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Abstract
Heisenberg’s uncertainty principle is often cited as an example of a ‘purely
quantum’ relation with no analogue in the classical limit where 7 — 0. How-
ever, this formulation of the classical limit is problematic for many reasons,
one of which is dimensional analysis. Since % is a dimensionful constant, we
may always work in natural units in which 7 = 1. Dimensional analysis teaches
us that all physical laws can be expressed purely in terms of dimensionless
quantities. This indicates that the existence of a dimensionally consistent con-
straint on AxAp requires the existence of a dimensionful parameter with units
of action, and that any definition of the classical limit must be formulated
in terms of dimensionless quantities (such as quantum numbers). Therefore,
bounds on classical uncertainty (formulated in terms of statistical ensembles)
can only be written in terms of dimensionful scales of the system under consid-
eration, and can be readily compared to their quantum counterparts after being
non-dimensionalized. We compare the uncertainty of certain coupled classi-
cal systems and their quantum counterparts (such as harmonic oscillators and
particles in a box), and show that they converge in the classical limit. We find
that since these systems feature additional dimensionful scales, the uncertainty
bounds are dependent on multiple dimensionless parameters, in accordance
with dimensional considerations.
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1. Introduction

Historically, the development of quantum mechanics benefitted greatly from the intuition
offered by the Lagrangian and Hamiltonian formulations of classical mechanics. Perhaps
the most famous example of this was Schrodinger’s derivation of his eponymous equation.
Realizing that microscopic particles had a fundamentally ‘undulatory’ (wave-like) nature,
Schrédinger observed that constant action surfaces!, being periodic, would play a major role
in developing a robust theory of quantum mechanics [1]. It is at this point in which dimen-
sional analysis played a crucial role in Schrodinger’s reasoning: indeed, since the action is a
dimensionful quantity, it can only appear as the argument of a periodic function if it is divided
by a quantity that also has units of action. If one cannot ‘resist the temptation’, as Schrodinger
put it, of assuming that this constant is a fundamental constant, the most obvious candidate
is the Planck constant /2, which can be converted into a phase if divided by 2, leading to the
appearance of the reduced Planck constant i = h/27.

Schrodinger’s archetypal quantization procedure was later formalized and refined as the
deformation from Poisson brackets to quantum commutators and the promotion of classical
expressions to quantum operators for classical systems. It is therefore natural to ask whether
‘purely quantum’ phenomena can be formulated in a classical manner. The question has been
approached from multiple angles, and, while it may be futile to attempt to build a purely
classical theory that perfectly replicates the observations of quantum mechanics, we at least
expect quantum mechanics to reproduce classical predictions corresponding to our everyday
experience. This is the crux of the correspondence principle [2-5].

The correspondence principle is often expressed as the idea that quantum mechanics must
reduce to classical mechanics in some limit, usually referred to as the classical limit. Stated
like this, the correspondence principle is little more than tautological unless we are very care-
ful to expand on how the classical limit is formally defined. In most undergraduate textbooks,
the correspondence principle is formalized in terms of Ehrenfest’s theorem, which relates the
evolution of the expectation values of operators to their commutator with the Hamiltonian.
However, even Ehrenfest’s theorem alone does not bridge the conceptual gap between quan-
tum and classical mechanics [6]. This is only possible if we assign a classical meaning to the
expectation values themselves. In order to do this, consider a quantum system evolving so
rapidly that we can only measure its mean state over many cycles. Hence, the classical limit
may be identified as the limit in which energies (or quantum numbers) are so large that the law
of large numbers is unquestionably in effect and our macroscopic measurements are, in effect,
averages of a very large number of quantum measurements.

While Ehrenfest’s theorem provides a formal way of moving from the quantum realm of
uncertainty to the classical realm of certainty, it is helpful to approach the question from the
opposite angle and ask how uncertainty may arise in classical systems. Of course, for a single
system with a fixed, known state, the notion of an expectation value of a quantity is no different
from the quantity itself. However, since quantum mechanics is an inherently probabilistic the-
ory, it makes more sense to formulate classical uncertainty by way of an ensemble of systems,
each with a different statistical weight. In this framework, the classical probability distribu-
tion is the analogue of the quantum mechanical probability density p = |1)|?. Therefore, in this

I'Here, ‘action’ refers to W = J Ldt, where L is the Lagrangian.
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way, the statistical average of the ensemble may be identified as the classical analogue of the
quantum average of the system in question.

We turn our attention to the well-known Heisenberg uncertainty principle, a purely quan-
tum mechanical limit on the simultaneous localization of a particle’s energy and momentum
AxAp > h/2. A naive treatment of the classical limit might lead us to expect that no uncer-
tainty exists in the classical case. However, this would be a mistake: the Heisenberg uncertainty
principle presupposes the existence of a fundamental unit of action (i.e. the Planck constant
h), something which does not exist in the classical realm. Therefore, a meaningful compar-
ison between the two domains can only be achieved by working with non-dimensionalized
quantities, such as the quantum numbers, recognized by Schrodinger as corresponding to
Bohr’s stationary energy levels of the elliptic orbits in the case of the atom. Schrodinger
even obliquely refers to the correspondence principle at this stage, noting that even though
‘mathematically’, the atom spreads throughout space as n — 0o, its quantum nature is restricted
to a few angstroms, i.e. for relatively small n [1].

The idea that a comparison of the quantum and classical realm must be made through the
use of pure numbers is by no means exclusive to the correspondence principle: it is a result
of the Buckingham-7t theorem [7], which states that every law of physics must be expressible
in a non-dimensionalized form. A careful treatment of the harmonic oscillator, infinite square
well, and other single-particle systems with simple one-dimensional potentials [§—15] reveals
that, once position and momentum are properly non-dimensionalized (with the help of xy and
Po» Which are reference scales inherent to the system), then it is possible to arrive at a similar
limit for the ensemble uncertainty, given by AXAp > ¢, where ¢ is a pure number.

A natural question to ask at this stage is how the relation between quantum and classical
uncertainty is modified for interacting one dimensional systems with additional dimension-
ful scales (such as coupled systems). Our approach is to define appropriate dimensionless
variables, and seek to obtain the uncertainty relations in terms of their dimensionless ratios.
In particular, we expect that adding more degrees of freedom to the system will yield more
dimensionless ratios in the expression for the uncertainty relations, in accordance with the
Buckingham-7t theorem.

The outline of the paper is as follows: in section 2, we briefly review dimensional analysis
and consider the implications of the Buckingham-7t theorem for the classical and quantum
uncertainty principle. In section 3, we outline how the notion of classical uncertainty may be
formalized by providing an overview of the correspondence between classical and quantum
uncertainty for one-dimensional harmonic oscillators and the infinite square well. We then
go on to examine how the addition of further dimensionful scales modifies the uncertainty
relations while still respecting the correspondence principle. In, sections 4 and 5 we study
coupled harmonic oscillators, whereas in section 6, we study two particles in a box with a
contact potential. Finally, we discuss our findings in the conclusions.

2. Dimensional analysis and the classical limit

Physical dimensions are a concept related to but distinct from that of units. Units are related to
standards (e.g. the length of a rod, the weight of a bearing, etc) and correspond to the way in
which the same measurements can be expressed: for instance, 1 km and 1000 m both describe
the same quantity. Dimensions, however, are inherent qualities of a physical quantity, related
to how they are measured within a consistent theoretical and experimental framework [16].
Dimensions of physical quantities can be formalized as vectors living in a ‘physical
dimension’ vector space. The dimension of a quantity Q in a system with three ‘base’
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dimensions can be expressed as
(0] = M°L°T", )

where M, L, T correspond to the dimensions of mass, length, and time, respectively. Then, [Q]
is a member of a vector space over R, where vector addition is represented by multiplying [Q]
and vector multiplication is represented by raising [Q] to a power:

(05051 = [Q11°[Qx1". )

The triplet (v, 8, y) is a particular representation of [Q], dependent on the choice of base dimen-
sions. In a system of different fundamental units (and therefore dimensions), for instance,
weight W instead of mass M, the dimension of a quantity will remain the same, even though
its coordinates will be different (exactly like vectors are independent of the coordinate system
we parameterize them in).

The dimensions of a quantity can be used to determine how it transforms under a change
of units. For instance, energy has dimension ML*T~? and therefore would quadruple if the
definition of a meter were to be halved, whereas a dimensionless quantity or ‘pure number’
with dimension 1 would not transform. The usual nomenclature of vector spaces can be applied
even further: the quantities Q; are said to have linearly independent dimensions if there is no
non-trivial way of constructing a dimensionless quantity out of them, or, equivalently, if

[H[Q,-]“f] =1 3)

implies o; = O for all i.

Dimensional analysis fundamentally rests upon the principle that the laws of nature should
not depend on our choice of units. This simple idea turns out to have profound implications:
it can be used to actually constrain the form of physical relations. This constraint is often
expressed in terms of the Buckingham-7ttheorem [7]. The simplest statement of this theorem is
that a physically meaningful relation between quantities ¢; can always be non-dimensionalized,
i.e. written in terms of dimensionless quantities 7; constructed out of ¢g;. It is not difficult to
see why this is the case: since, by definition, only dimensionless quantities are invariant under
changes of units, then any invariant law must be constructed from dimensionless quantities
only. More specifically, if we have a set of m dimensionful quantities with n linearly indepen-
dent dimensions, and k dimensionless quantities ¢, then any non-dimensionalized law can be
written as

f(ﬂ-l,-"aﬂ-m—n,cl,-'-ack):0~ (4)

It is not difficult to see that this relation encapsulates all possible relations that remain invari-
ant under a change of units. Rayleigh’s method of dimensional analysis (which is what
‘dimensional analysis’ most often refers to in an undergraduate context), a procedure in which
a system is analyzed by considering all the dimensionful independent variables that might
influence a dependent variable, is a particular application of the Buckingham-7t theorem.

The Buckingham-7t theorem, as expressed through (4), gives us a profound insight on what
exactly it means to examine a physical relation in a particular limit. We observe that it is mean-
ingless to talk about the limit of a dimensionful quantity: it only makes sense to consider the
limit of the dimensionless quantities 7; or ¢;. This is an important distinction, because once
we have decided to include a dimensionful quantity as part of our dimensional analysis, we
are considering a different system. Consider, for example, special relativity. Formally (and

4
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naively) taking the limit ¢ — oo in hopes of recovering classical mechanics can lead to unex-
pected results, such as infinite rest mass mc? for particles. This is because the very concept of
‘rest mass’ presupposes the existence of a finite speed limit, which does not vanish simply by
taking this limit to infinity.

For the reasons outlined above, studying the correspondence between classical and quan-
tum mechanics is more nuanced than it might originally appear. A common statement of the
correspondence principle is due to Dirac [17], who regarded classical mechanics as the limiting
case of quantum mechanics when the (reduced) Planck constant 2 — O (see [18] for a review).
This statement is formally valid for a large scope of applications, but as discussed, may lead to
misleading results if applied carelessly. For instance, we might be tempted to write AxAp > 0
in the classical limit. However, we know that only limits of dimensionless ratios are meaning-
ful. This means that Bohr’s statement of the correspondence limit (n — oo, where n are the
quantum numbers of the system in question) is more precise, and the two statements are not
necessarily equivalent [4].

In order to illustrate how the correspondence limit of uncertainty bounds can be viewed
through the lens of dimensional analysis, we consider a particle with a one-dimensional trajec-
tory. Immediately, from dimensional analysis, we can see that there is no way to impose a limit
on Ax and Ap: there are no dimensionless ratios that can be derived from these quantities. We
need to introduce at least one additional scale with dimensions of action (ML*T~'). In quan-
tum mechanics, such a scale already exists: i denotes the scale at which quantum effects are
relevant. In the classical ensemble, however, any meaningful uncertainty limit will necessarily
be expressed in terms of some physical scale(s) of the system.

We now consider a particle in the quantum realm with characteristic action A (defined as
the integral of momentum over length) along with the quantum unit of action /. We wish to
arrive at a relation between Ax and Ap, and so the dimensionless quantities are given by

h h
T = K’ T = m, 5)
or, alternatively
h A
™ = X’ T = m (6)

Any of these two choices is valid; after all, the Buckingham-7t theorem does not tell us which
choice of dimensionless ratios is more ‘physically meaningful’. However, it is clear that if
the limit /i/A — 0 is taken, the choice (6) contains more information. Alternatively, we may
replace 7 by the quantum number #, since both tell us how prominent quantum effects are.
The uncertainty relation is therefore going to satisfy

AxAp B\

As aresult, the uncertainty equation in the classical limit can be recovered by setting ii/A — 0.
If we instead follow a classical treatment without ever introducing £, the uncertainty relation
is simply

AxAp\
g( 1 )—0, (8)
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and by the correspondence principle, we expect

lim f (AxAp E) _ (AxAp) . ©)

1/A—0 A A A

In this limiting case, the minimum uncertainty is necessarily given by g(AxAp/A) = 0, and
as such, the uncertainty principle is given by

AxA
Zp>c,

(10)

where c is some dimensionless parameter, the value of which cannot be determined via dimen-
sional analysis. However, we observe that naively setting 2 = 0 does not necessarily recover
the classical limit /i/A — 0; after all, there is no guarantee that the function f is continuous.

For a simple system of a single particle with energy E and mass m in a box of length L, we
find that the unit of action A = Lv/2mE. However, in general, we expect that the uncertainty
principle is going to acquire the following form:

AxAp
A

> f(m). (1)

where the 7; are constructed out of the characteristic action scales A; of the system and A is
some weighted average of the A;. This is as far as dimensional analysis can take us. We cannot
hope of arriving at the precise form of A. Importantly, the above discussion presupposes that the
notion of ‘uncertainty’ can exist in the classical realm. While a truly random variable cannot
exist in classical mechanics, chance may be introduced to classical mechanics via ensembles,
as discussed in the following section.

3. Classical probability and uncertainty

At first glance, it may seem that there is no room for probability in classical mechanics. Laplace
envisioned a being, ‘Laplace’s demon’, which ‘at a certain moment would know all forces
that set nature in motion’. He argued that for such a being, ‘nothing would be uncertain and
the future just like the past would be present before its eyes’ [19]. However, even in such a
perfectly deterministic world, there is room for the notion of probability. Indeed, the proper
classical limit of quantum mechanics (and the only avenue by which we can describe ‘classical
probability’ in any meaningful sense) is classical statistical mechanics rather than classical
mechanics [3, 6], which necessitates the use of the statistical ensemble if we are to extend the
notion of uncertainty into the classical realm.

If a single-particle system is viewed as a member of an ensemble of bound-state particles,
the position of the particle is no longer a trajectory, but rather a distribution. We may view this
distribution either in the frequentist sense of a random selection of one of the members of the
ensemble, or in the Bayesian sense of ‘parameterizing our ignorance’ of the particle’s initial
conditions. The distribution for the position of a particle in a classical ensemble is derived by
observing that the particle spends a time dr = dx/|v(x)| within the interval dx, where v(x) is
its speed. Assuming we observe the particle at some unspecified time, the classical probability
density for position measurements of a particle uniformly selected from such an ensemble is
defined as

N

plx) = m, (12)



Eur. J. Phys. 41 (2020) 065407 V Gattus and S Karamitsos

where N is a normalization constant, E is the energy of the bound state and V(x) the potential
function. This confirms our intuition that the particle is found more often in regions where its
speed is low. For periodic systems, N = 2/7 where 7 is the period.

From this definition of classical probability density, it follows that the average of a classical
operator A can be defined as an average over one period 7:

Jo An)dr
Jo dr

Furthermore, it is possible to straightforwardly calculate the variance of classical operators
using the usual definition AA? = (A%) — (A)2.

Having put all preliminaries in place, we may turn our attention to the correspondence
between the classical and quantum uncertainty in a few select systems of interest. Single-
particle systems have been examined thoroughly in the literature, and from a dimensional
analysis perspective, two-body systems may be more robust. However, in order to set the scene
and allow for a direct comparison with coupled systems, we will cite here the one-particle
results for the cases of harmonic oscillator and infinite square well. As discussed in the pre-
vious section, it is illuminating to view uncertainty bounds through a non-dimensionalized
system of equations, which motivates us to define the dimensionless position and momentum
variables as follows:

(A)eL = (13)

- Xi — Di
Xi=—, pi=—1, 14
AT T A (19
where A; is the initial amplitude of the system, m; its mass and w; is the frequency of oscillation.
With this notation, the uncertainty product for position and momentum in the classical
harmonic oscillator case is found to be
1
AXApD = 3 (15)
Similarly, for a single particle confined to move under a one-dimensional infinite square well
potential, the uncertainty product is

1
V12°

This coincides with the quantum mechanical result in the limit of large principal quantum
number n. For a full derivation of these uncertainty results, the reader is referred to [20, 21].
For single-particle systems such as the harmonic oscillator and the infinite square well, we
note that the uncertainty bound reduces to a pure number in the classical limit. This is to be
expected, since there are just enough dimensionful parameters in order to define the dimen-
sionless analogues of position and momentum. In the presence of additional dimensionful
parameters, however, we expect the uncertainty bounds to depend on residual dimension-
less variables even in the limit of large quantum numbers. Coupled systems feature more
dimensionful parameters, and for this reason we turn our attention to them in the next section.
In concluding this section, we must stress that recasting quantum mechanics in the clas-
sical phase space (effectively deducing its postulates on statistical grounds) is a much more
involved procedure than assigning a classical distribution to a particle ensemble as outlined
above. This procedure usually involves ‘geometrizing’ quantum mechanics by constructing
the phase space of a classical system, which is then endowed with a probability measure. Ric-
cia and Wiener [22], for instance, use stochastic integrals in order to motivate Born’s rule,

AXAp = (16)

7
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while Kibble [23] employs symplectic manifolds with a complex structure in order to recover
quantum dynamics. Another geometric approach by Heslot [24] reveals 7 to be the curva-
ture of the space of quantum states, indicating once again that there is a qualitative difference
between the classical and quantum realms; the former features a state space which has a natural
unit of distance, while the latter does not. The field of quantum information [25, 26] features
powerful and sophisticated techniques that make the quantum—classical correspondence much
more manifest. These approaches to the relation between classical and quantum mechanics are
quite involved, and beyond the scope of the present work. Nonetheless, our simple approach
still highlights the often-overlooked role that dimensional analysis plays in both classical and
quantum uncertainty and the classical limit of quantum mechanics.

4. Two coupled harmonic oscillators with equal masses

We consider a simple coupled system consisting of two harmonic oscillators with spring con-
stant k and equal masses m, coupled via a potential of the form V(x;,x;) = %k’(x 1= x2)2,
where k # k' in general, and x; and x, denote the displacements of the individual oscillators.
For similar treatments of this set-up the reader is referred to [27-29].

4.1. Classical oscillators

We model the classical system with two blocks constrained to move in a one-dimensional
frictionless surface. Each block is attached to an outer stationary wall by means of a spring
with force constant k. The inner spring has force constant k'. It is assumed that all springs
assume their natural length when the system is at rest.

This 1D problem can be easily approached utilizing the Lagrangian formalism and is part
of the repertoire of any undergraduate dynamics course. The Lagrangian of the system reads

| | 1
L= me% + meg )
To decouple (17) and obtain the equations of motions, we perform a change of variables in favor

of the normal mode coordinates x., defined as linear combinations of the position variables
X125 i.e.

1
k(x? + x3) — 5k’(x1 — ) (17)

X1+ X2 Xy — X2
Xe = \/5 Y \/E > (18)
which are the center of mass and relative distance respectively.

The characteristic frequencies of the two normal modes of oscillation are given by
w? = k/mand w? = (k + 2k')/m, corresponding to in phase and out of phase oscillations
respectively.

The time averages of the normal modes coordinates for position and momentum are then
found through (13) over a period 7; = 27/w; withi = ¢, 1:

2
=0, (=", 19)
(p) = 0. () = %mzw?A?. (20)

It is now straightforward to change back to the position variables x;, in order to find the
uncertainty relation in its conventional formulation as the product of the uncertainties Ax and
Ap.
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The time averages for the position variable x; can be readily obtained via of (19) and (20):

2
(x1) = %@Cc + x) =0, (21)
(xi) = %«xc + %)) = %(A% + AD- (22)

This yields the following expression for the variance of x;:
VA2 + A2
Ar = /) ()2 = YR 23)
Using the definition, the time averages and variance of the momenta are found to be
1
(p) = 0. (p) = Jm* (AGwi + Atwy), (24)

A22 1 AZL2
Apy = m# (25)

Repeating the previous steps for the second block yields identical results. The product of the
variances is therefore

A2 1+ AZ\/A202 + AZ2
AXIAPI — m\/ C + I‘\/4ch + rwr’ (26)

and similarly for Ax,Ap,. Using the scaled canonical variables defined in (14), (26) can be

written as
1 A? AZ2
AXIAp = —4/1 <41 e 27
X1 AP 4\/ +A?\/ +A%wr2 (27)

where the variables have been scaled by A; and mA;w; respectively. Since the system is sym-
metric under particle exchange, the expression for Ax, Ap, can be easily deduced from that
of Ax;Ap, by swapping indices 1 and 2. We note that this expression, which represents the
uncertainty relation in terms of dimensionless position and momentum for a classical ensem-
ble, comprises of two dimensionless ratios involving the amplitudes A, and frequencies we
respectively, as expected.

We may compare the uncertainty product of this system to that of the 1D uncoupled case of
(15) by setting A, = A; and w. = w;. As such, we observe that the effect of the coupling is to
add another dimensionful degree of freedom to the system, which results in the possibility for
another dimensionless ratio to appear in the non-dimensionalized expression for the uncertainty
product.

4.2. Quantum oscillators

The quantum mechanical analogue of the system we have analyzed so far is that of two dis-
tinguishable coupled one-dimensional harmonic oscillators. We treat the oscillators as distin-
guishable to allow for a direct comparison to the uncertainty product of (27) in the previous
section. The system is then described by the following Hamiltonian:
H = il + lk(x"{ + x3) + lk’(x1 — x). (28)
2m 2 2

9
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Using a variation of the Jacobi coordinates allows us to reduce the complexity of the problem
by transforming it to what is essentially a one-dimensional problem in terms of the center of
mass and relative coordinate of (18) [30].

After the change of variables, the Hamiltonian becomes separable:

N n 1 P 1
H =2 4 kx> + 25 4+ —(k 4+ 2K)x? 29
om Tk g, gk F 20, (29)
= H. + H,. (30)

It is therefore possible to determine the evolution of the system by viewing it as two single-
particle harmonic oscillators with angular frequencies given by w? = k/m and w? = (k +
2k’)/m. Since the oscillators are treated as distinguishable, the total wavefunction of the system
is the product of the single-particle wavefunctions:

W(Xe, xp) = ¢nc(xc)¢nr(xr), 3D

1/2 2
= () 0 (2)on(-£)

with xo = \/%, and n; and n. are the principal quantum numbers associated with the

where

wavefunctions ¢(x;) and ¢(x.) respectively.

Using the definition for quantum mechanical expectation values and making use of the
orthogonality properties of the Hermite polynomials, one can calculate the expectation val-
ues for x; and x. and the respective momentum operators for the general wavefunction defined
in (31) as

o Qo+ DR
() =0, () = CuT R 3
() =0, () = Cn; + l)mgwi, (34)

where i = ¢, r. We can now transform back to the original spatial variables x| and x, and obtain
the expectation value for positions and momenta using the results (33) and (34) above:

_ o 1 [@n + D @2nc + DA
) =0, (x) = 2 { 2mw; * 2mwe ]’ (35
() = 0. () = [mhw’(zg‘ ub L 1)] , (36)

and similarly for the second oscillator. Hence, the quantum uncertainties in position and
momentum read

1 [@n + 1 2ne + 1
Ax]:\/(;1+)71+(;1+)71 a7
2 mwy mwe
1
I 2 2
= 2\/ 2o+ A2, (38)
1
Ap, = 5\/mhwr(znr + 1) + mhw(2ne + 1) (39)

10
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m
— 22 242
= weA;, + wiA

: 243, (40)

respectively, where A, are the classical turning points associated with the energy E,,., of an
harmonic oscillator with mass m and frequency we:

2F, 2n., + Dh
Am=\/ §‘=\/(n’+ ). 41)
’ muwg Mmwe rle

In terms of the dimensionless variables X; and p; of (14) scaled by means of the amplitude A, ,
the uncertainty product can be written as

1 A2 A2 2
AX | Ap; = —4/1 e 1 ne”C 42
X1AD 4\/ + Aﬁr\/ + 422 42)

or explicitly in terms of the principal quantum numbers n., and harmonic oscillator frequencies
Weyr a8

— A 1 (2ne + Dwr (2ne + Duwc
AXMAPL = \/1 o+ Do \/1 o ¥ Doy (43)
We note that the last expression only involves dimensionless ratios of the two frequencies of
oscillation and the characteristic principal quantum numbers. It is suggestive of the correspon-
dence principle that (42) is in complete agreement with the classical uncertainty of (27), and
all observations on how the couplings affects the classical uncertainty product also apply in
this case.
To offer a graphical comparison between the classical and quantum system, let pcy (xc,) be
the classical probability density defined by

1

T (44)

5| —

pcL(x) =

and valid in the range x € (—A,,A,) where A, is defined in (41) [20, 21]. The usual repre-
sentation of 1D quantum and classical probability densities can be found in the literature (see
[21]); as such, we illustrate the coupled case. Figure 1 shows the quantum probability density,
pom(xc), along with the classical analogue p¢y (xc) in terms of the center of mass coordinate
for various values of the principal quantum number 7.. Figure 2 shows the probability densities
for the same values of the principal quantum number 7, as a function of the relative coordinate
X, instead.

Finally, let the total classical probability density be given by the product of the ones
associated to the individual modes of oscillation x., as

pcL(x1, X2) = pcL(xe)peL(xr). (45)

Figure 3 offers a comparison between the quantum probability density, pgy and the classical
counterpart pc (X1, x2) which are plotted as functions of the original spatial variables of the
problem for value of n equal to 5, 10 and 20. Noticeably, the shape of the three dimensional
classical probability density is that of a rectangular well with soft edges. This is the natural and
intuitive extension of the 1D distribution shown in figures 1 and 2, which can be retrieved by
slicing the three dimensional distributions across lines of x; = 0 and x, = 0.

1
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(®)

Figure 1. Uncoupled classical (dashed line) and quantum (solid line) probability densi-
ties for the harmonic oscillator as functions of the center of mass coordinate x. for (a)
n. =5, (b) n. = 10 and (c) n. = 20.

()

Figure 2. Uncoupled classical (dashed line) and quantum (solid line) probability densi-
ties for the harmonic oscillator as functions of the relative coordinate x, for (a) n, = 5,
(b) n, = 10 and (c) n, = 20.

(®)

Figure 3. Classical pcp (x1,x2) and quantum poy = [t),(x1, x2)|? probability densities
for coupled harmonic oscillators with equal masses vs the spatial variables x; and x, for
(a)n =235, (b)n =10, (c) n = 20.

5. Two coupled harmonic oscillators with different masses

Let us now consider a slight variation of the problem analyzed in the previous section for which
the oscillators have masses m; and m, with m; # m, and the potential function is V(xy, x,) =
%k(xl — x2)%. We expect that the results in this case will have a similar form, even though the
dimensionless ratios will differ. For similar treatments of this set-up the reader is referred to
[27, 28].
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5.1. Classical oscillators

Similarly to section 4.1, the classical system consists of two blocks connected to three springs.
The motion of the blocks is described by the following Lagrangian:

1 1 1 1
L = —mi] + =mpis — zwimxt + myx3) — ~k(x; — x2)7, (46)
2 2 2 2
where we assume the angular frequency w to be the same for both oscillators. The equations
of motion obtained from Lagrange’s equations can be decoupled by performing a variable
transformation to the Jacobi coordinates:
X1 — X2 mix; + mpxp

Xy = T, Xe = Tﬁ, 47

where M = (m; + my)/2. Proceeding with this transformation, (46) can be rewritten as

1 1 1 1
L = EM;'C§+ Eujcf - Ewaxﬁ — Euwfxf, (48)

where p = (mymy)/M is the reduced mass and w? = w?, w? = w? + 2k/pu are the two har-

monic oscillator frequencies. The time averages of the relative and center of mass coordinate
are given once again by (19). We may then easily transform back to the spatial coordinates x;
and x, by combining the expressions for x; and x. from (47), i.e.

1 m 1 m
X = 7 (xc + szr), Xy = 7 (xc — ﬁlxr). (49)

Thus, using the results of (19), the averages for x; are found to be

1 2
() =0 () = [A? + (%) A?}, (50)

with variance given by the following expression:

Ax, = % 2 4 (%)zAg. (51)
The symmetric properties of the system allow us to easily deduce Ax, by simply swapping the
indices 1 — 2 in the variables appearing in the expression for Ax;.

Repeating the previous steps for the momenta allows to express p, , in terms of the relative
and center of mass coordinate momenta defined as p, = px, and p, = Mx, respectively. Hence,
the time averages and variances of the momenta are

(p1) =0, (52)
1 my\ 2

W = g {uszA? +(57) Mzwai], (53)

Ap = 1\/ [2w2A2 + (@)ZM%ﬂAz (54)
2 T T M c‘re?

for the first oscillator. Once more, the results for the second block are obtained by swapping
the subscripts 1 — 2.

13
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Using the scaled variables X; and p; defined in (14), enables us to find the dimensionless
uncertainty product, AXAP, as

o 1 my\ 2 A2 mi\2 [202A2

AT AP = —]1 (—) = (—) el 55

Hap 4\/ T \u Ag\/ m) T owrea (53)
and

o 1 mp\2A2 s\ 2 1Ew2A?

ADHAD, = —[1 (—)—f (—) 56

2P 4\/ \u Ag\/ m) T owrea (56)

for the first and second oscillator respectively.

We note that these expressions are symmetric under particle exchange and comprise of three
dimensionless ratios involving the masses, the amplitudes and the frequencies of the oscillators.
The extra term involving the masses in (55) is what sets it apart from the uncertainty product
of the system of coupled oscillators with identical masses described by (27), where only the
other two dimensionless ratios appeared. This may be surprising, since both systems have the
same number of fundamental dimensionful variables. The difference in the two expressions
can be ascribed to the choice of coordinates of (47) employed to decouple the equations of
motion: since the expression for the center of mass coordinate is weighted by the masses, this
‘artificially” introduces the extra term, (m;/M )2 with i = 1,2 in the uncertainty for momentum
AP;. Such a detail, however, is beyond the capabilities of dimensional analysis to predict.

5.2. Quantum oscillators

We now turn our attention to the quantum description of a system comprising of two distin-
guishable coupled harmonic oscillators with masses m; and m,. The Hamiltonian of the system
reads
H = ﬁ + i + lmlcuz)c2 + lmgcuz)c2 + lk()cl — x)? 57
2my - 2my 2 2 202 '
As with the classical counterpart, the Hamiltonian here becomes separable under the Jacobi
coordinate transformation of (47), i.e.

. B 1 2o 1
H= -0+ Spwa? — -2+ - Muwex? 58
2o M T gy T oMk (58)
= H, + H, (59)

where the meaning of the variables is the same as in section 5.1. The Hamiltonian (58) describes
two single particle harmonic oscillators whose solutions are given by (32).

As before, the total wavefunction of the system is the product of the single-particle wave-
functions and the expectation values for x; and x. and the respective momentum operators are
simply the one-particle results of (33) and (34). With this information, we may evaluate the
expectation values of the original spatial variables of the problem and the respective momenta:

_ oy _ L[@ne + DA rmaN2@2n + DR
() =0 (o) = 3 [BE D (et DR
1 2
() =0, () = {(an + Dphwr + (T5) @nc + 1)thc}, ©1)
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(b)

Figure 4. Classical pcp (x1,x2) and quantum poy = [10,,(x1, x2)|* probability densities
for coupled harmonic oscillators with different masses vs the spatial variables x; and x»
for values of n given by (a) n =5, (b) n = 10, (c) n = 20.

and likewise for the second oscillator variables x, and p,.

In accordance with definition (14), we introduce the variable A, to represent the classical
turning point associated with the energy E,, of the quantum mechanical harmonic oscillator. A,,
is as defined in (41), where now m is either p or M for A, or A, respectively. This allows us
to find an expression for the dimensionless uncertainty product of position and momentum as

o 1 my\ 2 A2 mp\ 2 PwZA2

axap = 1+ (5) G [ () + 62

Hep 4\/ T\m A%C\/ M) T A 62)
and

o 1 my\2 A2 mo\ 2 [PwZA2

ABHAT, = /1 (7) . (7) e 63

e 4\/ AN, Aﬁc\/ M) T A (63)

for the first and second oscillator respectively, where both canonical variables have been scaled
by A,.. To highlight the dependence on the principal quantum numbers, (62) and (63) can be
written explicitly as

— A= 1 my\2(2n, + 1)Mw, ne + Dpewor my\ 2
ARAP = 4\/1 * (M) ne + l)uwr\/(2nc T DMw, (M) - (69

Expectedly, the quantum uncertainty relations (62) and (63) match the classical ones given by
(55) and (56). Furthermore, the considerations made regarding the overall effect of coupling
on the uncertainty product (see end of section 4.1) and the difference to the results obtained in
section 4 also apply to the expressions derived above.

The graphical representations of the 1D classical and quantum probability densities are
analogous to the ones presented in figures 1 and 2. Figure 4 offers a comparison between
the quantum probability density, Pom = |0, (x1, xz)\2 and the classical counterpart pqp (x1, x2)
which are plotted as functions of the original variables of the problem for various values of n.
Notably, the shape of the classical distribution is that of a skewed rectangular well which is not
diagonal as the one in figure 3. It is evident however that the quantum and classical distributions
converge in a locally averaged sense for high values of the principal quantum number n in both
cases.
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6. Two particles in a box coupled via contact potential

The final set-up we consider is a system of two particles in an infinite potential well which are
allowed to interact via a contact potential of the form

Vix) = {)\(5 (x1 — x2) 0<x,x < L’ 65)

00 otherwise

where L is the dimension of the box and the coefficient )\, which has dimensions of ML2T~2,
determines the strength of the interaction. For similar treatments of this set-up without
uncertainty considerations, the reader is referred to [31-35] or to [36] for a treatment with
uncertainty relations.

6.1. Classical case

Starting with the classical case, the Lagrangian of the system can be written as

1 1

L = 5mljc% + Emg)'c% -V, (66)
where V is defined in (65) and, in general, m; # m,. Once again the equations of motion are
decoupled via the Jacobi coordinates:

myxy + myx

X = X1 — X2, Xe = % (67)
where M = m; + my; is the total mass of the system of particles. Proceeding with this variable
transformation allows (66) to be written as

L= %Mxﬁ + % it — A (xy), (68)
where p = (mymy)/M is the reduced mass and the expression for £ is valid within the spatial
domain 0 < xj,x; < L. The equation of motion for the center of mass coordinate is trivial
M. = 0, as expected for a classical particle confined in a one-dimensional potential box.

Let us now evaluate the classical averages relevant to this set-up. Since 0 < x;, x, < L then
the spatial domain for the center of mass coordinate is 0 < x. < L. Hence, the time averages
(xc) and (p,) for position and momentum are simply

L L?
(re) = 3 (x2) = B (69)
(pey =0, (pl) = 2ME., (70)

where E. is the energy of the particle. For the relative coordinate, the equation of motion
involves the derivative of the delta-function which is remarkably challenging to compute ana-
Iytically. As a simplification, however, since we are in the classical regime where no tunneling
can occur, we can assume that the potential acts as a solid wall at x, = 0. Essentially, in each
half of the box we are dealing with a classical free particle confined to move in a limited
region of space with the condition —L < x, < L. Hence, the averages will again be those of
the one-particle case for a box of length 2L with the condition that x, # 0 [20, 21].
We find the averages to be

(x) =0, (x)) = = (71)
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(pr) =0, (p}) = 2uE. (72)

Switching back to the original variables, the classical averages of the spatial coordinate x; and
the respective momentum p; are found to be

mi= 5w =2l ()] 73

() =0, () = 2B + (5 “ME., (74)
and similarly for the second particle:

= 5w =2l (], s

(p2) = 0, () = 2uE: + (%)22MEC. (76)

To find the dimensionless uncertainty product AxAp, we use a similar definition to that of
(14), introducing the following scaled quantities:

(77)

Hence, after finding the variances using the results (73) to (76) and expressing them in
terms of the canonical variables from (77), one finds the dimensionless uncertainty product of
position and momentum to be

1 2my \* mi\2ME,
AxAp = /1511 + <Mz> \/1 + (ﬁl) B (78)

Since the system is symmetric under exchange of particles, the product Ax, Ap, can be easily
deduced from (78) by exchanging the indices 1 and 2:

1 2m\? my\2ME,
ATAR = ([ o5y/1 + <Ml> \/1 + (ﬁz) - (79)

We can see that (78) (and equivalently (79)) only involves dimensionless ratios of the masses
and energies of the two classical particles. Comparing these results to the uncoupled case rela-
tion, which is given by (16), we see how the two expressions do not simply coincide when
m; = myp and E. = E. In fact, in the latter case we obtain exactly double the uncertainty prod-
uct of the one-particle case. This can be ascribed to the fact that this is still a coupled system
of particles.

Hence, as we have also concluded in the other examples considered so far, introducing a
coupling potential increases the uncertainty product AXAp from its minimum value given by
(16) through an additional dimensionless ratio of parameters.
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6.2. Quantum case

The quantum mechanical counterpart of the system under consideration is described by the
following Hamiltonian operator:
i = i+i+m(x1—x2). (80)
2m 1 2m2

It is important to point out that a quantum mechanical system coupled by a contact interaction
of the kind described above can only consist of bosonic states. This follows from the Pauli
exclusion principle: since fermions cannot be at the same point in space at the same instant in
time, a contact potential would not affect fermionic states [29].

Proceeding with the analysis, (80) can be decoupled by transforming to the same Jacobi
coordinates defined in (67) for the classical case. The resulting Hamiltonian is separable in
terms of the center of mass and relative coordinate:

n? 0? n? 97

H:—wa—}cg—@a—x%'#)\(s@cr) (81)

The solution to the center of mass part of the Hamiltonian is that of a single particle harmonic

oscillator with mass M in a one-dimensional box of length L, i.e. 0 < x. < L. The expectation
values for position and momentum are then given by

L o _ a1 1
() =5, (x)=L <3 —2n§ﬂ2>’ (82)

2
(pc) =0, <p§>:(@) = 2ME,,. (83)

In addition to the box boundary conditions, the presence of delta-function potential in the
relative coordinate Hamiltonian imposes two sets of boundary conditions on the wavefunction
at the location of the delta-function potential. These are the continuity of the wavefunction

le:xz-;-o - w|x1:x2—0’ (84)

and the discontinuity of its first derivative

d’l/}n,-(xr) d’(/)nr(xr) B 2,u 0-+¢
Txr 0+-e - dx. 0—e o ﬁA—g V(xr)wnr(xr)dxr (85)
20\
= 50, 0). 6

The latter is obtained by integrating the Schrodinger equation with Hamiltonian operator
specified by (80) over the small interval (0 — €,0 + €) [37, 38].

From [32, 33], we can see that for a particle confined in a box of length 2L,i.e. —L < x; < L,
with a d-function potential at position x, = pL, where —1 < p < 1, the wavefunction can be
written as

) = {A sin (kn(e+ 1) (~L< x, , -
B sin [ky, (x; — L)] (pL <
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Figure 5. Plot of cot (k,,r) (solid lane) vs —1/k,, (dashed line) for a box of length L = 5
and for p\/R? = 1.

where k,, = \/21.E; /. Moreover, the continuity condition (84) of the wave functionat x, = pL
gives

A sin [k, L(p— D)
B sin [k, L(p+ D] (8%)

If p =0, this condition yields A = —B. Applying now the discontinuity condition of (86)
allows us to obtain a quantization relation for wavenumber &, , i.e.

ks, sin (2K, L) = 2}’1‘% sin [ky L(p — 1)] sin [ky L(p+ 1)] . (89)

Setting p = 0 yields the following expression:

HA

kn, cot (ky, L) = o

(90)

which is a self-consistent relation for k,,, and cannot be solved to give a simple analytical answer
for the wavenumber. This is shown in figure 5 where the intersection points between the curves
y = cot (k, L) and y = —1/k,, represent the solutions to (90). Clearly, these solutions are not
spaced in a regular manner and a numerical approach becomes necessary. Plotting (90) against
kn, however gives us insight into the way the wavefunction changes over the length of the box.
For a box of length L = 5 and within a range —10 < &, < 10, the behaviour of the function
is shown in figure 6.

We note that for large values of the ordinate, the lines become parallel and equally spaced,
suggesting that in the high quantum number limit, the &, values satisfying the self-consistent
equation will repeat periodically. After normalizing the wavefunctions, the expectation values
for the relative spatial coordinate, x;, and momentum are evaluated to be

2%k, I3 1
) =0, 2y = e - —, 91
) bre) Okn L — 3 sin(2k,L) 2Kk oD
(pr) =0, (p) = Pky = 2uE,, (92)
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k cot(k L)

Figure 6. Plot of the self-consistent equation (90) vs k,,, for a box of length L = 5 within
arange —10 < k,, < 10.

The expression for (x?) in (91) seems quite complicated at a first glance but reduces to the
familiar L2 /3 in the limit of large k,, . This corresponds to the classical regime:

2
lim (x?) — L (93)

ki —00 3

Hence, the expectation values of x; and p,; are found to be

L 1 1 my\ 2
(x1) = X () =1? (3 - W) + (ﬁz) (x?), (94)
2
(p) =0, (p}) =2uE + (%) 2ME,, (95)

and similarly for the second particle. Using the scaled variables of (77) we can then evaluate
the dimensionless uncertainties in position and momentum as

_ 1 1 my\ 2 (x2)

A%y = \/12 2nim? - (ﬁ) 2’ 6)
— mj ZMEC

App =4 /1 — .
P + (%) o 97)

Taking the limit for large principal quantum number n, and wavenumber k, , we step in the
classical regime and obtain an equivalent result to (78), i.e.

. o 1 2my \ 2 my\2ME,
lim ATAR =4/ /14 22) )1 (—) . 98
nemsee 2P\ +(M) ) uE ©8)

This is in complete agreement with the classical result of (78).

As it is not possible to obtain a value for the wavenumber £, in closed form, we will not
offer a graphical comparison between quantum and classical probability densities here. The
reader is referred to [20] for a comparison of probability density distributions for the simple
one-particle infinite square well.
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7. Conclusions

Dimensional analysis is a powerful tool for deriving robust results for a host of situations,
and the correspondence between the quantum and classical domains is no exception. The
Buckingham-7t theorem of dimensional analysis provides us with a fundamental insight
regarding the so-called classical limit: its definition cannot involve taking the limit of a dimen-
sionful quantity such as 7 if it is to be physically meaningful. Even in cases where i — 0 is a
shorthand for some quantum number n — 0o, it is not possible to recover classical mechanics
by naively setting & = 0.

There is a stark divide between a classical world where 7 = 0 and a quantum world viewed
by an observer living in the classical limit. The classical probability density is not a limit of the
wavefunction in the classical limit: indeed, the classical probability density can be recovered
by ‘smearing out’ the quantum probability density (by an amount that decreases as quantum
numbers increase). In a classical world, wavefunctions do not exist, but in a quantum world,
classical scales are those in which the smearing required to match the two domains is small
(i.e. wavenumbers are very large).

In order to illustrate how the correspondence between classical and quantum realm fares in
the context of dimensional analysis, we focused on quantum uncertainty, popularly regarded as
aphenomenon with no classical analogue. For simple systems, the role of & in the classical limit
is assumed by a characteristic action scale, as required by the Buckingham-7t theorem. For sys-
tems with more dimensionful parameters, however, uncertainty limits will in general acquire a
more complicated dependence on dimensionless ratios. To demonstrate this, we examined two
distinct systems: a coupled harmonic oscillator and a two-body particle-in-a-box set-up, and
showed that the uncertainty bounds acquire additional dimensionless terms (and also converge
in the limit of large quantum numbers).

Dimensional analysis lends support to the idea that any comparison between quantum and
classical uncertainties is only possible if made in terms of dimensionless quantities, since the
classical realm lacks a fundamental unit of action (much like Newtonian mechanics lacks a
fundamental unit of speed). Quantum numbers are not simply the discretized counterparts to
the dimensionless ratios of the classical system: they arise precisely because of the existence
of the fundamental unit /. This highlights the fundamental conceptual distinction between
quantum and classical mechanics: it is only through the tuning of dimensionless parameters that
a bridge between the two domains can be unambiguously built. This indicates that introducing
uncertainty to a system is, in a sense, a one-way street. Uncertainty bounds can only exist
alongside a dimensionful parameter that acts as a ‘universal certainty limit’ (just like relativity
requires a universal speed limit). Once such a parameter is added to a theory, there is a well-
defined limit in which the quantum world appears to be classical, but there is no limit that will
return us to a truly classical world.
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