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A landpattern change represents a globally significant trendwith
implications for the environment, climate and societalwell-being.
While various methods have been developed to predict land
change, our understanding of the underlying change processes
remains inadequate. To address this issue, we investigate the
suitability of the two-dimensional kinetic Ising model (IM), an
idealized model from statistical mechanics, for simulating land
change dynamics. We test the IM on a variety of patterns, each
with different focus land type. Specifically, we investigate four
sites characterized by distinct patterns, presumably driven by
different physical processes. Each site is observed on eight
occasions between 2001 and 2019. Given the observed pattern
at the time ti we find two parameters of the IM such that the
model-evolved land pattern at ti+1 resembles the observed land
pattern at that time. The data support simulating seven such
transitions per site. Our findings indicate that the IM produces
approximate matches to the observed patterns in terms of
layout, composition, texture and patch size distributions.
Notably, the IM simulations even achieve a high degree of cell-
scale pattern accuracy in two of the sites. Nevertheless, the IM
has certain limitations, including its inability to model linear
features, account for the formation of new large patches and
handle pattern shifts.
1. Introduction
Land change studies have gained significant attention due to the
accelerated transformation of Earth’s land compared to previous
years [1]. Over the past few decades, remote sensing of the land
surface from space has provided insights into this global
environmental trend [2], which affects a vast majority of landmasses
and various land themes. Among these themes, tropical forest
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deforestation stands out as the most profoundly impacted [3]. The term ‘land theme’ means a specific land

cover type whose change is investigated.
The acceleration of land change can be attributed, directly or indirectly, to anthropogenic impacts [4].

Consequently, global society holds the potential to intervene and mitigate, or even reverse, this trend.
However, effective action requires accurate assessments of observed changes and reliable predictions of
future changes. To address these requirements, a multitude of methods have been developed to assess the
magnitude of past land change [5,6] and predict future changes [7,8]. The majority of these prediction
methods adopt an empirical approach, extrapolating change patterns observed in the past while
assuming constraints on future rates of change [9]. However, this research approach does not establish a
causal link between the driving factors (causes) and the resulting patterns of land change (effects).

Causality is of interest in the field of landscape ecology, where the cause and effect are often referred
to as the process (the forces acting on the land) and the pattern (the resulting landscape mosaic
influenced by these forces) [10]. This necessitates the use of deterministic or agent-based modelling
approaches. Deterministic models [11–13] simulate the impacts of environmental and anthropogenic
processes on land patterns through mathematical descriptions of actual processes. On the other hand,
agent-based models [14] simulate the behaviour of individual agents (e.g. farmers, developers or land
managers) who interact with each other and their environment, resulting in changes to land patterns.
However, a challenge associated with both deterministic and agent-based models lies in accounting
for the multitude of potential forces and their interactions. Consequently, constructing and testing
such models becomes a complex task due to the large number of free parameters involved.

To facilitate progress, a causal model can be substituted with an idealized model that retains
simplicity for analysis or simulation purposes while capturing the fundamental aspects of the
observed phenomenon. Within the realm of ecology, these models are known as neutral models of
land change [15–17]. Neutral models are typically stochastic in nature, where the resulting land
pattern emerges from the collective influence of random processes acting on small length scale.

This paper aims to assess the applicability of the Ising model (IM) [18–21], a neutral model, as a tool
for simulating land change. In this context, the term ‘land’ refers to a pattern of land cover types assigned
to cells, which are the smallest square-shaped plots of land arranged in a two-dimensional grid. A ‘site’
represents a specific tract of land corresponding to the entire grid. ‘Land change’ specifically denotes
alterations in the pattern of a site over time. It is important to note that our concept of land change
aligns with the remote sensing notion of land use/land cover (LULC) change [22].

The IM, initially introduced as a model for magnetic substances, has found applications beyond
physics, extending into disciplines such as social science [23,24], psychology [25,26], genetics [27],
environment [28], and, notably for this paper, ecology. In the field of ecology, the IM has been
employed to investigate various phenomena, including the study of forest canopy-gap structure
[29–31], modelling vegetation patterns along a regional rainfall gradient in southern Africa [32],
analysing population dynamics [33] and elucidating emergent behaviours like masting [34].

In a recent study by Stepinski [35], the IM was examined as a model for the transition from
completely forested to fully agricultural land. However, it is important to note that this model was
not explicitly kinetic, focused solely on one thematic context, and assessed the model’s time series
using reconstructed patterns from multiple sites rather than using a time series of landscapes from a
single site.

Our objective is to explore the suitability of the IM as a simplified representation of various real-life
processes responsible for binary land change. Although focusing on binary patterns may appear
restrictive, this choice is driven by the capabilities of the IM and the specific interests within the field.
Many studies in LULC change analysis involve examining the changes within a particular LULC
category, such as deforestation [36], urbanization [37], desertification [38] or wetland loss [39]. In such
applications, the focus is typically on two categories: the foreground, representing the category under
investigation for its pattern change, and the background.

It is essential to note that our investigation does not aim to utilize the IM as a tool for predicting
future patterns with high cell-level accuracy, nor do we consider it a competitor to empirical
predictors. Instead, our focus is on evaluating the feasibility of the IM as a basic dynamic process for
simulating land change. While the simulated patterns need to match observations, this matching does
not necessarily require high cell-level accuracy.

The IM itself does not inherently possess any predefined dynamics. Therefore, most previous
applications of the IM in ecology have mainly focused on using the IM to simulate equilibrium
(steady-state) land patterns and comparing them with observations obtained at a single point in time.
The exception to this trend is the study by Nareddy et al. [33], who used a kinetic IM (they referred to
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it as a dynamical IM) to simulate metapopulation dynamics. In our context, real land patterns do not
exist in a steady state. Multiple observations over time demonstrate that land patterns undergo
changes on various time scales, influenced by spatial scale and thematic content [6]. Thus, we use a
kinetic IM, which enables the simulation of a time-dependent evolution of land patterns. The kinetic
IM refers to the IM with a simply defined temporal evolution rule incorporated.

In order to evaluate the effectiveness of the IM in simulating the evolution of binary land patterns, we
selected four specific sites that have undergone land cover changes associated with the loss or gain
of distinct LULC categories. These categories include forest (reforestation), crops (expansion of
croplands), wetlands (loss of wetland) and barren land (expansion of open-pit mining). The data for
these sites were obtained from the National Land Cover Dataset 2019 (NLCD2019) [40]. The
NLCD2019 provides maps of 16 land cover categories for the conterminous USA at a 30-m resolution
for the years 2001, 2004, 2006, 2008, 2011, 2013, 2016 and 2019. By using our IM-based simulator, we
were able to identify the best-fit time series of simulated patterns for these selected sites and
subsequently compared them to the corresponding observed patterns.
Soc.Open
Sci.10:231005
2. Model description
The IM is grounded in the principles of statistical mechanics and energy minimization. In the IM, a
site is represented by a rectangular array of cells with dimensions d1 × d2. For the sake of simplicity,
we assume square sites in this paper, hence d1 = d2 = d and the total number of cells is denoted as
n = d2. Each cell in the IM is assigned to one of two categories: cells corresponding to the focus
category of LULC are assigned a value of 1, while cells representing the background category are
assigned a value of −1. In our figures, we consistently depict focus cells as green and background
cells as yellow.

The IM assumes that a cell interacts solely with its four nearest neighbours (up, right, down and left
from the focus cell). Additionally, the cell is influenced by an external force. The specific configuration of
the array, denoted as ωs, represents the land’s pattern. Each specific pattern is associated with an energy
value, denoted as E(ωs):

EðvsÞ ¼ �
Xn

k�‘

J xs,k xs,‘ �
Xn

k¼1

B xs,k: ð2:1Þ

In equation (2.1), xs,k represents the category of the kth cell in pattern ωs. The first term on the right-hand
side of equation (2.1) corresponds to an interaction term, with the symbol k∼ ℓ indicating summation
over all neighbours in the array. This term captures the propensity for neighbouring cells to belong to
the same category. The dimensionless parameter J denotes the strength of this propensity. In the
context of land science, the first term accounts for a degree of the spatial autocorrelation of the landscape.

The second term on the right-hand side of equation (2.1) represents the response of a cell to an externally
imposed force, favouring either the focus category (with a positive value of B) or the background category
(with a negative value ofB). The dimensionless parameterB quantifies the strength of this external force. It is
important to note that x, J and B are all dimensionless. Consequently, E(ωs) is a dimensionless fitness
function, referred to as ‘energy’ for historical reasons. The parameters B and J are assumed to have
uniform values across the entire array.

The original IM includes a third parameter known as temperature, denoted as T. However, in
numerous non-physics applications of the IM, specifying an equivalent temperature parameter is often
challenging. In these cases, the temperature can be understood as representing the willingness or
ability of the pattern to deviate from its lowest energy state, potentially accounting for environmental
noise [41]. In our study, we assume the temperature to be an unspecified constant that is incorporated
into the definitions of J, B and E(ωs).

Spatial autocorrelation-causing forces and external force are generic concepts that can be interpreted
differently depending on the thematic context. The spatial autocorrelation process can manifest in
various ways [42]. For instance, (a) land-use decisions, such as converting natural vegetation to
croplands or urban areas, often lead to autocorrelation due to logistical considerations. (b) Spatial
diffusion, such as the spread of invasive species or diseases from one area to another, can also contribute
to autocorrelation. (c) Spatial feedback mechanisms, such as the interaction between neighbouring
ecosystems, can further influence autocorrelation patterns [43]. Similarly, a category-favouring force can
arise through different mechanisms. Examples include (a) the influence of physical and environmental
factors on land cover, (b) the impact of business or political decisions on land-use patterns and (c) land
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Figure 1. Ten possible types of neighbourhoods in the IM. If a condition below a neighbourhood is met, the central cell has a high
probability of flipping.
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conservation or restoration policies shaping the distribution of land cover categories. The specific nature of
the force depends on the context and underlying factors driving land change.

For a given set of values for J and B, the initial pattern undergoes evolution towards the land pattern
that minimizes E(ωs). This is because the minimization of free energy is the fundamental principle driving
the behaviour of physical systems [44,45], and because, in the case of the IM, E(ωs) is a key component of
the free energy. However, as mentioned in the Introduction, the IM itself does not provide a description
of how this evolution occurs, necessitating the inclusion of a temporal evolution rule. In the literature,
three different temporal evolution rules have been proposed for the IM: the Metropolis dynamics [46],
the Glauber dynamics [47] and probabilistic cellular automata dynamics [48,49]. In this study, we
employ the single-flip Glauber dynamics with periodic boundary conditions (which makes the grid
topologically equivalent to a torus) to simulate land change.

Under the single-flip dynamics, each dynamic step involves an attempt to change the value of a
randomly selected cell to its opposite value, essentially flipping it. The success or failure of this
attempt depends on the flip probability, which is given by

Pðxk ! �xkÞ ¼ 1
1þ eDEk

, ð2:2Þ

where ΔEk is

DEk ¼ (Eaf
k � Ebf

k )þQ: ð2:3Þ
In equations (2.2) and (2.3) the quantity Ek is a contribution of cell k to E(ωs). We have ommitted subscript
s in the symbol for the local energy to make equation (2.3) more readable. The superscripts ‘af’ and ‘bf’
indicate ‘before attempted flip’ and ‘after attempted flip’, respectively. The probability of a flip is 0.5
when ΔEk = 0, it is high when ΔEk < 0, and it is low when ΔEk > 0.

In equation (2.3), the first term on the right-hand side represents the difference between the values of
Ek associated with cell k after and before the attempted flip. The second term, denoted as Q, is not part
of the Glauber dynamics or the original IM. It represents our modification of the algorithm aimed at
reducing the occurrence of salt-and-pepper noise in the focus category when simulating the evolution
of a coarse-textured pattern.

The value of Q is zero except in cases where cell k is equal to −1 (representing the background
category) and all its neighbouring cells are also equal to −1. In such cases, with Q = 0, the probability
of the cell flipping and becoming a focus cell is small but not small enough to prevent the generation
of very small patches of the focus category, which is not observed in reality. By setting Q≫ 0, this
probability becomes negligible, effectively eliminating the generation of small patches and eliminating
the salt-and-pepper noise in the focus category.

For a cell with Q = 0, the change in energy ΔEk is determined by the values of the cell k before and
after an attempted flip, the sum Sk of values assigned to four cells neighbouring the focus cell, and
the parameters J and B:

DEk ¼ �ðxafk � xbfk ÞðJSk þ BÞ: ð2:4Þ
The quantity Sk can take five possible values: −4, −2, 0, 2 and 4. On the other hand, the quantity
�ðxafk � xbfk Þ has three possible values: 2, 0 and −2, where the value of 0 corresponds to no flip.

Figure 1 illustrates 10 possible types of neighbourhoods in the IM. Each neighbourhood’s centre cell
has a high probability of flipping if the condition below the neighbourhood is true. For the centre
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Figure 2. (a) The observed evolution of the land cover pattern from 2001 to 2019 is depicted for a small site measuring 1.5 km ×
1.5 km, equivalent to 2500 cells. The focus category in this case is forest, and the observed process is deforestation. The numbers
below the patterns indicate the count of focus cells. (b) A graph is presented to illustrate the temporal loss of focus (forest) cover
during the seven transitions. The black descriptors represent the observed loss rates in cells per year, while the red descriptors
represent the calculated values of the best-fit parameters for the simulated process.
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neighbourhood in each row and in the absence of pressure to autocorrelate (Sk = 0), a high flip probability
requires a small external push (B) towards the opposite category of the central cell. For the two left-most
neighbourhoods in the top row, the flip probabilities can be high even in the presence of an external push
in favour of the green category (positive B), as long as B has a sufficiently low absolute value. On the
other hand, in the two right-most neighbourhoods in the top row, the flip probability can be high
only if there is an external push in favour of the yellow category (negative B) with a high enough
absolute value. The discussion of the bottom row in figure 1 is analogous.
2.1. Time unit
We aim to simulate a land change in a way depicted in figure 2a. The small, illustrative site shown in
figure 2a undergoes deforestation, and it has been observed and mapped at eight different time
instances. The time intervals between consecutive observations, denoted as (Δt)i, where i = 1,…, 7, are
not constant. At each time interval, the area covered by the focus category (green) decreases.
However, it is important to note that the rate of this decrease is not constant, as illustrated in figure 2b.

Our objective is to simulate the observed time series of patterns using the IM, with a focus on
determining the optimal values for the IM parameters (B and J) for each transition in the series. In
other words, we aim to find the best-fit values of B and J that result in the most accurate simulation
of pattern changes during each time period (Δt)i. In figure 2b, these best-fit parameter values are
indicated in red. To obtain these values, we initiate the IM simulation with the observed pattern at
time ti (serving as the initial condition) and perform a series of Glauber dynamic steps corresponding
to (Δt)i. The goal is to generate a simulated pattern at ti+1 that closely resembles the observed pattern
at that time.

To ensure that the number of dynamic steps taken is proportional to (Δt)i, it is necessary to establish a
unit of time that corresponds to the duration of a dynamic step. For instance, in the case of simulating the
transition from 2001 to 2004 (as depicted in figure 2a), if we use 30 000 dynamic steps, we can set the time
unit of a single dynamic step to 3 years divided by 30 000, which equals 0.876 h. This time unit can be
interpreted as follows: in the landscape represented in figure 2a, a random cell within the array has
an opportunity to change its land cover category every 0.876 h. The magnitude of this opportunity
depends on the parameters of the IM model and the current landscape pattern.

Importantly, using a specific time for the dynamic step allows us to determine the number of steps
required during the simulation of each transition. For the consecutive transitions shown in figure 2a
the number of steps is 30 000, 20 000, 20 000, 30 000, 20 000, 30 000 and 30 000. A different time unit
can be either larger or smaller than 0.876 h, but it must remain consistent throughout the simulation
to ensure that the number of steps for each transition is proportional to its duration.
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Figure 3. Functional dependencies of various parameters on the values of B and J during the 2008–2011 transition at the Iowa site.
Panel (a) illustrates the behaviour of msim, while panel (b) depicts 〈xk xℓ〉sim. Panel (c) showcases the Euclidean distance between
(m, 〈xk xℓ〉)obs and (m, 〈xk xℓ〉)sim, providing insight into the goodness of fit. Panel (d) presents the standard deviation of msim,
while panel (e) focuses on the standard deviations of 〈xk xℓ〉sim. The marked point denotes the optimal values of B and J,
representing the best-fit solution.
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2.2. Simulation
The simulation is performed on a transition-by-transition basis. Let us consider a specific transition from
time t1 to time t2 with a duration of (Δt)1 years. In our simulation of the four analysed sites (the next
section), we employ n dynamic steps per year, where n represents the number of cells in the array.
Theoretically, this means that each cell has the opportunity to undergo a flip once per year. Note
that the time unit we use in our simulations is much smaller than 0.876 h used in an illustrative
example shown in figure 2. This is because arrays we simulate have an order of magnitude more cells
than arrays in the illustrative example.

The similarity between the observed and simulated patterns at time ti+1 is quantified using the
Euclidean distance between pairs of indices encapsulating the observed (m, 〈xk xℓ〉)obs and simulated
(m, 〈xk xℓ〉)sim patterns, respectively. Here, m represents the composition imbalance index of the
landscape, which is calculated as m = 2f− 1, where f is the fraction of focus cells in the site. The range
of m lies between −1 (indicating only background cells) and 1 (indicating only focus cells).

Additionally, 〈xk xℓ〉 is a measure of the landscape’s spatial autocorrelation, referred to as the texture
index. It ranges from 0 (indicating fine texture) to 1 (indicating coarse texture). Computationally, 〈xk xℓ〉 =
C(1) is the lag one correlation function and h� � �i denotes the ensemble average. Our objective is to
determine the values of B and J that yield the highest similarity between the observed pattern at ti
and the simulated pattern at ti+1, while considering the constraints of the number of dynamic steps
(proportional to (Δt)i) and periodic boundary conditions.

The best-fit values of B and J are determined using the simulated annealing optimization algorithm [50].
We employ the implementation of this algorithmprovided by the optimization package in R [51]. A detailed
example of the optimization workflow can be found in the vignette of the spatializing R package [52].

Since the Glauber dynamics is stochastic in nature, we repeat the aforementioned procedure 200 times
to obtain an ensemble of best-fit parameter pairs (B and J). From this ensemble, we select the pair
that corresponds to the peak of the frequency distribution of pairs. This chosen pair represents our
final solution for the parameters, characterizing the magnitude and nature of the process governing
the pattern change during the transition from ti to ti+1. The same procedure is applied to determine
the solutions for the remaining transitions.

Figure 3a,b depicts the functional dependencies of msim and 〈xk xℓ〉sim on the values of parameters B
and J to show how the changes of these values influence the character of simulated pattern. This
particular figure corresponds to the 2008–2011 transition at the Iowa site (as detailed in table 1), but it
serves as a representative example for all transitions across various sites. Contour plots illustrate the



Table 1. Best-fit process parameters.

process coordinates
2001→
2004

2004→
2006

2006→
2008

2008→
2011

2011→
2013

2013→
2016

2016→
2019

reforestation 69.31298 W B = 0.18 B = 0.48 B = 0.76 B = 0.05 B = 0.09 B = 0.095 B = 0.06

Maine 46.65407 N J = 0.42 J = 0.40 J = 0.38 J = 0.45 J = 0.45 J = 0.45 J = 0.45

croplands

gain

93.28743 W B = 0.16 B = 0.25 B = 0.22 B = 0.28 B = 0.15 B = 0.07 B =−0.001

Iowa 40.86183 N J = 0.50 J = 0.50 J = 0.50 J = 0.45 J = 0.50 J = 0.50 J = 0.55

wetland

loss

81.85418 W B = 0.04 B =−0.06 B =−0.03 B =−0.12 B =−0.05 B =−0.03 B =−0.045

Florida 26.86219 N J = 0.34 J = 0.32 J = 0.32 J = 0.33 J = 0.33 J = 0.34 J = 0.35

open-pit

mining

105.28693 W B = 0.15 B = 0.8 B = 0.4 B = 0.47 B =−0.03 B = 0.732 B = 0.28

Wyoming 43.69249 N J = 0.50 J = 0.50 J = 0.50 J = 0.50 J = 0.60 J = 0.60 J = 0.50
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functions msim(B, J ) and 〈xk xℓ〉sim(B, J ), with colors indicating the values of these functions. The most
significant observation is that the behaviour of msim exhibits heightened sensitivity to changes in the
parameter B, while 〈xk xℓ〉sim is primarily influenced by variations in the parameter J. It is worth
noting that, beyond a certain threshold value of J (approx. 0.6 in this example), 〈xk xℓ〉sim ceases to be
significantly affected by either B or J.

In figure 3c, we explore the functional relationship characterizing the fitting criterion, which is
defined as the Euclidean distance between (m, 〈xk xℓ〉)obs and (m, 〈xk xℓ〉)sim. This function exhibits a
single minimum, representing the optimal fit solution. Notably, good fits can also be achieved by
employing an optimal value of B in conjunction with values of J that surpass the optimal J value. The
presence of single minimum holds true across all transitions and sites investigated in our study.
The region of a good fit around the minimum is narrowly constrained by B in all cases, in some
instances, it is also more narrowly constrained by J than in the case depicted in figure 3.

Finally, figure 3d,e illustrates the functional dependencies of the standard deviations pertaining to
msim and 〈xk xℓ〉sim around their respective ensemble averages, with respect to the parameters B and J.
Notably, in all instances, these standard deviations are very small. This result implies that each
simulated instance of the pattern has, with good approximation, the same area and texture.
3. Results
To assess the feasibility of the IM to simulate the land change, we conducted calculations for four sites.
The sites were selected to exhibit different processes leading to the change of pattern with time:
reforestation, expansion of croplands, wetland loss and open-pit mining. The observed change is
documented by the NLCD2019 dataset that shows LULC maps of those sites at eight different times
starting in 2001 and ending in 2019. Each site is represented by a time series of eight arrays of n =
250 × 250 = 62 500 LULC-labelled cells. Calculations are conducted using a protocol as described in §2.

Best-fit values of parameters B and J for each transition are shown in table 1. The simulated land’s
pattern is compared to an observed land’s pattern in multiple ways. First, we compare values of m
(expressed in terms of the number of focus cells) and 〈xk xℓ〉 in simulated and observed land patterns.
The similarity of these values indicates a similarity in the area and texture of the focus cells’ observed
and simulated patterns.

Second, we compare mapped and simulated complementary cumulative distribution functions
(cCDF) of patch size and area. Patches are sets of adjacent cells of focus category; they are extracted
using the connected components labelling algorithm [53]. The cCDF is the probability that the
variable takes a value greater than a pre-specified value. For example, in the case of the patch size
distribution, cCDF(10) = 0.1 means that 10% of patches have sizes larger than 10 cells. In the case of
the area distribution, cCDF(10) = 0.9 means that 90% of the area covered by the focus category is in
patches having a size larger than 10 cells.
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Figure 4. Comparison between the observed and the simulated land change at a site in the US state of Maine undergoing the
reforestation process during the 2001–2019 period. (a) The series of original NLCD2019 maps of LULC categories. (b) NLCD2019 maps
reclassified into two categories, the focus category (evergreen forest) and the background. (c) Simulated land change. (d )
Complementary CDFs of patch size for the patterns in (b) (blue) and (c) (orange). (e) Complementary CDFs of patch area for
the patterns in (b) (blue) and (c) (orange). The numbers above observed and simulated patterns are the number of forest cells
and the pattern’s texture parameter 〈xk xℓ〉. Numbers below the simulated patterns are accuracy, recall and precision.
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Third, we treat simulation as a prediction and calculate prediction metrics, accuracy, recall (for the
focus category) and precision (for the focus category). A recall is the estimated probability that a cell
randomly selected from among focus cells in the observed landscape is also a focus cell in the
simulated landscape. Precision is the estimated probability that a cell randomly selected from among
focus cells in the simulated pattern is also a focus cell in the observed pattern. High values of recall
and precision indicate individual cell-level agreement between two patterns. Top empirical models
achieve values of recall and precision of approximately 90% (e.g. [54]).

3.1. Reforestation
Our first site is located in Aroostook county in northern Maine. This county has a notable historical trend
of deforestation; however, a significant shift has occurred in the forest condition since approximately 2005
[55]. The selected site serves as an illustrative example of this turnaround. The results obtained for this
site are presented in figure 4, which consists of five rows.

In the first row of figure 4, NLCD2019 maps of the site from 2001 to 2019 are displayed, where
different colours represent distinct LULC categories. The second row exhibits the same NLCD2019
maps, but this time they are reclassified into binary patterns. In these reclassified patterns, the focus
category is represented by dark green colour, corresponding to the evergreen forest category (category
42 in the NLCD2019 maps), as depicted in the first row of the figure.

The third row of figure 4 displays the results of our simulations, using the best-fit values of B and J
for each transition (listed in the first entry of table 1). Upon visual inspection, the observed time series
(figure 4b) and the simulated time series (figure 4c) exhibit a striking similarity. However, upon closer
examination, some discrepancies can be observed, particularly during the period of the most
significant change, (Δt)2 and (Δt)3. Quantitatively, both the observed and simulated time series are
characterized by nearly identical values of m and 〈xk xℓ〉, indicating a high degree of similarity in
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terms of composition and texture. The recall and precision values are approximately 70% from 2004 to

2008, corresponding to a period of rapid change, and approximately 90% from 2011 to 2019, during a
period of slower change.

The fourth row of figure 4 illustrates the patch size distributions for both the observed patterns (blue)
and the simulated patterns (orange). Overall, the patch size distributions of the observed and simulated
patterns exhibit a high degree of similarity. Any differences observed in the size distributions primarily
arise from variations in the size and/or number of the largest patches. These differences may not be
apparent when examining the patterns themselves since the distinction between a single large patch
and multiple smaller patches may depend on the presence or the absence of a single cell that connects
the larger patches.

The fifth row presents the area distributions for the observed patterns (blue) and the simulated
patterns (orange). The area distributions of both the observed and simulated patterns demonstrate
remarkable similarity. It is noteworthy that as time progresses, a significant majority of focus cells
aggregate into a single, very large patch. This indicates that the initially fragmented forest gradually
reconnects, forming a cohesive and connected forest structure.

The values of B exhibit temporal variability throughout the period from 2001 to 2019 (table 1). This
variability is strongly correlated with the fluctuation of the reforestation rate, as indicated by a correlation
coefficient of 0.99. This finding suggests that an external force is responsible for driving the temporal
changes in the reforestation rate. On the other hand, the values of J remain relatively constant over the
entire 2001–2019 period, with an approximate value of J≈ 0.4. This suggests that the propensity of the
land to exhibit spatial autocorrelation remained consistent throughout the studied period. However,
the specific mechanisms underlying the external influence and the tendency for autocorrelation are
beyond the scope of this paper and will require further investigation.
3.2. Expansion of croplands
The expansion of croplands in the USA is causing a decline in grasslands and other ecosystems. One of
the regions experiencing significant expansion is southern Iowa, as documented by Lark et al. [56]. Our
second site, located at the boundary between Lucas and Wayne counties in Iowa, serves as an illustrative
example of this expansion. The results for this site are presented in figure 5. The figure follows the same
organization as figure 4, with the green colour in the second and third rows indicating cultivated crops
(NLCD category 82), represented by a brown colour in the first row.

The second row in table 1 presents the best-fit values of B and J for each transition in the series
depicted in figure 5. Similar to the reforestation site discussed in §3.1, we observe a high visual
similarity between the simulated and observed series. However, there is a notable difference in the
presence of grid-like north–south and east–north features in the observed patterns that are absent in
the simulated patterns. These features can be attributed to a historical system dating back to the early
days of the USA, where land was divided into one-square-mile quadrangles where feasible. While the
IM cannot replicate these grid-like features, it accurately reproduces the overall changing arrangement
of croplands in this site.

The quantitative analysis reveals that the simulated and observed patterns exhibit almost identical
values of m and 〈xk xℓ〉. It is important to recall that our criterion for determining the best-fit values
of B and J relies on the similarity between the simulated and observed values of m and 〈xk xℓ〉, which
serves as the fitness function. The excellent fit obtained indicates that the IM can be effectively
tailored to the data. Additionally, the recall and precision values are approximately 70% from 2004 to
2008 (during periods of rapid change) and around 90% from 2011 to 2019 (during periods of slower
change). These recall and precision values are comparable to those achieved by empirical models of
land change, indicating the effectiveness of the IM in capturing the dynamics of the studied site.

Figure 5d illustrates the patch size distributions for the observed patterns (blue) and simulated
patterns (orange). It is important to note that the y-axis represents the probability that a randomly
selected patch has a size equal to or larger than the corresponding value on the x-axis. Upon
examining the series of distributions in figure 5d, we can observe that the observed land patterns
exhibit a relatively higher frequency of smaller patches and a relatively lower frequency of larger
patches compared to the simulated patterns. This finding is further supported by figure 5e. Despite
the high values of recall and precision, the discrepancies observed in the size and area distributions
can be attributed to the IM’s inability to reproduce the linear background features mentioned earlier,
which exist in the observed land and contribute to the division of the area into smaller patches.
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Similar to the deforestation example discussed in §3.1, the cropland expansion case also exhibits a
strong correlation (0.87) between the inferred values of B and the rate of cropland gain. On the other
hand, the inferred values of J remain relatively constant throughout the 2001–2019 period. This
observation leads to a hypothesis that external influences, potentially of an economic nature [56], are
responsible for the temporal changes in cropland expansion, while the autocorrelation tendency is an
inherent characteristic of the site that remains unchanged over the observed time period.
3.3. Loss of herbaceous wetlands
Our third site is situated within the Fred C. Babcock/Cecil M. Webb Wildlife Management Area (WMA)
in southwestern Florida. This particular site is predominantly composed of two types of wetlands:
woody wetlands (NLCD category 90, depicted in a lighter blue shade in figure 6a) and herbaceous
wetlands (NLCD category 95, depicted in a darker blue shade in figure 6a). Our focus category for
analysis is the herbaceous wetlands, which exhibits distinct patterns compared to the previous
examples, characterized by a finer-grained structure.

The third row in table 1 presents the best-fit values of B and J for each transition in the series depicted
in figure 6. Notably, the values of B are negative, indicating a decrease in the area of the focus category.
The values of J remain relatively constant for the duration of the observed period, but they are smaller
compared to the previous two sites, suggesting a lower inherent tendency for spatial autocorrelation.
This observation aligns with the fine-grained nature of the landscape pattern observed in this
particular site.

Similar to the previous two examples, we observe a strong visual resemblance between the simulated
and observed land series in this case. However, it is important to note that visual assessment may not be
entirely reliable due to the limited spatial variability in the wetlands patterns at this small scale. To obtain
a more accurate evaluation, we rely on quantitative measures. Quantitatively, the simulated and observed
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Figure 6. Comparison of the observed and the simulated land change at a site in the US state of Florida undergoing a herbaceous
wetlands loss process during the 2001–2019 period. (a) The series of original NLCD2019 maps of LULC categories. (b) NLCD2019
maps reclassified into two categories, the focus category (herbaceous wetlands) and the background. (c) Simulated evolution of land
change. (d ) Complementary CDFs of patch size for the patterns in (b) (blue) and (c) (orange). (e) Complementary CDFs of patch area
for the patterns in (b) (blue) and (c) (orange). The numbers above observed and simulated patterns are the number of herbaceous
wetland cells and the pattern’s texture parameter 〈xk xℓ〉. Numbers below the simulated patterns are accuracy, recall and precision.
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patterns exhibit nearly identical values of m and 〈xk xℓ〉, indicating that the IM can effectively capture and
reproduce this type of pattern as well.

The values of recall and precision in this case are in the range of 70–60%, which is lower compared to
the previous two examples. We attribute this lower cell-level accuracy to the fine-grained nature of the
wetlands pattern. The stochasticity of the Glauber dynamics in the IM leads to distinct realizations of
the simulation at the cell level, resulting in differences between individual patterns. This variability is
more pronounced in fine-grained patterns, leading to a decrease in accuracy. However, it is worth
noting that despite the lower cell-level accuracy, the distributions of patch sizes and areas in both the
observed and simulated patterns exhibit a high degree of similarity, as the majority of patches in this
landscape are small.

The loss of herbaceous wetlands exhibits a high correlation (0.99) with the inferred values of
parameter B. This finding aligns with our previous examples and reinforces our conclusion that
parameter B governs the temporal variability of landscape composition. In this specific case, it
influences the loss of herbaceous wetlands. On the other hand, parameter J remains consistent and
does not undergo significant changes over the observed time scale, highlighting its role as a property
inherent to the site.

3.4. Open-pit mining
The fourth site encompasses the Black Thunder Coal Mine located in Wyoming. This site is characterized
by an open-pit mine, where the landscape predominantly consists of barren land (NLCD category 31),
depicted by a grey colour in the NLCD maps shown in figure 7. Additionally, the site includes
grassland (NLCD category 71) depicted by a vanilla colour, and shrubland (NLCD category 52)
depicted by a beige colour. The focus category in this case is the barren land, which corresponds to
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Figure 7. Comparison of the observed and the simulated land change at a site in the US state of Wyoming undergoing a change due to
mining activity during the 2001–2019 period. (a) The series of original NLCD2019 maps of LULC categories. (b) NLCD2019 maps reclassified
into two categories, the focus category (barren land) and the background. (c) Simulated evolution of the site. (d ) Complementary CDFs of
patch size for the patterns in (b) (blue) and (c) (orange). (e) Complementary CDFs of patch area for the patterns in (b) (blue) and (c)
(orange). The numbers above observed and simulated patterns are the number of barren land cells and the pattern’s texture
parameter 〈xk xℓ〉. Numbers below the simulated patterns are accuracy, recall and precision.
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the pit within the mine. Notably, the pattern evolution in this site deviates from the previous examples, as
the pit has undergone a westward shift during the 2001–2019 period.

The fourth row in table 1 presents the best-fit values of B and J for each transition in the series
depicted in figure 7. Notably, the values of B exhibit significant variability from one observation year
to another, indicating an uneven external influence. One plausible explanation for this variability is
the fluctuating demand for coal. Conversely, the values of J remain relatively constant during the
observed period. Similarly to the previous examples, we observe a high visual similarity between the
simulated and observed land series. Furthermore, a quantitative analysis reveals that the simulated
and observed patterns are characterized by nearly identical values of m and 〈xk xℓ〉.

The values of recall and precision exhibit variability, ranging from 36% to 51% for the first two
transitions, approximately 60% for the subsequent four transitions, and 82% in the final transition.
These values display an inverse correlation with the rate at which the pit shifts westward, with lower
accuracy observed during faster shifts and higher accuracy during slower shifts. This outcome can be
attributed to the limitations of the IM, which lacks a preferred direction in its dynamics and therefore
cannot shift the pattern of focus cells from their initial position. The discrepancies observed in the
shapes of patch size and area distributions are primarily attributed to the model’s inability to form
linear features, as discussed in the previous subsections.
4. Discussion
Our hypothesis in the Introduction suggested that the kinetic IM can serve as a framework for
understanding various land change processes. By employing a bare-bones change model, we can
abstract the underlying dynamics of change from the specific real-world processes associated with
thematic contexts and locations of different sites. Furthermore, this model allows us to quantify
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change not only in terms of the extent of the altered area but also in terms of the intensity of the process.
We now examine whether our results support the hypothesis that the IM can effectively serve as an
abstraction of land change processes. The summary of our evaluation is as follows:

1. Visual similarity: We observed a high degree of visual similarity between the simulated and observed
land series in all four case studies, indicating that the IM captures the overall patterns and dynamics
of land change accurately.

2. Quantitative measures: The simulated and observed patterns exhibited nearly identical values of key
quantitative pattern measures, such as the composition imbalance index m and the texture index
〈xk xℓ〉. Patch size distribution in simulated and observed patterns also match except for the largest
patches. This shows that the IM can effectively reproduce temporal changes in the composition
and texture of landscape pattern.

3. Parameter correlations:We found strong correlations between inferred values of parameter B and rate of
change. This indicates that the IM successfully captures the temporal variability of landscape
composition in response to changing external forces.

4. Model limitations: There are some discrepancies between modelled and observed land change. The IM
could not reproduce linear features, pattern shifts, and formation of large new patches.

Our findings provide compelling evidence that the fundamental principles of the IM, external influences
and internal coupling between neighbouring cells, are crucial factors driving various observed land
change phenomena. This insight constitutes the primary original contribution of our research. By
successfully demonstrating the IM’s capability to accurately capture the dynamics of land change
across different thematic contexts and locations, we highlight that the specific intricacies of these
underlying mechanisms may not be the determining factors in shaping the magnitude and nature of
change. Instead, it is the interplay between external forcing and short-range interactions, regardless of
their origin, that drives the observed patterns of change in land.
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As mentioned in the Introduction, the aim of this work was not to apply the IM for land change

prediction. However, our analysis of the four examples has demonstrated that the IM has the
capability to predict the spatial arrangement of future patterns given the initial conditions, the future
bulk composition, and an assumed constant value of J. The requirement of knowing the future bulk
composition is common to all spatially explicit models, including empirical, mechanistic, and agent-
based models, as they rely on understanding the extent of change (referred to as a scenario; e.g. Zhou
et al. [57]) in order to make predictions about future spatial patterns. As a cell-level predictor, the IM
has shown reasonable accuracy for predicting reforestation and crop expansion sites, but lower
accuracy for wetlands and mining sites. It is important to note that the accuracy of empirical
predictors on wetlands and mining sites is also unclear, as these sites pose unique challenges for
modelling.

In land science, the evaluation of simulation accuracy is conventionally carried out through the
utilization of a confusion matrix. In our context, the confusion matrix takes the form of a 2 × 2
contingency table, where the rows correspond to the actual categories, and the columns represent the
categories as predicted by a simulation. The values of accuracy, recall and precision, as presented in
figures 4 to 7, are derived from these confusion matrices. However, such assessment method may not
be ideally suited for gauging the accuracy of a stochastic model, whose primary function is to forecast
the characteristics of a pattern (values of indices m and 〈xk xℓ〉, and the value of an index of the
patch-size distribution). In our simulations, the accuracy values may fall within a spectrum ranging
from good to reasonable. Nonetheless, even if these values were to be lower, it would not necessarily
signify a failure, as long as the aforementioned indices are effectively matched. The rationale behind
this assertion is elucidated in figure 8.

Finally, it is important to emphasize that our utilization of the IM deviates from its conventional
application. While the classic IM is traditionally employed to deduce equilibrium land patterns based
on prescribed values of B and J or to ascertain the values of B and J associated with the first-order
phase transitions [35], our study repurposed the IM as a tool for simulating land-use changes. This
approach introduces a novel application for the well-established IM, expanding its utility to the realm
of land change modelling.
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