
Introduction to Physical Chemistry – Lecture 4

I. LECTURE OVERVIEW

In this lecture, we will formulate and study the First
Law of Thermodynamics. We will then go on to consider
various thermodynamic functions.

We should point out that, starting with this lecture,
the next few lectures may not perfectly overlap with what
will be taught in section for the given week. This is
simply due to the theoretical background material that I
would like to cover in class. However, both the class and
section material should be “in sync” again by the sixth
week or so (though they may fall “out of sync” again
during the semester).

II. INTERNAL ENERGY

Consider some object which from very far away ap-
pears to be a solid object. If this object has a mass M ,
and its center of mass has a velocity v, then this object
has a kinetic energy of 1

2Mv2.
However, as we approach the object and look at it

more closely, we notice that it is in fact composed of
numerous smaller objects (atoms, molecules, etc.), each
of which have their own velocities ~v1, . . . , ~vN , where
~vi = (vix, viy, viz) denotes the velocity vector of the ith

particle.
The kinetic energy of the system is then

∑N
i=1

1
2mi~v

2
i .

In general, this will not equal 1
2Mv2. So, what is going

on here?
We can break apart the kinetic energy by redefining

some terms to make a physically more useful picture. We
begin by defining the total mass M = m1+· · ·+mN , and
the average velocity ~v = (m1~v1 + · · ·+ mN~vN )/M (note
that this is a weighted average, since the mass of the
object affects its contribution to the average velocity).
Also, for object i, define its relative velocity to be ∆~vi =
~vi − ~v.

Note that ~v is simply the velocity of the center of mass
of the collection of particles. To see this, if ~xi denotes
the coordinates of the ith object, then the center of mass
~x = (m1~x1 + · · ·+mN~xN )/M , so that the velocity of the
center of mass is ~̇x = (m1~̇x1 + · · ·+ mN ~̇xN )/M = ~v.

Now, we have,
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since
∑N

i=1 mi∆~vi =
∑N

i=1 mi~vi − ~v
∑N

i=1 mi = M~v −
M~v = 0.

Note then that the kinetic energy of the object may
be composed into two parts: (1) The macroscopic kinetic
energy, or the kinetic energy due to the overall motion
of the object. When viewed from far away, this is simply
the motion of the center of mass, so the kinetic energy is
given by 1

2M~v2. (2) The internal kinetic energy, given by∑N
i=1

1
2mi∆~v2

i . This is the kinetic energy of the internal
motions of the particles.

If the center of mass of the object is not moving, then
from far away the object will appear stationary. Never-
theless, the internal motions of the particles relative to

each other means that the object will still have an inter-
nal kinetic energy.

Therefore, in addition to kinetic energy, a macroscopic
object may possess additional energy which we call in-
ternal energy. Although our derivation was for kinetic
energy only, if the particles have interactions between
each other, and if the object is placed in an external field
(say gravitational), then we can perform such a decom-
position for potential energy as well. In general then, if
the energy state of an object is a function of the posi-
tions and velocities of all its constituent particles, then
we may decompose the energy into an external energy
that depends only on the center of mass coordinates and
velocities of the object, and an internal energy that de-
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pends only on the deviation of the individual particles from the center of mass and velocity. We have,

E(~x1, . . . , ~xN , ~v1, . . . , ~vN ) = Eext(~x,~v) + Eint(∆~x1, . . . ,∆~xN ,∆~v1, . . . ,∆~vN ) (2)

The internal energy Eint is often denoted by the symbol
U .

III. THE FIRST LAW OF THERMODYNAMICS

We now consider the First Law of Thermodynamics,
which is nothing more than the principle of energy con-
servation applied to heat and work flows on macroscopic
systems. Before stating the First Law, we need to first
introduce some definitions.

A. The concept of system and surroundings

The universe is a pretty big place. For many problems
of interest (the functioning of heat engines, boiling of
water, fluid flows, flying of airplanes, etc.), we are not
interested in the behavior of the universe as a whole, but
rather in a small part of it.

The region of space which is the focus of our attention
for a given problem is known as a system. The rest of
the universe is known as the surroundings. A system may
interact with its surroundings, via heat and mass flows.

A simple illustration of this concept is water in a glass.
We may define the interior of the glass to be the system,
and everything else to be the surroundings. If we pour
water into the glass, then there is a mass flow from the
surroundings into the system. Conversely, if we pour
water out of the glass, then there is a mass flow from
the system to the surroundings. If we heat the water in
the glass, then there is energy flow from the surroundings
into the system. Conversely, if we cool the water in the
glass, then there is energy flow from the system to the
surroundings.

A system may be isolated, closed, or open. An iso-
lated system has no interactions with its environment. A
closed system allows only thermal interactions (i.e. heat
flows). An open system allows for both heat and mass
flows.

We are now in a position to state the First Law of
Thermodynamics.

B. The statement of the first law

The First Law of Thermodynamics may be stated as
follows: The change in internal energy of a system is
given by the heat flow into the system minus the work
done by the system on the surroundings.

Mathematically, the law may be expressed as follows:

∆U = Q−W (3)

There is a sign convention here that is worth mention-
ing. Here, we take W to be positive if the work is done by
the system on the surroundings. Thus, a positive value
of W corresponds to a loss in the internal energy of the
system.

However, you may find texts (and I may forget this
convention and flip back and forth at various points in the
course :-)) where the expression is ∆U = Q + W . Both
equations are correct. In the second case, W is positive
if the work is done on the system by the surroundings.
Thus, a positive value of W corresponds to a gain in the
internal energy of the system.

Therefore, the first law may be stated mathematically
in two distinct but equivalent ways:

∆U = Q−W if W > 0 implies that work is done by the system on the surroundings
∆U = Q + W if W > 0 implies that work is done on the system by the surroundings (4)

To illustrate this law for a concrete example, consider
an ideal gas in a box. However, assume that one side of
the box can move, as with a piston (see Figure 1). Let
the gas in the box be at a volume V , temperature T , and
pressure P . Since the piston is stationary, the external

pressure acting on the movable wall must be P as well.
If the area of the piston is A, and if the piston moves
outward a distance ∆x, then the total work done by the
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FIG. 1: An ideal gas sitting in a container with a movable
wall.

system is,

W = F∆x = PA∆x = P∆V (5)

where ∆V denotes the change in volume of the box. In
this context, the first law gives,

∆U = Q− P∆V (6)

In differential form, this becomes,

dU = δQ− PdV (7)

where δQ denotes that Q is not an exact differential,
while dU is an exact differential. We will discuss this
notation a bit later.

We should point out that if other kinds of work are
done on the system (electrical work, say), then these
terms must be added in as well. However, for the bulk
of this course, we will simply focus on what is known as
PV -work.

IV. STATE FUNCTIONS

A. Definition and examples

A state function is a function that only depends on
the state of the system, and not on how that state was
achieved. We illustrate what we mean with two exam-
ples:

Example 1 – A particle in a gravitational field: If we
consider a uniform gravitational field, for simplicity, then
we have shown earlier that the change in potential energy
of the object in moving it from height coordinate z1 to z2

is simply mg(z2−z1). Note that this energy change does
not depend on how the object was moved from z1 to z2.
We could start at z1, move it up some, then down some,
side to side, at a diagonal, etc. The point is that the
path from z1 to z2 is irrelevant. The change in potential

energy only depends on the initial and final states of the
object.

This independence of path allows us to define the po-
tential energy function as a state function of the object:
We pick an arbitrary reference point to be the origin of
our coordinate system, and set the energy at this refer-
ence point to be 0 (since we can only measure energy
differences and not energy itself, this is a valid step). We
then define the potential energy of an object at a height
z to be the potential energy change in moving the object
from the origin to the height z. Since the energy change
is independent of path, we get one answer, namely mgz.

A force field that admits a potential energy function
which is a state function of the system is known as a
conservative force field. The reason for this terminology
is that a particle moving in a conservative force field will
obey energy conservation (potential plus kinetic remains
constant).

Example 2 – Energy lost due to friction: Friction is an
example where the path does matter in determining en-
ergy changes. For example, suppose we have an object
on some table, and we wish to move it a distance of 1m
to the right. We can either move it directly, or we can
first move it up 0.5m, to the right 1m, and then down
0.5m. If there is a retarding frictional force 1N on the
object, then the first path requires an energy input of
1N ×1m = 1J , while the second path requires an energy
input of 1N × 2m = 2J . So, in this case, we cannot as-
sign a “friction” energy function to the object, because
the amount of work done on the object due to friction is
path-dependent.

Internal energy is a state function, because it is the
total energy associated with the motions and interactions
of the constituent particles of the system. Thus, by the
exact differential dU , we mean an infinitesimal change
in the internal energy of the system associated with an
infinitesimal change in the state.

Note that because P and V are state functions, PV -
work is a state function as well.

Heat, however, is not a state function, because heat is
not something that an object possesses. Rather, heat is
a form of energy that is given off or taken in by a system
during changes in the internal state of a system. Since
heat is associated with changes in the internal state of
a system, the amount of heat given off will generally be
path-dependent. Therefore, we do not use dQ to denote
small heat transfers, but rather δQ, to make the path-
dependent nature of heat transfer clear.

B. Mathematical definition

In the first homework set, you were given various differ-
entials and asked to determine if they were exact differen-
tials or not. The standard procedure was as follows: You
were given some expression df = Fxdx+Fydy+Fzdz, and
asked to determine if df was an exact differential or not.
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The way to determine this was to check if Fx = ∂f/∂x,
Fy = ∂f/∂y, and Fz = ∂f/∂z.

The reason why this notion of an exact differential
and the physical definition we gave above are equiva-
lent is that df is an exact differential if and only if f is
a state function. By f being a state function, we mean
that the change in f in moving from ~x1 = (x1, y1, z1)
to ~x2 = (x2, y2, z2) is independent of the path from ~x1

to ~x2. Therefore, if g1(t) = (g1x(t), g1y(t), g1z(t)) and
g2(t) = (g2x(t), g2y(t), g2z(t)) are two paths for which
g1(0) = g2(0) = ~x1 and g1(1) = g2(1) = ~x2, then,

f(~x2)− f(~x1) =
∫ 1

0

(~F (t) · g′
1(t))dt

=
∫ 1

0

(~F (t) · g′
2(t))dt (8)

where ~F = (Fx, Fy, Fz).

V. SPECIFIC STATE FUNCTIONS

In this section we will consider some state functions
that may be constructed from the thermodynamic vari-
ables we have seen so far.

A. Enthalpy

One rule regarding state functions is that the sum,
product, quotient, etc. of any two state functions is a
state function. One very important state function is the
enthalpy, denoted H. Enthalpy is defined very simply as
follows:

H = U + PV (9)

Why is enthalpy important? Well, in studying thermo-
dynamic changes which occur to systems (for example, a
chemical reaction), we often consider the change with one
of the thermodynamic variables T , P , V fixed. A process
may kept at fixed T if the system is placed in a large ther-
mal bath, to keep the system at constant temperature.
A process may be kept at constant pressure if one wall
of the container is movable (like our piston example), so
that it may expand and contract to equalize any pressure
changes. A process may be kept at constant volume with
a closed container with immovable walls.

For a process that occurs at constant volume, the first
law reads,

dU = δQ (10)

so that ∆U = Q. Therefore, for a process that occurs
at constant volume, the change in internal energy of a
system is equal to the heat added to the system.

Now, for a process that occurs at constant pressure,
the first law reads,

dU = δQ− PdV

⇒ δQ = dU + PdV

= d(U + PV ) = dH (11)

where the equality PdV = d(PV ) because P is constant.
Integrating, we get ∆H = Q. Therefore, for a process

the occurs at constant pressure, the change in enthalpy
of a system is equal to the heat added to the system.

B. Heat capacity

When heat is added to a system, the temperature will
in general change. The heat capacity is a measure of how
strongly the temperature of a system is affected by heat
flows. There are many ways to define heat capacities,
depending on the circumstances under which the heat is
transferred. We consider two types of heat capacity:

1. The constant volume heat capacity, denoted CV :
This is the amount of heat added to the system
per unit temperature change, when the heat is
transferred at constant volume. We have, CV =
(δQ/∂T )V = (∂U/∂T )V , since dU = δQ for a con-
stant volume process.

2. The constant pressure heat capacity, denoted CP :
This is the amount of heat added to the system
per unit temperature change, when the heat is
transferred at constant pressure. We have, CP =
(δQ/∂T )P = (∂H/∂T )P .

For an ideal gas, it may be shown that U depends only
on the temperature T (this is essentially due to the fact
that the energy of an ideal gas is simply the sum of the
kinetic energies of the individual gas particles).

Therefore, (∂H/∂T )P = dU/dT +P (∂V/∂T )P = CV +
nR, so CP = CV +nR for an ideal gas. If we let C̄V , C̄P

denote the constant volume and constant pressure heat
capacities per mole of gas, then we have,

C̄P = C̄V + R (12)

VI. THE FIRST LAW APPLIED TO CHEMICAL
REACTIONS

A chemical reaction is a transformation of one set of
chemicals into another. A group of chemicals, called
the reactants, interact and transform into another set of
chemicals called the products. An example of a chemical
reaction is,

2H2 + O2 → 2H2O (13)

A chemical reaction is exothermic if it gives off heat,
and endothermic if it requires a net heat input for it
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to progress. The exothermicity or endothermicity of a
chemical reaction is measured by placing it in a container,
and allowing the reaction to proceed at constant temper-
ature, by removing or adding heat as needed (this can be
done by placing the system in a heat bath).

If the reaction occurs at constant volume, then we
have,

∆U = Q (14)

If the reaction is exothermic, it will give off heat, so that
Q is negative.

If the reaction occurs at constant pressure, then we
have,

∆H = Q (15)

We can define a standard ∆U and ∆H of a chemical
reaction. For ∆U , it is the total heat added to the system
when the reaction goes to completion at a given temper-
ature, fixed volume, with a prespecified initial number
of moles of reactants (these must be in the appropriate
stoichiometric ratios so that everything can react).

For ∆H, it is the total heat added to the system when
the reaction goes to completion at a given temperature,
pressure, and with a prespecified initial number of moles
of reactants.

Typically, we assume that we start with one mole of
one of the reactants or finish with one mole of one of the
products when defining ∆Urxn and ∆Hrxn. This must
be specified, however.


