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ABSTRACT

A new scheme for coding the boundary of two-dimensional

shapes is proposed. Random points on the boundary are paired

for this coding. Using this scheme, an effective and effi-

cient correlation technique to match two-dimensional shapes

is developed.

This technique has a number of very desirable character-

istics. It is able to match shapes of arbitrary scale and

orientation. The given shape may have closed or open

boundary or even have portion of it obstructed from view.

Matching can be performed at varying degrees of details,

giving this technique an added robustness against geometric

distortions. It also has the capability to discriminate

between different shapes.

Computation time on the IBM 3033 computer is typically

10 CPU seconds to generate one correlation curve between two

shapes, each with a 500-point boundary curve.
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I. INTRODUCTION

This thesis investigates the following problem. Given

the outlines of two objects, determine whether there are any

regions where they have the same shape. It is implicit that

one of objects may be partially occluded so that only a

portion of it is available. Minimum restriction is placed on

the class of objects to be matched. The objects may have

closed or open boundaries (e.g., images of coastlines), with

arbitrary scale and orientation. Furthermore, the matching

must be done in the presence of noise (i.e., geometric

distortions). An example of the type of shapes that will

be studied in this report is given in Figure 1.1.

Figure 1.1 Two Shapes to be Matched
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The shape of an object contains a great deal of informa-

tion of the object. This is evident from our ability to

recognise or at least guess at objects from their shapes

alone. It is thus not surprising that the problem of shape

description and recognition is fundamental in computer

vision.

Shape is, unfortunately, a largely qualitative concept.

Although we possess intuitive ability for dealing with

shape, we lack a good quantitative description. Shape is

apparently implicit in our language, where the name of an

object itself contains its shape structure. To appreciate

this, consider Figure 1.2 (adapted from Freeman [Ref. 1]).

Suppose one is required to convey this figure to a distant

friend, say over the telephone. How would one proceed? One

could possibly spend a long time describing it in terms of

the 'two peaks', 'left gentle slope', 'right steep cliff,
etc and yet at the end of it, still doubtful whether the

message is brought across. Consider the alternative descrip-

tion of 'steep forehead, medium-sized nose, thin lips and a

prominent chin' ! (This is of course not just restricted to

our perception of shape. We have the same difficulty with

some of the other sensory perceptions too. Thus we speak of

'lemony taste' and 'silky smoothness'.) The main problem in

programming a machine to deal with shape lies largely in the

need to ' explicitize ' shape.

Researchers in this field have lamented that there is

little guidance from the traditional mathematics [Ref. 2: p.

229]. As pointed out by Blum [Ref. 3], geometry has its roots

in surveying and has developed closely along with the phys-

ical sciences. The general Cartesian view of geometry metri-

cizes a space and describes a curve in that metric in some

functional form. He observed that this constrained analysis
to shapes of simple functional form rather than geometric
structure.
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Figure 1.2 A Sample Shape to be Described

There has been extensive research on the subject of

shape representation and recognition [Ref. 4]. Many ad hoc

techniques have been developed, so that a large assortment

of tools is now available for solving certain practical

problems". And, as noted by Rosenfeld in his review paper

[Ref. 5], the field has begun to develop a scientific basis.

Recent developments in representation structures in mathe-

matics have also allowed researchers to move away from the

traditional framework of vector space (using classical math-

ematical tools of analysis and linear space) to that of a

structural framework (using modern tools such as graphs and

grammars )

.

Applications of computer vision are wide and varied.

These include character recognition, fingerprint identifica-

tion, microscopy, radiology, robot vision, remote sensing

and navigation, to name a few. Many of the successful

application of shape recognition have been primarily two-

dimensional. The most general problem of recognition of a

partially occluded three-dimensional object of unknown

scale, orientation and aspect remains a research topic.

This thesis is confined to two-dimensional shapes. It

assumes that the outline of the object has been extracted

and pre-processed to smoothen out some of the noise. Early

12



in this investigation, it was realised that our problem is

two- fold. There is the representation problem and the

matching problem (recognition and matching will be used

interchangeably throughout this report). The representation

problem is largely geometric in nature, whereas matching is

primarily an algorithmic problem. However, the means of

representation determines the complexity of the matching

algorithm, and more importantly, it places a limit on the

capability of the matching algorithm. Thus, a representa-

tion based on Fourier Descriptors, for example, would not be

able to handle the partial occlusion problem because of its

global nature.

The following chapter contains a survey of the various

techniques that have been developed for the analysis of

two-dimensional shapes. Chapter Three summarizes the

initial .findings of this investigation and introduces a new

representation and matching algorithm. "This representation

scheme is both scale and orientation invariant. The

matching algorithm is similar to the Hough Transform, but it

has several distinct features that make it scale and orien-

tation invariant too. Chapter Four presents the final

results of this investigation - a new correlation technique

that is simple and robust. This technique is applied to a

number of test shapes and the results verify that it is

capable of recognising parts of a shape. The shape may be of

unknown scale and orientation. The ability to discriminate

two different shapes is also demonstrated. The weakness of

this techinque is also discussed. Finally, the last chapter

summarizes the key results obtained and offers suggestions

for future work.
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II. SURVEY

A. INTRODUCTION

The recognition of shape is a relatively old problem

that has been recently taken up by engineers and computer

scientists. Psychologists have long puzzled over the

ability of humans and animals to discriminate shapes. A

collection of very interesting papers on the early studies

on form perception and discovery can be found in Uhr

[Ref. 6]. The early experiments conducted had suggested that

the information in an object outline is concentrated at

those points having high curvature. This idea is in fact

the basis for several of the current techniques for shape

recognition [Ref. 7: p. 165].

This" chapter contains a survey of the techniques devel-

oped for two-dimensional shape recognition. It is not

intended to be a complete survey, but rather to be indica-

tive of the variety of techniques that have been examined

and also to demonstrate the difficulties facing researchers

in this area.

For convenience, these techniques are grouped into three

categories, according to the matching scheme used. These

are

a. Template matching

b. Feature matching

c. Transform parameter matching

B. TEMPLATE MATCHING

Template matching is the oldest technique developed.

This is basically a two-dimensional cross-correlation

between the reference shape (the 'template') and the test

shape. One may visualize template matching by imagining the

template being shifted across the test shape to different

14



offsets and determining the amount of overlap. In its basic

form, template matching is of limited use.

Many variants to this basic method have been proposed.

Most of these involve some sort of hierarchical template

matching process. In this, sub-templates for parts of the

objects are first matched. One then looks for combination

of partial matches in approximately the correct relative

positions. The computation cost is obviously high. Also,

template matching breaks down when the two shapes to be

matched are of different scales.

The two-dimensional correlation can be converted to a

one-dimensional correlation by coding the boundary in some

appropriate functional form. Possible coding schemes

include radius-angle representation, orientation-arc length

representation, curvature-arc length representation.

The radius-angle (or polar) representation requires a

reference origin. This is usually taken to be the object's

centroid. This representation is obviously scale-dependent.

The need for a reference origin also makes it unsuitable for

partially occluded objects and those with open boundaries.

Also the need for the representation to be single-valued

further restricts the type of shapes that can be coded in

this manner.

The orientation-arc length representation codes the

angle made between a fixed axis and a tangent to the

boundary as a function of the arc length. This representa-

tion is scale invariant, but not orientation invariant.

Straight horizontal lines in this representation correspond

to zero curvature (ie. straight lines in the boundary), and

straight non-horizontal lines correspond to segments of

circle with the radii of curvature given by the slopes of

the lines. (This allows the boundary to be easily segmented

into straight lines and circular arcs and is used sometimes

in the initial processing for feature matching).
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The curvature-arc length representation codes the curva-

ture of the boundary as a function of arc length. This

representation is orientation invariant. Unfortunately it

is not scale independent. (A circle of radius r, for

example, has a curvature of 1/r). Also, curvature is very

sensitive to noise. Curvature is, however, a popular

descriptor and this representation is often used to extract

the extremas (in curvature) for feature matching [Ref. 8].

A discrete version of the orientation-arc length repre-

sentation has also been used. Commonly called the chain

codes, this codes the boundary into short line segments that

lie on a fixed grids with a fixed set of orientation.

Although efficient in representation and cross-matching,

chain codes are rather sensitive to noise and have other

shortcomings that made this representation unsuitable for

general shape matching. [Ref. 9]

None of the representation discussed -above is simultane-

ously scale and orientation invariant. The problems in

obtaining a 'truly intrinsic' representation of the boundary

is further discussed in the next chapter.

C. FEATURE MATCHING

Another approach to shape matching is to construct a

structural model of the shape. This model describes the

spatial decomposition of a shape in terms of features or

shape primitives. There are no established guidelines for

choosing shape primitives; however it is desirable that

these primitives provide a compact description of the shape

and be easily extracted from the shape.

A reading throught the literature reveals a wide variety

of primitives that have been used. Most of these are based

(explicitly or implicitly) on curvature. These include

curvature maxima and minima, corners, protrusions, intru-

sion, linear segments, quadratic segments, circular arcs,

convex blobs, T-shaped parts, etc. (see for example

[Refs. 10,11])

16



These primitives are often further qualified by a set of

attributes, e.g., large, sharp convex corner facing North.

Once the primitives are obtained, relationships between them

are computed. Examples of these relationships are adja-

cency, collinearity , symmetry, etc.

The matching algorithm depends on the type of structural

model. There are essentially two kinds of structural

models, the relational model and grammatical model [Ref. 12:

pp. 426 to 434]. In relational model, the primitives appear

as nodes in a tree or graph structure. Nodes are connected

by their relationship. The matching algorithm typically

involves a search for correspondence nodes in the two rela-

tional structures to be matched.

Grammatical model makes use of formal language theory to

describe how the primitive pieces of the shape are joined

together. A grammar consists of three types of entities:

terminal or primitive symbols, non-terminal symbols and

production rules. A grammar can be used to construct

strings of primitive symbols (called a sentence) by succes-

sive application of the production rules. The set of all

sentences that can be generated using a given grammar is

call the language of the grammar. Object recognition is

then a process of determining whether a sentence (which

describe the object) belongs to a given language, by parsing

it with respect to the grammar of the language.

A major problem with the grammatical model is the

construction of a grammar that is comprehensive enough to

generate all the possible types of shapes of interest and

yet discriminatory enough to reject others. A number of

grammars have been developed over the years. A good

description of these can be found in [Ref. 13: pp. 365 to 382].

A common problem with these relational and grammatical

models is the effect of noise. Noise complicates the

process of computing the appropriate structures. This is

17



normally handled by preprocessing the shape boundary,

usually by some sort of piecewise linear fit (polygonal

approximation) [Ref. 14: p. 275]. Here one runs into the

problem of how to locate the breakpoints, ie. when should a

linear segment ends and a new segment begins [Ref. 2: p. 232].

A number of criteria have been proposed [Ref. 7: pp. 168 to

184]. Recently the use of piecewise polynomial (mainly

B-splines) has become popular. B-splines have a number of

computational and representation advantages. For example,

its 'local' characteristics and 'terse' representation allow

programs to manipulate them easily [Ref. 2: p. 239]. As with

piecewise linear approximation, B-splines approximation is

also sensitive to the placement of breakpoints (knots).

It is evident that within the structural framework, one

gains a considerably greater representation freedom, but

loses the convenience of vector space and the analytical

tools there. The shape primitives and "their relationships

tend to be more qualitative than quantitative in descrip-

tion. For example, a primitive like 'sharp corner' does not

carry numerical values of the degree of sharpness or the

extent of the corner. Without a quantitative description,

standard similarity measures such as least mean square

differences cannot be easily applied. This also implies

that the feature matching technique performs better in clas-

sifying shapes into their generic classes (those generated

by the particular grammar) than in distinguishing between

objects from the same class.

This approach is highly suited for scene understanding

application where a 'literal', ie. qualitative, description

of the scene can be built up and compared with another scene

[Ref. 5]. It is of limited use in applications such as

change detection, where detailed matching of specific bound-

aries is required. This technique will not be further

discussed in this report.
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D. TRANSFORM PARAMETER MATCHING

The above two classes of matching techniques operate on

the original two-dimensional spatial information. Another

approach is to transform the original data into a different

domain and to perform the matching in this new domain. This

method is no doubt motivated by the success of the frequency

approach in electrical engineering analysis. It is thus not

surprising that the Fourier series representation of the

parameterized boundary is one of the oldest and most popular

transform technique.

The boundary may be coded in any of the representation

schemes discussed in the earlier section. These representa-

tions are periodic, and can thus be expanded into a Fourier

series. A common feature of the Fourier Descriptors (as

these coefficients of the series are called) is that the

general shape is given rather well by a few of the low-order

terms (important for data compression applications).

Properly parametrized, the coefficients can be made indepen-

dent of scale and orientation [Ref. 2: p. 238].

However this description is global in nature, ie. each

coefficient depends on every points on the boundary. It is

therefore not suitable for matching partially occluded

objects. Also, the Fourier descriptors can distinguish

among symmetrical curves only on the basis of the phase of

the descriptors. This, unfortunately, cannot be reliably

computed in many cases. Thus, the descriptors of the

contours of '2' and '5' are virtually identical [Ref. 4].

In contrast to the Fourier descriptors which describe

the boundary, another transform technique, the method of

moments, describes the shape interior points. In this tech-

nique, coordinates of points belonging to the shape are used

to compute a set of moments. These moments can be normal-

ised to obtain measures that are invariant under scaling and

rotation [Ref. 13: p. 354]. It is difficult to relate higher

19



moments to the shape, and furthermore, this is also a global

transform; thus it is not suitable for partially hidden

objects too.

A new transform technique appeared in the literature

recently [Ref. 15]. It treats a shape outline as a set of

discrete data that is generated by an autoregressive model.

An autoregressive model is a parametric equation that

expresses each sample of an ordered set of data samples as a

linear combination of a specified number of previous samples

from the set plus an error term. This model is widely used

in speech modelling and spectral estimation. The shape is

then described by the model parameters.

However, unlike conventional digital signal processing

where the sample interval is determined physically (and

uniquely) by an external reference (namely time), the

samples obtained form a shape boundary is determined by the

scale factor of the image of the object. It can be made

scale independent if the samples are taken at fixed angular

interval from, say, the centroid of the shape. The centroid

is, however, a global feature, which then makes this scheme

unsuitable for partially occluded objects.

Another interesting transform technique makes use of

geometric transformation to map instances of a given shape

pattern into peaks of a transform space. This so-called

Hough Transform was originally developed to handle simple

shapes such as straight lines and circles, but it was

recently extended to arbitrary shapes [Ref. 16], We will

describe this technique in some details as it will be the

basis for a new matching algorithm to be developed in the

next chapter. The description below is adapted from Ballard

[Ref. 2: p. 128].

Consider an object with known scale and orientation.

Pick a reference point (x c ,y c ) in the silhouette (see Figure

2.1). At each boundary point (x^,y^), compute the gradient

20



direction (q>±) and the vector r. The magnitude of this

vector is the length of the line joining the reference point

to the boundary point and the direction is given by the

angle between this line and the x-axis (a) • Store r as a

function of <p^ . This representation is multivalued, and in

general an index cp^ may have many values of r. The set of

all such vectors indexed by tp^ forms what is called the

R-table. Table 1 shows the form of the R-table.

Figure 2.1 Hough Transform

The R-table is used to detect instances of a shape as

follows. First, an accumulator array of possible locations

of the reference point A(x c ,y c ) is initialised to zero. For

each boundary point of the test shape, compute its gradient

angle ((p-^). For each vector indexed by this angle in the

R-table, compute the possible centers of the reference

point. That is, for each table entry of cp^, compute

x c = x
t

+ r((p
i )*cos[a((p i )]

y c = y ±
+ rtcp^-sintaCcpi)]

21



Next, increment the accumulator array corresponding to this

location, ie
.

,

A(x
c ,y c ) = A(x

c ,y c ) + 1

The peaks in the accumulator array then correspond to

possible instances of the shape.

TABLE 1

R-TABLE

Angle Measured from Boundary Set of Vectors
to- Reference Point r = (r,a)

q>l
rn , r 12 , ... rln

q>2 r2V r22' ••• r
2p

<Pm rm1' rm2' •• rmq

This technique can be summarised as follows. For the

reference shape, code the boundary with respect to a fixed

reference point. For the test shape, use this coding to

reconstruct the possible locations of the reference point.

A cluster of possible locations would be obtained. If the

two shapes are identical, there would be a peak at the loca-

tion of the original reference point.

In this form, the Hough Transform has several limita-

tions. It requires the reference and test objects to be of

the same scale and orientation. Computational complexity

increases rapidly if it is necessary to deal with variations

in scale and orientation. Thus, to account for orientation,
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the above procedures must be repeated for every orientation

to be distinguished. If it is required to distinguish

orientation, say, 10 degrees apart, the procedures must be

repeated 36 times, resulting in 36 accumulator arrays. The

best match would then be identified by the accumulator with

the largest value in all of the 36 arrays. Similarly with

scale variations. A more serious objection is that the

transform suffers from false peaks in the accumulator array

due to random matches.

In the next chapter, it will be shown how with a

different boundary representation scheme, this method can be

modified to make it scale and orientation invariant.

Chapter Four presents an improved version that also tends to

decorrelate these random matches.

E. CONCLUSION

There exists a wide variety of techniques for shape

representation and matching. However, each technique has

its limitations and is restricted to its specific domain of

shapes. The question naturally arises. Is there a scheme

of representation and matching that is simultaneously scale

and orientation invariant and also capable of handling

partially occluded objects? We address this question in the

next chapter.
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III. PRELIMINARY FINDINGS

A. IDEAL SHAPE REPRESENTATION

The manner in which the shape boundary is represented

determines to a large extent the capability and complexity

of the matching algorithm. If the representation makes use

of global information, then partial matching would not be

possible. If the representation is not orientation invar-

iant, then the matching algorithm would have to be repeated

across the range of possible orientations.

We can formulate a number of desirable characteristics

that the ideal shape representation might possess (see also

[Ref. 17]). These are:

a. It should be local. By this we mean (i) the coding of
ea-ch point on the boundary is determined by a snort
section of the boundary, rather than by the entire
boundary, and (ii) the coding is not dependent on an
external reference, such as a centroid.

b. It should be independent of the orientation and scale
of the shape.

c. It should be bounded. In other words, a small change
to part of the boundary should create a small local
change in the representation.

d. It should allow for efficient and robust matching in
the presence of noise (geometric distortion).

e. It should uniquely specified a single boundary (up to
the equivalence classes induced by scaling and rota-
tion) .

f. It should contain information about the boundary at
varying levels of detail, so that the matching
process could be performed at different levels or
coarseness

.

g. It should be easily computable efficiently.

These characteristics are ideal, and it is by no means

obvious from the outset, that a representation with such

characteristics could be found. Later in this chapter we

shall describe one scheme of representation and matching

that comes close to satisfying these characteristics.
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B. DIFFICULTIES IN REPRESENTATION

For a representation to be scale and orientation invar-

iant, it is necessary that it be local. Unfortunately, this

is not a sufficient condition. It is necessary because if

an external reference is used this must be related to the

boundary, either in distance or direction. This immediately

ties the representation to a fixed scale or orientation.

That it is not sufficient can be seen from the fact that the

curvature-arc length representation is local in nature, and

yet is scale dependent. It is not obvious what the suffi-

cient condition(s) is(are). Rather than look for these, the

author concentrated on finding local representation that is

both scale and rotation invariant.

In a local representation, each point is influenced by a

small section of the boundary. The question immediately

arises. How to determine this section? It is obvious that

the 'extent' of this section must be determined on a 'local'

basis too. This 'extent' cannot be determined by factors

such as 'length' or 'number of points' without making it

scale dependent.

The difficulties with shape representation can be traced

to the basic fact that one cannot associate an absolute

external reference with shape, as one could associate, say

time, with radar signals. Shape is a spatial variation, and

the spatial coordinates are, unfortunately, relative in

nature. Radar signals, on other hand, is a temporal varia-

tion, and for all practical purposes, time is an absolute

coordinate; there is no ambiguity regarding the interval of

time and the 'direction' of time.

C. DIFFICULTIES IN MATCHING

The primary problem with matching is our lack of knowl-

edge on how to deal with geometric distortion (noise).

Almost all forms of shape representation (boundary and

structural codings) are sensitive to geometric distortions.
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As mentioned before, most researchers use some form of

hierarchial schemes in the matching process. We could, for

example, first find matches to small pieces (the smaller the

pieces, the less the effect of distortion), then look for

consistent combination of these matches. Alternatively, we

could first find matches at low resolution (rough details)

and then search for higher resolution matches in the

vicinity of the lower resolution matches. These hierar-

chial schemes increase the matching complexity (more so if

the representation is not scale and rotation invariant) and

the computation cost.

In contrast, conventional signal processing makes exten-

sive use of the statistical properties of the signal and

noise in order to extract the signal. In shape recognition,

we have very little understanding of the properties of

geometri.c distortion (noise) and how this could be filtered

out. There is little or no work done "in this area. (It

should be added that it is also not obvious how this

problem should be attacked) . Most researchers concentrated

on specific matching algorithm, using for the most parts,

ad-hoc methods.

A second, more mundane, problem is concerned with corre-

lation matching. Any representation that uses the arc

length as one of the coordinate has to content with the fact

that both scale changes and geometric distortions (noise)

affect the length of arc traversed during the coding. Thus

even though the representation may be scale invariant, (in

that the particular characteristics at each boundary point

that is been coded does not vary with scale changes), the

unknown factor in the arc length axis makes matching using

correlation difficult. If the shapes to be matched are

complete, then the scale factor could be possibly removed by

normalizing with respect to the boundary length.
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One simple algorithm to correlate scale and orientation

invariant representations at different scaling in the arc

length axis was devised. This algorithm basically builds up

a diagram of correspondence points of the two curves to be

matched. The algorithm is described below.

Algorithm 1: Correlation Matching

a. Set up an array, A(i,j) of dimension M by N where M,N

are the number of points of curve 1 (denoted by f(n))

and curve 2 (denoted by g(n)). Initialize the array

to zeros.

b. For each point of f(n), search through the points of

g(n) for those points that match (to within a specif-

ied tolerance). Change the corresponding array entry

to 1 , ie
.

,

A(i,j) = 1 if f(i) =g(j)

c. If the array values are plotted (point for ' 1', blank

for '0'), a scatter diagram would result. Linear seg-

ments in this diagram correspond to matched segments

of the two curves. The slopes and intercepts of these

linear segments give the relative scale and orientat-

ion of the matched segments of the two boundaries.

An illustration of this can be seen in Figures 3.1, 3.2,

3.3. Figure 3.1 shows the hypothetical boundary representa-

tion of two shapes to be matched. It is assumed that these

shapes have been coded in a representation scheme that is

scale and orientation invariant. The two shapes differ in

scale (as can be seen in their arc lengths) and orientation

(as evident in the cyclical shift). There is also some

distortion over a section of the boundary (points 1 to 60 in

g(n)). Figure 3.2 shows the 'scatter diagram' or correspon-

dence chart. This is a very busy chart. (It is interesting
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Figure 3.1 Hypothetical Boundary Representations
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Figure 3.3 Correspondence Chart - Processed Data
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to note that linear segments having negative slopes also

correspond to matched sections too; if both boundaries are

traversed in the same direction, these matches are not mean-

ingful, unless one of the object happens to be 'reflected' -

mirror image). This chart can be 'cleaned up' to filter out

all but those points lying along the longest linear segment

(with positive slope). This is shown in Figure 3.3. This

figure shows that the segment from point 1 to about 120 of

curve f(n) matches the segment corresponding to point 60 to

150 of curve g(n). It indicates that there is a poorer

match over the remaining segments. It also shows that the

scale difference is 120/90, or 1.333, and that the two

curves are displaced by about 60 points with respect to each

other.

The above algorithm basically performs an efficient

correlation over a wide range of scale. The success of the

algorithm depends largely on the sophistication of the

'straight line finder' routine.

In contrast to the correlation approach, the Hough

Transform matching technique is not affected by arc length

variation (in the sense that arc length does not enter into

its computation). This is because the Hough Transform does

not make use of the ordered sequence information of the

boundary points. This makes the Hough Transform sensitive

to false peaks (random matches of unrelated points), but is

also the reason why this technique is so much simpler.

Correlation technique matches points of an ordered sequence

of one curve against corresponding points of an ordered

sequence of another curve. It is this need to keep the

points ordered here that increases the computation burden in

this technique.

D. SCALE AND ORIENTATION INVARIANT REPRESENTATION

It was obvious from the beginning that 'angle informa-

tion' is scale and orientation invariant. The angle between
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two straight lines remains unchanged regardless of the scale

and rotation. It also became obvious, after searching for a

while, that the arc length to chord length ratio between two

points on the boundary (called the ACR henceforth for

convenience) is also scale and orientation invariant.

This suggests the following form of representation.

Code each boundary point in terms of the angle made by the

tangent to this point and a specific chord. This specific

chord is the chord connecting the boundary point to the

nearest boundary point (in a specific direction of trav-

ersal) with the property that the ACR between these points

is equaled to a pre-determined value. We shall call this the

P
- s representation. Figure 3.4 illustrates this. The

curve is not closed to emphasis the fact that this coding

scheme applies to both open and closed figures.

Implementation of the p - s representation (for ACR 1.05

and 1.3) on shapes R35-52, R34-31p and R34-102 are given in

Figures 3.5 and 3.6. Outlines of these shapes can be found

in Figures 4.21 and 4.5. (For details of how these shapes

are generated and the meaning behind their names, see the

appendix. In Figure 3.5, the two curves have been properly

scaled so that the difference in arc lengths between them

are removed. This allows for easy comparision. Figure 3.6

has not been so scaled; the change in the arc length due to

the noise is very evident here.

It can be seen that the representation is virtually

identical over identical portion of the original shapes.

The partial match between R35-52 and R34-31p is evident.

Figure 3.6 shows the effect of noise on this representation.

It can be seen that small perturbation in the boundary curve

can cause disproportionately large changes in the represen-

tation. This effect is localised to the neighbouring region

only. Although not shown, it is obvious that this represen-

tation is independent of orientation.
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Figure 3.4 Arc to Chord Length Ratio Illustration

The ACR specification is a free parameter that can be

adjusted. The larger the ACR, the larger will be the

average distance between those points satisfying this ratio,

ie the less 'local' the representation becomes. Also objects

with relatively smooth boundaries would conceivably require

a smaller ACR specification. The choice of an 'optimum' ACR

may be very shape-dependent.

We note that the ACR specification is basically used to

define the 'extent' of the small section of the boundary
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discussed previously. This specification is both 'local' as

well as scale and orientation invariant. This is by no means

the only specification available. We can develop a whole

family of them. Figure 3.7 illustrates two other possible

specifications. One uses the area to chord length squared

ratio and the other uses the ratio between the length formed

by the two tangents and the chord.

Figure 3.7 Two Other Possible Specifications Besides ACR

The sensitivity of this ACR specification is due to the

unfortunate fact that geometric distortion affects the arc
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length directly. Two points that originally satisfy the ACR

specification in the coding phase may fail to do so in the

matching phase if the segment of the boundary joining them

is distorted. A small perturbation in the boundary can lead

to a large change in the p coding.

E. SCALE AND ORIENTATION INVARIANT HOUGH TRANSFORM

Given the scale and orientation representation developed

in the last section, we could use the 'correspondence chart'

algorithm to find possible matches. However, the particular

nature of this representation allows us to use the simpler

technique of Hough Transform with the additional simplicity

that it is scale and rotation invariant. We shall call this

the p -
(p correlation technique. The coding and matching

algorithms (using the ACR specification) are given below.

Algorithm 2: p-(p Coding

a. Determine a reference line (usually taken to be the

x-axis for convenience).

b. For each boundary point (s^), locate the next bound-

ary point (s.i) (in a specific direction of traversal)

such that the ACR specification is met.

c. Determine the angle (0) between the chord joining s^

to s .: and the tangent to s^. The sign of this angle

is positive if the segment of the shape bounded by

this points is convex, and negative otherwise.

d. Determine the angle (<p) between the chord and the

reference line, measured clockwise from the reference

line (see Figure 3.8).

e. Determine other independent relation(s) between s^

and s .: . For instance, the angle (a) between the tan-

gent lines to these boundary points.

f. Code each boundary point in terms of the vector r,

where r = (<p,a). Set up a R-Table relating p to

(<p,a). The Table is indexed by p (Table 2).

37



Algorithm 3: p-<p Matching

a. Set up an accumulator A(i) of N elements, where N is

the number of the (discretized) possible orientations

of the reference line. (Thus N = 36, if each orient-

ation is 10 degrees wide). Initialize accumulator to

zeros

.

b. For each boundary point on the test shape, obtain
J3,

and (cp,a).

c. For each pair of (<p,a) indexed by p in the R Table,

check if the independent relation matches. If it does,

then determine the possible orientations (0) of the

reference line from (p and (p. Increment the correspond-

ing element of the accumulator. If not, proceed on to

the next boundary point. In other words,

if la~al < tolerance

then

else

= <p -
(p

A(0) = A(0) + 1

next boundary point

The peaks in the accumulator array then correspond to

possible matches of the two shapes. The locations of the

peak in the array indicates the most likely orientations of

the reference line, and thus correspond to the relative

orientations between the two shapes.

For ease of future reference, we shall call the specifi-

cation used to pair the two points (Sj,Sj) as the primary

specification, and the additional specifications used to

relate these points as the secondary specification(s) . Also

the pair of points (s^Sj) shall be called the coded pair.

We shall use p* to represent the coded information based on

the primary specification, a to represent the further

constraints based on the secondary specification(s ) and <p
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ACR = t/L

Reference Line

Figure 3.8 p-<p Coding

to represent the angle between the reference line and the

chord joining the points in the coded pair.

This technique differs from the basic Hough Transform in

two essential ways. Firstly, this uses a reference line

whose orientation is to be reconstructed, rather than a

reference center whose coordinates have to be determined.

Secondly, each boundary point is identified by p, which is

local (referenced to the local tangent) rather than the

gradient angle, which requires an external reference axis.

These two differences make this matching technique scale and

orientation invariant. Another distinction is the use of an

independent relation (a). By only using those points that

are simultaneously related in both the p and a parameters,

we reduce a fair portion of accidental matches. Of course

we could use more independent relations to further restrict

the possible match points. The limitation will be the
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TABLE 2

R-TABLE FOR P -
<t> CODING

Angle between Chord Set of Vectors
and Tangent to r = (<p,a)
Boundary Point

Pi r
l1'

r12' •• p1n

P 2 r
21 , r22 , ••• r2p

Pm rml' rm2' •• rmq

number of possible independent relations available (which

must be scale and orientation invariant and relatively

insensitive to noise). The tolerances set on these specifi-

cations will determine the sensitivity to geometric distor-

tion. The smaller the tolerance, the more sensitive it

becomes. The tolerance must obviously be tighter for the

primary specification than for the secondary specifications.

This scheme is applied to shapes R35-52, R34-31p and

R34-102. The results, using 2 different values of ACR are

shown in Figures 3.9, and 3.10. The accumulator values are

normalised by dividing the values by the number of points on

the test curve. (In all the examples in this report, the

test curve is that given by the dashed line). These values

can be easily interpreted as correlation coefficients. For

example, Figure 3.10 indicates that at zero relative orien-

tation of the 2 shapes, about 40% of the points in the test

shape can be correlated with points in the reference shape.
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By the nature of the coding this correlation is not

point to point correlation, but rather point-on-a-segment to

point-on-a-segment correlation; ie, the correlation is made

on the basis of the behavior of the boundary in the vicinity

of the point. Visually, we can see that the correlation

should be higher than this. The low correlation is a direct

consequence of the sensitivity of the ACR to geometric

distortion. Both figures, however, correctly indicate that

the best correlation between the shapes being tested occurs

at zero degree relative orientation.

To improve the correlation, we need to make the p-<p

coding less sensitive to noise. This implies that we need

alternative primary specification and, perhaps, secondary

specifications too. The other possible specifications

mentioned earlier were tried and found to be unsuitable too.

In the next chapter, we shall describe a new primary

specification that is less sensitive to the effects of

noise. Using this, the resulting correlation between R35-52

and R34-102 increases to 80% (see Figure 4.5). To do this we

need to forgo the demand for scale and orientation invari-

ance. However, the matching algorithm can be easily modi-

fied to enable the algorithm to match shapes of arbitrary

scale and orientation with a slight increase in computation.
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IV. A NEW CORRELATION TECHNIQUE

A. INTRODUCTION

The alogrithm developed in the previous chapter is

sensitive to noise. This is due to one main reason. We

have removed the scale unknown by using the ACR measure; arc

length is, unfortunately, very sensitive to geometric

distortion. In other words, we have replaced an unknown

factor with an uncertain measure. Thus, unless, we can find

an alternative measure that is scale independent and reason-

ably immuned to noise, this approach may be of limited prac-

tical use. Such a measure was not found.

We therefore remove the scale invariant constraint.

What we eventually found is a new and interesting approach

to boundary coding. In its essence, each boundary point is

coded with respect to another point picked at random from

the boundary. Note that this coding is not scaled and orien-

tation invariant. In fact identical shapes would yield

different codes if different sets of random numbers are

used!

B. RANDOM CODING

We used as primary specification, the random separation

between the coded pairs. The property coded at each point

is again p, the angle between the tangent to this point and

the chord joining the coded pair. To retain the 'local'

features (essential for partial match applications), the

range of the allowable separation (called the coded range

henceforth) is restricted. For illustrative purposes, 3

sets of coding ranges are used in the examples below, namely

10 to 60 points, 80 to 130 points and 150 to 200 points

(i.e., the second element in the coded pair is picked from

any point that lies between 10 to 60 points away from the

first element, etc).
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Two secondary specifications are used: the ACR and the

angle made by the tangents to each point in the coded pair

(ie. a in the previous algorithm). In the matching process,

since the points are paired randomly, it becomes necessary

to check each point against all other points in the test

shape. In practice, since the coding range is itself

restricted, this process can be also restricted to a smaller

section of the boundary. In the examples that follows, this

search range is limited to half the entire boundary length.

Further savings in computation is achieved by checking only

alternate points within this range.

The basic algorithm for this technique is similar to the

previous one. For clarity, we shall restate it. Note that p

and <p below refer to the same angles as in the previous

algorithms, while a is used differently here.

Algorithm 4: Improved p-<p Correlation

a. For each boundary point in the reference shape,

select another boundary point at random from those

within the allowable range. Determine the (p,(p,a)

relation between the coded pairs thus found. (Note:

a contains two components, the ACR and the tangent

angle measures). See Figure 4.1.

b. Construct the R-Table in the same manner as before.

c. Initialize the accumulator array as before.

d. To match a test shape, determine for each boundary

point, the (p,<p,a) relation with all other boundary

points within the search range. For each (p,(p,a) and

corresponding (p,q>,a) from the R-Table, reconstructs

the reference line as before.

e. Peaks in the accumulator array correspond to possible

matches of the two shapes with the location of the

peaks corresponding to the relative orientation of

the two shapes.
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Figure 4.1 j3~(p Coding Using Random Separation

We shall discuss the key features of this technique and

provide heuristic explanations, where possible, on the

'hows' and 'whys' of it. These features are verified in the

numerous examples that follows.

C. FEATURES

1. Scale and Orientation Invariance

The coding is not scale and orientation invariant.

The scale unknown is resolved in the matching algorithm by

pairing each point with all other points within the search

range. This, in essence, performs a matching over a range of

scale. The orientation unknown is not a problem, since the

output of the matching process will indicate the relative

orientation of the two shapes. The correlation is
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performed, in essence, over the range of possible relative

orientations. In this respect, this correlation technique is

not affected by unknown scale and orientation and can be

said to be invariant to these.

2. Robustness

The random separation helps to 'break' down the

effects of noise. Consider the alternative of using a fixed

separation, say n. Then if the coded pair ( s i>
s i+n ) is

affected by noise, the next pair ( s i+i» s i+i+ n ) is likely to

be similarly affected. However, if the separation is

random, and if (s^,Sj) is affected by noise, it is not

necessary that ( s i+i> sk) (where j and k are randomly picked)

would also be affected. More importantly, even if it is,

the effects in the two coded pairs are unlikely to be the

same, ie. the false matches they cause are not likely to be

correlated.

For the case of fixed separation, because of the

strong correlation (close proximity) between the coded

pairs, noise in their coding are likely to be correlated,

giving rise to false 'peaks' during the process. This

implies that in order to achieve the best decorrelation of

false matches, the boundary should be coded such that the

parameter, p, is uniformly distributed across its range,

-180 to +180 degrees. This may require extending the coding

range to a substantial fraction of the entire boundary

length, which may not be always desirable since the coding

then becomes less 'local' in nature.

Another factor that helps to reduce the effects of

noise is the nature of the matching algorithm. Figure 4.2

illustrates this. The solid line there refers to portion of

the reference shape and the dashed line to the test shape.

Point s^ is paired with s^ during the original coding. In

the matching algorithm, since s- is paired with all other

points, it would be eventually paired with one that is close
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geometrically to the original Sj (ie. Sj in Figure 4.2) and

that also satisfy the secondary specifications. Thus, we

would expect to recover the orientation of the reference

line

.

Figure 4.2 Matching in the Presence of Noise

'Local" Characteristics

The choice of the coding range determines the amount

of 'local' information captured in the coding. The lower

the upper limit of the coding range, the more 'local' the

representation becomes. If the coding range is the entire

boundary, then the coding takes on a global nature. This

will be clearly illustrated in the examples on Partial

Matching below.

4 . Discrimination

The distance of the coding range from the point

being coded also determines the level of discrimination in

the matching process. The closer this distance is, the

smaller the segment the matching algorithm would be trying
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to find matches. What is important here is the fact that

small segments tend to look more similar than larger

segments. Thus, a small segment from any curve would tend

to look like a linear segment. Discrimination of two shapes

cannot be reliably done at too small a scale. This also

implies that the lower limit of the coding range should be

as large as the longest linear segment of the shape, if the

matching process is not to be overwhelmed by matches of

short linear segments.

The algorithm uses the secondary specifications to

rejects obvious false matches The types of discrimination

possible with our choice of specifications is illustrated in

Figure 4.3. If scale information is also available, then it

can be effectively incorporated as an additional specifica-

tion. An important observation is that the tolerances set on

these specifications determine the 'noise rejection thresh-

old' . The larger the tolerance, the better the matching

(detection probability) under noise; the higher too would be

the amount of false matches (false alarms). The tolerances

used in most of the examples below are 0.1 for the ACR

measure and 5 degrees for the tangent angle measure.

The reader may wonder why do we use the ACR specifi-

cation when it has been stated that this specification is

too sensitive to geometric distortions. There is a distinc-

tion between the role ACR play in the previous algorithm

compared to the present. Previously it was used as a

primary specification, whereas here it is used only as a

confirmatory specification; the tolerance on it is therefore

looser here, making it less sensitive to noise.

5. "End Losses"

The 'look forward' characteristics in the coding

process means that the output matched segments tend to be

shorter than the actual match in the input segments. This

is because the section 'forward' of the points being matched
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Figure 4.3 Discrimination Using Secondary Specifications

must itself matches before the 'current' segment can match.

This will be clearly illustrated in the examples on Partial

Matching too. The loss of the 'forward ends' can be easily

removed if the coding and matching are performed in both

directions

.
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6 . Lack of Internal Consistency Checks

When matched segments of the shapes are found, the

present algorithm simply counts the number of points in

these segments and expresses this as a fraction of the

number of points in the test boundary. It does not check to

see if the relative positions of these segments in the test

and reference shapes are consistent. This additional check

should eliminate false matches too. This is the main weak-

ness of this technique. Such a check could be implemented

(similar to those used in hierarchial search). It has not

been done to keep this basic algorithm simple.

D. RESULTS

The algorithm is applied to numerous test shapes below.

These examples verify the various comments made above. It

is hoped that the large number of test cases would give the

reader confidence in the use of this new technique. In the

examples, the number of points in the shapes are varied to

ensure that any scale information that may be implicitly

present are removed. As a reminder, the second number in the

shape title indicates the number of points in that shape.

Thus R35-52 has 500 points. Appendix A contains more details

of these shapes.

In the discussion and figures that follow, N refers to

the number of sample points in the test shape, and RTOL and

GTOL refer to the tolerances set in the ACR and tangent

angle specifications respectively. One final note before we

see the results. The direction of the orientation angle is

as follows. A positive relative orientation of, say 90

degrees means that the test shape (dash line) is rotated 90

degrees counterclockwise from the reference shape.

1 . Geometric Distortion

To study the sensitivity of this technique to noise,

we introduce distortion at varying levels into the test

shapes. Figures 4.4 to 4.7 show the results for one set of
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shapes. When the two shapes are identical, correlation is

100% as expected (Figure 4.4). As the amount of distortion

increases, the level of correlation decreases, until it

reaches 60% for Figure 4.7. However the correlation level

away from the peak value remains relatively constant, illus-

trating the fact that matches at these orientations are

random in nature. Note also that the lower coding range (10

to 60 points) produces more apparent matches, since smaller

segments tends to match better than larger segments. The

correlation peak occurs at the correct relative orientation,

ie. zero degree, since the two shapes are identically

oriented. The result for Figure 4.5 should be compared

against Figure 3.10 which uses ACR as the primary specifica-

tion. This produces only 40% correlation between the two

shapes. Using random coding, the correlation has increased

to 80%.

The next figure, Figure 4.8, is almost identical to

Figure 4.4 despite the fact that the search range has been

increased from N/2 to N-l. The fact that searching through

a larger search range does not produce significantly more

correlation attests to the 'noise' rejection capability of

the algorithm.

The algorithm is next applied to a set of more 'dif-

ficult' test shapes. Figures 4.9 to 4.12 show the correla-

tion when the test shape is scaled down, rotated and

distorted. In spite of the scale and orientation differ-

ences, the algorithm correctly locates the match at 90

degrees relative orientation. More significantly, the

amount of correlation is not unreasonable compared to what

one might estimate visually. For Figure 4.12, the distortion

has more or less made the test shape symmetrical. It is thus

not surprising for the algorithm to locate two peaks at plus

and minus 90 degrees.
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The amount of correlation is affected by the noise

threshold set by the secondary specifications. If the toler-

ances on these specifications (ie. GTOL and RTOL) are

increased, the peak correlation can be seen to increase from

about 30% to 50% (Figure 4.13). Inevitably, the amount of

false matches increases too.

Figures 4.14 to 4.20 provide further examples for

different sets of shapes. The reference shape becomes

progressively 'smoother'. The general level of correlation

is higher for these figures than for the previous set. This

is due to the general symmetry and gross similarity between

these shapes. Figure 4.20 provides the extreme case where

the test shape is almost circular. Because of the symmetry,

the correlation at all orientation is nearly constant.

Also, since there is marked similarity between the test and

reference shapes, this level of correlation is also very

high. The reader may wonder about the ability of the algo-

rithm to distinguish between very smooth shapes such as

ellipses. This is further discussed under the section on

Discrimination below.

2 . Partial Matching

Figure 4.21 shows the ability of the algorithm to

detect partial matches. Except for the lowest coding range,

the results show a distinct correlation peak at zero rela-

tive orientation. The multiple peaks in the lowest coding

range is due to the general similarity of shorter segments

compared to longer segments. Figure 4.22 is a plot of the

correlated points (for the 150 to 200 coding range). It

shows clearly the segment of partial match. Also, it shows

that the correlated points at the other orientations are

scattered across the boundary. In obtaining the value of

correlation, the algorithm simply sums up the number of

correlated points at each orientation.
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Figure 4.23 indicates the location of the matched

segments for two coding ranges. The ability of the algo-

rithm to correctly locate the matched segments is clearly

illustrated. The two diagrams also show clearly the effects

of 'end losses'. At the 150 to 200 coding range, the 'look

forward' section is much longer than for the 10 to 60 range.

Consequently, the higher the loss of matched points at the

forward end. As mentioned before, this loss could be minim-

ised by modifying the coding and matching algorithm to look

in both directions.

Figures 4.24 to 4.26 show the effect of noise on

partial matching. As before, the peak correlation decreases

with noise while the off-peak level remains relatively

constant. Note that the coding range 150 to 200 produces

almost zero- correlation. This is not surprising since the

reference shape boundary has only 200 data points. At this

coding range, almost the entire boundary is being coded at

each point! This illustrates clearly the relationship

between the coding range and the 'local' characteristics in

the coding. For partial match applications, it is essential

that the coding range be restricted to a short section of

the boundary. Figure 4.27 shows the location of the partial

match for the relative orientation -75 degrees.

Figures 4.28 shows the matching of a small section

of a 'wing' to the reference shape R32-31r. A good match

is found at about -75 degrees. Figure 4.29 shows the reverse

situation, where the reference shape is matched against the

given wing. Possible matches are located at about 95 degrees

and -105 degrees. The matched segment is indicated in

Figure 4.30 (for orientation 95 degrees). These segments

agree with our visual observation.

Figures 4.31 to 4.32 provide more examples of

partial matches. Note that in all these, the location of the
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peak correlation is correctly obtained. However, because of

the general symmetry in the shapes, the general level of the

correlation (away from the peak) is also significant. If

the 'scatter' of correlated points is taken into account,

these false matches could possibly be reduced. The simplest

way to do this would be to give different weightings to the

correlated points depending on whether these are isolated

points or are part of a continuous segment.

3 . Discrimination Capability

In this final section, we examine the discrimination

capability of the algorithm. Figures 4.33 to 4.35 show the

low correlation found when matching R35-52 against the other

shapes. The next set of examples (Figures 4.36 to 4.39)

show the discrimination between 'smoother' class of shapes.

There is no prominent peaks in the correlation. However the

general level of correlation is significantly higher because

of the nature of the shape (smooth with plenty of linear

segments). Consider Figure 4.39 for example. The large

number of linear segments in both shapes gives rise to the

high value of correlation between them.

Figure 4.40 shows the location where partial match

is found (at -175 degrees). This figure illustrates the

main weakness of this algorithm; it does not check whether

the relative positions of the matched segments in both the

test and reference shapes are consistently related. In this

particular example, different segments in the test shape

have obviously been matched to the same segment in the

reference shape. To overcome this, one possible solution

would be to use some sort of hierarchical matching scheme

whereby the matched segments are first arranged according to

their lengths and then checked for consistencies; beginning

with the longest matched segment, and so on.

The question of the ability to distinguish between

highly symmetrical shapes such as ellipses has been raised

earlier. Figures 4.41 and 4.42 show how the algorithm
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matches ellipses of different major to minor axis ratio (b/a

ratio). The b/a ratio for these ellipses are 1.5 for E3-152,

2.0 for E3-22 and 0.3 for E2-031. The results shows that

ellipse of b/a ratio 1.5 is better correlated with that of

ratio 2.0 than with that of ratio 0.3 (or equivalent ly 3.33

a/b ratio). This agrees with visual observation.

E. CONCLUSIONS

We have demonstrated the capability of this new tech-

nique and the effects of varying the various parameters on

its performance. The main weakness of this technique has

also been highlighted. Although the examples used have been

shapes with closed boundaries, there is nothing in the

algorithm that is specific to this type of shapes. The

algorithm is therefore equally applicable to shapes with

open boundaries

.

The -algorithm is implemented on the IBM 3033 computer.

Computation time depends on the shapes being matched. Shapes

without distinct features (or, equivalently , with lots of

similar segments), such as R25-52, require the most computa-

tion. On the average, the computation of one correlation

curve between two 500-points shapes takes less than 10 CPU

seconds. This is with a search range of N/2. If this is

reduced to N/3, this figure drops to about 6 seconds. In

our examples we have used a search range of N/2. This is

probably larger than necessary since this implies that the

coding range is as large as this. One is not likely to use

this large a coding range since the 'local' features in the

shape being coded would then not be captured. (The choice

of N/2 for the examples is primarily to test the ability of

the algorithm to reject spurious matches from the additional

checks )

.
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V. SUMMARY

We begun with a search for a representation scheme that

would be scale and orientation invariant. Such a scheme was

found. However, to achieve the scale invariance, the scheme

required the local behaviour of the boundary to be rela-

tively noise free.

A more general technique was subsequently developed.

The essence of this technique was the use of random boundary

points in the coding, which helps to decorrelate false

matches. The matching algorithm used the basic concept in

Hough Transform matching but modified to remove its depen-

dence on scale and orientation information.

This new correlation technique was applied to a large

number o-f shapes. Results verified its ability to recognise

shapes (complete or partial) of arbitrary scale and orienta-

tion and its robustness against noise. Its discrimination

capability among different shapes was also demonstrated.

The main weakness in the present algorithm lay in its

simplistic way of summing up the correlated points without

regards as to how these are distributed or interrelated.

The biggest improvement to this algorithm would come

from incorporating an efficient check for consistency in the

relative positions of the matched segments. The coding and

matching process could also be modified to look in both

'directions', so as to reduce the 'end losses'. Further

study could also be made on the choice of the various param-

eters used, namely the coding range, search range and

tolerances on the secondary specifications. Since the

reference shape would be a known entity, it would be

possible, and indeed advantageous, to use different sets of

parameters values for different classes of shapes, each

optimised to the particular shape. In this report, we have
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discussed one set of primary and secondary specifications.

These may not be the most effective set available. Other

possible specifications could also be examined.

Finally we note that the main contribution of this study

is the suggestion of an alternative means to boundary

coding, using which, an effective and efficient correlation

technique could be used to match two-dimensional shapes.
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APPENDIX

GENERATION OF TEST SHAPES

The shapes used for verifying the algorithm (except for

ellipses) are generated using a Fourier series type method.

Specifically the x,y coordinates are determined by:

x(0) = A(8)*cos(0 + q>)
l

y(0) = A(9)*sin(6+q>)

with

A(0) = exp[r(9)]

r(0) = £ *±*u±Tkt£±*Q
+

Yi]

(p = angle through which

shape is rotated

The a»y and f can be varied to produce different shape

patterns. This method ensures that the figure generated is

closed. The data points would, however, not be equally

spaced along the arc length. (In practice, the boundary

data would be uniformly sampled). The data points are next

approximated using a B-splines routine with variable knots

[Ref. 18], and resampled at approximately equal arc length

spacing.

There are two reasons for using B-splines. Firstly, the

approximation routine available allows one to vary the

closeness of fit, which enables us to introduce distortion

gradually into the test shapes. Also, there has been an

earlier proposal to study how the knots positions and the

B-splines coefficients could be used for shape recognition

purposes. (These was not carried out because of difficulties

in the knots placement criteria; no satisfactory theoretical

study on this has been done).
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Each shape is coded with a mnemonic. Except for the

ellipses, each mnemonic is prefixed with a R and has the

general expression:

Rnn-nnna

where 'n' refers to a numeric and 'a' refers to an alphabet.

The first numeric identifies the set of shapes (1,2,3 or 4).

The second numeric indicates the number of samples (in terms

of hundreds). The last numeric refers to the relative scale

(1 or 2). The remaining, which may be one or two digits

numeric, indicate the closeness of fit used in the spline

routine. The last alphabet is optional, and indicates addi-

tional information about the shapes (p for partial, r for

rotated and n for noise added). For examples,

R35-252

represents: 3 shape set #3

5 500 sample points

25 closeness of fit factor is 25

2 relative scale of 2

and

R13-011n

represents

:

1 shape set #1

3 300 sample points

01 closeness of fit factor is 0.1

1 relative scale of 1

n noise added to portion

of the boundary

The ellipses are generated from their parametric equa-

tions. These are prefixed by the letter E. The first

numeric refers to the number of sample points. The last

numeric indicates the relative scale and the remaining

numeric refers to the major to minor axis ratio.
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