NAESSVAL-011 POSTGRADUATE SCHOOL Monterey, California

FedDocs
D 208.14/2
NPS-55-84-011

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent
David A. Schrady Provost

This work was supported by the Probability and Statistics Program of the Office of Naval Research.

Reproduction of all or part of this report is authorized.

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMEER	2. GOVT ACCESSION NO.
NPSS55-84-011	
4. TITLE (and Subfitio)	

4. TITLE (and Subilite)

A RETRIEVABLE RECIPE FOR INVERSE "t"
5. TYPE OF REPORT A PERIOD COVERED Technical
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)

Donald P. Gaver
Karen Kafadar
9. PERFORMING ORGANIZATION NAME AND ADORESS
10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, CA 93943
6ll53N; RRO14-05-OE
NO001484WR24011
11. CONTROLLING OFFICE NAME ANO ADDRESS
12. REPORT OATE

Office of Naval Research
May 1984
Arlington, VA 22217
13. NUMBER OF PAGES
14. MONITORING AGENCY NAME \& ADDRESS(if difforent from Controlling Office)
5. SECURITY CLASS. (of thta report)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of thls Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of tho abstract ontored In Block 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If neceseary and identify by block number)
quantiles
t-distribution
student t percent point appriximations
20. ABSTRACT (Continue on reveree ide lif neceeary and ldentify by block number)

A simple formula is first presented for the student t percent points that has the virtue of being easily re-derived from
scratch: it is "retrievable". It is also quite accurate, but improvements are also presented, as is a stand-alone formula (no normal tables need be applied!).

ABSTRACT

A simple formula is first presented for the student t percent points that has the virtue of being easily re-derived from scratch: it is "retrievable". It is also quite accurate, but improvements are also presented, as is a standalone formula (no normal tables need be applied!).

A RETRIEVABLE RECIPE FOR INVERSE "t"

Donald P. Gaver Naval Postgraduate School

Monterey, California
and
Karen Kafadar Statistical Engineering Division National Bureau of Standards

1. INTRODUCTION

Various critical values (synonymous with percent points or evaluations of the inverse distribution function) of the classical Student's t distribution are frequently useful in applied statistics. Selected such values are of course widely tabulated; see Fisher and Yates (1963), and Pearson and Hartley (1976); the latter also are reproduced, with extensions by E.T. Federighi, in Abramowitz and Stegun (1968). In certain circumstances, however, it is convenient to be able to compute "t" percent points directly, accurately, and simply, without the need of extensive tables except, perhaps, a normal (Gaussian) table; but see Section 5. A simply derived, or retrievable, computational procedure for doing so is presented in this paper. It can be carried out quickly on a handheld calculator and has been programmed, for instance, for the TI-59, the TRS-80 and the HP-41C. It seems that the accuracy of the numerical values obtained, especially at usually required levels (e.g., 95\%)--but also at much more extreme ones--coupled with the ease of their computation, should provide a tempting argument for their wide use.

Several similar approximations have appeared in various journals over the last two decades. Among the most successful of
these is that derived by Peizer and Pratt (1968), hereafter abbreviated PP:

$$
\begin{equation*}
t_{n}(\alpha)_{P P}=\left\{n \exp \left[z^{2}(\alpha)\left(n-\frac{5}{6}\right) /\left(n-\frac{2}{3}+\frac{0.1}{n}\right)^{2}\right]-n\right\}^{\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

where α is the right single-tail probability, so $0<\alpha \leq 0.5$. Approximations based on asymptotic expansions appeared earlier (Wallace 1958, 1959) and were successful for moderate degrees of freedom and not-too-extreme tail areas. Other approaches have involved rational functions in the degrees of freedom (Gardiner and Bombay 1965, Kramer 1966) or the logistic distribution (Mudholkar and Chaubey 1975). A formula due to Koehler 1983 is based on a novel data-analytic approach to the t-tables, pioneered by Hoaglin; let $t_{n}(\alpha)_{K}$ represent Koehler's values. Further accurate approximations are reviewed by Bailey 1980.

Often, suggested approximations are either simple but not terribly accurate, or else are extremely complicated, involving many coefficients. The present approach offers both simplicity and a high degree of accuracy, yielding two digit accuracy or better for moderate degrees of freedom, across a broad range of tail areas. We call it a retrievable recipe because the simple basic idea allows it to be rederived quickly when needed.

2. DERIVATION

Examination of an extensive table of Student's t, or some mathematical analysis, shows that for $\alpha<0.5$ there is a monotonically increasing transformation that stretches a Normal quantile $z(\alpha)$ into a Student's t quantile, $t_{n}(\alpha)$. Let
$t_{n}(\alpha)=\psi_{n}^{*}(z(\alpha))$, with $\psi_{n}^{*}(\cdot)$ representing the transform.
We search for a simple approximation to $\psi_{n}^{*}(\cdot)$; call it $\psi_{n}(\cdot)$. By definition,

$$
\begin{equation*}
\int_{-\infty}^{z(\alpha)} \frac{e^{\frac{-u^{2}}{2}} d u}{\sqrt{2 \pi}}=\int_{-\infty}^{t_{n}(\alpha)} C(n)\left(1+\frac{t^{2}}{n}\right)^{-\frac{(n+1)}{2}} d t=1-\alpha \tag{2.1}
\end{equation*}
$$

where $C(n)$ is the normalizing constant. Equivalently,

$$
\begin{equation*}
\int_{-\infty}^{z} \frac{e^{\frac{-u^{2}}{2}} d u}{\sqrt{2 \pi}}=\int_{-\infty}^{\psi_{n}^{*}(z)} C(n)\left(1+\frac{t^{2}}{n}\right)-\frac{(n+1)}{2} d t \tag{2.2}
\end{equation*}
$$

Differentiation of both sides with respect to z now leads to

$$
\begin{equation*}
\frac{e^{\frac{-z^{2}}{2}}}{\sqrt{2 \pi}}=C(n)\left(1+\frac{\psi_{n}^{*}(z)^{2}}{n}\right)^{-\frac{(n+1)}{2}} \frac{d \psi_{n}^{*}(z)}{d z} \tag{2.3}
\end{equation*}
$$

Our approximation has origin in the fact that $t_{n}(\alpha)$ approaches $z(\alpha)$ and $d \psi_{\mathrm{n}}^{*}(\mathrm{z}) / \mathrm{dz} \rightarrow 1$ as n becomes large for fixed α. Consequently, simply allow the approximation $\psi_{n}(z)$ to satisfy

$$
\begin{equation*}
\frac{e^{\frac{-z^{2}}{2}}}{\sqrt{2 \pi}}=C(n)\left(1+\frac{\psi_{n}(z)^{2}}{n}\right)-\frac{(n+1)}{2} \tag{2.4}
\end{equation*}
$$

for every n. Solving (2.4) for $\psi_{n}^{2}(z)$ leads to an expression of the following general form:

$$
\begin{equation*}
t_{n}^{2}(\alpha) \approx \psi_{n}^{2}(z(\alpha))=n\left\{K(n) e^{\frac{H(n) z^{2}(\alpha)}{2}}-1\right\} . \tag{2.5}
\end{equation*}
$$

But for $\alpha=0.5, z(\alpha)=t_{n}(\alpha)=0$, so $K(n)=1$ for all n. In order to determine $H(n)$, consider matching expectations of random variables. On the left-hand side of (2.5), $E\left({\underset{\sim}{r}}_{2}^{2}\right)=\operatorname{Var}\left[{\underset{\sim}{n}}_{n}\right]=\frac{n}{n-2}$; the right-hand side requires the evaluation

$$
\begin{aligned}
E\left[\exp \left\{H(n) z^{2} / 2\right\}\right] & =\int_{-\infty}^{\infty} \exp \left\{H(n) z^{2} / 2\right\} \exp \left\{-z^{2} / 2\right\} / \sqrt{2 \pi} d z \\
& =[1-H(n)]^{-1 / 2}
\end{aligned}
$$

where Z is a unit normal random variable. Notice also that this evaluation may be recovered easily from the moment generating function of the X_{1}^{2} distribution function. Thus for second moment matching,

$$
\frac{n}{n-2}=n\left[(1-H(n))^{-\frac{1}{2}}-1\right]
$$

and so

$$
\begin{equation*}
H(n)=(2 n-3) /(n-1)^{2} . \tag{2.6}
\end{equation*}
$$

Our suggested first approximation is, then,

$$
\begin{equation*}
\hat{t}_{\mathrm{n}}(\alpha)_{G K}=\left[n \exp \left\{z^{2}(\alpha)(n-3 / 2) /(n-1)^{2}\right\}-n\right]^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

for $\alpha<0.50$. Notice that this expression strongly resembles the Peizer-Pratt approximation, but has a somewhat different exponent. Numerical examples, displayed later, also suggest that it is of acceptable accuracy, usually being somewhat superior to that of

Peizer and Pratt. A distinctive feature of the above approximation, termed GK(I) for short, is its intuitively appealing and easily recollected derivation: it is retrievable. Note that this expression is convenient for simulating t-values, as in Ury (1980). Iteration of the expression (i.e., replacing z by t_{n} on the right-hand side of (2.7)) yields samples from even longertailed distributions; such may be useful in robustness studies.

3. IMPROVING THE ACCURACY OF THE APPROXIMATION

Before numerically comparing the accuracy of $\hat{t}_{n}(\alpha)$ Pp with GK(I), we consider a method for improving the accuracy as follows. Let us assume that the true value of Student's t can be written as in (2.7) but with a slightly different tail area; i.e., with α * a function of α :

$$
\begin{equation*}
\hat{t}_{\mathrm{n}}(\alpha)=\left\{\mathrm{n} \exp \left[\mathrm{z}\left(\alpha^{*}\right)^{2}\left(\mathrm{n}-\frac{3}{2}\right) /(\mathrm{n}-1)^{2}\right]-\mathrm{n}\right\}^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

Upon rewriting (3.1), we see that

$$
\begin{equation*}
\alpha^{*}(n)=\Phi\left\{\left[\ln \left(1+t_{n}^{2}(\alpha) / n\right)\right]\left[(n-1)^{2} /\left(n-\frac{3}{2}\right)\right]\right\}^{\frac{1}{2}}, \tag{3.2}
\end{equation*}
$$

where Φ denotes the standard Gaussian cumulative distribution function. Now Figure l shows that $\ln \left(\alpha^{*}(n)-\alpha\right)$ is roughly linear in $\ln (n)$, for several values of α. The least squares estimates for the slope and intercept for a few values of α are shown in Table l. A typical value for the slope is taken to be -l.86; the intercept behaves like $-3+0.62(\ln \alpha)$. Thus

$$
\left(\alpha^{*}-\alpha\right) \approx e^{-3} \alpha^{.62} / n^{1.86}
$$

or

$$
\begin{equation*}
\alpha^{*} \approx \alpha+0.04979\left(\alpha / n^{3}\right) .62 \tag{3.3}
\end{equation*}
$$

So our improved percent point should be

$$
\begin{equation*}
\hat{t}_{n}(\alpha)_{G K}(I I)=\hat{t}_{n}\left(\alpha^{*}\right) \tag{3.4}
\end{equation*}
$$

Note that the adjustment to α in (3.3) decreases rapidly as n increases. Of course, the above correction is empirical and doubtless can be further improved. Unfortunately, it is not easily retrieved in a manner analogous to the derivation of $\hat{t}_{n}{ }^{(\alpha)}$ GK(I).

4. COMPARING THE APPROXIMATIONS

Figure 2 compares the accuracy of the three approximations (1.l),
(2.7), (3.4), and Koehler's formula as a function of $x=-10 \log$ (tail area), for $n=6,10,20,30$, by plotting the relative error $\left[=\left(t_{n}(\alpha)-\hat{t}_{n}(\alpha)\right) / t_{n}(\alpha)\right]$. Notice that in all the graphs, the simple approximation given by $G K(I)$ (2.7) is slightly better than that suggested by Peizer and Pratt. Considerable improvement is attained using the adjusted value of α given by GK(II) 25 in (3.4). A few values of each approximation are tabulated in Table 2 and compared with the true percentage points. Notice that, while GK(II) is initially worse than GK(I) for low degrees of freedom, it results in an extra digit of accuracy for moderate n and extremely small α. In fact, GK(II) yields $2-3$ decimals of accuracy for $n \geq 10$ over the entire range of α considered, 0.05 to 0.000001 . Koehler's formula is better for small $n(n=4)$ and moderate α $(\alpha \geq 0.025)$, and is about the same as $G K(I)$ and $G K(I I)$ when n is
very large ($n=60$). However, the choice of approximation at $n=60$ is possibly academic, as many users would be satisfied with Gaussian percent points for such large degrees of freedom. In brief, GK(II) obtains an extra digit of accuracy for extreme tail areas and moderate degrees of freedom. Notice that the correction factor is essentially 0 for large n, so there is no advantage of GK(II) over GK(I) for n greater than, say 30 .

All approximations requiring $z(\alpha)$ used formula (26.2.23) from AMS 55 (Abramowitz and Stegun 1968) in the table and figures of comparisons. It may be noted that the approximation GK(I), (2.7), may be inverted to determine approximate probability values (socalled "p-values"). A table of the Gaussian distribution, or an approximation to the Gaussian percent points, is required.

5. TOWARDS A SIMPLE STAND-ALONE APPROXIMATION

It is tempting to calculate our t-value approximations, which depend upon tabulated normal values, with the aid of approximate normal values that can be computed easily from scratch. The result is a stand-alone t-value approximation, accurate to nearly two digits over a surprisingly large range.

Here is a suggested way of proceeding. Tukey's λ-distribution (see Tukey 1970, as referred to in McNeil 1977, p. 88) provides

$$
\begin{equation*}
z_{T}(\alpha) \equiv \hat{\Phi}^{--1}(1-2 \alpha ; \lambda)=(\sqrt{\pi / 2} 2 \lambda / 2 \lambda)\left[(1-\alpha)^{\lambda}-\alpha^{\lambda}\right] ; \tag{5.1}
\end{equation*}
$$

with $\lambda=0.14$ it yields inverse normal values to 3-digit accuracy down to $\alpha=0.01$. In order to extend fairly satisfactorily to $\alpha=10^{-6}$, proceed as follows: put $\alpha=10^{-u}$ and write

$$
\begin{equation*}
\int_{z(u)}^{\infty} \exp \left\{-z^{2} / 2\right\} / \sqrt{2 \pi} d z=10^{-u} \tag{5.2}
\end{equation*}
$$

so

$$
\begin{equation*}
-u \ln 10=\ln \underset{z(u)}{\infty} \exp \left\{-z^{2} / 2\right\} / \sqrt{2 \pi} d z \tag{5.3}
\end{equation*}
$$

Now differentiate, and examine the result as u becomes large (cf. Feller 1957, p. 193):

$$
\begin{align*}
\ln 10=\frac{e^{-\frac{1}{2} z(u)^{2}}}{\int_{z(u)}^{\infty} e^{-\frac{1}{2} z^{2}} d z} \frac{d z(u)}{d u} & \sim \frac{e^{-\frac{1}{2} z(u)^{2}}}{\frac{1}{z(u)} e^{-\frac{1}{2} z(u)^{2}} \frac{d z(u)}{d u}} \tag{5.4}\\
& =z(u) \frac{d z(u)}{d u}
\end{align*}
$$

Integration gives (for "large" u, here $2<u \leq 6$)

$$
\begin{equation*}
z(u) \simeq \sqrt{z^{2}\left(u_{0}\right)+2(\ln 10)\left(u-u_{0}\right)} \tag{5.5}
\end{equation*}
$$

Take $u_{0}=-\log (0.01)=2, z\left(u_{0}\right)=z_{T}(0.01)=2.58$ and replace 2 ln 10 by 4.32 to achieve slightly better results. Then utilize these numbers to find, for $\alpha<0.01$

$$
\begin{equation*}
\mathrm{z}_{\mathrm{T}}(\alpha)=\sqrt{\mathrm{z}_{\mathrm{T}^{\mathrm{T}}}^{2}(0.01)+4.32(-\log (2 \alpha)-2)} \tag{5.6}
\end{equation*}
$$

In summary, use the following prescription for the normal values:

$$
\begin{align*}
\mathrm{z}_{\mathrm{T}}(\alpha) & =4.476\left[(1-\alpha)^{0.14}-\alpha^{0.14}\right], 10^{-2} \leq \alpha \leq 0.5 \\
& =\sqrt{-4.32 \log \alpha-3.284}, \quad 10^{-6}<\alpha<10^{-2} \tag{5.7}
\end{align*}
$$

with close to 2 -digit accuracy throughout the stated range. Refinement or improvement is possible, but at the apparent price of a more elaborate representation.

Table 2 includes t-values computed using the normal approximation (5.7). These are labelled $\hat{t}_{n}(\alpha)$ GK(III).

6. ACKNOWLEDGEMENT

The research of D.P. Gaver was partially supported by the Probability and Statistics Program of the Office of Naval Research. We wish to thank John Orav for helpful comments.

Table 1

Linear fits of $\ln \left(\alpha^{*}-\alpha\right)$ vs $\ln (n)$

$\underline{\alpha}$	slope	Intercept
.05	-2.876	-3.447
.02	-1.308	-8.487
.01	-1.809	-6.495
.005	-1.828	-6.473
.001	-1.928	-6.800
.0005	-1.943	-7.138
.00005	-1.930	-9.872
.00001	-1.927	-10.664
.000005	-1.822	-11.978

Comparing approximations

Single tail area (-10Log(tail area)	$\begin{aligned} & .05 \\ & (13) \end{aligned}$	$\begin{aligned} & .025 \\ & (16) \end{aligned}$	$\begin{aligned} & .01 \\ & (20) \end{aligned}$	$\begin{aligned} & .005 \\ & (23) \end{aligned}$	$\begin{aligned} & .001 \\ & (30) \end{aligned}$	$\begin{array}{r} .0001 \\ (40) \end{array}$
$n=4$						
True	2.132	2.776	3.747	4.604	7.171	11.559
K	2.139	2.776*	3.708	4.509	6.853	12.365*
PP	2.134*	2.787	3.780	4.667	7.379	13.798
GK(I)	2.118	2.763	3.741*	4.613*	7.266	13.510
GK(II)	2.107	2.748	3.716	4.575	7.165*	13.091
GK(III)	2.134	2.790	3.773	4.628	7.402	13.828
$n=10$						
True	1.812	2.228	2.764	3.169	4.144	5.694
K	1.823	2.242	2.778	3.182	4.147*	5.684
PP	1.813	2.230	2.767	3.174	4.155	5.721
GK(I)	1.812*	2.229*	2.766	3.173	4.153	5.718
GK(II)	1.811	2.227*	2.764*	3.170*	4.147*	5.701^{*}
GK(III)	1.824	2.245	2.781	3.179	4.196	5.702
$\mathrm{n}=20$						
True	1.725	2.086	2.528	2.845	3.552	4.539
K	1.728	2.090	2.531	2.847	3.552*	4.553
PP	1.725*	2.087	2.529	2.847	3.554	4.543
GK(I)	1.725*	2.087	2.529	2.847	3.554	4.542
GK(II)	1.725*	2.086*	2.528*	2.840 *	3.553	4.540*
GK(III)	1.735	2.100	2.541	2.851	3.583	4.580
$n=30$						
True	1.697	2.042	2.457	2.750	3.385	4.234
K	1.697*	2.042^{*}	2.455	2.746	3.379	4.239
PP	1.697^{*}	2.043	2.458*	2.751*	3.386*	4.236*
GK (I)	1.698	2.043	2.458*	2.751*	3.386*	4.236*
GK(II)	1.697^{*}	2.043	2.458*	2.751*	3.386*	4.236*
GK(III)	1.707	2.056	2.470	2.755	3.412	4.267
$n=60$						
True	1.671	2.000	2.390	2.660	3.232	3.962
K	1.668	1.996	2.383	2.650	3.218	3.953
PP	$1.67{ }^{*}$	2.001 *	2.391*	2.661*	3.232*	3.963*
GK(I)	1.668	1.996	2.383	2.650	3.218	3.953
GK (II)	1.668	1.996	2.383	2.650	3.218	3.953
GK(III)	1.680	2.013	2.401	2.665	3.255	3.989

* indicates closest approximation to true value

REFERENCES

Abramowitz, M. and Stegun, I. (1968). Handbook of Mathematical Functions. Applied Mathematics Series 55, U.S. Government Printing Office: Washington, D.C.

Bailey, B.J.R. (1980). Accurate normalizing transformations of a Student's t variable. Applied Statistics, Vol. 29, No. 3, pp. 304-306.

Feller, W. (1957). An Introduction to Probability Theory and Its Applications, Vol. I. John Wiley and Sons, New York.

Fisher, R.A., and Yates, F. (1963). Statistical Tables. Oliver \& Boyd: London.

Gardiner, Donald A., and Bombay, Barbara Flores (1965). An approximation to Student's t. Technometrics 7, 71-72.

Koehler, K.J. (1983). A simple approximation for the percentiles of the t distribution. Technometrics, Vol. 25, No. l, pp. 103-106.

Kramer, Clyde Y. (1966). Approximation to the cumulative t distribution. Technometrics 8, 358-359.

McNeil, Donald L. (1977). Interactive Data Analysis. Wiley: New York.

Mudholkar, Govind S., and Chaubey, Yogendra P. (1975). Use of the logistic distribution for approximating probabilities and percentiles of Student's distribution. Journal of Statistical Research 9, No. 1 .

Pearson, E.S., and Hartley, H.O. (1976). Biometrika Tables for Statisticians. Biometrika Trust: Lonđon.

Peizer, David B., and Pratt, John W. (1968). A normal approximation for binomial, F, Beta, and other common related tail probabilities, I. J. Amer. Statistical Assoc. 63, 1416-1456.

Tukey, J.W. (1970). Exploratory Data Analysis; Limited Preliminary Edition, Vol. III. Addison-Wesley Publ. Co., Reading, Mass.

Ury, Hans K. (1980). Calculator quirks (letter). RSS News and Notes (Publication of the Royal Statistical Society).

Wallace, David L. (1958). Asymptotic approximations to distributions. Ann. Math. Statist. 29, 636-654.

Wallace, David L. (1959). Bounds on normal approximations to Student's t and the chi-square distributions. Ann. Math. Statist. 30, 1121-1130.
Library 4code 0142Naval Postgraduate SchoolMonterey, CA 93943
Research Administration 1
Code 012A
Naval Postgraduate SchoolMonterey, CA 93943
Library 1code 55Naval Postgraduate SchoolMonterey, CA 93943
Professor F. J. Anscombe 1Department of StatisticsYale University, Box 2179New Haven, CT 06520
Dr. Barbara Bailar 1Associate DirectorStatistical Standards
Bureau of Census
Washingt on , DC 20024
Dr. David Brillinger1Statistics DepartmentUniversity of CaliforniaBerkeley, CA 94720
Dr. D. R. Cox 1
Department of Mathematics
Imperial College
London SW7
ENGLAND
Dr. D. F. Daley 1Statistics Department (IAS)Australian National University
Canberra A.C.T. 2606
AUSTRALIA
Dr. R. Gnanadesikan 1
Bell Telephone Lab
Murray Hill, NJ 07733Professor Bernard Harris1
Department of StatisticsUniversity of Wisconsin610 Walnut StreetMadison, WI 53706
Professor W. M. Hinich 1University of TexasAustin, TX 78712
P. Heidelberger1IBM Research Laboratory
Yorktown Heights
New York, NY 10598
Dr. D. Vere Jones 1
Department of Mathematics
Victoria University of Wellington
P. O. Box 196
Wellingt on
NEW ZELAND
Professor J. B. Kadane 1
Department of Statistics
Carnegie-Mellon
Pittsburgh, PA 15213
A. J. Laurance 1
Department of Mathematical StatisticsUniversity of Birmingham
P. O. Box 363
Birmingham Bl5 2TT
ENGLAND
Dr. John Copas 1
Department of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham Bl5 2 TT
ENGLAND
Professor M. Leadbetter 1Department of StatisticsUniversity of North CarolinaChapel Hill, NC 27514
J. Lehoczky 1Department of StatisticsCarnegie-Mellon UniversityPittsburgh, PA 15213

Dr. M. Mazumdar
Dept. of Industrial Engineering
University of Pittsburgh
Oakland
Pittsburgh, PA 15235
Professor Rupert G. Miller, Jr. Statistics Department
Sequoia Hall
Stanford University
Stanford, CA 94305
Professor I. R. Savage
Department of statistics
Yale University
New Haven, CT 06529
Professor W. R. Schucany 1 Department of statistics
Southern Methodist University
Dallas, TX 75222
Professor D. C. Siegmund 1
Sequoia Hall
Stanford University
Stanford, CA 94305
Professor H. Solomon1
Department of statistics
Sequoia Hall
Stanford UniversityStanford, CA 94305
Dr. Ed Wegman1Statistics \& Probability ProgramCode 411 (SP)Office of Naval ResearchArlington, VA 22217
Dr. Douglas de Priest1
Statistics
Code 4ll(SP)
Office of Naval Research
Arlington, VA 22217Dr. Marvin Moss1Statistics \& Probability ProgramCode 4ll(SP)Office of Naval ResearchArlington, VA 22217
Professor J. R. Thompson 1
Dept. of Mathematical Science
Rice University
Houston, TX 77001
Professor J. W. Tukey 1
Statistics Department
Princeton University
Princeton, NJ 08540
Pat Welsh 1
Head, Polar Oceanography Branch
code 332
Naval Ocean Research \&
ev. Activity
NSTL Station
Mississippi 39529
Dr. Roy Welsch 1
Sloan School
M.I.T.
Cambridge, MA 02139
Dr. Morris DeGroot 1
Statistics DepartmentCarnegie-Mellon UniversityPittsburgh, PA 15235
Dr. Colin Mallows 1
Bell Telephone Laboratories Murray Hill, NJ 07974
Dr. D. Pregibon 1
Bell Telephone Laboratories Murray Hill, NJ 07974
Dr. Jon Kettenring 1
Bell Telephone Laboratories Murray Hill, NJ 07974
Professor D. P. Gaver 25Code 55GvNaval Postyraduate School
Monterey, CA 93943

