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ABSTRACT

A simple formula is first presented for the student t

percent points that has the virtue of being easily re-derived from

scratch: it is "retrievable". It is also quite accurate, but

improvements are also presented, as is a stand-alone formula (no

normal tables need be applied!).





A RETRIEVABLE RECIPE FOR INVERSE "t"

Donald P. Gaver
Naval Postgraduate School

Monterey, California

and

Karen Kafadar
Statistical Engineering Division
National Bureau of Standards

1. INTRODUCTION

Various critical values (synonymous with percent points or

evaluations of the inverse distribution function) of the classi-

cal Student's t distribution are frequently useful in applied

statistics. Selected such values are of course widely tabulated;

see Fisher and Yates (1963) , and Pearson and Hartley (1976) ;

the latter also are reproduced, with extensions by E.T. Federighi,

in Abramowitz and Stegun (1968). In certain circumstances, how-

ever, it is convenient to be able to compute "t" percent points

directly, accurately, and simply, without the need of extensive

tables except, perhaps, a normal (Gaussian) table; but see Section 5. A

simply derived, or retrievable , computational procedure for doing so is

presented in this paper. It can be carried out quickly on a hand-

held calculator and has been programmed, for instance, for the

TI-59, the TRS-80 and the HP-41C. It seems that the accuracy of

the numerical values obtained, especially at usually required

levels (e.g., 9 5%) —but also at much more extreme ones—coupled

with the ease of their computation, should provide a tempting

argument for their wide use.

Several similar approximations have appeared in various

journals over the last two decades. Among the most successful of



these is that derived by Peizer and Pratt (1968) , hereafter

abbreviated PP:

t
n
(a) pp

= {n exp[z
2
(a) (n -|)/(n - | + ^) 2

] -n} 2
, (1.1)

where a is the right single-tail probability, so < a <_ . 5

.

Approximations based on asymptotic expansions appeared earlier

(Wallace 19 58, 19 59) and were successful for moderate degrees

of freedom and not-too-extreme tail areas. Other approaches

have involved rational functions in the degrees of freedom

(Gardiner and Bombay 1965, Kramer 1966) or the logistic distribution

(Mudholkar and Chaubey 19 75) . A formula due to Koehler 19 83 is

based on a novel data-analytic approach to the t-tables, pioneered

by Hoaglin; let tn (a) v represent Koehler' s values. Furthern k

accurate approximations are reviewed by Bailey 19 80.

Often, suggested approximations are either simple but not

terribly accurate, or else are extremely complicated, involving

many coefficients. The present approach offers both simplicity

and a high degree of accuracy, yielding two digit accuracy or

better for moderate degrees of freedom, across a broad range of

tail areas. We call it a retrievable recipe because the simple

basic idea allows it to be rederived quickly when needed.

2. DERIVATION

Examination of an extensive table of Student's t, or some

mathematical analysis, shows that for a < 0.5 there is a mono-

tonically increasing transformation that stretches a Normal

quantile z (a) into a Student's t quantile, t (a). Let



t
R

(a) = ip
n
(z(a)), with ip (

• ) representing the transform.

We search for

By definition,

We search for a simple approximation to ip*(-)j call it \p (•).

2
u t (a) n (n+1)z(a) 2 "n^' 2 -

J 5 ?d? = j C(n)(l+i-) ^ dt = 1-a (2.1)
-°° /2tT -oo n

where C(n) is the normalizing constant. Equivalently

,

/ e__du = j- C ( n) ( 1 + L_) dt . (2 . 2)
—oo /2tT —o°

Differentiation of both sides with respect to z now leads to

_ z
2

e^~ **(z)
2 -!flid^(z)^_ = C(n)(1+ _S__, _^_ . (2.3)

/2tt

Our approximation has origin in the fact that t (a) approaches

z(a) and di|;*(z)/dz + 1 as n becomes large for fixed a. Conse-

quently, simply allow the approximation
ty

(z) to satisfy

_ z
2

-4-
,

, >2 (n+1)
2 ^ (z) -^—~—^-

= C(n) (1 + -^ ) (2.4)
'2tt

2
for every n. Solving (2.4) for \p (z) leads to an expression of

the following general form:

H(n)

z

2
(g)

t^(a) ~ ^(z(a)) = n{K(n)e - 1} . (2.5)



But for a = 0.5, z (a) = t (a) = 0, so K(n) = 1 for all n. In

order to determine H(n), consider matching expectations of random

variables. On the left-hand side of (2.5), E(t ) = Var[t
n ] = ^^;

the right-hand side requires the evaluation

E[exp{H(n)ZV2}] = / exp{H (n) z /2}exp{-z^/2 }//2Trdz

[1 -H(n)] 1/2

where Z is a unit normal random variable. Notice also that this

evaluation may be recovered easily from the moment generating

function of the Xi distribution function. Thus for second moment

matching,

= n[(l-H(n))
2
-1Jn-2

and so

H(n) = (2n-3)/(n-l)
2

. (2.6)

Our suggested first approximation is, then,

1

t (ci)„v = [n exp{z
2
(a) (n - 3/2)/(n-l)

2
} -n] 2

. (2.7)
n UK

for a < 0.50. Notice that this expression strongly resembles the

Peizer-Pratt approximation, but has a somewhat different exponent

Numerical examples, displayed later, also suggest that it is of

acceptable accuracy, usually being somewhat superior to that of



Peizer and Pratt. A distinctive feature of the above approxima-

tion, termed GK(I) for short, is its intuitively appealing and

easily recollected derivation: it is retrievable . Note that

this expression is convenient for simulating t-values, as in Ury

(1980). Iteration of the expression (i.e., replacing z by t

on the right-hand side of (2.7)) yields samples from even longer-

tailed distributions; such may be useful in robustness studies.

3. IMPROVING THE ACCURACY OF THE APPROXIMATION

Before numerically comparing the accuracy of t (a) pp with

GK(I), we consider a method for improving the accuracy as follows

Let us assume that the true value of Student's t can be written

as in (2.7) but with a slightly different tail area; i.e., with

a* a function of'a:

t (a) = {n exp[z(a*) 2
(n -|)/(n-l)

2
] -n} 2

. (3.1)

Upon rewriting (3.1), we see that

a*(n) = ${Iln(l + t^(a)/n)] [(n-1) V(n - j)]} , (3.2)

where $ denotes the standard Gaussian cumulative distribution

function. Now Figure 1 shows that ln(a*(n)-a) is roughly linear

in ln(n), for several values of a. The least squares estimates

for the slope and intercept for a few values of a are shown in

Table 1. A typical value for the slope is taken to be -1.86;

the intercept behaves like -3+0.62(ln a). Thus

. . , „ -3 .62, 1.86
(a* - a) e a /n



or

a + 0.04979 (a/n
3

)

* 62
. (3.3)

So our improved percent point should be

V o) GK(II) " V a *» • <3 - 4)

Note that the adjustment to a in (3.3) decreases rapidly as n

increases. Of course, the above correction is empirical and

doubtless can be further improved. Unfortunately, it is not easily

retrieved in a manner analogous to the derivation of t (a)^, T , ,, N .^ n GK( I)

4. COMPARING THE APPROXIMATIONS

Figure 2 compares the accuracy of the three approximations (1.1),

(2.7) , (3.4) , and Koehler's formula as a function of x = -10 log

(tail area), for n = 6, 10, 20, 30, by plotting the relative error

[= (t (a) - t (a))/t (a)]. Notice that in all the graphs, the simple

approximation given by GK(I) (2.7) is slightly better than that

suggested by Peizer and Pratt. Considerable improvement is at-

tained using the adjusted value of a given by GK(II) 25 in (3.4).

A few values of each approximation are tabulated in Table 2

and compared with the true percentage points. Notice that, while

GK(II) is initially worse than GK(I) for low degrees of freedom,

it results in an extra digit of accuracy for moderate n and extremely

small a. In fact, GK(II) yields 2-3 decimals of accuracy for

n >_ 10 over the entire range of a considered, 0.05 to 0.000001.

Koehler's formula is better for small n (n = 4) and moderate a

(a > 0.025), and is about the same as GK(I) and GK(II) when n is



very large (n = 60) . However, the choice of approximation at n = 60

is possibly academic, as many users would be satisfied with Gaussian

percent points for such large degrees of freedom. In brief,

GK(II) obtains an extra digit of accuracy for extreme tail areas

and moderate degrees of freedom. Notice that the correction fac-

tor is essentially for large n, so there is no advantage of GK(li)

over GK(I) for n greater than, say 30.

All approximations requiring z (a) used formula (26.2.2 3) from

AMS 55 (Abramowitz and Stegun 1968) in the table and figures of

comparisons. It may be noted that the approximation GK(I) , (2.7) ,

may be inverted to determine approximate probability values (so-

called "p-values") . A table of the Gaussian distribution, or an

approximation to the Gaussian percent points, is required.

5. TOWARDS A SIMPLE STAND-ALONE APPROXIMATION

It is tempting to calculate our t-value approximations, which

depend upon tabulated normal values, with the aid of approximate

normal values that can be computed easily from scratch. The

result is a stand-alone t-value approximation, accurate to nearly

two digits over a surprisingly large range.

Here is a suggested way of proceeding. Tukey's A-distribution

(see Tukey 19 70, as referred to in McNeil 1977, p. 88) provides

z (a) = J"
1
(l-2a;A) = ( /i722

A
/2A) [ ( 1-a)

X - a
A

] ; (5.1)

with A = 0.14 it yields inverse normal values to 3-digit accuracy

down to a = 0.01. In order to extend fairly satisfactorily to

a = 10 , proceed as follows: put a = 10 and write



/ exp{-z 2
/2}//27F dz = 10~ U , (5.2)

z(u)

so

- ulnlO = In / exp{-z /2}//2¥ dz (5.3)
z(u)

Now differentiate, and examine the result as u becomes large

(cf . Feller 1957, p. 193) :

1 , ,2 1 , ,2
-2 Z ( U ) ~2"z ( u )

in 10 = 5 :̂ _ dzTul _ _e dz(u)_
1 2 du 1 , . 2 du

co - Z -_Z( U)

,'
e dz

zTuT
e

z (u)

, x
dz (u)= z (u) du

Integration gives (for "large" u, here 2 < u £ 6)

z(u) - \/z
2
(u

Q
) + 2 (In 10) (u - u

Q
) (5.5)

Take u = -log (0.01) = 2, z(u ) = z (0.01) = 2.58 and replace

2 In 10 by 4.32 to achieve slightly better results. Then utilize

these numbers to find, for a < 0.01

= /z^(O.Ol) + 4.z
T (a) = Vz

T
(0.01) + 4.32(- log (2a) - 2) (5.6)

In summary, use the following prescription for the normal

values:



z
T
(a) = 4.476[(l-a) °- 14

-a°*
14

] / 10
2 <a<0.5

-6 , , n-2

(5.7)

= Z-4.32 log a - 3.284 , 10 < a < 10

with close to 2-digit accuracy throughout the stated range.

Refinement or improvement is possible, but at the apparent

price of a more elaborate representation.

Table 2 includes t-values computed using the normal approxi-

mation (5.7) . These are labelled t (a),,., /TTT » .

n GK ( I I I

)
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Table 1

Linear fits of In (a*- a) vs ln(n)

a Slope

.05 -2.876

.02 -1.308

.01 -1.809

.005 -1.828

.001 -1.928

.0005 -1.943

.00005 -1.930

.00001 -1.927

.000005 -1.822

.000001 -1.771

Intercept

-3.447

-8.487

-6.495

-6.473

-6.800

-7.138

-8.683

-9.872

-10.664

-11.976

f "V



Table 2

Comparing approximations

Single tail area
(-10Log(tail area)

n =

n =

n =

4

True
K
PP
GK(I)
GK(II)
GK(III)

10
True
K
PP
GK(I)
GK(II)
GK(III)

20
True
K
PP
GK(I)
GK(II)
GK(III)

= 30
True
K
PP
GK(I)
GK(II)
GK(III)

n = 60
True
K
PP
GK(I)
GK(II)
GK(III)

.05 .025 .01 .005 .001 .0001
• (13) (16) (20) (23) (30) (40)

2. 132 2.776 3-747 4.604 7. 171 11.559
2.139 2.776* 3. 708 4.509 6.853 12.365*
2. 13^* 2.787 3.780 4.667 7.379 13.798
2. 118 2.763 3.741* 4.613* 7.266 13.510
2. 107 2,748 3. 716 4.575 7.165* 13-091
2. 134 2.790 3-773 4.628 7.402 13-828

1 .812 2.228 2.764 3-169 4. 144 5.694
1.823 2.242 2.778 3. 182 4. 147* 5.684
1.813 2.230 2.767 3-174 4.155 5.721
1.812* 2.229* 2.766 3.173 4. 153 5. 718
1 .81 1 2.227* 2.764* 3. 170* 4. 147* 5.701*
1 .824 2.245 2.781 3.179 4. 196 5.762

1.725 2.086 2.528 2.845 3-552 4.539
1.728 2.090 2.531 2.847 3-552* 4.553
1.725* 2.087 2.529 2.847 3.554 4.543
1.725* 2.087 2.529 2.847 3.554 4.542
1.725* 2.086* 2.528* 2.84 0* 3-553 4.540*
1.735 2. 100 2.541 2.851 3.583 4.580

1.697 2.042 2.457 2.750 3-385 4.234
1.697* 2.042* 2.455 2.746 3.379 4.239
1.697* 2.043 2.458* 2.751* 3.386* 4.236*
1.698 2.043 2.458* 2.751* 3.386* 4.236*
1.697* 2.043 2.458* 2.751* 3-386* 4.236*
1.707 2.056 2.470 2.755 3.412 4.267

1.671 2.000 2.390 2.660 3.232 3-962
1.668 1.996 2.383 2.650 3.218 3-953
1.671* 2.001* 2.391* 2.661* 3.232* 3.963*
1.668 1.996 2.383 2.650 3.218 3-953
1.668 1.996 2.383 2.650 3. 218 3.953
1 .680 2.013 2.401 2.665 3.255 3.989

* indicates closest approximation to true value
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