 1,200}}{ }$	${ }_{\text {8,976 }}$	$\xrightarrow{20,800}$	
M1:sourt.	${ }^{20}$	3	1,742	186	2,0577	${ }_{8}^{81,778}$	124,959	94;707	2,794,900
New Hampsh				${ }_{15}$	${ }_{282} 2$	30,000	11,000	85,000	100,000
New Jersey.	4	$\stackrel{7}{3}$	\% 6	76		${ }^{71,500}$	16,400	68,000	(810,000
Nortli Caroll	${ }_{9}^{29}$	${ }_{18}^{76}$	${ }_{\text {2, } 283}$	${ }_{86}^{486}$	${ }^{3,645}$	${ }_{\substack{\text { 20,730 }}}^{6,081}$			
Ohio....	${ }^{33}$	106	4,002	${ }_{32}^{327}$	${ }_{\text {2,801 }}^{2,83}$		110,388 126,100 1	${ }_{\text {cosem }}^{168,032}$	${ }^{2,8899,234}$
Penoy ivas io	${ }^{26}$	59	1,828	${ }_{29}^{29}$	${ }^{2}, 193$	34,5,544	137, 3 ,33	188,718	4,338,090
Rhoda 1sland.........	9	i7	\%\%8	${ }_{86}^{17}$	${ }_{371}^{270}$		${ }^{3} 10,530$	$\xrightarrow[\substack{51,622 \\ 21,000}]{\text { c, }}$	${ }^{1}$
Teacessee.	${ }_{11}^{20}$	${ }_{25}^{34}$	cin1,212 $1,2 i 4$	$\stackrel{157}{197}$		cioni,900		come	(1,568,749
Vermonil.:	${ }_{2}$			20	'102	15,200	6,179	3,85s	395,000
	7	${ }_{6}$	71	78	${ }^{803}$	88,059	$\underbrace{\text { c, }}_{\substack{21,629 \\ 8,200}}$	8, 8, 1000	1,650,000
West Mrrgnia...	${ }_{8}^{2}$	${ }_{28} 8$	${ }_{926}$	${ }_{93}^{19}$	${ }_{692}$	${ }_{62,627}^{6,400}$	${ }_{1}^{19} 9310$	4, 4,58	948,700
Dakota...............	$\stackrel{2}{8}$	${ }^{6}$	${ }_{38}^{32}$	7	100	60,642	100,589	41300	1,250,000
	1	$\stackrel{8}{8}$	- ${ }_{285}^{258}$	i4	10	O,	(10,630	2,913	180,000
Wiashington........								2,350	180,000
Total...........	870	829	32,765	3,815	32,	$83,018,624$	£?,105,365	2,51,782	\$46,339,301

atudy, where the students give evidence of having made satisfactory progress. Considerable modifications hare also taken place in the courses of studj, aearly all the colleges having now adopted the system of "parallel courses," and the principle of selection between these. Female education has received in America an extension which it has attained in no other country, and one of the colleges (that of Wellesley) numbers several hundred students. Since the war of 1861 a greatly increased attention bas been giren throughout the universities to physical training and athletic exercises, aud excellent gymnasia, constructed on German models, hava been erected.

The accompanying table (p. 857), prepared by the council of education for the year 1853-84, shows the distribution of these centres in the different States, together with their numbers, revenues, libraries, and the estimated value of their endowments.
Authorilies.-On tho eariler hlstory anduxganization of tha medleral unlveraltles, tha student aliouid consult F. C. ron Suvlgny, Qesch. d. rōmischen Rechis im Mihlelalter, 7 vols., 1826-51; for tha universtly of Parts, Do Boulay, Distorin Unirersitatis Parisiensis, 6 vols.. Parls, 1665, Cravler, Frish, de C Unirersite de Paris, 7 vols., Paria, 1761, and C. Jonrdald, Hisf. de r Unicersité de Paris au XVIIme ef an XVIIIme Siecle, Parls, 1862: of thesa tha work of Du Boulay (8u1a8as) Is ooe of grast resparch and labour, bot wanting in criticn julgment, whila that of Crefler is little mora than a readable outlina diawn from the former. The Flewa of Du Boulay have beeo challenged on minny important polnts by P, H. Dealfa in tha first voluma of hila Die Unicersưten des Mittelahters bis 1400 (1885), and more particularly on those relatiog to the organization of the early unlversh
 unsers Erdithells, 4 5ols ($1502-5$), must be recurdnci as almont supersetcel as a reneral histors, and the samo move bo nald of linber's work on tho Engloh

 deuschen Sisulen und Uuicersildeen (Gelpalc, 18s5) will bo found tho mail den worthy,-tha former [or tho niedlaval, tha lutter for the modern period ro the

 derls 2 rols. (Talle, 1853-54): V"on Rumur Gesch \& Pädapogic vol iv (tulat

 (Glaseow 1S3.5) For Oxford therg aro iso patine collectons by disiony Glasgow, 1S3.5). For Oxford, thacre aro tho laborinns collectinls by Ansi:ony orford, ellited with conthuation by Rer J Guidi, 5 vile (lisfe-jrs) amil stience and Fecil 0 roul
 fles of Oxford compiled in 1036 under Aulhoreitl of Airchisishop Laud, cd Gifmilas
 oxfor, those of Wond in thoroaghness and impartiallyy, are comprised in three aertes: (1) Anuats of C'ambridge, i rols. (1842-52): (2) Athmit Cantabripienses, 1500-1003, 2 vols. (1858-61); (3) Jlemorials of Cambridye. 3 vols. (ncw cu., I584). The Archireatral Hisfory of the University of Cambridge and of the Colfeges, by the late liobert Trillis, edited and continued by J. Willis Clisk, 4 Fols. (1846), 19 a work of ndmirablo thoroughness and completeness. To these may be nidud Coubridge in the Sceenleenth Century; Lives of Nicholas Ecrmar ant Mathino Robiusou, by Prof. John E. B. Mnyor, 2 vols. (1855,1 , 50); end Baker's History of the College of Si John the Eraxgellat, Cambridge, cditet by Mayor, 2 vols, (1869): nlso J. B. Mullinger, Mistory of the Unierisity of Cambirige fiom lie Earliest Tiules to Acression of Chavtes 1., 2 vols. ($1573-85$). For both unlversitics see the Documents Issued by the Oxforil and Canbulgo Commisions of 1855; rlso the Wood. Ifearne. Tanner, and Rawhmson MSS, and the Cottomhn, Harlclan, Lansdowne (enpe-
cially liennett ant Strype), Baker, and Cole collectlons.

Index.

Abo (1840), 852 .
Adelalda (1874), 85
Agram (1859), 852 Alcala (1499), 851 . Altdorf (1578), 845 Amerlcan universittes, 857 Amsterdam (187i) 850 . Angers (1305), 833 . Angers (1805), 839 A rezzo (circ. 1215), 836. Arlgaion (1303), 839. Argaon (1303), 839. Bamberp (1648) 816. Ber)in (1809) 818 . Ber) in (1809), 818,
Bern (1834), 851 . Bologna (12 tl cent.), 832. Bombay (1855), 856. Bombay (185\%), 856 . Bonn (18x). 181 . Bordeanx (1441), 842 Boarges (1465), 842 . Breslat (1i02). 816. Brussels (1834), 850 Budapest (1635), 852 Caen (143.), 841. Cainors (1332), 839. Calentra (1857), 836. $838,852$.

Capa of Good ILope (1873),
Cintistiania (1S11), 850. Colmbra (1309) 830 857 Cologna (1388) 840. Colnmbla College, (1754), 85%
Copenliagen (14:9), 842. Coinell, U.S. (1885), 857 Cracow (1.364), 810 . Czelmowitz (18.5), 852 Debreczio College (1531), Debrecz
852.
Durpat (1632), 845. Durham (1832), 853. Edinam (1832) 85.83 . 158), 848,851 , Erfurt (1375), 840 . Erlangen (1743), 848. Ferrara (1331), 837. Fiorence (1320), 882 Frasca (1794), 851.
Fradeker (1585), 850 Fraveker (1585), 850
Franifoit on -the - Oder Frankroit - on
(1506), 843. Frelburg (1455), 84 ? Fünfkirchen (1367), S4n Genera (18i6), 851 Ghent (1816), 8.50 .5
Glessen (1607), 845

Glasgow (1753), 843, Gïttincen (li38), Graz (1586), 851. Grejfswald (2456). 842 G1'enolhe (1339). 839. Gronlngels (1614), 850 . Halle (1693), 817 MarderwiJk (1600), 850. Harrard College (IG38) Haray
857.
Feldelberg (1385), 840 Helms: G 1 l (1575), Helaint fors (1840), 85 . Huesca (1354) 83), Incesca (1357), , goistad (145), 42 Innsbrack (150), 8ic. ref (1900) 855 niversity of (1880), 855 . Johns Hopklins (1867), 557 . Johns Hopkins (186 Khorkoff (1804), 852 Kicif (LS03), 85? Kicff (LSO3), 852.
liel (16G5), 850 . Kiel (1665), 850. Klansenbure (1852). 852. Kolozsrar (1572), 859. Könizsberg (1544), 8
Leipsle (1409), 841. Leipslc (1409). 841.

Levida (1200) 835	-akneln (121).	.
Leyden (1555), 850.	Paris (12ticent.), 854, 84,	Strasbut ${ }^{\text {(1621), 84.5, 831. }}$
Licre (1616), 8.50.	9:50	Sydrey (18:1), Ruti.
London (1826) 854.	Pivin (12C1), 836.	Toronto (18:27), 856.
Lowrain (14.2 i), 841	PennsyIvania (1751 , 857	Fonlunse (1:233), 838.
Lund (166s), 850.	Perpignen (13T9), 859	treves (1450), 8t2.
M'Gill, Canado (1821), Sic	l'eıvgra (1:08), 8.n7.	Treviso (1318), 8:37.
Madias (185\%), 806.	Placenza (1292) §ve.	Timity College, Dubisin
Madrjit (1837), 8.51.	Poitiers (1431), sti.	(1591). 855.
Mainz (14.6), 842.	Prague (1347), 839, 816.	Trinity Collegz, Toronto
Marbure (1527), 814.	livinceton (1716). 85%.	(1851), 857.
Selbourne (1853), 8jC	l'inn, b (1853), 8.36.	Titbingen (1776), 842.
Modena (12th cent.) sü6.	Quce. s Linsergity, lre-	Upsala (145 T), 842, 850.
Montpelher (1289), 8.38	1an.1. -71, 8.55.	Utreche (1634). Rso.
3fontrea) (1821), 8 EjG.	Zneet nirersley, Klng.	Vrlence (1452), 842. Volladalid (1319) $83 n$
Stoscow (1755), 802. Munich (1826), 8.48.	ston (1841), shit. Renmin (12!11 cent.), 536	Valladolid (1346), 839. Vercelli (circ. 1328), 836.
Nantes (1463), 842	limucln (1621).845	Vicenza (1204), 836 .
Naples (1990), 836.	lhome (1303), 836.	Vicroria, Miuschester
New Zealond (1870), 9:, 6	Rostock (1419). 841.	(1880), 854.
Odessa (1565), 852.	St Andrews (1411), 843,	Victorla, Canodín (18a6).
Ofen (1359) 810.	854.	85G.
O1miliz (1581), 851.	St Drvid's Collesa. Lant-	Vimma (1264), 840, 851.
Orance (1365), 839.	peter (1822), 856.	Vilna (1803), 852.
Orleans (13th rent.), $\mathrm{Sa}^{3} \mathrm{~S}$,	St Pctersbuy ¢ (1819), 852.	Wales, colleges in, 856.
Ot3go (1969), 856.	Salamanca ($1: 533), 83$	Wittenberg (1.502), of ${ }^{\text {d }}$
Oxpond (iall cent.), 837,	Saleino (9th eent.), 832.	Yale Collcge (1701),857.
$\$ 53 .$	S.izburg (16:93). 851	ZS¢1ab (1369), 852.
Padua (1222), 836	Sevale (1254), 839	Ziirich (1832), 851.

evden (15-5), 850 lece (1616), 8:0. London (1826) 854. Lund (1665), 850. I'Gill, Canada (1821), S: Tadias (185:). 8uc. Mainz (1476), 842. Marberg (1527), 84. Iodena (12th cent) sü6 Iontpellier (1289), 8.38 Sontreal (1821), 856. Coscow (1755) 802? Iunich (1826), 8.48 Nantcs (1463), $8 \frac{18}{2}$ Jew Zealond (18.0), $9, i 6$ deessa (1565), 852. 1 miilz (1581) 8i1 Orance (1365), 83 ? orleans (13 th rent.), s as. Orfor (inir

Padua (1222), 820

Palcuelm (1214). ャů. arie (12tis cemt.) 80f, 846 8.0.

Pennsytratia $(1751), 857$ Perpignen (1379), 859 l'elvigta (1008), 8 . 7. Poitiery (1431), sil. Progue (1317), $832+816$. linnceton (1716). 85\%. Quce.s Sinsersity, IreZneet nirersley, Klug. scanio (12.11 s.in 12imectn (1ca1) 815. 830 Trome (1303). 836 rostock (1419). 841.
St Andrems (1411), 843, St Dr.
Dryid's Collça. Lantpeter (1822), 85t. Salamanca ($1=1 \leq 3$) 830 Saleino (9th cent.), 832. Sevule (1254), 839

Slena (1357), 837. EH2asbutg (1621), 84.5, 8.11. Sydrey (18:1), 8jti.
Toronto (18:2i) 85G. ¥onlunse (1:333). 838 Treves (1450), 849. Tinity College, Dulifin (1591). 855. (18.51) 857 , This, Toronto Titingen (1476), 842. Upsala (14Ti), 84:, 850, Vrlence (1452) 812 Yalladolid (1346) , 839. Vicenza (1001) 836 , 836 Ficroria, Miunchester Victorla, Canoda (18a6). 85G.
Vimnna (136f), 840, 851 Wiales, colleges in, 856. Hittenberg (1.202), ors. Z5g1ab (1869), 852.

UNTERWALDEN is one of the Forest cantons of Switzerland, ranking as sisth in the Confederation. It is composed of two valleys throngh which run two streams both called the Aa, and which are called Obwald and Nidwald from their position with regard to the great forest of the Kernwald in which they are situated. In old documents the inhabitants are always described as "homines intramontani," whether "rallis superioris" (Obwald) or "vallis inferioris" (Nidwald). The total area of Obwald is 183.3 square miles, 154.2 of which are classed as productive (forests 37.6), while of the remainder 3.8 are covered by glaciers and 4.3 by lakes. The area ci Nidwald is $112 \cdot 1$ square miles, $84 \cdot 1$ being productive (forests 27.7); of the rest the cantonal bit of the Lake of Lucerne covers 12.8 . The bighest point in the canton is the Titlis (10,627 feet) in Obwald.

The census of 1880 returned the population of Obwald as 15,356 , an increase of 941 on 1870 , and that of Nidmald as 11,992, an increase of 291. In both the Fomen bave a small majority over the men. The native tongue of practically the whole population is German (15,254 in Obwald, 11,869 in Nidwald), and they are nearly all Roman Catholics (15,078 in Obwald, 11,901 in

Nidwald). Till 1814 the cauton was in the diocese of Constance ; since that time it has (like Uri) formed legally part of no diocese, though it is provisionally administered by the bishop of Chur. The capital of Olwald is Sarnen (4039 inhabitants), Kerns (2500) being the ouly other place which is more than a village; that of Nidivald is Stanz (2210). The population is purely agricultural and pastoral. In Obwald the forests are remarkable, in Nidwald the fiery energy of the inhabitants. In educational matters the standard is not rery bigh, but is being gradually raised. At the head of the Nidwald valley (but legally in Obwald) stands the great Benedictine momastery of Engelberg, founded in 1121. There are no ruilmay:, but one is being made fron Lucerne throngh Obwald orer the Brinig Pass to Meyringen in Dera.
Kistorically Obwalu was part of the Aargau, and Nidwald of the Ziirichgau. In both there were many great landowners (specially the abibey of Murbach and the Hapsburgs) and few free men; while the fact that the Hapsburgs were counts of the Aargau and the Zirichgau further delayed the development of political freedom. Both took part in tho risings of 1245-47, and in 1248 Sarnen was threatened by tho pope with excommunication for opposing its hereditary lord, the count of Hapsburg. The alleged cruelties committed by the Hapsburgs do not, bowever, appear in histuly till

Justinger's Chronicle, 1420 (sce Tell). On April 16, 1291, Ruliolph the futurc emperor bought from Marbach all ito estates in Uaterwalden and thus miled this district as the chief landowner, as count, and as emperor. On 1st Angust 1291 Nilmald formed the "Everlasting League" with Uri and Schwyz (this being the first known cald in which its common seal is used), Obwahl joining a little later on. In 1304 tho two valleys were joined together under the same imperial bailiff, and in 1309 Henry VII. confirmed to them sll the libertiee granted by his predecessor-thongh nono are known to have been granted. However, this phaced Unterwahlen on an enual political footing with Uri aud Schwyz; and as such it took part in Morgaten fight (also driving back an invasion over the Lrrinig Pass) and in the renewal of the Everlasting League at Brumuen (1315), as well as at Sempach (1386), and in driving hack the Gngler or English freebooters (1375). For physical reasons, it wis diffienlt for Unterwalden to enlarge its territories. Yet in 1383 it acq: ; vel Alpmach, and in 1378 llergisuyl. So too Ohwald shared siuk Uri in the conquest of the Val Leventina (1103), add in the purchase of Bellinzona ($1+19$), se well as in the loss of both (1426). It was Nilwald that, with Schrryz and Uri, finally won (1500) and ruled (till 1798) Belliuzona, hiviera, and Val blegno; white toth shared in conquests of Aargan (1415), Thurgmu (1460), anil Locarno, sic. (1512), and in the temprary ocenpation of the Val d'Ossola (1410-14 to 1417-22). In the Burgundian war Unterwallen, like the other Forest cantons, long hung back through jealousy of Bern, but came to the rescne in time of need. In 1481 it wias at Stanz that the Confclerates nearly broke up the League for rarious reasons, and it was only by the intervention then of the holy hermit Nicholas yon der Flie (of Sachscin in Obwaid) that pance ras restord, and the great federal ggreement known as the compact of Stanz conclnded. Like the other Forest cautone, Cnterwalden clnng to the old faith at the time of the Reformation, being a member of the "Christliche VereiDigung" (1529) and of the Gollen League (15s6).
In 1798 Unterwalden resisted the Helvetic repulilic, but, having formed part of the short-lived Tellgau, became a district of tho canton of tho Waidstatten. Obmald susmitted at an early date, bat Nidmald, refusing to accept the oath of fidelity to the constitution mainly on religious grounds, rose in desperate revolt (Soptember 1795), and was only put down by the arrival of 15,000 armed men and by the storming of Stanz. In 1803 its indenendence as a canton was restored, but in 1815 Nilmaid refused to acecpt the ners constitution, and federal troops had to bo employed to put down its resistance, tho prnishment inflicted being tho transfer to Obwald of the juristiction over the abbey lanis of Engelberg (since 1421 " protected" by both ralleys), which in 1798 has fallen to the lot of Nidrald. Since that time the history of Unterwalden has been like that of the other Forest cantons. It was a member of the "League of Sarcen " (1832), to oppose the reforming wishee of other cantons, and of the "Sonderbund" (1843); it was defeated in the war of 1847 ; sucl it voted against the acceptance of the federal constitutiou both in 1848 and in 1874 . It forms at present two half cantons, esch sending one representative to the federal "assembly of states." In local mattere tho tro valleys aro independent. In each the supreme authority is the "landsgemeinde" (mecting on the lest Sunday in April), composed of all male citizens of twenty (Obwald) or eighteen (Nidwald) years of age, while the cantonal council, which drafts measures and eanctions the expenditure of sums below certain fixed small amounts, is composed in Obrall of 80 members (including the execntive courcil) elected by the people for 4 years, and in Nid rald of 48 (besides the executive council) chosen in the same tray for 6 years. Tho executive council is in both coses electat by the "landsgemeinde"; in Obwald it consists of 3 olficiais and 4 ordinary members, and in Nidwald of 0 otticials and $\overline{0}$ orlinary members, -the official members being chosen every year, thie ordinary crery 4 or 3 years respectively. The existing constitution of Ohwald is that of 1867 ; that of Nidwald is dated 1850 , sud was amended in 1877-78.
It is very remarkable that in both rallers the ohl "eommon lands " are still in the hands of the oll guilds, and "gemeinlen" sonsist of natives, not merely residents, though in Obwald these oontribute to the expenses of the mew "prolitical communes" of residents, while in Nilwald the latter have to raise special taxes. In Engelberg (which still retains some indepeadence) the poor aro greatly favoured in the division of the common lamels aad their procceds, and unmarried persons (or widowers and widows) reccive only half the share of those tho are married.
See J. Businger, Die Geschichuen des Foltes rons Cubrriatien, 2 vols, $1927-23$.
UNYORO, a kingdom of Central Africa, boundel on the N. and E. by the Nile, on the W. by the Albert Nyanza, and on the S.E. by the kingdom of Uganda. Its area is about 1600 square miles. The country is very fertile, well-watered, and thickly wooded; for the most part it is hilly in character, especially on the borders of the Albert Lake and in the neighbourhood of Massindiaud

Kiroto, where the mountains have an altitude of from 5000 to 6000 fect. The population is abont $1,500,000$. The Wanyoro are of a dark reddish-brown colour, and aro fully clothed, but are not so fine in physique, nor so bigh in intellectual development as their neighbours the Waganda, to whom, however, they appear to bo very nearly related. The reigning family in Unyoro belongs to the Wahuma tribe, and is probably the oldest reigning Wahuma family in this jart of Africa. The country is governed on the feudal system. Numerous tribes to the cast and north of the Nilc, and also on the western side of the Albert Nyanza, jay a spall tribute to the Wanyoro. The latter possess large herds of cattle, and are very good herdsmen. The land, too, is cultivated to a considerable extent,-bananas, sweet potatoes, and dhurra being grown in large quantities. Coffee and tobacco aro cultivated to a small extent. The people are very superstitions, and the numerous medicine men and women reap a rich harvest from their credulity. The TYanyoro huts are dome-shaped, small, and extremely filthy and full of vermin, although the people theinselves are cleanly. Polygamy is universal, even the poorest man possessing two or three wives. Not withstanding this, the people are fairly moral; but U'ayoro is remarkable amongst Central African tribes for the existcnce of a definite class of courtesans. The Tranyoro are moderately skilful workmen, and their iron-work, pottery, and wood-work are both neat and tasteful. The only article they export is salt, which is obtained in considerable quantities at Kibiro on the shores of Lake Albert.
See Baker's Albcrt Dyanze, Felkin and Wilson's Uganda ard the Egyptian Soudan, and varions papers in Petermann's Nitthcilanger by Einin Pasha

UPANISIIADS. Sco SAxskrit, vol. xxi. p. 280, and Brahmantsm.

UPAS, a Javanese word meaning poison, and specially applied by the Malays and people of western Java to the poison derived from the gum of the anchar tree (Antiaris toxicariat, , one of the Artocarpeex, which was commonly used in Cclebes to envenom the bamboo darts of the natires. The name of the ujas tree las beeome famous from the mendacions account (professedly by ono Foerseh, who was a surgeon at Samarang in 1773) published in the London Mayazine, December 1783, and popularized by Erasmus Darwin in "Loves of the Plants" (Dotanic Garden, pt, ii.). The tree was said to destroy all animal life within a radius of 15 miles or more. The joison was fetched by condemned malefactors, of whom searcely two out of twenty returned. All this is pure fable, and in good part not even traditional fable, but mere invention.
For a scientific account of the Antiaris, see Horsficid's Plantax Jaramica Rariorcs (1838-52) and Blinne's Ramuphia (Brussels, 1833), and for the legenil Yule, Ánglo-Indiant Gussary, r. i26 sq.

UPPER SIND FRONTIER, a district of British India forming the northernnost portion of the province of Sind, in the Bombay presidency. It comprises an area of 2139 square miles, and lies between $27^{\circ} 56^{\prime}$ and $25^{\circ} 27^{\prime}$ N. lat. and between 68° and 69° 44. E. long. It is bounded on the N. and W. by the Derajat districts of the Punjab and the territory of Khelat, on the S . by Shikarpur distriet, and on the E. by the Indus. In the north-cast the country is hilly; the remainder consists of a narrow strip of level plain, one lalf being cosered with jungle and subject to inundation, from which it is protected by artificial embankments. The land is watered by canals from the Indus, of which the chief is the Begari (85 miles in length), navigable throughout by large boats, and the Desert Canal, which irrigates the country west of Kasbmor. The district contains several thriving timber plantations. The wild animals comprise an occasional tiger and hyænas; wild hots and jackals abound; foxes are occasionally met
with; and antelopes, hog-deer, and a suecies of sambluar Aeer are found in the dense jungle tracts adjoining the Iudus. The climate is remarkable for its dryness and for Its extraordinary variations of temperature. The arerage annual rainfall at Jacobabad is less than 5 inches. There are numerous roads of all descriptions, and the Frontier Military Railmay from Sukkur via Jacobabad to Sibi crosses the district.
The census of 1881 returned the population as 124,181 (males 70,166, fermales 54,015), -Hindus aumbering 9894, Mohaminedans 109,183 , and Christians 230 . The chief town is Jacobabad, with a population of 7365 . In $1885-86$ the cultivated area was estimated at 361,415 acres, of which 137,149 were cropped, and of these again 8163 were cropped more than once. The principal crops are wheat, joar, bajra, rice, barley, nustard-seed, snd a little cotton and gram. Salt, lacquered work, leathern jars, embroidered shoes, woollen carpets, and saddle-bugs are the principal maunfactures. The internal trade is principally in graiu, the greater part of which is sent to the Punjab, snd the transit trade from Centra! Asia into Sind crosses the district, bringiug wool and woollen goods, fruits, carpets, snd horses.

UPSALA, a city of Sweden, the seat of its oldest university and residence of the archbishop of Sweden, is situated on the small river Fyris, 42 miles north of Stockholm. In spite of its position in a vast and fertile plain, Upsala was a rather insignificant little town till the opening of railway communication in 1866. . The population, which in 1840 was only 5100 , had at the end of 1885 increased to more than 20,000 (vith students, scholars, and others, 23,000). The industries of the place are still nnimportant, but its trade by sea (navigation being open for six or seven noonths of the year) and by rail is somewhat livelier. Upsala owes its fame to its university, which was founded in 1477 . In 1624 Gustavus Adolphus endowed it with 300 farms, the revenue of which formed its entire income for more than two hundred years. Parliament now contributes nearly the half of its whole revenue (393,300 crowns, or about £21,800, in 1885). The professors numbered 58 in 1887, with 61 "docents" and assistant teachers, and there were 1928 students. The last-named are divided into 13 "nations" (based on the old ecclesiastical division of the country), almost every one of which possesses a house of its own, with a ball, readingrooms, and library. About $£ 7200$ is distributed yearly in "stipendia" or scholarships. The new / university house, above the cathedral, on the site of the former archbishop's castle, is in the Renaissance style, and was built in 1879-87. It has a great hall capable of holding 2000 persons, eleven lecture-rooms, \&c. The vestibule, lighted from above by three large cupolas, and surrounded by open galleries, is particularly fine. The library building (called Carolina Rediviva, in remembrance of the Carolina which formerly existed near the cathedral) was erected in 1819-41. The library, which has a rigbt to a copy of every book printed in Sweden, at μ resent (1887) contains 250,000 volumes and 11,000 MSS., anorg which is the famous Codex Argenteus of Ulfilas's translation of the Gospels. The "Gustavianum," built by order of Gustavus Adolphus for a university house, is now wholly occupied by the zoological institution. The botauical garden (which
formerly belonged io tiut castle) was presented by Gustavus III. to the university in 1787, -the former garden (in the northern part of the city), where Rudbeck and Linnæus worked, and where the residence of the latter is still to be seen, having been found too small and inconvenient. The medical faculty possesses a hospital and anatomicai, chemical, and μ athologico-physiological institutions; and about a mile from the town there is a magnificent lunatic asylum. The astronomical and meteorological institutions, as well as those of chemistry and physics, have also special buildings, all of recent date. The Royal Society of Sciences, established in 1710 by Eric Benzelius, the younger, occupies a honse of its own, and has a valuable library. Of the buildings the cathedral, founded in the latter pait of the 13th century and completed in 1435, is the most remarkable. The material is brick, but the proportions are uncommonly noble and harmonious; the length is 390 feet, and the beight inside 88 . It has suffered considerably from repeated fires, but since 1886 an extensive restoration has been going on. The castle, on the summit of a long ridge above the town, was founded in 1548 by Gustavus I., but not finished till a century later, when it was often nsed as a royal residence. It was destroyed by fire in 1702, and for more than forty years remained a ruin. At present only a small part of it is habitable, and that part is chiefly used by the provincial government and as a residence of the governor. Apart from the cathedral and a few insignificant hcuses, there are no remains from the mediæval period, the city formerly having consisted almost entirely of wooden houses.
The дame of Upsala originslly belonged to a place nearly 2 miles to the north of the present city, which is still called Old Upsala This Upsala, mentioned as early ss the 9th century, was famous throughout Scandinavia for its splendid beathen temple, which, gleaming with gold, made it the centre of Svithiod, then divided nato a great namber of kingdoms; three hage grave monnds or larrows etill commemorate old times. In the eame place the first cathedral of the bishops of Upsala was also erected (abont 1100). On the destruction of this building by fire, the incouvenient situation caused the removal in 1273 of the archiepiscopal see to the present city, then called Ostra Aros. ${ }^{1}$ hut within a comparatively short time it csme to be generally called Upssla. During the Middle Ages the csthelral and the see of the archbishop made Upsala a kind of ecclesiastical cspital. There the kings were crowned, after the election had taken place at the Mora stones, 10 miles sooth.east of Upsala." Δs early as the 14th centary, hewever, Stockholin became the proper residence of the king. In 1567 Erik XIY. murdered to the castle five of the most emineat men of the kingdom, three of them belongng to the family of Sture. In 1593 was held the great synod which marks the final victory of Protestantism in Sweden; in the same year the university was restored by Charles IX. In the castle Christina, daughter of Gustavus Adolphno, resigned her crown to Charles X. in 1654." In" 1802 nearls the whole city, with the castle snd the cathedral, was burnt domn. Among the teachers of the university who have carried its name beyond the boundaries of their own country, the following (besides Lianæus) deserve to be mentioned:-Olof Rudbeck the elder, the author of the Allantica (1630-1702); Torbern Bergman (1735-1784), the celebrated chemist ; and Erik Gustaf Geijer (1783-1847), the historian.

[^327]
For Reference

Not to be taken from this room STACK

[^0]: ${ }^{1}$ For details see the introduction to Noldeke's excellent translation of Trabari's History of the Perisians and Arabs in the Sasanian Period, I.eyंden, 1879.

[^1]: ${ }^{2}$ Published in excerpt by Wüstenfeld aloug with Azraki, Iespric, 18.57 .59.

[^2]: I Two passages in the old bistory, wbich comprises the boeks of Jndges, Samuel, and Kings, speak of the tabernacle (ühel möed); hut exterasl and internal eviderace show them to be interpolated (I Sam. ji. 22; 1 Kings viit. d).

[^3]: ${ }^{1}$ In old 1srael the sanctuary, after the people had settled down in cities, usually stood outside the town, and this was the case even with the temple at Jerusalem wheu it was firat built.

[^4]: 2 The expression that the Israclites bad not done so since the days of Joshua means that there was no recollection of their having ever done ao ; for of course it is assuraed that Joshua carried out every direction of the law.

[^5]: 1. Referring to factor tables, Lambert wrote (Supplementa Tabularum, 1798, p. xv.): "U Uiversalis fiois talium tabularum est ut semel pro semper computetur quod sæpius de novo computandum foret, et nt pro omni casu computetur quod in futurum pro quovis casu compu. tatum ciesiderabitur." This apolies to all tables.
[^6]: ${ }^{1}$ For other examples of taboos (especially injunctions to continence) among various yeoplas is connesion with fishing, hunting, and trading, see Turner, Samoa, p. 349; Aymonier, Noles sut les Laos, pp. 21 sq., 25, 26, 113, 141; W. Powell, Wanderings in a Wild Counlry, p. 207; Report of I'.sernational Expedition 10 Point Barrow, Alaska, p. 39, Washington, $1885 . \quad 2$ Journ. Anthrop. Inst., viii p. 370.

[^7]: 3 Journ. Anthrop. Insl., xi. p. 71 ; Dalton, Descriptive Ethnology of Bengal, p. 43.

 - Joven. Anthrop. Inst., vii. p. 206.

[^8]: 1 Reclus, Jonv. GĖog. Thiv., viii. p. 126.
 ${ }^{2}$ Schoolcraft, Indian Tribes, iv. p. 63; Adair, Hist. of American Indians, p. 163. Cp. Morse, Report on Indian Affairs, p. 130 sq., and Bancroft, Native Races of the Pacific States, i. p. 189.
 3 Elphinstone, King:lom of Caubul, ii. 379, ed. 1839; Journ. Ethnol. Soc., i. p. $192 . \quad$ Zimmer, Altindisches Lebent, p. 271.
 ${ }^{5}$ Casalis, The Basutos, p. 251 sq.
 ${ }^{6}$ Kobl, Witchi-Gami, p. 38, Eng. trans.
 ${ }^{7}$ F. Drew, The Junmoo and Kashnir Tervitories, p. 428; Biddulph, Tribes of the Hiudoo Koosh, p. 51.

[^9]: ${ }^{8}$ Diogenes Laertins, viii. 1, 33 : sp. Plut., Quæst. Conv., v. 10.
 Macrobius Sat., i. 16. 8

[^10]: Finsch and Hartlaub, Fauna Central-Palynesiens, Halle, 1867.
 De Castillo, Jilustrationes Florg Insularum Maris Pacyici, Paris, 1836.

[^11]: 1 "Quand un Usbeg est devenn complètement sédentaire . . . il devient Sarte; le mot Sarte n'est donc pas une appellation ethnique" (Charles de Ujfalvy in Bul. Soc. Geogr., June 1878). But the Tajaks, being always settled, were the first to be known as Sartes; whence the still prevalent erroneous impression that the word had a racial mean. ing, implying an Iranian as opposed to a Turki element. Neverthe. less there is a certain local etiquette observed in the use of the two wards Tajak and Sarte, ensbodied in the popular saying: "When a stranger presents himself and eats your bread, call him a Tajak; when be is gone you may call him a sarte.

[^12]: ${ }_{1}$ Boyce's unaccountable nmission of the rery beautiful Venite is a misforture which cannot be too deeply deplored, since it has led to It cousignment so alruost hopeless oblivion.

[^13]: ${ }^{\theta}$ Bibliographers geaerally fall into a mistake in describing the size of the Babylonian as twelve times that of the Palestidian Talmud． They forget that two－thirds of the size of the former is simply owing to the commentaries by which it is invariably accompanied．
 －The only thing that ought to be mentioned here is，that to the Palestinian Talmud the Shebai Massekhtoth Kelannoth Yerushalmiyyoth （Frankfort，1851，8vo）must be added，whilst Gemara Shelealim and the Massekhtoth Kelannoth，which now form an integral part of tho Babylonian Talmud，are（Aboth de－Rabbi Nathan excepted）unjusti－ fiably attached to it．
 ${ }^{10}$ See Rashi on Gea．slvil． 2.

[^14]: ${ }^{1}$ E．g．，T．B．，Berakholh，leaf 36a．Sea Rashi and Tosapholh， catelword Nתבלni；Ibid．， $36 b$ ，and in other placas．
 ${ }^{2}$ in his Introduction to the commeutary on tha Mishnah（commonly， onl．hy mistake，called Introduction to the Seder Zerain）and in his Intruluction to tha Mishneh Torain．

[^15]: IItaly. notably sicily. was apmareutly the country wbich ob-

[^16]: ${ }^{1}$ See his Iesib Pithgam (in the Ashkenazie ritual; it is introductory to tha propletic lesson for tbe second day of Pentecost). If ne lave the correct reading of that poem there, Rabbenu Tham must hava beer a Levite; aud if so, the Shenuel Hallevi mentioned by R_{m} Yaiakob b. Shimshon as his teacher, in the Cambridge MS. Adu. 1213, leaf $27 b$, is very possibly Rabbenn Tham's patemal erandfather.
 : Sea Sepher Hayyashar, $\$ 595$ (leaf 67 a, cul. 1), and § 610 (1st) in fine. To this high position it is no doubt to be ascribed that his life was saver! by a knight during the second crusade, in which the whole conglesation of Rameru was reduced to beggary, after many of lid membera had been ruthlessly slain.
 ${ }^{3}$ For arample, tha poverty-stricken Abrahan Iba 'Era, to whom he not only gave money but kind words also, in good verses (Eerem \#emed, vii. 1’. 55).
 \&For other metrical poems by Rabbenn Tham, aee Zunz, Literaturg. der Syn. Poesic (Berlin, 1865. 8ro), p. 266.

[^17]: 1 Coffee beans and tea leaves contain peculiar tannirs.

[^18]: Of Spanish origio, it is intended ss, a reproof to the blrd for the lamelese way in which, by erecting its tail, it exposea Its hInder parts. It has been sometimes misspelt "Tapacolo," as by Mr Darwin, who gave (Joarnal of Researches, chap. xii.) a brief but entertalning acconnt of the habits of this bird and its relative, Hylactes megapodius, called fy the Chilepes "El Turce"

[^19]: 1 The method of treatment for ine remove : these tape-worms from the human body consists in the administration, first of purgatives, and thereafter of one or othar of the fo'lowing antbelwintics:- turpontine. male fern (Lastrea Filux.inas), pomecranate, or kousso.-of

[^20]: 1 See Siebold's paper in LLe Moniteur des Imles-Orientules et Drcident Les, 1848-42, pt. i. n. 220.

[^21]: 2 The best English translation of Tasman's Journal is in Burney's Collection, vol. jii. The Dutch origiual was published at Amsterdarm in 1860, elited by Jacob Swart, and contains the chart of the second voyage.
 3 Tho subject is thoronglily discussed hy P. H. Leupe in the Eifilragon ran het kon. Inst. voor Taul-, Land-, en Volkenkunde o. d. Inti. Archipel, ser. i. pt. iv. pp.. 123-140; in Bijd. voor Vonlalundsche Geschicdenis en Oullieid Kunde, by li. Fruis, new scries, pt. vii. p. 254 ; and in the same writer's work De Reizer der Nederlanders nuas Nicuno Guinea (T he Hague, 1575); also Col. A. Haga Vederifndscl. Vieuw Gy inea (The Hague: 1ss4).

[^22]: ${ }^{1}$ The author of the Acta Archelai treats hira as a heratic.
 ${ }^{2}$ See Zeitschr. f. d. luth. Theol., 18 T 4 and 1875; Zeitschr. f. wiss. Thcol,, 1877; Zeilschr. f. Kirchengesch., iii. p. 100.

 3 Scs Credner, Einl., i. 437 sq.; Semisch, Tatiani Diatessaron, 1856.

 - Evangelii Concordantis Expositzo facta a S. Ephramo, Venice.
 ${ }^{-}$See Harnack, Zischr. f. Firchengescti, iv. p. 471 sq.
 ${ }^{6}$ Zahn, Tatian's Diatessaron, 1881.

[^23]: ${ }^{1}$ Evangelienfragmente: Der Griechische Text des Cureton'schen Syrers, Leipsic, 1885.

 2 On the Diatessaron, its later history and various editions, see bosides Zahn, as cited above) the Codex Fuldensis, ed. Ranke, 1868; Echmoller, Ammonii Alex. quas et Tatiani dicitur Harmonia Evang., 1841 ; Sievers, Tatian, Lat. sad Ger., Paderbern, 1872 ; Martin, "De Tatlani Diatessaron Arabica Versione," iv Pitra's Analecta Sacra, vol. lv. (1883), gp. 465.487.

[^24]: ${ }^{1}$ Instructions for Collecting and Preserving Various Subjects of Natural IIistory, London, 1704.
 ${ }^{2}$ The Naluratist's Guide for Collecting and Preserving Subjects ot Natural Mistory and Botany, London, 1822.

 Taxidermist's Manual, Glasgow, 1833.
 4 Practical Taxidermy and Home Decoration, New York, 1880.
 -Sporticmun's Ilandbook of Practical Collecting and Preservios London, 1880.

 - Practical Taxidermy, Tondon, 1879; 2d editiou, 189ś

[^25]: An E:aray on tho Naturc, $C^{r}:$: and Abuse of Tca, 14, 15.
 Lettoom, Nafural Hisfory of ins Tia-Tice. 78.
 Ber Theo Begrabniss und gluciaiche Wiederauferstekung ficso if.

 * In tha versca beginnlag-

 1 puer, L, Theam coufcetim in pocula mlace:
 Urcet non sollus lemina nostia eopor;
 3teas stupet; obtusse langucat in corpore vircs;
 Languorem eolvet vivids "Thes novam." -
 Ilnctli Comincntarius de rebiss ad curn pellgentilus, 201.

 - Literary Jlagaztice, vol I1. Nio. 13 (1757).

[^26]: ${ }^{1}$ The Sanskrit name of teak is saka, and it is certain that in India teak has been known and used largoly for considerably more than 2000 jears. In Persia teak was used nearly 2000 years,ago, and the town of Siraf on tle Persian Gulf was entirely built of it. Saj is the name in Aralic and Persiar: and in Hindi, Mabratti, and the other modern languages derived from Sanskrit the tree is called sag, sagroan. In the Dravitian languages the name is teta, and the Portugucse, adopting Ihis, callud it teke, teca, wheuce the Eaglish amme.
 ${ }^{2}$ The rate in the Lcədon market since 1860 has flucinated between £10 and $£ 15$ per loan of 50 cubic fect.
 \# Ilurtas Malabaricus, vol. iv. tab. 27, 1683.

[^27]: 4n orie of the oldest buildings among the ruios of the old city of Vijayanagar, on the baoks of the Tungabhadra in southern India, the superstructure is supported by planks of teakwool $1 \frac{1}{2}$ incles thick. Tuese planks were ezamined in 1881 ; they were in a good state of

[^28]: ${ }^{1}$ Of the teak exported to foreign countries from India in 1883－84， 27，356 tons went to Great Britain， 8594 tons to Egypt， 2056 tons to Ceylon， 1984 tons to Japao，and 1823 tons to the Cape of Good Hope． The total quantity exported was 46,471 tons．
 ${ }^{2}$ Not including 16,000 squere miles of sccond class reserves in the Central Provinces．

[^29]: ${ }^{1}$ See his Mathematical and Physical Papers, vol. ii. p. 105.
 arom correspondence found among Sir David Brewster's paper: after his death it seems highly probable that the writer of this letter, which was signed "C. M.", was Charles Morrison, a surgeon and 1 netive of Greenock, but at that time resident in Renfrow.
 ${ }^{8}$ Soe Arthur Young, Travels in Franre. p. 3.

[^30]: The reader interested in the early history of the electic telegraph may consult Edward Highton, The Electric Telegraph, London, 1852 ; Moigno, Traits de Télégraphie Électrique, Peris, 18s尹; and Sabine, Uistory of the Electric Telegraph, London, 1869.

[^31]: ${ }^{1}$ Journ. Soc. Telegr. Epg., vol. aii. p. 495.

[^32]: ${ }_{2}$ See his Mathematical and Fhysical Papers, 331 .

[^33]: 1 "Ueber I clephonie durch den galvanischen Strom," in Jahresber. d. physikalischen Tereins zu Frankfurt an Main 1860-61, p. 57: See his Scientific Papers, p. 17 .

[^34]: ${ }^{3}$ See Silliman's Jowrn., visii. p. 396 and xxxiii. p. 118.
 ${ }^{4}$ Marrian, Phil. Mrag., 3d ser., Exr. p. 382 ; Beatson, Areh. de $\vec{\iota}$ Élect., v. p. 197; De la Rive, Treatise on Electricity, vol. i. p. 306, also Phil. Mray., 3d ser., vol. xxxv. p. 422, and Comp. Rond., Ix. p. 1287, zxij. p. 432 ; Matteucci, Arch. de TEPrect., จ. 889 ; Guillemin, Comp. Rend., zxii. p. 264 ; Wertheim, Comp. Rend., zrii. pr. 336, 544, इxvi. p. 505, also Am. de Chim. et de Phys., zxili. p. 302; and Phil. Mrag., 3d ser., zxviii. p. 544; Jannair, Comp. Rend., zxiii. r. 319: Jouie, Phzt. Mrag., 3d ser., xxv. pp. 76, 225; Laborde, Compl. Rend, 1. p. 692 ; Poggendorff, Pogg. Ann., Luxvil. p. 189, xcviil. p. 193 ; Du Moncel. Exp. de l' Elect., voi. ii p. 125, iii. p. 83 : and Delesenne, Biul Univ., 1841, xvi. p. 406.

[^35]: ${ }^{1}$ See also Didaskolia: Blatter fur Geist, Gemith, u. Publicitüt, Frankfort, No. 232, 23 th September 1854 ; Du Moncel, Exposs des Applications ảe l'Électricité, Paris, vol. ii. p. 25, ed. 1854, vol. iii. p. 110, ed. 1856, and Comp. Rend., 26th November 1877.

 2 The English reader may consult-Journ. Soc. Tel. Eng., March 1883 ; British Assoc. Rep., 1863; Civ. Eng. and Arch. Journ., vol. ERV. p. 907 ; R. M. Ferguson, Electricity, London, 1860, p. 257 ; S. P. Thompson, Philip Reis, the Inventor of the Telephone, Loadon, 1883.

[^36]: ${ }^{3}$ See A. G. Bell, "Telephona Researches," in Jours. Soc. Tel. Eng., 31st October 1877.

 * Tbe extrene smallness of the magnets which might be successfully empluyed was first demonstrated by Professor Peirce of Brown UUnjversity, Providence, P.I.
 - ${ }^{5}$ For a detailed description, in a collected form, of large number

[^37]: of these moditications, see Du MonceI, "La Téléphone," in Dibliotheque des Merveilles, Paris, 1882.
 ${ }^{1}$ See George B. Prescott, The Speaking Telephone, London, 1879, $\mathrm{pp}_{\mathrm{a}}{ }^{151-205 .}$
 ${ }^{2}$ Scientific American, 18 th June 1881.
 ${ }^{3}$ Electrostatics and Magnetism $9_{9}-236$.

 - See Tel. Journ., 1st August 1877, p. 178 ; also Adams. Journ. Soc. Tel. Eng., 1877, p. 476.

[^38]: ${ }^{5}$ See Journal of the Telegraph, New York, April 1877 ; Philadelpkia Times, 9th July 1877 ; and Scientifc American, Augnst 1877.

 - This tern was used by Wheatatone in 1827 for an acoustic ap. paratns intended to convert very feeble into audible sounds; see his Scientific Papers, p. 32

[^39]: ${ }_{1}$ See Proc. Roy. Soc., vol. xxvii. p. 362 ; Proc. Phys. Soc., vol. ii. p. 255 ; Phil. Mrag., 5th eer., vol. vi. p. 44; Preece, Journ. Soc. Tel. Eng., vol. vii. p. 270.

 2 Although this patent is dated prior to Hughoss publications, it does not follow that the descriptions were filed before these.

[^40]: ${ }^{8}$ On this subject see A. G. Bell, Phil. Mag., 5th ser., vol. xi. p. 510, and Journ. Soc. Tel. Eng., vol. ix. p. 404 ; Mercadier, Phil. Mag., 5th 日er., vol. xi. p. 78 ; Tyndall, Proc. Roy. Soc., vol. xxxi. p. 307 ; Routgen, Phil. MYag., 5th ser., vol. xi. p. 308 ; Preece, Proc. Roy. Soc., vol. xxxi. p. 506 ; Rayleigh, Nature, vol. xxiii. p. 274, and Proc. Roy. Soc., 1877; Bidwell, Phil. Mag., 5th eer., vol. xi. p. 302; S. P. Thompвоп, Phil. Mag., 5th ser., vol vi. p. 276.
 ${ }^{4}$ See W. Smith, Journ. Suc. Tel. Eng., vol. v. p. 183, and vol vi. p. 423 ; M. L. Sale, Proc. Roy. Soc., vol. xxi. p. 283, and Phil. Mag., 4th ser., vol. xlvii. p. 216 ; Draper and Moss, Proc. Roy. Irish Acad., val. i. p. 529 ; Rosse, Phil. Mag., 4 th eer., vol. ㅍlrii. p. 161 ; W. G. Adams, Proc. Roy. Soc., vol. zxiii. p. 535 and vol xxiv. p. 163 ; W. G. Adams and B. E. Day, ibid., vol. xxv. p. 113 ; Wernar Siemena, Monatsber. kסn -Preuss. Akad. der Wissensch. zu Berlin, 1875, p. 280, and Phil. Mfag., 4th eer., vol. i. p. 416 ; Sabine, Phil. Mfag., 5th eer., vol. Y. p. 401.

[^41]: 1 In recent years the term "photographic telescope" has been applied to inetruments employed to record the eppearance of celestisl sbjects by photography.

[^42]: ${ }^{1}$ Seo Dr Moll of Utrecht, in Journ. Roy. Inst., vol, i, 1831.
 ${ }^{2}$ Lettre d' Uonini Illuetri, p. 112. Venice, 1744.

[^43]: ${ }^{3}$ This last power could not be exceeded with advantage in this forma
 of telescope till after the invention of the achromatic object-gTass. of telescope till after the invention of the achromatic object-glass.

[^44]: ${ }^{1}$ At a meeting of the Royal Astronomical Society held on 9th Mny 1886 a legal document, signed by Chester Moor Hall, was presested by Mr R. B. Prosser of the Patent Office to the socicty. On the same occasion Mr Ranyard made the following interesting statement respecting Hall :-
 "Some years ago very little was known ahaut Moor Hsll. It was known that, about seven years after the patent for making achromatic object-glasses was granter to Dollond, his ciellil to the invention was disputed by other instra. ment-1nakera, amongst them by a Mr Champness, an instrument-msker of Cornlill, whn began to infringe the patent, sheging that John Dollond was not the real inventor, and that such telescopes had been made twenty tive years lefore the granting of his patent by Mr Moor Hall. John Dollond, to whom the Copley medal of the Royal Society had been given for his invention, was then dead, and his son brourht an action for Infringing the patent arainst Chsinpness. There is no rebort of the case, but the facts are referred to in the reports of subsequent cases. It appears that workmen who had been emp'oyed by Mr Mor Hall were examined, and pmved that they had made achromatic ebject-glasses as early as 1i33. Dollond'e jatent was not set aside, thongh the evidence with regam to the prior manufacture was accepted by Lord Mansfielil, who tried the case, as having been satisfactorily proved. Mr Hall was a bencher of the Inner Teanple, and was alive at the time of the action. He was a man of some property, and is spoken of on his tonibstone as an excellent lawyer and matl ematician. Ile was not a fellow of the Royal Eocicty, but unst certainly have known of the gift of the Copley medsl to Dolloni. It is very curinus the conflicting evidence we lisve te reconcile, but I itink the balance of evidence is in favour of there heving beeo a prior in. vention of aciromatic object-glasses before the date of Dollond'e patent" (Astron. Register, May 1886; see also the Observatory for same diste).
 ${ }^{2}$ Centloman's Maguzine, 1790 , part ii. p. 890.
 ${ }^{\text {a }}$ For a good account of this controversy, see Dr. H. Servus, A_{c} schichle des Fernvohrs, p. 77 sq, Berlin, 1886 .

[^45]: : See Wolf, Biographien, vol. ii p. 301, and Clerke, IIstory of Astronomy, pp. 146-147.

[^46]: ${ }^{2}$ In the case of bhort-sighted persons the image for very distant objects (that is, for parallel rays) is formed in front of the retina; therefore, to epable such persons to see distinctly, the rays emerging from the eye-piece mast be slightly divergent ; thet is, they must enter the eye as if they proceeded from a comparatively near object. For normal eyes the natural adaptation is not to focus for quite p-rallel rays, but on objects at a morerate distance, and practically, iberefore, most persons do adjust the focus of a telescope, for most distinct and ears vision, so that the rays emerge from the eye-niese very slightly diver. gedt. Abnormally short-sigh ted pcrsons require to push in tho "ye-let* nearer to the object-glass, and loug-sighted persons to withdraw it frem the adjustment employed by thase of normal sight It ia naual, bow. ever, in computations of the raagnifying power of telescopes, for the rays emerging from the eye-piece when adjusted for distinct vision to be parallel.

[^47]: 1 These inconventent conditions are imponed by the dimensions of the axistr dow and mey lead to accitents io practice.

[^48]: 1 There is also an elegsnt atrangement for printiog on a ribbon of paper, by pressure of the finger, the readings of the number of revolutions and fractions of a revolution of the head at each ohservation, the ribbon being sutomatically maved forward for another record aftar asch observation.

[^49]: ${ }^{1}$ Eonkoly, Practische Anteitung zur Anstellung astron. Beobachlungėn, Brunswick, 1883.
 ${ }_{2}$ Míonthlu Notices R.A.S. Noverber 1873.

[^50]: 1 A fine example of 14th-century tempera painting in Sweden is illustrated in vol, Ivii. plate I.

 3 Nothing could be more opposed to the spirit of the Middle Agea than the modern rage for cutting off plaster and ocraping old etonework, under a mistaken notion of æsthetic honesty.

 3 In order to ensure an even surface some painters prepared their panels by covering them with linen or vellum, over which the gesso prising was laid.

[^51]: "Fresco" here means "fresco buono," or true fresro.
 ${ }^{5}$ See vol. xvii. p. 38.

 - The manner and degree in which the law 'has in recent yeara regulated the sale of intoxicants is described under Lievor Laws (vol xiv. p 688.

[^52]: ${ }^{1}$ Sue Mich., i1. 6.11.
 2 Mich.. ii. 139, 247.
 ${ }^{8}$ Mich., ii. 132.

[^53]: ${ }^{1}$ See T. L. Donaldson, Architectura N゙ımısmatıca (London, 1859); Ranen. Idission й Phericio: Perrot and Chiliez, Hist. de l'Art, vol. iii.

[^54]: ${ }^{2}$ The description of the temple in 1 Kings is often obscuro and the

[^55]: ${ }^{1}$ Cp. alse the vail of Assyrian tissue given by Autiochus to the temple at Olympia (Pausan., $\nabla .12, \S 4$), which Gannean (Quarterly Statement, April 18:8) boldly ideutifies with the vail of the temple that Antiochus Epiphancs carried off from Jerussi'नt ii Mac., i. 22 ; Jos., Ant., xii. $5, \$ 4$).

[^56]: ${ }^{2}$ This measurement (Ant., xv. 11, 83) has often been taken to refer to Solomon'e temple. But this view is not demanded by the words of Josephus, and is inconsistent with the other measuremente he gives and with B.J., จ. $5, \S 1$, which etates thet the platean was levelled up by Solomea only on the east. This from the lie of the contour lines mares a platean 600 feet equare impossible. The Mishash makes the "mountain of the house" a square of 500 cubits, apparently borrowing From Ezekiel.

[^57]: ${ }^{1}$ They are represented in the Recovery of Jerusalem (p. 143) and In the 1 tlas of plates of Jerusaiem published by the Palestine ExploraBon Fond.
 ${ }_{2}$ That the temple was built on the threshing-finor of Orasn is natorally assumed by the Chronicler, who likes to minimize the number of old Hebrew esnctueries ; but the old history knows nothing of a conecration of the site iefore the ark wea placed thers.

[^58]: * The adjoining remains of encient tuildings onquesticnably mark the site of the council ball where the Sanherrion met, and which was close to the first well and tion temple but outside the lattsr ($B, J .$, จ. 4, § 2 ; ri. 6, §3).
 - One of the suburben gatee moy be Werren's gaie, in the anbstinctures of the Antonia wall, sbout 170 feet north of Wilsen's a-ch. The other is sometimes identified mith Barclay's gate betweon Wison' arch and Robizon's arch. Bht this would not lead into the s.
 XXIII. - 22

[^59]: It ought, however, to be observed that the contour lines in and near $\mathrm{B}, \mathrm{B}, \mathrm{B}$ are almost parely conjectural.

[^60]: ${ }^{1}$ The Hermitage Catalcgue ascribes to Abraham Teniers the portrait of a hishop. This painting le, however, by David, and represents the celebrated behow of Gheni, Anthony Trist, with his brother Francis, - Franciacan mook.
 ${ }^{2}$ Under the name of Weening.

[^61]: was discovered among the papers of the prince of Schwartzen berg in Vieuna. It was published in 1883 by Adolf Berger. In 1658 Teniers published 243 etchnnss after the besl Italan works of Leopold Wiliiam's colliection, which, with the portraits of the sinbluke anit Teuers wers brought together as a volume in 1660 . onder the title $E l$ Teatro do Pinturas. 4 The separation waz only obtaned tio 1773.

 - The date is often wrongly given as le94 or le9Б.

[^62]: ${ }^{1}$ Roprinted from the present writer's Annals of Tennis, 1878, by the kind consent of the publisher Mr H. Cox.

[^63]: ${ }^{1}$ Ritschl reads ingressus, which woulh make bim a year younger.

[^64]: ${ }^{2}$ See Ep. ad Fam., i. 9, 19, and Phil., ii. 15.
 ${ }^{3}$ Esiays of Montaigne (trans. by Ch. Cotton), chap. Ixvii.

 - By E. Negrette, in his Mistoire de La Littératurz Latine.

[^65]: 2 An Italian word meaning literally "baked earth."
 2 See list at tho end of the present article.
 ${ }^{s}$ See Bull. Com. Inst. Arih., 1874, p. 120. Nany thousand tombs have been opened at Tanagra, partly cut in the rock and partly built of masonry. The statuettes were either arronged round the body or packed in large vases. The costume of the female figures is the same as that described by classical writers as being peculiar to the neigbbouring city of Thebes. The finest of the Tanagra figures are from 8 to 9 iuches ligh.

[^66]: ${ }^{1}$ A good example of a terra-cotta relief of the first part of the 5th century B.c. is figured in vol. ii. p. 352.
 ${ }^{2}$ Some very beautiful fragmenta of reliefs in terra-cotta are pre. served in the musenms of the Lourre, of Copenhagen, and the Kircheriano in Rome. These represent on a small scale parts of Phidias's Panathenaic frieze, which have all the appearance of being worts of the 5 th century B.o., but may possibly be forgeries or Roman copies ; see Waldstein, Art of Pheidias, Cambridge, 1885.
 ${ }^{3}$ In some the most hoinely sort of genre is represented,-a girl milking a cow, a cook or a barber at bis work, \&c. Even portrait Ggures occur, as, for example, a wonderfully lifelike gronp of a man and his pife in the collection of Mr Ionides, recently lent to the sodth Kersincton Museum.

[^67]: ${ }^{1}$ Fine examples of all these existed in the callection of M. Lecuyer, which is now dispersed (see Lenormant, Coll. Lecuyer de terre-cuites. Paris, 1884, which is well illustrated with phatographs).
 ${ }^{2}$ In a few other examples objects of bronze sma placed in the hands of the figures.
 ${ }^{3}$ The lovely e eries of little figures of dancing cupids from Tanagra,日ome of which are in the Lauvre and otbers in the Sauth Kensington Museum, were wholly gilt, but the larger statuettes of Tanagra sppear to have had gold applied only for epecial ornamente.

 - For many reasons both finders and dealers usually wish to keep eecret where valusble finds are made. In most museums the labela simply repeat the desier's account (for want of better information), oc that the statement of the provenance must usually be accepted with csution.

[^68]: ${ }^{1}$ Seb Journ. of Hellenic Shudies, vol. vi., 1836, p. 243.
 ${ }^{2}$ The British Museum possesses some line caricatures of actors from Canino, rery skilfully modelled and of a deculiar fabrique.

[^69]: ' A very larga ascua from Canosa in the British Museum is decorated with no less than five statuettes of women and Victories, two large masks of Medusa, and air projecting figures of borses.
 ${ }_{2}$ Compare a aimilar representation of the omphalos on a Greek vase Ulluatrated by fahn, Vasenbilder, Hamburg, 1839.

[^70]: ${ }^{3}$ - See Adler, Mittelalterliche Backstein-Bauwerke, Berlin, ${ }^{\text {‘1 }} 1862$.
 ${ }_{5}^{4}$ Sas Gruner, Terra-cotta Architecture of N. Italy, London, 1867.
 ${ }^{5}$ The South Kenalngton Mnseum posseases a very fine collection al Florenfine terra-cottas of the best period.

[^71]: ${ }^{1}$ See Vasari, ed. Le Monnier, xii. 281.
 2 This interesting building is now threatened with destraction.

[^72]: Very clever forgeries of terrs-cotta are being manufactured, and in many cases real epecimens have genuine heads whioh do not beloug to them. The colouring has frequently been touched op and falaified While in the dealers' bands. Even the celehrated Campans collection contained many clever forgeries of terra-cotta reliefs.

[^73]: Compare also the judgment of Bilary and of Vincent of Lerins,

[^74]: 1 This article deals mainly with the history of the textile art; for practical information as to modern processes, see Weavino; eee also Embroidert, vol. viii. p. 160 sq.
 ${ }^{2}$ These dividing sticks are called in French "hatons a denx"; in the simplest kind of weaving only one is required. The use of treadles and "spring staves" is more applicable to the low loom, in which the warp is strained in a harizontal postion

[^75]: ${ }^{3}$ Lat. spatha. ${ }^{4}$ Lat. pecten; modern English batten or lay
 ${ }^{5}$ See Mon. Inst. Arch. Rom., vol. ix. pl. 42.
 ${ }^{6}$ See the modern Faroese loom figured by Worsaae, Afbildninger fra det k. Mruseum for Nordiske Oldsager, Copenhagen, 1854, p. 123.

 A fresco by Pinturicchio-911 in the National Gallery, Londonhas a careful representation of the mediæral low loom ; the subject is the return of Ulysses to Penclope.
 ${ }^{8}$ Dr Schliemann found 22,000 in the plains of Troy alone.

[^76]: ${ }^{1}$ In the time of St Louis (13th century) in France some sorts of weaving, such as "tapisseria Saracenois," were dene only by men.
 a Some exisling specimens have io each joch 152 threads in the warp and 70 in the weft; in modern stuffs the proportion is the other way. A coarsely woren piece of Egyptian stuff in the British Muscum has a horder with a man swimming, supported by \& flowt

[^77]: : A rery magnificent royal dress, with woven patterns of deities, kings, animals, and tha sacred tree, nuuch resembling those on tbe metal bowls of Assyria, is figured by Layari, Menuments of Assyria, series i, pl ix.

 - One remarksble example of tapestry from a tomb in the Crimea is supposed by Stephani to date from the 4th century B.c.; see Comp. Rend. Com. Arch., 1878-79, po 40, M. v.

 3 Il., iii. 125 , viii. 288 , ix. 200 , x. 156 , xiv. 178 , xxii. 440 ; Od., ii. $93, \mathrm{x} .220$, xiv. 61 , and many passages in books xviii. to xx . Homer describes (Oit., xix. 225-225) a cloth of purple wool with a hunting scene in gold thread, woven by Penelope for Ulysses.
 ${ }^{\circ}$ Il., 1 vi. 224 , xxiv. 230,645 ; Od., iv. 124,298 , vii. 337. Many Greels vases, especially those with black fignres and inciscd lines, have representations of rich woven dresses, - -.g., an amphora in the Vatican with Achilles and Ajax playiog ot a game like draughts, c. 460 z.c. A rather later vaso in the British Nuseum has a fine figure of Demeter clad in a palliom covcred with figures of cbariots and winged mer and horses.

[^78]: - See De Ronchaud, Le Péplos d"Athèné, Parıs, 1872, and La Tapisserie, Paris, 1885. The treasuries of most Greek temples appear to have contained large stores of rich woven stuffs.
 ${ }^{2}$ See alsn Hor., Siel., ii. 6, 102-6 ; Ovid, Metam., vi. ; and Lucr., iv. 1026.
 ${ }^{3}$ This fragment is illustrated by Müntz, La Tapisserie, Paris, 3882, p. 53.

[^79]: See Raine, Saint Cuthbert, Darham, 1828, plate iv. ; in his taxt the enthor lo wholly wrong as to tho provenance of theso staffis.

[^80]: ${ }^{2}$ This is urually called the pine-apple patforn ; but it wes invented long befora the discovery of Anserica had introduced the pfine-ryple into Europe.

 3 Italian and Flemish picfures of the 1 th th the 36 th centory ofteu give most valuable representationa of rich textiles; see Fecher, Fiflemth Century Italian Ornameni, Lomdon, 1886, e seriee of coloared plates of textiles taken from Italiaa nirtores.

[^81]: ${ }^{2}$ A raluable belp towards astablishing the dates of carpot pattarnes is given by meny medireval Italian pictures, in which Oriental carperes are often represented with wonderful minuteress and approolatler

 8 Tapisserie in Freach meass ald corth of pattereed wturis.

[^82]: ${ }^{1}$ In tapestry the weft etitches are put in loosely and carefnlly pressed home, so that the warp etrings are completely hidden.
 ${ }^{3}$ Seo Riaño, Tapestry of the Palace at Madrid, London, 1875 ; of all countries Spain is the richest in tapestry of the 15 th and. 16 th centuries. The royal collection contains 2000 large nieces. Rich etoree also belong to the priucipal cathedrals, euch as Tolcdo, which on the feast of Corpus Christi is completely hung round with tapestry outside as well as inside. In the 17 th century tapestry loome were worked in Spain under royal patronage. One of Velazquez's finost pictures in the Madrid Gallery (Las Eilanderas) represents tho visit of eome court ladies to a tapestry fabrique, io which women are work. ing the looms.

[^83]: ${ }^{3}$ An earlier fabrique was started in 1630 by Urban VIll．，but it soon ceased to bo worked．

 4 Tho largo collection in the Gobelin Suceum was burnt in 187.

[^84]: "Occasionally to stey, down from the platform, and talk about them: if they are good and kindly, to love and slake them by the hand ; if thoy are silly, to langh at them conlidentially in the reader's sloevo; if they are wicked and heartless, to abuse them in the strongest terms politngess adnits of. Othervise you might fancy it was I who was sncering at the practico of derotion, which Miss Sharp finds so ridiculous; that it wes I who laughed goodhumonrolly at the roiling old Silcmus of a baronot-whereas the laughter comes from ore who has no revorenco except for prosperity, snd no cye for anything beyond success. Such people there are living and flomishing in the world - Faithless, Ifopoless, Charityless: let us have at thom, dear friends, with might and main. Some there are, and very successful ton, more quacks and fools: apt it was to combat and exposo surh as thogn. ne doubt. that baughter was mallo."

 As to anether accusation which 'was brought against the' book when it first came out, that the colours were laid on

[^85]: ${ }^{2}$ Bretschacider（Dic Geom．zor Euklides，p．40），without stating his authority，gives＂between $5 \$ 5$ and 583 B．C．＂as the date of the archonship of Dabiasius．In this he is followed by some other recent writers，who infer theace that the namo＂wise＂was conferred on Thales on account of the success of his prediction．The date 5Se B．O．，given above，which is taken from Cliuton，is adopted by Zeller． 2＂On the Eclipses of Agatbocles，Thales，and Xerxes，＂Phil． Trans．，vol．cxliii．p． 179 sq．， $1853 . \quad$ A Athenaum，p．919， 1852.
 －Astronmaische Cntersuchungen der aciehtigeren Finsternisse，\＆ia， p．57， 1853.

[^86]: ${ }^{1}$ Assyrian Discoveries, p. 409.
 ${ }^{2}$ Cf. Pamphila and the spurious letter from Thales to Pherecydes, ap. Diog. Luer. ; Proclus, In primum Euclidis Elementoruan L:brum Commentariz, ed. Friedlein, p. 65 ; Pliny, II. N., xxxvi. 12 ; Iamblichns, In Vit. Pytiag., 12 ; Plutarch. Sept. Sap. Conviv., 2, De Iside, 10, and Plac. i. 3, 1.

 This is unquestionably the meaning of the statement of Pamphila (temp. Nero), ap. Diog. Laert., i. 24, that he was the first person to dascribe a right-aggled rriangie in a circle.

[^87]: ${ }^{1}$ The well-preserved theatre at Tauromenium, in Sicily, still bas these niches, which are contrived in the dwarf wall on which the columns of the upper gallery sto ${ }^{2}$.
 ${ }^{2}$ Earthenware vases, which ere sometimes found onder the floors of mediæval church stalls, were probably placed there through a mistaken notion thet this was carrying out Vitrurius's recommendation.
 ${ }^{3}$ The central door, used by the chief actor, was "the royal door."

 - Hence the Roman proverbial phrase, "deus ex nachina."
 - This is ohown by Jacobs, Ferm. Schriften, iv. p. 272, and Passow in Zimmermann's Zeitschr. fo. d. Alterth., 1837, No. 29.
 - These thrones are of verious dates, ranging from the reign of Augustus or even earlier to that of Hadrian; sce Papers of the Anerican School of Classical Stuties at Athens, vol. 1. p. 123. Similar Greek theetre seats of earlier date still exist in the choirs of some churches in Rome, where they were once used for the episconal or celebrant's throne. These were probably brought to Rome during tho imperial period for use in the Roman thentres or amphitheatres. The finest exemple of pure Hellenic mork is in S. Pietro in Vincoli; it is decorated with delicete honeysuckle scroll-worl in relief.

[^88]: ${ }^{7}$ See Texier and Pullar, Asia Minor, London, 1865.
 8 There was also a wooden pent-roof corbelled out orer the stage.

 - See Vitruvius, iii, 8 (Greek thestre) and iii 2 to 7 (foman).

[^89]: 1 This design was also adopted for their amphitheatres, such as the colossea of Rome and Capua, the plan of which resembles the cavea of two theatres set together so as to enclase an oval space.
 ${ }^{2}$ Accordiog ta Livy (xl. 51), the theatre of Marcellus was huilt on the site of an earlier one erected by Æmilius Lepidus.
 a This theatre was dot hegun when Pausanias wrote his boak Attica, and was complete when he wrote the Achaica (see Paus., vii. 20). It is illustrated ia Mon. Inst., vi., plate 16 .

[^90]: © The pit and stalls in a modern theatre occupy an analogons

[^91]: "tireynge-howse." The upper galleries or boxes completely surrounded the stage, even the space over the green-room being occupied by boxes. This being the arrangemert, it is easy to see why the ectagonal plan was selected in most cases, though not in all, -the Fortune theatre, for example, was square. An interesting specification asd contract for the building of the Fortune theatre is printed by Halliwell-Phillipps (op. cit. infra, p. 164\% In all its details the Fortune is specified to be like the Globe, except that it is to be square in plac, and with timbers of heavier scantling. The walls ars to be of wood asd plaster, the roof tiled, with lead gutters, the stage of oak, with a "shadow" or cover over it, and the "tireynge-howse" to have glazed windows. Two sorts of boxes are mentioned, viz., "gentlemen's roomes" and "twoo-peanie roomes." A woodcut showing this arrangearent of the interior is given ia a collection of plays edited hy Kirkman in 1672 .
 Much valuable information abont the early thestres of London is given by Wilkinson, Londina Mlustrala (1819), in whish are eagravings of some of them. See also Collier, Hisl. of Dramatic Poetry, 1879; Halliwell-Phillipps, Life of Shakespeare, 1883 ; Molone, History of the Stage, 1790 , republished by Boswell ia 1821 ; the publications of the New Shakspere Socicty; the Ninth Roport of the Historical MSS. Commission ; and a series of articles out earls London theatres, by T. F. Ordish, in The Antiquary, vols. xi, xii., and xiv.: 1885-86.。

[^92]: 1 This derice was practised by the mediæral architects in most European countries, who frequently made the floor of cathedrals in ? other large churches to slope upwards from west to east, sometimes as much as from two to three feet.
 ${ }^{2}$ Other varisties of this, auch as the "vampire trap," allow an actor to vanish through sn apparently solid wall.
 \$ In 1883 M. Reyer'a Sigurd was rafused at the Paris Opera Honse mainly on account of the absence of the necessary mechanical appliances.

[^93]: I Scene paintings are usually executed in distemper, frequently in an ateller formed in the roof of tha theatre; tha artist psitly werks with his canvas laid apon the floor, or, where space allows, the painting is hang agsinst a wall
 and the artist works from a scaffold, wish tiers of boarding arranged so that he can reach to any part of the great canvas.

[^94]: 1 Thus destruetion of a letter by a servant, with a view of suppressIng inquiries into ber claracter, makes the sorrant guilqy of larceny in Englidh law.

[^95]: ${ }^{1}$ Among works in which the hypothesis of primitive monotheism ie anpported, the following may be mentioned:-Steaco, De Percnni Philosophia, 1540; Herbert, De Religione Gentilium, 1645; Gale, Court of the Gentiles, 1669-78; Cudworth, True Intellectual System, 1678 ; Bryent, Ancient Mythology, 1774-76; Creuzer, Symbolik u. Mythologic, 1819-21; De Boneld, Légistation Primitive, 1819; Lüken, Traditionen des Menschengeschlechls, 1858 ; Gladstone, Homer and the Homeric Age, 1860; Ebrard, Apologetik, pt. ii., 1875; Zökler, Lehre vom Urstand des Menschen, 1880; Cook, Orisins of Religion and Language, 1884 ; Rawlinson, Early Prevalence of Monotheistio Beliefs (No. 11 of Present Dar Tracts).

[^96]: ${ }^{1}$ The view opposed in the ebove paragraph is that maintained In the following works (as well as those mentioned in the previous note), -De Rougé, Études sur le Rituel Funéraire, 1560; Renonf, Mibbert Lechures, 1879 ; Brugsch, Religion u. Mythologie d. alten Aegypter, 1894; Legge, Religion of the Chiscse, 1880 ; Renan, Ifist. des Langues Sónitiques, also Considirations sur le Caractere Gen. des Peuples Semiliques, and Nourelles Considerations; Pesch, Der Cottesbegriff in den heidnischen Religionen des Alterthums, 1886. Among the many replies to Reasn, Max Mäller's ("Semitic Monotheism," in Chips, vol. i.) and Steinthal's (in Z. I.S. IF", i.) epecially merit to be mentioned.

[^97]: The best literature relating to the subject of the preceding paragraph is indicated in the lists of books giveu in connexion with the relevant eections in Tiele's Outlines of the History of Religion, and particularly in the Freach translation by M. Vernes. Hegel's Philosophy of Religion, Buusen'e Cod in History, Freeman Clarke's Ten Great Religions, the St Giles Lectures on the Faiths of the WVorld, still more the series of Sacred Books of the East, and of ancient texts published under the title of Records of the Past, and the volumes of the Rev. de l'Hist. des Religions, will be found useful to those wish. ing to make a survey of beathen thought regarding God so far as is approximated to the theistic idea. For the conceptions of the Divine entertained by non-civilized peoples, see especially Waitz's Anthroa pologie, and Réville's Religions des Non-Civiliste, who both aivo extensivg lists of literature.

[^98]: ${ }^{1}$ See Zeller，Die Entwielielung des Monotheismus Ici den Griechen （in Vorträge，vol．i．）；and Cocker，Christianity and Greek Philosophy， 1875；Elso，Meiners，\＃istoria Dnctrina de V＇ero Deo， 1780.
 ${ }^{2}$ See the O．T．Theologies of Oehler，Schultz，Kayser，Piepenbring， とc．；Ewald，Lehre der Bibel von Goll；Baudissed，Stud．zo Semit． Religionsgeschichte；Kuezcn，Hibbert Lecture；Duhm，Theotogie d． Propheten；W．Robertson Smith，Prophets of Israel，\＆c．．As to the umen＂Jahveh，＂an instructive summary and examination of views is given by Prof．Driver in his article＂Rccent Theories on the Origin end Frature of the Tetragrammaton，＂in Studia Bi\}?ica, Oxford, 1885.

[^99]: ${ }^{3}$ The New Testament representation of God is treated of in the Niero Testament Theologics of Schnuid，Reuss，©osterzee，and Weiss ；also in Wittichen，Die Idee Gottes， 1865.

[^100]: ${ }^{1}$ Baur. Ch. Lehre n. r. Dreieinigket, \&e., 1841-43; Mcier, Lehre v. d. Trinitat in hist. Enturicki, I\&4t.

 Roesler, Pkilosophia l'cteris Eccl. de Deo, 1;82; and the histories of Christian doctrine by Hagenbach, Neander, Shedd, Bonifas, Sheldon, Harnack, \&c.; Gangauf, Des h. Augustinus speculative Lehre von Gnt, 1894.

[^101]: ${ }^{1}$ See MoeanmbDanism, and authorities there mentioned; also Kuenen, Hibbert Lectures, lect. 1, with authors and woriss there indicated.

[^102]: For the history of mediæval theism may be consulted the histories If philosoply by Tennemann, Ritter, Erdmann, \&c.; the special bistories of mediæval philosophy by Stockl and Haureau, and of later scholasticism hy K. Werner; the histories of the Trinity and of Christian doctrine already mentioned; and a multitude of monographs, e.g., those of Christlieb, Huber, and Stöckl on Erigena; of Hasse, Remnast, Bouchitté on Anselm or his ontological argument; Delitzsch's Kritische Darstellung der Gotteslehre des Thomas Aquinas; Ritschi's "Gesch. Studien z. ch. Lehre von Gott," in Jahresb. f. dertsche Theol., x., referring chiefly to Aquinas and Scotus, \&c. Mediwval mysticism has found in Schmidt, Lasson, Preger, Jundt, admirable Listorians. On Eckhart there are good works by Martensen, Lasson, and others; see slso a paper by Prof. Pearson in Mind, No. sli. On mediraval prodestinarianism conenlt chapter in Mozley's Treatise on the Augustiniar Doctrine of Predestination. The keenest hostile celticism of medizval theism is that of Pasquale D'Ercole, 16 Teismo Filasqioco Christiano, 1884.

[^103]: - ${ }^{1}$ Schalirastani'в Geschichte der religiösen u. philosophischen Secten bei den Arabern, Germ. trans. by Gaarbrücker, 1850-51; Wustenfeld, Die Akademie der Araber u. ihre Lehrer, 1837; Schmolders, Essai sur les Écoles Philosophiques chez les Arabes, 1842; Munk, Mdanycs de Philosophie Juive et Arabe, 1859; Steiner, Dis Mutaziliten oder Freidenker in Islam, 1865; Ronan, Averroés et L'Averrotsme, 1852, \&c. On Eastern mysticism, see Tholuck, Sufsmus s. Thcosophia Persarum Pantheistica, 1821, and Dlithensammlung aus der morger. landischen Mystik, 1825; Cowell, "Persian Literature," in Oxford E'ssays for 1855 ; Palmer, Oriental 3/ysticism, 1867; Redhonse, The Afesnevi of Selalu-d-Din, 1881 sq.: Vaughan, in Hours with the Mystics, treats of the Oriental as well as Cbristian mystica For Persian mysticism in its latest forms, see De Gobinean, Religions et Philosophic dans l'Asie Centrale, 1866. On Algazel, seo Gosche, "Ueber Gbazzâlîs Leben u. Werke," in Abhand. (philol. u. hist.) d. K Alizd. d. Wiss. z. Berlin, 1858.
 ${ }^{2}$ Munk, Esquisse Mistorique de la Philosophie ches les Juifs, 1849; Zisler, Vorlesungen aber die judis*hen Philosopnen des Miltelatters,

[^104]: ${ }^{1}$ Gass, Gesch. d. Mrot. Dogm., i. ; Heppe, Dogm. d. deutsch. Protesvantismus im 16tenJahrh., i., Frank, Gesch. d. prot. Theol., i. ; Dorner, Hist. of Prot Th.. ii. ; and Maller, De Godsleer van Calvijn, 1883.

[^105]: ${ }^{3}$ Besides the works of Gass, Erank, and Dormer already mentioned see the histories of deism by Leland, Lechler, and Sayous; of rationalions by Stäudlin, Tholuck, Hagenbach, and Hurst ; Noack'y Freidenker, 3 vols., 1853-55; Farrar's Crit. Hist. of Free Thought, 1863; Hunt's Rel. Thought in England, 3 vols., 1870-73; Leslie Stephen's Engl. Thought in the Eighteenth Cent., 2 vals., 1883; Cairns's Unbolief in the Eighteenth Ccnt., 1881; Beard's Hib. Lect., 1883; and the 2d vol. of Gillett's God in Human Thought, 1874.

[^106]: ${ }^{3}$ Saissei, in the first part of his Modern Pantheism has romewhat elaborate studies on (1) the theism of Descartes, (2) God in the aystem of Malebraoche, (3) the paotheism of Spicoza, and (4) the theism of Leibnitz. Huber (1854) and Elveaich (1865) have written special treatises on the Cartesian proofs of the Divine existance. Among the most thorongh studies of Spinoza arm thoss of Camerar, Pollock, aud Martinean. Herder, Voigtländer, and others have nasintaived that he was a theist, not a pantheist. On tha Theodicere of Leibuitz there are three excellent papers by Prof. Torrey in the Andover Rev. for October, November, and December 1885. The best general history of philosophy is Kano Fischer's: the best history of Cartesianiam F. Bouillier o.

[^107]: ${ }^{1}$ Among recent disqaisitions is to the psychological origia of the religions consciousacss and the coaception of God may be specifed - Pletderer's in last ed. of his Religionsphilosophic; Biedermann'a in last ed. of his Dagmatix; W. Hermana's in his Die Feligion im Ferhäleniss zump Welterkennen und zur SithlichKeit, 1879; Kaftan's in his Das Wesen der ehr. Religion, 1881 ; Lipsius's in he Philosophic und Religion, 1885; and Rauwenhof's in his "Ontotaen van dex Godsulenst," Theol. Tijdsehr., Bisy 1885.
 ${ }^{2}$ Among works in which it is denied that the real nature of God can be knowo are-Kant's Kr. d.r. V.; Flchte's Kir. aller Offenbarug: Schlelermacher's Reden, Dialektit, and Olaubenslehre; Treodelenburg's Log. Uneersuchurger, IL §s xx.-xilv.; Hamilton's Lect. on Mel., and Discussions; Manael's Bampton Leet., of Lance noscibility of God and other Neo-Kannsis. Among work the In forite: C. Hodgof Sys. Th., 1.; M'Cosh's Int. of tho Mind, Phil. Series. dec.; H. B. Smith's Intr. to Ch. Th., and Fuith and Philosophy: Manrics's What is Revelation 9 ; Ynung's
 Procince of Reason; and Hartia's Phil. Bases of Theism. See also L. Rohert Ds la Certitude, \&c., 1880 ; Olle-Laprane, De la Certitude Mowale, 1880; G. Derepas Les Theorics de I'Inconnaissable, 1833; G. Msthesor, in Can the OId Faith Live toith the Nicu ! 1885; R. T. Smith, Mrois Krowledge of Man and of God, 1886 ; Schramm, Die Erkennbarkeil Ooltcs, 1876 ; sod Bertliog, Die Erkennbarkelf Qollec. 1885.

[^108]: Goblet datvella, Contemporary Ecolution of Religious Thought in England, America, and India, 1885.

 - Priaclpal Calrd, Progressivences of the Scimees. DD. 2; 28, Glnggow. 18 .s.

[^109]: 1 "The wooden will shan" elone remain unconquered to defend rou

[^110]: - Not more than a quarter of a mile wide in its nerrowest part.

[^111]: A confession, howerer, drawn up by him was spoken of: een Tisho, Biblicth.
 der Symbole, 2 d ed., p. 229 sq.

[^112]: 1 Roman Catholic writers vary greatly in their estimate of Theodoret's christology and of bis geveral orthodoxy. On the latest essay on this snbject, by Bertram (Theodoreti, Episcopi Cypensis, Doctrina Chrislo. fogica, Hildesheim, 1883), aee Theol. Lit.-Ztung., 1883, 563 so.

[^113]: 2 In one of the intervals of friendship with the emperor in 483

[^114]: 1 This collection contained the following books:-"Theodosii Tri. politas Sphsericorun libri iii., Euclidis Data, Optica, Cutoptricz, ae Phenomena; Theodosii Tripolita De IIabilationibus et Foctitus af Diebus libri ii.; Antolyci Pitanai De Sphara Mfota, et libri ii. De Ortu atque Occasu Stellarum Inerrantiam; Aristarchi Samii De Magnitudinibus ao Distantios Solis ac Lunss ; Hypsiclis Alerandrind "Avaфopikds sive De Ascersionibus ; Menelai Sphaericorlign libri iii" -Fabricius, Bibisiotheca Grsca, ed.. Harles, iv. . . 16.

[^115]: The best acconnt of the history of theological encyclopedla is that given by Rabiger In his Theologik oder Ensyelopadie der Theologie (1880), of which there Is an English translation, with notes which considerably increasc tha valuo of the work, by the rev. J. Macplserson (2 vols., 1884). The account in Zökiers Handouch der theol. TVissenschaften, 1. $87-111$ (1885), is also good. The fullest account of the history of altempts to classify tho scirnces is that of tba preseot writer in Pre:by. Rev. fur July 1885 and July 1856. The followlng may be epecifical as among the mnst nseful of thenlogical encyolopadias:-Schleicrmacher Kurze Darsteltuag des theol. Studiums, 1st ed., 1810, 2d ed., 1830; Staudenmaler Encyclopaulie der theol. Wissenscharten, isc., 1834: Hapenbachs Encyciopadus. Aethodologie der theol. Wissenpchaften, 10th ed, 1880 ; Crooks and Hurst's Encyclopsedia and Methodolony, on the Basis of Hagenbach, New lork, 18s4: Doede'a Encyclopedie der Christelije Thologie, 2d ed., 1883: Lances Grunditss der theol. Encyclopadia, 1877; Von Hofmann's Encyclopache der Theologie, Sive, Rothe"s Theologische Encyclopadic, 1880 ; Druminond's Introduction to the Siudy of Theology; and Cave"s Inf"odudion to Theology, 1886. See also the article of Willibald Grimm, "Zar thenl. Encyclopädie," in Ztschr. f. wissensch. Theol., 1882, 1. i an
 1885.

[^116]: ${ }^{1}$ Among the best general historiea of Christian doctrine are those of Neander, Gicseler, Hagenbac!1, Banr, Nitzach, Thomasius, Harnack, Hasg, Shedd, aod Sheldon. Thare is a mel itudinous literature relatiog to doctrine in particular periods aud :o particular doctrinea.
 ${ }_{3}$ Seriods Lumby's Bistory of the Creeds, 1873: Schaff's Crecds of Christerdom, 3 vols, 4 th ed, 1834 ; Tiner's Confessions of Christendom; and tho Symbolsas of Mouler, Kolluer, Guerleke, Oehler. Hofmann, \&c.
 Moller, Kollaer, Guericke, Oehler. Hofmanr, dc. psycholog,:-Beck's Uutitizes of Biblical Psychology (E.ng. Etr.); Delitzsch's psycholog,:-Beck's Outhinas of Biblical Psychology G.ng. It.); Dehitzsch's System of Biblical Psychology; Heard"a Tripartite Naturo of

[^117]: 1 The history of Chriatian ethica has beet mritten by Tittke, Christian Ethies, vol. h, hot mach better hy Gass, Gesch. dier chrisfl. Ethik, 2 vols., aud by Zlegler, Gesch. d. christ. Eth., 2 vols. Beatmana hes written two volumes of a Gesch, d, christh. Silce. Among well-knowo treatises on Christian efhica are thoso of De Wette, Schlelermacher, Hirscher, Harless, Rothe, Wottke, Sartorias, Martensen, Oettiogen, Lange, Foimson, Frank, and Dorner. Those of Wuttke, Sortorios (Dochrine of Zofy Lore), HarJesa, and slartensed have been iranslated inso (Doctrine of Holy Lnce), Harless, ana lattensen bave been franslated into are miserahly poor, in this department. Wardlaw's Christian Ethics puy ug mectioned, Jut mercir hecaiso 1t is Eagish.

[^118]: : Compter Rendus, rix., 184t, r. 1314.
 E. Abstract by Guillaumo in the Seazecs de la Soc. Frantaice da Thysique, 1886, p. 213.

 - Ayrton and P'erry, Phil. Mfag. [5], xzi. 1886, p. 325.
 - See also Krafts, Comples Rendus, yuv. 836.
 € Comples Realus, ?xix. 875 . See Nute by Regnsalt, ibid., 870.
 - Hertbelut Mécanique Chémique, i. 158.

 SXIII. - 37

[^119]:

 - 4. A. Hazcti, "Tlerinomerer Exmosule: Prof. Papers of Sional Sarvite, No.
 $\times \geqslant 41,1885$

[^120]: - Gester. Quart. Weather Report for 1579 (1882). Appendix 11; Wild, Miltheil. del naturforsch. Gesellsch in Bern, 1860, 108; Maritiott, Quarl. J. Roy. Mets Soc, 1879, v. 217 : Stow, ib., 1882, viil. 228; Gill, ib., 188\%, viil. 258; Mawley, ib,

 s Thic first uso of tho instrument is usually stated to have been by Arogo
 ond dnubilesa Inventeतt it (sce Coyages dans les Aipes, 1706, IW. P. 2671
 - Proc. K S E, 1584, xil $660 ; 1885$, xifi. 198: 1856, xili. 632.
 ? Caboine, Quart S. Roy Met Soc., 1881 , vII. io.
 Bazen, Ioc. Cil: Wild and Cantonl in heport of Vienna Mteteorologicul Con. felence, 1874 ; Symons, Proc. R. S., 1883, xxxr. 310 ; Omond, Proc. R. S. E.,
 $1866-87$,

[^121]: - Pan. Trans, 2, 1Bt2, p 800. Henry Csvendst's tegiter thermomet for on snother prilociple and a wuch loss pructucal iosrunner (- Proc. Ro. S., vus 106.
 - Trast R. B S., t620. 天 887, 440.

[^122]: © Quart. J. R. Mel. Soc., 1879. r. 142; 189, X. 45.

 - Quart. J. R. Art. No Mapera No. xlli. 1884, p. 34
 : Sor stosal Sertice prof the methods and work of tio commultee, nee Brit. Axe

[^123]:

 - Nature, viil. 195.
 to "Challengor" Reports, Narrative. 1884. 1. p. $8:$

[^124]: ${ }^{1}$ See W. Mannhardt, Antike Wald- und Feld-E゚ultc, p. 212 sq.

 - Fer the Iiterature on the subject, see Milchböfer, in Baumeieter's Denkenneler des classischen Alkerthums, i. p. 170.
 3 See Erläuternder Text to the Earten con Attika (Berlin, 1881), i. p. 37 sq.

[^125]: 4 Schol. on Aristoph., Thesmophoriazuse, 80 and 585 ; Diog. Laet., ix. 43 ; Hesychilue, e.v. тpinfepos (the reading here is uncertain) and $\alpha v o \delta o s ;$ Alciphron, iii. 39 ; Athenæus, $307 f$. Plutarch (Fit.

[^126]: 1 Xenophon (Hellen., vi, 3. 1 and 5) and. Diodorus (xv. 46) apeak of Theapiæ as if it had been destroyed and its inhabitants driven away before the battle of Leuctra; but, is the Thespian troops were present with the Thebans immediately before the battle (Pnus., ix. 13, 8), it would seem that only the walls, not the city itself, had been previously destroyed. See Grote. Hist. of Greece, ix. p. 379.

[^127]: ${ }^{2}$ According to Acts xvii. 14-15 and xviii. 5, Silas and Timothens had romeincd behind in Beraza, and first met Paul again in Corinth. But according to 1 Thess. iiti. 1-5 it nust be understood that Timoth ue was in Athens with Paul, and had been aent thence to Thessalonica.
 xxili. - 3^{8}

[^128]: ${ }^{1}$ Paulus der Apostel Jesw Christi, 1845, and Theologische Jahrtheher, 1855, p. 141-168, reprinted in 2d ed, of Paulus, il 841-860.
 ${ }^{2}$ De beide brieven aan de Thessalonicensen, Leyden, 1865.
 ${ }^{2}$ Eilaten also (Jahrob. f. prot. Theal., 18i7, p. 731 sq.) and Steck (Jahrb. f. prot. Thecl.. 1883. p. 509-524) dispate the genninenees of ths first epistle. presapposing the epuriousness of the second.

[^129]: ${ }^{1}$ His uncle Melchisedech had similar tastes, and published a wellknown collection of Voyages (tol., Paris, 1663, sq.).
 ${ }^{2}$ It was at this time that ha met Chardin near Persepelie, but that

[^130]: ${ }^{1}$ See the aketch in Syriac of the history of the church of Malahar printed and translated by Land, Anced. Syr., i. 24 sq. It was aant to Schaaf at. Laydan in 1720 hy Mar Gabriel, the laat Neatorian hisbop iu Malabar (ea日 Germann, p. 642).

[^131]: ${ }^{1}$ Bysshe Vanolis: "Byabhe," as the commonly used Christian name of Shelley, Thomson's favourite writer ; and "Vanolis," an anagram - Noralis, the psoudonym of F vod Hardenbera ($q . v_{0}$).

[^132]: ${ }^{1}$ The hypothesis of gradnal and complete modernization is also opposed to the fact that the other romances used by Cairene storytellers (such as those of 'Antar and of Saif) retain their original local colour through all variations of language and etyle.
 ${ }^{2}$ On this famous book, tho Syriac Sindibdr, the Greek Syntipas, and the Seven Sages of the Luropean West, bee Smbia Literatorb (vol. xxii. p. 850) and SPain (rol. xxii. p. 354).

 3 Do Sacy and Lane euppose that the original title of the Arabic translation of the Ifezar Afsine was The Thousand Nights. But nost MSS. of Mas údi a'ready have The Thousand and One Nights, which is also the name given by Makrizi. Both ciphers perbaps mean only "a very great number," and Fleischer (De Glossis Habichlianis, p. 4) has snowr that 1001 is certainly used in this seace.

[^133]: ${ }^{1}$ Gildemeistcr, De Rebus Indicis, p. 89 sq.
 ${ }^{3}$ Quatremére, Sultans Mamloucs, ii. 2, p. 17% sq.

 - Lane, i. 342, arbitrarily writes "Montasir" for " Mostansir."

 7 See also Elind. Recriero, July 1886, p. 191 sg.
 ${ }^{4}$ See De Goeja in Gids, 1870, ii. pp. 397-411.

[^134]: 1 "Dispecta est et Thule," Tac., Agric., c. 10.

[^135]: 1 The Tharingian states are Saxe-Weimar-Eisenach, Saxc-CoburgGotha, Saxe-Meiningen, Saxe-Altenburg, Schwarzbarg-Rudolstadt, Schwarzburg-Sondershausen, and the two principalities of Reuss, sil of which are separately described. Besides these, tha term Thanngia also, of coursa, includes the various "exclaves" of Prussis, Sarony, Bararia, and Bobemia which lie embedded among toem.

[^136]: ${ }^{1}$ The name Tibet is not, as usually allezed, unknown in the country

[^137]: 1 Tibetans call rivers either tsanpo $=$ river or $c \wedge u=$ water, the former being chiefy employed in eouthern Tibet, as for the great Yaro-tsanpo (Upper river) and its principal tributariea. Lakes are salled cho or tso. A mountain pass is called $l d$.

[^138]: The term gyun-drun (svas!), also applied to his followers, nicons the cross cramponnee, the suastika, similar to that of the Buddhists, from which it dificta oniy in dircetion, the Bonpo manner of circumambulation rmand a shrico or oeity being from right to left, while the Buddhist manncr is from left to right.

[^139]: * Sociéts do Plysique, September 1881, or Prec. Roy. Soc of Edis.burgh, 1881-82, p. 326.
 ${ }^{3}$ Founited on Airy's "Thiles and Waves," in Ev: y. Melrop.

[^140]: s See a series of papers bearing ou this kind of ware by Sir W.

[^141]: ${ }^{1}$ Airy, "Tides and Waves."
 ${ }^{3}$ Airy, op. cü., $\$ 8$ 572-573.

[^142]: ${ }^{1}$ Tounded on Laplace, Mécanique Céleste, bk. xiii. chap. i

[^143]: 1 Thomson calls this a dissipation of accuracy. It may be illostrated thes. Consider the equation $x^{2}-3 x+2=0$, which may be written elther $x=3+\frac{1}{3} x^{2}$ or $x=3-2 / x$. Now let $x_{n+1}=3+3 x^{2}{ }_{n}$, end suppose we etart with sny valne x_{0}, lese than unity, and compute $x_{1}, x_{2}, \ldots x_{n}$. Then, starting with x_{n} in the equation $x_{n-1}=3-2 / x_{n}$, if we work back werds, we ought to come to the original velue x_{0} In fact, however, we chsil anly do so if there io infinite accuracy in sll the numerical values. For, start with $x_{0}=1$, then $x_{1}=75, x_{2}=8542, x_{3}=-9029$, $x_{4}=9527, x_{5}=9692$; and the values go on approximating to 1 , which is \& root of the eqnstion. Next start hackwerds with $x_{5}=-97$, snd we 太nd $x_{4}=9938, x_{3}={ }^{\prime} 868$, $x_{3}=696, x_{1}=\cdot 127, x_{0}=-12 \cdot 75, x_{-1}=3 \cdot 157, x_{-2}=2 \cdot 367, x_{-3}=2 \cdot 155, x_{-4}=2 \cdot 072$; and the values go on spproximatiog to 2, the other root of the equation.

[^144]: ${ }^{1}$ Fused with $2 \boldsymbol{\gamma}-\sigma+\bar{w}$.
 $2 m$ is the ratio of the moon's mean motion to the sun's.
 3 In these three cutries the lower number fives the salno when the coefficients of the evection and variation have thear full salues as derived from lunar theory.
 1 Indicated by 2 MS аз a compound tide (sec below, \& 24).
 s A fusion of $\gamma-\sigma \pm$, of w hich the latter is the dide named.
 e The upper number is the meas value of the cocflicicut of the tide $\gamma-\sigma-\bar{\infty}$: the bwer applics to the tide M_{1}, compounded from the tides $\gamma-\sigma-\bar{\omega}$ and $\gamma-\sigma \div \boldsymbol{\sigma}$.
 7 The lower number gives the value when the coefficients in the evection have their full value as derived from lunar theory.
 8 The menn value of thas cocfficient is $\mathfrak{h}\left(1+1 c^{2}\right)\left(1-\frac{1}{3} \sin ^{2} i\right)\left(1-\frac{1}{2} \sin ^{2} \omega\right)=\cdot 25$, and the variable part is approximately $\left(1+1^{i}\right) \sin i \cos i \sin \omega \cos \omega \cos N^{\circ}=$ - $0325 \cos$. ${ }^{\circ}$.

 9 The lower of these two numbers gives the value when the cormelents in the evection and variation have their full values as derived from luar theory.
 to indicated by MSS as a compouod tide.

[^145]: 1 The tide has been referred by Lubbock and others to an earlier tranait,
 and not to the one 1 minedistely preceding the time under eonsideration. In this case we cannot admit wath great aceuracy that $d a / d t=\sigma$, aince the interval may be 90 or 40 hours.

[^146]: 1 Eee Hett, Phenomine des Maries, Pe 181, Paris, 1885.
 Eee Prefaces to Indian Oncial Tide-Tables for 1857.

 - Founded on Whewell'e srticlo "Tides", In Adinirally Sc. Manval (ed. 1841), and on Alry's "Tldeo and Waves, "In Ency. Netrop.
 - Tares with a period of crom Ave to twenty minutee are very common, and
 Forel, Bullatin Soc. ard, Ser Nal,, $1879,13 i 3,1877$, and 1879 ; Ant. Chime el Physizue, vol.
 isse ; aloo Alry, 1 On the Tides of Malta," Phil. Trans., 1578 , part h,
 - For a numericsl treatment ses Directiens for Reducing Tidal Cosernasiores. by Cammander Burdwood, R. il., Loadoa, $18 \mathrm{i}^{\circ}$.

[^147]: 1 An example of this kind of curve for the high.water heights for Bombay, drawo automatically by a ticle-gauze, would be alown by joining all tha high waters together (as in fl\%. 8) hy a contituous curve; ard a aimilar curva may be constructed for the low waters. In this casc, hovever, the hours of the clock are rcpeated twice over, ao that the morning aod evening tides occur in different halves of the figure, and the hours ara not houra of tha moon's transit, but the actual times of high water. It is obvious that the separation of the inorning and eveoing tides prevents the occurrence of the adizages referred to.

[^148]: III, 1863. p. 553.

[^149]: 1 Thomson and Tait, Nat. Phil., vol. 1. pt. it., 1883, §8478q.

[^150]: 2 Darwin, "On 19-yearly Tide at Karach," in Brit. Assoc. Report, 1836.
 3. H. Darwis, Phil. Trans., pt. 1., 1882, p. 187, with correction, pioc. Ros Soc., 1885.

 4 Id., Brit. Assoc. Rep, 1882, or Phil. Mrag., 1882.
 ${ }^{\circ}$ D'Abbadie, Annales Soc. Sc. do Bruxelles, 188I, or quetation Dy Darwlo, loc. cit.

 6 G. H. Darwir, Phil. Trans., pt. 1., 1879, p. I; вee also Lamb, On tha

[^151]: ${ }^{2}$ This way of presenting the action of tidal friction fa due to Professor Stokes.

[^152]: See also G. H. Darmin' Address to Secf. A, Bric. Assoc. mecting, 1886.
 "It appears not unususl for physical astronomers to nse an abbreviated phrascology, for specitying accelerations, which necds explanation. Thns, Whes they opeak of the aecular accelcration being, e.f., " 12 " is 6 in a ceotury,' they mean by "scceleration" what is more properly "tha effect of the sccelera. tion on the moon's meav logifude. The correct unsbbreviated'statement is the acceleration is $25^{\prime \prime} 12$ per ccatury per ccatury:" Thas Hassen'a result is that in each century the mean motion of the moon is augmented ly an angular velocity of $25^{\circ \circ} 12$ per centary, wo that at the end of a ceatury the mean longitude is greater by $\frac{1}{3}$ of $25^{\prime \prime} 12$ then it would have been had the moos"a mean motion remained the same as it pas at the beginving of the ceatury. Consideriog how shsurd it would be to speak of a falling body as expericucing an scceleration of 16 feet in a sccund, or of 64 feet in two sceonds, and how falee and inconvenient it is to speaic of a watch being 20 seconds fast when it is 20 neconds in advance of where it ought to be, we venture to guggust that, to attain clegraess and correctass without sacrifice of brevity, ad vance be subtituted for 'scceleration" in the ordinary astronomical pibraseobogy."

 Beworches on the Moition of the Moon, Washiagton, 18%.

[^153]: ${ }^{3}$. Notes of a Naturalist in South America, London, 1887, p. 245.

[^154]: these names. The modern Arabic name is Dijls (Aramaic-Deklath,

[^155]: ${ }^{1}$ In Eerpt and Assyria temples and palaces were mostly roofed with stone, while inferior buildings had fat roofs covered with beaten clay. ${ }^{2}$ See Cockerell, Templis of Egina and Bassa, London, 1560.

[^156]: 1 Marbla tiles are said to hava been first made by Byzes of Naxos ebout 620 в.о. ; see Pansanias, v. 10, 2

[^157]: ${ }^{2}$ The dome of tbe Pantheon was covered with tiles or plates of bronze thickly gilt, as were also the roofs of the forum of Trajan.
 ${ }^{2}$ Bronza tiles for amall buildings auch as thia were usnslly of a pointed ovsl form, comething like the feathers of a bird. This icind of tiling is called pavonaceum by Pliny, H.N., xxxvi. 22

 - Part of the bronze tiles bad been atripped from the vemple or Jnpiter by the Vsndsis in 455 ; see Procopins, Bell. Van, i, 5.
 *The gilt domes of Moscow are examples of this use of coppow.

[^158]: ${ }^{1}$ For the enamelled wall tiles of ancient $\mathrm{E}_{\mathrm{c}} \mathrm{pot}$, soe Portery, rol six. P. 603.

 2 The South Kensington Museum, London, cuntains many fine exanples, is well as of the later sorts, like those showa in fig. L
 ${ }^{3}$ See Coste, 3 foruments de la Perse, Paris, 1867.

[^159]: The method of manufscture employed by Noslem rsces fer tiles is the same as that used for their pottery; bee roL xix. n. 620, also Mural Decoratson, rol. xvii pp. 35-36.

 * For the decorative use of tiles, see Julien Foy, La Céramique dee Constructions, Paris, 1033.

[^160]: ${ }^{1}$ See Vanzollnl, Fabbriche di Maioliche, Pesaro, 1879, i1. p. 229 sq. ;

[^161]: ${ }^{1}$ "Recherches sur 1'Astronomio des Anciens: I. Sur le cbronomètro celeste d'Bipparqne," in Copernicus: An International Journal of Ao tronomy, i p. 25.

[^162]: ${ }_{2}$ For astronomical purposes the ancients made use of maan-timo hours- $\dot{\omega}$ pat lonueptral, horss equinoctiales-into which thoy trasslated all indicstions expressed in civil iours of varying length-ippas kaspukal, sores lentporales. Ptolemy eounts the mean day from nood.
 ${ }^{2}$ Caussio, Le livre de la grande tuble Hakemitc, Paris, 1801, p. 100.
 8 See his Enistols astronomicse, p. 73.

 - See Navigatios, vol zvii. pp. 251 and 253.

[^163]: ${ }^{1}$ The probable error of a clock corrcction found in this way from ono atar with the Dunsink transit circle was $\pm 0^{8 .} 052$.

[^164]: ${ }^{2}$ This was probably first done in the first century by Marinus of Tyre.
 ${ }^{3}$ This proposal was chiefly dictated by a wish to facilitata the international telegraph and railway traffic. In the United States, where the large extent of the country in longitude makes it impossible to use the time of one meridian, four standard meridians were adopted in 1883 , viz., $75^{\circ}, 90^{\circ}, 105^{\circ}, 120^{\circ}$ west of Greenwich, so that clocks showing "Eastern, Central, Mountain, or Pacific time" are exactly five, six, seven, or eight hours slower than a Greenwich mean-time clock.

[^165]: 1 Fon lustsuce, Greenwich and Pars io 1925 (Fhk. Travis, 10is). \rightarrow The rēsult, re $21=0$, is only azout $0 \cdot 0$ too great.
 As a creat many of the chronometoss nced in 188 s meremedo by Deat and er? of superior excelicuce, a anali= jushlar ซoe coozldered ouilicion".
 a Gould, Irenset'antic Lonotiade, p. 5, Waahlogtou, 1902.

[^166]: ${ }^{1}$ Albrecht, Bestimmung von Längendiffrenzen mit Ïülfe des electrischen Telegraphen, p. 80, Leipsic, 1869, 4 to.
 2 Maskelyne had in 1795 noticed that one of his assistants observed transits more than half a aecond later than himself, but this was supposed to arise frow some wrong method of obserying adopted by the assiatant, and the matter was not further looked into.

[^167]: ${ }^{2}$ M. Alix also has from an independent investimation of the osteology and myology of Nothura major come to virtually the same conclusion (Journ. de Zoologie, iti. pp. 169 and 252, pls. viii.-xi.).

[^168]: ${ }^{1}$ A Second Address to the Inhabitants, \&c., with replies to some of the critics of that book, bears the same date, 1730 , though some of the works it refers to appeared in 1731.

[^169]: ${ }^{1}$ On this custom sco Journals of James Brooke of Sarawak, iil. P. 65 sq.; H. Low, Saravak, p. 175 sq. ; 1'erelaer, Ethnogr, Beschrijuing der Dojaks, p. 32 sq. ; Carl Bock, Ilead Hunlers of Rorneo, p. 222 घ. Falkner, Description of Palagonia, p. 117 ; Trans. Elhnolog. Sac. Loul., Dew series, vii. p. 323 ; llolmberg, "Eisnogr. Skuzzen," in Acla Soc. Scient Fennices, iv. p. 400 sq.

[^170]: 1 The marks of the wooden wall linings are specially clear in the little bath-room.

 2 The genuineness of thls line has been questioned, but apparently withont much reason.
 ${ }^{3}$ In modern Italian castello meane a " village " as well as a "castle."

 - In 1869 he became Konstantin von Tischendorf, baving been raised to s place in the hereditary nobility of Russia.

[^171]: - See his Reise in den Orient, Leipsic, 1'845-46.
 - The MSS. brought to Europe on the fist two jonrneys are catslogued in the Anecdota Sacra et Profana (Leipsic, 1855, enlarged 1861). See also the Mfonumenta Sacra Inedita (Leipsic, 1846), and Jow Collectio of the same (1855-69). The third volume of the Nerct Call gives the results of his last Eastern journey.

 7 The prolegornena remained unfinished at his death, and are being supplied by C. R. Gregory.

[^172]: ${ }^{1}$ Cp. Dont. xxvi. with 1 Sarn. i. 21 (Sept.), and Jerome on Ezek. i us and ace Wellhausen, Prolegomera, p. 94 (Eng. tr., p. 92 sq.).
 ${ }^{2}$ In Denteronomy, accordingly, the first-fruits (bikürim) are not mentiongd ; the tithe takes their place. The word translated "firstfruita" in Deut. (reshith) is a emall gift to the prie日ts, a mere basketfal (xviii. 4, xxvi. 2 sq.).
 ${ }^{3}$ For instances see Spencer, De Legibus Hebreorum, lib. iii., cap. 10, §1. Among the Semites in particnlar note the tithe paid by the Carthaginians to the Tyrian Melkarth (Diod., xx. 14), and the tithe of frankiacense paid in Arabia to the god Sabis (Pliny, H.N., rii. 32 ; and comp. W. R. Smith, Prophels of Ispael, 0.382 sq.). A tithe of cottle appears in Lydia (Nic. Damasc. . fr. 21).

[^173]: ${ }_{2}$ See Dante, Par. xii. 93 " "decimas qua aunt patiperum Dei
 Pess. xxv, 12. S Bk. iii. 30. 4 . 2trav. Comm., bk. 111. 7.
 7 The grant said to here been mede by T. ${ }^{\text {C }}$. vill. s. 2.
 general payment of tithes in Encland le by Etheiwulf in 855 , to which the general payment of tithes in England hes heen commonly traced, appeare not to rest on satiafactory evldence; 日ee Hollam, Middls Ages, Supplemental oteg, p. 180.

 - See Rev. Morria Fuller in National Revtew, November 1886.

[^174]: 2 Inst. 841.
 ${ }^{10}$ By the Settled Land Act, 1882, the tithe commiesionere hava, with otber dodies, been merged in tbe land commiseloners conatituted by tha Aot

[^175]: ${ }^{1}$ See, in addition to the authorities already cited, Monteequiou, Esprit des Lois, bk. xxxi. c. 12 ; Prideanx, On Tithes; Eagle, On Tithes; Shelford, On the Tithe Commutation Acts; Phillimore, Ecclesiastical Law, vol. ii., 1483 ; Stephen, Comm., vol. il. bk. iv. pt. ii. ch. iii.
 , Soe Soldon, History of Tithes, c. vii. 6. 9 ; G. J. Bell, Principles, §§ 837, 1147; W. Bell, Laso Dict. and Digest, "Teinds."

[^176]: s Pergens fond of watehing the habits of birds masy with little

[^177]: ${ }^{2}$ Dion., L. 16, aod Plin., H. N., xvi 87

 - Hor., Od., i 18,2 : Or., Fash, v. 74 : Virg., Enn, ril 670.

[^178]: s Seo App., Bell. Civ., v. 24; sod Suct., Aug., 72.

[^179]: * See the argameats of Nöldeke, Monatsb. Berl. Ak., 1879, p. 45 s\%. This paper also coatsios the best discussion of the relation of the various texts of the book.
 a Nöldeke shows that the same error in a less gross form appears io both texts in chap. ix. The further erroneons statement of the longer text that Echataus lies io a plaia occurs also in Diod, ii. 13, 6, in a passage dependeat on Ctesias, from whom the addition may have been taken.
 ${ }^{2}$ Very similar staterueats as to the medical virtues of the crocodile (aquatic or terrestrial) occur in Greek and Latiu writers.

[^180]: - The story of Nadab and Achiacharus. The names are nncertaid, and one teant suhstitutes Anau (Haman) for Nadab. But the allosio is not to the book of Esther.

 5 Compare what is said under Thousand and Ons Niohts (p. 312)
 ss to the probable influence of an lraaiaa legend ea the book of Esthers

[^181]: 1 In Forcellini"s Lexicon (ed. De Vit, 18,5) we find "Todus genua parvissimse avis tithas habeus perexiguas." Ducange in his Giogerrium quotes from Festus, an ancient grammarian, "Toda est svis qua non habet ossa in inliis; quaro semper est in motu, unde Tolias (al. Tocinus) dicitur alle qui relociter tociet et movetur ad modum todre, et todere, moveri et tremere ad modum toda." The evidecce tiat such a ouhstantive as Toclus or Toda existed seems to rest ca the adjectival derivative found in a fragnent of a lost play (Syrus) by Plautus, citcd by this same Festus. It stands "cum extritis [ext. ris] talis, cum todillis [todinis] cruscu]is"; but tha passage is he 1.1 ry scholars ts bo corrupt Among Daturalists Gesmer in 1555 Eave currency (Hist. Animalıum, iii. p. il9) to the word as a substantuve, and it is found in Levins's Maripulus Vocahnlorum of 1570 (at?, Wheatley, 1867, col. 225) as the equivaleot of the Einglish "Titm u*." Ducango allowe the existence of tho adjective tedinus. Sterl - us surgests that todi comes from rytioi, but his view is nct sicetled. Tho verb todere uay perhaps be Englished to "toddle"

[^182]: ${ }^{1}$ This babit aad their greea colour has given them the Freach name of Perroquet or Todier de terre, by which they bave beea distinguished from other species wrongly assigned to the geaus by some systematists; sad, if wo may believe certain French travellers, they must in former days have iubabited some of the Lesser Aatilles; but that is hardly prohable.

[^183]: ${ }^{1}$ The first edition, London, 1696, was anonymous; the second, puhlished the same year, bore on the title-page his name, and received p preface and some slight alterations ; and the third appeared in 2702 with an appended Apology for MT Toland

[^184]: 1 Sketches of N. W. Mongolia. St Petersburg, 1883 (Russiau).
 "Kropotkiue, "Orographical Sketch of the Districts of Miausiusk and Krasnoyarsk," in Men. Russ. Geogr. Soc., vol, v., 1875.

[^185]: ${ }^{8}$ Prof. Mushketoff in Picturesque Russia, vol, xi,
 -See Potanin, Sketches of N. W. Mongolia, vol. iii. pp. 6, 9 sq..

[^186]: ${ }^{2}$ Son of the Venatian doge Pietro Orseolo L.

[^187]: ${ }^{1}$ See Middleton in Archsologia, vol. xlviii. p. 398.
 ${ }^{2}$ Sinilar marble slabs, not made to muve, still exist in the apse windows of S. Mininto, mear Florence, and once existed in the basilica of S. Lorenzo fuori le Mura, Rome.
 ${ }^{8}$ The cathedral of Parenzo, in Istris, a work of the 6ith centnry, much resembles the cathedral of Torcello (see vol. iiii. p. 418, fig. 17). Similar plans are also to be seen in many of the early churches of Syris (see Do Vaginé, Syrie Centrale. Parisa 1865) as well as in the Coptic clurches of Egyp)

[^188]: But even in these countries, whatever the law was, torture certainly - xiated in fact
 ${ }^{2}$ Hallam, Middle Ayes, vol. i. 1. 2he

[^189]: ${ }^{1}$ Pro Sulla, c. 23.

 - Dig., xiriii. 18, 23.
 ${ }^{3}$ Espr. dles Lois, bk, vi.c.' 17.
 - Ossrrcueioni sulla Tortua.
 - Jforln, vol. vii. p. 525.

[^190]: ${ }^{1}$ Cod., ix. 8, 4, $\quad{ }^{2}$ Cod., ix. 18, 7.
 ${ }^{6}$ Cod., i. 3, 8.

[^191]: Gaius, i. 13.
 The evidence on which the accused might be tortured was ex. presserl in Foman law by the termis argumentum and indicium. Tha latter term, as will be seen, afterwards became one of the most important in the law of torture, but the analysis of indicium is later than Roman law. Indiciun was not quite the same thing as semiplenr probatio, thongh tho terms appear to be occasionally user as synouynis. Indiciun was rather the foundation or cause of p robatin, whether plena or semiplenc. An indicinth ar a concurrence of indicia might, according to circumstances, constitute a plena or semiplera probalio. The difference between the worls may be illustrated by a passage from Justin, "An cujus rei probationem immittit iodices," xxxii. 2.
 ${ }_{6}$ Dig., xlix. 1, 15.
 ${ }^{6}$ Dig., xxii. 5, 21, 2.
 10 Cod., iii. 12, 10.
 ${ }^{12}$ Cocl., ix. 42, 3.
 14 See, for inetance. Livy, vi. 26.

 7 Cod., vii, 62, 12.

 - Cort., iii. 12. 6.
 ${ }^{11}$ Con., ix. 47, 16.
 ${ }^{13}$ Cor., ix. 8, 3.
 ${ }^{15}$ Cod., i. 4, 23 ; ix. 5.

[^192]: ${ }^{1}$ An edition was published at Rome in 1558 , and a compendium at Lisbon in 1762, and by Marchens at Montpellier in 1821.

 2 The only edition which the writer has seen is dated Genoa and Perugia, 1653.
 ${ }^{3}$ Motley, Dutch Renublic, vol. i. p. 528.
 1d., p. 329.
 E Among others were the gradual porring of water drop by drop on a particular spot of the body, the tomento de toca, or pouring of water into a gauze bag in the throat, which gradually forced the gauze into the stomach, and the pendola, or swinging pendulum, so graphically described in ode of Edgar Poe's tales.

 7 Ordonnances des Rois, vol. i. p. 346.
 a The bistory of Dellon'e narrative of his experieoces in the prison of the Inquisition is remarkable. It was translated into English in 1688 by the Rev. P. Wharton, a claplain of Archbishop Sancroft, but was refused a licence, as being coutrary to the king's religion, and the publisher was imprisoned.

[^193]: B Theol. Mor., bk. ix. § 202.
 10 § 274.
 ${ }^{11} 2$ Inst., $48 b$.
 ${ }^{12} 3$ Slate Trials, 371 . ${ }^{13}$ De Laudibus Legun Anglix, c. 22. ${ }^{14}$ Commonwealth of England, bk. ii. c. 27 . It is curious that Sir T. Smith, with all his batred of torture, was directed by a warrant under the queen's seal alone (not through the council) to torture the duke of Norfolk's servants in 1571. In a letter to Lord Burghley be pleaded for exemption from so thankless a task.
 ${ }^{15} 3$ Irst., 35. Nevertheless, in the trial of Lords Essex and Southampton, Coke is foand extolling the queen's mercy for not racking or torturing the accused, 1 State Trials, 1338.
 ${ }^{16}$ Jardine, Reading on the Use of Torture in the Crininal Law of England (1837), p. 52.
 ${ }^{17}$ Pike, Hist. of Crime in England, vol. 1. p. 427.

[^194]: ${ }^{2}$ Rymer, Focdera, vol. iii. 22S, 232.

 - Hallam, Middle Ages. vol. iii. p. 232.
 ${ }^{5}$ Pike, vol. i. p. 481. \& 3 Insto, 34.
 ${ }^{5}$ This is the date of the latest warrant ju Mr' Jardine's work.
 ${ }^{6}$ It is to be noticed, as Mr Jardine observes, that all these are cases of an ordinary nature, and afford no ground for the assertions nade.by Strutt and Bishop Burnet that torture was used to hereties as heretics.
 ${ }^{7}$ Const. Hish, vol. i. p. 201 :
 8 Hist. of England, vol. viii., appendix, note v.
 - These two were exactly opposite in principle. The rack stretched the limbs of the sufferer; the scavenger's daughter compressed him Into a ball.
 .10 Fifty-tive of these will be fonud in the appenax to. Mr Jardine's. work. An ordinary robber of plate was threatened with torture in 1567.-Froude, Hist. of England, vol. viii. p. 386.
 ${ }_{11}$ It is not cestain whether he was racked, but prohably ho was, in accordance with the king's letter:-" If he will not otherwise confess, the gentlest tortures are to be first used to him, and so on, step by step, to the most severe, and so God speed the good work."
 ${ }^{12}$ Dalrymple, Memoirs and Letters of James I., p. 58 ; Macaulay's Lssay on the Works of Bacon.
 ${ }^{13}$ Lord Somers's Tracts, vol. i. p. 189. ${ }^{14}$ Table Talh, "Trial",
 ${ }^{25}$ Stephen, Mist. of the Criminal Lave, vol, i. p. 297.

[^195]: ${ }^{24}$ Stephen, vol. i. p. 300 ; Keljng, Reports, p. 27.
 ${ }_{17}$ The superstition was that any one drawing a witch's Dlood was free from her power. This is alluded to in Henry V'I, pt. i. act i. sc. 5 ; "Blood will I draw on thee; thou art a witth." ${ }^{18} 104 b$.
 ${ }^{19} 44$ Vict. c. 9, § t.
 ${ }^{20}$ Register of the" Privy Gouncil, vol., ${ }^{-1.12}$. 525:

 23 c. 333 .

[^196]: Tha thambscrew with which Carstares had beea tortured was afterwards oresented to him as a remembrance by the Privy Conacil.
 ${ }^{2}$ Persons subjecte. to more than usual torture from the boot were satd to be extremely boored."
 3 This seems 10 liare beea used In one case in Englaad. Lecky, Rationalism In Eunpe. vol. 1. p. 122.
 1 Ilallarn, Consf. Mist., vol. III. 13. 436. See Barnet, Hist. of Own Time, vol. I. p. 583 , \&nd Scothixd, vel. xxl. p. 516.
 ${ }^{5}$ Froude, Hish. of England, vol. vili. p. $386 . \quad$ Ibid. vol. xi. p. 263
 7 Jartine p. 29. Cal. State Papers (Irish aeries, 1615-1625), p. 78

 - Jardine, p. 54.

 10 In the picquet the sufforer was sopported oaly ca the great toe (which rested on a sharp stake), and by a rope attached to ove arm.
 1130 State Trials. 449.
 19 See the Report of the Proceediars, vol. 1., and Macanlay's Essay on Warren Hastings.

 13 Stephea, Indian Evidence Aet, p. 126.
 sp ss $327-331$ of Code: \$\$ $25-27$ of Act
 to Bouvier, Law Dict., 8. \%. "Peine Forte et Dare."
 Ameadments. Art. लil.
 17 Revised Stat . 86347

[^197]: 18 Practica Criminalis que Acero'da nuncupatur, Venlce. 1532. 19 Praxis el Theorica Crıminalis, bk. ii. 1it. จ. quest. 36-51, Frankfort, 1622.
 Practica Criminalis Finalis, Lyons, 163%

[^198]: ${ }^{1}$ Fcr instance, Paris do Puteo illustrates the extra-legal crualtiea sometines practised by asserting that he asw a judga aeiza an accused by tbe hair of the head and dash his head against a plliar is orler to extort a confession.
 ${ }^{3}$ Storia dell : Colonna Infame.

[^199]: ${ }^{18}$ Charles New, Lifc, Iraralerinys, d.c., the Eratern Africut.]. 122.

 ${ }^{20}$ Boscens, in Alfred Rohinsou's Life in 'inlufirult, 1'. 291 sg; Bancroft, Nrafiec Races of the Pacific Slatca iii. 1. 168.
 ${ }^{21}$ Brinton, The Lenayc un,l their S.cqenels, 1. 39; Morgan, I wr. '̛̈x., p. 171; Heckevelder, P. 247.
 ${ }^{22}$ Sea Λ cad., 27 th fept. 1884, 1. 293.
 ${ }^{23}$ Du Chaillu, Equit. Afr., 1. 309 . ${ }^{24}$ Thirl Rcp, 225.
 ${ }^{25}$ IVich., 231. ${ }^{26}$ Janies, Expal. th the Rucky Marentains, it. 1. 50.
 ${ }_{2}$ Plutarch, De Supersf., 10 ; Yeldea, Je Jis Syris, 1. 269 aq.,
 Leipsic, 1668. ${ }^{24}$ Turner, Simme, p. 17 sq . जौ Jicl., 11. 50.
 ${ }^{30}$ Turner, Sctn.ort, p. 31 sq. 31 f. .l. I., גiii, 1. 192.
 ${ }^{32}$ T. L. Mitchell, Three Expectitions into the frien un off firtorn Aus'ralis, ii. p. 341.

[^200]: ${ }^{1}$ Revue a' Ethnographie, iii. p. 396°.
 3 Varce in Prisciae, x. 32, vel. i. p. 524, ed. Keil. For the eaake descent of the clse, eee Strabo, xiti. 1, 14; Elian, V. A., xii. 39.
 ${ }_{8}$ Varro, loc. cit.; Pliay, N. II, vii. § I4. Pliny has got it wroog end 00 . He asys that if the ana*es did not leave the children tbey Nere bastards. We maj eafely correct his statemat hy Varra's.

 4 Revue d' Ethnographie, tii. p. 397.

 - Liviagsteme, South Africa, p. 255. © Strabe, xill. 1, 14.

 7 Jemes, Expectition to the Rocky Hominlains, i. p. 247.
 ${ }^{8}$ Revue d"Ethnographie, iii. p. 396.

 - Pliay, N. H., «xvili. 30. 1 J J. A. T., xili. 195 口, xvi. $46 . ~_{\text {. }}$
 ${ }^{1}$ Turner, Sumoa, 21, 24, $80 . \quad 13$ 1bid., 25 sq.
 is Third Report, p. 238 s\%. The idea perbaps it that the birds cat in the persons of ther claosmeo, and girs tangible evidence that they lave eateu their till.

[^201]: ${ }^{1}$ Krauss, Sitte und Banch der Siadsloven, p. 541 sq.
 2 Raflles, Hist. of Java, i. 328. Ou rubbing with ashos as a religious ceremony, of. Spencer, Le Legibus Webraorum Ritualibus, vol. ii. diss, iii, lils, iii. cap. 1.
 ${ }^{8}$ Original-.1fittheil. ans dei ethnulog. Abthei'. der Könlgl. Museen zı Berlin, i. p. 156. Suidas, s. o. airis.
 ${ }^{5}$ Servius ou Virgil, AKn., iv. 374; Festus, s.v. In pelle.
 ${ }^{6}$ Pliuy, Nrt. Nist., xxviii. 112.
 ${ }^{1}$ Dalton, Etha, of Cengal, 194 (Muvdas), 319 (Kuruis). Anong the Mnudas, botli bride aud bridegroom ara sometimes married to mango trees. For Kurnii tutems, see As. Quart. Reo., July 1886, p. 77. ${ }^{\text {a }}$ S Shoulcraft, licl. Tr., iv. $86 . \quad$ Third Rep., p. 229. o J.jd. L., diii. 450 .
 ${ }^{11}$ Ibill., xvi. p. 43 .

[^202]: ${ }^{12}$ Liviugstone, South Africa p. 13; J. Mackenzie, Ten Peart 'North of the Orange River, p. 391, of. p. 135 n.; J. A. I., xvi. 83. ${ }^{13}$ Jour. and Proc. R. Soc. N. J. W'ales, 1882, p. 206.
 ${ }_{14}$ Nat. Tribes of S. Austral., I. $17 .{ }^{15}$ J. A. I., xiii. p. 295
 ${ }_{16}^{16} \mathrm{lbid}$. , xiv. p. 316.
 ${ }_{18} 18$ Jour. and Proc. R. Soc. N. S. Wales, 1882, pp. 208.
 ${ }^{19}$ Gatschet, Miyration Legend of the Creek Indians, i. p. 185.
 ${ }^{20}$ Rochefort, Hist. nat. et nar. des fles Antilles (Rotterdam, 1606
 p. 556; Du Tertre, Mistoire gênêrale des Antilles, vol. ii. p. 377 .
 ${ }^{21}$ Jour. and Proc. R. Soc. N. S. Wales, 1882, 1. 178.
 ${ }_{23}$ Howitt in J. A. I., xiii. 458.
 ${ }^{23}$ Dawson, Axstrulian Aborigines, p. 30.

[^203]: ${ }^{1}$ J. A. $I_{:}$, xiii. 453 sq. ${ }^{2}$ 1b., xiv. 358.
 a Angas, i. 115 ; Brongh Smyth, i. 75 n; J. A. I., xiv. 357, 359; Nat. Tr. of S. Austr., pp. 232, 269.
 ${ }^{4}$ R. Beverley, Mistory of Virginia (London, 1722), p. 177 sq.; Dapper, Description de l'Afrique, p. 268.
 ${ }^{6}$ Suhoolcraft, Ind. Tr., 叉. 683.

 - Mr Cushing in Century Magazine, May 1883.

 7 See Sacrificr, vol. xxi. p. 137.
 B Herod. ii. 39. ${ }^{2}$ Fison aud Howitt, 194, 201 sq. 215, 235.

[^204]: ${ }^{10}$ J. A. I., xv. p. 416 ; cf. xii. p. 507.
 ${ }_{11}$ Ibid., xiv. 350 . Dawson, Australian Aburigines, p. 52.
 ${ }^{13}$ J. A. 2., xiv. p. 350. 13 Ibich., xvi. p. $50 .{ }_{10}$ Ibid., 45.
 ${ }^{26}$ Catlin, N. Amer. Indians, i. p. 36 sq.; Schoolcralt, Ind. Tr., v, p. 196; Id., Amer. Ind., p. 213; Sproat, Scenes and Studies of Savago Life, p. 173 sq.; Bancroft, i. 283 sq.: Id., iii. 156; Masne, Brit, Columb., p. 302; P. Jones, Mist. Ojclway Ind., p. 87 sq., \&ic.
 17 Annual Report of the Smithsonian Institution for 1860, P. 307 !
 ${ }^{16}$ Charlevoix, Hist. de la Nouv. Fr., vi. 67 sq. The word okki isí Huron; manitoo is Algankin (ibid.; Sagard, Le grand Voyage du paysi des Hutons, p. 231).
 10 Boscana in A. Robinson'6 Life in California, pp. 270 sq., $273 ; 1$ Baacroft. i. 414 , iii. 167 sq.

[^205]: 1 Bancroft, i. 661. ${ }^{2}$ Turner, Samoa, 17.
 ${ }^{8}$ Lafitau, Mours des Sauvages Ameriquains, i. 370 sq.; Charlevoix, Hist. de la Nouv. Fr., vi. 68 ; Koh1, Kitchi Gami, i. 85 sq.

 * Grey,' Jour., ii. 231; Report of the Sinithsonian Inst. for 1S6G, p. 315; Petreff, Rep. on Alaska, p. 165. Other autherities speak to the superierity of the totem bond over the tribal bond (Morgan, League of the Iroquois, p. 82; Mayne, Drit. Columb., p. 257; Ancricun Antiquarian, ii. p. 109).
 © Grey, Journals, ii. 230, 238 sq.; Smithsonian Rep., loc. cit.
 ${ }^{5}$ Fison and Howitt, 156 sq., 216 sq. Sometimes the two clans meet and sattle it by single combat betwcen picked champions (Jour. and Proc. R. Soc. N. S. Wales, 1882, p. 226).
 ${ }^{7}$ Simens in Proc. R. Gcogr. Soc., Dec. 1885, p. 789 sq.
 - Bourke, Snake Dance of the Mroquis of Atixona, p. 270.

[^206]: ${ }^{2}$ Morgan, op. cil., p. 73. ${ }^{3}$ Morgav, p. 156. ${ }^{3}$ First Rep., p. 59 ,
 4 Collections of the Minnesola Historical Sociely, 7. p. 49.
 ${ }^{5}$ H. Hale, The Troquois Dook of Ritcs, p. 53 sq.

 - Geol. Sirvo of Canaila, Rcp. for 1S7S-73, p. 134b.
 - Third Rep., P. 235 ; American Nalurdisl, xviii. p. 114.
 a Fison and Howitt, p. 285. - J. A. I., xii. 500.
 19 Correapooding female forms are made by adding tha to these nale

[^207]: ${ }^{11}$ Fison and Howitt, p. 53 sq.; cf. Brongh Smyth, i. p. 91.
 12 J. A. I., xiii. p. 300.
 ${ }^{13}$ For a few particulars see Fison and llowitt, is, 40; Benoli Suyth, ii. $288 ; J_{0}$ A. I., xiif. $304,306,346$, xiv. 348 sq., 35 I
 14 First Rep., p. 63. Between North-American tribes "there wero no intermarriages, no social intureourse, no interningling of any lind, except that of nortal strife" (Dodge, O.er Wild Inclians, p. 45).
 ${ }^{15}$ Cf. First Rep., loc. cil.; As. Quart. Red., July 1886, p. 89 squ
 16 Andersoo, Lalie N'gami, p. 221.
 17 Casalis, The Dusulos, p. 179 sq.
 ${ }^{10}$ Du Chaillu. Journey to Ashango Lana, 429 ; Id., Eiqua.-Afïu 308 sy .

[^208]: ${ }_{2}^{1}$ As. Quart. Rev., July 1886, p. 84.
 ${ }^{2}$ Daiton, Elhn. of Beng., p. 56 pq. ; W. W. Hodter, Stutistical Account of Assam, ii. p. 217 pq .
 ${ }^{2}$ Dalton, op. citi,, 60, 63, Hanter, op. cil., ii. 154 sq.
 © Fieon and Howitt, p. 37 sq.; J. A. F., xiii., 335, 341, 344.:

[^209]: ${ }_{11}$ Geol. Suro. of Canada, Rcp. for 1878-79, p. 134в.
 ${ }_{12}{ }_{12}$ Morgan, A. S., P. 172 sq.
 ${ }_{13}^{12}$ Gill, Myths and Songs of the Sonth Pacifc, p. 36.

[^210]: ${ }^{1}$ Brough Smyth, j. 91 ; Fison and Howitt, 168 ; cf. J. A. J., Mii. 300.

[^211]: 6 Perhaps tba only known exceptions are tbo Kurnal in eastern and the Gournditch-mora in western Victoria. For the latter gen Fison and Howitt, p. 275.
 ${ }^{7}$ Gatschet, Migration Legend of the Creek Indians. 153; H. Hale, The Iroquais Dook of Riles, - p. 51.
 ${ }^{a}$ George Gibls in Contrib. to N . American Ethuol., i. 184 : S_{4} Powers, Tribes of Calif., 5.
 A. Pinart in Revue d'Eltnojraphie, vi. p. 36.
 ${ }^{10}$ Simons in Proc. R. Geog. Soc., Dec. 1885, pp. 786, 796.
 ${ }^{2}$ Brett, Ind. Tribes of Guiana, 98 ; Im I'burn, Among the Indions of Guiana, 175 sq.
 ${ }_{12}$ Crevaux, Voyages darts Γ Amérique du Sud, p. 59.
 ${ }^{13}$ Falkner, Descr. of Patayonia, 114.
 ${ }^{14}$ Garcilasso de la Verga, Royal Commentaries of the Incas, pt. 1 bk. i. chs. $9,10,11$, 18 ; Gumilla, Hist. de l'Orenuque, j. 175 sq .
 ${ }^{15}$ Revue d'Ethnologie, $\mathfrak{i i i} .396$ sq., v. 81 ; A. B. Ellis, The Tshi speaking People of the Gold Coast, p. 204 sq.; Bowdich, Mission td Ashantee, ed. 1873, p. 216 ; Du Chdillu, Equat. Afr., 308.sq.; Id., Journey to Ashango Land, 427, 429 ; C. J. Anderson, Lake Ngami 221 sq.; Livingstone, Trasels in S. Afica, 13; Casalis, The Basulos, 211; J. Mackenzia, Ten Years Narth of the Orange River. 393 ; J. A. I., xri. 83 sq .
 ${ }_{10}$ Charles New, Life, Wanderings, d.c., in Eastern Africa, 272, 274
 15 Mansfield Parkyns, Life in Abyssinia, 293; Tr. Ethnol. Soc. new eeries, vi. 292. 15 Ellis, Hist. of Madagascar, io 87 ${ }_{19}$ Folk-Lore Recoid, iL. 22, 30.

 20 Ibid. iv, 45 .

[^212]: ${ }^{1}$ Strahlenberg, Description of the North and Eastern Parts of Europe and Asia, London, 1738, p. 383.
 ${ }^{2}$ Middeudorf, Siber. Reise, p. 72, quoted by Lubbock, Origin of Civilization, P. 135. The present writer has been unable'to find the passage of Middendorf referred to.
 ${ }^{3}$ W. Radloff, Aus Siberien, i. 216, 258. The Ostinks, also iu Siberia, are divided into exagamous clans, and they reverence the bear (Castren, Vorlesungen über die Altaischen Voller, 107, 115, 117). This, however, by no means amonnts to a proof of totemism.
 \$ Verhandl. d. Berl. Gesell. Anthropologie, \&c., 1882, p. (62).
 ${ }^{5}$ Morgan, A. S., p. 364 sq. One of the aborigiual tribes of Chiua trorships the image of a dog (Gray, China, ii. 306).
 ${ }^{9}$ Williams, Fiji and the Fijians, ed. 1860, i. 219 sq.
 ${ }^{7}$ Turner, Samoa, $334 . \quad{ }^{2}$ Fison and Howitt, p. 37 n.

 - Low, Sarawak, 265 sq., 272-274, 306; St John, Life in the Eorests of the Far East, i. $186 \mathrm{sq} ., 203$; ef. Wilken in Ind. Oids, nne 1884, p. 988 sq.; Ausland, 16 th June 1884, p. 470.
 ${ }^{10}$ Riedel, Dc shuik- en hroesharige rassen tusschern Papua en Selebes, pp. 32, 61, 253, 334, 341, 376 sq., 414, 432.
 ${ }^{11}$ Blumentritt, Der Ahnencultus und die religiösens Anschauungen Ler Malaien des Philippinen-Archipel, 159 sq.
 ${ }^{11}$ See W. R. Smith, Kinship and Marriage in Early Arabia.
 ${ }_{14}^{13}$ A. H. Sayce, Tre Religion of the Ancient Dabylonians, p. 279 so.
 ${ }^{14}$ Spencer, Principles of Socioloyy, i. 367.

[^213]: ${ }^{15}$ Commonly believed to be so called from its cry ; but Prof. Skeat (Proc. Philolog. Society, 15th May 1855) adduces evidence to prove that the Guarani Tuca is from ti, nose, and cang, bone, i.e., nose of bone.
 ${ }^{16}$ In 1656 the beak of an "Aracari of Brazil," which was a Toucan of some sort, was contained in the Misaum Tradcseantiurtum (p. 2) but the word Toucan does not appear there.

[^214]: I About 975 there was a partition of the estates whll, Nilltam Tallefer and lils cousin Raymond II. of Auvargne held Ia common,-Albl, Goercl, de., falliag to Willam, and Gothla, se., to Raymond.

 - List of tha counts of Toulousa, malnly from De Vic and Valsseta:-

 Chnrson............. 778-790 ! Raymond 1t: William............. 790-806 ${ }_{\mid}^{\text {Raymond 117. }}$
 Berenger........... 817-835 her aon.... Ecirld................. 835-845 Wiltiam TailFirdulo................ 8 8 85 -852 lefer........ Haymond 1 Bemard.乏udo................. 852-864 Pons.... 864-875 WHHam IV... 1037-1060 875-918 Raymood IV. 1080-c. 1093

[^215]: 1 Appareatly the first ornitbologist to make tha bird known was Allin, who figured it ia 1738 from tha life, get badly, as "Tho CrownDird of Mexico." He had lonbtless been misinformed as to its proper cuuntry; but Tuuracos were called "Crowa-birds" by tha Europeans la West Africa, as witaess Bosman's Descriphont of the Coast of Guinea (1721), ed. 2, p. 251, and W. Smitl's Voyoge to Giuinere (1745), p. 149, thaugh the nama was also given to the Crowned Cranes, Salearica.

[^216]: 2 Tba fact of tbis colouring matter being soluble in water was incidentally mentioned at a meeting of the Zoological Society hy Mr Tegetmeier, and brought to the zotice of Prof. Church, who, after experiment, publisbed in 1868 (SWudent and Intellectual Obscreer; i. PP. 101-168) an account of it as "Turacin, a new animal pigmentcon, taining copper." Further information on the subject was given by Monteiro (Chem. Nucs, xxviii. p. 201 ; Quarl. Jour. Science, wer. 2, iv. p. 132). The property is possessed by the crimsoa feathers of all the kirds of the Family.

[^217]: 1. Musica getutscht red'l auszgezogen, Basel, 1511.

 2 Organogranhia. Wolfeuluttel. 1618.

[^218]: 3 "Electromotors and their Govemarent. Joyr. Noc. T.J. Eng., 1883

[^219]: Steamer's have sacended tho lower Selenga and tho Uda up to Verkneudinsh. 2 According to tho levelling mada in 1875-76 from Zverinogolovak, in Orenbura, to Lake Baikal. Jlare la uncertalnty as to tha ousolute altitude, that of Zverinogolovak, 318 feet, having sell to leverlfed. Ste Mem. Russ. Geogr. Soc: Phys. Geogr., rol, Xv., 185\%.
 ${ }^{3} \mathrm{f}$. Tcliursky, "IR+sults of tho Exploration of Luke Bukal," In Bren. Russ. Geogr. Soc., Phys. Geogr., vol. Xv. 1886, with a geologleal map on a seula of 7 miles to an inch: Fr. Schmidt's report in tha yearly Report of the Russlan Geogiuplical Soclaty for 1886 (both Russian).

[^220]: "Das Kلma voo Ust-Sibinten," by A. Woyelkoff, do Aeteor. Zeifsch., I8st.

[^221]: "See N. 7arudnyi, "Les Oiseaux de la Contréa Transcaspienne," In Bull. sure. Nat. Mosc., 1885

 It is to be observer that on the original Russlan map of the Transcaspian. drawn Immediutgly affur the survey of the Uzbol had been completed, the Uzboi hav nor the continuity whicil is given to it on subsequent maps.

 Their niminal papers ale printed in the treestia ot the Pusslan Geogr. Soc., 1.433 to 1887 , as also in the Journal of the Russian Ministry of Roods and Communleations.
 6 According to A. E. Fedroitz and A. M. Konshin the old Tonu-Darla bed of the Amu contnins shells of molluses mow living in the Amu (Cyrena fuminalis, Dr issena polymorpha, and Anodom(β). The Sary-kamysh basin is characterized by deposits containing Neritina liturafa, Dreissena polymorpha, and Lymmeus, characteristic of this basin. Below the Sary-kamysh there are no more deposits containing shells characteristic for the Amu; Anodontex are found quite occasionally on the surface, not in beds, in company with the Caspian Cardium (Didacna) trigonoides, var. crassum, Cardium piramidatumb Dreissena polymorpha, D. rostriformis, Hydtobiw caspia, Nertina liturata, and Drcissena brardia; the red clays with these fossils extend for 130 miles to the east of the Caspian (Frestia of Russ, Geog. Soc., 1883 and 18863.
 ds by Jenkinson, who mentions a sueet-water gulf of the Caspian within six day" march irnm khwarezm, by" which gulf he could mean nothiog but the Sarykanysh depuession.

[^222]: ${ }^{6}$ In connexion with this southern "old bed, " it is wortlsy of notice that the Ersari-Turcomans call it Unghyuz or Onguz ("diy old bed"), and thercean be no doubt that when the Bolshoi Tclsertezh of the lGth century (speaking from anterior information) mentions arlver. Ugliyuz or L'gus, flowing to the west from the Amu towards the Cospian, it is merely desclibing as a livel what its very name shows to have been a dry bed, only supposed to have been once occupied by a river. The similarity of the names Ongus and Ugus with the Ogus and Ochms is so striking that one is incllned to aee in the ogus or Ochus nothiog but the mention of a dry old bed. Compure Petruseritch, "The Soutl. East Shores of the Caspian," in Zapiski of the Caucasian Geogr. Soc., vol. xi, 1850 .
 7 Such an intermingling of modern data wilh older truditions is nut unknomn to geomraphers, A striking instance of it ds glven in the suppused comnexion of Lake Aral with the Arstic Ocean dusing historical times ; plysical clunges ara proceeding so rapldly in Asia that we find traces of likeaurwvals of troditiona eveo in this age of accurate furveys.

[^223]: ${ }^{1}$ No Russian sea shows 80 rapid a growt h of navigation as the Caspian Sea during the last fifteen jears. In 1884 no less thsn 1945 stesmers (611,000 tons), engaged in foreign trade, entered the Fussian porta of the Caspian, as agsinst 409 (113,000 tons) in 1876.

[^224]: * For this valley and the contrasts between the Caucasus and Ant: cauc? sus, see Rustdes Ornis Caucasica, Cassel, 1884.
 *Seidlirz. Sniski naselennykh myest Bakinskoi gubernii.

[^225]: 1 Tha most notable excention was the transit instrument and rertical circle of the Pulkova onservatory, specially designed by the clder Struve for fundamental deterivioations,

[^226]: ${ }^{1}$ The boundaries of Transvaal, long a subject of dispute with Great Britain aod the other conterminous states, were.at last precisely defined by the convention of February $27,1884$.

[^227]: 9 Antonlo Lorenzonl, Saggio per ben sonare il faato traverso, Vicenzs, 1779. Compare Schilling Unino-Lericon, Lelpslc 1835 Flöte Eu spielen, Leipsic, 1797 Compare Schilling, Unin.-Lericon, Lelpsle, 1835.
 ${ }_{13}{ }^{13}$ Kurze Abhamdining von F7ülenaptcien Lelpale 1786.

[^228]: saggio per costruire e suo
 bussi del Violino, Rame, 1797.
 2 The idea of this large flute was taken up again in 1819 by Trexier of Vient the called it the "panaulon." s Patent, No. 3183. "Patent. No. 3349.

[^229]: 8 They extsted leng before, however, in the Chinese $T y$ and the J apaneso Prye. 0 The reader may consult with advantage Mr C. Welch'a firsory of the Boehon FYute (London, 1883), wherein all the dncuments relating to this loteraating dis cussion have been collected with great imnartiality.
 10 See the Essoy on the Construrstion of Flules, already cited
 11 Patent. No. 105.53.

[^230]: ${ }^{2}$ Esprit des Lois. bk. xii. c. 7

[^231]: ${ }^{1}$ See Merivale, Ifist. of the Romans under the Empire, vol iii. p. 467 , vol. v. p. 141.

 2 "Priocipes instar deorum esse" are the words of Tacitus.
 ${ }^{8}$ This crime was called lesa majestas divina in later law.
 ${ }^{4}$ xlviii. $4 . \quad{ }^{6}$ ix. 8.
 ${ }^{6}$ A sinilar provision was contained in the Golden Bull of Charles IV. c. 24. In English lav, with the one exception of a statute of Richard II. (21 Ric. II. c. 3) repealed in the first year of Henry IV., an ovest act has always been necessary. The difficulty of proving a mere intention is obvious. In French and German law the overt act (attentat or Unternchmen) is as indispensable as in English.
 ${ }^{7}$ To harbour a fugitive enemy was punishable only by deportation, Dig., xurii. 19, 40.

[^232]: ${ }^{\text {a }}$ The position of treason as a special crime prosecuted by special procedure is one conmon to most legal systems at some pernod of their cxistence. For instance, in Gernany, by a coastitution of Henry VII. the procedare was to be summary, sine strcpitu et figura judicii. ${ }^{2}$ c. 4 . ${ }^{19}$ v. 30. ${ }^{11}$ lxxix. 2 . ${ }_{12}$ xiv. 1. ${ }^{13} 1186$. ${ }^{14}$ These words, according to Luders (Lawo Tracts, note ad fin.), mean to attempt or cootrive.
 ${ }_{15}$ This by 1 Mory, sess. 3, c. 1 includes a queen regnant:
 ${ }^{18}$ i.e., Luxemburg.

[^233]: ${ }^{1}$ Sinee the disappearance of petit treason as a distinct crime, it yeents useless to retain the old name of hech treason by which what nay be called treasoo proper was formerly knowo.
 ${ }^{2}$ Ono reasou for making these ofleaces treasourather than felony ras' no doubt to give the erown rather than the lord of the fee the riglit to the real estate of the criminal ou forfoture. Had the offeaces been felony the kiug would have hatl only his year, day, and waste on the estate oseheating to the lorit. as was the case to treason before tho Statute of Tiriswis (see Feledis)

[^234]: 1 Shakespeare twice makes cffective use of tho tria! by battle in treasen, in King Lear and Fichard II. 24 State Trials, 653.
 ${ }^{3}$ By the Bill of Riglits the jurnis in trials for treason must have been freerolders. This provision of the Act was repeated by 9 Geo . IV. c. 50. - The exceptional character of the punsthment, like that of the procedure, may a paralieled from Gernmany. The punishment of traiters by Firederick II. by arappling them in lead und throwing them into a furnace is alluded to by Dante

[^235]: - It la called by Hallam "the oid mastery of Inlquity in Scota law.

 For the existing Scots law of treason see Macdonald, Criminal Law, p. 22 a For leasing-maklng sea Hume, Comm., vol. i. p. $3+5$.

 XXILL -67

[^236]: ${ }^{1}$ Cf. Sir Edward Hertslet's very useful collection entitled The Map of Europe by Treaty, 1875.

[^237]: ${ }^{2}$ Cf. Bynkerbbeek, Qu\&st. Jur. Pub., i. c. 10.

[^238]: 1 These figures refer to the bibliography at the end of the article.

[^239]: ${ }^{1}$ The Italian character of the council of Trent can best be exhibited by a classified table, showing the nationality of the bishops present im the later 8essions:-1 talians, 189 ; Spaniards, 31 ; French, 20 ; Greeks (titulars), 6; Portnguese, 3; Ingrians, 3; Irish, 3; Cermars, 2. Flenisb. 2; Polish, 2; Croatian, 1; Moravian, 1; English, 1:

[^240]: ${ }^{1}$ In the legends of the fenndation of the republic Brutus is represented as having exercised authority, when the king was banished, merely by virtue of holding the office of trithonus celcrum.

[^241]: ${ }^{1}$ These two br the same rider.

[^242]: ${ }^{1}$ See also vol. ii. of the A siatic Researches (Calcutta).

[^243]: ${ }^{1}$ Concerning the last-named districta full information can be fotnd in Sahara und Sudan (Berlin, 1879-81) by Dr Nachtigal, who continned the expiurationa of southern Tripali commenced by Barth and Roblfs, Consult also Narrative of Travels and Discoveries in Northern and Central Africa, by Denham, Clapperton, and Oudney, London, 1826.

[^244]: 1 The species of Triton are called in Englist efts, evets, or newts.

[^245]: ${ }^{1}$ The name Assus probably means "d avelling," "town," being connected with the Sanskrit ras, "to dwell," which appears in the Greek astu, and also in the endiag of such nsmes as Mylasa and Larissa, where in Greek the s is alternstively single or double-an endiag which, as Fligier has shown, is found in old town names from Indis to Decia. Homer oupplies an example in his "steep Pedasus" on the Satniois, and it has been angeested by Mr J. T. Clarko that Dedasus ray have been identical in gite with the later Assus.

[^246]: of Pharomacrus auriceps to be a anbstanca which he called "zooxanthine" (Comptes Rendus, $2 d$ November 1857, xlr. p. 690).
 ${ }^{1}$ In tha Trogon of Cuba, Prionolelus, toey ara most curionsly scooped out, is it were, at the extremity, scd the lataral pointed ends diverge in a wry elmost anique among birds.
 ${ }^{8}$ Or two species if H. macloti be more than on locul form of H. reinuoardii

[^247]: Mrusica getutscht und auszypyygen, Base1, 1511.
 ${ }^{2}$ Organographia, Wolfenhuttel, 1619.
 3 Harmonis Úniverselle, Paris, 1627.

[^248]: ${ }^{1}$ Der sich selbst informirende Musicus, Augsburg, 1762, by Johann Jacob Lotter.
 ${ }_{2}$ It nced hardly be remarked that the higher semitone cannot be produced in the first position.
 ${ }^{3}$ This was mentioned in the Lerpsic Allgencine musikalische Zeilugg in 1815, the merit of the invention being assigned to Heinrich Stölzel of Pless in Silesia.

[^249]: ${ }^{1}$ The difficulty of producing the fundamental or first-proper note increases with the length and narrowness of the tube. \cdot The proportions of the buccina reader the production of this note vers"diffeult."

[^250]: ${ }^{1}$ In the Bibliotbeqno Nationale at Paris.
 ${ }^{2}$ Bfusica getutccis und cuswivengen, Basel, 1511.
 3 Organogrzphia, Fo oljenbu:tel, 1019.

[^251]: - Harnonie Uniertselue, Paris, 636.
 - Der sich sulbsi informirende Mfusicus, Angsbure, 1762, by Lotter.

[^252]: * Fersuch einer Anlsitung zur heroisch-musikalischen Trompeterund Pauker-Eunst Halle. 1795.

[^253]: ${ }^{2}$ Not to be confounded with the "Heron Agsmi" of Buffon. (Oiseaux, vii. p. 382), which is the Ardea agami of other writers.

[^254]: ${ }^{1}$ In connexion herewith may be mentioned the aingular atory told by Montagu (Orn. Dict., Suppl. Art. "Grosbeak, White-winged"), on tha anthority of the then Lord Stanley, afterwards president of the Zoological Sociaty, of ona of these birds, which, having apparantly escaped from confinement, formed tha habit of attending a ponltryyard. On the occasion of a pack of honnds ranning throngh tha yard, the Trumpater joined and kept op with them for nearly three miles !
 ${ }^{2}$ Cf. Parker, Trans. Zool. Soc, x. p. 502 sq.

[^255]: ${ }^{1}$ Use seems to be an older werd than trust. Its first oceurrenca in statute law is in 7 Ric. 11. c. 12, In the form cops. lu Littleten fieleuee " is the word employed. The Statute of Uses eeems to regard use, trust, and confirlence as aynonyinous. According to Bacou, it was its permanency that distinguished the use from the trust.

 Feofment, thongh the usual, was not the only mode of conveyance to uses. The preamble of the Statute of Uses mentions fiues aud reeoreries, and other assurances.

[^256]: ${ }^{1}$ The principal case was Muir $\%$. City of Glo gow Bauk, Lavo Reprols, 4 Appeal Crses, 337.
 "Trast" and "Trustee."
 ${ }^{3}$ Seo Washburo, Reicl Property, val. ii. Uk, si., clapg if, י". : Stimsmu, Amrviruts Stuitute Lurr, SS $1700-1754$.

[^257]: ${ }^{1}$ There is no collective name for the srchipelage among the Tuamotuans themselves, but the Tahitians call it Paumotu (i.e., Cloud of lslanis). The group is Bougsinville's Dangerous Archipelage, Fleurieu'e Bad Sea, Krusenstern's Low Islands, snd the Pearl Islands of traders.
 ${ }^{2}$ Distinct names have been given to eight clusters of the archipelago, - Dissppointment Islands, King George'e lslands, Pslliser Islands, Raeffsky lslands, Two Groups, Duke of Gloucester Islands, Actaon or Amphitrite group, and Gambier Islends.

[^258]: 1 Only tho more important works can be mentioned here. For a 7ere detai'sd account of the history of the group and a full bibliegraphy, see (fy) iu the list of works at the end of this article.

[^259]: ${ }^{1}$ Scme writers use a different nomenclature of regions ; see (17).

[^260]: ${ }^{1}$ According to E. van Beneden and Julin's recent investigations (30) only the outer wall of the atrium is lined wit? epiblast, the inner wall being derived from the hypoblast of the primitive branchial sac.

[^261]: ${ }^{5}$ See also He=dman, Nature, vol. xxriii p. 284.

[^262]: "On accourt of the priodic reversal of the circulation nome of the vessels can be cuicd arteries or vein

[^263]: ${ }^{1}$ Seə Eerdman, Nature, vol. xxil. p. 247.

[^264]: 1 By Dohru acd others their point of origin fa placed considerably furthas ny on the atem of tha Chordata, thua causing lha Tunicata to be regarded af very degencrato irertebratr (sea 32).

[^265]: ${ }_{3}^{2}$ Nefure, vol. Xxvi. pp. 166, 243,
 ${ }^{3}$ Sensuíiuns of Tone ; Eag. transl, by A. J. Ellis, 2 d ed., 1835, p. 70.

[^266]: 3 "On the History of Musical Pitch," in Journ. Soc. of Arts, 5th

[^267]: ${ }^{2}$ In tae 13th aad lith centaries the Eiafsites also paid tribato to Sicily for the freedom of the sea and the right to import Sicilian cern. -a clear proof of the decline of Tunisiaz agricultore.

[^268]: 1 The word "turbot" is of great antiquity, perbaps of Celtic origin; it is preserved in French in the same form as in Englian, and is composed of two words, of which the second is identical with the "bnt" in holibat and with the German "Butte," which signifies flat fisb. The German nams for the turbot is "Steinhntte."

[^269]: ${ }^{1}$ See P. S. Nazaroff, in "Recherches Zoologiques dans les Steppes des Kirghizes," in Eull. Soc. des Nutur. de Moscow, 1886, No. 4.

[^270]: ${ }^{1}$ Dugald Stewart, however, cannot find any evidence of a corresiondencs between Turgot ond Smith. It has also been said that during this period Turgot corresponded with Hame. But little nore than three montha intervened between his dismissal and the denth of Hume (25th August 1776) and there appears to be no trace of letters having rassed between them in this interval. They had corresponded, but at a mach earlier dats: see Burton'a Jiffe of Hume, ii. 352. 381.
 ${ }^{2}$ Some hava thought that the cardinal error in Turgot'e policy lay in hle not having convoked the states-general ; that would, however, have been aimply to opun the flood-gates

[^271]: ${ }^{1}$ In the map (issued October 1857) embodying the results of Prjevaleky's fourth journey, East Turkestan is plainly demarcated from tho Gobi. This last falls by a steep slope towards the Tarin depression,

[^272]: Which narrows to the east of Lob-Nor and terminates about Añ-ai, come 4800 feet above cea-level.
 ${ }^{1}$ See also the following maps:-Mimasaya, vol. xi. Pl. XVI. Siberia, vol. xxii. Pl. I.; and Tibet, Pl. IV. above.
 ${ }^{2}$ Separate portions of it are described under Agohanistan, Bozhara, Khiva, Oxus, Spr-Daria, Semipalatinse, Semiryetchrnge, Transcaspian Region, Zfeafshan.

[^273]: ${ }^{2}$ The present writer is inclined to consider the "Eastern Tian-Shan " of our maps, which runs east-south-east to Bagratch-kul, as a separato chain helonging to the more modern system of north-western npheavals, meeting at its eastern extremity a chain which trends towards the narth-enst

[^274]: 1 For ampler information, see Syevertsoff: "Vertical and Horizontal DistriFution of Turk informan Animala," ia Jevestia of the Moscow Soc. of Amsteurs of Vat Sclence, 1875: Fedtcheoko"s "Travels to Turkestan," extendiog over 18 parta of vola. Xi., xix., xxi., xxiv., aod xxvi. of the same Izvestia, s.od formiog s parts of vols. XI., xix., ex., pecialists which dea! नlih separate divisions of the gerles of mooographs by apecia (the fora by Regel) ; Oshanfn's Zoq-Geographical Problems in Turkestan, Tashkeod, 1880 ; Grum-Gramailo's "Flora and Fauna Problems in Turkestan, Tashkeod, 1880, Sor 1885: Wrork's of the A ral. Caspian of Pamir," in Izvesta "Rass. Geokr. Soc." to Mem, St Petersb. Soc. Nal., vol. Expedition; Batleroffs Ormith. of sukus, R., 1879 ; sad the Journeys of Borschaff, Semenoff, syeve? hoff, Cfsen-acken (Sertum Tian-Shanicum), Reged,
 y See 31. Krasnoff researches in Izuest ia of huss. Geogr. Boc., vol xxill., 1887.

[^275]: See Olga Fedtchenku and Prof. Sorokine's drawings of saksaul forests in Album of Vieves of Russ. Turhestcn: also Bull. Soc. Nal. Mosc., 1884, No. 1.
 Ifcm. Acad. Sc. of St I'efersborg, 1881.

[^276]: ${ }^{1}$ See Collection of Papers on Turkestan, St Petersburg, 1876, by MM. Syevertsoff and Kharoshkin.
 ${ }^{3}$ Each of these towns in amall capitals is described in a separate article.

[^277]: 8 See the map of Asia, by A, Petermann, in Stieler's Mand-Atlas, No. 58, where the orogrsphy of Asis is represented, in the present writer's opinion, in a more trustwortby manner than on other maps of Asia.

 - See map to Prjevalsky's fourth journey in Irvestia of Russ. Geogr Soc., 1887.

 Barometrically obseryed, the possible error being sbout 300 feet.
 ${ }^{6}$ Prjevalsky, Reisen in Tibet und am oberen Laufe des Gelber Fiusses, Jena, 1884.

[^278]: At the confluence the Terim has at low water a depth of 3 to 5 \&et and a width of 190 yards; towards Lob.Nor the depth increases so 14 feet (Prjevalsky, in Izvestia of Russ. Guog. Soc., 1887).

[^279]: ${ }^{3} \mathrm{Op}$. cit.

 * Prjevalsky, Reisen in Tibet, \&c.; and Wilkina (nuturaliat of ML Kuropatkin's expedition) in the Russian periodical Priroda, 1887, No. 3.

[^280]: 1 Exclasive of tobacco, which for fiscal reasons is not incladed in the general trade returns, bnt the export of which amounted to $£ 11,500,000$ in value for $1854-5$, and nearly $£ 11,000,000$ for $1885-6$
 ${ }^{2}$ Consul-General Fawcett'a Report for July 18s7, p. 31.
 ${ }_{3}$ Cuns. Rep. for July 1ss7.

[^281]: The results of a comparison of the skulls of wild sad domesticstel Turkeya sre given by Dr Shufeldt in Journ. of Comp. Medicine and Surgery, July 1887.
 ${ }^{5}$ Constantine Porphyrogenitns cslls the Magyars Turks. even in contradistinction to the truly Turkish Petchenegs.

[^282]: 1 Translated in the well-known works of Dcguignee, Visdelou, \&c.; for a French translation by Stanisl. Julicn of the accounts of the Pien-i-tien, referring to the Tu-kiu, eee Journ. Asiat., 1864, p. 325 sq.
 ${ }^{2}$ Comp. PersIa, vol. xviii. pp. 592-4, 600, 603.
 3 Radlof, for instance, thinks that the name U-ssun, and perbaps romnante of the people denoted by it, survive in the present Uisuns, a division of the Grest Horde of the Kirghiz. At the time of Alexander the Great'e expeditions against the Scytniana lieyond the Jarsitee, we find in that region certain traccs of the Thrkish langaage in names of places and persons (cp. vol. xviii. p. 582, note 4). It is therefore certain that long before the age of the Hiong-nu Turkish tribes had apread to the borders of the Jazartes, and even along the northern coast of the Caspian to the rivers Ural and Volga, But the othnical danominations of antiquity-Scythisns, Parthians, Massagetw, Sace, \&c. -do not convey to our mind clear ethnical diatinctions, no that the trae nationality of these peoples hes been much dobated. Neither are the pre-Samitic culture of Babylonia and the aupposed
 "Taranian" origin of the Accads facts of such character that from them we can infer the presence of Turks in these regions in remote ontiquity.
 4 On the Petchenegs see below.

 - From their Chinese name it may be inferred that the Juen-Juen Fere a Mongolian people, in which case the Avars, who are suppoeed to hsve been a diviaion of them, were also Mongola.
 - See Nöldeke, Geschichte der Perser und Araber, p. 158. The first part of this nsme is withont doubt the Turkish sünju, süngu, which means "lance," a Turkish proper name of the asme kind as Kilij= "sword," which in its Peraian form, Nizek, was afterwards borne hy a prince of Transoxiana, often mentioned in the accounts of the Arnbic conquest.

[^283]: ${ }^{1}$ Comp. Blau, Bosnisch-Türkische Sprachdenknäler (Leipsic, 1868) p. 315

 - Idiled by Gezi Kuun, Buda-Pesth, 1880-83.

[^284]: ${ }^{2}$ Turner's father died in I830, and the loss of "poor oll Dad," as lea used to call him, left a terribla void. He had lived in his son's housh for nearly thirty years, looling after tho frugal affairs of his household, and making himself useful in various ways. It is said that be used to prepara and strain hia son'a canvases and rarnish them when finished, which may explain a saying of Turner" that "his father used to bergin and finish his pictures for him." He also attended to the gallery in Queen Anne Street, showed in visiters, and took cara of tha dinner, if he did not himself cook it. Turner was never the aames man after his father'a death, living a lifs of almost complete isolation.
 ${ }^{2}$ This spirit of rivalry showed itself carly in his career. He began by pitting himself against his contemporaries, and afterwards, when his powers wera more fully developed, against some of the old masters, notably Vandervelde and Claude. During these yeara, while he kept up a constant rivalry with arrtists living and dead, he was continuing his unresting and untiring study of nature, and, while seemingly a mera follower of the ancients, was accumulating that immense store of knowledge which in after years, when his true genius assertcd itself he was to use to such purpose.

[^285]: 1 "The strange unity of vertebrated action and of a true bony conloar, infinitely varied in every vertebra, with this glacial outline, sogether with the acloption of the head of the Ganges crocodile, the

[^286]: ${ }^{1}$ Crossing the Brook was a grest favourite with Tumer. It was painted for a patron, who, dissatisfied with it, left it on the painter's hasds: The price asked ($£ 500$) seems to have been part of the objectha. Turner subsequently refused an offer of $£ 1600$ for it.

[^287]: ${ }^{1}$ The name seems to appear first in Willoghby's Ornithnlogia (p.' 231) in 1676 ; but he gave as av alias that of Sea-Dottrel, nuder which aame a drawing, figured by him (pl. 58), was seat to him by Sir Thomas Browne.
 ${ }^{2}$ Linnæus (CEl. och Gothländska Resu, p. 217), who first met with this bird on the island of Gottlaad, 1st July 1741; was uader the mistaken belief that it was there called Tolk (=interpres). But that ame properly belongs to the Redshank (q.v.), from the ery of warriag to other animals that it utters on the approach of dacger.
 ${ }^{3}$ The anthors of The Water Birds of North America (i. p. 123) in reference to this faet raise the ingenious question, "Do lirris, after they lige becomc old, efrete, or barreu, prefer to stay in a warrs cliroate ""

[^288]: ${ }^{1}$ There ia little external difference between the eexes, and the orightly-contrasted coloars of the keu-bird seem to require some kind of concealment.

[^289]: ${ }^{1}$ Dionysius ($x .20$) states that Tusvulum was only 100 stadia (about 121 $\frac{1}{2}$ miles) from Rome ; but the fifteenth milestene on the Via Latina was close to the walls of I'usculum.

[^290]: From rúpos, emoke or mist, in allusion to the stupor of the disease.

[^291]: ${ }^{1}$ A bacillua frequently noticed in certaiu tissues in cases of typhoid fever has not ret been satisfactorily proved to be an organism characte=Litic of that disease, nor even to be constantly present

[^292]: ${ }^{3}$ Orig. Typogr., i. p. 32, nete cx.

 - Passavant, Le Peintre-Graveur, i. 18, Leipsic, 1360-64; Joba Jackson, Hood-Engraving, Landon, 1839 ; Bucher, Gesch. der lechinu Kunste, p. 362 sq.

[^293]: ${ }^{3}$ We find this title applied to at least three worka,-(1) the wellknown block-book, of which we speak below, (2) a treatise "in qua de vitiis et virtutibus agitur," and (3) a work in rhyme by Alexander Gallu
 ${ }^{3}$ See Laib and Schwarz, Eiblia Pauperum, Znrich, 1867.

 - Weigel, Anjänge, i. 10.

[^294]: ${ }^{2}$ See Bernard, Origine de I Impr., i. 164, who was a printer himself and apeaks ery strongly on this point.
 Ehreh-Retuno Johany Guut or the instrument as published by J. D. Koebler,

[^295]: Foumitics, pp. 9.-G.

[^296]: 1 The best account of its invention is contained in a series of articles by Mr William Blades in the Printer's Register, 1883-84, and Th. Goebel's Friedrich Loenig und die Erfindung der Schnellpresse (Stuttgart, 1883). This last has leen trauslated intn French by Paul Schmidt, F. Woenig et l'Invention de (u) I'vesse Mecanipuce (Paris, 1ss5).

[^297]: ${ }^{1}$ The date of Udall's death is sometimes erroneously given as 1564 , In which year his play of Ezelicus was performed at Camblnidge before
 Oecerobor 1556 ($\%$. memoi: - Cooper"s edition ot Royster Doyster)。

[^298]: "The passing of the Act was certainly unconstitutional ; it was mescinded in 1734. "Lecause not made according to former Acte.".

[^299]: ${ }^{2}$ The majority of this synod joined the Church of Scotlend in 1839. The emall minority which still retsined the nsme joined the Original Seceders (see next note) in 1842, the resultant body assuming the designation of United Original Secedere. A small majority (twentyseven ministers in all) of the Synod of United Original Seceders joined -the Free Church in 1852. A gynod of this name etill exists, having under its jurisdiction four presbyteries, with twenty-nine charges (of which two are in Ireland).

 8 A dissentiont remnant (eight congregations) of the General Associate Synod united with the Constitutional Associste Presbytery in 1827. the resultant body being called the Associate Synod of Original Secerers.

[^300]: \qquad

[^301]:

[^303]: *See Winslow Uptou, in Am. Mot. Jour., May, 1888.

[^304]:

[^305]:[^306]:

[^307]:

[^308]:[^309]:[^310]:[^311]: The total production of copper thronghout the world for the The total production of copper throughout the world for the jear lows has beell estimated at antoo the Evited states．
 ＊This is the estimate glven in the Engineering and Moning Jonraal of Jan．12．1 Wh，from which the figures given in the pre－ eding table for the year Ibos are taken

 23－29

[^312]: ＊The sield of Callforuia remalned nearly the same in 1887 as it was in 1879 ．In the former year it was a

[^313]: ${ }^{1}$ Do Renzi, Sloria Documentata della Scuoln Medica di Salerno, ed. 1857, p. 145.
 ${ }^{2}$ Puccinotti, Sloria dello Merticina i 317-326

[^314]: ${ }^{3}$ Sur l'Age et l'Origine des Traductions Latines, \&c., p. 225.
 ${ }^{4}$ Denifle, Die Universitulen, \&c.. i. 48

[^315]: ${ }^{1}$ See Sarigny, Grsch. r. Tim. Kechts, iii. 152, 491-492. See also Giesebrecht, Qesch. d. Kaiserzcit (ed. 1880), v. 51-52. The story is preserved in a recently discovered metrical composition descrij tive the bistory of Frederick J.; see Sitzungsberichte d. Bairisch. /kad. 1: I'issenschaff, Phil.-Mist. F̈lisse, 1879, ii. 285. Its authenticity is called in question by Denitle, but it would sten to be quite in har. mony with the known frets.

[^316]: ${ }^{2}$ The arts conrse of atudy was that represented by the nacient trivium (i.e., grammar, logic, and rhetoric) and the quadrivium (i.e., arithmetic, feometry, nusic, nnd astronomy), as handed down from the schools of the Roman empire. See J. B. Mullinger, History of the University of Cambridge, 1. 24-27.
 XXIII. - 10

[^317]: 1 The statistics of Hantz (Geseh. a. Univ. Heidelberg, i. 177-8) are corrected by Denifle (Dic Entstehung der Universitäten, p. 385).

[^318]: ${ }^{1}$ Meivers, Gesch. d. hohen Sehthen, I 370.

 - Jiscrerlations cand Discussions, Append. Li.

[^319]: ${ }^{1}$ De la Ruo, Rssais llisl. sur la Ville de Cocm, ii. 137-40.
 ${ }^{2}$ Meiners i. 368.

[^320]: ${ }^{3}$ Paulsen, in speaking of this proviso as one "die weder vorher noch nechher sonst vorkommt," would cousequently seem to be not quite. accurate. See Die dründung der deulschen Universitälen, p. 277.

 Oekonomischer Zustand dor Universiiat Tübingen gegen die Mitld des 16ten Jahrhunderts, 1845.

[^321]: 1 Fasti Aberduncmase, Fref. 1' xvi

[^322]: ${ }^{1}$ For an excellent account of this movement, see Georg Voigt, Dic 11 "eclerbeleburg des classischen Alterthums, 2 d ed., 2 vols., 1880 .
 ${ }^{2}$ Hamilton, Discussions, 2l cd., p. 373.

[^323]: 1 Discrestons, \&c., 21 ch., rp. 388-9.

 - Pronulg. .lcad. Privil., d.c. Strashurg, 1628.

[^324]: ${ }^{1}$ See Die deatschc U'niversitäl Dorput in Lichte der Geschichte, $\$ 882$.

[^325]: ${ }^{2}$ Life of Casatbon, p. 181.

[^326]: ${ }^{1}$ Hamilton, Discussions, p. 381.
 2 "Volumns nemineu in have nostram Academiam adnitti, ant per rectorem in album recipi, qui nou habeat privatum atờe domesticum preceptorem, qui ejus discipulum agnoscat, ad cujus judicium quisque pro sua ingenii capacitate atque Marte lecturas ot publicas et privatas audiat, a cujus latere aut raro aui nuuquam discedat." "Kochexpressly compares this provision with the discipline of Oxford and Cambridge, which, down to the commencement of the present century, wns very much of the same character' (Koch. Gesch. "des academischen" Pädagogiums in Marburg, p. 11).

[^327]: ${ }^{1}$ The neme first occurs in Suorro Sturlnsod in connexion witb the event: of the yer 1018. It engafies "the mouth of the easter river "

