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ABSTRACT 

Maximum range and minimum time maneuvers for a rocket are vital to the war 

fighter since weapons that can intercept targets faster or travel farther provide advantages 

that increase the chances of mission success. Yet, guidance laws for tactical rockets are 

based on principles that have been in use since World War II. This thesis applies 

Pseudospectral optimal control theory to assess the achievable performance of a guided 

rocket in the terminal stage of flight. The performance is compared to a baseline obtained 

using conventional control (proportional navigation). For a fictitious missile, an optimal 

control solution is shown to increase the range of the missile by nearly 300% in the mid-

to-terminal phase of flight. A minimum time solution showed a reduction in flight time 

by about 40% compared to the conventional proportional navigation-based approach.  
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I. INTRODUCTION 

A. BACKGROUND 

One area that needs to be addressed prior to any discussion is: what is the 

difference between a missile and a rocket? While the exact definition varies from source 

to source, the general consensus throughout the aerospace community is that “a missile 

has a guidance system or brain to get it to its destination and a rocket just goes where it  

is initially pointed” [1]. The U.S. Bureau of Naval Personnel defines a guided missile as 

“an unmanned vehicle that travels above the earth’s surface; it carries an explosive war 

head or other useful payload; and it contains within itself some means for controlling  

its own trajectory or flight path” [2]. The terms guided rocket and missile are used 

interchangeably throughout this thesis.  

Prior to World War I, missiles and bombs were essentially shot or dropped on a 

certain trajectory, and there was no capability to control the device after its release. The 

concept for guided missiles was first conceived during World War I. The tactical use of 

aircraft in World War I raised the question as to whether a plane could be remotely 

controlled and used to bomb a target. The first guided missiles that emerged were small 

versions of the aircraft that were currently being flown by utilizing radio control [3]. It 

was not until World War II though, that tactical guided missiles began to emerge on the 

scene. 

Today, guided missiles are an integrated part of the United States Order of Battle. 

The guidance system for a missile allows it to find a path to intercept the target “in spite 

of initial launching errors, in spite of wind or other forces acting on the missile, and in 

spite of any evasive actions the target may take” [2]. There are currently several types of  

guidance modes that are used in guided missiles, including command guidance, homing 

guidance, and navigational guidance. A missile may have more than one type of guidance 

system, with different systems engaging at different stages of flight.  
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1. Early Guided Rockets 

The first guided missiles appeared in Germany during World War II. The most 

widely known missiles that were produced during this time were the V-1 and the V-2. 

The V-1 was a “pilotless, pulsejet, midwing, monoplane, lacking ailerons but using 

conventional airframe and tail construction” [2], shown in Figure 1. The guidance and 

control for the missile was done using an internally stabilized gyro and the existing 

compass guidance. These “missile fixed rate gyros were used to provide attitude rate 

signals for stabilization” [4]. The missile was not very accurate but its massive warhead 

caused significant damage if it hit the intended target. However, the V-1 was slow and 

approximately 95% of the missiles launched against England were brought down by anti-

aircraft fire [2]. 

  

 V-1 Missile Figure 1. 

Source [5]: Warbirds Resource Group, “Fi-103/V-1 ‘Buzz Bomb’,” 2015 (November 12).  

The V-2, shown in Figure 2, was a much larger than the V-1 and had a liquid-fuel 

rocket propulsion system. The missile was launched using a vertical launch system. Prior 

to launch the system was loaded with a command angle that would cause the missile to 

rotate to a predetermined angle, between 41- to 47-degrees, shortly after launch. The 

launch speed required to reach the target would also be determined prior to launch and 
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when the missile reached the desired velocity, a radio command would be sent to the 

rocket and the propulsion system would be shut down. This was accomplished by 

utilizing the Doppler Effect to determine the missile velocity. The missile utilized a Wien 

bridge and the beat frequency of the return signal would be sent to the bridge in addition 

to the ground station’s frequency second harmonic. Prior to launch a beat frequency 

would have been calculated corresponding to the desired cutoff velocity. When the 

received frequency matched the preset frequency, a command was transmitted to the 

missile to initiate the cutoff of the propulsion system [4]. Once the propulsion system was 

shut down, the range of the rocket was only about 320 km, it would reach speeds of 

approximately 1475 m/s. While the missile was not very accurate, its high speed made 

countermeasures impossible and “no V-2 missile was ever intercepted or shot down by 

anti-aircraft fire” [2].  

 

 German V-2 Rocket Figure 2. 

Source [6]: Arkell, H., 2014, “Death from Above without Warning: 70 Years After the 
First One Fell, Interactive Map Reveals just Where Hitler’s V2 Rockets Killed 
Thousands of British Civilians in Final Months of WW2,” 2015 (November 12). Daily 
Mail.  

On the other side of the Atlantic, the United States initiated the development of 

the Lark missile, shown in Figure 3, under a guided missile development program in 
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response to the effective Kamikaze attack against U.S. ships. In December of 1950, the 

first successful intercept of a guided missile against an unmanned aircraft was made [7]. 

The missile used an active continuous wave radar onboard the missile. Reflections from 

the target would be displaced in frequency by the Doppler Effect. However, the missile 

would also be receiving inputs from the ground, and once the stationary inputs were 

rejected, the missile would be left with the corresponding frequency to the moving  

target [8]. However, this type of guidance presented several fundamental problems. The 

first problem was that the Doppler shift from the target was not very large. The second 

problem was that there was a large amount of clutter in the return signal. The need for 

low-noise microwave sources became a critical part of the continuous wave radar 

development as a result of these issues [8]. At the end of World War II, the inertial 

sensors were limited in their accuracy due to the fiction in the ball and pivot bearings 

causing errors. Later, by utilizing cylindrical gas bearings that were externally 

pressurized, the accuracy of the internal sensors increased significantly [4]. These 

improvements paved the way for modern guidance systems.  

 

 Lark Guided Missile Figure 3. 

Source [9]: Parsch, A., “Lark,” Encyclopedia Astronautica, 2015(November 14). 
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2. Modern Missile Guidance, Navigation, and Control Systems 

A basic block diagram for a modern guidance, navigation, and control (GNC) 

system for a missile is shown in Figure 4. The main components include a weapon 

control system, sensors, flight controller, and airframe subsystems that control the 

missile. A more in-depth description of the GNC system is found in [10]. The weapon 

control system is ground or air based and allows the user to send commands to the missile 

and also receives flight data that is sent from the missile flight computer.  

 

 Basic GNC System for a Missile Figure 4. 

Source [10]: Hawley, P. A., and Blauwkamp, R. A., 2010, “Six-Degree-of-Freedom 
Digital Simulations for Missile Guidance, Navigation, and Control,” John Hopkins APL 
Technical Digest, Vol 29(No. 1) pp. 71–84.  

The missile also contains two types of sensors, inertial sensors for determining 

where the missile is located in space and terminal sensors for determining where the 

target is in relation to the missile. The most commonly used inertial sensors include 

inertial measurement units, inertial reference units, and GPS. One or more of these 

sensors may be used to measure and/or help estimate the states of the missile. The 

terminal sensors for a missile will be based on the type of guidance system the missile 
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utilizes. Some of the more common sensors include radar, radio frequency seekers, and 

infrared seekers. 

The flight controller is the brains of the missile and includes the navigation 

processor, guidance processor, and autopilot. The navigation processor uses external 

commands from the weapons control system and inertial sensor data to estimate the states 

and rates for the missile. This information is passed on to the guidance processor. The 

guidance processor receives inputs from the terminal sensor, the navigation processor and 

the weapons control system. It then computes and outputs a guidance command that is 

sent to the autopilot for implementation and sends sensor commands to the terminal 

sensors. The guidance law for a missile is implemented in the guidance processor, while 

the autopilot is used to convert the guidance signal into flight commands that will be sent 

to the airframe [10].  

The flight commands from the autopilot are sent to either the propulsion system 

or the flight control actuators for the missile. The propulsion system will make any 

needed adjustments and the system may also output the mass of the propulsion that has 

been burned to determine the airframe mass changes. The flight control actuators adjust 

the flight control surfaces to produce an aerodynamic response. The propulsion forces 

and moments, airframe mass changes, and aerodynamic forces and moments are used to 

estimate the state and state rates for the missile. These states and state rates are used 

along with inertial sensors and environmental data to determine where the missile is 

located in space.  

The U.S. Armed Forces currently has dozens of different types of guided  

rockets in their Order of Battle today that can be launched from land, sea, and the air. 

They range from ballistic guided missiles (e.g., Trident II D5), shown in Figure 5,  

to laser-guided rockets (e.g., APKWSTM), shown in Figure 6, to active radar homing 

(e.g. AIM-120 AMRAAM), anti-radiation homing (e.g., AGM-88 HARM), and GPS 

guided (e.g., UGM-133 Trident II). While tactical missiles that are used today are able to 

hit targets much more accurately, this is mainly due to improvements of the sensors in the 

missiles rather than the evolution of the overarching principles governing the guidance 
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control. In fact, the same guidance principals that were used for the Lark in 1950, are still 

being used today [7]. 

 

 Trident II D5 Fleet Ballistic Missile Figure 5. 

Source [11]: Lockheed Martin, 2014, “Trident II D5 Missile Reaches 150 Successful Test 
Flights,” 2015(Nov 13). 

 

 Laser-Guided APKWS Rocket Figure 6. 

Source [12]: Sax, L. R., 2015, “U.S. Army Acquires APKWS™ Laser-Guided Rockets 
for Immediate Deployment,” 2015(Nov 13). 

For example, consider the AGM-114A is the original Hellfire missile that was 

used by the Army.  It was fired from the air and one of the delivery modes for the missile 
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was Lock-on After Launch (LOAL). The LOAL profile allowed the aircrew to fire a 

missile in the general direction of a target without having a line-of-sight lock on the 

target. Within this profile, there are two delivery modes where the aircraft is able to be 

masked behind terrain when firing to reduce the risk to the aircraft: low and high. In 

LOAL-LO, shown in Figure 7, the missile is to clear 79.25 m (260 ft) of terrain with the 

aircraft located 600 m behind the highest terrain point. In LOAL-HI, shown in Figure 8, 

the missile can clear 304.8 m (1000 ft) of terrain with a 1500 m aircraft standoff distance. 

The missile utilizes a laser seeker located in the missile nose, which is programed prior to 

launch, to identify a specific laser code and lock onto the laser emission. For this missile, 

the laser seeker is the terminal sensor and after the missile obtains a lock on the target, 

the information from the seeker is sent to the guidance processor which then determines 

the appropriate steering command to be sent to the flight controls and the missile then 

tracks to the target [13]. While the laser seeker allows for increased accuracy in hitting 

the target, compared to the missiles used in World War II, the guidance law for the 

missile remains unchanged.  

 

 AGM-114A LOAL-LO Trajectory Figure 7. 

Source [13]: Lange, A. W., 1998, "Hellfire: Getting the most from a Lethal Missile 
System," Armor, Jan-Feb, pp. 25–30. 
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 AGM 114-A LOAL-HI Trajectory Figure 8. 

Source [13]: Lange, A. W., 1998, "Hellfire: Getting the most from a Lethal Missile 
System," Armor, Jan-Feb, pp. 25–30. 

B. MOTIVATION AND SCOPE 

A paper written by Lin [14], states: 

Many long- and medium-range missile guidance studies have shown that 
optimal trajectory shaping promises an extended range with more 
favorable end-game conditions… However, in a three-dimensional, target-
intercept flight, direct application of the optimal control theory will result 
in a two-point boundary value problem that involves several arbitrary 
parameters so that analytical solutions cannot be obtained without a lot of 
approximations. The problem can be further complicated with the lift, 
thrust and drag, and control constraints forced by structural and angle-of-
attack limits. This increases the computational time so that it is not 
feasible to implement the resulting solutions of the missile performance 
within an onboard digital computer. In view of this complexity in the 
problem setup, either indirect methods or direct methods based on 
nonlinear programming are used to solve the sensitivity and convergence 
problems. However, both methods require very fast onboard 
microprocessor technology for real-time, on-line operation. [14] 
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It is now almost 30 years since this article was written, and the same challenges 

still exist today. The dynamic equations that govern a three-dimensional 6DOF model for 

a missile are complex. The equations consist of nonlinear trigonometric functions that 

present potential singularity problems. In addition, aerodynamic coefficients typically 

come in tables aerodynamic forces must be “built-up” so that the dynamics can be 

evaluated.  

The boundary value problem for solving the optimal control contains a set of 

prescribed boundary conditions and also a set of constraints on the problem variables. 

The boundary conditions can be set values or functions. Airframes have limits that are 

applied to the angle of attack or acceleration, for example. The solution for the boundary 

value problem must therefore be constrained by these limits. In order to solve a boundary 

value problem, the underlying differential equations (e.g., the 6-DOF dynamics) need to 

be solved while simultaneously satisfying the constraints of the bounds [15]. The large 

number of constraints that are applied to the guidance of a missile, as described in the 

quote above, have led to difficulties in solving these boundary value problems in the past. 

Today, however, advanced tools are available to overcome these challenges, [15], [16].  

As mentioned above, the principles that are used to control guided rockets today 

are the same principles used on some of the first guided rockets. The motivation behind 

this thesis is to examine how advances that have been made in optimal control theory 

might be used to change the way that guided rockets are controlled. The goal is to 

determine if a tactical advantage, such as enhanced range, can be obtained via a software 

solution only. Such a solution is advantageous in that its implementation would not 

change any of the physical characteristics of the missile.  

In a warfighting environment, the difference between life and death for a solider 

comes down to being able to maintain a tactical advantage over the enemy. This 

advantage can come in many forms. For example, if applying an optimal control solution 

to the guidance of a rocket can increase the range or reduce the time of flight, it can 

provide our troops with an increased advantage in the battlefield.  
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The basic principles of the GNC that are used on tactical missiles, not only apply 

to missiles within the Earth’s atmosphere but also apply to other systems such as  

intercontinental ballistic missiles, spacecraft performing close proximity rendezvous 

operations, and UAVs. Therefore, the results of this thesis could influence how guidance 

is done for these systems as well.  

C. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. Chapter II introduces the 

model of the fictitious rocket used in this work. In addition, the 3DOF and 6DOF models 

that can be used to simulate the flight of the guided rocket are introduced and the pros 

and cons of each are discussed. The software used to determine the coefficients of lift and 

drag is introduced, as well as the development of the coefficient of lift and drag 

equations. Chapter III presents the conventional proportional navigation approach that 

has long been used for guidance of the rockets. In addition, a maximum range maneuver 

is simulated to establish a baseline performance that can be used to compare against the 

results achieved through optimal control. In Chapter IV the Optimal Control Theory is 

introduced in order to provide the necessary background on the subject for the reader. In 

addition, this chapter introduces the optimal control software DIDO. This software 

package is used to solve the optimal missile trajectories. Chapter V discusses the 

maximum range problem and the steps that were taken in order to solve it. In addition, 

some of the challenges that were encountered when attempting to obtain the solution are 

discussed. Chapter VI presents some conclusions and suggestions for future work.  



 12

THIS PAGE INTENTIONALLY LEFT BLANK  



 13

II. GUIDED ROCKET MODEL 

This chapter covers the development of the model for the tactical missile that will 

be used for simulations in this thesis. It introduces not only the physical characteristics of 

the model but also the assumptions that were made in regard to the model. The reference 

frames and equations of motion for the missile are also introduced. This chapter also 

shows the development of the coefficients of lift and drag for the missile using the 

Missile DATCOM software [17].  

A. DEVELOPING THE MODEL 

The first step in creating the model was to choose the physical configuration of a 

fictitious missile. In order to create a process that could be adapted to any missile, a 

generic rocket was created that is similar to the larger tactical missiles currently fired 

from aircraft, which are categorized as medium-range missiles. This size of missile was 

chosen with the intent that the model could later be scaled up or down in order to mimic 

different systems.  

1. Guided Rocket Configuration 

 Physical Characteristics a.

The model for the rocket, shown in Figure 9, has a cylindrical body with a cone 

shaped nose and contains four wings and four tail fins.  
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 Image of a Fictitious Guided Missile Figure 9. 

 

The fictitious guided rocket is 4.14 m in length with a wingspan of 1.01 m. The 

diameter of the rocket is 0.254 m around the tube, shown in Figure 10. The center of 

gravity for the guided rocket was placed at 2.08 m. The mass of the guided rocket  

is 360 kg. The guided rocket has two different sets of fins attached. The first set is a set of 

tail fins that are located on the tail end of the rocket and the second set is in the middle of 

the rocket and are referred to as the wings.  

 

 

 Image of the Model from the Side with Dimensions Figure 10. 
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Each wing of the guided rocket is 0.432 m with a width of 0.216 m where the 

wing attaches to the rocket body. The leading edge of the wing is tapered and has 

decreasing slope for the first two thirds of the wing span and then levels out for the last 

third. The width of the wing at the tail end is 0.108 m as shown in Figure 11. There are 

four wings on the missile that are mounted at 45° increments around the missile body 

(see Figure 12).  

 

 Missile Wing Dimensions Figure 11. 

 

 Orientation of Wings on the Missile Figure 12. 
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In addition, there are four tail fins that are mounted on the tail end of the missile. 

The fins are 0.178 m with a width of 0.216 m where the fin attaches to the body. The fins 

are tapered and at the outside edge are a width of 0.144 m, shown in Figure 13.  

 

 Missile Fins Figure 13. 

 

The 6DOF equations of motion which are discussed in the next section of this 

chapter, also require a reference aerodynamic chord and reference aerodynamic span. 

These values are 0.063 m and 1.12 m, respectively. A summary of the physical 

characteristics of the missile is given in Table 1.  
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Table 1.   Summary of Physical Characteristics for a Fictitious Missile 

Parameter Symbol Value Units 

Mass m 360 kg 

Length l 4.14 m 

Diameter d 0.83 m 

Wing span  lws 1.01 m 

Fin span lfs 0.61 m 

Center of gravity CG 2.08 m 

Reference aerodynamic chord c  0.06 m 

Reference aerodynamic span b 1.12 m 

Cross sectional area Sref 0.05 m2 

 

 Performance Characteristics b.

In addition to designing the missile geometry, performance characteristics need to 

be created for the missile in order to be able to carry out control system design. These 

numbers were estimated by looking at a variety existing platforms and estimating values 

that would be in the same order of magnitude for a similar model. When the process 

described in this thesis is applied to an actual missile and more accurate numbers are 

available, the results that are produced from the control design and analysis will better 

reflect reality. The estimated performance values are listed in Table 2. 

Table 2.   Performance Characteristics for a Fictitious Missile 

Parameter Symbol Value Units 

Minimum velocity Vmin 100 m/s 

Maximum velocity Vmax 639 m/s 

Minimum thrust Tmin 0.00 N 

Maximum thrust  Tmax 10000 N 

 



 18

2. 6DOF Dynamics Model 

In a 6DOF dynamic model, all six degrees of freedom for the guided rocket are 

taken into account in regard to the rocket motion. There are three translational degrees of 

freedom and three rotational. The six degrees of freedom result in a total of twelve non-

linear state equations.  

 Reference Frame a.

The 6DOF model uses a flat-Earth NED as a reference frame for position, as 

shown in Figure 14.  

 

 Body-Axis Reference Frame for Missile  Figure 14. 

 

All other states use a body-reference frame, as shown in Figures 15 and 16. The 

flight path angle, γ, illustrated in Figure 15, is the angle between the local horizon and the 

velocity vector. The angle of attack, α, is the angle between the velocity vector and the x-

axis in the body-reference frame. The pitch angle, θ, is the angle between the local 

horizon and the x-axis in the body frame.  
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 Flight Angles in the X-Z Body Reference Frame Figure 15. 

  

The side-slip angle, β, shown in Figure 16, is the angle between the velocity 

vector and the x-axis in the body-reference frame. Yaw is the rotation of the x-y body-

reference frame about the z-axis. The yaw angle, ψ, is the angle between the x-axis in the 

body-reference frame from a locally referenced position at the beginning of the rotation.  

 

 Flight Angles in the X-Y Body Reference Frame Figure 16. 
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The heading angle, σ, is the angle between the velocity vector and the x-axis in 

the x-y plane, where the velocity vector is in the direction of travel from the COG 

through the nose of the missile, shown in Figure 17.  

 

 Definition of Flight Path Heading Angle  Figure 17. 

 

 Dynamics Equations b.

For a 6DOF model, the equations of motion are a function of system states, 

forces, moments, and a number of parameters. The variables that represent the moment, 

forces, velocities, and parameters are listed in Table 3, while a representative set of states 

for the 6DOF model are listed in Table 4.  
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Table 3.   6DOF Forces, Moments, and Velocity Components 

 Roll (x-axis) Pitch (y-axis) Yaw (z-axis) 

Angular Rates p q r 

Velocity Components u v w 

Aerodynamic Force Components X Y Z 

Aerodynamic Moment Components L M N 

MOI about each axis Ixx Iyy Izz 

 

Table 4.   6DOF States for Guided Rocket 

Name Symbol Units 

Velocity V m/s 

Angle of Attack α rad 

Sideslip Angle β rad 

Roll rate p rad/sec 

Pitch rate q rad/sec 

Yaw rate r rad/sec 

Roll angle ψ rad 

Pitch angle θ rad 

Yaw angle ϕ rad 

X-coordinate (Earth Axes) xe m 

Y-coordinate (Earth Axes) ye m 

Altitude ze m 

 

For each of the states that are listed in Table 4, there is an associated dynamic 

equation. The standard 6DOF equations of motion from [18], [19] include the position 

equations (2.1), the control rate equations (2.2), the angular velocity equations (2.3), the 

Euler angle rate equations (2.4), and the force and moment equations (2.5).    
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While a 6DOF model more accurately represents the performance of a missile, a 

3DOF model is often sufficient for optimal trajectory design [18]. 

3. 3DOF Dynamics Model 

In order to simplify analysis, a 3DOF model is often used in lieu of the 6DOF 

equations of motion. The 6DOF model involves multiple assumptions. These 

assumptions necessarily hold true in the 3DOF model as well. Additional assumptions are 

made that set the necessary conditions where the 3DOF equations of motion represent the 

6DOF model. All assumptions for the 3DOF model are described in the next section.  

 Model Assumptions a.

The first assumption that is made (in both the 6DOF and 3DOF models) is that the 

Earth is flat and is non-rotating. By assuming that the Earth is non-rotating, the Coriolis 

Effect that is caused by the rotating earth goes to zero. This model also makes the 

assumption that the missile is not traveling far enough of a distance for round-earth 

effects to be taken into account. Due to the fact that the Earth is not a perfect sphere, 

there are variations in the gravitational constant based on where you are located on the 

surface of the Earth. The model assumes that there is no variations in the gravity so the 

standard constant value is used. 
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It is also assumed that the missile has a constant mass. In the flight of an actual 

missile, the mass will change through the beginning stages of flight as the fuel is burned. 

For the problem being examined in this thesis, the missile is in the mid-to-terminal phase 

of flight and it is assumed that all the propellant has been burned. When the entire missile 

trajectory is taken into account, mass variations need to be considered. The missile is also 

treated as a rigid body vehicle. By assuming that the missile is a rigid body rather than a 

flexible body, it eliminates the distortional effects that occur due to the additional forces 

and moments cause by aeroelasticity in the structure (e.g., flutter of the wings and fins). 

Additionally, the cross-products of inertia are considered to be negligible.  

Missiles are launched in many environments and regions in the world. For most 

areas over land, the ground is located above the sea level and when the missile impacts 

the ground is it not at a mean sea level of zero. The 6DOF and 3DOF models both 

assume that when z = 0, the missile is at sea level, in a standard atmosphere. In addition 

since the missile is symmetric about the roll axis, the roll rate is assumed to be fixed at 

zero. Side-slip results from side force that is produced from an unequal lift on the 

airframe wings from either untrimmed flight surfaces or relative wind [20]. For this 

model is also assumed that there is no sideslip. The assumptions that were made for the 

model are summarized in Table 5.  
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Table 5.   Model Assumptions 

Flat, non-rotating Earth 

No wind 

No gravity variations 

No Coriolis effect 

Rigid body vehicle 

Constant mass 

Negligible cross-products of inertia 

Z = 0 is at sea level, standard atmosphere 

No side-slip  

Missile is symmetric about the roll axis 

 

 Dynamic Equations b.

For the 3DOF model dynamic equations, the variables that are used are defined in 

Table 6.  

Table 6.   3DOF Dynamic Equation Variables 

Name Symbol Units 

Down-range distance x m 

Cross-range distance y m 

Altitude z m 

Velocity v m/sec 

Heading angle σ rad 

Flight path angle γ rad 

Angle of attack α rad 

Bank angle μ rad 

Thrust T N 

Drag D N 

Lift L N 

Mass m kg 
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When the assumptions described above are applied to the 6DOF equations of 

motion, the equations are reduced as follows: 
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If it is assumed (as above) that the rocket motor is burned, thrust drops from the 

equations and Equation (2.6) can be further simplified. In this case the missile can be 

assumed to be in the mid-to-terminal phase of flight and the equations for the 3DOF 

model without the thrust terms reduce to: 
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  (2.7) 

Equation (2.7) is the model that will be used in the remainder of this work.  

 

B. AERODYNAMIC MODEL 

1. Missile DATCOM Software 

The actual coefficients of lift and drag for a missile are determined through flight 

testing of the vehicle. However, since the values are needed for the design and simulation 

prior to actual testing, there is a need for software that predicts the aerodynamic 
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characteristics of a missile based on the design configuration. There are several different 

models that can be used in order to determine the coefficients of lift and drag for a 

missile. The software that was used for this thesis was the Missile DATCOM  

software [17]. The Missile DATCOM software is an aerodynamic design tool that allows 

users to input the physical dimensions of a missile for a given configuration and based on 

this, provides output of the required aerodynamic coefficients.  

The Missile DATCOM software is written in FORTRAN and allows the user to 

input the characteristics of the missile that they are interested in, in the form of a 

configuration file. The user is able to input the number of angles of attack that that they 

desire and the Mach number they are expecting the missile to fly at. For the simplicity of 

this thesis, only one Mach number was used. For a more complex and realistic model, a 

table of coefficients would need to be created in order to more accurately represent the 

aerodynamics. Dimensions of the missile are also needed which include the length of the 

nose section, diameter of the nose, number of fins and their location on the body, as well 

as dimensions of the fins. The program also allows for a trim setting to be applied and 

will output the associated coefficients if the missile is able to be trimmed for the given 

angle of attack. 

Once the appropriate configuration data is entered into the Missile DATCOM 

software, the program outputs a table of coefficients for a given set of trim settings and 

angles of bank. In the 6DOF model, the force and moment equations, Equation (2.5), 

each require an aerodynamic coefficient. There are six different coefficients, which are 

listed in Table 6. Of note, the roll moment coefficient, Cl, should not be confused with 

the coefficient of lift, CL.  
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Table 7.   6DOF Aerodynamic Coefficients 

Name Symbol 

Axial Force Coefficient CX 

Side Force Coefficient CY 

Normal Force Coefficient CZ 

Roll Moment Coefficient Cl 

Pitch Moment Coefficient Cm 

Yaw Moment Coefficient Cn 

 

An example of one of the outputted aerodynamic coefficients is shown in Figure 

18. For ease of comparison all of the plots for the coefficient data have been normalized.  

Figure 18 shows the relationship between the angle of attack and the axial force 

coefficient. These numbers were all calculated at the assumed maximum velocity  

of 639 m/s (1.863 Mach).  

 

 Normalized Axial Force Coefficient versus Angle of Attack Figure 18. 
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When using the simplified 3DOF model, Equation (2.7), the equations of motion 

only require the values for lift and drag. The equations for lift and drag depend on the lift 

and drag coefficients, CL and CD as follows: 
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The coefficients of lift and drag can be geometrically determined from the axial 

and normal force coefficients [18]. The resulting equations are:  
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Since the 3DOF model assumes that there is no side-slip and that all turns are 

done in a coordinated fashion where β = 0, the equations further reduce to: 
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The relationship between the two sets of aerodynamic coefficients is shown in 

Figure 19, where CN = -CZ and CA = -CX and the side-slip is zero. The Missile DATCOM 

software determines the lift and drag coefficients automatically and outputs CL and CD 

values directly for the desired angles of attack.   
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 Relationship Between Aerodynamic Coefficients with β = 0 Figure 19. 

Source [18]: Bollino, K. P., 2006, “High-Fidelity Real-Time Trajectory Optimization for 
Reusable Launch Vehicles.” 

2. Range of Angle of Attack (AoA) 

While the fidelity of the coefficient data will be discussed further in Chapter V, an 

issue that was discovered with regard to selecting the range of AoA selected will be 

discussed here. The resulting products in subsections a and b assume a 2nd degree curve 

fit of the aerodynamic data to provide an illustration for the discussion.  

 Initial AoA Range a.

One of the inputs the user can enter into the Missile DATCOM software is the 

number and range of angle of attack values that they want the software analysis to be run 

over. When the Missile DATCOM software was first run, it was done over a range  

of -2 to 28 degrees angle of attack. The data that is outputted produces the coefficients for 

only the specific angles of attack. For optimization, an equation where the coefficients 

can be determined for any given angle of attack is needed. The desired equation was 

produced by plotting the data points and applying different curve fits to the data.  

Figures 20 and 21 show the coefficients of lift and drag and their curve fits assuming  

a 2nd degree polynomial fit.  
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The R2 value shown in the plots represents the correlation coefficient. This value 

describes how well the equation represents the data. If the equation fit the data perfectly, 

the R2 value would be identically 1.  

The trendlines that were applied to the data produced the following normalized 

coefficient equations. 

 
22.0809 1.1477 0.0106LC       (2.11) 

 
24.2284 0.2776 0.1281DC      (2.12) 

These equations were originally used to obtain an optimal control solution over an 

extended range of α (i.e., beyond the 2 28    range), shown in Figures 20 and 21. 

Note these plots only show data over a limited of attack range.   

The curve fits for 2 28   , shown in Figures 20 and 21. This range was 

selected because it encompasses the expected autopilot limits. These curves are not 

symmetric as in Figure 18, because of the limited range in angle of attack selected for the 

data fits. 

 

 Coefficient of Lift with a 2nd Degree Polynomial Fit  Figure 20. 
for 2 28    versus AoA 
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 Coefficient of Drag with a 2nd Degree Polynomial Fit  Figure 21. 
for 2 28   versus AoA 

 

 Extended AoA Range b.

When Equation (2.11) was plotted against the entire range of angle of attacks used 

as bounds in the optimal control problem, the resulting plot (see Figure 22) showed 

increasing lift for negative angles of attack, which defies the laws of physics. 
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 Coefficient of Lift versus Extended AoA for a 2nd Degree Fit Figure 22. 

 

To correct this issue, the Missile DATCOM program was run again with an 

increased angle of attack range going from -28 to 28 degrees, to include a range of 

negative coefficients within the bounds used in the optimal control problem. Figures 23 

and 24 show the new lift and drag plots with a new 2nd degree polynomial curve fit over 

the increased angle of attack range.  
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 Coefficient of Lift with a 2nd Degree Polynomial Fit for Figure 23. 
28 28    versus AoA 

 

 Coefficient of Drag with a 2nd Degree Polynomial Fit for Figure 24. 
28 28   versus AoA 
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The trendlines that were applied to the data produced the following normalized 

coefficient equations. 

 
20.0723 1.8962 0.0117LC      (2.13) 

 
23.6638 0.0012 0.1108DC      (2.14) 

These updated equations were used for subsequent runs of the optimal control software.  

The trendlines produced with the angle of attack range 2 28   , Equations 

(2.11) and (2.12), were different from the trendlines produced for the angle of attack 

range 28 28   , Equations (2.13) and (2.14). The two sets of equations were plotted 

against the full range of angles of attack and were compared. Figure 25 shows a 

comparison of the two equations for coefficient of lift. The blue line represents 

Equation (2.11) and the red line represents Equation (2.13). Figure 26 shows a 

comparison of the two equations for coefficient of drag. The blue line represents 

Equation (2.12) and the red line represents Equation (2.14). As can be seen, the problem 

of increasing lift for negative AoA has been corrected by extending the range of angle of 

attack data. The approximation of the drag coefficient is similar to before but with 

enhanced accuracy for negative AoA values.  
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 Comparison of CL Equations Figure 25. 

 

 Comparison of CD Equations Figure 26. 
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3. Issues on Fitting the Aerodynamic Data 

Depending on the fidelity of the model that is being used, different curve fits may 

represent the data better than others. The curve fits are an estimate of the coefficients and 

are designed to be used for simulation since tables will later be developed from testing on 

the actual missile. Thus, a lower fidelity curve fit may be an appropriate choice for initial 

simulations and optimal control runs.   

 Coefficient of Lift a.

A linear, a 2nd degree polynomial, and a 3rd degree polynomial curve fit were 

applied to the extended coefficient of lift data. They are shown in Figures 27–29.  

 

 Normalized Coefficient of Lift with a Linear Curve Fit versus AoA Figure 27. 
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 Normalized Coefficient of Lift with a 2nd Degree Polynomial Figure 28. 
Curve Fit versus AoA 

 

 Normalized Coefficient of Lift with a 3rd Degree Polynomial Figure 29. 
Curve Fit versus AoA 
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 Normalized Equations for the Coefficient of Lift b.

The resulting equations for the coefficient of lift are:   

 1.89565 0.0079LC    (2.15) 

 20.0723 1.8962 0.0117LC      (2.16) 

 3 22.9758 0.0407 1.4393 0.0066LC         (2.17) 

Any of equations (2.15) to (2.17) could be used to represent the coefficient of lift. 

In the remainder of this thesis, Equation (2.16) was used to represent the lift coefficient.  

 Coefficient of Drag c.

The same set of curve fits was applied to the coefficient of drag plots. Because the 

coefficient of drag is parabolic, a linear curve fit is a very poor fit for the coefficient of 

drag as shown in Figure 30. The 2nd and 3rd degree polynomial curve fits are better and 

these are shown in Figures 31 and 32. As is seen, the 2nd and 3rd polynomials are about 

the same, so either could be used to represent the coefficient of drag.  

 

 Normalized Coefficient of Drag with a Linear Curve Fit  Figure 30. 
versus AoA 



 40

 

 Normalized Coefficient of Drag with a 2nd Degree Polynomial Figure 31. 
Curve Fit versus AoA 

  

 Normalized Coefficient of Drag with a 3rd Degree Polynomial Figure 32. 
Curve Fit versus AoA 
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 Normalized Equations for the Coefficient of Drag d.

The resulting equations for the coefficient of drag are shown in the following 

equations. 

 0.025 0.3025DC      (2.18) 

 23.6638 0.0012 0.1108DC       (2.19) 

 3 20.0334 3.6642 0.0063 0.1107DC          (2.20) 

In the remainder of this thesis, Equation (2.19) was used to represent the drag 

coefficient. Since Equation (2.18) does not do a good job of approximating the parabolic 

nature of the drag data, it should not be used. 

C. SUMMARY 

This Chapter introduced the configuration and performance characteristics of the 

guided rocket model that is used in this thesis. The 6DOF and 3DOF models that can be 

used to represent the missile were introduced, as well as the assumptions for the models. 

The Missile DATCOM software used to derive the coefficients of lift and drag was 

described and the development of the coefficient of lift and drag equations was shown.  
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III. CONVENTIONAL APPROACH FOR GUIDANCE 

In order to determine the benefits of applying optimal control to the missile 

guidance problem, a baseline that the results of the optimal control solution can be 

compared to is needed. This baseline is determined using the conventional approach for 

missile guidance. This chapter introduces the standard guidance law, namely proportional 

navigation [7], that is currently used in guided missiles. 

A. FUNDAMENTALS OF PROPORTIONAL NAVIGATION 

The fundamentals of tactical missile guidance are described in detail in [7]. This 

section provides a summary of the ideas presented in [7] that are needed in order to have 

a basis of understanding of the conventional approach. Proportional navigation utilizes 

the line-of-sight between the missile and the target. The guidance law “issues 

acceleration commands, perpendicular to the instantaneous missile-target line-of-sight, 

which are proportional to the line-of-sight rate and closing velocity” [7]. Mathematically 

this can be described as: 

 c cn N V   ,  (3.1) 

where nc is the acceleration command, N′ is the effective navigation ratio, Vc is the 

missile to target closing velocity and λ is the line-of-sight angle. A diagram of the 

geometry in a two-dimensional plane is shown in Figure 33. In the Figure, RTM is the 

range from the target to the missile, VM is the velocity of the missile, and nt is the target 

acceleration. 
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 Two-dimensional Missile-Target Engagement Geometry Figure 33. 

From [7]: Zarchan, P., 2007, “Tactical and Strategic Missile Guidance,” American 
Institute of Aeronautics and Astronautics, Inc., Reston, VA. 

From the geometry shown in Figure 33, the following relationships can be  

derived [7]. The velocity of the target can be split into two components based on the 

flight path angle of the target, β. The components become 
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  (3.2) 

 The differential equations for the missile velocity and position from [7] are 

 
 
 

,

,

M Mx Mz

M Mx Mz

R V V

V a a







   (3.3) 

For the problem that is being examined in this thesis, the target is stationary and 

the maneuver is being conducted in the x-z plane (for maximum range). The separation 

between the missile and the target can therefore be found by 

  ,TM t tR x x z z   ,  (3.4) 
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where xt is the position of the target and x is the current position of the missile. The same 

applies in the z-axis. Given the range from the target in both of the axes, the line-of-sight 

angle can then be found by simple geometry 

 1tan TMz

TMx

R

R
  .  (3.5) 

  

If the target is moving, the relative velocity between the missile and the target is 

found by taking the difference between the velocity components in each axis.  

  TM Tx Mx Tz MzV V V V V     (3.6) 

Since the target is stationary in this problem, Equation (3.6) reduces to 

  TM Mx MzV V V    (3.7) 

From the relative velocities and ranges, the line-of-sight rate can be determined by 

 2
TMx TMz TMx TMz

TM

R V R V

R
 
 ,  (3.8) 

where the range from the target to the missile is found by applying the distance formula 

 2 2
TM TMx TMzR R R  .  (3.9) 

Now that the range to the missile is known, the closing velocity can be 

determined as [7] 

 
 TMx TMx TMz TMz

C TM
TM

R V R V
V R

R

 
     (3.10) 

Equation (3.10) provides the last variable that is needed to calculate the missile guidance 

command. Once the magnitude of the missile guidance command is known, the 

acceleration in each axis can be determined by 
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.  (3.11) 
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B. MAXIMUM RANGE USING PROPORTIONAL NAVIGATION 

In order to implement the equations listed in the section above, a SIMULINK 

model was created for the conventional model, shown in Figure 34. The first MATLAB 

function shown in Figure 34, titled PN, contains the missile guidance equations described 

in Section A of this Chapter. The resulting acceleration that is used to adjust the missile 

LOS is outputted. The second MATLAB function embedded in the SIMULINK model 

contains the dynamic equations for the 3DOF aerodynamic model. The acceleration that 

was commanded is compared to the acceleration is outputted from the missile_3DOF 

function block. The current states are inputted and an updated state vector is outputted 

along with the acceleration of the missile. The new position is used to determine the new 

line-of-sight angle and the process (control loop) continues until the missile impacts the 

ground stopping the simulation.  

Due to the fact the problem assumes that the missile is already in flight and that 

the maneuver begins at the point when thrust turns off, the initial conditions had to be 

developed and set to match the flight profile. It was assumed that the missile would be 

flying in trimmed flight at the moment the maneuver begins. Appropriate initial 

conditions are given in Table 8.  

Table 8.   Initial Conditions for Conventional Maneuver 

Units Value 

xo m 0 

yo m 0 

zo m 661.1 

vo m/s 514.5 

σo rad 0 

γo rad 0 

αo rad 0.349 

μo rad 0 
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 SIMULINK Block Diagram for Simulating Proportional GuidanceFigure 34. 
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In order to find the maximum range of the missile using the SIMULINK model, 

the location of the target was adjusted further and further out until the missile could no 

longer hit the target and impacted the ground shy of the intended point. The maximum 

range of the missile using the conventional approach was determined to be 8637 m with a 

flight time of 32.3 seconds. The trajectory of the missile is shown in Figure 35. Due to 

the fact that the target is stationary, the trajectory that the missile follows is essentially a 

straight line. The velocity profile versus time of flight is shown in Figure 36.  

 

 Trajectory of Missile for Conventional Guidance Figure 35. 
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 Missile Velocity for Conventional Guidance Figure 36. 

 

Since the boost phase of the missile is completed prior to the start of the 

maneuver, gravity is the main force acting on the missile and it assumes a ballistic 

trajectory to intercept the target. The target trajectory for a ballistic missile is 

approximately a straight line as proven in reference [7]. Due to the nature of the ballistic 

trajectory, the line-of-sight angle for the missile remains constant for the majority of the 

flight. When missile is in close proximity to the target, the line-of-sight angle begins to 

change as the proportional navigation law adjusts the acceleration to zero line-of-sight 

error. This is shown in Figure 37. These results will be used later in the thesis to provide 

a baseline for comparison when the missile is flown using an optimal control solution.  
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 Line of Sight versus Time Figure 37. 

 

C. SUMMARY 

This chapter introduced the conventional proportional navigation approach that 

has long been used for guidance of rockets. In addition, a maximum range maneuver was 

simulated to establish a baseline performance that will be used to compare against the 

results achieved through optimal control. 
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IV. OPTIMAL CONTROL THEORY 

There are multiple paths that a missile can take to reach the desired end state. 

Each path will require a different amount of resources, such as fuel or time. Optimal 

control theory looks to find the path that best minimizes or maximizes a given objective 

function with respect to the constraint set on the problem. For example, a user may want 

the quickest route. The objective function in this case is to minimize time of flight. 

Conversely, a user may want to extend the range of a missile so the objective is to 

maximize the distance travelled form the launch point. In either case, the optimal control 

solution will yield the path that optimizes the objective.  

This chapter provides the basic background needed for this thesis in regard to 

optimal control theory. A more thorough discussion of optimal control can be found in 

[15]. References [18], [19], [21] also provide a good introduction to the basics of optimal 

control. This chapter contains a summary of the important concepts from these 

references. In order to solve optimal control problems and find the appropriate path for a 

given task, an optimal control software tool is typically used. This is because solving the 

problem analytically is often intractable. For this thesis, DIDO was used to obtain all the 

optimal control solutions. This chapter, therefore, also includes an introduction to the 

DIDO psuedospectral optimal control software.  

A. THE OPTIMAL CONTROL PROBLEM 

The generic optimal control problem as derived in [15], [18], is shown in 

Equation (5.1). Within this equation, J is the cost functional, E is the endpoint cost, F is 

the running cost. The value of the cost functional is subject to a set of state variables, x, 

and control variables, u. The equation ( , )x f x u , in Equation (5.1), defines a set of 

dynamic equations for the problem. In addition e defines the set of end point constraints 

(boundary conditions) for the problem.  
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Pontryagin’s Principle is stated as follows: “Given an optimal solution to Problem 

Po, there exists a covector function, ( )  , and a covector,  , that satisfy the Hamiltonian 

minimization condition, the Hamiltonian value condition, the Hamiltonian evolution 

equations, the adjoint equations, and the transversality condition” [15]. These conditions 

lead to the formulation of a boundary value problem (BVP), which can be solved to find 

the optimal solution. 

The first step in this process is to develop the Hamiltonian function which is 

defined as: 

 ( , , ) ( , ) ( , )TH x u F x u f x u     (4.2) 

 

The Hamiltonian introduces the costates  , which represent the adjoint covector. The 

covector has the same dimension as the state vector, x, but does not occupy the same 

space as x [15]. The adjoint dynamics are defined as: 

 ( )
H

t
x

 
 


   (4.3) 

According to Pontryagin’s principle for the control function  u   to be optimal, 

 u   must globally minimize the Hamiltonian for every t from to to tf, while holding  

  and x constant at each instant in time [15]. This is known as the Hamiltonian 

Minimization Condition (HMC), which is defined as: 
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 Minimize H , , ,
( )

Subject to u
u

x u t
HMC




    (4.4) 

If the controls do not have any constraints, the HMC is reduced to the Euler-

Lagrange equation which is given as: 

 
0

H

u




   (4.5) 

In the presence of constraints on u, partial derivative 
H

u




 must be interpreted as a 

switching function, that is: 

 u

H
S

u





 . (4.6) 

The sign of uS  then determines the value of the control variable at any instant in time.  

The optimal control BVP should have 2N boundary conditions where N is the 

number of state variables. In order to find any missing boundary conditions, the Terminal 

Transversality Condition given in Equation (4.6) is used [15].  
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f

E
t
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 , (4.7) 

where E  is the endpoint Lagrangian, defined as  

 ( , ( )) ( ( )) ( ( ))T
f f fE v x t E x t e x t    (4.8) 

 While the Transversality condition provides Nx new equations, it also produces Ne 

unknowns. There is one final missing boundary condition which comes from the 

Hamiltonian Value Condition, given in Equation (5.8). 

 f
f

E
H t

t

     
  (4.9) 

Equations (4.7) and (4.9) provide the remaining needed boundary conditions in 

order to be able to construct and solve the boundary value problem (BVP) associated with 
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the optimal control problem. A challenge in solving the BVP is that it cannot typically be 

done analytically. Thus, a software tool is needed. 

B. INTRODUCTION TO DIDO  

DIDO is a MATLAB-based software package that was originally developed by 

Fahroo and Ross of the Naval Postgraduate School to solve complex optimal control 

problems [22]. DIDO was “originally developed to make it “easier to solve optimal 

control problems” by allowing the user to focus on defining the problem they want to 

solve as opposed to worrying about how to solve it” [23]. This tool takes the system 

dynamic equations and boundary conditions of the basic optimal control problem as 

described in Section A and develops a solution through use of pseudospectral optimal 

control theory. A more thorough discussion of the theories and mathematics behind 

DIDO can be found in [16].  

DIDO requires the user to state the problem in a specific format that is encoded in 

four MATLAB m-files. The four function files are the “dynamics,” “cost,” “events,” and 

“path”-files. The cost, dynamics, and event files are mandatory for every problem but the 

path file is optional. The cost function describes the endpoint cost and running cost for 

the problem. The cost for the problem is determined by the user and is set based on what 

the problem is intended to minimize (e.g., time) or maximize (e.g., range). The dynamics 

function contains the differential equations or state-space model to be optimized. In the 

event function m-file, all the known boundary conditions for the problem are entered. 

The path function allows the user to provide path constraints at the nodes. The path is an 

optional file and is only used if the problem has path constraints. The problem being 

examined in this thesis does not require use of the path function. However, a path 

constraint could be used if it is necessary to limit some aspect of the missile performance 

so that it is consistent with operational requirements, for example, bounding the 

maximum acceleration. 

The m-file that is needed in order to be able to call DIDO in MATLAB is a main 

problem file. Within the main file, the upper and lower limits for the state variables, 

control variables, and clock times are defined. In addition, the number of nodes that will 
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be used to determine the solution (the computational grid) are also defined in the main 

file. The number of nodes determines the accuracy of the solution. One advantage to 

DIDO is that it can be used iteratively and a lower fidelity solution can be used and as a 

seed to refine the solution [21]. This provides a way to improve the accuracy of the 

solution quickly. The main file also allows the user to output any desired data or plots 

from the run. Once the cost, dynamics, events, and main files have been completed, 

DIDO can be run. DIDO performs analysis of the problem and if a solution is found, 

DIDO will output a message indicating that an extremal solution has been found. A 

solution is extremal if it is a minimizer for the HMC [22]. While Pontryagin’s boundary 

value problem is not directly coded, DIDO provides data on the costates that can be used 

to check of the solution against Pontryagin’s necessary conditions as part of a verification 

and validation (V&V) step. 

For any extremal solution, it is important to verify and validate the results that 

were produced. This ensures that an optimal solution was in fact obtained and that the 

problem that was solved was indeed the one intended by the user. In addition to checking 

Pontryagin’s necessary condition, the feasibility of the results should be checked by 

utilizing the built in MATLAB ODE tools. In this V&V test, the outputs from the DIDO 

run are propagated through the ODE function (dynamics) and the results compared in 

terms of their residual differences. An easy way to do this is by creating a simple 

comparison graph where both the outputs from the DIDO run and the propagation are 

plotted together. When the results are compared, if the optimal control results matches 

the results of the ODE propagation within some acceptable tolerance, the solution can be 

considered feasible.  

1. Scaling the Problem 

In any numerical algorithm, the scaling of the problem is also important. If the 

problem is badly scaled, the algorithm will be unable to solve the problem. This is 

typically seen in DIDO when the relative magnitudes of the states and the costates are 

large. This problem can be addressed by refining the solution through scaling. The 

scaling is accomplished through the use of “designer units” [23]. Equation (2.7) is the 
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dynamics equations for the 3DOF model. The dynamic model is formulated in state space 

and is given by ( , , )x f x u t . In this state space, the control function u  is the input into 

the dynamics equation to produce a response. The states for the model can be assembled 

into a vector as: 

  , , , , ,Tx x y z v  
  (4.10) 

The basic idea behind designer units is that each element in the state vector can be scaled 

by an arbitrary number selected by the user as shown in Equation (4.11), 

 
, , , , ,T x y z v

x
X Y Z V

         (4.11) 

where X, Y, Z, etc., are the designer scale factors. 

The same method of scaling applies to the control variable and the time units, 

which become: 

 
,u

         (4.12) 

 

t
t

T


  (4.13) 

While the scaling factors are arbitrary, the goal is to pick “good” designer units. 

“A fundamental rule for scaling optimal control problems is to choose designer units in 

such a manner that the scaled states and costates are roughly the same order of 

magnitude” [23]. The reason it is important for the states and costates to be roughly the 

same order of magnitude is due to the relationship between the two.  

 
Cost UNITS

UNITS
State UNITS

    (4.14) 

For the 3DOF missile problem the scaled costate vector becomes: 

 
, , , , ,T

x y z v

X Y Z V

T T T T T T               (4.15) 
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Pontryagin’s Principle and the Hamiltonian Value Condition do not change when 

the Hamiltonian is scaled which is why problem scaling is effective. For a practical 

problem, the scaling is applied within the MATLAB coding and a trial and error 

approach is used in order to find the values that produce a solution where and the states 

and costates at approximately the same order of magnitude [23].  

2. Coding the Scaling in MATLAB 

In order to apply scaling to the problem, several additional lines of code are 

required in the m-files that are to be used by DIDO. The first step is to create a global 

variable by the name of SCALES in the main file. This is done for convenience so that 

the scale factors can be easily shared between the different m-files. In the main file, the 

scales are then defined for each of the states, controls, and time variable as follows: 

 

global SCALES;

SCALES.X = 1;

SCALES.Y = 1;

SCALES.Z = 1;

SCALES.V = 1;

SCALES.SIGMA = 1;

SCALES.GAMMA = 1;

SCALES.ALPHA = 1;

SCALES.MU = 1;

SCALES.T = 1;

  (4.16) 

 In the dynamics file, in the preamble where the states, controls and nodes are 

defined from the primal data structure, the scaling factor for each variable is applied. 

Then when defining xdot, the vector is multiplied by the time scale factor and then each 

element of the vector is divided by its scaling factor returning the output to the original 

value. Thus, the dynamics are computed in engineering units but are operated on by the 

numerical algorithm in terms of designer units. In the main file, all of the bounds for the 

states, controls, time and events must also be divided by the scale for the appropriate 

value. Of note, the scaling used when running the program with lower nodes may need to 
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be refined as the results are stepped into higher node runs for increased accuracy. An 

additional benefit to the scaling is that it also allows for quicker run times.  

 As an example, for the optimal control problem that is solved in later Chapter V, 

when DIDO is run without any scaling the output for the states x and γ versus time are 

shown in Figures 38 and 39. As shown, the ranges of the two states differ by five orders 

of magnitude so scaling can be used to collapse this range. 

 

 Down-Range Distance versus Time Figure 38. 
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 Flight Path Elevation Angle versus Time Figure 39. 

 

The scaling not only applies to the relationship between the states, but also the 

relationship between the state and it’s costate. The costates for x and γ versus time are 

shown in Figures 40 and 41. The range of x and x  differ by four orders of magnitude 

and the range of γ and   differ by three orders of magnitude. The ideal range between 

the states and costates is a 1:1 relationship with the range of both values being of the 

same order of magnitude.  
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 x  versus Time for Maximum Range Maneuver Figure 40. 

 

   versus Time for Maximum Range Maneuver Figure 41. 

 

Designer units can be applied to these variables in the dynamics files as 

 
x            = primal.states(1,:)*SCALES.X;

sigma     = primal.states(5,:)*SCALES.SIGMA;
 . (4.17) 
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This same principal is applied to all of the other states.  Since the dynamics m-file must 

output the scaled dynamics (xdot) for the algorithm to operate on, the dynamics 

(calculated in engineering units) must be converted back to designer units. Converting the 

dynamics from engineering units to designer units is done as shown in Equation (4.18). 

 
xdot(:,i) = SCALES.T*[xDot(i)./SCALES.X;

    sigmaDot(i)/SCALES.SIGMA];
  (4.18)  

When DIDO is run with the scaling applied, the resulting scaled states and costates are 

shown in Figure 42. Referring to Figure 42, the scaled states and costates are now similar 

in order of magnitude, which improves the quality of the numerical solution. 

 

 Scaled States versus Time for Maximum Range Maneuver Figure 42. 

 

C. SUMMARY 

This chapter provided the basic background needed for this thesis in regard to 

optimal control theory.  This chapter also introduced the DIDO psuedospectral optimal 

control software, the software package used to solve the optimal missile trajectories in 
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this work. Issues related to numerical conditioning via scaling through designer units 

were also discussed. The optimal control framework will be applied to the missile 

problem in the next chapter. 
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V. MAXIMIZING THE RANGE OF A GUIDED ROCKET 

In this chapter optimal control theory is used to obtain a guidance solution to 

maximize the range of the fictitious missile under study. The bounds and conditions that 

were used for the problem setup as well as development of the necessary conditions for 

optimality will be shown. The results of the solutions obtained using DIDO will be 

presented and discussed. The resulting maneuver will be compared to the conventional 

proportional navigation based solution. As will be seen, the application of optimal control 

theory allows the range of the missile to be enhanced significantly. 

A. DESCRIPTION OF THE PROBLEM 

The desired outcome of the optimal control problem studied in this chapter is to 

maximize the range that the missile is able to travel. In order to start building the optimal 

control problem formulation, the 3DOF equations developed in Chapter II will be used. 

As mentioned previously, for the scope of this thesis, the problem will consider a guided 

rocket traveling in the mid-to-terminal phase of flight only. Thus, it will be assumed that 

the problem begins once the rocket motor is burned. The 3DOF optimal control problem 

was set up utilizing the version of the dynamics equations shown in Equation (2.7). The 

state and control variables for the problem are repeated in Table 9 for convenience.  
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Table 9.   Reduced 3DOF Model States and Controls 

State Symbol Units 

x-position (down-range distance) x m 

y-position (cross-range distance) y m 

z-position (altitude) z m 

velocity (airspeed) v m/s 

flight path heading angle σ rad 

flight path elevation angle γ rad 

Control Symbol Units 

angle of attack α rad 

bank angle μ rad 

 

  Since the missile’s autopilot utilizes inner loop control logic, the control variables 

for the optimal control problem can be written as 

 
au

u








  , (5.1) 

which allows the optimal control solution to accommodate the time constraints from the 

inner loop.  

The maximum range problem is solved by minimizing the negative value of the 

final downrange position, fx . Hence for the maximum range problem, there is an 

endpoint cost but no running cost. Problems with a specified crossrange are not 

considered. The maximum range optimal control problem is therefore stated as 
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  (5.2) 

In Equation (5.2), x0 is a given vector that consists of the initial conditions for the 

states at time t0. The values that comprise x0 are given in the next section in Table 10.  

Equation (5.2) also states that ( ( ))f fe t z   x  (i.e., the maximum range is reached when 

the missile impacts the ground). The numerical values that comprise the initial and final 

conditions are given in the next section in Tables 11 and 12, respectively.  Since the 

problem statement does not include a running cost, the value is equal to zero at the final 

time.   

B. APPLICATION OF THE OPTIMAL CONTROL THEORY 

Now that the problem has been stated, the next step is to apply the process that 

was described in Section A of Chapter IV, in order to derive the necessary conditions for 
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optimality. The first step is the formulation of the Hamiltonian utilizing Equation (4.2). 

The Hamiltonian for the Problem (5.2) is  
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Taking the partial derivative of the Hamiltonian with respect to the control 

variables gives 

 

0

0

H

u

H

u












 




 


 . (5.4) 

 

Thus, the Hamiltonian Minimization Theorem must be applied, where 
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due to the fact that the control variables appear linearly in Equation (5.3). The equations 

in Equation (5.4) become switching functions, as shown in [19], where 
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 The same principal can be applied to the other control variable, which produces 

the second switching function  
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  (5.7) 

These switching functions given in Equations (5.6) and (5.7) can be utilized as an 

additional means for validation and verification of the optimal control solution. For 

example,   and u can be plotted to check that if u  is at the upper bound, then 0  , 

etc. The same analysis can be performed with   and u . If the trajectories obey the 

inequality for the switching function, then the necessary condition for optimality is 

satisfied. If not, then the solution may not be correct and the reason for the discrepancy 

must be isolated and corrected.  

Because the adjoint equations are only being used for verification and validation 

rather than problem solving, ρ can be assumed constant in the drag and lift equations 

when the costate dynamics are derived. The application of Equation (4.2), the adjoint 

equation becomes 
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  (5.7) 

From Equation (5.7), since 0x y z       , the costates for the x, y, and z 

variables must be constant. This provides another piece of information that can be used to 

verify the DIDO outputs. If the numerical values of the costates are not constant, then the 

solution can be determined to be invalid. 

The transversality condition is applied next. The Endpoint Lagrangian becomes 

   1( , ( )) ( )T
f f f f fE v x t E x e x x z      , (5.8) 
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When partial derivative of the Endpoint Langrangian is taken with respect to each of the 

states (at ft  ), the value of the costate at time ft
 
is obtained. These values, together with 

the behavior of the adjoint equations can also be used for verification and validation of 

the optimal control solution.   
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1. State and Control Variable Bounds 

As mentioned in Chapter IV, Section B, the main program file for the DIDO 

problem contains the required bounds for each state variable. The constraints serve to 

provide a restrictive range to search for a feasible solution to the optimal control problem. 

While the goal is to limit the search range, the search range needs to be large enough that 

it encompasses the range in which a feasible solution can be found.  

For the problem addressed in this thesis, the x-limit is based on having a range 

that allows the entire maneuver to be completed. The x-limit was adjusted until the final 

solution was inside the upper bound ensuring that the maximum range of the missile 

could be reached. The z-limit set the ceiling for the maneuver. The allowed cross-range  

was ±100 m. The velocity limits ranged from the maximum speed of the missile to 100 

m/s which was estimated to be the minimum speed needed on missile impact at the target. 

The bounds for the states and controls are shown in Table 10.  
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Table 10.   Bounds for the States and Controls for Maximum Range Maneuver 

State Lower Bound Upper Bound Units 

x 0  30000 m 

y -100 100 m 

z 0 3000 m 

v 100 625 m/s 

σ -π/6 π/6 rad 

γ -π/6 π/6 rad 

Control    

α -0.349 0.489 rad 

μ -0.0872 0.0872 rad 

u   
-0.349 0.489 rad/sec 

u   
-0.0872 0.0872 rad/sec 

 
 

2. Initial Conditions 

As stated above, the maximum range maneuver begins with the missile in-flight at 

the moment that the engine has burnt out and the thrust goes to zero. The missile is 

assumed to be in steady state controlled flight at the moment that the terminal maneuver 

begins. The known initial conditions are shown in Table 11. The initial conditions are the 

same conditions that were utilized for the conventional approach in order to be able to 

properly compare to the results from the OCP. 
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Table 11.   Initial Conditions for Maximum Range OCP 

Units Value 

xo m 0 

yo m 0 

zo m 661.1 

vo m/s 514.5 

σo rad 0 

γo rad 0 

αo rad 0.349 

μo rad 0 

 

 In order to determine the initial value for the angle of attack, the fact that the rate 

of change of the flight path elevation angle would need to be zero for the missile to be in 

straight and level flight was used. From Equation (2.7) it is given that  

 cos cos
L g

mv v
      (5.10) 

Substituting the known values at the initial condition, the equation reduces to  

 0
L

g
m
  ,  (5.11) 

where 

 21

2 ref LL v S C .  (5.12) 

By substituting in the equation for CL that was developed earlier in Chapter II, the 

angle of attack for straight and level flight was determined to be 0.349 rad (20 deg). For 

the optimal control model, the missile is being controlled through adjustment of the angle 

of attack. On the physical missile, however these changes are implemented through 

applying fin deflections to produce the desired results. Thus, for implementation of the 

optimal maneuver, an inner loop autopilot would need to be used.  
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3. Final Conditions 

In addition to the initial conditions, the events function allows the user to input 

any known final or endpoint conditions. For this problem, the distance that the missile 

would travel was unknown as well as the velocity at the point of impact. In addition, the 

orientation of the missile with respect to the reference plain at the time of impact was not 

known. The only known endpoint condition was that missile would impact the ground, 

thus zf = 0 as listed in Table 12. 

Table 12.   Known End Point Conditions for the Maximum Range OCP 

Units Value 

zf m 0 

 
 

C. MAXIMUM RANGE SOLUTION 

With all the data defined for the cost, event, dynamics, and main files, the 

problem case was coded and solved using DIDO. 

1. Selection of Coefficient of Lift and Drag Fidelity 

In Chapter II, equations for the coefficient of lift and drag were determined from 

the Missile DATCOM. Equations (2.15)–(2.20) provided three different curve fits that 

could be used for each of the coefficients. When DIDO was initially run, a third degree 

polynomial curve fit was used because it had the highest correlation value of the three 

fits. The results of these initial runs indicated that the problem was infeasible.  

While the results from a DIDO run for an infeasible solution cannot be trusted as 

accurate, one observation that was noticed was that the costates were incredibly large, 

shown in Figure 43. This indicated that problem scaling was likely the reason why the 

problem was being determined infeasible.  
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 Costates versus Time for DIDO Run with a 3rd Degree Polynomial Figure 43. 
Curve Fit Applied to CL and CD 

 

The two costates that were drastically larger than the other costates were the one 

for velocity and flight path angle. When examining the equations for the costates, 

Equation (5.5), it was noted that they were the only two costates that contained the 

coefficients of lift and drag. In addition, both equations had cos  or 2cos   in the 

denominator. For small angles of attack, the result of the angle of attack being cubed in 

the equation caused the value for gamma to approach π/2, which produced a very small 

number in the denominator causing the values of the costates to become quite large.  

 To test the theory, the problem was run with a linear curve fit for the coefficient 

of lift and drag equations and DIDO produced a feasible result with the costates all within 

the same order of magnitude. The problem was then run again with a second degree curve 

fit and DIDO once again produced a feasible result with the costates within the same 

order of magnitude. This process provided a valuable lesson learned. When utilizing a 

model, such as Missile DATCOM output, to produce equations for estimating the 

coefficients of lift and drag it is best to start with a lower fidelity model for initial 

simulation runs. Once the problem has been properly scaled, the fidelity can then be 
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increased incrementally the scaling adjusted appropriately at each increment.  For the 

results that will be discussed later in the chapter, both the coefficient of lift and drag 

equations are the equations obtained for second degree polynomial curve fits.  

2. Results 

 Scaling the Problem a.

When the problem was run with the 2nd order curve fits for the aerodynamic data 

(Equations 2.16, 2.19), a feasible solution could be obtained using 16N   collocation 

nodes. However, the resulting costate for the flight path angle, Figure 44, was still several 

orders of magnitude greater than the other costates. In addition, the variation in the 

Hamiltonian, Figure 45, was large, which is inconsistent with the associated necessary 

condition. As stated in Chapter IV, Section B, the way to resolve these issues is through 

proper scaling.  

 

 Costates versus Time for Unscaled Maximum Range Maneuver Figure 44. 
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 Hamiltonian for the Unscaled Maximum Range Maneuver  Figure 45. 

 

In order to determine the proper “designer units” for this problem, multiple trial 

run were conducted. The resulting scaling factors for the problem were determined as 

follows: 

 

SCALES.X = 1000;

SCALES.Y = 50;

SCALES.Z = 100;

SCALES.V = 50;

SCALES.SIGMA = 1;

SCALES.GAMMA = 0.1;

SCALES.ALPHA = 1;

SCALES.MU = 1;

SCALES.T=1;

  (5.13) 

With these designer units the ranges of the states and costates became comparable (as 

will be shown next) and the problem run time improved. 
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 Solutions for the Scaled Maximum Range Problem b.

The problem was then re-run and refined using N = 16, 24, and 32 collocation 

nodes utilizing the scaling factors developed in the previous section. After DIDO 

produced a feasible solution, the states, costates, controls, Hamiltonian, and cost for the 

problem were outputted. The position of the missile versus time is shown in Figure 46. 

Since the cross-range is zero (even though this condition was not specified), the results 

show that the range is maximized by flying in the x-z plane.  

 

 Position versus Time for the Maximum Range Solution Figure 46. 

 

When the maneuver was initiated, the missile is seen to initially climb to an 

altitude of 1954 m before beginning its decent. The missile impacted the ground at a time 

of 94.02 seconds. The missile’s altitude throughout the flight is shown more clearly in 

Figure 47. As mentioned above, the optimal trajectory for the missile was in the x-z-

plane. The trajectory of the missile in this plane is shown in Figure 48. 
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 Altitude Profile for the Maximum Range Maneuver Figure 47. 

 

 

 Trajectory of the Missile for Maximum Range Maneuver  Figure 48. 

 



 78

The missile was traveling at a speed of 121.4 m/s when it impacted the ground,  

as shown in Figure 49, which exceeds the minimum required velocity of greater than 

100 m/s for impact.  

 

 Velocity versus Time for Maximum Range Maneuver Figure 49. 

 

The angle of attack for the missile was set with an upper limit of 0.489 rad  

(28 deg). The missile reaches the upper limit that was established near the end of the 

maneuver, shown in Figure 50. This behavior is similar to the conventional guidance 

approach which commands a large normal acceleration near the end of the flight in order 

to zero the line-of-sight error as shown previously in Figure 37. While the missile is 

climbing and then descending in this maneuver, the missile traveled in a zero crossrange 

path which resulted in negligible bank angles being applied to the missile, shown in 

Figure 51. If the desired maneuver required a turn or the missile was intercepting a 

moving target, this control would be utilized. 
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 Angle of Attack versus Time for Maximum Range Maneuver Figure 50. 

 

 Roll Angle versus Time for Maximum Range Maneuver Figure 51. 

 

The costates for the problem with scaling applied are shown in Figure 52. When 

compared to Figure 42, the effects of proper scaling on the costates can be clearly seen. 
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As mentioned above, Equation (5.7) showed that , ,x y z    should be constant.  

Figure 52, shows this to be true and is a validation point for the optimal control solution. 

When the costates listed above are plotted against time, Figure 52, the values are not 

exactly constant (due to numerical tolerances) but are within an acceptable level of error. 

As the fidelity of the model is increased through the bootstrapping to a higher number of 

nodes, the costate becomes smoother and settles towards being a constant value. 

However, even with infinite precision there will still be some error in the model. The 

costates for the other states are shown in Figure 53. As noted earlier, the behavior of 

these costates is complex so these trajectories are not useful as far as V&V is concerned. 

However, trasversality provides some conditions that can be checked. (Rachel pls. 

confirm that the behavior of the remaining costates (at the end time) is correct with 

respect to the transversality conditions.. For example, Equation (5.9) states  

that   1x ft    , and that   0ft   , etc. The results obtained from the optimal control 

solver are consistent with these equations. 

 

 Scaled Position Costates versus Time for  Figure 52. 
Maximum Range Maneuver 
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 Scaled Costates for Velocity and Flight Path Angles versus  Figure 53. 
Time for Maximum Range Maneuver 

 

The Hamiltonian for the scaled problem is shown in Figure 54. The variation in 

the Hamiltonian is nearly zero, as required. The fact that the solution satisfies these 

necessary conditions allows one to conclude that an optimal solution has indeed been 

found and that the missile’s range has been maximized per to problem limits and 

constraints. 
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 Hamiltonian versus Time for Maximum Range Maneuver Figure 54. 

 Verification and Validation c.

In order to verify that the optimal control solution is indeed a dynamically 

feasible solution, the next step was to perform a propagation test [15]. The optimal 

controls that were produced were propagated through the dynamic equations for the 

problem, Equation (2.7), using the ODE45 solver in MATLAB. The algorithm uses the 

control and time values associated with the nodes and interpolates to find the value for 

the control needed at a specific time. The results of the propagation were plotted against 

the optimal control solution for all of the states, shown in Figures 55–58. As can be seen 

the propagated solution closely matches the solution obtained from DIDO. Thus, the 

solution is feasible for implementation. 
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 Verification of Position versus Time along the X-, Y- and  Figure 55. 
Z-Axis for Maximum Range Maneuver 

 

 Verification of Missile Flight Path for Maximum Range Maneuver Figure 56. 
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 Verification of Velocity Vector for Maximum Range Maneuver Figure 57. 

 

 Verification of Flight Angles for Maximum Range Maneuver Figure 58. 
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 Impact of AoA Range d.

In Chapter II, Section B, Paragraph 2, the range of AoA used to determine the 

coefficient of lift and drag plots within the MissileDATCOM was discussed. To show the 

impact that the incorrect range (and hence incorrect aerodynamic data) can have on the 

final solution, the results of the optimal control problem using Equations (2.10) and 

(2.11) are compared to the results obtained using Equations (2.12) and (2.13), shown in 

Figure 55.  

 

 Comparison of Missile Trajectory Utilizing Curve Fits Derived Figure 59. 
from Different AoA Ranges 

When the increased range of angles of attack to include the full range of the 

negative angles of attack, the distance the missile traveled increased significantly. 

Utilizing the incorrect solution resulted in underestimating the missile range by 3328 m. 

This result is included to be utilized as a lessoned learned for future work on this topic.  
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 Setting Upper Bounds for AoA e.

In the results shown in subsection b, Figure 48, the angle of attack trends toward 

the upper bounds limit toward the end of the flight. As mentioned in Section B, the upper 

bound was set to 0.489 rad (28 deg). It was assumed that to ensure penetration of the 

target, the angle of attack would need to be less than 30 degrees when impacting the 

ground. Nonetheless, the effect of the upper bounds of the angle of attack was examined 

to determine the effect these limits could have on the optimal solution. The trajectories of 

the missile utilizing four different angle of attack limits are shown in Figure 60. 

 

 Trajectories of the Missile for a Maximum Range Maneuver  Figure 60. 
with Various AoA Limits 

 

The trajectories were all very similar and the path the missile follows (shown in 

Figure 60) appears to be nearly the same for all four angle of attack limits. When the 

point of impact for the missile is zoomed in on the graph (see Figure 61) it is seen that 

there is a difference of 350 m between the maximum angle of attack at 0.349 rad (20 deg) 

and 0.785 rad (45 deg). Depending on the situation, the extra 350 m in range could be a 

factor that warrants the consideration of adjusting the AoA limit to a larger value. This 
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decision, however, will depend on the constraints on missile effectiveness, aspects that 

are not considered here. 

 

 Trajectory of Missile in Last Portion of Flight Figure 61. 

 

While the differences in the range of the missile are rather small compared to the 

overall range in the terminal phase, the impact of the maximum angle of attack bound can 

be seen the most in the velocity at the end of the flight, shown in Figure 62. When the 

maximum angle of attack is limited to 0.349 rad, the final velocity at the point of impact 

is 159.8 m/s, while a maximum angle of attack at 0.785 rad the final velocity is at the 

lower bound at 100 m/s and the time of flight is only a few seconds shorter.  
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 Velocity versus Time for Varying Maximum AoA Figure 62. 

 

Depending on the target that is selected, a slightly (350 m) shorter range with a 

higher (+60 m/s) impact velocity may be desired over the increased range and slower 

impact speed. The higher velocity may allow the missile to penetrate further prior to 

detonation if the desired target is a building or bunker. If a shallower angle of attack on 

impact and decreased velocity is permissible, then the increased range may be the desired 

effect.  

The comparisons shown above were done using the coefficient of lift and drag 

equations that were developed over a range of 28 28   . In aerodynamic flight, the 

attack angle produces an increase in lift until the angle of attack has increased to a point 

where the relative surface area of the missile to produce lift has decreased enough that the 

lift for the body begins to decrease. The larger angle of attacks examined may be beyond 

this point which would result in even further decreased ranges and impact velocities. The 

effect described above was not reached within the bounds for the optimal control problem 

and determination of the angle where this begins to occur is outside the scope of this 

thesis.  
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D. COMPARISON OF CONVENTIONAL AND OPTIMAL SOLUTIONS 

1. Maximum Range Maneuver 

When the trajectories of the missile are plotted against each other for both 

methods, shown in Figure 63, the difference between the two flight paths is substantial. 

Both of the problems began with the missile in the same steady flight condition but the 

fundamentals behind each approach make a significant difference in the outcome. The 

conventional approach is driven by a simple law involving the line-of-sight and range to 

the target. In the terminal phase of flight, this results in the missile assuming a ballistic 

trajectory. The optimal control solution, on the other hand, causes the missile to initiate a 

climb in the beginning of the maneuver utilizing the initial airspeed of the missile to gain 

altitude.  

 

 Comparison of the Missile Trajectory for Conventional and Figure 63. 
Optimal Control Method for Maximum Range Problem 

 

The maximum downrange distance that could be achieved by the conventional 

approach to missile guidance with the given initial conditions was 8637 m. By utilizing 

the optimal control solution, the maximum range of the missile increased to 24850 m. 
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This was an improvement in range of 16213 m (8.75nm) which is nearly a 300% increase 

in the maximum range of the missile over the conventional proportional navigation based 

approach.  

The time of flight was also significantly different from the conventional to 

optimal solution, shown in Figure 64. The time of flight for the missile using the 

conventional approach was 32.3 seconds, while the time of flight for the missile utilizing 

the optimal control solution was 94.02 seconds. This was an increase in the overall time 

of flight by a factor of 2.91. The increased range and time of flight allows the missile to 

be fired from further away and provides increased time for the aircraft firing the missile 

to get clear of the area. Both of these benefits can potentially improve the chances of 

mission success. 

 

 Time of Flight Comparison for Conventional and Optimal Control Figure 64. 
Methods for Maximum Range Problem 

 

For both the conventional and optimal control approach, the velocity was plotted 

against time, shown in Figure 65. While the conventional approach has a much steeper, 

almost linear decrease in velocity, the optimal control solution has a gradual decrease 
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with the velocity leveling out slightly as the missile was at the top of the parabolic path 

and began its decent. In addition, the impact velocity was similar for both the 

conventional and optimal control solution, which means that increasing the range did not 

have an adverse impact on the terminal kinetic energy of the missile.  

 

 Comparison of Velocity versus Time for  Figure 65. 
Maximum Range Problem 

 

2. Minimum Time Solution 

Because the maximum range produced with the optimal control solution was 

much greater than the maximum range that could be achieved by using the conventional 

approach, the range itself was the only aspect that could be clearly compared between the 

two approaches. To provide additional comparison of the two approaches for missile 

guidance, an additional optimal control problem was solved. 

 Problem Statement a.

For this problem, the desire was to minimize the time of flight to the same range 

obtained using the conventional approach. The second optimal control problem took the 
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same initial conditions as were used in the initial problem, shown in Table 11. However, 

an additional end point condition was added as shown in Table 12, by setting the 

downrange distance to the maximum range that was achieved by the conventional 

approach. The cost of the problem was also changed to minimize the time it would take 

for the missile to impact the target.  

Table 13.   Known End Point Conditions for Minimal Time OCP  

Units Value 

xf m 8637 

zf m 0 

 

The optimal control problem for the minimum maneuver is as follows: 

 

 

   

   

 Min. Time

0 0 0 0 0 0 0

0
0

Minimize , ,

Subject to:

cos cos

cos sin

sin

sin

sin

cos

cos cos

, , , , ,

( ( )) 8637,

f f

OC

f f f

L U

L

J u t t

x v

y v

z v

D
v g

m
L

mv

L g
P

mv v
u

u

t x y z v

t t

e x t x z

u u u

u u





  

 

 
 







  




 

   






 



  









   
 



 














x

x

Uu


































  (5.14) 
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The bounds of the states and controls were also adjusted for the new maneuver as 

shown in Table 13. 

Table 14.   Bounds the States and Controls for Minimum Time Maneuver 

State Lower Bound Upper Bound Units 

x 0  10000 m 

y -100 100 m 

z 0 2000 m 

v 100 625 m/s 

σ -π/6 π/6 rad 

γ -π/6 π/6 rad 

Control    

α -0.349 0.489 rad 

μ -0.0872 0.0872 rad 

u   
-0.349 0.489 rad/sec 

u   
-0.0872 0.0872 rad/sec 

 

This problem was then solved utilizing the procedures described in Section C of 

this chapter. The problem produced a feasible result and was then scaled by utilizing the 

following designer units to refine the solution: 

 

SCALES.X = 100;

SCALES.Y = 100;

SCALES.Z = 100;

SCALES.V = 50;

SCALES.SIGMA = 1;

SCALES.GAMMA = 0.1;

SCALES.ALPHA = 1;

SCALES.MU = 1;

  (5.15) 
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 Verification and Validation b.

As with the maximum range OCP, the results for the minimum time problem were 

verified against the necessary conditions (omitted for brevity) and propagated through the 

dynamics equations for the problem, Equation (2.7), using the ODE45 solver in 

MATLAB. The results of the propagation were plotted against the DIDO solution for all 

of the states. The data are shown in Figures 66–69.  

 

 Verification of Missile Trajectory for Minimum Time Maneuver Figure 66. 
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 Verification of Missile Trajectory for Minimum Time Maneuver Figure 67. 

 

 Verification of Velocity Vector for Minimum Time Maneuver Figure 68. 
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 Verification of Flight Angles for Minimum Time Maneuver Figure 69. 

 

The propagated states for the minimum time problem shown in the Figures above 

were obtained by propagating the controls for the maneuver shown in Figure 70.  

 

 Controls versus Time for Minimum Time Maneuver Figure 70. 
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 Comparison of the Results c.

Once the results are verified as in the previous section, they can be compared to 

the conventional approach. When the trajectories of the missile are plotted against each 

other for both methods, shown in Figure 71, the differences between the two paths can be 

seen. While the conventional approach produced a mostly linear response, the optimal 

control solution caused the missile to fly on a more parabolic trajectory.  

 

 Comparison of Missile Trajectory for Conventional and Optimal Figure 71. 
Control Methods for Minimum Time Problem 

 

While the trajectories show the two different paths that the missile takes to arrive 

at the same point, they do not provide any useful metric for comparing the two results. 

When the time of flight is plotted for both of the solutions, Figure 72, the effects of the 

different trajectories can be seen. As mentioned earlier in this chapter, the missile impacts 

the ground at a time of 32.3 seconds when using the conventional proportional guidance 

based control. When the missile is flown utilizing the optimal control solution, the 

missile is able to reach the target in a time of 19.1 seconds. The optimal control solution 
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results in a reduction of about 40% of the flight time required for the conventional 

approach, which can provide an advantage for the warfighter. 

 

 Time of Flight Comparison for Conventional and Optimal Control Figure 72. 
Methods for Minimum Time Problem 

 

The last comparison that was done for the minimum time problem was a 

comparison of the final velocity upon impact, shown in Figure 73. The conventional 

approach produces a final velocity of 130.2 m/s on impact, while the optimal control 

solution produced a final velocity of 401.0 m/s on impact. The optimal control solution 

velocity is greater than the conventional approach velocity by a factor of approximately 

3. Depending on the desired target, an increase in the maximum velocity may allow the 

missile to penetrate targets that had previously been impenetrable using conventional 

means.   

The terminal velocity obtained using optimal control is significantly larger than 

proportional navigation. To determine whether the increase is possible on the real missile 

(without violating other unmolded constraints), a more detailed simulation study must be 

performed, including a 6DOF simulation and analysis of structural loads. If the solution 
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developed using the reduced order model is feasible for flight implementation a 

significant tactical advantage may be possible simply by updating the missile flight paths.  

 

 Comparison of Velocity versus Time for the  Figure 73. 
Minimum Time Maneuver 

 

E. SUMMARY 

In this chapter optimal control theory was used to obtain a guidance solution to 

maximize the range of the fictitious missile under study. The bounds and conditions that 

were used for the problem setup as well as development of the necessary conditions for 

optimality were shown. The results of the solutions obtained using DIDO were presented 

and discussed. A minimum time maneuver of the fictitious missile was also obtained and 

the results of the solution obtained by DIDO were presented and discussed. The resulting 

maneuvers were compared to the conventional proportional navigation based solution and 

significant enhancements of the missile performance were observed using the optimal 

control-based approach. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The intent of this thesis was to apply advances in optimal control theory, namely 

pseudospectral optimal control, to improve the range of a missile without changing any of 

the physical characteristics of the missile or its hardware. This software only approach 

could be used to replace conventional guidance logic, which has not changed in over 

50 years. Additionally, this thesis was intended to contribute useful research that can be 

built on for other applications such as intercontinental ballistic missiles and related space 

systems.  

A reduced-order 3DOF model with simplifying assumptions was used to generate 

an optimal missile trajectory that provided nearly 300% increase in the maximum range 

of the missile over the conventional proportional navigation-based approach. The newest 

variants of the medium-range air-to-ground missiles in the United States Order of Battle 

have a ranges that tend to fall from 80–100nm. An increase in range in the terminal phase 

of flight by 8.75 nm is therefore a significant improvement in the reach of the missile.  

In a minimum time maneuver, it was shown that the time of flight could be 

reduced by about 40% over conventional proportional navigation. While the optimal 

control solutions could be obtained in a reasonable amount of time, the MATLAB based 

process could not produce the solution in real time. Nonetheless, computing an optimal 

trajectory prior to flight allows for the optimal trajectory to be implemented by storing 

the appropriate commands. Moreover, it may be possible to obtain real-time solutions if a 

specialized code is developed for these problems, which would increase the utility of the 

optimal control-based approach for missile guidance. 

B. FUTURE WORK 

The work that was done in this thesis provides a good starting point for continued 

work on this problem. This thesis was limited to investigating only the mid-to-terminal 

phase of a missiles flight path, once the rocket motor was burned out. Expanding the 

flight profile to include the other stages of flight will provide a more complete picture on 
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the advantages that can be obtained through use of optimal control. The results that were 

found when examining just the final stage of flight, suggest that if the optimal control is 

applied throughout the entire flight of the missile, the range of a missile could be further 

increased or other performance benefits obtained. In addition, it would be helpful to 

explore the range of conventional mid-course guidance algorithms as compared to 

optimal control-based solutions.  

The problem examined in this thesis assumed the missile would intercept a 

stationary target. One of the obvious next steps is to apply optimal control theory to a 

missile intercept problem involving a moving target. The principles of finding an optimal 

path to intercept a moving target can not only impact the guidance of missiles but can 

impact the other area where proportional navigation type laws are used, such as aircraft 

intercepting moving targets or satellites performing close proximity rendezvous.  
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