NPS-53-87-004 NAVAL POSTGRADUATE SCHOOL Monterey, California

AN APL FUNCTION FOR BIVARIATE NORMAL PROBABILITIES

Toke Jayachandran

Technical Report for Period October 1986 - July 1987

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School Monterey, CA 93943-5000

FedDocs D 208.14/2 NPS-53-87-004

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943

R. C. AUSTIN Rear Admiral, U.S. Navy Superintendent

K.T. MARSHALL Acting Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1. REPORT NUMBER NPS-53-87-004 2. GOVT ACCESSION NO. 2. RECIPIENT'S CATALOG NPS-53-87-004 3. TITLE (mod Skolld) An APL Function For Bivariate Normal Probabilities An APL Function For Bivariate Normal Probabilities 7. AUTHOR(9) 7. AUTHOR(9) 7. AUTHOR(9) 7. AUTHOR(9) 7. AUTHOR(9) 7. CONTRACT OR GRANIZATION NAME AND ADDRESS Naval Postgraduate School 7. Mayai Postgraduate School 7. AUTHOR(9) 7. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School 7. Monterey, CA 93943 7. CONTROLLING OFFICE NAME AND ADDRESS 7. AUTHOR(9) 7. CONTROLLING OFFICE NAME AND ADDRESS 7. AUGUST 1987 7. MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) 7. Distribution statement (of the Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, // different from Report) 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9. ABSTRACT (Continue on reverse side // necessary and /dentify by block number) 9.	RUCTIONS		AGE	T DOCUMENTATION	REPORT
NPS-53-87-004 5. TYPE OF REPORT & REPO	LOG NUMBER	NO. 3.	2. GOVT ACCESSION		REPORT NUMBER
TITLE (and Suburno) An APL Function For Bivariate Normal Probabilities Technical Repo PERFORMING ORGANIZATION NAME AND ADDRESS AUTHOR(0) CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS PERFORMING ORGANIZATION NAME AND ADDRESS PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT X				P	NPS-53-87-004
An APL Function For Bivariate Normal Probabilities Technical Repo 4. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 1. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 1. CONTROLLING OFFICE NAME AND ADDRESS Noterey, CA 93943 1. CONTROLLING OFFICE NAME AND ADDRESS Noterey, CA 93943 1. NUMBER OF PAGES 12. REPORT DATE August 1987 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 5. SECURITY CLASS. (or if "Unclassified 15. SECURITY NOTES 15. SECURITY NOTES 15. SECURITY NOTES 16. ABSTREACT (Continue on reverse side if necessary and identify by block number) A APL function to compute on all identified 16. ABSTRACT (Continue on reverse side if necessary and identify by block number) A APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IEM-PC/AT compatible microcomputer such as the	& PERIOD COVERED	5.			I. TITLE (and Subtitie)
AUTHOR(*) AUTHOR(*) Toke Jayachandran PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 CONTRACT OR GRANT LEWENT, PLANE & MORE AND ADDRESS L: REPORT DATE August 1987 Novito office NAME AND ADDRESS L: REPORT DATE August 1987 NovitoRing AGENCY NAME & ADDRESS(!! different from Controlling Office) Distribution statement (of the Report) Approved for public release; distribution unlimited Vistribution statement (of the Report) Supplementary Notes Key WORDS (Continue on reverse olds // necessary and identify by black number) bivariate normal	leport	ies	a APL Function For Bivariate Normal Probabilitie		An APL Function Fo
AUTHOR(*) S. CONTRACT OR GRANT A Toke Jayachandran PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Number of Page 1 Number of Page 1 Number of Page 2 Nontrograduate School Super Control Instruction I for Page 2 Super Control Instruction Controlling Office Distribution STATEMENT (of the eberrect entered in Block 20, if different from Report) Super Control Control Instruction function microcomputer Super Control Control Instruction function microcomputer ASTRACT (Continue on reverse olds if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ASTRACT (Continue on reverse olds if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer.	REPORT NUMBER	6.			
AUTHOR(*) E. CONTRACT OR GRANT X Toke Jayachandran E. CONTRACT OR GRANT X PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PL Naval Postgraduate School 11. PROGRAM ELEMENT, PL Monterey, CA 93943 12. REPORT OATE Monterey, CA 93943 13. NUMBER OF PAGES Monterey, CA 93943 13. NUMBER OF PAGES Monterey, CA 93943 13. NUMBER OF PAGES Montorey, CA 93943 14. NUMBER OF PAGES Montorey, CA 93943 14. NUMBER OF PAGES Montoring Office 15. SECURITY CLASS. (or in "Units of the secure from Controlling Office" MONTORING AGENCY NAME & ADDRESS(if different from Controlling Office" 15. SECURITY CLASS. (or in "Units of the secure from the s					
Toke Jayachandran PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School In Program Element, Primer And Address Naval Postgraduate School In Program Element, Primer And Address Naval Postgraduate School In Program Element, Primer And Address Nonterey, CA 93943 In Number of Pages Monterey, CA 93943 In Scelentrey Monterey, CA 93943 In Sc	NT NUMBER(*)	8.			AUTHOR(+)
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PJ Naval Postgraduate School 11. PROGRAM ELEMENT, PJ Monterey, CA 93943 12. REPORT DATE Monterey, CA 93943 12. REPORT DATE Monterey, CA 93943 13. NUMBER PROFESS Naval Postgraduate School 11. NUMBER PROFESS Monterey, CA 93943 12. REPORT DATE Monterey, CA 93943 13. NUMBER PROFESSION Monterey, CA 93943 12. Report DATE Monterey, CA 93943 13. NUMBER REPORT Monterey, CA 93943 14. Report DATE Monterey, CA 10.				1	Toke Jayachandran
PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 I2. REPORT OATE August 1987 I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE I2. REPORT OATE August 1987 I3. NUMBER OF PAGES I2. REPORT OATE I3. SECURITY CLASS. (af if					
Nonterey, CA 93943 Controlling office NAME AND ADDRESS Aval Postgraduate School Monterey, CA 93943 MonitoRing Agency NAME & ADDRESS(# different from Controlling Office) MonitoRing Agency NAME & ADDRESS(# different from Controlling Office) MonitoRing Agency NAME & ADDRESS(# different from Controlling Office) MonitoRing Agency NAME & ADDRESS(# different from Controlling Office) Scheoule Distribution Statement (of this Report) Approved for public release; distribution unlimited Distribution Statement (of the ebetrect entered in Block 20, # different from Report) Scheoule CostRibution Statement (of the ebetrect entered in Block 20, # different from Report) Supplementary Notes KEY WORDS (Continue on reverse side # necessary and Identify by block number) Supplementary Notes Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) Astinact (Continue on reverse side # necessary and identify by block number) A	T. PROJECT, TASK	10.	FORMING ORGANIZATION NAME AND ADDRESS		PERFORMING ORGANIZATI
 CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 NUMBER OF PAGES				943	Monterey, CA 9394
CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943 Is report of a factor of the second of					
Naval Postgraduate School August 1987 Monterey, CA 93943 13. NUMBER of PAGES MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of if 'Unclassified 'Unclassified 'S. SECURITY CLASS. (of if 'Unclassified 'S. DISTRIBUTION STATEMENT (of the Report) 'S. SECURITY CLASS. (of if 'Unclassified *. DISTRIBUTION STATEMENT (of the ebetree: entered in Block 20, II different from Report) *. DISTRIBUTION STATEMENT (of the ebetree: entered in Block 20, II different from Report) *. SUPPLEMENTARY NOTES *. KEY WORDS (Continue on reverse ofde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer *. ABSTRACT (Continue on reverse olde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		12.		NAME AND ADDRESS	1. CONTROLLING OFFICE N
Monterey, CA 93943 MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) S. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) S. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) S. SUPPLEMENTARY NOTES MARKED Continue on reverse olds if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		Au		e School	Naval Postgraduate
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) S. SECURITY CLASS. (of if "Unclassified "Unclassified "Secure of the secure of the secur	5	13.		43	Monterey, CA 9394
 ⁻ Unclassified ^{15.} <u>DECLASSIFICATION/O</u> <u>SCHEOULE</u> ^{15.} <u>DECLASSIFICATION/O</u> <u>SCHEOULE</u> ^{16.} DISTRIBUTION STATEMENT (of the Report) ^{17.} DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 different from Report) ^{18.} SUPPLEMENTARY NOTES ^{18.} SUPPLEMENTARY NOTES ^{19.} KEY WORDS (Continue on reverse elde if necessary and identify by block number) ^{10.} DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 different from Report) ^{10.} NEY WORDS (Continue on reverse elde if necessary and identify by block number) ^{10.} NEY WORDS (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) ^{10.} ABSTRACT (Continue on reverse elde if necessary and identify by block number) 	(of this report)	:•) 15.	from Controlling Offi	AME & ADDRESS(If differen	4. MONITORING AGENCY NAI
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		1-			
SCHEDULE SCHEDULE SCHEDULE COISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited C. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from Report) S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.	ON/ DOWN GRADING	154			
Approved for public release; distribution unlimited DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, II different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
Approved for public release; distribution unlimited DISTRIBUTION STATEMENT (of the abetree: entered in Block 20, If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olds if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (Continue on reverse olds if necessary and identify by block number) ABSTRACT (C				ENT (of this Report)	DISTRIBUTION STATEMEN
Approved for public felease, distribution dufilmited 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse olds if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer 9. ABSTRACT (Continue on reverse olds if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith 2-248, a well as on the IBM 3033 mainframe computer.		itad	ibution unlig	in molongo: distr	Approved for public
2. DISTRIBUTION STATEMENT (of the observent entered in Block 20, 11 different from Report) 4. SUPPLEMENTARY NOTES 4. SUPPLEMENTARY NOTES 5. KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer 5. ABSTRACT (Continue on reverse elde If necessary and Identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		recu	ibación anila	IC leiease, distr	Approved for public
 DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) ANAPL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. 					
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. 					-
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse olde if necessary and identify by block number) ABSTRACT (Continue on reverse olde if necessary and identify by block number) ABSTRACT (Continue on reverse olde if necessary and identify by block number) ABSTRACT (Continue on reverse olde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. 		t from Re	1 Block 20, if differe	ENT (of the abstract entered)	DISTRIBUTION STATEMEN
SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessery and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) ABSTRACT (Continue on reverse elde if necessary and identify by block number) ABSTRACT (Continue on reverse elde if necessary and identify by block number) ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. 					
ABSTRACT (Continue on reverse elde if necessary and identify by block number) bivariate normal cumulative distribution function APL language cumulative distribution function ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
ABSTRACT (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.				- 3	SUPPLEMENTART NUTES
• XEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer • ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
 KEY WORDS (Continue on reverse elde if necessary and identify by block number) bivariate normal APL language cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. 					
bivariate normal APL language cumulative distribution function microcomputer cumulative distribution function microcomputer cumulative distribution function microcomputer cumulative distribution function microcomputer cumulative distribution function for a standard cumulative normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer. State of the function functin function function function function functin function		nber)	Identify by block nu	reverse elde if necessary en	KEY WORDS (Continue on re
cumulative distribution function microcomputer ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		age	APL lang	,	bivariate normal
ABSTRACT (Continue on reverse elde II necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.	~	uter	microcom	ibution function	cumulative distrib
ABSTRACT (Continue on reverse elde if necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
ABSTRACT (Continue on reverse elde II necessary and identify by block number) An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.					
An APL function to compute cumulative probabilities for a standard bivariate normal distribution is presented. The function can be run on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.		ber)	identify by block num	reverse elde if necessary and	ABSTRACT (Continue on ret
bivariate normal distribution is presented. The function can be rur on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.	rd	ties	ive probabil:	to compute cumulat	An APL function to
on an IBM-PC/AT compatible microcomputer such as the Zenith Z-248, a well as on the IBM 3033 mainframe computer.	run	e fun	resented. Th	distribution is p	bivariate normal d
well as on the IBM 3033 mainframe computer.	3, as	s the	mputer such a	compatible microco	on an IBM-PC/AT co
			computer.	BM 3033 mainframe	well as on the IBM

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

~

AN APL FUNCTION FOR BIVARIATE NORMAL PROBABILITIES

-

.

AN APL FUNCTION FOR BIVARIATE NORMAL PROBABILITIES

INTRODUCTION: Bivariate normal distributions have many applications such as in combat modelling, weapons systems effectiveness studies and weather prediction problems; several other applications are discussed in [4]. It is well known that probability statements for a general bivariate normal distribution can be transformed into equivalent statements for a standard bivariate normal distribution with 0 means and variances equal to 1. It is thus sufficient to be able to compute cumulative probabilities for a standard bivariate normal distribution with probability density function

$$f(x, y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}} \left[x^2 - 2\rho xy + y^2\right] - \infty < x < \infty - \infty < y < \infty$$

Similar to the case with the univariate normal distribution, the bivariate cumulative distribution function (c.d.f.)

$$F(h,k) = P[X \le h, Y \le k] = \int_{-\infty}^{k} \int_{-\infty}^{h} f(x,y) dx dy$$

does not have a closed form solution and numerical integration is the usual approach to evaluating such integrals. Because of the importance of the distribution, the National Bureau of Standards

(NBS) has published an extensive set of tables for P[X>h,Y>k] [5]. Another set of tables using a different approximation, has been generated by Owen [6]. Other ways to approximate the bivariate normal integral are discussed in [1], [3] and [7]. A11 of these approximations involve numerical integration and require extensive computer programming, rendering them to be not readily suitable for obtaining on the spot results. These days, with the easy availability of microcomputers, it would be useful to have a program to compute bivariate normal probabilities interactively and also be able to incorporate such a program within other application programs. This will allow an analyst to perform sensitivity studies by varying the input parameters in an application program and observing the effect on the measures of effectiveness of interest.

Recently, Wang [8] developed a new algorithm to compute bivariate normal probabilities, that does not require numerical integration, relatively easy to program and provides quite accurate results. Investigations by Wang indicate that the computed probabilities compare very well with those in the NBS tables and the computer resources needed are not excessive. The approach used by Wang is to start with an approximate contingency table of cell probabilities for a rectangular grid on the x, y plane and then apply the "iterative proportional fitting algorithm" [3; sec 3.5] to modify the cell probabilities; the iteration is continued until the marginal probabilities in the contingency table coincide with their true values to within a specified degree of accuracy. Since the marginal distributions of the random variables X and Y are univariate normal, the exact

marginal probabilities can be determined using computer programs available in most statistical software packages or by writing a subprogram for the purpose. It should be noted that, although a bivariate normal distribution is defined over the entire plane, for all practical purposes it is sufficient to consider only the square subregion $[-4,4] \times [-4,4]$ since the probability content outside of this subregion is negligible.

Wang's algorithm is defined by the following steps:

- 1. Let $-4 = a_0 a_1 \dots a_m = 4$ be a partition of the interval [-4,4] along the x - axis and $-4 = b_0 b_1$ $\dots b_n = 4$, a partition along the y - axis; identical equal length partitions for both axes is recommended to reduce computational complexity.
- 2. Let $\Delta x = x_i a_{i-1}$ i = 1, 2, ..., m $\Delta y = b_j - b_{j-1}$ j = 1, 2, ..., n $m_1 = a_{i-1} + a_i$ i = 1, 2, ..., m

 $n_j = b_{j-1} + b_j$ j = 1, 2, ..., n

 $\bar{\rho} = \rho \left(1 - \Delta x^2\right) \left(1 - \Delta y^2\right)$

where is the correlation coefficient (specified).

3. Let $\bar{p}_{i} = p [a_{i-1} < x \le a_{i}]$ i = 1, 2, ..., m $\bar{p}_{j} = P [b_{j-1} < Y \le b_{j}]$ j = 1, 2, ..., n

be the marginal probability contents of the i-th and j-th subintervals along the x and y axes respectively.

4. Compute $p_{ij}^{(0)}$, the starting approximate probability of the (i, j) th cell as

$$\frac{\bar{\rho} m_{i} n_{j}}{p_{ij}^{(0)} = e^{1-\bar{\rho}^{2}}} \qquad i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

5. The application of the iterative proportional fitting algorithm results in the following equations for the modified probability of the (i,j) th cell after the k-th iteration:

$$P_{ij}^{(k)} = \begin{cases} \binom{(k-1)}{p_{ij} p_{i}} & k = 1,3,5,\dots \\ \sum_{j=1}^{n} p_{ij}^{(k-1)} & j = 1 \\ \binom{(k-1)}{p_{ij} p_{j}} & k = 2,4,6,\dots \\ \sum_{i=1}^{m} p_{ij}^{(k-1)} & k = 2,4,6,\dots \end{cases}$$

6. Continue the iteration process until for some even number k $\left| \sum_{j=1}^{n} p_{ij}^{(k)} - \bar{p}_{i} \right| < \varepsilon \text{ and } \left| \sum_{i=1}^{m} p_{ij}^{(k)} - \bar{p}_{i} \right| < \varepsilon$

where ε is a prespecified degree of accuracy with which the true marginal probabilities agree with the marginals in the contingency table.

7. To compute $P[X \le h, Y \le k]$ (or P[X > h, Y > k]) sum the probabilities in the contingency table over those cells for which $a_i \le h (a_i > h)$ and $b_j \le k (b_j > k)$. In those cases where either $h \ne a_i$ and/or $k \ne b_j$ for any of the partition points a_i and b_j , the accuracy of the approximation can be improved by including h and/or k as additional partition points.

An APL function, called BVN, to compute bivariate normal probabilities (both P [$X \le h$, $Y \le k$] and P [X > h , Y > k]) is presented in the appendix. This function invokes another APL function called NCDF to compute the marginal univariate normal probabilities. The BVN function can be run on an IBM-PC / AT compatible microcomputer using an APL language system such as APL*PLUS from the STSC corporation; the function can also be run under VSAPL on the NPS mainframe computer. The function runs interactively and calls for keyboard input of the desired equal length partition size for the x and y axes and the degree of accuracy ϵ in approximating the marginal cell probabilities. With only minor modifications, the function can be imbedded within another APL function as a subprogram. Computations using the BVN function indicate that with partition size x = y = .2for both the x and y axes and ϵ = .00005, a four decimal place accuracy as compared with the NBS tables can be achieved. The computational time, as is to be expected, increases with a decrease in the partition size x or y, an increase in and to a lesser degree a decrease in ϵ . With x = y = .2, ϵ = .00005 and .1 \leq \leq .8 the computational time (clock time) was between 90 and 180 seconds on the Zenith Z-248 (an AT type) microcomputer, and on the IBM 3033 mainframe computer these times were between 1 and 20 seconds. The computational time can be reduced considerably (to about 30 seconds on the Z-248) by choosing x = y = .5 but then only a three decimal computational

accuracy can be expected. For a fixed value of if the c.d.f. is to be calculated for several choices of (h,k), the BVN function needs to be run only once; with a very minor modification the contingency table of bivariate cell probabilities can be saved in a matrix and all that is left is to sum the probabilities of the appropriate cells. If needed, it would be quite straight forward to generate tables for various choices of and (h,k).

Professor I. O'muircheartaigh of the O.R. department and I are in the process of completing a Fortran program for the problem and expect to submit the code for publication.

REFERENCES

- [1] Anscombe, F.J. (1981). <u>Computing in Statistical Science</u> <u>through</u> <u>APL</u>, Springer-Verlag, New York.
- [2] Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975). <u>Discrete Multivariate Analysis: Theory and Practice</u>, M.I.T. Press, Cambridge, MA.
- [3] Gupta, S.S. (1963). "Probability Integrals of Multivariate Normal and Multivariate t", Annals of Mathematical Statistics, 34, 792-828.
- [4] National Bureau of Standards (1959). <u>Tables of the</u> <u>Bivariate</u> <u>Normal</u> <u>Distribution</u> <u>Function</u> <u>and</u> <u>Related</u> <u>Functions</u>, Applied Mathematics Series 50, U.S. Government Printing Office, Washington D.C.
- [5] National Bureau of Standards (1964). <u>Handbook of</u> <u>Mathematical Functions</u>, Abramowitz, M. & Stegen, I.A. eds., Applied Mathematics Series 55, U.S. Government Printing Office, Washington D. C.
- [6] Owen, D.B. (1956). "Tables for Computing Bivariate Normal Probabilities", Annals of Mathematical Statistics, 27, 1075-90.
- [7] Sowden, R.R. & Ashford, J.R. (1969). "Computation of Bivariate Normal Integrals", Applied Statistics, 18, 169-80.
- [8] Wang, Y.J. (1987). "The Probability Integrals of Bivariate Normal Distributions: A Contingency Table Approach, Biometrika, 74, 1, 185-90.

APPENDIX

THIS APPENDIX CONTAINS THE LISTING OF TWO APL VARIABLES BVNHOW AND NCDEHOW AND TWO APL FUNCTIONS BVN AND NCDE. THE TWO HOW VARIABLES PROVIDE SHORT DESCRIPTIONS OF THE COMPUTATIONAL SCHEMES, THE INPUT PARAMETERS AND THE SYNTAX FOR THE TWO FUNCTIONS.

BVNHOW

THE FUNCTION BVN COMPUTES THE C.D.F. OF A STANDARD BIVARIATE NORMAL DISTRIBUTION WITH CORRELATION COEFFICIENT ▷, USING AN ALGORITHM PROPOSED BY YUCHUNG J. WANG (BIOMETRIKA, 1987, NO.74, 185-90). THE ALGORITHM CONSISTS OF PARTITIONING THE X-Y PLANE INTO RECTANGULAR CELLS, AN INITIAL APPROXIMATION OF THE CELL PROBABILITIES AND AN ITERATIVE SCHEME TO MODIFY THE CELL PROBABILITIES. THE ITERATION PROCESS IS TERMINATED AS SOON AS THE MARGINAL PROBABILITIES COINCIDE WITH THEIR EXACT VALUES (THAT ARE UNIVARIATE STANDARD NORMAL PROBABILITIES,COMPUTABLE USING THE APL FUNCTION NCDF) TO WITHIN A SPECIFIED DEGREE OF ACCURACY ≤ . THE SYNTAX FOR THE FUNCTION IS

RHO BVN W

HERE RHO IS THE CORRELATION COEFFICIENT AND W = (x,y) IS THE POINT IT WHICH THE C.D.F. IS TO BE COMPUTED. THE FUNCTION WILL CALL FOR HE INPUT OF THE DESIRED LENGTH FOR AN EQUAL PARTITIONING OF THE NTERVAL [-4,4] ALONG THE X AND Y AXES AND \leq THE DESIRED DEGREE F ACCURACY IN THE MARGINAL PROBABILITIES. THE RECOMMENDED CHOICES RE .2 FOR THE PARTITION LENGTH Δx , AND .00005 FOR \leq . THE TOTAL OMPUTATION TIME, ON THE ZENITH Z-248 MICROCOMPUTER, SHOULD BE BETWEEN 0 AND 180 SECONDS DEPENDING ON THE SIZE OF RHO.

NCDFHOW

HE FUNCTION NCDF COMPUTES THE C.D.F. OF A STANDARD NORMAL DISTRIBUTION, SING THE APPROXIMATION DEFINED IN EQUATION 26.2.17, PAGE 932 IN HE HANDBOOK OF MATHEMATICAL FUNCTIONS, M.ABRAMOWITZ AND I.A.STEGUN DITORS, PUBLISHED BY THE NATIONAL BUREAU OF STANDARDS (REF. [5]). THIS PPROXIMATION IS ACCURATE TO ATLEAST TO 7 DECIMAL PLACES. THE SYNTAX DR THE FUNCTION IS: NCDF Z WHERE Z IS AN INCREASING ARRAY F NUMBERS FOR WHICH THE C.D.F. IS TO BE COMPUTED. THIS FUNCTION IS NVOKED BY THE BVN FUNCTION TO COMPUTE MARGINAL PROBABILITIES.

```
. .
E13
       . .
[2]
[3]
     ATHIS FUNCTION COMPUTES THE CUMULATIVE PROBABILITIES OF A STANDARD
     ABIVARIATE NORMAL DISTRIBUTION ( means 0 and st.devs 1) WITH
[4]
     ACORRELATION COEFFICIENT RHO. THE SYNTAX FOR THE FUNCTION IS:
[5]
     ARHO BVN W , WHERE W=(x,y). THE FUNCTION FIRST COMPUTES A
[6]
     ACONTINGENCY TABLE OF CELL PROBABILITIES OVER A USER DEFINED PARTITIO
[7]
[8]
     AOF THE X AND Y AXES AND THEN CUMULATES THE PROBAILITIES IN THE
[9]
     AAPPROPRIATE CELLS. THE USER IS PROMPTED TO INPUT THE LENGTH OF THE
[10] ASUBINTERVALS IN THE PARTITION OF (74,4) (e.g., .05) AND THE DESIRED
[11] A ACCURACY (e.g., .0005 FOR A 3-DECIMAL ACCURACY). THE FUNCTION
[12] AOUTPUTS BOTH Pr [ X < x, Y < y ] AND Pr [ X > x, Y > y ].
[13] ' INPUT THE DESIRED PARTITION SUBINTERVAL LENGTH FOR X AND Y AXES'
[14] K+D
      . .
[15]
      'INPUT THE DESIRED ACCURACY OF COMPUTATIONS'
[16]
[17]
      E+O
[18]
      X+WE11
[19] Y+W[2]
[20]
      \rightarrowEND1×1(X\leq-4)×Y\leq-4
[21]
      \rightarrow END2 \times i (X \ge 4)^{Y \ge 4}
[22]
      \rightarrowEND3×1 (X24) Y24
[23]
      X+L/4.X
[24]
      Y+L/4,Y
[25]
      RBAR \leftarrow RHO \times 1 - (K + 2) \div 12
[26]
      R \in RBAR = (1 - RBAR + 2)
[27]
      A+-4+0,K×18+K
[28]
      A1+((X>A)/A) X (X<A)/A
      A2+((Y>A)/A),Y,(Y<A)/A
[29]
[30]
      M1 \leftarrow ((1 \downarrow A1) + 1 \downarrow A1) \div 2
[31]
      M2 \leftarrow ((1 \downarrow A2) + (1 \downarrow A2) \div 2)
[32]
      L1+pM1
[33]
      L2+PM2
[34] B \leftrightarrow R \times M1 \circ R \times M2
      P1+(NCDF 1+A1)-NCDF -1+A1
[35]
[36]
      P2 \leftarrow (NCDF 1 \neq A2) - NCDF 1 \neq A2
[37] REPEAT:Q+P1++B
[38]
      D \leftarrow ((L1,L1)\rho Q) \times ((L1,L1)\rho 1,L1\rho 0)
[39] B+D+.×B
[40]
      Q+P2++/B
```

```
[41] D+((L2,L2)\rho Q) \times ((L2,L2)\rho 1,L2\rho 0)
[42] B+B+.×D
[43] →REPEAT×1((+/(|P1-+/B)>E)>0)*(+/(|P2-+/B)>E)>0
[44] I++/X>A1
[45]
      J++/Y>A2
<mark>[46] 'Pr [ X < ',(āX),' , </mark> Y < ',(āY),' ] = ',ā+/+/(I,J)∱B
[47] 'Pr [ X > ',(āX),' , Y > ',(āY),' ] = ',ā+/+/(I,J)∳B
[48] →0
[49] END1: ' Pr [ X < ', (\bar{a}X), ', Y < ', (\bar{a}Y), '] = 0'
[50] ' Pr [ X > ', (\bar{a}X), ', Y > ', (\bar{a}Y), '] = 1'
[51] →0
152] END2: ' Pr [ X < ', (\overline{a}X), ', Y < ', (\overline{a}Y), '] = 1'
[53] ' Pr [ X > ', (aX), ', Y > ', (aY), '] = 0'
:54] →0
:55] END3: ' Pr [ X < ', (\overline{a}X), ', Y < ', (\overline{a}Y), '] = ',\overline{a} (NCDF X)×NCDF Y
[56] ' Pr [X > ', (\overline{a}X), ', Y > ', (\overline{a}Y), '] = ', \overline{a} (1-NCDF X) \times (1-NCDF Y)
571
```

V

[1] ATHIS FUNCTION COMPUTES THE C.D.F. Pr [$Z \le z$] OF A STANDARD [2] ANORMAL DISTRIBUTION USING THE APPROXIMATION IN EQUATION 26.2.17, [3] APAGE 932 IN THE HANDBOOK OF MATHEMATICAL FUNCTIONS, EDITED BY [4] AABRAMOWITZ AND STATGUN, NATIONAL BUREAU OF STANDARDS. [5] $Z \leftarrow , Z$

- [6] Z+Z[4Z]
- [7] N+ρ(Z<O)/Z
- [8] M+p(Z≥0)/Z
- [9] Z+IZ
- [10] p+0.2316419
- [11] $T \leftrightarrow 1 + p \times Z$
- [12] $z \leftarrow (x (Z \times 2) \div 2) \div (02) \times 0.5$
- [13] B+ 0.31938153 -0.356563782 1.781477937 -1.821255978 1.330274429
- [14] $P \leftarrow 1-z \times (T \circ . * \iota 5) + . \times B$
- [15] $R \leftarrow (1 N \uparrow P), (-M) \uparrow P$

V

DIRECTOR (2) DEFENSE TECH. INFORMATION CENTER, CAMERON STATION ALEXANDRIA, VA 22314

DIRECTOR OF RESEARCH ADMIN. CODE 012 NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

LIBRARY (2) NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

Center for Naval Analysis 4401 Ford Ave. Alexandria, VA 22302-0268 DEPARTMENT OF MATHEMATICS CODE 53 NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

PROF.TOKE JAYACHANDRAN (25) CODE 53Jy DEPARTMENT OF MATHEMATICS NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

4

-

.

.

