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LINEAR ALGEBRA

CHAPTER 1

Straight Lines in Algebraic Expressions.

1. The author here desires to say to the reader, that though the present chapter
contains nothing new it is yet of unquestioned importance for a clear understanding of
the chapters following.

2. If the lines A B, N O, for example, of a geometric figure are in different direc-
tions, and if not only their absolule lengths are considered, but their respective directions
as well, it is evident that, though the lengths of these lines are equal, it cannot be said
AB=NO.

3. By the expression AB=NO, in Linear Algebra and in the science of Quaternions
also, it is understood that the length of AB is equal to that of NO, and also that the
direction of the line AB is the same as that of NO, that is tosay they are either on
the same straight line or are parallel to each other in the same direction. But in Nu-
merical Algebra it is the absolute equality of the lengths only of these lines which is
understood.

4. In describing aline AB for example, if we say the line AB or simply AB we
mean the special line AB which has a determined direction and length. If we write the
line AB, orsimply AB, we mean that the lenght alone is considered.

Sometimes I shall write N (AB) for AB and N (z), for «. I shall also write N® (A B),
N2 (z) for N(AB)XN(AB), N(«)xN(«), or for ABXAB, axa. In these cases by the letter
N prefixed to a line will be meant the number of the abstract length of that line.

5. To represent the different lines of a figure with regard to their directions as well
as lengths, Greek letters are often employed. For example, if ¢ is put for the line AB, so
long as the problem is not changed, by this p is understood the line AB which by sup-
position has a determined length and direction.

6. It is obvious that the lines AB, BD, having a determined direction and length,
the line AD will also, necessarily have a determined direction and length;
and if in departing from the point A after having traced the line AB in
giving to it its direction and length, we trace BD commencing at B, giving
to it also its length and direction, the distance from A to D will represent
the line AD with its special length and direction.
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7. The operation of tracing the line AB from the point A, and the line BD from the
point B, and giving to them their respective directions, will be represented by the ex~
pression AB+BD; and to show that by this operation AD is found, the expression A B+
BD=AD will be employed.

8. If in departing from the point A the lines AB, BD, DH, HN, NO, are succes-
sively traced in their respective directions, the line joining A to O, or A O, will be rep-
resented by

A O=—A B+BD+DH+NO.

It is readily seen that after having traced A B, ifin place of tracing the other linesin the
order given, we trace successively a line parallel and equal in length to each one of these
lines, in their respective directions. in whatever order, we shall still find the same line A O.

It is needless to say that this manner of representation of straight lines is general.

9. It is now apparent what in Linear Algebra is meant by AB+BD=—AD. If the
lines AB, BD are found equal in length, it is evident the length of A D will diminish with
the angle ABD; and finally AD will become zero whenever this angle does; in this case
the point D coincides with A, and the line BD with B A; for this rcason

AB+BD=0 or AB+BA=0.
Thus in the cxpressions
AB+BA or BA+AB

AB and BA ncutralize each other; therefore when a line measured in one direction is re-
presented by a positive symbol, the same line measured in the opposite direction may be
represented by the same symbol taken negatively, that is

AB=—=—BA or BA—=—AB,

hence if the line AB is represented by p, the line BA will be —p.
10. If AB, DE are on the same right line, and in the same direction, wc
€ admit, as in Numerical Algebra, that AB is to DE as AB to DE, that is

AB

DE.

|

AB=

=}
=

Now if AB=DE, then AB=DE and consequently

AB+ED=0.

41. If AB, DE are parallel in the same direction, and AB=DE,
we must admit

AB=DE.

For if we take AN, DM on the same right line AD, and AN=D M,
we admit AN=DM (art. 10), T
but DE compared to DM is situated exactly as AB compared to AN, and this similarity
of position is so complete that if we know AB from its relation to AN it will be exactly
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as if we knew DE from its relation to DM. Therefore as DM is admitted to be equal to
AM we have a right to assume that AB equals DE.

Thus AB=DE and AB+ED=0.
And if AF=z. DG
we shall have AF==z. DG.

12. It follows that, If a line A B is represented by a« (¢ being an abstract number,
@ a unit line in the direction A B), any line which is parallel to AB or placed on the same
line, and in the same direction and has the same length, can be designated also by ae.
In the case that the second line is in an opposite direction it will be designated by —ae.
13. We have seen that AB, BD, DH drawn successively in their respec-
tive directions, the line AH which closes the polygon ABDH can be

represented by

AH=AB+BD+DH,

or by designating the units of AB, BD, DH respectively by «, 8, v, and their lengths by
z, y, 3, and the line AH, by p, then

p—zx+yf+zy.

14. 1t is obvious that, if the lines AB, BD, DH are not in the same plane we can
consider the numbers x, y and z as cartisian coordinates of the point H.

When the directions O0X, OY, OZ are perpendicular one to the other, we shall use
often 1, 3, k to designate the lincar units which are respectively in the directions 0X, 0Y,
and OZ; if z, y, z represent the rectangular coordinates of a point and p the line which
joins the origin O to this point, we shall have

p=zi+yj+zk

ADDITION.

W 45. 1If we take the lines AB, AC, AD for example, and trace from the
point B a line equal to AC, and from the end of this a line equal to AD
and designate by A H the side which will close the polygon thus formed,
the line A H will be called the sum of the lines AB, AG, AD, or

c ’ AH=AB+AC+AD.

This operation we define as add:tion.
A It will also be readily seen that the following operations

AB+AD+AC,
AC+AB+AD,

AD+AC+AB cte.
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will give the same result. In the case in which the lines to be added are in the same
direction, this operation is reduced to the addition of Numerical Algebra.

SUBTRACTION

16. Is the operation of finding one of two lines, when the other and their sum are
given. To subtract AD from AB, or to find a line which added to AD will
produce the line A B, it is evident that if we trace from the point B a line equal
to DA, we shall have the line AN which added to AD will produce AB:

‘ AN=AB—AD
and AN+AD=AB.
A few propositions on the employment of lines in Algebraic operations.
17. 1In the case that we have
AB+BD+DH=AH
we shall have also
NnXAB+nXBD+nXDH=nXAH,
in designating by » an abstract number. And if we have
nXAB+n2XBD+nXDH=nXxAH
we shall have

AB+BD+DH=—AH.

In tracing the expressions AB+BD+DH, and n X AB+nXBD+nXxDH, the truth of
the proposition will be manifest. Thus if we designate the lines AB, BD, DH, and HL
by the Greek letters «, B, v, 8, and if we have, for exemple,

We+21B+Ty+493=1} 0.
We shall have also as in Numerical Algebra

Tha+3B+1+T73)=7. 20
or ha+38+1y+73=2o0.

18. If the lines «, B have not the same dircction, and we designate by a and b two
abstract numbers, the lines a«, b8 cannot neutralize each other in Algebraic expressions.
Therefore if as a result of some operation we have,

ac+b8=0

we shall conclude that ¢ =0, =0,
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And again if « and B being in different directions, we have

ac+bp—kae+18
we must also have
(a—k)a+(b—0B=0;
a—k=0 and b—1=0.

19. If «, B, y are non parallel lines in the same plane, it is always possible to find
the numerical values of a, b, ¢, so that,

ax+ bB+cy shall=0.

For as these «, B, and y are on the same plane, a triangle can be constructed the sides
of which shall be parallel respectively to «, B, y. Now if the sides of this triangle taken in
order be

ae, bB, cy
we shall have, by going around the triangle,
ax+bf+cy=0.

20. If «, B, y are three lines neither parallel, nor in the same plane, it is impossible
to find numerical values of a, b, ¢, not equal to zero, which shall render aa+ b8+ cy=0,
for aa+bf can be represented by a line in the plane parallel to «, . Now cy is not in
that plane, therefore the sum of a«+ b8 and ¢y cannot equal 0. It follows that, if aa+
bp+cy=0 and «, B, y are not parallel to each other, they are in the same plane.

21. There is but one way of making the sum of the multiples of «, 8, y equal to 0.

Let ac+bB+cy=0
and also ax+bp+cy=0.
By eliminating y we get
(ac—ca)a+(bc—cbh)p=0;
but as «, B are in different directions,
ac—ca=0 and bc—cb=0;

ac=ca and bec=cb,

so that the second equation is simply a multiple of the first. If we observe that the tri-
angles which give the different values of a, b, ¢, are similar the last proposition will be
accepted a prior:.

22. If «, B, v are coinitial coplanar lines, terminating in a straight line, then the
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sanie values of a, b, ¢ which render aa-+bB+cy=0 will also render a+b+c=0.

N Le¢ OA=—a, OB=8, 0C=r:
B then
AB=f—u¢,
A
0 AC=y—a.

But A C is a multiple of AB, or
1—e=z(p—a)=af—zxa;
ga—a—xB+y=0,
or (x—1)e—zf+v=0;

and as in this equation the coefficients of «, B, y are z—1, —a, +1 which correspond to
a, b, ¢ in the first equation, and as (x—1)—2z+1=0, then a+b+c=0.

22. Conversely, if «, B, y are coinitial, coplanar lines, and if both aa+b8+cy=0,
and a+b+c=0, then do «, 8, vy terminate in a straight line.

For by supposition,
a+b+c=0,

therefore ay+by+cy=0,
and by subtraction

a(y—e)+b(y—B)=0
or (7—¢)+g(y—§)=0.

This shows that y—a is a multiple of y—p and therefore it is in the same straight
line with it; «, B, y terminate in that straight line.

23. Examples.

Ex. 1. In a plane triangle are given one angle, an adjacent side, and the sum of
the lengths of the other sides, to determine the triangle.

)
Let ABD be the given angle,
AB=b TR T} Side!
¢ S »» » sum of the lengths of the other two sides.

' ' If in designating by « and § two unit lines, we represent by z« the unknown
side adjacent to the angle B, and by y8 the opposite side to this angle, we shall have

Yyp—=b+za

and S=z+y,
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by eliminating «
yp=b+Sa—ye;
yp+ya—=b+Sa,

The last equation furnishes us a method of solution for this problem. For S« is known,
and it represents the line BD which has the lengths S, the unit of this line being «;
therefore b+ S or AD is known also; and y B+y« being equal to b+ Se is equal to AD.
But as « and B are units, AD, yB and y« in the expression AD=yp+ye« evidently form
an isoceles triangle of which A D is the base, and y8, y« the equal sides (in lengths).
Besides as « is a unit in the direction BD, the side y « must necessarily be in this direc-
tion. Thus evidently the angle BD A is one of the equal angles of that triangle. Then to
find the other angle we have only to make an angle DA C equal to the angle BD A and
thus we shall have CD=y« and A C =yB which is the side opposite to the angle ABD
in the demanded triangle.

Ex. 2. The difference between the diagonal of a square and one of its sides being given,

to determine the square.
Let the difference between the length of the side AB and of the

° p y diagonal AC be d.
«, 8, vy being three units, we will designate the side AB by xz«, the
. side BC by zp and the diagonal AC by yy, we shall now have,
y yy=ze+zb,
A d K B
y—xr=d,

and from these two equations
z(a+p—y)=dy.

The units «, B, vy in this equation are known, for if we put the unit « on the line
AK and the unit B, perpendicularly upon «, the unit y will be found on the «-8.
Therefore if we take AK—=« and K!=—f and In——y, we shall have An=—a+p—1y,
and in taking the length A m equal to the difference d, A m will be—=dy, and consequently

z. ARn=—Am.

But as Ax and Am are in the same direction we can say
@. An=Am,

Am
. m:._’__.

A

Therefore it is evident that in joining the points » and K, and tracing the line mB pa~
rallel to » K we shall have

or as AK=1,

515
fatle



.. z=AB
which is the length of the side of the demanded square.

Ex. 3. The bisectors of the sides of a triangle meet in a point which trisects cach
of them.

Let the sides of the triangle ABC be bisected in D, E, F and let
P 8 AEand CD meet in G; it will be seen that the line DE is parallel
to AC and that it is the half of it.

Therefore,

A D B
AG+GC=AC=2(DG+GE)=2DG+2GE;

(AG—2GE)+(GC—2DG)=0.

But as AG—2GE is on the line AE, GC—2DG on the line CD, their sum cannot be
zero unless cach one of them equals zero.
Consequently,

AG—2GE=0, or AG=2GE,

and GC—2DG=0, or GC=2DG.

These equations show that EG is a third of EA and DG a third of DC.

If now we suppose that the point G is the point where CD and BF meet, in the same
manner it will be seen that DG is a third of DC, and FG a third of FB, and conse-
quently the three bisectors must necessarily meet in the same point which separates one
third of cach.

Ex. 4. The middle points of the lines which join the points of bisection of the op-
posite sides of a quadrilateral, coincide, whether the four sides of the quadrilateral be in
the same plane or not.

Let AB—«, AC=8, AD=y,
X the middle point of EG.
We have
AE+EG=AD+DG,

e +EG=y+§(B—7);
EG=1+}B—1)—de=}B+y—0), )
and as AX=}«+3EG,

AX=}a+}B+rv—a)=}(a+f+Y)
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which being symmetrical in @, 8, v is the same for the line from A to the middle of HF,
hence the middle points of the lines EG, FH must coincide.

Being naturally desirous to publish this little work as economically as may prove
compatible with clearness of statement, I have contented myself with putting into the
present chapter some readily solved examples only. Should however any one wish further
illustration, he can find very beautiful and sufficiently difficult solutions of a similar
kind in the second chapter of the Introduction to Quaternious by Kelland and Tait.

B s T Prpr—

CHAPTER II.

MULTIPLICATION.

24. One of the various directions will be considered as the principal direction. In
the following Figure OX is assumed to be such a direction.

2z
B, -~

The multiplication of one by the other of any two coinitial lines not in the same
plane with the principal direction, is shown in the following operation.

Suppose we want to find the product of the line OB by O A.

4*. Put upon the direction OB the product of the line OB by the abstract number
which is the ratio of the line O A to its unit; and suppose this product is OD.

2, Let down a perpendicular from the point D on the plane which passes through

the principal direction OX and the line O A.
Let D’ be the foot of this perpendicular in the same plane. We thus have a rectan-

gular triangle whose plane is perpendicular to the indefinite plane X O A, of which DD’
is the hight; OD’ the base, OD the hypothenuse.

3. Move this triangle around the point O keeping it always perpendicular to the plane
X OA until its base OD’, comes on O D" which is on the aforesaid plane, and which makes
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with OX an angle equal to the sum of the angles that OD’'and O A, make with the prin-
cipal direction OX. Let D,D” be the hight of this triangle after this operation.

For definiteness we will admit that the angles which the lines O A and OD’ make
with the principal direction are formed and measured from OX on this side. That is, to
form these angles with the principal direction, the lines O A and O D’ are assumed to have
made on the indefinite plane X O A a rotation similar to that of the hands of a watch.

4®. Let us imagine that a plane parallel to the principal direction passes through the
hight D,D", and that on this plane the line D,D" turns from left to right around the point
D” also like the hands of a watch as much as the angle D, D"D, between the new position
and D"D, shall be equal tothe angle AOX that the line O A makes with the principal
direction.

Now the line OD,, which joins the point O to the point D, is the required product
of OB by OA.

25. We shall see that the results of this mulliplication have a great analogy with
the results of ordinary multiplication, which in fact is but a particular case of it. Con-
sequently we shall use the same signs that are used in Numerical Algebra. Thus in de-
signating O A, OB, OD, respectively by «, B, v, we shall write as in Numerical Algebra

aXf or «.8 or «f=ry.

26. Had we wished to multiply OA by
OB we should have had the same operation
to make which we have just written, with
this single change, that the plane X OB would
have had to be taken instead of the plane
X OA, and the line O A instead of the line O B,

27. 1t is readily seen that the product of OB by OA is not generally the same as
the product of AO by OB. Thus we cannot ordinarily say « . =—f . «; that is the com-
mutative law does not ordinarily apply to the factors of a linear product. This law, as we
shall soon see, is a property of a special case of General Multiplication.

28. Let D, F be parallel to XO (Fig. art. 24), consequently perpendicular to D,D".
It is uselful to know the value of this line D, F.

Let us suppose that ¢ indicates the angle A OX; o, the angle DOD’ which is between
OD and its projection in the plane XOA. Since the angle D,D"D, is equal to the angle
AOX (art. 24), we have

but D,D'=D,D"=DD,

therefore ,F=DD'. Sin ¢;
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but DD'=0D. Sin ==0A.OB. Sin

—_—

consequently
D,F=O0A.OB. Sin ¢. Sin o,

or FD,—OA .OB.Sin¢.Sin .7,
¢+ being the unity of length in the principal direction O X.

29. If the question was of the product OBx OA (art. 26), FD, would have been
directed in the opposite direction to OX and we would have

FD,=—OB.OA .Sin ®.8in ¢.3%,

® being the angle BOX; ¢ the angle which is between OA and its projection in the

plane X OB.
It is easy to see that if 0 indicates the angle which is between the planes XOA,

X OB, we shall have
Sin w=Sin ¢ . Sin 0,

Sin ¢$==Sin ¢ . Sin 6.

Rule of Signs.

30. Algebraists have laboriously attempted to demonstrate that
aX—b=—ab, —aXb——ab and
—aX—b=+<+ab.

Nevertheless the demonstrations given in books of Numerical Algebra on this matter are
not rigorously logical. This need not appear strange. The definitions given for multi-
plication are much less general than is the idea of a negative quantity. If therefore in
employing only such definitions as are applicable to abstract numbers, algebraists have
not succeeded in satisfactorily demonstrating the rules of signs as above stated, it is not
to be wondered at.

31. To perceive that,
aX —f=—=—apP, —aXp—-—af, and —a X —P—af
we have merely to apply our definition.

Special cases of Linear Multiplication.

32. If OB (Fig. art. 24) is perpendicular to the plane which passas through O X and
O A, the foot D’ of the hight DD’ and the foot D" of the hight D,D* will coincide with
the origin O; consequently the lines D"D,, D"D, and OD, will be found upon the plane
which passes through OX and OB, and at the same time the lines OD, and DD, will
coincide with each other.

In such a case the multiplication of OB by O A consists in turning upon the plane
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X OB form left to right the line OD, which is the product of OB by

the abstract number of the length of O A, until the angle D,OB

shall be equal to the angle AOX=¢. OD, isthe required product.

It isreadily seen that in this case, to find the product OB. O A,

it is only necessary to turn OD to the opposite side; the required
- product will be OH, if the angle HOB=jg9.

'\){A
33. If the line O A is perpendicular to the plane XOB at the same time that OB
is perpendicular, as in the preceding case to the plane X O A, or in other terms, if the
lines O A, OB and the principal direction OX (Fig. art. 32) form the three contiguous
sides of a rectangular parallelopiped, the angle DOD, will be a right angle, and con-
sequently the line OD, which is the product of OB by O A will be found in the principal
direction O X.
If in this case the required product is OB . O A, this production will evidently fall on
the direction opposite to O X, that is to say on the negative principal direction.
34. Thus we have this important result, that when O A, OB and the principal di-
rection are perpendicular to each other, in designating OA by « and OB byf we shall

have
aB—=—pPBa or aP+Ba—=—0.

35. Let OA, OB be perpendicular to the principal direction
OX, without that OA be perpendicular to OB; let us in-
dicate by 0 the angle BO A. In this case the point D’ (Fig. Art.
24) is on the direction O A; D*, on the opposite direction of
0X; D,, on the direction D"X; and we shall have

D’0=D'0=0A.0B.Cos?,

™
‘e

D'D,=D'D'=DD'=04.0B.Sin o;

N

consequently
OAXx0B=0D,=D"D,—D"0
=0A.0OB.Sin0.i—O0B.0OA.Cos 8.%¢
=O0A .OB.(Sin 0—Cos 0) . i.
We shall have also
OBXOA=—OB.0A. (Sin 0+Cos 0).5 (Art. 26.).
From these two relations we shall have
OAXOB—OBXxO0OA=20A.0B.Sin6.1;

therefore in supposing that O A, OB, be two unities of length carried in the directions
OA, OB; and in indicating them by B, B,, we shall have

BB —BB=2Sin 0. .

A curious resull. If in the preceding case we have 0—=7F, we must have
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O0AXx0B=0,

a product which is naught when neither of its two factors are not so.

36. If the lines OA, OB and the principal direction O X (Art. 24) are in the same
plane, the hight DD’ will be reduced to zero, and at the same time the point D, will
coincide with the point D", and the line OD, with the line OD". We thus see that, when
OA and OB and the principal direction are in the same plane, the production OA . OB
will also be on the same plane and it will make with the principal direction an angle e-
qual to the sum of the angles which OA and OB make with the principal direction. It
is almost unnecessary to add that the product of OA by OB is the same as OA .OB.
Thus in this specified case, we have as in Numerical Algebra ® . 8—=5 ..

37. Let us designate by ¢ the angle which a line O A makes with the principal di-
rection O X, and suppose that a line OB which is found on the same plane as OA and
OX makes with this O X an angle equal to 2 x— ¢. The production of these O A and OB
will be found on the principal direction, that is to say,

OA.OBor OB.OA=0A.OB.i;

this is a result of great importance in Linear Algebra.

38. If thelines O A, OB are on the same straight line, and in the same direction, they
will necessarily be in the same plane as the principal direction, and the angle which their
production makes with this direction (Art. 36) will be the double of the angle which their
direction makes with the principal direction. And in the same supposition, the production
of OA .OB and ofa line OD which has the same direction as OA and OB, will be found
also in the same plane, and will make an angle three times greater than the angle which
the directions O A and OB make with the principal direction. The generality of this fact
is evident.

39. It follows from the preceding case that if the direction of these lines O A and
OB is perpendicular to the principal direction, their production will fall on the negative
principal direction.

40. The product of a line by itself will be called the square of this line; the pro-
duct of the square of a line by the line itself, its cube. It follows from Art. 38 that the
square, the cube and the other powers of a line O A will be found in the same plane,
as this line O A and the principal direction OX; and that the angles which the square,
the cube and the other powers of this line make with the principal direction will be res-
pectively twice, thrice and so forth greater than the angle which this line makes with the
same direction.

M. To indicate the different powers of a line we shall employ the same mode used
in Numerical Algebra. The square of 0 A=—(0 A)®, the cube of 0 A=—(0 A)3, or the square
of a—«a*%, the cube of a=—a3 and so on.

If 3 is a unit perpendicular to the principal direction, and if ¢ is the unit in this di-
rection (Art. 39)

= =3

s =38, M= =3 6t—=—07y,

We now know that the angle which a®, for example, makes with the principal di-
rection is five times greater than the angle that « makes with the same direction.
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A2, It results also from Art. 40 that if the units « and § are in the same plane with
the principal direction, and that the angle which « makes with this direction is represented

0
by 6, the angle which § makes with the same direction by ¢, and lastly % or : represents
but the ratio between the number of the degrees of these angles 6 and ¢, we shall have

P ]
B=—a® or «=—8?,
or if 6= one degree

B—=ea? and ¢=ﬂ;.

Here ¢ represents the ratio of the angle ¢ to an angle of 1 degree which « is supposed to
make with the principal direction.

43. 1If the lines B, & and a unit « are on the same plane as the principal direction,
and if the angles which these B, 3 and « make with the principal direction are respect-
ively 0, ¢ and one degree, and the lengths of § is b; that of 3, d; we shall have thus
(Art. 42)

p:bao, §—=da?

B.Sors.p—badxda?=0bdo’+?

&%, Tt is scarcely necessary to say that when 3 *=——¢, this 3 could represent each
ope of the linear units which are perpendicular to the principal direction. If in using the
sign L/~ we employ =7 to represent one of these innumerable units, and if we adopt
again a sign to represent another one, we should be able to represent not only each one
of these others, but also a linear unit which may be found in any direction.

45. The unit of the principal direction heing ¢, we shall make use of L”—7% to repre-
sent the unit of a direction OY which is perpendicular to the principal direction OX,
and we shall adopt the sign | to represent the unit of the direction OZ which is per-
pendicular to the plane XOY. Thus we can write (Arts. 13, 14.)

p=zi+yl —i+3_l.
We must bear in mind that according to our definition of Multsplication,
=02 =—1, (L)*=—1 (Art M),
and L=ixl=+1¢, | Xl/'=i=—1¢ (Art. 33).

A6. If X =0 then p=yl —v+2_| will represent a line perpendicular to the prin-
cipal direction, and if 2=0, then p—=x¢{+yL = will represent a line situated on the
plane XOY.

47. 1If theline OA isin the principal direction (Art.24) the plane XOA will become
indeterminate. But in taking it in no matter what position, it will be seen that OD, will
always coincide with OD. Therefore in this case OA.O0B=0B.0A=0D.

If follows therefore that if the absolute length of 0B=45, the unit of OB=8, and
the principal unit=¢:
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OB=0B—=t X bp—bixP=Bxbe=0bPpX?.
And B—tp—"_R1;
bp represents B added b times to itself; and bixP or Bx b¢, represents p multiplied by
b¢, or b¢ multiplied by B.

48. If OA and OB are both in the principal direction, their product will also be
found in the principal direction.

Therefore ¢eXi=i and ¢ Xt X1=—1 etc.

lute or abstract tefm enters. Therefore if in our calcylations we replace thé principal unit
¢ by 1 no compHlication or mistake can arise, but gn the contrary a t simplicity in
the calculation/will result from it.

in thi

and

50. To show the manner of linear multiplication of two lines, we have supposed
them coinitial; nevertheless to apply our definition of multiplication to any two lines
whatever, it is merely required to add to this definition the following. To multiply a line
QR by a line MN, it is necessary to trace from the point M a line equal to QR (Arts.
3, 11) or from the point Q & line equal to MN. The definition will be applied to the line
MN and to the equal of OR which passes through M or to the line QR with the equal
of MN which passes through Q. We can readily convince ourselves that the line which
represents the production of the line MN by the equal of QR which passes through M is
equal (Arts. 3, 11) to the line which represents the production of the equal of MN passing
through Q by OR. This line will be found equal to the line which will represent the
production of these lines MN and QR transposed to any common origin O, without
changing their respective directions. It is clearly understood that in all of these three mul-
tiplications the principal directions must be the same.

Multiplication of Polynominals.

54. It now remains to be shown that, « and B being transposed to the same origin
(Art. 50) if in « . B we put a=v+3, and p=XA+p, that is to say, if the lines « and B
are each the sum of two other lines, we shall have as in numerical algebra

G+ . Q+p)=y . A+3 . A+y.p+8. p.

52. Let us commence by proving that,
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OA.OM+0A.ON=0A.(OM+ON)=0A.O0B,

OB being the sum of OM and ON.

We readily perceive, that after having multiptied OM, ON and OB by the abstract
number of the length of O A, the extremities of these products and the origin O will form
a parallelogram, as well as the extremities of OM, ON, OB and the origin O. The feet
of the perpendiculars, let fall according to the definition (Art. 24) on the plane which
passes through the principal direction and O A, also form with the said origin, a paral-
lelogram. Thus we are able to show that the extremities of the productions OA . OB,
OA.OM, OA.ON, and the origin O must form a parallelogram whose diagonal and two
sides contiguous to the point O, are respectively OA . OB, OA . OM and O A .'ON. Therefore

OA.OB=0A.OM+O0A.ON
or OA.(OM+ON)=OA.OM+0OA.ON.

53. Let us show now that
OR.0B+0S.0B=(0R+0S).0B=0A.0B,

O A being the sum of OR and OS. Let us suppose for the moment
that OR, OS are found in the plane X O A.

In this case also we shall easily see that the extremities of the products OS. 0B,
OA.OB, OR.OB and the origin O form a parallelogram, the diagonal of which starting
from O is OA.OB and the two sides starting from the said point O are OR. OB,
O0S . OB. Therefore

OA.0B=OR.0B+0S.0B,
or (OR+0S).0B=OR.0B+0S.O0B.

54. It results from the preceding two propositions that if OR, OS are found in the
same plane as the principal direction, we shall have

(OR+08) (OM+ON)
=(OR+0S) OM+(OR+0S) ON
=OR.OM+0S.OM+OR.ON+0S.ON.

55. Let OA, OB be two lines whatever in the space (Eig. Art. 24) and let us sup-
pose
OA=zi+y8,

OB=z2,i+y,B,

B, B,, being two unities of lengths perpendicular to the principal direction, in which the
unity of length is represented by ¢ (Art. 28); x, y, the projections of O A on the princi=
pal direction and on that of B; z,, y,, the projections of OB on the principal direction
and on that of B. It is evident that B is in the plane XOA; B,, in the plane XOB;
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and the angle which is between B, B, measures the dihedral angle which these two planes
form. Therefore according to the last proposition we shalle have

OAXOB=(zi+yB) (xs+y,B)
=z, d+yzBi+zy, i +yy,BB,
=z i+yzp+ayb+yybp (Arts. 47, 48).
We shall have also, by multiplying O A by OB (Art. 26),
OBXx0A=(gzi+y,B) (zi+yB)

=z zi+y xb+ayp+yyb B (Arts. 47, 48),

consequently
OAXOB—OBXOA=yy, (B8 —BB),

or OAXOB=0BxOA+yy, (B8 —B8B).

Let 6 be the angle which is between B, §,; ®, the angle BOX; ¢, the angle AOX.

Therefore
y=O0OA.Sin¢, y=0BSin®,

and BB,—BB=2 Sin 0. i (Art. 35),

consequently
OAXxOB=O0BxO0OA+20A.0B.Sin®.Sin¢. Sin 0.7%,

We have already seen that (Arts. 28, 29)
OAXOB.Sing.Sin®. Sin0.i=FD,,

or by taking GF=FD, (Fig. Art. 24),

GD,—=20A.0B.Sin®.Sin¢. Sinb.1.

Therefore
OAXOB=O0OBXOA+GD,.

56. This last relation shows that to have the product OB x O A (Art. 26), we could
act exactly as if we would want to find O A X OB (Art. 24), with the only change that
instead of turning D”D, from left to right through the angle A OX, it would be necessary
to turn it from right to left again the angle A OX. Thus we should have

O0G=0BXxOA.

57. Now let 0 A=0S+ OR, without that OR, O S, be found in the same plane with
O0X. We have already seen that (Art. 52)

OBXOA=0BX(OR+08)
=O0OB.OR+0B.OS.
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Let us indicate by © the angle that O A makes by its projection in the plane X O B;
by » and v, the angles that OR, O S, make respectively with their projections in the same
plane. Therefore (Art. 55)

OBXOA=0AxOB—20A .0B.Sinw.Sin ¢.4,
OBXOR=ORXOB—20R.OB.Sin¢.Sin®.4,
OBXx0S=0Sx0B—20S.0B.Sinv. Sin®. 5
and by substitution we shall have
OAxXOBor (OR+0S)xXO0OB
—=O0R.0B+0S.0B;
because the perpendiculars running down from A, R, S, to the plane X OB are respectively
OA. Sinw, OR.Sinp, O0S.Sinv;
and by a well-known theorem
OA Sin w=OR. Sin p+0S.Sin v
or OA.OB. Sin®. Sinw.i
=OR.OB. Sin ¢. Sin#.4+0S.0B.Sin ¢.8Sin v.5s.

58. Let in general
OA=OR+0S,

OB=OM+ON.
Therefore

OAX(OM+ON)=0AXOM+0OAXON (Art. 52);

OAXOM+0OAXON
—=(OR+0S) OM+(OR+0S) ON
=—OR.OM+0S.0OM+OR. ON+0OS.ON (Art. 57).

Therefore, whatever may be the positions of the planes ROS, MON, relating to the prin-
cipal direction, we shall have as in numerical algebra,

(OR+0S) (OM+O0ON)
=ORXOM+0SXOM+ORXON+OSxXON,
expression which indicates the manner to multiply a binomial by a binomial. It is easy

to apply this rule to the multiplication of a polynominal whatever by a polynominal
whatever,
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Reverse of Multipliocation.

59. We have seen (Fig. Art. 24) that OD, is the product of OB by OA. Now let
us suppose that the lines OD, and O A being given, we want to find a line which, mul-
tiplied by O A will produce OD,. This is ReverseZMultiplication. The figure of Art. 24
shows how this inverse operation should be perfofmed to find the required factor, which
in this figure is OB. In some particular cases, for example, in the case where the given
lines OD,, OA and the principal direction OX are in the same plane, and the angle XOA
is equal to _;f_, we shall find by this inverse operation certain different lines, each one
of which if multiplied by the given factor will produce the given product; and but one
of these factors will be in the plane which passes through the principal direction and the
given multiplier, the others which are innumerable are on another plane which passes
through the factor which is in the plane of the principal direction and of the given mul-
tiplier. Consequently, if we have « .f—a .B, for example, it would not in general be
correct to conclude that p—S5,.

60. We see that we shall be able to have a relation such as « .p=« .8, without
" that the equality p—8, may take place. Therefore from the equality

« . B=u L p}
we shall have
a.B—a B=0or « (8—B,)=0 (Art. 52);

therefore if p—B8,=3,

«a.3=0;
see Art. 35.

Conjugates.

61. When any two points A and B are on a line perpendicular to the principal
direction, and are on different sides of this direction, and are equidistant from it, we
shall term A a Conjugate of B and B a conjugate of A. We shall also term any line MN
the conjugate of the line P Q and vice-versa whenever the point M is the conjugate of the
point P and the point N of the point Q. In this case the lines MN and PQ will be of
equal lengths.

We shall designate the conjugate of a line MN, for exemple, by (MN) and the con-
jugates of «, B, 3 etc. by «, §, ¥ etc.
62. Conformably to the definition of the addition of two lines (Art. 15) we shall have
e+a'=2a. Cos ¢.1,
¢ being the angle which is between a line whatever « and the principal direction.

63. The product of a line and its conjugate will be on the principal direction. For
if from the origin O which is on the principal direction, we draw two lines respectively
equal to given line and its conjugate, these two lines will be found in the same plane as
the principal direction, and if one of them make with this direction, an angle ¢, the other
will make with the same direction an angle 2= —¢; consequently this product, (Art. 37)
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will be on the principal direction. The length of this product will be equal to the square
of the length of the line given.

64. Thus in designating this line and its conjugate respectively by « and «', and its
length by «, we shall have « . &’ or &' . a==at 1.

If we replace ¢ by 1 (Art. 49),
«a’ oOr ¢’¢=a_z' .

65. A theorem wverg important. If we represent by «' the conjugate of «; by §,
the conjugate of B; by « and B the lengths of « and B (Art. 4); and lastly by 0 the angle
which is between « and B transferred to the same origin, we shall have

a«f+Pa'=2aP Coso.1.
For, let OX be the principal direction, OA=—=a, 0B =8, AB=8; OA’=4q’ and O B'=§;
it is evident that A’ B'=—=% will be the conjugate of AB=—3% and the angle AOB=96 will
be equal to the angle A'OB'. Designate respectively the lengths of the lines O A, OB and
AB by a, b and d. We shall have (Art. 16)

d=f—a

and ¥—=p—a';

in multiplying these two equalities by each other (Art. 58)

we shall have
33 =pp —af —Ba'+aa'=Bf +aa’"—(af' +pa’)

or : aftBo’=Bp +aa' —3¥,
But we know that (Art. 64)

3¥=—=d% 3, B —=0b%¢, and aa’'—aly,

af +Ba'= (a®+b2—d?) 1. )]
Therefore, if O A is taken as the principal direction, we shall have e —=¢<’, pa’'=—4a8$,
af=—ap’ (Art. 47), and
Ba'4+af—a B+P)=2 ab Cos ¢ .1,
¢ being the angle A OB; therefore
(a® + b2 —d®) t—=2ab Cos 9. ¢,

or at+ b2 —dt =2abd Cos ¢,

consequently
af+Ba'=2ab Cos 9.1 ®?)
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If 0=2,
af 4-pa’'=0. (3)

66. Let us suppose that
e=gi+yj+1k,

=z,i+Yy,j+3k (Art. 14),
their respective conjugates will be represented by
=gi'+y)'+3k,

F=ai+ys+3k.
But it is easy to see that

vt =, j=—), Kk=—k;

therefore we can write
=z —yj—3k,

P=ot—yi—3k;
consequently

af+Ba'= (zi+yj+3k) (xt—yJj—3k)
+(xi+yj+3k) (zi—yj—3zk)
=Uzxz,+1yy,+33) .1 (Arts. 47, 48), 4)
a third expression for af'+Ba’, which is not less important than the two preceding ones.

67. Examples.

Ex. 4. The sum of the squares of the diagonals of a parallelogram is equal to the sum
of the squares of the sides.

D ¢ Let the side AB==«a, the side A D=8, then (Arts. 15, 16)
M AC=c+8.
A ] DB=a—8;
and (Art. 61) (ACy =o' +F.
(DBy=o'—F .
Then ACX(ACY=(a+B) (@+pf)=ca'+pf +af +pa,

DB X (DBY=(s—B) (¢ —F)=c o'+ BF —aP'—Be’;
S ACx(ACY+DBx (DBY=2c«'+28f.
But (Art. 64) ACX(ACY=(AC)*.i, DBx(DBY=(DB). 4,
ea’=a%i=(AB)".i and BF=P*i=(AD)%.i;
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(AC)?i+(DB)*i=2(AB)*i+2(AD)® ¢,
or (AC)*+(DB)*=2(AB)*+(AD)".

This and some of the following examples are very readily solved in the ordinary way;
we give them here for illustration solely.

Ex. 2. To find the diagonal of a parallelopiped in terms of the three edges it meets,
and their inclinations to one another.

Let the edges be 0A—«, OB=p,0C=7; let the inclinations be
BOC=6,CO0A =9, AOB=®. Let OD=2% be the diagonal re~
quired.

Then OD=OB+BE+ED
or S—P+a+y
and ¥=f+a'+y (Art. 61).

Then by multiplication.
S¥=pf+aa'+yyY+(Ba'+af)+(BY+1B)+ (27 +714).

But (Art. 65)
Ba'+afp=2aB. Cos ¢ .3,

By +y8=2By. Cos .4,
ey +ya'=2ay. Cos ¢.1,
3¢ —3% ¢, PPp=8%.;, aa’—a?.i, YY=Y%.t
§'=§“+c_="+1*+2gg.Cos¢+2§I.Cos 0+2«y. Cose.

Having the same terms given, we can in the same manner find the other three dia=
gonals which pass through C,B,A; and see that, the sum of the squares of the four
diagonals

=h(a2+p2+1").

Ex. 3. If O be any point whatever either in the plane of the triangle ABC or out
of that plane, the sum of the squares of the sides of the triangle falls short of three times
the sum of the squares of the distances of the angular points from O, by the square of
three times the distance of the mean point from O.

Let 0A=—a,0B=8,0C =y, and let G bé the mean point of the
\ I triangle ABC, and O G==3.

'\‘ We will first show that.
0 3:; (@+B+1)
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For

$§—=0B+BD+DG=0B+}BC +{DA,
and §=0A+AG=0A—§DA,
and 3=0C+CD+DG=0C—}BC+3DA.

Adding therefore these equalities,
33=0B+0A+0C,

or E=3(a+B+Y).
Therefore 3=a+B+7,
and ¥=0a'+§'+Y;

and by multiplication

Iy = +BP A yy + (P +Ba)+ (Y + 1)+ BY+1B).
But (Art. 65)

af +Ba'=(a® +p*—AB*) i,
wy+ya'=(as +y2 —ACT) i,
BY+yF=(p*+y*—BC?) .1;

and 53':5‘.5,¢a’=¢_z_’.i,Pﬁ':g’.i, 1Y=x*. ¢;

consequently
38t —=3a?+3p*+3y*—(AB*+AC*+BCY),
or
AB*+AGH+BO =3 (s +f* + 1) —(B)"
Ex. 4. OABCD being a regular pentagon, to find the algebraic expression of the
side AB. '

It is obvious that the angles which the directions of the sides BC,
CD, DO make with the direction O H which we assume is the prin-
cipat direction are respectively twice, three times, four times greater
than the angle BAH which the side AB makes with the direction OH.
Therefore if the unit of AB is «, that of BC, CD, DO will be res-
pectively z?, 3, z¢ (Art. 41), and if the length of O A is represented
A y by a, and its unit by ¢, then,

OA=q¢,AB=az,BC=a2% CD=ax3? and DO=aux*.
Besides, OA+AB+BC+CD+D0O=0.

Consequently
ai+az+az®+axd+azt=o,
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or ¢+ 23 +a?+z+i—o0.
From this equation we obtain

¢ +23 +20% +r+1—2a9,
and by adding g'

2
B +23+25 + 5 4yt i=§ 22
2 .
or b+ iad o+t + ] + 5o+ THi=] 2%,

‘Which can be put in the following form :

(@t +io+i)+iz(@®+iz+i)+i (et +fr+i)=Fx",

or (@*+fz+s) (@2 +Jz+1)—fa%;
. @+ jo+e)2=14} a?
or gt +jr+i==%FVs

22+ (IFV?s) a=—1
(See Arts. 44, A7, 48 and 49).
From the last form, we have
a=—}(FV8) i} VIe—(FVa. V—i
This equation gives for & these four values:
2, =} (V5—1)i+} VOFIVIV=,
gz, =3} (Vs —1) 1 —}Viog2viv=,
g, =—} (Vs +1)i—} VIO =215v=,
z,=— (Vs +D)i+}Vvio=2151r=.

z, is the umt of the side AB. If BH 1s perpendicular on the principal direction OH
then,

AH=(a(V5-1),
and BH=}aVio+2V)5.

z, represents the unit of the analogous side of a pentagon which we can draw under
the linc OA . «; 15 the unit of the side AB, of stellated OAB,C,D,. If B is perpen~
dicular on OA,

AP=]a(V5+1)
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and BP=iaVi10-2)5;

x, represents the unit of the analogous side of the stellated which we can draw under
the line OA .

As the side A B, of the stellated O AB,C,D, is equal to the side BC of the pentagon
OABCD, and as the umit of BC is the square of the unit A B, x; must be cqual to % .

Ex. 5. To find the radii of the circles described in and about a triangle of which
the sides, in lengths, are given.

Let in this figure

CF=r,, the angle XMN=¢, and the angle XON=0. We will suppose that DC is
perpendicular on OM; EC on MN; and CF on ON. Let OX be the principal direction.

If « represent a unit which makes with the pr mcnpa.l direction OX an angle of one

degree (Art. 42), ¥ will represent the unit of MN; « that of ON; u‘ that of DC. a""?

that of FC; and ¢‘+0, that of CF; and lastly the unit of OM will be a° or i. Therefore
we shall have.

T 0 T4+0
at+rel=—aq, —r,,a‘+ s
‘K+ L9
batera¥ Ti=—pi+ra?, )
T ©
_c,ao—r”¢'+0=—c¢?+r,¢'+?.

The requisite conditions to have C the centre of the inscribed circle, may be thus expressed,

ea—a,, b=0H,, c=c,, r=r=r,;

in introducing these conditions the equations will become

z 0 +0
ai+ra¥=—agae —re¥ ",

T ™
baP4ra?tP=—pitra? @
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In multiplying these three equalities, side by side, we shall have

P40 ¢n+?+0_br¢n+0+q:_a 24047

—abc a —cr? r8a
—abec a9+e+cr‘ ¢R+?+°+ bre ¢”+?+o+ar*¢“+°+?.
As (Art. 43) ¢“+?+0:¢“. a?+o,
and * a"==-—74 therefore ¢“+?+o=—a?+o; thus
—abca?+o+cr' ¢?+°+br° ¢?+°+ar’ 2 +0

+0

0
=abcal T —crt auq’-'-e—br’lm?'*-e—m-n T,
an>by transposing

278 (a+b+o) a?+o—2a.bc ¢?+°=o,

or {r’(a+b+c)—abc ; L=,

r? (a+b+c)— abc represents only an abstract number, and to have the product of
the factors »% (a+b+c¢)—abc and 20 zero, it is necessary that one at least of these
factors should also be so; but as «® +9 cannot by supposition be zero, then

r? (a+b+c)—abc=o,

or oo —_0be
a+b+c

Besides if we put,
a+b=A, b+c¢c=B, a+c¢=C,

we shall have

A+C—B A+B—C B+C—A
aq=—=— b —, (=— /—

2 ? 2 2

and again if we make,
* A+B+C=28§,

we shall have
A+C—B=2(S—B),

A+B—C=2(8—C),



—_20 —
(8—A) (S—B) (S —0).
S »

therefore re —

(S—4) 8—B) §—0)

c. r= \/ < 1))

The area of the triangle OMN evidently

=7»S.
=1 $(S—A) (5S—B) (S—C) |- )

Again the area of the triangle

OMN=4A.C Sin0=A;

. Sin 0=2——A,
A.C
. 2
or Sin °=XT) V{s(—A)(S—B)(S—0)}. ®)

If C is the centre of the Circumscribed Circle and CD per-
pendicular on OM, the angle DCO will be equal to the angle
ONM. Relying on this fact, and employing the Formula (5)
the radius of the circle passing through O,M, N, is readily
_ found. Here we shall find this radius without the aid of For-
0 0 M X mula (5).

Let O__l\g:A, MN=B, ON=C, oC=n, the angle MN O—® and the angle

MON=0. Then MC and CN =1, the angle DOC::-——«D, the angle XMC ==
—(:—¢)=:+~b, and lastly the angle XM N=(®+0). Thus if we designate by « a unit
which makes an angle of one degree with the principal direction, and if we take O X as
the principal direction, we shall readily see that,

s :-}-(b

— 0
0C=ral ‘b, MC =7« , ON=Cea ,

MN=B aq’+0, and finally OM = A «® =A..

Then Ai=ra¥ T —att :

and if we multiply this equality by

. sﬂ——:-’-d’ nx——:—fb
Ai=r«a —ra (Art. 61),

we shall have (Art. 48)

ex+2d ¢ grn—g® g2 aTn
3 —_r

. g%
Ai—=1r2a —98 +ra |,



or as a =i,

or —_—

again

Ai=Ca® "Bt
by multiplication
Ati=Cta® " —BCa" "t ' —cBa" " T P Brt T,
A% —Bs—C*® . FE g —¢
or —=sB.¢c_ '~ ° +e ,

. (As —B2 —C2)? . an4+3P 4x—2d aT
or by squaring, —pgy g ‘T +a +2a
and as «*"=i and o' T—a " , then

(A*—B2—C%)* . ent+ad® em—ad )
B®.C* t=a +a + 21,

e__Re—(C2) — e 2 t4gP —a P
hence (A B (i}.‘).c’l?B .C i=¢¢ 3 +¢¢1t 2 ‘ ®

Then of the equalities () and (b)) we have

(A*—DB?—C?)® —2B2. C? __ 279 — A?
B*. C® =T ’

and consequently
r? | 4B? . C?— (A?—DB?—C?)* | —A%.B*.C%;

At .B®.(C®
2 — .
—4B%.C*—(A?—B*—C?2)*

r

Besides
4B2.C*— (A*—B? —C?)' =(2BC+A*—B*—C?) 2BC—A®*+B*+C?)

=] A*—(B*—2BC+C%) | |(B*+2BC-+C?)—A*!
=] Ar—@B—C)* | | B+C)*—A®|

=(A+B—C) (A—~B+C) (B+C+A) (B+C—A).
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Now if we make A+B+C=—28S, we shall have

. A% Bt . C? .
T = 16S(S—A)(S—B)(S—0) '
_ A.B.C _ ©
or TS AVISG—AG—B) (—0) |

Ex. 6. In any quadrilateral prism, the sum of the squares of the edges exceeds the
sum of the squares of the diagonals by eight times the square of the straight line which
joins the points of intersection of the two pairs of diagonals.

Let OA—a, OB=8, OC=y, OD=38; the sum of the squares of
the lengths of the edges (Art. 64)

=2 | ad'+BF+(y—0a) (Y —a)+(—BF) () +23%| ,
=2 | 20’ + 2B+ 27y +28¥ —(a¥ +ya) — (v +BY) | .

The sum of the squares of the lengths of the diagonals (Art. 64),

=(+8) ((+8)+B—1) 1)+ Gta—B) (o' —F) -G +B—s) F+F—2)
=2) aa’+BF+vy +28¥ —(af +Ba) | .
Also jOG=§ B+ =

the distance from O to the point of bisection of CD, and therefore to the point of inter-
section of O0G, CD; and the distance from O to the point of bisection of AF, as like-
wise to that of BE, and therefore to the intersection of AF, BE

_ p—a+3
- 2

hence the straight line which joins the first point of intersection with the second

+a=—} @G+ +p),

= @+B—7);
eight times the square of the length of this line (Art. G4%)
=2@+p—7) @+ —¥)
=2 |ae+BF+yy+@f+Ba) — @@y +ya)— @Y +YE) |,

which, added to the sum of the squares of the lengths of the diagonals makes up thz sum
of the squares of the lenghts of the edges.

68. We have seen that z, y and z being reclangular coordinates (Art. 44)
p=xzi+yy+2zk; If n this expression we make yj)+zk=mn, weshall have p—=ai-+1.
It is obvious that this a, being on the plane passing through the directton OX and
through p, is perpendicular to the principal direction O X . Therefore let us represent the
lines «, B in this manner, and
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Let a=gi+n,

=z,t+n,.

and their conjugates

o =zi+4q,
P=gi+4,.
Thus ef—=zz i+ h+ah,+0n%, (Art. 47),

Be'—z i +xn,+a,h+1,1,
and by addition
af B’ =2z 3 i+z (A+R)+T(,+4)+M0h,+0,1);

but, n+4=0, and »,+4,=0, and besides if ® represent the angle which is between n
and 7, transposed to the same origin,

nh,+n,h=22an, Cos ®.% (Art. 65). Therefore

ef +Ba' =2z x,¢+24m, Cos ®.1.

Example. To find the cosine of an angle of a spherical triangle in terms of the cos-
ines and sines of the sides.

) Let us assume that « and B in the last Formula are two units, and

- that in this figure « represents O A; and B, OB. Then necessarily

* #=Cos b, z,=Cos a, n=Sin b, »,=Sin a, = angle ACB,

N2

and af +Ba'—2Co0s ¢.+ (Art. 65
Thus 2Cosc.4=2Cos a. Cos b. :¢+28Sm a.Sinbd. CosC. i,
or Cos ¢=Cos a. Cos b+ Sin a. Sin b. Cos C.

e AL AL DI e

CHAPTER III.

SPECIAL PERPENDICULAR.

69. Let us suppose that a represents a line OA; B, a line OB; and that O A —a,
OB=b. A perpendicular erected on the plane which passcs through the lnes «, §, and
having a length equal to a.b. Sin AOQB performs a very important part in the calculas
tions of Linear Algebra; we shall call 1t the Special Perpondicular of these two lines «
and B. It is scarcely necessary to say that this number ab Sin A OB is equal to the arca
of the parallelogram which has O A and OB as two adjacent sides.

70. The special perpendicular of « and B will be considered as having such a direc-
tion that in placing ourselves at the opening of the angle which is between O A and OB,
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in suth a manner that OB or B may be at our right and OA or « at our left, and on
regarding the point O, we shall see agreeably to our ordinary conceptions that this per-
pendicular is raised on the plane AOB; if we suppose ourselves placed in the opening
of the angle AOB in such a manner that « will be at our right and B at our left the
Special perpendicular which we should have conceived as rising on the plane BO A, will
be that of p and «.

4. We will represent the special perpendicular of «, § by II por I 8 and that of
@ «

8,= by 1—% or l': ; it is evident that
&

¢ H:—H,orn+n=0.
«f fa afp Ba

It follows from the very definition of the special perpendicular that the absolute
number or length of H is a b Sin 0, 6 being the angle which is between «, B transfer-
red to the same ongm.‘ll!t is evident that a, being an abstract number, the special per-
pendicular of a« and §, or H will be =—=a H the special perpendicular of —« and
xs-—H that ofa-—-ﬂlsalso—]]. ; that of—gc —B, is . Ife=8, and = an
abstract pnumber, the special perpendlcular of 2« and B, or that ?)f « and xp wille be—=o0;

II = o, H =o.

or Tex zga
72. If « and B are given, we shall be able to determine Hp , and consequently
. Let us first find the absolute length of H If we represent by 6 the angle which
is betWeen « and B, transferred to a common ongm, we shall have
af +Be'=2ab Cos 0.1 (Art. 65).

From this

«f+Be'=2abV 1 —_Sin* 0 ¢,
or (ap +Ba)t=4a*b* (1 —Sin®6).¢ (Art. 48),
e adSine. s =} \/ tka'b‘i—(«p’}pd)*!

which gives according to the very definition the absolute length of apor that of 1_%,"
in terms of « and . Now, let us try to find the unit of the special perpendicular
II y we will represent it by », and assuming that = and § are given we will write them
uls:)pin this form
«=g,1+y,j+3, k (Art. 14),
B=gt+ysf+iask,

and also U=zzt+YsJ+3; k.
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The direction of u being perpendicular to the lines « and B, we must have (Art. 65)
auw +ua’' =0,
Bu' +up=0;

on replacing in these two linear equations «, «, B, §', , u, 4’ by their equivalents, we
shall have these two numerical equations (Art. 66)

Ty Ty +Y,Yg+ 3, 35=0, )]
By Ty + Yo Ys+ 393, =0; @
and as « is but a linear unit, we have u.w'=1 (At. 64), or
zd+yst+at=1. )
Of these three numerical equations, we shall find,

31Ya— Y13

V )
Y Tg— T, Yy 3

— %1343, %y
Yo = ylw!_wlylza’

Y1Ta—%, Yq .
v {(‘1 Yo —Y130)" + (@, 54— 5, 8)* + (Y, B3 — T, Yy)* :

Thus the equation u==z4i+Yy3j+ 73 &k will become

2y ==+

31 Ya— Y13, . Ty39—3, %
y—-12= =2 S z.t+ 3 3.k,
Yy Tg—TyYg ° Y1 Tg— Ty Yo .[P 2

Therefore by multiplying this unit 4 by ab Sin 6, we shall have H ¢

«

73. We have already found that
abSin 6.i =} V gll at bti—(af +pa’)® } ’
or abSinb i=} V }baca’ Bp—(xp +Ba’)®} (Arts.48, 64);
if now we put into this equation the equivalents of «, ', p and p' we shall have,

ab Sin 6 =\/ | 31 Ye—Y 1392+ (%, 39— 3, %) + (Y, T —T, Yyt |.
Then ab Sin®. u, or

1];‘ §= (3, Yg— Y3 39) §+ (@, 33 —3, Tg) J + (Y, Tg—7, Ygo) &,

which is the special perpendicular of « and f; also,

]'—'p[a_—'(?h 33—3,Yg) b+ (3, Bg =3, 35) j+ (@, Yg—Y, %g) K .
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7h. In a pyramid CAOB let 0A=—«, OB=f and 0 C=y. We know that, if the
hight CD of the pyramid COAB is H, three times the volume of this pyramid will
¢ =H X the area of the triangle AOB; and if the angle AOB=09, the

area of the triangle AOB=}«p. Sin 6. Therefore if V represents the
B volume of this pyramid, we have

0 6V=nqp Sin 0x H;

A and if the angle DO C=¢, then H=7 Sin ¢;

consequently
6 V=aBy Sin 6, Sin ¢.
But according to Art. 65 =TT

tIT + TI r=2r. N(I] ) Cos G—9). ¢ (Art. &),
«p

«f «f
and as N(JI ) =2«psSino (Art. 69),
«f
then T ]]:B+ ILY'=2?_EI Sin 0. Sin ¢ . ¢,
I + I v=12v.s.
«f «f

In the same manner we can also find that

ﬁqa + ]-—YIa p=12 V.1,

« ]__[’ + H o =12 V.4.

By By

75. From this comes the following important theorem. When three lines represented
respectively by «, B, y are not in the same plane, we have

Y H'p+ Hp'r’=l’ H +H == H +H a' .,
« ] Y& Y

By By

From the inspection of this formula we shall see by what law «, B and y there
change their places on quitting the bottom of H to range themselves by its side, or wvice
versd. It is very necessary to remark that in this formula we assume that in placing
ourselves between «, B leaving B to our right and « to our left, and in regarding the
point O, we shall see v above the plane passing through «, B. Also, if we place ourselves
between y, «, or between B, v, leaving « or y at our right and v or 8 to our left and
in regarding the point O, we shall see B above the plane which passes through y, «; and
« above the plane which passes through 8, v.
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76. If «, B, y are on the same plane, =0;
therefore 2 «By Sin 6. Sin ¢=0,
and *(II' HY—PH HF—¢H+H¢'=0-

Ye By By
Conversely, if y ]:E p+ H B Y =0, none of the lines «,8,y being themselves 0, we must
@

have either 0==0 or =0 ; hence in either case the three lines are coplanar.

T7. Since ]._[p is perpendicular to the plane AOB (Fig. of Art. 74) and ].-[p

perpendicular to the plane BOC Hp 11 are both perpendicular to OB the line
along which is $; OB is perpendicular to the plane which passes through II H

and therefore is in the direction of ap’ By
. . II = m8B.
11 11; hence, m being a number, on
aP By af By

If 0OA=e, OB=, OD=3, OE=¢; and if the planes AOB, DOE intersect in OP;
it follows as seen above, that, I—[‘5 and 1_! being both perpendicular to OP,
a [ ]

I 1 is along OP and is therefore=—=n. OP, n being a number.
af 3s
78. Formule
We have already seen (Art. 65) that

af+fa’ —a'B+ fa=2ap Cos b.i=(a*+d*—d®)i, (1)

II=_ H (Art. 7). @

af

Let the angle which is between the lines «, § transferred to the same origin, be 9.

Evidently we have
al _p.! =:' P—’ Cosﬂ (] +:’£. Sin. 0 ;

but at Bt Cost 0=} (2 +Ba)* (Art. 4),

and :c_pc Sin® o=N' (H ﬁ) (Art. 4);

hence :!_p! =% (= P'+ﬂ¢')’+N' (I]‘;p) ®
Let a==y+3, p=p+o.

From these we can deduce the following numerical equation

affa’'=yp +pY +3p +pltydt+oy +3d40l ; %)
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for we have
«f =+ ('+d)=yp'+3p’ +yd+3d,

pe'=(p+w) (Y +¥)=pyY+pa'+oy+o¥;
therefore by adding these two equations one to the other, we shall have,
T @PHBa) =@ +pY)+ (b +0y)+ Cp +pd) + (0¥ +34).
This theorem still remains good when « and f compose more than two lines.
We know that when a =8

IIorII:O

1] aax
and (xf'+Ba) or aa’+aa'=2a¢,
Let a=a,i+Y,J+3, k, P=z t+ys+3.k.

‘We shall have ¢ﬂ'+p¢'=¢'ﬂ+9'¢ =2(z‘ Tq+Y,Yq+3, z’)i (Art- %)- (5)

or “B'—P¢'=2(=.y¢—y-‘-'c)i+2(_yn,%—$.y.)j+2(‘. Tq—T, 34) k. ©6)
We have also seen already (Art. 73) that '

I!P = (51Ys —Y1%2) i+ (3153 — 3,20 ) T+ (¥, B — %, Ya) K . ™

The frequency of the application of this last formula or theorem in what follows, allows
me to recommend to the reader to notice particularly, and to keep constantly in mind
the law according to which the term3 of this Formula are formed from the terms of

and B.
If (Art. 14) e=x,t+y,j+3, k,

B—=ggi+yq)+3.k,
Y=x,i+Y,J+35 k,

and =z, i+y,j+3, k;

by addition we shall have
a+B= (2, +24) t+(y, +Yg)J+ (3, +3,) k,

Y+H8=(z;+3) e+ (ys+y)J+(@s+3,) k;
and by Formula (7) 2 sy 2

=| (8, +%s) Ws+Y)— Y, +Ys) (33+3,) | ¥
+ | (@, +3g) (35+5,)— (3, +34) (T3 +%,) lJ

+ ‘ Yy +Ye) @s+3) — (@, +T (Ys+Ys) ‘ k;

@+p) (r+3)

after having performed the multiplication and arranged the terms, we shall have
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I — _ ) _ ) _ 5
(+8) (r+?) (B3, Ys—Y,135) 1+ (3,35 — 3, 33) § +(y, 03—, Y,)
+(BaYs—Ya3s) 8+ (Ta 33 —333,3)J + (Yo Ty —TgY3) K
+ (3,Ye —Y13) t+ (2,5, —3,8)  + (Y, 3, —,Y,) b
+(BgYe—Ya3) i+ (%33, — 33 8)) +(Ya T — T Y K,
or again by Formula (7)

nN- - 11 =1II II I1 II .
}%" O T i M T ®)

It is well to observe that the formation of the terms of this Formula follows the
same law as the terms of a polynomial multiplication.

If «, B, v are three lines (not coplaner) we shall have (Art. 75)

H' H = II' H ==« H' Hc’
Tt T T TP e P T PR

and by Formula (2)
Y H +H 7’=—(~(H +H Y. (10)
” af «f Pa Pa
a=x, 4 +Y,J+3. b, B=xat+Yy)+2k;

we have -
H =3, Yg—Y, 3g) ¢+ (€, 53— 3, 5,) ] + (Y, Tg— %, Yq) &

and again if Y=x3i+Yz)+35k,
we shall have by Formula (5)

Y 1—[# + ]];ﬁ Y=2 ‘za (#1Ye —Y13e) + Y3 (2134 —3, @) + 53 (Y, Ba —2,Yq) | ¥

45 Yo%
=2 2z, Yy, %, |¢. “11)
%3 Ys 23

We have seen that the volume of the pyramid OABC (when OA=—«e, OB=§
O C=v) is one twelfth of the above.

If e=x,t+Y,]+3, k, P=xgi+yi+3,k, Y= i+yz)+3k;

in replacing B by I]‘; in Formula (7), we shall have
T

(’ IIa. - = %, (335 —3:%3) — Y, Y2 Ps—7gYs) | §

By + ‘wl (YB3 —TgY3) —3y (34Y3— Yq 33) t]
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+ | Y) (Bg Ys—Ya%3) — @, (T 33— 2,2, | K
=0, Ty Y, Ys+3,3;)Bgt— (2, Ty +Y,Yq+3,54) Ty 6
+ (@1 T+ Y1 Ys+3133) Yoo — (8, e + Y, Yo +3133) YaJ,
(2,85 Y, Yg+3,55) Fgh— (%, Bg +Y, Yg +3,3,) 35
= (@1 @ +Y, Ya+3135) (Bai+Yej+ 5, )

— (2, g +Y, Yg+3,35) (Bt +Yi+2,k);

then by Formula (5) IIH =3@yY+ya)B—} (aP+Ba)y. a2
a
By
Hence ]i—][ =4 @F+Be)r—} (eY+va)B. (13)
@«
By
‘Whether we employ Formula (12), or whether we make use of the method which
gaveit tous, we can have H =} @Y +1e) B—} BY+YB) . (14)
vy
. ¢P
. II — I =ier+1) a—3(eb+pa)y,
a [1 Iy
By ap
or H — @Y +1B) a= H —§@fF+p) y. (45)
«[1 Iy
By «p

We have by Foamula (12)
IT =t Gr+re) s—i Cr+pan,

« 11
By
=} B« +ap) v—} GY+18)e,
PO
Y@
II =pap+ne—itaerens;
Yyl
«f
therefore. by adding H + H + II =0
P ST ymo (16)
B ula 42 P N !
y Form IIH =} (evY+ye) p—} @F+Be) v; -
By

by putting here H B instead of « we shall have
«
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IJ[I:‘(IL{-’-Y I-{'p p—}( IL@'HB l_gp)'r:

af By

but the lines IIP and B being perpendicular the one to the other, I:;Ip F+Bp 1;1; =0
@

(Art. 65), consequently

1} =4 (YI;I;+ I!pr’) p=1 (cl};-!- Hp;) B. (UM

«af By

If in Formula (12) we had replaced « by ];I8 » we should have found,

/
H =§(H Y+y 1—[ )P—}(H p+p H )7. 18
nn «d a8 «d «3
«3 By
By this last Formula

H =} (I—[3'+5 H’)u—} (Ha'+¢ IT)S;
nn By By By Br
By «8

but by the Formula (2)

H + H = 0;
nn nim
then By a8 a3 By

(Hag'+ Y I.Is) p— (g p+p I}s) 1+ (lg ¥+8 I;I;) «— (g ¢’+¢1-£2 $=0;

but by Formule (9) and (10)

I+ Ty=+ I + Iy =— ( IT + 11»),
«d «d Ya Y& ay ay
pIll+Meg=s T +Ts=—GI+ I,
«ad ad ] Ba «f g

« IT + Ha’=? IT + II v
By By «f af
consequently

(8 H;# I.E:) « — (81—[:1—[:) @+(5 I—!p+ 1—{;') Y — (1 II;FI{;”:O:
R l—gf' 11;’)8: (SH;;',* q:') a— (s l—[1+ II f) B+ (s H;p*- HC;")?,
oo GIT+IIv)s=0 IT + 119 e+ GIT+1I+) g+ GIT+IT%) +. (19)

«f By By B «f

«f Ya Ya @
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We can put the last Formula in this form

PN apy T e L D R T

This equation expressw a line in terms of three other lines.

Let e==g,t+Y,J+5, k B=zt+ygf+ask, Y=2384+yj+3,k,

S, bty J+3,k;
by Formula (11) e

51-!;{"'1];: 2 |2, (3aYs—Ya3s) + Yy (Te33— 34T3) + 3, Wems—2zey3) ¢

8H;+1_¥:'=2 l”c (33 Y1 —Ys31) + Yo (@33, —33%,) + 3, (Y0, —Z3Y,) ‘ i,
h

ILeIlr=2 (e, Guva—vis) + 50 Gun—sa)+ 1 Gea—ayn)li
«
Now on multiplying the first of these three equalities by « =&, ¢+ y, j + 3, k; the second,

by B==x,4+y,j+32, k; the third by y—==;¢+y,f+3;k; and finally in adding the
products we shall have

(8H IIV)¢+(1T:-H8')P+(8H+ 8)1

which is the second member of Formula (19) and
=22, Ty (3aYs—Ya33) $+2Y 1 Yy (3933 —35%4) ] +25, 5, (Yo%3—2Y,) b
+ 23y %y (331 —Ya%1) i+ 2Yg Yy @53, —533,) f+ 2345, (Y57, —23Y) kK
+223 0, (3 Yo —Y150) 8+ 2Y3Yy (@4 34— 3,%y) +2535, (Y1 Ta—2,Ys) K
=2(@, 2y +Y, Yo+ 51 5,) | (B0 Ya — Y2 33) + (34 33 — 59 83) j+ (Yo T3 —To Y3 )k |
—22,%, (Bg 33— 33%3)J —2%: %, (Yg T3 —24Y3) k—2Y, Yy (32Ys—Y23s)%
—2Y,Y0 a3 —2aY3) k—23, 5, (33 Y5— Y0 55) $—23, 3, (2433 — 32 35)]
+2(Be @y +Yg Yo +345) [ (3 Y1 —Ys51) i+ (035, — 35 2,) j+ (Y5 2, —2,9,) K |
22,8, (B33, —33%,) ] —2248, (Y3 51 — 23 Y1) k—2Y4 Y, (53 ¥1 —y,3,)8
—2Ya Yo (Yo — %2 Y1) k—2543, (33Y1—Y35,) $—2 343, (033, —3,2,) ]
+2(0aB +YsYa+335,) | (51 Ya—Y1 5a) 0+ (@153 — 5, Ba) j+ (Y1 Ba — 2, Yo) K |
28,8, (B, 34— 33 %4) ] —223 %, (Y1 Ts— By Yo) k—2Y3 Yy (51 Y2 —Y 1 50) ¢
—2Ya Y (Y1 s — 2, Yo) k—23,3, (3, Ya—Y134) $—23, 3, (2, 52 —3, %) j

=2 (@, T +Y Yo +3,3) | (30Ys—Ya33) i+ (Be 33 —2aTs)J+ (Yo @5 — ToYs) b }
6
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+2(0g g +Yq Yo + 54 34) “’ayl ~Ys 3 l)"“(‘”azl"—‘l”l).’ +(ys o, — 3 Y3) k |
+2 (5% +Y3 Yo+ 35 3) “‘x Yo —Y13q) t+ (0, 3:"": “'!)J"‘(yn Ty —, Yo) k ‘

—(a¥ +34a) IFI + @ +3) I + goasy Hp.
T ‘ Yo « :
or (v II‘;+ I[p r’)5=(¢5'+5¢') IpI + (B¥+38) II +gv+3n Hp' (20)
@ a Y T® a

By Formula (7)
Hp= (31Yya—Y13s) t+ (%, 34— 3, @) j + (y, Tg —2, Yy) k,
H = (33Ys—Ys %s) t+ (23 3, — 33 %,) J+ (Y3 o4 — %3 Y4) k3

. Y 3
consequently by the Formula (5)

ap 18 18 af
=2(3,Yg—Y15a)(33Y (Y 334) 8 +2 (T, 30— 7,24) (T3 2, — 3,2, ) i +2 (Y , g —1 Y o) (¥ 374 —T3Y 4) ¥

on making the multiplications, and adding to the second side these three zeros: =, z4 @4 %,
— Ty BTy Ty s Yy YsYsYa—Y1YsYsYa» 3135333, — %, 33335, We shall readily find

II H + H II = 2@, B+ Y, Ys+3,3;) @B +YYg+33,)4
«f 3 y3 «f
—2 (2% + Yy Yy +3,3,) (Ta %3+ YgYs+353,) 1,

I 1T + II II
«f T yb Y3 ap

=§@E¥+3P) (2 +v1e) —F (a¥+3a) By +71P). (€2)
79. Examples.

or again by Formula (5)

Ex. 1. On the sides AB, AC of a triangle are constructed any two parallelograms

ABDE, ACFG; the sides DE, FG are produced to meet in H. Prove that the sum of

3 the areas of the parallelograms ABDE, ACFG

is equal to the area of the parallelogram whose

adjacent sides are respectively equal and paral-
. lel to BC and A H.

. Let AB—a«, AE=$, AC=y, AG=3,

| A\z \' and AH=s; then # and y indicating two

numbers, s 9—-x¢ e—=3—yy,andBC=y—u.

By Formula (8)

I =11 - I =T o,

'.‘ . as ¢(P--x¢) «f YT



- M-I =I-T =1I,

1 1C—yn ¥ wr o yd
consequently H _ I‘[ — H _ H
Y: xs - v8 «f
or I = 1I + II.
(—=)e 13 By

Besides, the definition of the special perpendicular shows that each term of this equation
has the same unit; we will represent it by v. We know that (Art. 69) the abstract

number of I[ §s the area of the parallelogram whose adja.eent sides are respec—
Y—&)e

twely equa.l and parallel to BC and AH; and the number of Hs and I I are respeo-
Pa

tively the areas of the parallelograms ABFG, AODE. We w1ll represent the first of
these three parallelograms by A ; the second, by B, thethird by G; hence

Au—=Bu+cu’
or (A—B—C) u = 0;
A—B—(C=0 or . A=B+C.
The ordinary resolution of this problem is very simple.

Ex. 2. The squares of the sides of any quadrilateral exceed the squares of the dia-
gonals by four times the square of the line which joins the middle points of the diagonals.

Let P, Q be the middle points of AC, BD; and let AB=aq,
AC=8, AD=y; then BD=~{—:¢.

Therefore

+7v
2

2
2

»

or 2PQ=a+y—B.
Hence the numerical equation that we can deduce is

h(PQE=c+ys+B*+ (2¥+v2) — (2F+B) —(yF+Fy) (Formula {((7;;);
' 4

but ay+ya'=a?+y?—(BD)?,
aﬂ'+Ba'=a’+B'—(B C)'

79+P~r —'7‘+P'—-(CD)'

therefore
4 (PQ)* =(AB)® + (BC)* +(DC)* + (AD)*— | (AC)* + (BD)* I
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Ex. 3. Let ae=uz,i+y,j+3,k,
B=wgt+Ye)+3agk.
We know that
§'=”l. +y‘l+z‘t’ p_l:w.!_'_y.. +z’.;
And af +Ba' =2 (2, 2, +Y,Ys + 3, 50),

N I{P= \/ {(yl By %, Yo)t+ (3, 0 — Ty 34)* + (T, Yy — Y1 T)* z .

Therefore, let us replace
«f, B*, af+Ba’, N II in the Formula (3) by their above equivalent, we shall at once have
N (@2 Y, +3,%) (@ +Ys* +3,%)
== (@, s+ Y1 Yo +3135)" + (Y1 5s — 31 Ys)*
+ (3, By — 2, 3,)* + (2, Yo — Y, %y)* .

Ex. 4. To find the volume of the pyramid of which the vertex is a given point,
and the base the triangle formed by joining three given
points on the rectangular co-ordinate axis.

Let A, B, C be the three given points; OA=—ga, OB=1",

0C=c; =, y, s the three co-ordinates of the given point P.

% ThenO A=ast, OB=bj, OC=ck; and OP=zi+yj+3k.

Let PA=«e, PB=§, PC=y; V= the volume of the pyr-
amid PABC.

Hence s —=0A—OP=—(z—a)i—yj—3k;
B—O0B—OP=—zi—(y—0b)j—z3k,

y=0C—O0P=—zxi—yj—(3—0C)k.

By Formula (7)
]__[p = |s@y—b)—ys|i+|(e—a)s—w3)| j+| sy—(@—a)(y—>b)] &
a
=—bzi—azj—(ab—ay—ba)k.
And (art. 74) 7H'p+ pr: 12 Vi
a [ 2
S (—2t—yj—sk+ck) (—bzi+azj+abk—ayk—>bazk)

+(—bsi—asj—abk+ayk+bzk) (—ai+yj+sk—ck)

= 12 Vg;
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after having made the two multiplications which are in the first side, we shall find

6V=abz+acy+bcz—abec,
® z
or V=3}abec (E+Hb+;-—-‘l).

If V prove to be negative, it will indicate that the pyramid PABC is below the
plane ABC.

Ex. 5. To express the relation between the sides of a spherical triangle and the

angles opposite to them.
Retaining the notations and figure of Ex., Art. 68, we shall have,

II =S8in c.u,, H —=Sin a .u,,
«f By

u, is the unit of the special perpendicular of «, §; and u, is the unit of the special per-
pendicular of B, y. It is readily seen that the angle which is found between u, and u, is
the supplement of the angle B of the spherical triangle ABC; and that OB or B is per-
pendicular to the plane which passes through w,, u,. Therefore

I =—sinc.Sina.SinB.85.

I n
af By
By Formula (1) ,
eIl +1[ v=—2sina.Sing.i,
By By

¢ represents the angle which is between the line O A and the plane COB; therefore

8 (a I{+ 1_!«') — —2Sin a. Sin 9. 8.
But by Formula (17) ! !

H =~':(°‘H' +H¢’) B—=—Sin a. Sin ¢ .B;

nn By By
«f By
.. Sin ¢. Sin @. Sin B=Sin a. Sin ¢,
or Sin ¢ = Sin ¢. Sin B.
Similarly Sin 9 = Sin b. Sin C.
Therefore Sinc¢c.SnB=Smnbd.Sn C,
or Sind . Sine¢ . SinB. SinC.

Ex. 6, To find the condition that the perpendiculars from the angles of a tetrahed-
ron on the opposite faces shall intersect one onother, -
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Let OA, OB, OC be the edges of the tetrahedron, and
¢ OA=«, OB=p, 0C=y. Let the perpendiculars from A and
B on the opposite faces, be AN, BM. We know that
NA =m HB and MB=n I]  (Art. 70), m and n being
Y «y :
A two numbers; if these perpendiculars intersect in G, the three
points A, B, G will be in one plane, and the special perpendi-
lar of AN, BM will be perpendicular to the line AB=f—¢;

and mn 11 which is the special perpendicular of BM and AN (Art. 71) is found
n o

«y B
perpendicular ’wYA B. Hence (Art. '65)
6— Il + Il  @—o=o;

Inian Inin
«y YB ey yB
but by Formula (17) ,
» I =i(Ie+eIl)w
In 1 «y «Y

ey vB

¢— (Il p+pIl )y + (L g+ II ) v =) =0,
«y Yy ay . xy

therefore

or (H g+p H' ) | B—0) ¥+y F—a) | =0.
xy ay

It is evident that, H p+p H cannot be = 0. Therefore,
L ¢ L ¢

E—a) Y +y F—a) =0;
BY +1F =ay+re;
but by Formula (1) BY+y#=(0B*+0C*—BC*)i
and ay+ya'=(0A® +;0_(_7’—;ﬁ')£;
OBt +00'—BC'=0A"+0C—ACH,
or OB*+AC*"=BC*+0A*.

Consequently the condition that all three perpendiculars shall meet in a point is that
the sum of the squares of each pair of opposite edges shall be the same.

Ex. 7. Any point Q is joined to the angular points A, B,C,0 of a tetrahedron, and

the joining lines, produced if necessary, meet the opposite faces in a, b, ¢, 0; to prove that
Qa Qb Qc Qo
+ — + —— + —

Qa—QA ~ Qb—QB = Q¢—QC  Qo—Qo.

— cm— —

=1,
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Let QA=¢, QB=8, QC=y,
Q0=3%; Qa=ae, Qb=0b8,
Q'c:;'cy, Q¢.>=d8. Then -
AB=p—e, AC=y—a, 0B==p—3, 0C=y~?,

a0=8—aa. Therefore

(s—aﬁ) II -+ H (B'__a¢1)=o,
—3) (y—3 T8 (v
or by Formula (8) ¢—% (=9 ¢—3) (—?)

¢—aq) (IT H; 11")
+(H II H)(rf—a«o =0,
o (IT +118+r; ) (I + 1, T0) o
~GILI) = G I+ T0) — G I+ T =
o o] I+ T0) (I + T+ T ) s — G T +l;[89')-=0;:
WIS 0 1 8 98\ 8 48 ;,_—(pq;;rgsp'):of

We can find in the same way, that,

{91_[ +PH+P H HF +Hﬂ+ 8ali'}—('u 1_!8 +—'-HY§’)=0;
c {YH +7H'+7H' +H 1’+H1’+H7’}—(¢H'+Ha’) =0;
ap B3 S« af ps ba 85 b

or

d{sl—[' +3 1T +'H' +Hs’+Hs'+Ha'-}_ IT +II«)=o.
By T ap By Ta By By

«

Now if we write

aH' +H o =g, aH +H¢=ya,a1_!;3_+ 1;[;«':::’,

By - By

Pl—[ +H'P'=wi,
v3 y8
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and apply the Formule® (9) and (2) we get
az+ay+az— w=0,
-—'-ba;—y—bz+ bw=0,
cx+cy+s—cw=0,
—zg—dy—dz+d w=0,
which give .
a—1

T + 4w=0,

[/}
d—

a b
pyny Il yy |

w =0,

=iV 5—=i* =%
(]
c—1 " a—17% =0;
and therefore,
1 + b + - 4 d —0
a—1 b—1 c—14 d—1— 7
a_ o b + - 4+ d — 1
or prymny S sy i ryuny S B
but by supposition
Qa Qb Qc Qo
Sy e T T T
consequently
a e __g'_ ) etcl
a—1 " Qa—0QA
therefore
Qa Qb Qc Qo A
a—_1£+ b—QqB + c—_(_)+ o—QO0 — °°

GCHAPTER IV,

Hqguation of a Straight Line.

80. Let B be a line having the same direction as that of DC of
which the equation is required ; « the line from origin O to a
given point A in the line DC; ¢ that to any point P whatever
in the same line from the same origin; then AP having the
same direction as $ is a multiple of this; let AP—=xf; the
equation OP=—=O0A + AP
gives p=o+xp Q)

a3 the equation of the line DC .
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Another form in which the equation of a straight line may be expressed is this: ins-
tead of the direction of the line and the position of a point in it being given, let us
suppose two points in the line to be given, and let O A—=«, OB=1; then

AB=yY—« and AP=2z(y—¢),
S p=a+a(r—a. @)

We can readily deduce the second equation from the first: we have only to suppose
that B is=y—=«.

A third form may be exhibited in which the perpendicular on the line DC from the
origin is given.
Let OD perpendicular to DC=3;

then DP=p—3

and 3 —¥+(—d¥=0,

because 3 is perpendicular to (p —3);

then 3p' =38 4-p8—3¥=0,

pY¥+3p = 28¥=2d%, )

where d® is a constant (Art. 64).
Egquation of a plane.

81. Let P be any point in the plane of which the equation is required, OD perpen-
dicular to the some plane; and let

OD=3, OP=p;
then p—3=1DP,
which is in a direction perpendicular to OD;
B —8) + (p—3) ¥ =0,
or S p¥ = 25’;‘.
If the plane pass through O, p can have the value zero,
8p'+p¥ =0 is the equation.

Sice a line can be drawn in the plane through D, parallel to any given line in or
parallel to the plane; if  be any line in or parallel to the plane,

S4B = 0.

82. To find the length of the perpendicular from a given point on a given plane.
7
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Let 3 +p¥ =C.s

be the equation of the plane, y the line to the given point from the origin; then let the
perpendicular line be 3, we have

p=v+ad;
then p¥=y¥+ad¥,
and 3p =23y +0d¥;
z. P+ =y¥+37Y +228%.i=C.J,
which gives 2588 . 4=C.i— (¥ +3Y)
. Ci—(¥+3Y)
or Wfl— 23 [
— C—N@¥+3y)

Equation of a circle.
, 83. Let AD be the diameter of the circle, C the centre,
and a=— the radius, and let P be any point. If O be the
. origin and OP—=p, OC=y, CP=p—7.

s A ] ‘We have
| U e—1Y) ¢@—Y)=CP. (CPY=a®.1(Art. 64).

If 0C=c, we can put this last equation in this form

pe— Y +1e)=(a®—c?).¢.

The Sphere.
84. It is clear that there is nothing in the demonstration of Art. 83 which limits the

conclusion to one plane; it follows that the equation there obtained is also the equation
of a sphere.

The equation of a Conic Section deduced directly from its definition.

85. We will define a Conic Section as the locus of a point which moves so that ils
dislance from a fized point bears a constant ratio lo ils distance from a fixed strasght lens.
(Kelland and Tait, Art. 43).

Let F be the given point, DQ the given straight line,
FP=¢ PQ the given relation, F, P, Q, D all in one plane.
Let FD=«, FP=p, DQ=y7Y, t being the unit line in the
direction DQ, and PQ==z«; then

g:cng

thenm P_’ — 0’ m' alt H



but
then

and

But

and

Here

for ey +ya'=0;
and

or

hence

or

—_5 —
pre=pp,andati=aa’ (Art. 64)

pp =0t 2% a a,

PR
p+2a=FD+DQ=c+y7;
p'+zad’=—ad+yya,

ep +azga’=—ax'+a'yy.

ap+pa'+2zaa’' =2,

2zaa’ =2aa'—(ap'+pa),
hot (010 = 20— (er )0
[:L,P' cad'=|2ad —(ap'+pa')|®

ep’ . ¢¢'=3't¢¢'—‘(¢p'+p¢')¥',

m

which is the required equation.

7 Y

P
F

The Ellépse.

86. When e is less than 4, the Curve which
the equation (1) represents is an ellipse. FA, FA, are
multiples of «: Call ane of them z«; then by equa-
tion (1) putting z« for p and therefore z«' for ¢,
we get,

zSaa’, aa‘=a’tu¢'—-}(a¢¢'+¢¢¢'”c

— ’ g
=etjan’—zad'jt,

z8 == ¢%(1—2z)°

or g=ze(1—2);
hence m=1:_°’ or c=—-4_°_°.
Consequently ,

FA=j :-a FD .
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2¢ _ pp,

f—e*t —

AA, =

the major axis of the ellipse, which we shall as usual abbreviate by 2 a.
If C be the centre of the ellipse,

4 e
ro=FA,—cA,=(r%, — =) FD
s
== FD=e q—5 FD
= eca,

and if the line CF be designated by B, CP by y, we have

F'———jﬁ, and y=p +8,

or “=4—e.c. pv and P—T—p-

then ¢p’+p¢'=4—.°

and L — (———'1 _c-:’). Bp,

also of . ax = (r—p) (r—#) U= L pp

=U= (o yr+ (88 ) — (1B +01288];

whence, by substituting in (1), and remembering that f'=e®a®. ¢, the equation assumes
the form
(BY+vf)*—hatyy=—hat (1 —e?)i;

which we may now write, CF being « and CP ¢,
(ap+pa’)2—hatpp'=—hat (1 —e*)i. ()]
From this last equation we can have

’_2a'99'—l(¢9'+9¢')'
=T e (1—e)

—2atpp—§(ap+pa) (xp+pe)
2a4 (1 —e%)

= 0tpF+atpp’—}(ap+pa)ap’—f(ap+pa’)pa’
Zat (1—e)
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_otp—j(ap+pa)a , atp—j(ap+pa’)a’
= T et (I—ev) PP ga(l—eny ¢

tp—d(xp+pa)e
2at (1 —e9)

in the cases in which either « coincides with p or when a¢'+pa’=0; the equation of the

ellipse becomes.

if now we write ®p for 2 where ®p is a line which coincides with p only

/
P .Op{d’p.p’:i. @3)
From a simple inspectioxi of the value of ®p

—otp—j(ap+pa)a
2a% (1—e*)

we see the following properties of ®¢;
I. ®(p+o)=0p+oa.
II. d(xp)=2x.®p.
III. 6.694‘59.6’:9.0(61:;6.9'.
The Hyperbola.

87. The same equation is, of course, applicable to the hyperbola, e being greater
than 1.

. The Parabola.
88. When e=1, that is FP=PQ, the curve which the equation
(1) (Art. 85) represents is a parabola. We have
> pp.aa'=laa’—}(ap' +pr)|".
Hence

pF . ae'=(ae)d —ad’. (ap +pe’)+ ] (af+pe);
and, since ae’=a%.4 (Art. 64),

o l;pp'.¢¢'+4¢¢'(a.p'+9a')—(¢p'+p¢')’
1=
b at

2 .da—(ap+pa)a'+haa’ . @’  2p.ad’—(ap’+pa’)a+La’a. a,
= Tt -+ Trat P.

If now we write
__ 2p.2a'—(ap'+pa)a
dp—= Trat

to which the properties of ®p in Art. 86 evidently apply, the equation becomes

P {¢p'+ %’-}+;¢p + {,—-h’:i.
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The Cone of Revolution.

89. Let the vertex of it be the origin. Suppose «, where « =1, to be along its axis,
and e the cosine of its semi-vertical angle; then if p be the line from the origin to any
point on the surface of the cone, and up, the unit of p,

a.up+up.a'==+2et,

and (. up+up.a)d=hets;
then (x.up'+up.a')2p3=4het.pp,
or (a.up .p+up.a'p)t=he?.p¢;
therefore, (2 +pa’)2=14he? . p¢p

is the required equation.

The Cone which has a Circular Section.

90. Suppose the vertex to be the origin, and let the circular section be the inter-
section of the plane

ap +pa'=21%
with the sphere (passing through the origin)
pe =4 (B¢ +pF),
a, B being two units of line.
These equations may be written thus

p. (. up'+up.')=21,

pt=§(B.up'+up.p);
therefore, eliminatingp, we find the following equation which up must satisfy,

F(B.up+up.p)(a.up+up.a')=2s.
Hence g_’(ﬂ.up’+up.p')(¢.up'—i-up.c’):lbg’i;
(Be'+ef) (=p'+pa')=hep,

or hoo' —(Be' +pPF)(=¢' +pe')=0.

Now if zp be written in place of p, the equation is not changed, it is therefore the re-
quired equation of the Cone.

As o and B are similary involved, the mere form of this equation proves the existence
of the sub-contrary section discovered by Appollonius. (Tait Art. 239).

—p 5 PP G G G
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CHAPTER V.

On some Additional Applications.

9. Let us designate by f; (0, fa (®), (& ...... diverse functions of one indeter-
minate number, and by f; (¢, %), fg (¢, %), ...... diverse functions of two indeterminate
numbers. Let «,, ag, a5...... be given lines; following the nature of the functions
L@ fa@®cveeve, f1(u), fo(tw...... the equation

p=c, fi(+eagfa(O+......
may represent a right line or a curve, and the equation

p=c,f(t+u)+a fy(t+u)+......

a plane or a surface.

The first equation is often written under one of these forms:

p=3af(t) and p=0(i);
the second equation,
p=2af(t+u) and p=o(t+u).
92. If P is a point on the curve that
. p=2Xg[(t)

P represents, OP=p, =a,f; (D +e,fa(O)+..... and similarly, if Q is
any other point on the curve,

0Q=pg=0,f;({+AD)+ag fL(t+AD+......
0 where A¢ is any number whatever.

The line P Q is therefore

pa—pPr=Apy =, [/ ¢+A)—f,(D] +ao [ E+A)—f, (O] +......
. A : . ft (t+At)"- 1 ¢ ] ""A‘)— [ t)
3 ber, LOHAO—(O) , AOHAORO
dey __, (), dafi(®)
and Tﬁ"‘“%g Fag =gy

We can represent this result by

dp _ .. df(d) de__de().
= "ar T T ae
Let OP be '
Pt=¢(t)'

and 0Q Pa==C(t+A4).
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Let us suppose that the number ¢ represents the time, and At is the interval of time
that a point moving along the curve takes to come from P to Q. pg—p, Or ®(¢+At)—o¢,

represents the line P Q. It is evident that — Q or '—;—P: can represent the average velocity

of a point which passes from P to Q on the hne PQ, in the interval of A¢; it is also e-
vident that when Q approaches nearer and nearer to P, that is to say, when A¢ becomes

smaller, the average velocity represented by :—‘; approaches also more and more to the
actual velocity at the point P of the point which describes the curve; therefore

g—: or d dft) is the velocity of this point when it is at P; that is to say, if the point
which describes the curve arrived at the point P ceases to be accelerated in departing from
the point P, it will continue to move on the tangent at the point P with the velocity

: 0 this expression represents not only absolute value of velocity but its direction as well.

93. Example. Let us suppose that a point moves
from O to X on the line OX, conformably to this
equation x=f(t), = being the space passed over,
and ¢ the time; let us also suppose that another
point moves along the curve OBC in such a manner
that the line which joins this point to the point
which describes the line O X, shall have constantly
o X the same direction as OY; we will represent the
length of t.hls line by the function F (z).

To find the velocity of the point which, comformably to the conditions above laid down
describes the curve OBC.

The equation of this curve may be written thus,

p=za+F ()8,
« being the unit of the direction OX; p that of the direction OY.
Therefore
Ap __ Az F(z+Az)—F(2) Asx
At~ Al «+ Ag ’ Tt_p
de __ ngz
de— da dt

This equation shows that the course travelled over on the line 0 X being OB,, if we
describe the line BM equal to the velocity at the point B,, and the line BN which has
the direction OY and the length dFix) Zf » we shall have the velocity at the point

B=BM+BN=BL.

To find the absolute value of this velocity ::—s we have only to multiply it by %—‘;—' ’
the product will be the square of its absolute value x ¢ (Art. 64).

Suppose that OY being perpendicular to O X we have



—5F—
®=—=7v, cos 0 . ¢,

and F(@)=e . tan 06— o®.

—9
2 v$ cos® b
Then the equation of the curve will be,

p=w0i+(s tan 0—_m%oﬁ - 0%)4,
OX being the principal direction.
These equations give,

d dx f.
3! d7{+(m°— v‘cos'o )-’}
and gifzv,oos 0.

Gonsequently,
g—‘::v. €080 .8+ (vy 8in0—g . t)j

i$ the velocity at the end of the time 3.

To have the absolute value of this velocity, let us multiply it by
de’

d¢ —vecost. t—(vg8in0—gt)s,

dp d dpy
2 ar=n(3)-¢

= | v§ cos® 0+ (vy 8in0—gt)*} ¢

we shall find

= |v§—2v,sin0.gt+ gti2} .
It is unnecessary to observe that an example of this nature is given for illustration merely.
R 94. Let us suppose that a curve is represented by
p=Z2af(),
and that ¢ being the length of this curve mesaured from some fixed
point is t=¢(s);
then p==Zaf(¢() or p=Z«F(s).
The last equation gives
Apz=py—p,=XaF(s-+As)—2«F(s)=PQ,

OP being ¢y, 0Q py.

Thus
Ap _y. F£3+As)—F(8)
Ac As
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. e s, dF(s) dtb(s)
M ds— d: “ds

must be a lmear unit in the direction of the tangent at the extremity P of p,, for evi-

dently f{ arcPQ =14.

At the proximate point, denoted by s+As this linear unit tangent becomes

d(p+4p) _:adF(s+As_)
ds ds

But F(s+A5s) is by Taylor's theorm equal to
dF(a) Agp BF@ (B9

F@)+—~ I B R .
hence
“'(P_;':ﬂ,) =Zea dF(’) +Za d;F,(’)A:+z d'de’)% ......
_d0@) dte(), de@ase
ds dss dsd 1.2 )
Now if we designate the conjugate of XadF(') by = ’dg(’) or d;’fs)’ and if we mul-

tiply this equation by its conjugate, we shall have

d(ep+Ap) . a(e'+Ap)
ds ds

_do(s) _d¥(s) are(s) dO’(s)-
= ds as + Ty d8 oo

L 800) d* (), 4%, d¥(),, .

ds dss dss dss =~ e ‘
B et e e et e et et ettt et e,
But we know that
dlp+A4p) d@E+4p)
ds ds =sort,

and 406) 4G = or 1 (Art. 64);
hence

d,d’?) ‘i—(‘)As+ ...... d‘h MA3+ ...... =0;

ds ds dss

by dividing this on As and afterwards by making As=0 we shall find
are(s) ¥ (c) do(s) d*¥(s) —0
d st ds ds dst — O °
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: ]
Hence d-T;-:—,Q d.—F-@ is a line in the osculating plane of the curve, and perpendi-

cular to the tangentu-) or Za dF(’)

95. If Ao is the angle between the successive tangents %ﬂ and

do()  d*o()

rr PO cAs+..... .
and if 42 5 represented by PP, L20E29 by q; and mnstly if QP,.=PP,,

ds
we shall have:
P,Q=QQ —QP,

_d'ddbss) As+ d';:g’) sA.’); N

Besides QQ,=QP,=1; the angle Q,QP, being extremely small
we can suppose P,Q,==A0; if C is the centre of curvature at
P, PQ or As being very small we can consider the triangles
Q QP., QCP similar. Hence

P.Q= {_i’l As +d;°,"’ g".');+.. }
Ao d*o(s) de3() (As)®
or 2, =N d:"+ d‘: . 1f2+ ...... }
Therefore
AO__dO__Nd'O(:)
As T ds T dst ?

but as the triangles Q,QP,, QCP at the limit become similar

a0
As —B._’

R being radius C P of absolute curvature at the point P.

dso(s)
Hence N Fre B'_.-
1
or R= IOk
dst

so that the number of d;:,(‘) is the reciprocal of the radius of absolute curvature at the
point P, to which point s is corresponding.
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96. We have seen tbatthehned 0(’)

is in the osculating plane, thus a2 q’(s)

is perpendicular to the tangent, and that it
mustbeonthesamehnea.sR Then
as 'b(s)

R=R.U

Besides
ds &(s)
d2o(s)__ ds®
da® _Nd"l’gsj ’

dss

U

consequently
a2 & (s)
dss
asd(s)”
N Tdss

R—-

97. Thus, if OP=%(s) is the line from the origin O to any point P of the curve,
and if C is the centre of curvature at P, we have PC=R, and 0OC=O0P+PC
d"b(s)
_«b(a)-i- d' ¢ () is the equation of the locus of the centre of the curvature.
dss

98. Hence also H is perpendicular to the osculating plane; and the
do(s) a2 (s)

ds dss
unit of this line may be represented by

11
do@) dre@)

“ds dss

all
a®(s) U 'dd',g $)
N dsds s

or

ds
2 (50058

is the lortuosity of the given curve, or the rate of rotation of its osculating plane per unit
of length. (Tait. Art. 283).

99. Ex. 1. Let
p=¢t+ﬁ-z—'-,

where ¢ is an indeterminate number, and «, B given lines. The curve which this equation
represents is evidently a parabola. See Tmt Art, 288,



Here ﬂ’=(«z+pt)g-£,
and B = wrpy +P( )
dst dss '
whence, if we assumeé «§'+fa’'=0,
(g—p.(uc'+ﬁp't')=i,
or d:) aa +N3 ax+Bpis’
and g_:=(u'+pp' oyt
ate____ BF de_ | BFE
) dst @o'+ppt ds (xa'+B 19)8
da%e pp'e i
'd_sg'——(a-'.p‘) . (¢¢I+pplt,)' +p¢¢'+pﬁ't’
_B.ad'—a. Bt
- (ca'-i-ﬁp't’)' '
dtp _ pYadatpeys at g8
and Nt o = @ +ps 19)¢ (¢s+ps tn)a'
e i
hence R=— (—-._+E'ﬂ.
= a.B

Therefore, for the locus of the centre of curvature

] 1] ) . R
"’=OC=¢¢+p%+(- +£'t?'(ﬂp.i «f )

_9(3” ;;,) ¢p—p:-ta;

ax
which is the linear equation of the evotute.

100. Ex. 2. To find the curve whose curvature and tortuosity are both constant.
Tait. Art. 284.

2o(s)__

We have curvature—Nd =c

and tortuosity = [\ II =¢,,

drd®(s) d"bis)]

dsl ds ds®



ds
or Nfia—:=c and NI =c,
d (ded'p)
ds\ds ds*
a*e —
Henee N-_'i H as —l—g as d
deydie  dendie 4%
d:uds' d:Nda' Uds‘
=H =ca,
dpdtp
dsdst
where « is a unit line perpendicular to the osculating plane, that is ¢=II
de
ds
This gives
— — ate___ d%e
IT = F=ca Ut=c 5k
4 (dedte
ds\dsds*
Integrating we get
II =c3i+s )
dpdie
dsds®

where B is a constant line. From this,
c'a¢'=c,'i+BP'+c,(:-:——sp’+Pz—‘: ,

—9, s483F  3¢p,
then pr=ct+e?.
And also
deyp  de(ode.p) o dede dey dey
ds dpdsp s\'Vds Ydsds s ds
dsds®
but H = d_',g’
dp ds
.11
dp d%p
ds dst
ate
- a=—1I .
de

d*p
dss
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or by integrating %E:—H +o,
1
where o is a constant line. Eliminating ‘dTE. we get

#e__ I =1 -II.

£

s (—O+e)p g wf
PP PP
But H =pp sin 0.¢, from thlsH =pp*sind.¢g,
1 2 Ilpp
(4

where 0 is the angle between p, B transferred to the same origin; and & is a unit line
perpendicular to § and being on the plane passing through p, p. Evidently

__cosb 1
e= sinOUp—sinO Up.

dp dp' —_— 3
We have nFrh = 2¢,4,
or by integration
p‘ﬁ'+ﬁp’=—2clsi+2ai=2g_§_0080 .t

where 2a is a constant number; hence

__ & a8
08 0=="8 + 73
II = — o2+ S Up—ptt Up
me ( [ E)
pB
=—c sp+aP—p%;
qa=—asrar—pe—IL,
or 3—1—9+g'p=—c,ap+ap—np.

The complete integral of this equation is
p=%cos.Bs+nsin. Ps——-——(c,ap aP+H) (a)

§ and % being any two constant lines.
From this we have
Bo'+pp=(B¥+EF)cos.Bs+(BA+nf)sin.Bs—2¢,8i+2as

or (B¥+3%F)cos.Bs+(Bi+nf)sin.Ps=0,

which requires that
PE+Ep =0, Bia+np=0;
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also we have
%%.—_-—Egsin «Bs+nPcos. E’—%Tp’
and g—%:—!’gsin «Pe+4B cos 'f“'g"gg"

therefore, remembering that N (:—i . -:—:-) =1,

1 =E*p%sin® . Ps+n*p* cos® . gc—(nE'+H)§_' sin . Bscos . gc+€%‘-.

This requires, of course,

Ve
MEHEA=0, fmam e 8

i) g: _c’+c,' !

so that (a) becomes the general equation of a helix traced on a right cylinder:

APPENDIX.

Comiplex Quantities and Quaternions:

We can add a linear equality with a numerical one. For example, let

e=y+3,
. n=a-+b;
We can write,
at+n=y+38+a+0b,
or et+n=—=a+b+3+7,
and ct+n=a+3+b+y.

Such an equality will always be correct with the conditions
a=—=y+3

n—a+b.

We can multiply a linear equality by a numerical equality or vice versa. For example,
let a ==y,

n=—a<+b;

we can write,
ne=(ad+>5) (v+?)

or ne=(y+3) (a+0b);
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dnd in effecting tli¢ multiplication
ne=ay+by+ald+5b8

=vya+3d+yb+3)
it is evident that this result is correct.

We can also multiply two complex equations by each other. For example, q and #
being two complex quantities, let

g=c+n=n+y+3,
r=f+m=m+p+o;
We can write,
g.r=(c+n)(B+m)=(n+y+3) (Mm+p+ow)
or eB+np+me+nm
=‘nm+m7+m3
“+np+yp+3p @
+no+yotdo;

it is readily seen that this result is correct with the conditions,
a==y43,

=pto,
which are the same conditions as those of the equalities given.

The equality (a) is the sum of these three equalities,

nm=nm,
ma+nf=my+md3+np+no,
afp=yp+yo+dp+ion;

and as from the last of these three equalities, we can deduce two others (Art. 78) we
can deduce from the equality (a) four equalities,

1. nm=—nm

1I. c(ap+Ba’)=c(yp+pY)+c(yd+oyY)+c(3p+p¥)+c(3d+wl),

III. nf+rma=my+mi3+np+no,
IV. H_-—:II +H+II +II.
af TP 1 8p Sw

In the second equality we have introduced the numerical factor ¢ for ¢onvenience.
9



If we add these four equalities, we shall have a new complex equality. Let us de«
signate the new complex quantity thus found, by g~», that is to say
an=nm+c(¢ﬁ'+9¢')+m¢+ﬂ§+u ’ )
(-]

or
gar=nm-+c(1¢+pY)+c(yd+0y)+c(3p+p¥)+c(3d+0¥) (2)

+my+md+np+ne
+IT 11 +11 +1T .
TP

Yo 3p So

If we designate n+a by ¢, we will designate n—a by K ¢q; n being a humber, and
« a line.

Let
g=n+a, r=m+8,
Kgq=n—a«a, Kr=m—§;
we shall have by multiplication
qg.Kqg=n%—ad and r.Kr=m2—p9,
Therefore
gnK g =n®*—2ca?, raKr=m®*—2cp9;
consequently,
(@AK Q)X (rAK 1) =n%m? —2cnt BT —2cmalt +4etat e,
or .
@K A(raK r) =ntm® —2cn® Pt —2cm?® at + 42 a2 s, 3
Let us take agamn the proposed equalities,
I=n+a, r=m+8,
by multiplication,
gr=nm+ma+np+af;
from this equation we can deduce,

| qr\r=nm+c(aﬁ'+ﬂ¢')+m¢+ﬂ.3+].—[ ’
«f

and
k(an)=nm+c(¢§'+ﬁ¢')-—mﬂ—n9—np; C)

consequently, remembering that, («p'+Ba’) is a number,



(@A) X K(gmr)=n2m® +2cnm(af +Ba’) —mSa® —nspe

—nmpa—nmaﬁ—manpﬂ—n‘!l—[pp
+c°(aP’+P¢‘)’—nBHp—m¢H—H H ;

af  af af

Therefore (gAr)AK (qAr)=n*m*+2cnm(2f +Ba’) —2cm? as

—2cn2p0—2cnm(Bo+af)
+o8 (a8 +82)—2c N II'3
a
=n*m?—2cm2at—2cn?ps
+ot (af+Ba)?—26 N l]p. )
In subtracting from this equation (5), equation (3) we shall have
(oK (gor) —(gnK ntrnK =t (af 482> —2o N 11 —hctarpe. (©)

In comparing the second side of this equation (6) with the second side of the equation
L ]
a2fs—} (af+pa’)?+ N Hp (Art. 78) we perceive that, taking c=—§, we have
@

o (ap+Ba)—2c N [T —Acsarpe—o.
(af +Ba L -hevart

Consequently, with the condition c=—1},
(gAr)AK (gAr) —(gAK )A(rAaK 7)=0 or (gAr)AK (qAr)=(gAK g)~n(raKr). (7)

Were the time and inclination to pursue this investigation which is extremely fruitful
in curious results, at command, 1t would be secn that there are other advantages in the
supposition c=—1}.

Example.

Lot g=w,+e = w,+2z,i+Yy,j+3, k,
r=w,+f= W, +Tort+Y,)+3, k;
and Kg=w,—a= w, —x,1—y,1—3, k,
Kr=wg—B = wy—x i —y,)—35 k.

With the condition c=—1},
qnK q=w} +a® = wi+2] +yt +37,
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raKr=wi+p*=wl+23+y§+3};
. (@~K @)nraK r) = (w} + 2] +y] +31) (0§ + 2§ +y§+3));
besides — 4 (ap+Ba")=— (2,24 +Y, Yo +3,3,),

Hp=(‘l Ys—Y134)4+(2, 33— 3,04+ (Y, Ta—2, Y4 ) ki

«

consequently,
gAar =w, wy— (2, Tg+Y, Yo +3, ‘q)"'wc (zyi+yj,+3, k)

+ 0, (Tab+Ygf+3k)+(3,Yg—Y;13)8+(2,33—3,34))
+ (Y124 —2,Y,) k,
or gar=(w, Wq—, Tg—1Y,Yq—3, 39 )
+(We Ty + Wy Ty +3,Yg—Y,39) 8
+(Wa Yy +10,Yg+&,34—3, Tq)]
+(We 3, +W, 3y +Y, Tg—%, Yo ) k.

Thus we can readily find, that,
(w3 +a3+y1+31) (vl +ad+y3+33)

= (W, Wy — D, Tg—Y, Yg—3, 34 )+ (g Ty +W, Tg +3,Yg—Y, 35)?
+ (WY, F WYy +T, Fg— 3,35 )+ (W 3, +W, Ty +Y, T —7T,Y,)*,

a formula of numerical algebra due to Euler. (Tait, Art. 103).
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