

-

-

dOG*

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DATABASE CREATION AND/OR REORGANIZATION
OVER MULTIPLE DATABASE BACKENDS

by

Deborah A. McGhee

June 1989

Thesis Advisor: David K. Hsiao

Approved for public release; distribution unlimited

T244C10

Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification

UNCLASSIFIED
lb Restrictive Markings

2a Security Classification Authority

2 b Declassification/Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

4 Performing Organization Report Numbers) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization

Naval Postgraduate School

6b Office Symbol

(If Applicable)

52

7 a Name of Monitoring Organization

Naval Postgraduate School

6c Address (city, state, and ZIP code)

Monterey, CA 93943-5000
7 b Address (city, state, and ZIP code)

Monterey, CA 93943-5000

8a Name of Funding/Sponsoring Organization 8b Office Symbol

(If Applicable)

9 Procurement Instrument Identification Number

8c Address (city, state, and ZIP code) 1 Source of Funding Numbers

Program Element Number Project No TukNo Work Uml A. on No

1 1 Title (Include Security Classification)

DATABASE CREATION AND/OR REORGANIZATION OVER MULTIPLE DATABASE BACKENDS

12 Personal Author(s)

McGhee, Deborah A.

13a Type of Report

Master's Thesis
13b Time Covered

From To

1 4 Date of Report (year, month.day)

June 1989
15 Page Count

105

|i 6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

.7 Cosati Codes

Field Group Subgroup

1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Multi-Lingual Database System (MLDS), Multi-Model Database Systerr

(MMDS), Multi-Backend Database System (MBDS)

1 9 Abstract (continue on reverse if necessary and identify by block number

To create a record in a database, one uses the INSERT command. However, in the Multi-

Backend Database System (MBDS), the insert command only inserts one record at a time. When
reating very large databases consisting of thousands or millions of records, the use of the

[NSERT command is a time-consuming process.

Once a database is created, some of the records of the database may be tagged for deletion.

MBDS uses the DELETE command to tag these records. Over some period of time, those

•ecords tagged for deletion should be physically removed from the database. Hence, removing

agged records is in essence creating new databases from untagged records.
:0 Distribution/Availability of Abstract

I

X| unclassified/unlimited same as report
|
DT1C users

2 1 Abstract Security Classification

UNCLASSIFIED
!2a Name of Responsible Individual

Prof. David K. Hsaio
22b Telephone (Include Area code)

(408) 646-2253
22c Office Symbol

Code 52Hq
)D FORM 1473. 84 MAR 83 APR edition m3y be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified

Unclassified

Security Classification of this page

19 Continued:

In this thesis, we present a methodology to efficiently create very large databases in gigabytes

on parallel computers and to reorganize them when they have been tagged for deletion.

Specifically, we design a utility program to by-pass the system's INSERT command, to load the

data of the database directly on to disks and create all the necessary base data and meta data of the

database.

S/N 0102-LF-014-6601 security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

Database Creation and/or Reorganization over Multiple

Database Backends

by

Deborah A. McGhee

Lieutenant, United States Navy

B.S., University of South Carolina, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1^9, -^

, A r

'

nilmi

ABSTRACT

To create a record in a database, one uses the INSERT command. However, in

the Multi-Backend Database System (MBDS), the insert command only inserts one

record at a time. When creating very large databases consisting of thousands or

millions of records, the use of the INSERT command is a time-consuming process.

Once a database is created, some of the records of the database may be tagged

for deletion. MBDS uses the DELETE command to tag these records. Over some

period of time, those records tagged for deletion should be physically removed from

the database. Hence, removing tagged records is in essence creating new databases

from untagged records.

In this thesis, we present a methodology to efficiently create very large databases

in gigabytes on parallel computers and to reorganize them when they have been tagged

for deletion. Specifically, we design a utility program to by-pass the system's INSERT

command, to load the data of the database directly onto disks and create all the

necessary base data and meta data of the database.

IV

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. BACKGROUND 2

1. The Multi-Lingual Database System 4

2. The Multi-Backend Database System 7

C. THESIS ORGANIZATION 8

II. THE KERNEL SYSTEM 11

A. THE KERNEL DATA MODEL AND THE KERNEL DATA

LANGUAGE 11

1. The Attribute-Based Data Language 11

2. The Attribute-Based Data Model 14

a. The Meta Data 14

b. The Base Data 15

B. THE TEMPLATE SPECIFICATION 17

1. Template Descriptions 19

2. Descriptor Specifications 19

3. Database Records 22

C. LIMITATIONS 24

D. POSSIBLE SOLUTIONS 29

1. One-Pass Approach 29

2. Two-Pass Approach 30

3. The Selected Solution 31

m. THE PROPOSED DESIGN 34

A. THE DESIGN OF DATABASE CREATION/REORGANIZATION . . 34

B. MULTIPLE PHASES OF THE ALGORITHM 35

1. Phase-One 35

2. Phase-Two 41

C. SEQUENTIAL VS. PARALLEL OPERATIONS 43

D. THE TIME-COMPLEXITY ANALYSIS 46

E. DETAILED DESIGN SPECIFICATION OF ALGORITHM 51

IV. IMPLEMENTATION ISSUES 56

V. CONCLUSIONS 62

A. A REVIEW OF THE RESEARCH 63

B. SOME OBSERVATIONS AND INSIGHT 64

APPENDIX A - ATTRIBUTE TABLE PROGRAM SPECIFICATIONS 65

APPENDIX B - DESCRIPTOR TABLE PROGRAM SPECS 72

APPENDIX C - CLUSTER DEFINITION TABLE PROGRAM SPECS 75

APPENDIX D - RECORD CHECKER PROGRAM SPECS 79

LIST OF REFERENCES 92

INITIAL DISTRIBUTION LIST 94

VI

LIST OF FIGURES

Figure 1.1 The Multi-Lingual Database System 5

Figure 1.2 Multiple Language Interfaces for the Same KDS 7

Figure 1.3 The Multi-Backend Database System 9

Figure 2.1 Sample Directory Tables 16

Figure 2.2 Sample Record Relationship 18

Figure 2.3 Sample Template File 20

Figure 2.4 Sample Descriptor File 23

Figure 2.5 Sample Record File 25

Figure 3.1 Phase-One 40

Figure 3.2 Phase-Two 44

vn

I. INTRODUCTION

A. MOTIVATION

In order to create a record in databases, an INSERT command is used. In these

cases, inserting records into any database requires input/output (I/O) operations. The

record is read from one secondary storage, processed by the database system, then

stored onto another secondary storage. We notice that there are three operations per

record. The insert command is usually efficient for single record insertion, as well as

a small batch of insert operations. The problems arise when massive amounts of

records are to be loaded, generating thousands upon thousands of I/O requests. When

this occurs, the loading of a new database is a time-consuming process. Hence, the

building of a utility package that by-passes the system's INSERT command and loads

the data directly onto the secondary storage would be a viable solution to help creating

databases more quickly.

Over the course of time, some records in the database are no longer required and

are deleted from the database. Most operational systems do not physically remove

records at that point in time when these records have been identified for deletion.

Instead, systems tag them so that they may be deleted later. Most systems employ a

"garbage collection" routine. Although, garbage collection process imposes additional

overhead and complexity on the system [Ref. l:p. 348], it does not remove tagged

records at the time of deletion. Instead, the storage reclamation [Ref. 2:p. 432] is done

at non-prime times. It identifies all the unused/unnecessary cells (i.e., storage space

occupied by tagged records) and returns them to free storage. The garbage collection

allows that a record is only tagged and its space is not reclaimed at every instance

when the record is identified for deletion. The recognition and disposal [Ref. 3:p. 396]

of tagged records within any database is essential to the optimization of the records on

the secondary storage. Good optimization produces good data organization, which, in

turn, provides efficient data retrieval. Records that are tagged for deletion are removed

from the database and the active records are reorganized on the secondary storage to

fill the space vacated by the removed records. Removing tagged records is in essence

creating a new database from the untagged records.

This thesis will provide a detailed design specification for a utility package

capable of creating and/or reorganizing large databases over multiple disks. The

development of this utility package is in direct support of the multi-backend database

system (MBDS), which will be discussed in more detail in the next section. This

utility package will provide a more efficient means for generating new databases as

well as provide a garbage-collection capability.

B. BACKGROUND

Over the past two decades, database design and implementation methods were

fairly standard. The general approach was to specify a data model, define a data

language for that particular model, and develop a system to manage and execute

transactions written in the data language. This approach lead to the development of

homogeneous database systems, which restricts the user to a single data model with its

corresponding data language. Some examples of systems using the homogeneous

database system approach are IBM's Information Management System (IMS) which

supports the hierarchical data model and the Data Language I (DL/I), Sperry Univac's

DMS-1100 supporting the network data model and the CODASYL data language,

IBM's SQL/Data System supporting the relational data model and the Structured

English Query Language (SQL), and Computer Corporation of America's Local Data

Manager (LDM), which supports the functional data model and the Daplex data

language.

A revolutionary approach to database management system development is the

multi-lingual database system (MLDS), which eliminates the restrictions discussed

previously [Ref. 4]. The design of MLDS affords the user the ability to access and

manipulate several different databases, using their corresponding data models with their

respective data languages. The major design goal of MLDS is the development of a

system which can be accessed via different data models and their model-based data

languages (e.g., hierarchical/DL/I, relational/SQL, network/CODASYL, and

functional/Daplex). MLDS will function as a heterogeneous collection of databases

vice a single database system.

The many advantages of MLDS are its ability to support a wide variety of

databases using different data models and languages, economy and efficiency of

hardware upgrades, and the reusability of database transactions developed on a

conventional system.

MLDS has taken further steps toward a more complete utilization of its resident

databases. Currently, all data models are allowed access to the database only through

their corresponding languages: hierarchical databases are only accessible through DL/1,

network databases are only accessible through CODASYL, functional databases are

only accessible through Daplex, and relational databases are only accessible through

SQL. MLDS extends the concept of a multi-lingual database systems to a multi-model

database system (MMDS) in which the databases based on different models can be

accessed by data languages based on different data models. This type of environment

alio the user of one data model to access and manipulate data stored in another

data model. The obvious benefit of MMDB is the cross-access of databases based on

different models which allows true sharing of data over multiple databases.

The following subsections will give the reader an overview of the structure and

function of MLDS. We also introduce the reader to the architecture of the multi-

backend database system (MBDS). MBDS is the database system used by MLDS to

support database transaction processing.

1. The Multi-Lingual Database System

A block diagram of the multi-lingual database system (MBDS) is shown

in Figure 1.1. To access or modify the database, the user issues transactions through

the language interface layer (LIL) using a user data model (UDM) written in a user

data language (UDL) for that particular model. LIL routes the transaction to the kernel

mapping system (KMS). KMS performs one of two tasks, depending on the type of

database transaction requested.

If the transaction specified by the user is for the creation of a new database,

KMS transforms the UDM database definition to an equivalent kernel data model

(KDM) database definition. KDM database definition is sent to the kernel controller

(KC), which then routes the request to the kernel database system (KDS) for

processing. Upon completion. KDS notifies KC. which in turn forwards its results to

* KMS v

> KFS ^

UDM : User Data Model
UDL : User Dale Language
LIL : Language Interface Layer
KMS : Kernel Mapping System
KC : Kernel Controller

Kernel Formatting System
Kernel Data Model
Kernel Data Language
Kernel Database System

KFS
KDM
KDL
KDS

Data Model

Data Language

System Module

Information Flow

Figure 1.1 The Multi-Lingual Database System

the kernel formatting system (KFS). KFS transforms the results from the KDM

structure to UDM equivalent via LIL. The user is then informed that the request has

been processed and more requests can be accepted.

If the transaction specified by the user is a database manipulation request,

KMS translates UDL transaction to KDL equivalent and sends KDL transaction to KC.

KC sends KDL transaction to KDS for execution. Once processing is complete, KDS

sends the results in KDM form to KFS, via KC, for transforming from the KDM form

to the UDM form. The KFS then returns the results of the transformed data to UDM.

The LIL, KMS, KC and KFS are collectively known as the language

interface. Four similar modules are required for each language interface of the MLDS.

For example, there is a separate and unique set of LIL, KMS, KC and KFS for each

model. Currently, these models and their corresponding languages are relational/SQL,

hierarchical/DL/I, network/CODASYL-DML and functional/Daplex. On the other hand

the KDS is a single, major component shared and accessed by all various language

interfaces. Figure 1.2 depicts this concept. It is through the KDS that the actual raw

data is accessed and manipulated by the various user-defined language interfaces.

The attribute-based data model and the attribute-based data language (ABDL)

have been selected and implemented as the KDM and KDL, respectively, for MLDS.

A series of reports show how the relational, hierarchical, network and functional data

can be transformed to attribute-based data while at the same time presenting

preliminary work on the corresponding data-language transactions [Refs. 5,6,7]. More

recent works provide a complete set of algorithms for the data-language translations

from SQL to ABDL [Ref. 8], from DL/I to ABDL [Ref. 9], from CODASYL-DML

to ABDL [Ref. 10], and from Daplex to ABDL [Ref. 11]. Additionally, the language

interface software has been completed for relational [Ref. 12], hierarchical [Ref. 13],

and network [Ref. 14] data models. The language interface software for the functional

model has not been completed at the time of this thesis, but detailed design for its

implementation has been documented [Ref. 15]. Additionally, there is also research

into incorporating a language interface for an object-oriented data model and its

specified data language. The model is the Graphic LAnguage for Database (GLAD)

model using the Actor language currently under development at the Naval Postgraduate

Figure 1.2 Multiple Language Interfaces for the Same KDS

School. Associate Professor of Computer Science Thomas C. Wu is in charge of this

project.

2. The Multi-Backend Database System

To overcome the performance and upgrade problems associated with the

traditional approach to database system design, the multi-backend database system

(MBDS) was designed. MBDS has solved these problems by using multiple backend

processors connected in parallel to a single controller. Each backend has its own

hardware, software and disk system, as shown in Figure 1.3. Hardware and software

are not unique to each backend, but is replicated over all backends. The backend

processors are connected to the backend controller via a communication bus. The

backend controller can be accesses either by the user directly or through the host

computer. The backend controller is responsible for supervising the execution of

database transactions.

Performance gains are realized by increasing the number of backend

processors. If the database size remains constant, then the response time for the user

transaction is inversely proportional to the number of backend processors of the system.

Also, if the number of backend processors increases in direct proportion to the database

size, then MBDS produces nearly invariant response time for the same transaction. For

a more detailed discussion on the MBDS the reader is referred to [Refs. 16 and 17].

C. THESIS ORGANIZATION

Under the current mode of operation there is no efficient manner in which to

generate or reorganize large databases. Current operations are satisfactory for single

record insertions. The process to actually detennine where a record should be inserted

into the database is quick and simple. Each insert operation generates a set of I/O

operations. This in itself is not bad, but when performed several thousand times, it can

take several days to load a new and large database.

When the delete operation is used, records are not physically removed from the

database, but are actually tagged for deletion. Over a period of time, these tagged

records grow in numbers. They should be periodically collected and removed from the

8

Backend Store 1

To a /'Backend

ControlljHost

Jackend
•Processor

1

Backenc
Processor

2

Backend Store 2

Backend Store n

Backenc
Processor

n

Communications

Bus

Figure 1.3 The Multi-Backend Database System

database to obtain the maximum used of disk space for active records. This thesis will

provide an algorithm which is flexible enough to create large databases and provide a

"garbage collection" feature to get rid of the tagged records and reorganize remaining

active records.

In Chapter II, we look at the kernel software and describe the system's limitations

in regards to creating new databases and deleting records from a database. We also

describe two approaches for an algorithm designed to create and/or reorganize large

databases over multiple backends. then select the appropriate approach. Chapter in

outlines the multiple phases of the algorithm. A complexity analysis of the new

algorithm versus the complexity analysis of the insert operation is given, indicating the

efficiency of the new algorithm. Also included in this chapter is a pseudo-code design

of the actual algorithm. In Chapter IV, we discuss implementation issues. In Chapter

V, we make our conclusions about the proposed design. Finally, Appendices A, B,

C, and D provide the program design specifications for building the Attribute Table,

Descriptor-to-Descriptor-Id Table, Cluster Definition Table and program specifications

for the Record Error Checker routine, respectively.

10

n. THE KERNEL SYSTEM

In this chapter we discuss the overall configuration of the kernel system. In the

first section, we discuss the kernel data language and the kernel data model. In the

second section, we discuss the specifications for the input files (i.e., template, descriptor

and record). In the third section, we discuss the limitations of the system with respect

to database creation and garbage collection. In the final section we discuss possible

solutions and select a proposed solution for overcoming the limitations discussed in the

second section.

A. THE KERNEL DATA MODEL AND THE KERNEL DATA LANGUAGE

The kernel system is composed of two parts: the kernel data model and its

model-based data language. The kernel data model used in the multi-backend database

system (MBDS) is the attribute-based data model. The kernel data language that

supports the attribute-based data model is the attribute-based data language (ABDL).

The next two sections introduce the concepts and terminology of the kernel system.

1. The Attribute-Based Data Language

ABDL supports five primary database operations: INSERT, DELETE.

UPDATE, RETRIEVE and RETRIEVE-COMMON. A request in ABDL is a primary

operation with a qualification. A qualification is used to specify the part of the

database on which to operate.

11

The INSERT command is used to insert a new record into the database.

The qualification of the INSERT request is a list of keywords and a record body being

inserted. For example, the following INSERT command

INSFJlT(<FILE,USCensus>,<CrTY,Cumberland>,<POPULATION,4000>)

will insert a record into the US Census file for the city of Cumberland with a

population of 4,000.

The DELETE request is used to remove one or more records from the

database. The qualification of a delete record is a query. A query, in the DELETE

operation, specifies which record in the database will be deleted. For example, the

following DELETE command

DELETE ((FILE = USCensus) and (POPULATION > 100000))

will delete all records from the US Census file with a population greater than 100,000.

The UPDATE request is used to modify records of the database. The

qualification of the UPDATE request consists of two parts: the query and the modifier.

The query specifies which records of the database are to be modified and the modifier

specifies how the record to be updated will be changed. For example, the following

UPDATE command

UPDATE (FILE = USCensus) (POPULATION = POPULATION + 5000)

12

will modify all records in the US Census file by increasing all populations by 5,000.

In this example the query is (FILE = USCensus) and the modifier is (POPULATION

= POPULATION + 5000).

The RETRIEVE request is used to retrieve records in the database. The

qualification of the RETRIEVE request consists of three parts: the query, a target list,

and a by-clause. The query identifies the record to be retrieved, and the target list

consists of the attributes (fields name in the record) whose values are to be output to

the user. The by-clause, which is optional, is used to group records. Also, the

RETRIEVE command may consist of an aggregate operation (i.e., COUNT, SUM,

AVG, MEN, MAX) on one or more output attribute values. For example, the following

RETRIEVE command

RETRIEVE ((File = USCensus) and (POPULATION > 50000)) (CITY)

will output the city of all records in the US Census file with populations greater than

50,000.

The RETRIEVE-COMMON request is used to merge two files by common

attribute value. The qualification of the RETRIEVE-COMMON request consists of

three parts: the query, the target list, and a common attribute between the two files.

The query and target list are used as specified above, while the attribute is the key to

join the two files. The RETRIEVE-COMMON command in ABDL functions the same

13

as the JOIN command in SQL. For example, the following RETRIEVE-COMMON

command

RETRIEVE ((FILE=CanadaCensus) and (POPULATION>50000)) (CITY)

COMMON (POPULATION, POPULATION)
RETRIEVE ((FILE = USCensus) and (POPULATION > 50000)) (CITY)

will find all records in the Canada Census file with a population greater than 50,000,

find all records in the US Census file with a population greater than 50,000, identify

the records from these files whose populations figures are common and return the city

names whose cities have the same population figures.

With these five simple commands, ABDL provides the user with the means

to access and manipulate the database.

2. The Attribute-Based Data Model

In the attribute-based data model, data is considered in the following

constructs: the database, files, records, attribute sets, value domains, attribute-value

pairs, attribute-value ranges, keywords, directories, directory keywords, non-directory

keywords, keyword predicates, record bodies, and queries. These constructs are applied

to two types of data: meta data and base data.

a. The Meta Data

The meta data is the stored data about the structure and form of the

base data. The various meta data constructs form the directory of the database. The

directory contains the following constructs: attributes, descriptors, and clusters. The

14

attribute is used to represent a category of certain common property of the base data.

A descriptor is used to describe a unique range of values or distinct value for the

attribute. A cluster is a group of records in which every record in the cluster is of the

same set of descriptors. More specifically, the directory is organized in three tables:

the attribute table (AT), the descriptor-to-descriptor-id table (DDIT), and the cluster-

definition table (CDT). AT maps directory attributes to descriptors, while DDIT maps

each descriptor to a unique descriptor-id. CDT maps descriptors-id sets to clusters-

ids. There are three classifications of descriptors. A type-A descriptor is a conjunction

of less-than-or-equal-to and greater-than-or-equal-to predicates, where the same attribute

appears in each predicate. A type-B descriptor consists of equality predicates. A type-

C descriptor defines a set of type-C sub-descriptors. The type-C sub-descriptor are

equality predicates defined over all unique attribute-values which exist in the database.

A sample of each directory table is provided in Figure 2.1.

b. The Base Data

The base data is the actual raw data that makes up the database. A

database is a collection of files. These files contain a group of records that are related

by a unique set of directory keywords. A record is composed of two parts: an

attribute-value pair (or keyword) and the textual information (record body). An

attribute-value pair is a member of the Cartesian product of the attribute name and the

value domain of the attribute. For example, <POPULATION, 50000> is an attribute

pair having 50,000 as the value for the population attribute. A record contains at most

one attribute-value for each attribute defined in the database. Certain attribute-value

pairs of a record or file are called directory keywords and are kept in the directory for

15

Rttr i bute Attribute Type DDIT Entry

POPULRT 1 ON
CITY
FILE

R
C
B

D11
D21
D31

Rn Attribute Table (RT)

ID Descr i ptor

D11
DI2
D13
D14

<= POPULRTION <= 50,000
50.001 <= POPULRTION < = 100,000
100,001 <= POPULRTION <= 250,000
250,001 <= POPULRTION <= 1,000,000

D21
D22
D23
D24

CITY = Columbus
CITY = Detroi t

CITY = Montereu
CITY = Toronto

D3 I

D32
F I LE = Canada Census
F I LE = US Census

R Descr
i

ptor-to-Descr iptor-ID Table (DDIT)

ID Desc-iD Set Rddress List

CI

C2
C3
C4

D11.D21.D32
D14.D22.D32
D12.D23.D32
D14.D24.D31

a 1 ,m
R2
R3.A5.R6
R7.R8

R Cluster-Definition Table CCDT)

Figure 2.1 Sample Directory' Tables

identifying records or files. Those attribute-value pairs not kept in the directory are

called non-directory keywords. A record in the files of the database constitutes the

base data of the database. Below is an example of a record.

16

(<FILE,USCensus>,<CITY,Marina>,<POPULATION,50000>, { Moderate Climate)

)

Angle brackets, <,> enclose the attribute-value pair, curly brackets, {,}, enclose the

record body, and the record itself is enclosed in parenthesis. The records of the

database may be identified by keyword predicates. A keyword predicate is a three

tuple consisting of a directory attribute, a relational operator (i.e., =,!=,<,>,<=,>=), and

an attribute-value. Combining keyword predicates in disjunctive normal form

characterizes a query of the database. The query specifies which record in the database

is to be accessed and/or modified.

B. THE TEMPLATE SPECIFICATION

The construction of a database is controlled by three input files of the database:

the template file, the descriptor file, and the record file. The template file defines the

directory and record structures of a file. The descriptor file contains the directory

attributes and their descriptor definitions. The record files contain the actual data or

records. These files are used by MBDS to form the record clusters.

To better describe the input files created, consider a purchasing system within some

large business. The system consists of purchase-order, part, and supplier records.

Figure 2.2 describes the relationship of the records. Figure 2. 2.a shows the record

schema and Figure 2.2.b shows how this schema would be normalized. Each record

shows the name of each template (file) and its attributes. The process of nonnalization

captures the data relationship from one file to another, as well as, provides a form of

representation that is suitable for the template specification. Normalization requires that

17

Purchase Order

Order

Number

Supplier

Number

Order

Date

Delivery

Date

Total

Cost

Y Supplier

Supplier
Name

City

1r Part

Part
Number

Quantity Price

(a) Schema for a Purchase Order System

Purchase-Order (order-number supplier-number,
order-date, delivery-date, total-cost)

Part (order-number, part-number, quantity, price)

Supplier (supplier-number, supplier-name, city)

(b) Normalized for a Purchase Order System Schema

Figure 2.2 Sample Record Relationship

certain attributes appear in more than one file. The supplier number in the purchase-

order file is repeated in the supplier file and is combined with the supplier name to

form a unique identifier. This duplication does not imply that the value is redundantly

stored because normalization is concerned with logical structures rather than physical

organization

18

1. Template Descriptions

The template file contains the descriptions of the templates defined in the

database. In general, there may be many databases in the MBDS. So keeping this in

mind, the template descriptors for the records in the different databases must be kept

separate. The format of a template file for a given database with n templates could

be as follows:

Database name
Number of templates in the database

Template description for template #1

Template description for template #2

Template description for template #n

A typical descriptor with m attributes could be as follows:

Number of attributes in a template

Template name
Attribute #1 data type

Attribute #2 data type

Attribute #m data type

There are three different data types: integer (i), string (s), and floating point (0- The

name of this database will be PURCHASING. The template names will be Purchase-

Order, Part, and Supplier. With this information we can now generate the template file

for the PURCHASING database, as shown in Figure 2.3.

2. Descriptor Specifications

A descriptor is a keyword predicate of the form, for example, (supplier-

name = WANG) or (price = $200). MBDS recognizes two kinds of keywords: non-

directory keywords for search and retrievals, and directory keywords for search and

19

PURCHASING
3

6

Purchase-order

template s

order-# s

supplier-# s

order-date s

delivery-date s

total-cost f

5

Part

template s

order-# s

part-# s

quantity i

price f

4

Supplier

template s

supplier-# s

supplier-name s

city s

Figure 2.3 Sample Template File

retrievals as well as forming clusters. The descriptor file is an input file that contains

directory keyword descriptors only. Cluster formulations are based on the attribute

values and value ranges of the descriptors. As an example, a cluster containing records

in the purchasing database for purchase orders from a supplier WANG with a total cost

of $10,000 and up to $50,000 since 1988, is derivable with a set of three descriptors:

(supplier-name = WANG), (10,000 =< total-cost < 50,000), and (order-date = 1988).

There are three types of descriptors: type-A, type-B, and type-C. A type-

A descriptor is a conjunction of two predicates: less-than-or-equal-to and greater-than-

or-equal-to. An example of a type-A descriptor is (10,000 =< total-cost < 50.000).

20

For creating a type-A descriptor, the attribute (i.e., total-cost) and the value range (i.e.,

of 10,000 and up to 50,000) must be specified. The value range is expressed in terms

of upper and lower limits. A type-B predicate is an equality predicate. An example

of a type-B descriptor is (supplier-name = WANG). The type-C predicate is also an

equality predicate. However, its values are provided later by the input record. These

descriptors are then automatically converted to a set of type-B descriptors with the

same attribute name and values corresponding to the value range. As an example, if

the template has a type-C descriptor with values of purchase-order, part, and supplier

provided by the record, the first set of type-B descriptors generated is (template =

purchase-order), (template = part), and (template = supplier).

When specifying descriptors, the attributes of the given descriptor must be

unique and the specification of the values and the value ranges must be mutually

exclusive. Below is an example of a descriptor file with n descriptors.

Database name
Descriptor definition #1

Descriptor definition #2

Descriptor definition #n

$

The "$" indicates the end of the descriptor file. Each descriptor definition is expressed

in terms of the attribute and its associated descriptor type and data type and followed

by the value ranges as shown below.

Attribute Descriptor-type Data-type

Value range 1

Value range 2

Value range k

@

Value ranges are expressed in terms of upper and lower limits. Since type-B and type-

C are equality values, which are exact. The placehold for the upper limit is used for

holding the exact value. The lower limit is not used. The value of the lower limit

is therefore indicated by an "!". The "<S>" indicates the end of the descriptor file. An

example of a descriptor file is depicted in Figure 2.4.

3. Database Records

Once the template and descriptor files are defined, the data record format

will be specified. Data records can be prepared in separate files for loading. The

format for a typical record file is as follows:

Database name

@
Template name #1

Record #1 template #1

Record #2 template #1

Record #n template #1

@
Template name #2

Record #1 template #2

Record #2 template #2

Record #n template #2

The database name identifies the database to which the template and the record

belongs. The "@" indicates the beginning of a new template followed by the

template's name. All records following the template name belong to that template until

22

PURCHASING
template C s

Purchase-order

Part

Supplier

@
total-cost A f

1000.00 100000.00

100000.00 500000.00

@
order-# A s

#1 #50

#50 #100
#100 #1000

@
price A f

1000.00 50000.00

50000.00 500000.00

@
supplier-name B s

WANG
IBM
DEC

@
city B s

Monterey

San Jose

Carmel

@
$

Figure 2.4 Sample Descriptor File

either the "@" or "$" is encountered. The "$" indicates the end of the entire record.

Values in the record are separated by a space. An example of a record in the

Purchasing database in the purchase-order template would look like

<order-#,26>,<supplier#,51>,<order-date, 18-May-1988>

<delivery-date,22-Jul-1988>,<total-cost, 200,500.00>

If we extract the values of each attribute value pair, we have

23

26 51 18-May-1988 22-Jul-1988 $200,500.00

which is a record of the purchase-order template in the Purchasing database. Figure

2.5 gives a more complete record file.

C. LIMITATIONS

The kernel system described in the earlier section provides its users with the

same functional capabilities as most other database systems. It provides its users with

a clean, easy way to access and manipulate data. It is a simple, but powerful database

system. Yet for all its simplicity, the system lacks an efficient means to generate very

large databases.

The capability to create large databases does exist but it is slow, cumbersome,

and quite tedious. The INSERT command is the means by which records are inserted

into the database. Let us briefly discuss how this process works.

In order to add a record to the database an insert operation is issued by the user.

The kernel system receives the command, recognizes it as an insert operation and

proceeds to process the request. The record undergoes a record processing phase where

it is checked for validity prior to insertion on to the backend. Record processing is

a necessary and very involved process and is outlined here.

The INSERT operation requires considerable work on the part of the kernel

system. The complication is due to the type of directory keywords of the record to

be inserted. If the attributes of the directory keywords are of type-A or type-B, then

there are no complications. The complications arise when the attributes of the directory

keywords are of type-C. We first look at the steps required to insert a record without

type-C attributes.

24

PURCHASING
@
Purchase-order

26 51 18-May-1988 22-Nov-1988 191500.00

31 51 25-jun-1988 14-Apr-1889 381900.00

@
Part

26 V780 VAX-1 1^780 1 91500.00

26 M780 Memory 8 42000.00

26 D81 RA81 1 58000.00

31 V8600 VAX-8600 1 381900.00

@
Supplier

51 DEC
$

Carmel

ngure 2.5 Sample Record File

In step one, the attribute-value pairs (or keywords) of the record are identified.

The attribute, of an attribute-value pair, is used for matching the attributes in AT. A

successful match indicates that at least one keyword of the record is a directory

keyword. There may be more than one match if the record contains more than one

directory keyword. If there is not a match, then the keyword of the record is not a

directory keyword. If none of the attributes of a record is a directory keyword, the

record for insertion is rejected by the system.

In step two, once the attribute-ids are obtained, the descriptors in DDIT are

searched to determine whether a descriptor covers the keyword of the record for

insertion having the same attribute. If the descriptor covers the keyword then the

corresponding descriptor-id is used to fonn the descriptor-id group.

In step three, a search for a descriptor-id set in CDT which is identical to the

descriptor-id group is performed. If a descriptor-id set is found to be identical to the

25

descriptor-id group, then a cluster has been identified to receive the record to be

inserted. If a descriptor-id group is not found during the search of CDT, this implies:

either (1) the descriptor-id group is a new descriptor-id set, or (2) the descriptor-id

group cannot be a descriptor-id set. In case (1), this indicates that a new cluster is to

be formed for the record to be inserted. A new entry in CDT is created for the

descriptor-id set and its associated new cluster-id. In case (2), the descriptor-id group

cannot form a new descriptor-id set. In this case, the record is rejected.

In step four, we are concerned with the placement of the record into the cluster

identified in step three. The record-id is transformed into a disk address and the record

is placed at the secondary storage so addressed. This process of record placement is

more complicated than it sounds. The records of a cluster must be evenly distributed

across the multiple backends, so the placement of the record on a backend is not a

simple task. The following steps are taken:

(1) The cluster-id set is sent to the controller. A backend then receives from

the controller the information on the backend whose disk has the available block for

the cluster. This information is obtained from the table known as the cluster-to-next-

backend table (CINBT), which is maintained by the controller. In the beginning, the

controller does not know the cluster into which the record is to be inserted. The

controller tasks all the backends to work on the meta data and to identify the cluster

to receive the record by broadcasting the operation and record to all backends, via the

communication bus. Meta data processing by backends is parallel operations. One the

cluster-id is determined by the backends, the controller receives the same cluster-id

from all the backends. again via the communication bus.

26

(2) The controller locates the entry in the CINBT whose cluster-id is identical

to the cluster-id received. Once the cluster is identified, it is checked to determine if

enough space is available to receive the record. If space is available, the cluster size

is decreased by the length of the record to be inserted. If the space is not large

enough, the controller forfeits the space and allocates a new block of secondary storage

from the next backend. The controller then sends a message over the communication

bus, simply instructing the backend to write the record into the backend 's available

secondary space. To write a record we retrieve the backend 's portion of the cluster

from secondary storage, write the record into that portion and then stores the cluster

portion back onto the secondary storage. We note this operation is not parallel since

there is only one backend performing the writing.

The entire process described above is very efficient when inserting a single

record, but not when creating a very large database consisting of thousands or millions

of records. Each record generates two I/O requests and the hardware is idle during I/O

processing. Thousands of records will generate thousands of separate I/O requests.

Thus, we can see where the inefficiency lies when using the current mode of operation

to create very large databases. What we attempt to do in this thesis is to minimize the

involved process on the record-by-record basis where the entire kernel system is tied

up by the large number of insert operations for a large number of records.

The kernel system lacks the capability to reclaim storage space once a record has

been identified for deletion. The DELETE command does not physically remove a

record from the database. The DELETE command simply tags the record, identifying

it as no longer active. The system no longer recognizes this record as a part of the

27

database, but the record is still a physical part of the database since it still continues

to reside on secondary storage. What now resides on secondary storage are active

records and "garbages" (i.e., tagged records). This results in fragmentation within the

storage medium. If all records were of the same size then a new record added to the

database would fit nicely into the space occupied by the tagged record and there

would be no fragmentation. Unfortunately, in most databases not all records are fixed-

length. Some are variable-length. If the new record to be added to the database is

smaller than the record that previously lived at that spot, then the new record could be

inserted into this space. But a smaller record will not solve the problem of fragmented

space on disk. It only creates smaller fragments. If the new record to be inserted is

larger than the previous record, then it cannot be inserted into that slot and must be

placed someplace else on the medium. When most large systems want to reclaim

memory that is no longer needed, they perform an operation called storage reclamation

or compaction. This type of function involves gathering occupied areas of storage into

one end or the other in secondary storage. This leaves a single large free storage

hole instead of numerous small holes. This concept can be applied to the database

problem where records tagged for deletion are not required to remain in the database.

If all the active records are collected and then redistributed onto secondary' storage, this

will rid the storage medium of fragmentation. In other words, the reorganization of

secondary storage is the creation of a new database with only active records.

Compressing the active records remaining in storage is the route that should be taken.

28

D. POSSIBLE SOLUTIONS

In this section we propose two solutions to resolve the problem for the lack of

an efficient database creation and reorganization function. The basic idea behind each

solution is to bypass the system and to load the data directly to the disks. With both

proposed solutions, the intention is to speed up the process of creating very large

databases. After each proposal is presented, the best possible solution will be selected.

Both approaches use the same type of input and will produce the same output. The

inputs to the algorithm are: (1) the template file, descriptor file, and a record file (on

tape medium) if creating a new database or, (2) the AT and DDIT of the database to

be reorganized along with a record file (on tape medium) containing the data to be

redistributed. The output, once the algorithm is used, will generate a database over

multiple disks consisting of both base and meta data.

1. One-Pass Approach

The One-Pass approach is so named because of the number of times each

record will be handled before it is placed onto secondary storage. The basic strategy

for this algorithm is as follows:

(1) Generate the AT and DDIT

(2) Load records from tape into temporary work space

(3) Process each record - check syntax and format record

(4) Update DDIT - adding new Type-C attributes

(5) Build CDT - if first record on first track/ Update CDT

(6) Assign records to cluster

(7) Write cluster to backend

29

(8) Repeat steps three through seven in processing each record

(9) Write meta data to secondary storage

The advantage to this algorithm is that each record is handled only once. The

disadvantage to this algorithm is that clusters of records are written onto the secondary

storage many times as the clusters grow in size.

2. Two-Pass Approach

The two-pass approach informs us that data will be handled twice before it

will be placed onto secondary storage. The basic strategy for this algorithm is as

follows:

Phase-One

(1) Generate AT and DDIT

(2) Load records into a temporary work space

(3) Process each records - check record syntax and format record

(4) Update DDIT

(5) Build/Update CDT

(6) Repeat steps three through five in processing all records

(7) Determine record distribution

If good distribution and/or small percent of bad records then

go to Phase-Two

else redefine descriptor file and repeat Phase-One.

Phase-Two

(1) Scan and sort records - bv each cluster-id number

30

(2) Build CINBT

(3) Load records onto their disks

(4) Write meta data to their disk

(5) Send CINBT, IIGAT and nGDDIT to controller disk.

The advantages to this approach are: (1) it enforces even distribution of records among

the clusters, (2) it sorts records by cluster-id number, which assists in the building and

loading of clusters of records onto disks, (3) it disallows proceedings into the second

pass if a large percentage of the input records are corrupted and (4) it writes clusters

of records only once onto the permanent storage. The disadvantage to this algorithm

is that each record is handled twice. IIGAT and nGDDIT are insert-information-

generation-attribute-table and insert-information-generation-descriptor-to-descriptor-id-

table, respectively. These tables are part of the meta data residing on the controller

and are used for generating new type-C descriptors. IIGAT houses the attribute and

the next DDIT entry for a new type-C descriptor. IIGDDIT houses all the type-C

descriptor values. These two tables are used to generate new type-C descriptor-ids for

pre-defined type-C attributes.

3. The Selected Solution

In selecting the best solution to the database creation and reorganization

problem, we must weigh the advantages and disadvantages of each proposed solution.

As it appears in our case, the advantage of one approach is the disadvantage of the

other. So based on this, we must determine which approach will yield to us the most

effective and efficient manner in which to store large databases. The two major

advantages mentioned are how often a single record is handled, getting a good record

31

distribution within the clusters and how often a cluster is written onto the secondary

storage. We look at these advantages in more detail and determine the relative

importance of each.

In the One-Pass approach the record is processed and then placed onto

secondary storage. In the Two-Pass approach the record is processed in pass-one and

then, during pass-two, it is read, sorted and placed onto secondary storage. The record

in the two-pass approach is read/handled twice. It is important to understand why the

record is handled twice, and because it is handled twice, what impact, if any, it has

on the overall efficiency of the algorithm.

As mentioned earlier, the use of the INSERT command is the only way in

which a record is added to a database. Single record insertion is quick and easy. The

problem arises with large database creation, when each record is individually inserted

using the INSERT command. We stated that the problem is encountered because of

the large number of I/O operations that must be performed. If we look at the general

design of the two algorithms, we see in the One-Pass approach that each record

processed generates an I/O operation for writing the record onto the secondary storage.

This is similar to the current design and no performance gain is encountered. In the

Two-Pass approach each record does not generate an I/O request. The placing of the

records onto secondary storage is deferred to the second pass where records are written

as clusters of records and not individually. Since records are written in clusters vice

each record generating its own I/O request, the number of I/O requests is reduced

greatly.

32

Since records of a cluster are available for distribution on the parallel disks,

an even distribution of records within a cluster will produce better disk utilization and

speedier data retrieval. The numbers of records within clusters may vary greatly. To

facilitate even distribution, we should choose smaller blocks sizes, say one-half or one-

quarter track. On the other hand, smaller block sizes may have difficulty to

accommodate large record sizes, since we do not split a record over different blocks

which are of two different backend's disks, respectively.

We have shown that the number of times a record is handled does not

necessarily imply the processing will be slower. The One-Pass approach writes each

cluster of records repeatedly onto the disks as the cluster grows. This will require a

new distribution of the records of the cluster which induces many computations and

I/O operations. We note it is easier to have a good record distribution among clusters

when all records of a given cluster are ready for distribution. Since the Two-Pass

approach embodies both of these concepts, it is our choice as the best approach. These

concepts are (1) fewer I/O operations for cluster creation, and (2) better distribution of

clustered records on parallel disks due to one-time record collection and distribution.

33

m. THE PROPOSED DESIGN

In this chapter we discuss the algorithm in detail. Specifically, we look at the

multiple phases of the Two-Pass approach. Also in this chapter, we provide a time-

complexity analysis for this algorithm to show that it does provide a more efficient

means, over current operations, of generating large databases. Finally, we provide a

Pascal-like pseudo code of the actual design specifications for the algorithm.

A. THE DESIGN OF DATABASE CREATION/REORGANIZATION

The INSERT command is used to insert a single record into the database. In

order to create a large database holding thousands or millions of records, under the

current mode of operation we must execute as many INSERT commands as there are

records to be inserted. Although it is possible to generate a large database under this

method, it is a very laborious and inefficient process.

The DELETE command is used to delete records from the database. Records are

not physically removed from the database but are actually tagged as no longer active.

These tagged records are considered "garbages" in the database and lead to

fragmentation on the medium. To rid the medium of this fragmentation, we collect all

the active records and then redistribute them evenly by clusters across the multiple

disks. We discovered in the previous chapter that ridding the system of its tagged

records is in essence creating a new database with its active records.

We have designed an algorithm which is flexible enough for both database

creation and reorganization (garbage collection). The user will specify- in the beginning

34

stage what type of operation he/she will be performing. Based on this input, the

algorithm will proceed to perform either a creation or reorganization function. The

input, output, and internal processing for the type of operations to be performed are

slightly different, but in either case this algorithm will produce a database that is

evenly distributed across the multiple backends per cluster.

B. MULTIPLE PHASES OF THE ALGORITHM

The proposed algorithm has two phases: Phase-One and Phase-Two. The first

phase is concerned mostly with record processing, while the second phase is concerned

with loading data, both meta and base, onto the backends. The logic used in the two-

phase approach is similar to the logic used by MBDS. The difference between them

is when the record is actually placed on disks. The next two sections will discuss in

detail the Two-Phase approach.

1. Phase-One

Phases-One is concerned primarily with record processing and building the

three main directory tables: the attribute table (AT), the descriptor-to-descriptor-id table

(DDIT) and the cluster-definition table (CDT). Upon entering this phase, the user must

have specified the type of function he/she wishes to perform (i.e., create a new

database or reorganized active data). If the user has specified a creation of a new

database then the template and descriptors files for the database will be retrieved.

Once these files are retrieved, the AT will be generated. A partial DDIT will also be

built. AT maps director) attributes to descriptors and DDIT maps each descriptor to

a unique descriptor-id. The descriptor file contains all directory keyword descriptors.

35

Each descriptor definition is expressed in terms of the attribute, its associated descriptor

type, data type, and followed by the value ranges. It is from this file that the

information is obtained to construct both AT and DDIT. To construct AT all attributes

and their corresponding attributes types are extracted from the descriptor file. The

descriptor file is read in a single pass and when complete all directory keywords will

have been extracted and placed into AT. Each keyword is assigned a unique DDIT

entry value. This value is used as an index into DDIT to help form the descriptor-id

set. At the same time AT is being constructed, DDIT is also being built. Each

attribute is followed by its value ranges. Once an entry for the attribute is made in

AT its corresponding range values can then be place in DDIT. These values are read

sequentially from the descriptor file. The end of the group of range values is reach

when the "@" is encountered. Once the descriptor has been read AT and a partial

is constructed. DDIT is not completed at this time because all type-C descriptors are

not known since they are introduced by the records. If the user has specified a

reorganization of the active records (i.e., garbage collection), then AT and DDIT will

be retrieved. Since this is a reorganization of active records, their AT and DDIT

already exist. Once DDIT is retrieved the type-C attributes will be removed from

DDIT. This is to ensure that DDIT contains only attributes that are active. The

reasoning behind tliis is once records are tagged for deletion it is conceivable that all

type-C attributes could have been deleted. If not, they may be re-introduced when we

encounter them in the active records. Appendices A and B are attached and provide

the program specification for building AT and DDIT, respectively.

36

Once we have built AT and a partial DDIT we can now proceed with the

record processing phase. At this point, records are processed the same, whether the

function being performed is creation or garbage collection. We start by loading a

block of records to be processed from the record file into main memory (or a work

space). We then get a single record from our work space, keeping a running total of

records in the database. This number will be used later when we determine the

percentage of bad records processed. At this point the record processing phase begins.

A record is scanned. After scanning the record, it will be checked for errors. First,

the record is check to determine its syntax. The first attribute of the record is

examined to determine the record template. Once the template is identified as valid,

the remaining attributes are checked to determine if the record contains the correct

number of attributes and that each attribute also has its correct associated data types.

These records are checked against specific data structures. These data structures hold

the record template descriptions for all records in the database. These data structures

reflect the information contained in the template file. If the record is found to contain

errors, it will be sent to a record handler for processing bad records. A count of the

total number of bad records will be maintained. If the record is without errors it will

be formatted at this time for subsequent placement onto the disk in Phase-Two.

Formatting involves embedding special characters within the record. The "#"
is the

special character which is placed between each attribute in the record and the "&" is

the special character used to mark the end of the record. DDIT will be updated and

CDT will be built (or new entries will be placed in the table). The CDT built at this

time is not a complete CDT because the address of each cluster is not known. Recall

37

that records are not placed onto secondary storage until Phase-Two. The partial CDT

provides us with a count for the records in each cluster. This information will be used

later when we determine whether or not a good record distribution within the clusters

has been achieved. After an entry is made into CDT, the record is then placed into

a temporary work space. This entire procedure is repeated until all the records loaded

into the work space has been processed. Once the records are processed, we check

to see if there are any more records in the record file. If there are more records in

the record file to be processed, then another block of records are read into the work

space and the procedure is repeated. This process will continue until all records in the

record file are processed. After all records are processed, a tape is produced containing

all error-free records that compose the database. Appendices C and D are attached and

provide the program specifications for building CDT and the record-error-checking

routine, respectively.

Once the record processing phase has been completed we must then

determine if we should proceed onto Phase-Two. We proceed to Phase-Two under two

conditions: if there is a good record distribution within the clusters, and if the

percentage of records containing errors is relatively small (e.g., less than 10% of total

records processed). We define a good record distribution within a cluster as clusters

that are relatively the same size. The ideal size of a cluster would be approximately

the number of backends times the track size. During the record processing phase we

built CDT. We can now look at the partial CDT, and judge whether or not we have

obtained good distribution of the records. A criterion to determine if good distribution

is achieved is to look at the average cluster size. If the average cluster size deviates

38

greatly from the ideal cluster size, then a good distribution was not obtained. If it is

determined that the records within the clusters are not distributed evenly, then the

algorithm will not proceed to Phase-Two. Cluster formulations are based on the

attribute values and values ranges of the descriptors. One possible solution to this

problem would be the automatic division of the range attributes. At first glance this

might be an appropriate solution. It would guarantee a definite redistribution of records

within clusters. Problems may be encountered when dividing range attributes that are

non-numeric, or this division may result in clusters that are much smaller than the ideal

cluster size. In any case, when even record distribution is not obtained the range

attributes should be adjusted. These ranges should be either decreased and reduced in

sized or combined to created a larger interval. Adjusting all ranges variables may not

be required or desired. The procedures described above can be taken in a number of

combinations. The readjustment of range attributes for a particular database should be

handled on a case-by-case basis.

The second condition under which we proceed to Phase-Two is if only a

small percent (say 10%) of the records contain errors. If for some reason data is

corrupted and a large percent (e.g., 30%) of the data processed is bad, then this

algorithm will not proceed onto Phase-Two. At the time, the user can reexamine the

input data, take whatever actions are needed to correct the problem with the data and

then reenter the algorithm. If Phase-One is a success (both good record distribution

and small percent of bad records), then the algorithm will proceed to Phase-Two.

Figure 3.1 provides a flow-chart diagram of Phase-One.

39

REDEFINE DESCRIPTOR FILE L—EUASE-QUeJ

CREATE

1

<CH^ril!^>-
RBDRG

1

GET FILES GET TABLES

t
BUILD AT RMTYPEC

FROM DDrr31
BUILD DDIT

LOAD RECS
^

t
GETREC

t
SCAN REC

t
FRROFCHK

TYES

no

1
FORMAT REC BAD REC

HANDLER
1

i iPnATP nnu
1

BUILD CDT

1

W/REC TEMP

YE

W/REC TAPE

NO

^T YES

CLUST. DIST

t
BAD REC %

NO

^Tyes

CEPHASE-TWO^

Figure 3.1 Phase-One

40

2. Phase-Two

Phase-Two is mainly concerned with loading the meta data and base data

onto disks. The records that make up the database have now been stored on tape.

This tape was built during Phase-One. The first function to be performed in Phase-

Two is a tape sort. The records on the tape will be sorted by their cluster-id numbers.

In other words, all the records whose clusters have the same id will be placed next to

each other. Most systems provide a tape-sort capability. There are a number of sort

algorithms available (i.e., Quick sort, Bubble sort, etc.) so we will not specify a sort

algorithm but leave this decision to the implementor. After the tape has been sorted,

a portion of the tape is placed into either main memory or a work space. Since the

records are sorted by their cluster-id numbers, the building of the cluster is made

simpler. We need only read the records sequentially, since the records of a given

cluster are next to each other. When building a cluster we concern ourselves with two

things: cluster size and cluster number. Records of a cluster are loaded to disks in

blocks. A block will be written to a disk when a sufficient number of records have

been collected and the total number of bytes in the records is as close to block (track)

size without surpassing it. The first two bytes of each block refer to the total number

of bytes in the block (track). Each time a cluster is loaded onto one or more disks

the address of the record of the cluster is made into the CDT. The record address,

called record-id, therefore consists of the track address and the offset of the record

within the track in which the blocked record resides. Each backend has its own CDT.

It is at this point that a CDT is being built for each backend. Although all CDTs in

the backends have identical cluster definition information (i.e., descriptor-id sets), the

41

ones in their own backends contain only those records-ids that refer to their own tracks.

If the record tracks are not on the disks of a backend, the backend's CDT does not

have their record-ids in the CDT entries. Also during this loading process, the cluster-

id-to-next-backend table (CINBT) is being constructed. The table is part of the

controller meta data and this table is used to identify the next backend to receive the

next block of records of a given cluster to be placed on the backend's disk. This

process is repeated until the entire input tape is processed. After all the records on the

tape have been processed, a unique CDT will have been built for each backend. The

final tables to be built are insert-information-generation-attribute-table (TIGAT) and

insert-information-generation-descriptor-to-descriptor-id-table (nGDDIT). These tables

are also part of the meta data residing on the controller and is used for generating new

type-C descriptors. IIGAT houses the attribute and the next DDIT entry for a new

type-C descriptor. nGDDIT houses all the type-C descriptor values. These two tables

are used to generate new type-C descriptor-ids for pre-defined type-C attributes. Once

AT and DDIT are built, all the information is available to create these two tables.

From AT we extract all type-C attributes and from DDIT we get the last descriptor-

id of any particular type-C descriptor. We extract this information from AT and DDIT

and then insert this data into their respective tables. These tables exist to provide

global information on keeping track of type-C attributes which in rum help keep

descriptor information on the multiple backends consistent.

All the meta data has been generated and is now ready to be placed on the

disks. CINBT. IIGAT and nGDDIT can be loaded onto the controller disk. If the

original function in entering Phase-One was a database creation, then AT and DDIT

42

will be replicated onto each backend and each individual CDT will be loaded to its

appropriate backend. If the original function in entering Phase-One was a

reorganization of the active records, DDIT will be replicated onto each backend and

the individual CDTs will be loaded to their respective backends. Figure 3.2 provides

a flow chart diagram of Phase-Two. AT in this function is not affected.

C. SEQUENTIAL VS. PARALLEL OPERATIONS

Sequential operations infer that all tasks will be performed one at a time, in

sequence. No other operation will be performed until the operation before it has been

completed. In most cases, sequential processing implies some sort of task dependency.

One task cannot start until another task has been completed. Parallel operations infer

that one or more tasks can be performed at the same time. The start of one task does

not depend on the completion of another task, so these tasks can be processed in

unison. In most cases, parallel processing usually provides a quicker response over

sequential processing.

The proposed Two-Phase approach algorithm performs sequentially. This

algorithm reads a flat file (i.e., the record file). It retrieves "chunks" of records from

a file and then processes these records. Once those records are processed, it will

retrieve another chunk and continue to repeat this process until all records in the file

have been processed. During record processing another flat file is created. This file

will contain the records by clusters to be loaded onto the disk space. This clustered

record file is also processed sequentially. Records of a cluster are stripped from the

tape, blocked into tracks and these blocks are then placed onto backends' disks. The

placing of the clusters onto disks is not performed randomly. A round-robin approach

43

(.^PHASE^)
-

feT LOAD REC*l
t

fcr
*l GET REC

LOAD TO B.E.

<£^ME£LLj£> W.)

^JYES RUII D CINRT

<^TKFULLJ>
ES

7
T ND CLSZ = RECSZ

ADD REC SIZE
TOCHJRSI7F

t
RACKFND?

F
BUILD CLUST

LOAD B.E.

t
YES

^MOREP^>^- m?1

ND

f YES

LOAD TO B.E.

t
BUILD IIGAT, 1IGDDIT

IIGAT, IIGDDIT&
CINBT TO CNTRL

CRF *TF ^^\ FFORG\CORR^'
LOAD AT & DDITTOEA. B.E.

LOAD INDIV CDT TO APPRO.

BACKEND.

LOAD DDIT TO EACH BACKEND
LOAD INDIV CDT TO APPRO.

BACKEND.

\^
(STOP 1^

Figure 3.2 Phase-Two

44

is used. The first backend's disk receives the first block of records of a cluster, the

second backend's disk receives the next block of records of the cluster and so on.

When the last backend's disk receives its block of the cluster, and if there are more

records remaining in the cluster, then the next backend to receive a block of records

of the cluster is the first backend's disk again. This procedure is repeated until all

records of all clusters are placed on to the disks. There seems to be no overlapping

of operations. All tasks are seen to be performed sequentially. Records cannot be

processed until they are read into the main memory and they cannot be loaded onto

the disks until they are processed. Nevertheless, even though blocking records for

given clusters is done sequentially, different blocks of a given cluster may be sent to

different backends to be placed on their respective disks in parallel. Here, we have

record-serial processing and block-parallel storing operations.

MBDS, when loading records onto the disk, does perform some parallel

operations but in a limited capacity. After a record has been assigned a cluster

number, the record is ready to be placed on to a backend. The backend controller

polls each backends, over the communication bus, searching for the backend on to

which the record will be placed. This is where the parallel operations actually take

place. All backends will simultaneously search their meta data, specifically their

respective CDT, to determine if the record belongs to one of their clusters. All

backends will respond to the controller, identifying the cluster to which the record

belongs. The controller takes the backends' acknowledgements and identifies the

backend to receive the record. The portion of the cluster on the backend is retrieved

into main memory, the record is written into that portion of the cluster, and the portion

45

of the cluster is placed back onto the disk. The procedure just described is sequential.

When using the INSERT command, the architectural design of MBDS offers very little

toward parallel capabilities. The remaining four commands take full advantages of

MBDS design to utilize parallel processing to its fullest. If the reader requires more

information on the benefits of parallel operations using the other four commands,

he/she is referred to the references.

D. THE TIME-COMPLEXITY ANALYSIS

In this section we present a complexity analysis of the new algorithm versus the

complexity analysis of the INSERT operation, indicating the efficiency of the new

algorithm.

The new algorithm makes use of the basic strategy behind the INSERT operation.

The new algorithm functions almost identically to the INSERT operation. The

difference between the two strategies is how the algorithm handles the placement of

the data onto multiple disks. Under the current mode of operation for multiple-record-

inserts, each record is processed and then generates its own I/O request. This new

algorithm on the other hand processes all records, and defers the loading of the records

until its second phase. Phase-One will concern itself mainly with the computations that

are bound to the CPU, although there are some I/O requests which reads the records

from tape into main memory for initial record processing. The second phase will be

concerned with operations that are mainly I/O bound.

We will consider the following observations that will be used to simplify our

calculations. First, we look at the sequence of operations for both the INSERT

46

command and the new algorithm. Below is the sequence of operations for the INSERT

command.

load records from the record file

get a record

process a record - check record syntax and format record

update DDIT - new type-C descriptor

update IIGAT and HGDDIT - new type-C descriptor

update CDT - determine cluster to receive the record

check CINBT — determine the backend whose available disk

is to receive the record

I/O — retrieve cluster to receive record into main memory
write the record to its cluster

I/O — place the block of the cluster to a specific

backend 's disk

Repeat process until all records are processed. The general sequence of operations for

the new algorithm is as follows:

Phase-One

load records from the record tape

get a record

process record - check record syntax and format record

update DDIT - new type-C attributes

update CDT - determine the cluster to receive the record

repeat until all records are processed

Phase-Two
sort the record tape by cluster-ids

load in records from the sorted tape

build clusters

update CINBT
I/O — write block of records per cluster to specific

backend' s disk

repeat until all clusters are placed on the backend's disks

generate IIGAT
generate IIGDDIT
I/O - write AT and DDIT to all backends' meta data disks

I/O - write CINBT, IIGAT and nGDDIT to the controller backend

I/O - write different CDTs to different backends'

meta data disks

47

We can see that both strategies contain similar operations. The major differences are

the order in which they are executed and the degree of parallelism in which they have

achieved. We pay close attention to where the I/O operations are executed, since this

is the area we are seeking to optimize.

Secondly, both the INSERT command and the new algorithm require that AT and

DDIT be constructed. Since both strategies use exactly the same process to generate

these tables, their initial construction will not be included in the comparison study. We

will assume that no I/O operations are required to read the directory tables. These

tables will be in main memory at all times. With these considerations, let us proceed

with our comparison study. We define the following variables:

1:

n:

x:

t|o«d :

ŵ
proce»

*ddit :

w
cluster

t
i/o-

'-write'

V:
tiig.t :

Migddit'

t„

total number of backends

total number of records

total number of tracks placed on disks

time to read a block of records into main memory
time to get a single record

time to process a record

time to inset new type-C attribute into DDIT
time to build/update CDT
time to access CINBT — determine the backend to receive next the

time to retrieve/return a cluster from/to a backend

time to write record(s) to a cluster

time to build a cluster of track size in 8K bytes

time to build/update IIGAT
time to build/update IIGDDIT
time to perform the tape sort

time to build/update CINBT

Let us calculate the total time required in the INSERT command to process and load

n records into the database. The time required to process a single record through the

system is

48

The time required to process n records through the system is

n(t
l0^ + tr , + t^ + tmt + t^ + t^,, + U + t^ + 2^ + t„J -- (1)

We now calculate the total time required, using the new algorithm, to process and load

n records into the database. The time required to process n records in Phase-One is

n(tl0^ + t^, + tp^ + U, + U)

The time required to load n records in Phase-Two is

tion "*" X (tbc + tbcinbt + ti/o) + t
jig„ + ti jgdd]t + l(t

i/0) + 3ti/

where i(t
i/0) is writing each individual CDT to its respective backend and 3(t

i/0) is

writing the CINBT, IIGAT and nGDDIT to the controller disk. The total time required

to generate a large database using the two-pass approach is

n(t lotd + V, + xvnnu + tMl + tcdI) + tion + x(t* + tMnh{ + t
ifJ + t

iig> , + tjigddil
+ i(t

i/0)
+

3(t
1/c)

- (2).

We observe that there are some similar constants that appear in both equations (1) and

(2) (i.e., t losd , tr„ tm„ tcd ,
and tfmtu). Tr„ t lotd . tcd ,

and lMu can be eliminated from both

equations. They are calculated the same against the same number of records. Since

they are constant factors that appear in both equations, removing them from each

equation will not impact the overall comparative analysis. Tprocess also appears in

both equations. This constant cannot be removed because in equation (1) it is linked

to two I/O operations, whereas in equation (2) it is not. The resulting equations are:

nO™. + t
iigll + tiigdd„ + tcinbl + 3t

l/r
+twte) --(!')

49

n(tproceM) + t
iort

+ x^ + t^,) + tjx + i + 3) + t^ + t^, + t^ -- (2')

If we ignore the references to the meta data and concentrate solely on record

processing and data loading we can simplify the equations to the following:

nCW^ + 2^ t^J -- (1")

nt,™ + xt* + Ux + i + 3) + U - (2")

Now we see that the number of I/O requests is drastically reduced. The number of I/O

requests in the new algorithm depends largely on the number of tracks that will be

written to the backends instead of the number of records. If we view these two

equations solely on the basis of loading the records, equations (1") and (2") will appear

as

nlt^ + 2xyo + t^J -- (3)

nt^^ + xt„c + tlon -- (4)

respectively. Notice from equation (4) we removed t^i + 3). These I/O operations

load the meta data onto disk. If the database is sufficiently large, then these I/O

operations can be ignored.

These two operations are now in terms of record processing and I/O operations.

We can see that deferring the I/O operations until Phase-Two reduces the number of

I/O operations greatly. When generating large databases, equation (3) will perform on

the order of (3n) while equation (4) performs on the order of (n + x). Since records

are loaded in blocks, less I/O is required. This algorithm does prove to be

advantageous over the current mode of operation.

50

E. DETAILED DESIGN SPECIFICATION OF ALGORITHM

program Create_Reorg(input,output);
/**/

/* */

/* This utility program can be used to generate a data */

/* over multiple backends/disks. A two pass approach */

/* is used in processing the data. Phase-One will scan */

/* the data, process the data, load this data to a tape */

/* and build three tables. Phase-Two will sort the tape */

/* produced in Phase-One, load the sorted data onto the */

/* disk, then load the tables built in Phase-One onto */

/* the meta data disk. */

/* */

j* ***/

begin

Phase-One(...);

if ((Good_Cluster_Distribution) and (Less_N%_Bad_Records)) then

Phase-Two(...)

else

Exit—Redefine Descriptor File;

end. /* main */

51

procedure Phase-One(...);

begin

case TypeOperation of

Create:

begin

get template file;

get descriptor file;

Build_AT(...);

Build_DDIT(...);

end;

Reorg:

begin

get AT;
get DDIT;
remove Type C attributes from DDIT;

end;

end; /* case */

repeat /* process group of records */

load in records;

get a record;

repeat /* process each record */

count record;

scan record;

Error_Check_Record(...);

if good_record then /* process good records */

begin

format record;

Build_DDIT(...);

Build_CDT(...);

write record to work space;

end;

52

else /* process bad records */

begin

Bad_Record_Handler;

count bad records;

end;

get record;

until no_more_records

write block of records to tape;

until end_of_tape

/* CRITERIA: even distribution of records among clusters

determine if there is a good cluster distribution;

calculate percentage of bad records;

end; /* Phase-One */

53

procedure Phase-Two(...);

begin

tape sort by cluster id;

repeat /* load records to disk */

load records;

get a record;

repeat

if (record_in_same_cluster) then

begin

if (recordsize + clustersize <= tracksize-2bytes) then

begin /* build a cluster */

add recordsize to clustersize;

build cluster;

end;

else /* new cluster, same cluster id */

begin

add recordsize to clustersize;

determine backend to receive next cluster;

load backend;

Build_CDT(...); /* for each individual backend */

end;

else /* new cluster, different cluster id */

begin

Build CINBT;
add recordsize to clustersize;

determine backend to receive next cluster;

load backend;

Build_CDT(...);

end;

54

get a record

until no_more_records

until end_of_tape

/* load last cluster to backend */

build CINBT;
determine backend to receive next cluster;

load backend;

Build_CDT(...);

/* load controller meta data */

build EGAT;
build IIGDDIT;

load IIGDDIT to controller;

load IIGAT to controller;

load CINBT to controller;

/* load meta data to disk */

case TypeOperation of

Create:

begin

load AT to each backend;

load DDIT to each backend;

load individual CDT to appropriate backend;

end;

Reorg:

begin

load DDIT to each backend;

load individual CDT to appropriate backend;

end; /* case */

end; /* Phase-Two */

55

IV. IMPLEMENTATION ISSUES

The user interface is the avenue in which the user accesses the database or

interacts with the system. The user interface is usually characterized by the data model

and its model-based data language. The data model allows the user to refer to the

database in terms of its logical representation and the data language allows the user to

write generic transactions and queries against the database. The user data model and

language is always a high-level construct which is abstract enough so the user is not

"bogged down" with the details of the database and the database system.

The kernel software of the of the multi-lingual, multi-model, multi-backend

database system (MLDS, MMDS, MBDS) is the attribute-based data model (ABDM)

and the attribute-based data language (ABDL). ABDL provides the user with a means

of accessing and manipulating the database. ABDL provides the user with five primary

operations and interactive dialogue. It is through these operations and dialogue that the

user interacts with the system. It will be through the interactive dialogue that the

algorithm will be incorporated into the system.

The interactive dialogue is menu driven. The menus are extensive, but organized

simply. All menu items are organized as a multi-level hierarchy with top levels to

indicate the type of dialogues and the low level to indicate the specific dialogue to

follow

.

The algorithm embodies many of the capabilities already existing in the system.

Integration of the algorithm into MBDS should be done easily. The inputs needed to

generate the database are the template, descriptors and record files. MBDS has the

56

capability, through the user interface, to prompt the user for this information. The

inputs needed to reorganize a database are the attribute table (AT) and the descriptor-

to-descriptor-id table (DDIT). These tables are already in existence. As stated earlier,

the interactive dialogue is menu driven. The algorithm will take advantage of the

functions already developed. We propose to modify some of the existing menus of

MBDS to integrate the algorithm into the system. The next few pages reflect how the

menus should be changed and what options should be added to facilitate the

incorporation of the algorithm. Upon entering MBDS the user will have the following

menu appear on the screen

The Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attribute-based/ABDL interface

(r) - Execute the relational/SQL interface

(h) - Execute the hierarchical/DL/I interface

(n) - Execute the network/CODASYL interface

(f) - Execute the functional/DAPLEX interface

(x) - Exit to the operation system.

Select-> a

If the user is creating a new data base or reorganizing an existing database then he/she

will select "a" as shown above. The next menu to appear will be

The attribute-based/ABDL interface:

(g)
- Generate a database

(0) - Reorganize an existing database

(1) - Load a database

(r) - Request interface

(x) - Exit to operating system

Select-> g

57

If the user is creating a new database, then he/she will select "g" as shown above.

Next the user will be prompted for the number of backends:

Enter number of backends->

The user will enter a numeric value such as "8". Next the system will provide the

user with a series of prompts. These prompts are used to collect information about the

template, descriptor and record files (meta data files). The user can enter data into the

system two ways. He/she can have a file already built containing the meta data files

or can generate the meta data files at this point. The following prompts will appear:

What operation would you like to perform:

(p)
- Load template, descriptor and record files (predefined files)

(g)
- Load template, descriptor and record files (generate)

(x) - Exit to operating system

(z) - Exit and stop MBDS

If the user has already built the meta data files he/she will select "p" and the following

prompts will appear, in succession, requesting the meta data file names

Enter name of the file containing Template information:

Enter name of the file containing Descriptor information:

Enter name of the file containing Records to be loaded:

If the user does not have predefined meta data files then he/she will select "g" and the

following series of prompts will appear:

For building the Template file:

Enter name of the file to be used to store template information:

Enter database id:

Enter number of templates for database-name:

Enter number of attributes for template #1:

Enter name of template #1:

Enter attribute name #1 for template #1:

Enter value type:

Enter attribute name #2 for template #1:

Enter value type:

Enter number of attributes for template #2:

58

Enter name of template #2:

Enter attribute name #1 for template #2:

Enter value type:

Enter attribute name #2 for template #2:

Enter value type:

Enter number of attribute for template #n:

Enter name of template #n:

Enter attribute name #1 of template #n:

Enter value type:

For building the Descriptor file:

Enter name of the file used to store descriptor information:

Enter name of template file:

Do you want attribute "attribute-name" to be a directory attribute:

Enter the descriptor type for "attribute-name" (A,B,C):

Enter upper bound for each descriptor in rum
-Enter "@" to stop:

Upper bound:

Use "!" to indicate no lower bound exists

—Enter "@" to stop:

Lower bound:

For building the record file:

Enter name of the file containing records to be loaded:

The system now has the three files that it needs to actually begin using the algorithm.

A message will appear on the screen infonning the user, that all inputs are received

and database generation has begun. The algorithm will proceed to process the records.

If Phase-One is successful, the algorithm will proceed on to Phase-Two. If Phase-One

fails, the system will send a message to the user. The message will read one of the

following:

PHASE-ONE FAILED!!! - BAD RECORD DISTRIBUTION

PHASE-ONE FAILED!!! - DATA CORRUPT

The user will correct the problem. If Phase-One failed because of bad record

distribution, the user should redefine his/her descriptor file. Specifically, the type-A

range variables should be adjusted. If Phase-One failed because of corrupt data, then

the user should check the file containing the bad data. This file was produced during

59

the first pass. After the user has made the correction needed, he/she should re-start the

process to generate the new database.

If the user's operation is to reorganize an existing database then at the menu

shown below:

The attribute-based/ABDL interface:

(g)
- Generate a database

(0) - Reorganize an existing database

(1) - Load a database

(r) - Request interface

(x) - Exit to operating system

Select-> o

the user should select "o" as shown above. The user will receive a series of prompts

requesting information about the database to be reorganized. The following prompt will

appear

Enter number of backends:

Enter name of database to be reorganized:

Entering the name of the containing the records to be loaded:

Once the user enters the name of the database to be reorganized, the algorithm can

now identify the tables needed as input. The system will now start actually using the

algorithm. A message will appear on the screen informing the user that the

reorganization of the specified database has begun. The algorithm will proceed to

process the records. If Pass-One is successful, the algorithm will proceed on to Phase-

Two. If pass-one fails, the system will send a message to the user. The message will

read one of the following:

PHASE-ONE FAILED!!! - BAD RECORD DISTRIBUTION

PHASE-ONE FAILED!!! -- DATA CORRUPT

60

The user will take whatever action is appropriate to eliminate the problem. Once the

problem has been corrected the user will re-enter the system and restart the

process.

61

V. CONCLUSIONS

We have found that all database systems have four major components: a data

model and its model-based data language, a database, software and hardware. We have

discussed these components in some detail over the past few chapters. The kernel

system is the underlying system used to support the multi-backend database system

(MBDS). The kernel system has its own data model and language known as the

attribute-based data model and language (ABDM, ABDL). Like most database systems

ABDL provides its users with the capability to access and manipulate its data.

Unfortunately, as mentioned earlier, the kernel system does not lend itself to providing

a fast and efficient method of generating large database. We know that through the

kernel data language we can create these large databases with the use of the INSERT

command. The INSERT command is a one-record-at-a-time operation. In order to

store large databases onto disk we must use the one-record-at-a-time methodology.

This methodology is not very efficient but it does work. We have learned that the

DELETE command does not physically remove a record from the database but in

reality, tags the record as longer active. These tagged records leave "holes" in the

database creating fragmentation within the medium. If we collect the active records

and then redistribute them over the backends we eliminate the problem of

fragmentation. The entire thrust of this thesis is to provide a solution to the problem

of database creation and garbage collection.

62

A. A REVIEW OF THE RESEARCH

In this thesis, we have addressed the topic of database creation and/or

reorganization (garbage collection) over multiple backends. Specifically, we have

presented a methodology' that will efficiently create very large databases of gigabytes

on parallel computers and reorganize them when they have records that have been

tagged for deletion. We have designed a utility program to by-pass the system's

INSERT command, to load the data directiy onto disk and create all necessary base

data and meta data of the database.

In this thesis, we recognized two approaches (i.e., One-Pass and Two-Pass

approaches) that may be taken with respect to database creation or garbage collection.

We discussed the two methods and gave our reasons for selecting the Two-Pass

approach as the best alternative.

The Two-Pass chosen methodology entailed two phases. The first phase is known

as Phase-One. The first phase deals mostly with record processing. Also performed

in the first pass is the initial building of the three directory tables. There is very little

I/O processing performed during the first phase. The second phase is known as Phase-

Two. The second phase is concerned primarily with loading data, both base and meta,

onto the backends' disks. The loading of the data generates many I/O requests, so the

second phase is I/O-bound. The separation of the data being processed and the data

being loaded have reduced the number of I/O operations. Now records are loaded in

clusters instead of individually.

63

We feel that the methodology presented in this thesis is sufficient for

implementation. With the implementation an efficient means of generating large

databases with even distributed over multiple backends will become a reality.

B. SOME OBSERVATIONS AND INSIGHT

The multi-lingual, multi-model, multi-backend database system (MLDS,MMDS,

MBDS) is a very powerful, yet simple system. The power of the system lies in its

ability to provide one user access to a neighboring database which was created under

a different database model, using his/her own data language. The attribute-based data

model and language is the kernel system which supports the MLDS, MMDS and

MBDS. There are considerable design, development and testing efforts in making this

system a research vehicle for new research undertakings. This thesis, once

implemented, will provide an additional capability to an already powerful system.

Some areas of future research in database creation, would be (1) expanding this

algorithm to generate more than one database at a time, and (2) placing a new database

on the backends that already have resident databases.

64

APPENDIX A - ATTRIBUTE TABLE PROGRAM SPECIFICATIONS

#include <stdio.h>

#include "flags.def
#include "dblocal.def

#include "beno.def

'

#include "commdata.def

'

#include "dirman.def

'

#include "tmpl.def

#include "dirman.ext"

struct ddit_definition *ATM_FIND(attribute, desc_type, AT)
/* Find an attribute in AT and return the pointer to its DDIT. Set */

/* desc_type to the type of descriptors defined on the attribute. */

char attribute [],

desc_type; / not C, C, AT_NOTFOUND or AT_DELETED */

struct at_tbl_definition *AT; /* attribute table */

{

int pos; /* position of attribute in Attribute Table */

#ifdef EnExFlagg

printf("Enter ATM_FIND\n");
fflush(stdout);

#endif

/* find attribute in AT */

pos = AT_binsearch(AT, attribute);

/* if attribute not in AT */

if (pos == -1 II AT->at_entrv[pos].at_desc_type == AT_DELETED)
{

*desc_type = AT_NOTFOUND;

#ifdef EnExFlagg
printf("Exitl ATM_FIND\n\n");
fflush(stdout);

#endif

65

return(NULL);

} else {

*desc_type = AT->at_entry[pos].at_desc_type;

#ifdef EnExFlagg
printf("Exit2 ATM_FDSfD\n\n");

fflush(stdout);

#endif

return(AT->at_entry [pos] .at_ddit_ptr);

}

}
/* end ATM_FIND */

ATM_INSERT(attr_name, attr_id, desc_type, ddit_ptr, AT)
/* Insert an attribute into AT. */

char attr_name[];

int attr_id;

char desc_type; /* not C, C, AT_NOTFOUND or AT_DELETED */

stmct ddit_definition *ddit_ptr; /* pointer to first DDIT element */

struct at_tbl_definition *AT; /* attribute table */

{

int position = 0. /* index to AT for attribute */

compare, /* return value from string comparison of attributes */

i;

#ifdef EnExFlagg
printf("Enter ATM_INSERTV);
fflush(stdout);

#endif

/* the attribute table is maintained sorted by attribute name; if not the */

/* first entry the table must be checked for fullness; if the table is */

/* full, attributes marked for deletion are removed; if the table is still */

/* full (no attributes were marked for deletion) an error condition exists */

if (!AT->at_no_entry)
{

/* if first entry into table simply insert */

strcpy(AT->at_entrv[0].at_AttrName, attr_name);

AT->at_entry[0].at_AttrId = attr_id;

AT->at_entry[OJ.at_desc_type = desc_type;

AT->at_entry[0].at_ddit_ptr = ddit_ptr;

++AT->at_no entrv:

66

} else {

/* if full table remove deleted entries */

if (AT->at_no_entry == AT_MAX_ENTRIES)
AT_remove_del(AT);

/* if table still full */

if (AT->at_no_entry = AT_MAX_ENTREES) {

printffERROR: AT is full in ATM_INSERT().\n");

sleep(ErrDelay);

} else
{

/* find correct position */

while ((position < AT->at_no_entry) &&
(compare = strcmp(attr_name,AT->at_entry[position].at_AttrName))>0)

-H-position;

/* check for duplicate entries */

if (Icompare && (AT->at_entry [position].at_desc_type != AT_DELETED))
printf("ATM_INSERT attribute is already in AT\n");

else
{

/* shift down table entries */

for (i = AT->at_no_entry - 1; i >= position; —i) {

strcpy(AT->at_entry [i+ 1] .at_AttrName ,AT->at_entry [i] .at_AttrName);

AT->at_entry[i + l].at_AttrId = AT->at_entry[i].at_AttrId;

AT->at_entry[i + l].at_desc_type = AT->at_entry[i].at_desc_type;

AT->at_entry[i + l].at_ddit_ptr = AT->at_entry[i].at_ddit_ptr;

}

/* insert new entry */

strcpy(AT->at_entry [position] .at_AttrName, attr_name);

AT->at_entry [position].at_AttrId = attr_id;

AT->at_entry[position].at_desc_type = desc_type;

AT->at_entry [position].at_ddit_ptr = ddit_ptr;

++AT->at_no_entry;

)

#ifdef EnExFlagg
printf("Exit ATM_INSERTNn\n");
fflush(stdout);

#endif

return (position);

}
/* end ATMJNSERT */

67

static ATM_DELETE(attributeAT)
/* Mark an attribute in AT for deletion. */

char attribute!];

struct at_tbl_definition *AT; /* attribute table */

{

int position; /* position of attribute in AT table */

/* find attribute in AT */

position = AT_binsearch(AT,attribute);

if (position != -1)

/* mark the attribute for deletion */

AT->at_entry [position].at_desc_type = AT_DELETED;
else

SysError(5, "ATM_DELETE");

}
/* end ATM_DELETE */

ATM_UPDATE(attribute, new_ddit_ptr, AT)
/* Update the dditptr for an attribute in AT. */

char attribute [];

struct ddit_definition *new_ddit_ptr: /* ptr to first element of DDIT */

struct at_tbl_definition *AT; /* attribute table */

1

int position; /* index to AT */

#ifdef EnExFlagg

printf("Enter ATM_UPDATE\n");
fflush(stdout);

#endif

/* find attribute in AT */

position = AT_binsearch(AT, attribute);

if (position != -1

)

/* update ddit ptr in AT */

AT->at_entry[position].at_ddit_ptr = new_ddit_ptr;

else
{

SysError(5, "ATMJJPDATE");
sleep(ErrDelay);

68

#ifdef EnExFlagg
printf("Exit ATM_UPDATE\nW);
fflush(stdout);

#cndif

}
/* end ATM_UPDATE */

struct at_tbl_definition *AT_lookuptbl(dbid)

/* Find the AT for a database and return a pointer to it */

char dbid[];

I

struct db_info *db_ptr, *DB_find();

#ifdef EnExFlagg
printf("Enter AT_lookuptbI\n");

fflush(stdout);

#endif

/* find AT for database dbid */

db_ptr = DB_find(dbid);

if (db_ptr)
{

/* AT is found */

#ifdef EnExFlagg

printf("Exitl AT_lookuptbl\n\n");

fflush(stdout);

#endif

return(db_ptr->db_at_pointer);

} else
{

/* AT not found */

#ifdef EnExFlagg
printf("Exit2 AT_lookuptbr\n\n");

fflush(stdout);

#endif

return(NULL);

}

}
/* end ATJookuptbl */

69

AT_binsearch(AT, attribute)

/* Find an attribute in AT using binary search and return its position */

struct at_tbl_definition *AT; /* Attribute Table */

char attribute [];

{

int high, /* highest index in portion of tbl being searched */

low = 0, /* lowest index in portion of tbl being searched */

mid, /* index who's attr name is being compared */

compare; /* return value from string comparison of attributes */

#ifdef EnExFlagg
printf("Enter AT_binsearchVi");

fflush(stdout);

#endif

high = AT->at_no_entry - 1;

while (low <= high)
{

mid = (low + high) / 2;

compare = strcmp(attribute, AT->at_entry[mid].at_AttrName);

if (!compare)
{

#ifdef EnExFlagg

printf("Exitl AT_binsearch\nVi");

fflush(stdout);

#endif

return(mid);

} else

if (compare < 0)

high = mid - 1;

else

low = mid + 1;

}
/* end while */

/* attribute not found in AT */

#ifdef EnExFlagg
printf("Exit2 AT_binsearch\n\n");

fflush(stdout);

#endif

return (-1);

}
/* end AT_binsearch */

70

static AT_remove_del(AT)
/* Remove attributes marked for deletion from AT. */

struct at_tbl_definition *AT; /* attribute table */

{

int i, j = 0; /* indexes to AT table */

for (i = 0; i < AT->at_no_entry; ++i)

if (AT->at_entry[i].at_desc_type != AT_DELETED)
{

/* keep this attribute */

strcpy (AT->at_entry [j] .at_AttrName , AT->at_entry [i] .at_AttrName);

AT->at_entry[j].at_AttrId = AT->at_entry[i].at_AttrId;

AT->at_entry[j].at_desc_type = AT->at_entry[i].at_desc_type;

AT->at_entry[j].at_ddit_j>tr = AT->at_entry[i].at_ddit_ptr;

}

/* update number of entries in AT */

AT->at_no_entry = j;

AT->at_write_required = TRUE;

}
/* end AT_remove_del */

71

APPENDIX B - DESCRIPTOR TABLE PROGRAM SPECS.

#include <stdio.h>

#include "flags.def"

#include "dblocal.def

#include "beno.def

'

#include "commdata.def
#include "dinnan.def

'

#include "dirman.ext"

struct ddit_definition *

DM_INSERT_DDIT(descriptor, val_type, ddit_list_header, new_desc_id)

/* Add a descriptor to DDIT. If the descriptor is added to the beginning, */

/* return a pointer to it. */

struct desc_definition * descriptor;

char val_type;

struct ddit_definition *ddit_list_header;/* first element in DDIT list */

struct Descld *new_desc_id;

{

int compare;

struct ddit_definition *create_ddit_node(), *new_ddit, *next_ddit,*prev_ddit;

#ifdef EnExFlag
printf("Enter DM_INSERT_DDn\i");

#endif

new_ddit = create_ddit_node();

#ifdef m_pr_flag

printf("new_ddit = %o\n", new_ddit);

#endif

/* place descriptor into ddit element */

strcpy(new_ddit->lower, descriptor->lower);

strcpy(new_ddit->upper. descriptor->upper);

di_cpy(&(ne\v_ddit->ddit_did), new_desc_id);

if (!ddit_lLst_header)
{

/* creating new list */

72

#ifdef EnExFlag
printf("Exitl DM_INSERT_DDIT\n");

#endif

return(new_ddit);

} else
{

/find proper place in existing list */

prev_ddit = NULL;
next_ddit = ddit_list_header;

if (next_ddit->lower[0] = NOBOUND && next_ddit->upper[0]

NOBOUND)

{

/* the first one is catchall descriptor; skip it */

prev_ddit = next_ddit;

next_ddit = next_ddit->next_ddit_definition;

}

while (next_ddit)
{

compare = datacmp(next_ddit->upper, new_ddit->upper, val_type);

if (compare < 0) {

prev_ddit = next_ddit;

next_ddit = next_ddit->next_ddit_definition;

} else

break;

)

/* if new ddit is at beginning of list */

if (!prev_ddit)
{

new_ddit->next_ddit_definition = ddit_list_header;

#ifdef EnExFlag
printf("Exit2 DM_INSERT_DDn\i M

);

#endif

return(new_ddit);

} else
{

/* new ddit somewhere after first element */

new_ddit->next_ddit_definition = prev_ddit->next_ddit_definition;

prev_ddit->next_ddit_definition = new_ddit;

73

#ifdef EnExFlag

printf("Exit3 DM_INSERT_DDnW);
#endif

return(NULL);

}

}
/* end if (ddit_list_header) */

}
/* end DM_INSERT_DDIT */

74

APPENDIX C - CLUSTER DEFINITION TABLE PROGRAM SPECS.

#include <stdio.h>

#include "flags.def
#include "dblocal.def

#include "beno.def

#include "commdata.def

'

#include "dirman.def

'

#include "dirman.ext"

struct cdt_definition *CDTM_INSERT(DT, d_i_s, cid)

/* Add an entry to cluster-definition table and return a pointer to it.

* It will also update DT if necessary (this happens if one or more of the

* descriptor ids defining the cluster are not in DT). Update DTCT. */

struct dt_definition *DT; /* descriptor table */

struct des_id_set *d_i_s;

int cid;

I

struct cdt_definition *create_cdt_node(), *new_cdt_ptr;

struct did_link_definition *create_did_link_node(), *desc_ptr,

*prev_desc_ptr;

struct dtct_definition *create_dtct_node(), *new_dtct_ptr;

int k, ind;

#ifdef EnExFlag
printffEnter CDTMJNSERTV');

#endif

/* sort the descriptor-id set */

DescSort(d_i_s);

/* allocate new CDT entry */

new_cdt_ptr = create_cdt_node();

#ifdef m_pr_flag

printf("new_cdt_ptr = %oW, new_cdt_ptr);

#endif

/* store the information in the new entry */

new_cdt_ptr->cdt_clus_no = cid;

75

/* copy the descriptor ids into the cdt entry */

new_cdt_ptr->cdt_no_desc = d_i_s->dis_desc_count;

desc_ptr = create_did_link_node();

#ifdef m_pr_flag

printf("desc_ptr = %oNn", desc_ptr);

#endif

di_cpy(&(desc_ptr->dld_did), &(d_i_s->dis_dids[0]));

new_cdt_ptr->cdt_did_pointer = desc_ptr;

for (k = 1; k < d_i_s->dis_desc_count; ++k)
{

prev_desc_ptr = desc_ptr;

desc_ptr = create_did_link_node();

#ifdef m_pr_flag

printf("desc_ptr = %o\n", desc_ptr);

#endif

di_cpy(&(desc_ptr->dld_did), &(d_i_s->dis_dids[k]));

prev_desc_ptr->next_did_link_definition = desc_ptr;

}
/* end for */

desc_ptr->next_did_link_definition = NULL;

/* update DT and DTCT */

for (k = 0; k < d_i_s->dis_desc_count; ++k)
{

/* find the descriptor id in DT */

if ((ind = binsr_dt(&(d_i_s->dis_dids[k]), DT)) == -1)

/* the descriptor id is not in DT; add it to DT */

ind = CDTM_DT_INSERT(&(d_i_s->dis_dids[k]), DT);

new_dtct_ptr = create_dtct_node();

#ifdef m_pr_flag

printf("new_dtct_ptr = %o\n", new_dtct_ptr);

#endif

new_dtct_ptr->dtct_cdt_pointer = new_cdt_ptr;

new_dtct_ptr->next_dtct_definition = DT->dt_entry[ind].dt_dtct_pointer;

DT->dt_entry[ind].dt_dtct_pointer = new_dtct_ptr;

DT->dt_entry[ind].dt_clus_count++;

}/* end for */

DT->dt_write_required = TRUE;

76

#ifdef EnExFlag
printf("Exit CDTMJNSERTNnW');

#endif

return (new_cdt_ptr);

}/* end CDTM.INSERT */

CDTM_DT_INSERT(d_id, DT)
/* Add a descriptor id to descriptor table (DT) if it not already there.

* Return the position of the descriptor id in DT. */

struct Descld *d_id;

struct dt_definition *DT; /* descriptor table */

{

int pos, k;

#ifdef EnExFlag
printf("Enter CDTM_DT_INSERTMi")

;

#endif

/* check to see if the descriptor id is already in DT ... done where called

if ((pos = binsr_dt(d_id, DT)) != -1)
{

#* descriptor id is already in DT *#

#ifdef EnExFlag

printf("Exitl CDTM_DT_INSERT\nW);
#endif

return (pos);

}
*/

/* the descriptor id is not in DT; add it */

#ifdef special_flag

printf("DT->dt_no_did = %d\n", DT->dt_no_did);

#endif

/* Check for room */

if (DT->dt_no_did >= DT_MAX_DESC)
{

SysError(9, "CDTM_DT_INSERT");
sleep(ErrDelay);

}

77

/* find the appropriate position in DT for the descriptor id (DT is ranked
* in ascending order by descriptor ids) */

for (pos = 0; pos < DT->dt_no_did &&
strcmp(DT->dt_entry[pos].dt_did.did, d_id->did) < 0; -H-pos)

/* the new descriptor id should be added to DT at position 'pos' */

/* move down the descriptor ids in DT to make space for the new one

for (k = DT->dt_no_did; k >= pos; -k)
{

di_cpy(&(DT->dt_entry[k].dt_did), &(DT->dt_entry[k-l].dt_did));

DT->dt_entry[k].dt_clus_count = DT->dt_entry[k-l].dt_clus_count;

DT->dt_entry[k].dt_dtct_pointer = DT->dt_entry[k-l].dt_dtct_pointer;

}

/* add the new descriptor id */

di_cpy(&(DT->dt_entry[pos].dt_did), d_id);

DT->dt_entry[pos].dt_clus_count = 0;

DT->dt_entry[pos].dt_dtct_pointer = NULL;

/* increment the number of descriptor ids in DT */

-H-DT->dt_no_did;

#ifdef EnExFlag
printf("Exit2 CDTM_DT_INSERTsnW');

#endif

return (pos);

} I* end CDTM_DT_INSERT */

78

APPENDIX D - RECORD CHECKER PROGRAM SPECS.

#include "flags.def

#include <stdio.h>

#include "beno.def"

#include "commdata.def

#include "reqprep.def

#include "reqprep.ext"

chk_ParsedTrafUnit(ParsedRequestsPtr, dbid, err_msg)

/* Check all the requests in a traffic unit against the record template */

struct req_index_definition *ParsedRequestsPtr;

char err_msg[], dbid[];

{

int k, tmpl_index;

struct REQtbl_definition *req_ptr;

struct rtemp_definition *tmpl_ptr,

*get_tmpl_ptr();

#ifdef pr_flag

int z=0;

#endif

#ifdef EnExFlag

printf("Enter chk_ParsedTrafUnit Nn");

#endif

for (k = 0; (req_ptr = ParsedRequestsPtr->req_tbl_pointer[k]) != NULL; ++k)

I

#ifdef pr_flag

while(req_prr->req_tbl[z][0]!=EORequest)

printf("%s\n'Veq_ptr->req_tbl[z++]);

printf("%s\n" ,req_ptr->req_tbl[z+ 1]);

#endif

/* Get the record template. Template name is found as follows:

req_tbl[4][0] = request type

req_tbl[tmpl_index] = template name pointer */

79

if((req_ptx->req_tbl[4][0]-'0')==INSERT)

tmpl_index=7;

else

tmpl_index=8;

/*

switch (req_ptr->req_tbl[4][0] - '0')
{

case INSERT:
tmpl_index = 7;

break;

case RETRIEVE:
case RET_COM:

case DELETE:
case UPDATE:

tmpl_index = 8;

}

*/

tmpl_ptr = get_tmpl_ptr(dbid,req_ptr->req_tbl[tmpl_index]);

if (!chk_request(ParsedRequestsPtr->req_tbl_pointer[k],tmpl_ptr,err_msg))

#ifdef EnExFlag
printf("Exitl chk_ParsedTrafUnit \n");

#endif

return(FALSE);

}

}
/* end of for loop */

/* all the parsed requests are ok */

#ifdef EnExFlag
printf("Exit2 chk_ParsedTrafUnit \n");

#endif

retum(TRUE);

}/* end chk_ParsedTrafUnit */

80

chk_request(req_ptr, rtemp_j>tr, err_msg)

/* Purpose: */

/* This procedure checks the validity of a request by comparing it */

/* againest recored template. It returns TRUE if the request is valid; */

/* otherwise, it returns FALSE and an error message. */

struct REQtbl_definition *req_ptr;

struct rtemp_definition *rtemp_ptr;

char err_msg[];

{

char flag_attr;

int flag_insrt, flag_dlt, flag_rtrv, flag_updt;

int j,

mod_type;

char chk_attr_name();

#ifdef EnExFlag
printf("Enter chk_requesr \n");

#endif

/* check request type */

switch (req_ptr->req_tbl[4][0] - '0')

{

case INSERT:
flag_insrt = chk_insrt_rec(req_ptr,rtemp_ptr,err_msg);

#ifdef EnExFlag

printf("Exitl chk_request \n");

#endif

rerum(flag_insrt)

;

break;

case DELETE:
j = 6;

flag_dlt = chk_non_insrt_q (req_ptr,&j,rtemp_ptr,err_msg);

#ifdef EnExFlag
printf("Exit2 chk_request Vi");

#endif

return(flag_dlt);

break;

81

case RET_COM:
case RETRIEVE:

j = 6;

flag_rtrv = chk_non_insrt_q (req_ptr,&J4temp_j>tr,err_msg);

if (!flag_rtrv)

{

#ifdef EnExFlag

printf("Exit3 chk_request W);
#endif

return (FALSE);

}

j++; /* skip EOQuery */

/* check target list */

while (req_ptr->req_tbl[j][0] != ETList)

{

flag_attr = chk_attr_name(rtemp_ptr,req
r
_ptr->req_tbl[j]);

if (flag_attr == '0'
)

{

concat("invalid attribute name: ",req_ptr->req_tbl|j],err_msg);

#ifdef EnExFlag
printf("Exit4 chk_request Vi");

#endif

return(FALSE);

)

j++; /* skip attribute name */

j++; /* skip the aggregate */

}/* end while (req_ptr->req_tbl[j][0] != ETList) */

/* check the attribute for by clause */

if (strcmp(req_ptr->req_tbl[j],"000") !=)

{

flag_attr = chk_attr_name(rtemp_ptr,req_ptr->req_tbl[j]);

if (flag_attr == '0'
)

I

#ifdef EnExFlag
printf("Exit5 chk_request Vi");

#endif

cone at("invalid attribute name : ",req_ptr->req_tbl[j],en_msg);

retum(FALSE);

}

)

#ifdef EnExFlag
printf("Exit6 clik_request Vi");

#endif

retum(TRUE);

break;

case UPDATE:
1=6;
flag_updt = chk_non_insrt_q(req_ptr,&j^temp_ptr,err_msg);

if (!flag_updt)

{

#ifdef EnExFlag
printf("Exit7 chk_request W);

#endif

retum(FALSE);

}

j++; /* skip EOQuery */

mod_type = req_ptr->req_tbl[j][0] - '0';

j++; /* skip modifier type */

/* check the attr-being-modified */

flag_attr = chk_attr_name(rtemp_ptr,req_ptr->req_tbl[j]);

if (flag_attr == '0'
)

{

#ifdef EnExFlag

printf("Exit8 chk_request \n");

#endif

concat(" invalid attribute name being modified: ",

req_ptr->req_tbl(j], err_msg);

retum(FALSE);

>

j++; /* skip attribute being modified */

/* check modifier type */

switch (mod_type)

(

case MTO:
/* check the new value for valid value type */

/* <« TBC >» */

break;

case MT1:
case MT2:

flag_attr = chk_attr_name(rtemp_ptr,req_ptr->req_tbl[j]);

if (flag_attr == '0'
)

{

#ifdef EnExFlag

printf("Exit9 chk_request Nn");

#endif

83

concat("invalid base attribute name: ",

req_ptr->req_tbl[j], err_msg);

retum(FALSE);

}

break;

case MT3:
flag_attr = chk_attr_name(rtemp_ptr treqr

_ptr->req_tbl[j]);

if (flag_attr = '0')
{

concat(" invalid base attribute name: ",

req_ptr->req_tbl[j], err_msg);

#ifdef EnExFlag
printf("ExitlO chk_request W);

#endif

retum(FALSE);

}

j++; /* skip base attribute */

while (req_ptr->req_tbl[j][0] != EOExpr)

j += 2; /* skip EOExpr and number of predicates */

£lag_attr = chk_non_insil_q(req_ptr,&j,rtemp_ptr,err_msg);

if (!flag_attr)
{

#ifdef EnExFlag

printf("Exitll chkjrequest W);
#endif

return (FALSE);

I

break;

case MT4:
flag_attr = chk_attr_name(rtemp_ptr,req_ptr->req_tbl[j]);

if (flag_attr == '0'
)

(

concat(" invalid base attribute name: ",

req_ptr->req_tbl[j] ,err_msg);

#ifdef EnExFlag
printf("Exitl2 chk_request VT);

#endif

retum(FALSE);

)

break:

default:

concati "invalid modifier type",(mod_type + '0 ,

),err_msg);

84

#ifdef EnExFlag
printf("Exitl3 chk_request Nn");

#endif

return(FALSE);

break;

}/* end switch (mod_type) */

#ifdef EnExFlag
printf("Exitl4 chk_request Nn");

#endif

retum(TRUE);

break;

default:

concat("invalid request type: ",req_ptr->req_tbl[4],err_msg);

#ifdef EnExFlag
printf("Exitl5 chk_request \n");

#endif

return(FALSE);

break;

}/* end switch (req_ptr->req_tbl[4][0] - '0'
) */

#ifdef EnExFlag

printf("Exit chk_request \n");

#endif

}/* end chk_request */

chk_insrt_rec(req_ptr, rtemp_ptr, err_msg)

/* Purpose: */

/* This routine checks if all (and only) attribute names in */

/* record template are in an insert request. It also checks the */

/* value type associated with each attribute. It returns TRUE */

/* if ok; otherwise it returns FALSE and an error message. */

struct REQtbl_definition *req_ptr;

struct rtemp_definition *rtemp_ptr;

char err_msg[];

(

int flag_ins;

int k;

int no_kwrd;

char str_no_attr[5];

85

#ifdef EnExFlag

printf("Enter chk_insrt_rec W);
#endif

no_kwrd = str_to_num(req_ptr->req__tbl[5]);

if (no_kwrd != rtemp_ptr->no_cntries)

{

num_to_str(rtemp_ptr->no_entries, str_no_attr);

concat("number of keywords in the insert request should be: ",

str_no_attr, err_msg);

#ifdef EnExFlag

printf("Exitl chk_insrt_rec \n");

#endif

return(FALSE);

)

for (k = 0; k < rtemp_ptr->no_entries; -H-k)

{

flag_ins = insrt_attr_name(rtemp_ptr->rt_entry[k].attr_name,

rtemp_ptr->rt_entry[k] .value_data_type
,

req_ptr,err_msg)

;

if (!flag_ins)

{

#ifdef EnExFlag

printf("Exit2 chk_insrt_rec Vi");

#endif

return(FALSE);

}

}/* end for */

#ifdef EnExFlag

printf("Exit3 chk_insrt_rec Nn");

#endif

return(TRUE);

}/* end chk_insrt_rec */

insrt_attr_name(att_name, att_val_type, req_ptr, err_msg)

/* Purpose: */

/* This routine checks if attribute name in record template is */

/* in the insert request, and also checks the validity of the */

/* value type associated with attribute name. It returns TRUE if */

/* attribute name exsists and valid valuetype; otherwise, it */

/* returns FLASE. */

struct REQtbl_definition *req_ptr;

char att_name[]:

86

char att_val_type;

char err_msg[];

{

int j;

int flag_value;

#ifdef EnExFlag

printf("Enter insrt_attr_name \n");

#endif

j = 6;

while (req_ptr->req_tbl[j][0] != EORecord)

{

if (strcmp(att_name,req_ptr->req_tbl[j]) =)

{

flag_value = chk_value_type(att_val_type^eq_ptr->req_tbl[j]);

if (!flag_value)

{

concat("invalid value type for attribute: ",

req_ptr->req_tbl[j-l], err_msg);

#ifdef EnExFlag
printf("Exitl chk_insrt_rec W);

#endif

retum(FALSE);

}

#ifdef EnExFlag
printf("Exit2 chk_insrt_rec \n");

#endif

return(TRUE);

}

j = j + 2; /* skip attribute name and attribute value */

}/* end while */

concat("missing attribute name: ", att_name, err_msg);

#ifdef EnExFlag

printf("Exit3 chk_insrt_rec proc \n");

#endif

return(FALSE);

}/* end insrt_attr_name */

87

chk_non_insrt_q(req_ptr, i, rtemp_ptr, err_msg)

/* Purpose: */

/* This procedure checks the validity of the query part of */

/* non-insert request. It returns TRUE if valid; otherwise, it */

/* returns FALSE and an error message. */

struct REQtbl_definition *req_ptr;

struct rtemp_definition *rtemp_ptr;

char err_msg[];

int *i;

{

int flag_value;

char chk_attr_name ();

char flag_attr;

#ifdef EnExFlag
printf("Enter chk_non_insrt_q Vi");

#endif

while (req_ptr->req_tbl[*i][0] != EOQuery)

{

flag_attr = chk_attr_name(rtemp_ptr^req_ptr->req_tbl[*i]);

if (flag_attr == '0'
)

{

concat("invalid attribute name: ", req_ptr->req_tbl[*i], err_msg);

#ifdef EnExFlag
printf("Exitl chk_non_insrt_q \n");

#endif

return (FALSE);

}

++*i; /* skip attribute name */

++*i; /* skip relational operator */

flag_value = chk_value_type(flag_attr,req_ptr->req_tbl[*i]);

if (!flag_value)

(

concat("invalid value for attribute: ",

req_ptr->req_tbl[*i-2], err_msg);

#ifdef EnExFlag
printf("Exit2 chk_non_insrt_q \n");

#endif

retum(FALSE);

88

++*i; /* skip attribute value */

if (req_ptr->re<Ubl[*i][0] == EOConj)

++*i; /* skip EOConj */

}/* end while */

#ifdef EnExFlag

printf("Exit3 chk_non_insrt_q \n");

#endif

return(TRUE);

}/* end chk_non_insrt_q */

char chk_attr_name(rtemp_ptr, attribute)

/* Purpose: */

I* This procedure checks if an attribute name exsists in the */

/* record template. If the attribute is in the record template, */

/* it returns the type of value (i, s, f....) for the attribute. */

/* If the attribute is not in the record template, it returns '0'. */

struct rtemp_definition *rtemp_ptr,

char attribute [];

{

int i;

#ifdef EnExFlag
printf("Enter chk_attr_name \n");

#endif

for (i = 0; i < rtemp_ptr->no_entries; ++i)

if (strcmp(rtemp_ptr->rt_entry[i].attr_name,attribute) ==)

{

#ifdef EnExFlag
printf("Exitl chk_attr_name VT);

#endif

return(rtemp_ptr->rt_entry[il.value_data_type);

}

#ifdef EnExFlag

printf("Exit2 chk_attr_name \n");

#endif

return('O');

}/* end chk_attr_name */

89

chk_value_type(value_type, val)

/* Purpose: */

/* This procedure checks the validity of a value. It returns */

/* TRUE if valid; otherwise, it returns FALSE. */

char value_type;

char val[];

{

int i,negflag=0;

#ifdef EnExFlag
printf("Enter chk_value_type \n");

#endif

switch (value_type)

{

case V:
/* allow for negative numbers */

if((val[0] < '0'
II val[0] > '9')&&(val[0]!='-'))

retum(FALSE);

else

if(val[0]=='-')

/* since it is negative, make sure numbers follow,

* not just '-' */

negflag=l;

for(i=l; val[i]!='\0'; ++i)

if(val[i] < '0'
II val[i] > '9')

{

#ifdef EnExFlag
printf("Exitl chk_value_type \n");

#endif

retum(FALSE);

}

/* scold the user if just a negative sign */

if((negflag)&&(i=l))

return(FALSE);

#ifdef EnExFlag
printf("Exit2 chk_value_type \n");

#endif

return(TRUE);

break;

90

case V:
#ifdef EnExFlag

printf("Exit3 chk_value..type V);
#endif

return(TRUE);

break;

case T:
#ifdef EnExFlag

printf("Exit4 chk_value..type W);
#endif

return(TRUE);

break;

default :

#ifdef EnExFlag
printf("Exit5 chk_value_.type V);

#endif

return(FALSE);

break;

}/* end switch */

#ifdef EnExFlag
printf("Exit6 chk_value_type \n");

#endif

}/* end chk_value_type */

91

LIST OF REFERENCES

1. Korth, H. F. and Siberschatz, K., Database System Concepts, p.348, McGraw- Hill

Book Co., 1986

2. MacLennan, B. J., Principles of Programming Languages: Design, Evaluation and
Implementation, 2d ed., p.432, CBS College Publishing, 1987.

3. Stubbs, D. F., and Webre, N. W., Data Structures with Abstract Data Types and
Modula-2, p. 396, Brooks/Cole Publishing Co., 1987.

4. Demurjian, S. A. and Hsiao, D. K., "New Directions in Database-Systems

Research and Development," Technical Report, NPS-52-85-001, Naval

Postgraduate School, Monterey, California, February 1985.

5. Banerjee, J. and Hsiao, D. K., "The Use of a Database Machine for Supporting

Relational Databases," Proceedings 5th Workshop on Computer Architecture for

Nonnumeric Processing (August 1987).

6. Benerjee, J., Hsiao, D. K., and Ng, F., "Database Transformation, Query

Transformations and Performance Analysis of a Database Computer in Supporting

Hierarchical Database Management," IEEE Transactions on Software Engineering

Vol. SE-6, No. I, (January 1980).

7. Benerjee, J. and Hsiao, D. K., "A Methodology for Supporting Existing

CODASYL Databases with New Database Machines," Proceedings of National

ACM Conference (1978).

8. Macy, G.. "Design and Analysis of an SQL Interface for a Multi-Backend

Database System," M. S. Thesis, Naval Postgraduate School, Monterey, California,

March 1984.

9. Weisher, D., "Design and Analysis of a Complete Hierarchical Interface for a

Multi-Backend Database System," M. S. Thesis, Naval Postgraduate School,

Monterey, California, June 1984.

10. Wortherly, C. R., "Design and Analysis of a Network Interface for a Multi-

Backend Database System," M. S. Thesis, Naval Postgraduate School, Monterey,

California, December 1985.

11. Goisman. P. L., "The Design and Analysis of a Complete Entity-Relationship

Interface for the a Multi-Backend Database System," M. S. Thesis, Naval

Postgraduate School, Monterey, California, December 1985.

92

12. Kloepping, G. R. and Mack, J.F., "The Design and Implementation of a Relational

Interface for the Multi-Lingual Database System," M. S. Thesis, Naval

Postgraduate School, Monterey, California, June 1985.

13. Benson, T. P. and Wentz, G. L., "The Design and Implementation of a

Hierarchical Interface for the Multi-Lingual Database System," M. S. Thesis,

Naval Postgraduate School, Monterey, California, June 1985.

14. Emdi, B., "The Implementation of a CODASYL-DML Interface for the Multi-

Lingual Database System," M. S. Thesis, Naval Postgraduate School, Monterey,

California, December 1985.

15. Anthony, J. A. and Billings, A. J., "The Implementation of an Entity-Relationship

Interface for the Multi-Lingual Database System," M. S. Thesis, Naval

Postgraduate School, Monterey, California, December 1985.

16. Hsiao, D. K. and Menon, M. J., "Design and Analysis of a Multi-Backend

Database System for Performance Improvement, Functionality Expansion and

Capacity Growth (Part I)," Technical Report, OSU-CISRC-TR-81-7, The Ohio
State University, Columbus Ohio, July 1981.

17. Hsiao, D. K. and Menon, M. J., "Design and Analysis of a Multi-Backend

Database System for Performance Improvement, Functionality Expansion and
Capacity Growth (Part II)," Technical Report, OSU-CISRC-TR-81-8, The Ohio
State University, Columbus Ohio, August 1981.

93

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Chief of Naval Operations 1

Director, Informations Systems (OP-945)

Navy Department

Washington, D.C. 20350-2000

4. Department Chairman, Code 52 2

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

5. Curriculum Officer, Code 37 1

Computer Technology

Naval Postgraduate School

Monterey, California 93943-5000

6. Professor David K. Hsiao, Code 52Hq 2

Computer Science Department

Naval Postgraduate School

Monterery, California 93943-5000

7. Professor Steven A. Demurjian 2

Computer Science & Engineering Department

The University of Connecticut

260 Glenbrook Road
Storrs, Connecticut 06268

8. Deborah A. McGhee 2

232 Foxhunt Road
Columbia. S.C. 29223

94

.

r
J

Thesis
M18828
c.l

McGhee
Database creation

and/or reorganization

over multiple database

backends.

22 JAM 93 38360

M18828
c.l

McGhee
Database creation

and/or reorganization

over multiple database

backends.

